WO2016117147A1 - Information processing device, roadside control device, cloud system, computer program and virtual machine operation method - Google Patents

Information processing device, roadside control device, cloud system, computer program and virtual machine operation method Download PDF

Info

Publication number
WO2016117147A1
WO2016117147A1 PCT/JP2015/069891 JP2015069891W WO2016117147A1 WO 2016117147 A1 WO2016117147 A1 WO 2016117147A1 JP 2015069891 W JP2015069891 W JP 2015069891W WO 2016117147 A1 WO2016117147 A1 WO 2016117147A1
Authority
WO
WIPO (PCT)
Prior art keywords
remote control
control
area
traffic
unit
Prior art date
Application number
PCT/JP2015/069891
Other languages
French (fr)
Japanese (ja)
Inventor
勝之 鈴木
松本 洋
茂樹 梅原
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/JP2015/058492 external-priority patent/WO2016098361A1/en
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Publication of WO2016117147A1 publication Critical patent/WO2016117147A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/46Multiprogramming arrangements
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/07Controlling traffic signals
    • G08G1/081Plural intersections under common control
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions

Definitions

  • the present invention relates to an information processing apparatus, a roadside control apparatus, a cloud system, a computer program, and a virtual machine operation method. More specifically, the present invention relates to a technique for using a virtual machine constructed in a cloud system for a traffic control system.
  • the traffic control system includes, for example, a central device installed in a traffic control center, a traffic signal controller, a vehicle detector, an information board, and a traffic monitoring terminal that communicate with the central device through a dedicated communication line.
  • a traffic indicator for a predetermined road section is calculated from a detection signal of a vehicle detector arranged at an appropriate place in a jurisdiction area, and an optimal signal light color switching is performed for a plurality of intersections based on the calculated traffic indicator. Traffic sensitive control such as setting timing is performed.
  • the present invention has been made in view of such conventional problems, and an object thereof is to enable a traffic control system using a virtual machine of a cloud system to be operated at a low cost.
  • An information processing apparatus is an information processing apparatus including one or more virtual machines constructed by virtualizing hardware resources, and includes a plurality of intersections included in a predetermined area. Whether to cause the remote control unit to execute the remote control according to the traffic situation of the area, and the virtual machine having a remote control unit that executes a remote control that is a traffic signal control whose traffic right is a control target And a determination processing unit that performs the determination process.
  • a roadside control device is capable of switching a traffic signal control control method at an intersection, and includes road control including point control and remote control defined below as the switchable control method.
  • a communication unit that communicates with a remote control device that executes the remote control for a plurality of intersections in a predetermined area including the intersection, and the intersection so that a traffic index at the intersection satisfies a predetermined condition
  • a control unit that determines whether or not the point control for the remote control device can be executed, and transmits a request for execution of the remote control to the remote control device to the communication unit when the determination result is negative.
  • Point control Traffic signal control that controls the right of traffic at one intersection
  • Remote control Traffic signal control that controls the right of traffic at multiple intersections
  • a cloud system is capable of communicating with the information processing apparatus described above and the information processing apparatus, and is capable of switching a traffic signal control control method at the intersection included in the area. And when the remote control execution command is received from the information processing device, the roadside control device switches the control method to remote control, and the remote control release command from the information processing device. Is received, the control method is switched to point control which is traffic signal control for which the right of passage at one intersection is controlled.
  • a computer program according to an aspect of the present invention is a computer program for causing an information processing apparatus to function as one or a plurality of virtual machines constructed by virtualizing hardware resources.
  • a step in which the control unit executes remote control which is traffic signal control for controlling the right of traffic at a plurality of intersections included in a predetermined area, and the determination processing unit of the information processing device And a step of determining whether or not to cause the remote control unit to execute the remote control.
  • a method is an operation method of one or a plurality of virtual machines constructed by virtualizing hardware resources of an information processing apparatus, wherein the remote control unit of the virtual machine has a predetermined
  • a step of executing remote control which is traffic signal control for controlling traffic rights of a plurality of intersections included in the area, and the determination processing unit of the information processing device performs the remote control according to the traffic situation of the area.
  • a traffic control system using a virtual machine of a cloud system can be operated at low cost.
  • FIG. 1 is an overall configuration diagram of a cloud system according to an embodiment of the present invention. It is a block diagram which shows the hardware constitutions of a physical machine and a management server. It is a block diagram which shows the software configuration of a physical machine and a management server. It is a perspective view which shows the whole structure of the traffic control system containing a remote control apparatus. It is a top view of the intersection where the roadside control apparatus was installed. It is a block diagram which shows the internal structure of a roadside control apparatus and a vehicle-mounted communication apparatus. It is a flowchart which shows an example of the execution process of remote control. It is a flowchart which shows an example of the cancellation
  • An information processing apparatus is an information processing apparatus including one or more virtual machines constructed by virtualizing hardware resources, and has the right to pass through a plurality of intersections included in a predetermined area.
  • the virtual machine having a remote control unit that executes a remote control that is a traffic signal control to be controlled, and a determination process for determining whether or not to cause the remote control unit to execute the remote control according to the traffic situation of the area
  • a determination processing unit that performs
  • the determination processing unit determines whether or not to cause the remote control unit of the virtual machine to execute remote control according to the traffic condition of the area. Accordingly, the remote control unit of the virtual machine can be appropriately stopped, paused, or degenerated. For this reason, compared with the case where the remote control part of a virtual machine continues remote control unconditionally, the usage-amount of the resource of information processing apparatus can be restrained, and a traffic control system can be operated at low cost.
  • the determination processing unit performs the determination process based on a road traffic index calculated by a roadside control device installed in the area.
  • the remote control unit of the virtual machine since the remote control unit of the virtual machine does not have to calculate the traffic index, resource usage in the information processing apparatus is saved as compared with the case where the remote control unit of the virtual machine calculates the traffic index. be able to.
  • the determination processing unit performs the determination processing based on a resource usage rate necessary for the remote control unit to execute the remote control.
  • a resource usage rate necessary for the remote control unit for example, when the resource usage rate of the remote control unit is equal to or greater than a predetermined threshold value, the amount of resources used in the information processing apparatus can be suppressed by not performing the remote control, and the traffic control system can be reduced in cost. Can be used.
  • the area where the remote control unit executes the remote control is one sub-area.
  • the amount of resources required for the operation of the virtual machine can be reduced to a small scale. It can be kept relatively low. Therefore, there is an advantage that the client can easily introduce the cloud service of the present embodiment.
  • the determination processing unit performs the determination process in response to reception of the execution request for the remote control from the roadside control device installed in the area.
  • the virtual machine can be remotely controlled only when the necessity of remote control actually occurs in a predetermined area, so that the hardware resources of the information processing apparatus can be used effectively. Can do.
  • the determination processing unit may perform the determination processing at predetermined intervals. In this way, the determination process is automatically performed without waiting for the execution request from the roadside control device to be received, so the determination process can be performed more reliably.
  • the determination processing unit performs the determination process based on a time zone in which the remote control set in advance for the area is executed.
  • the remote control unit of the virtual machine can be operated only during the above-mentioned time period, and the remote control unit of the virtual machine can be stopped during other time periods, and the hardware resources of the information processing apparatus can be efficiently used. be able to.
  • the plurality of areas in which the remote control units of the plurality of virtual machines perform the remote control preferably include areas that exist in different regions with a time difference. . In this way, it is possible to distribute the operation time of a plurality of virtual machines each responsible for remote control of an area having a time difference, so that the hardware resources of the information processing apparatus can be used efficiently.
  • the remote control unit of the virtual machine can execute at least one of the following (a) to (d) in addition to the remote control. It is preferable.
  • (A) Traffic information analysis in the area (b) Provision of privilege information around the area (c) Provision of signal information in the area (d) Route guidance of vehicles in the area
  • the roadside control device of the present embodiment is a roadside control device that can switch the traffic signal control method at an intersection and includes the point control and remote control defined below as the switchable control method.
  • a communication unit that communicates with a remote control device that executes the remote control for a plurality of intersections in a predetermined area including the intersection, and the point for the intersection so that a traffic index at the intersection satisfies a predetermined condition
  • a control unit that determines whether the control can be performed and, when the determination result is negative, a control unit that causes the communication unit to transmit an execution request for the remote control to the remote control device.
  • Point control Traffic signal control that controls the right of traffic at one intersection
  • Remote control Traffic signal control that controls the right of traffic at multiple intersections
  • the control unit when the control unit cannot execute the point control for the intersection so that the traffic index at the intersection satisfies the predetermined condition, the control unit causes the communication unit to transmit a remote control execution request.
  • the remote control device (specifically, the virtual machine) can be requested to execute the remote control corresponding to the traffic situation in the area. For this reason, when the traffic situation is insufficient with the point control, the remote control device can start the remote control.
  • the control unit performs the determination while the control unit is selecting the remote control, and when the determination result is affirmative, the remote control device
  • the remote control cancellation request is transmitted to the communication unit, so that the remote control device 12 that is the virtual machine VMi can be requested to cancel the remote control according to the traffic situation in the area Ai. For this reason, it is possible to prevent the remote control device from continuing the remote control uselessly when the traffic situation is sufficient for the point control.
  • the cloud system of the present embodiment can communicate with the information processing apparatus of the present embodiment described above and the information processing apparatus, and can switch the traffic signal control control method at the intersection included in the area.
  • a roadside control device and when the roadside control device receives the execution instruction of the remote control from the information processing device, the control method is switched to the remote control, and the remote control of the information processing device When a cancellation command is received, the control method is switched to point control which is traffic signal control with the right of passage at one intersection as a control target.
  • the roadside control device capable of switching the traffic signal control method at the intersection included in the area switches the control method to the remote control in response to receiving the execution command, and receives the release command. Since the control method is switched to point control according to the above, when remote control is not executed at each intersection included in the area, the point control can be executed at the intersection. Therefore, both remote control and point control can be performed on the intersections included in the area.
  • a computer program according to the present embodiment is a computer for causing the information processing apparatus described in (1) to (9) above to function as one or a plurality of virtual machines constructed by virtualizing hardware resources. It is a program. Therefore, the computer program of the present embodiment has the same effects as the information processing apparatus described in the above (1) to (9).
  • the operation method of this embodiment is one or a plurality of operation methods constructed by virtualizing the hardware resources of the information processing apparatus described in (1) to (9) above. Therefore, the operation method of this embodiment has the same effects as the information processing apparatus described in the above (1) to (9).
  • Vehicle refers to all vehicles passing on the road, for example, vehicles according to the Road Traffic Act. Vehicles under the Road Traffic Act include automobiles, motorbikes, light vehicles, and trolley buses.
  • vehicle includes both a probe vehicle having an in-vehicle device capable of transmitting probe information and a normal vehicle having no in-vehicle device.
  • Probe information Various information related to the vehicle obtained from the vehicle-mounted device of the probe vehicle that actually travels on the road. Sometimes referred to as probe data or floating car data. This includes data such as vehicle ID, vehicle position, vehicle speed, vehicle orientation, and the time of occurrence thereof.
  • Traffic signal controller A controller that turns on and off a signal lamp of a traffic signal at a predetermined lamp color switching timing.
  • the traffic signal controller of the present embodiment can execute a point control method and a remote control method described later.
  • the traffic signal controller normally performs point control for an intersection corresponding to the traffic signal controller.
  • a signal control parameter is received from a roadside control device described later, the lamp color switching timing of the signal lamp at the intersection corresponding to the own aircraft is determined according to the received signal control parameter.
  • “Signal control parameter” Generally, this refers to the cycle length, split and offset described later.
  • the lamp color switching timing (such as the start time and display time of each lamp color) of the signal lamp at the intersection may be included in this.
  • “Cycle length” The time of one cycle from the blue (or red) start time of a traffic signal to the next blue (or red) start time. “Split”: The ratio of the time (green signal time, red signal time, etc.) allocated to each display to the cycle length. “Offset”: Refers to the deviation of the green signal start time between adjacent intersections. Expressed as a percentage or second of the time of one cycle.
  • Roadside sensor A sensor device installed to sense traffic conditions on the road.
  • Roadside sensors include vehicle detectors, surveillance cameras, optical beacons and the like.
  • the vehicle sensor is composed of an ultrasonic vehicle sensor that senses a vehicle passing underneath one by one using ultrasonic waves
  • the surveillance camera is composed of a CCD camera that captures a moving image of the road.
  • An optical beacon is an optical communication device that performs optical communication with a vehicle-mounted device that supports optical communication at a predetermined position on a road and exchanges predetermined information with the infrastructure side.
  • Remote control device A traffic signal control device capable of executing remote control described later.
  • the remote control device also performs a determination process as to whether or not the traffic signal controller at the intersection included in the area managed by the own device is to execute remote control described later.
  • the remote control device transmits the downlink information including the remote control execution command and the downlink information including the signal control parameter to the roadside corresponding to the intersection. Send to control device.
  • “Roadside control device” A control device installed on the roadside that switches the control method of traffic signal control at an intersection. The roadside control device switches the control method of traffic signal control at the intersection based on an execution command received from the remote control device.
  • “Sub-area” An area that is divided to include one or more intersections that perform traffic control control according to a common cycle length. One subarea usually includes at least one important intersection.
  • Important intersection An intersection that usually has a large load factor and often becomes a bottleneck. In general, this is an intersection between trunk and semi-trunk roads. At important intersections, it is usually possible to measure the traffic demand on all inflow paths by means of vehicle detectors. “General intersection”: An intersection where traffic demand on the secondary road is less than that of an important intersection, and for example, it is only necessary to secure the green time of a crossing pedestrian. At general intersections, it is possible to measure traffic demand on some inflow paths using vehicle detectors, or to measure traffic demand.
  • Point control A traffic signal control method that controls the right of traffic at one intersection. Specifically, it means traffic signal control that independently controls the light color switching timing of a traffic signal at one intersection regardless of other intersections. Also called single control. In the point control, a regular cycle control for switching the signal lamp color is usually performed according to a predetermined time schedule. In some intersections where point control is executed, point sensitive control such as pedestrian push button control, recall control, and right turn sensitive control may be performed.
  • System control Traffic signal control for controlling the color switching timings of signal lamps in association with each other so as to cause a time delay in signal display at a plurality of intersections that continue along one route.
  • a route for performing system control is referred to as a “system section”.
  • system control by adjusting the offset between intersections included in the system section of the subarea, it is easier to pass a specific direction of the system section with a blue signal (priority offset), or conversely, stop with a red signal. Control to make it easier is included.
  • “Surface control” Traffic signal control for controlling the color switching timing of signal lamps in relation to a plurality of intersections included in a road network that spreads across the surface. Specifically, it refers to wide-area traffic signal control that extends system control to the road network.
  • Remote control A traffic signal control method that controls the right of traffic at multiple intersections. Specifically, it refers to traffic signal control for controlling a plurality of intersections included in a predetermined area in association with the lighting color switching timing of a traffic signal. Therefore, both the above system control and surface control correspond to remote control.
  • Area control in which the predetermined area is a system section is system control, and area control that is a road network in which the predetermined area spreads is surface control.
  • the correspondence between the remote control device and the area may be “one-to-one” or “one-to-many”.
  • one remote control device manages one area and performs remote control that associates the lamp color switching timings of intersections included in the area.
  • one remote control device controls a plurality of areas and performs remote control that associates the lamp color switching timings of intersections included in the plurality of areas.
  • the association of the lamp color switching timings of a plurality of intersections may be performed for each area, may be performed for some of the plurality of areas, or may be performed for all areas.
  • Service Provider A virtual machine is constructed on hardware resources that can be virtualized provided by an IaaS (Infrastructure as a Service) provider, and a predetermined traffic signal control service is provided by application software executed by the virtual machine It means a business. It is a so-called SaaS (Software as a Service) operator. “Client”: refers to an operator who enjoys a predetermined traffic signal control service using application software executed by the virtual machine of the SaaS operator.
  • FIG. 1 is an overall configuration diagram of a cloud system according to the present embodiment.
  • the cloud system includes a plurality of physical machines 2 that are information processing apparatuses installed in a data center 1 operated by an IaaS provider, and a management server 3 that is an information processing apparatus that manages the physical machines 2.
  • a roadside control device 5 a provider terminal 6 and a client terminal 7 that communicate with the data center 1 via a public communication network 4 such as the Internet.
  • the plurality of physical machines 2 and the management server 3 are configured by server computers including hardware resources such as a CPU (Central Processing Unit), a memory, an HDD (Hard Disk Drive), and a communication interface.
  • the plurality of physical machines 2 and the management server 3 can communicate with each other via a LAN (Local Area Network) constructed in the data center 1.
  • the management server 3 can communicate with the provider terminal 6 and the client terminal 7 via the public communication network 4.
  • the physical machine 2 includes a server computer that can be virtualized, and includes virtualization software 11 and one or more virtual machines 12.
  • the virtualization software 11 may be either a host OS type operating on an OS (Operating System) of the physical machine 2 or a hypervisor type. However, in the present embodiment, the hypervisor type virtualization software 11 with higher processing efficiency in the physical machine 2 is assumed.
  • the virtualization software (hereinafter referred to as “hypervisor”) 11 can activate a virtual OS 13 (see FIG. 3), which is an OS for the virtual machine 12, by allocating a part of the hardware resources of the physical machine 2. it can. As a result, one or a plurality of virtual machines 12 are constructed in one physical machine 2, and a predetermined application software 14 (see FIG. 3) corresponding to the virtual OS 13 of the virtual machine 12 is ready to be executed.
  • application software 14 (see FIG. 3) is provided in which a service provider (SaaS provider) provides a predetermined service for each client.
  • SaaS provider a service provider
  • the client enjoys the traffic signal control service executed by the application software 14 within the scope of a predetermined use contract concluded with the service provider.
  • the virtual machine 12 functions as a traffic signal control device capable of providing a client with a service such as remote control with the area Ai formed by a predetermined system section or road network decided between the client and the service provider as a control target. To do.
  • a “virtual machine” that is remotely controlled by the application 14 provided by the service provider is also referred to as a “remote control device”.
  • the virtual machine VMi executes remote control for one area Ai set as its own control target.
  • the area Ai is not limited to Japan, and may be in any country in the world.
  • Roadside control devices 5 are installed at a plurality of intersections included in the area Ai.
  • the roadside control device 5 included in the area Ai can communicate with the hypervisor 11 and the virtual machine VMi corresponding to the area Ai via the public communication network 4.
  • the provider terminal 6 is a computer device capable of IP communication owned by a service provider.
  • the client terminal 7 is a computer device capable of IP communication owned by a client.
  • These terminals 6 and 7 may be a computer terminal such as a desktop personal computer or a notebook personal computer, or may be a mobile terminal such as a tablet computer or a smartphone.
  • the scale of one area Ai in which one virtual machine VMi performs remote control is not particularly limited, but in this embodiment, the area Ai is a sub-area in order to suppress the unit price of one virtual machine VMi. It shall consist of areas.
  • areas A1 to An corresponding to the plurality of virtual machines VM1 to VMn include areas of regions having different time differences. That is, for example, area A1 exists in Japan and area A2 exists in the United States.
  • the management server 3 allocates the hardware resources of the group of physical machines 2 for the service provider within the scope of the use contract between the IaaS provider and the service provider in response to the use request input from the provider terminal 6.
  • the above usage contract includes hardware specifications necessary for the operation of the virtual machine 12, such as the number of cores and clock frequency, memory capacity (GB), data capacity of a mass storage device, IP communication bandwidth (Gbps), And monthly charge or pay-per-use charge type.
  • the provider terminal 6 uploads software such as an application 14 to be operated on the virtual OS 13 of the virtual machine 12 and data such as setting parameters necessary for the execution of the application 14 to the management server 3.
  • the management server 3 installs the software and data uploaded from the provider terminal 6 in the assigned mass storage device (“second storage unit 23” in FIG. 2) of the predetermined physical machine 2.
  • the management server 3 collects control data (such as signal control parameters for each intersection in the area Ai) generated by the virtual machine 12 by remote control, and stores the collected control data in the control database DB2 (see FIG. 2).
  • the management server 3 provides the control data of all areas Ai to the provider terminal 6 in response to the browsing request of the provider terminal 6.
  • the management server 3 provides the client terminal 7 with control data for the client in response to a browsing request from the client terminal 7.
  • FIG. 2 is a block diagram showing the hardware configuration of the physical machine 2 and the management server 3.
  • the physical machine 2 includes a processing unit 21, a first storage unit 22, a second storage unit 23, and a communication unit 24. These are connected by an internal bus 25.
  • the management server 3 includes a processing unit 31, a first storage unit 32, a second storage unit 33, and a communication unit 34. These are connected by an internal bus 35.
  • the processing unit 21 includes a multi-core CPU that can be virtualized.
  • the first storage unit 22 includes a volatile memory such as a DRAM (Dynamic Random Access Memory) and an SRAM (Static Random Access Memory).
  • the second storage unit 23 includes a non-volatile memory such as an HDD (Hard Disk Drive), an SSD (Solid State Drive), a USB (Universal Serial Bus) memory, or an SD memory card.
  • the communication unit 24 includes a communication interface that supports both IP communication and LAN.
  • the second storage unit 23 stores software such as the hypervisor 11 and the virtual machine 12 and control data generated by the virtual machine 12 by remote control.
  • the processing unit 21 reads the hypervisor 11 stored in the second storage unit 23, virtualizes a part of hardware resources included in the physical machine 2, and converts a predetermined number of virtual machines 12 into a physical machine that is the own device. Build in 2.
  • the processing unit 31 is composed of, for example, a multi-core CPU.
  • the first storage unit 32 includes a volatile memory such as a DRAM or an SRAM.
  • the second storage unit 33 is composed of a nonvolatile memory such as an HDD, SSD, USB memory, or SD memory card.
  • the communication unit 34 includes a communication interface that supports both IP communication and LAN.
  • the second storage unit 33 includes management software 36 for monitoring a predetermined physical machine 2 assigned to the service provider, an area database DB1 for associating the virtual machine VMi with the area Ai, and the control received from each virtual machine 12.
  • a control database DB2 that holds data is stored.
  • the processing unit 31 reads the management software 36 stored in the second storage unit 33 and associates the virtual machine 12 operating on the hypervisor 11 with the provider terminal 6 and the client terminal 7.
  • FIG. 3 is a block diagram showing software configurations of the physical machine 2 and the management server 3. As shown in FIG. 3, the physical machine 2 includes a hypervisor 11 and one or a plurality of virtual machines 12.
  • a physical machine 2 that can include a maximum of three virtual machines 12 is illustrated.
  • the left physical machine 2A includes three virtual machines VM1 to VM3
  • the central physical machine 2B includes two virtual machines VM4 and VM5
  • the right physical machine 2C includes one virtual machine VN6. .
  • the virtual machines VM1 to VM6 include a virtual OS 13 that is an OS for the virtual machine 12, and an application 14 that operates on the virtual OS 13.
  • the virtual machines VM1 to VM6 execute the remote control described above by executing the application 14 using a part of the core (resource) of the processing unit 21 and a part of the memory (resource) of the first storage unit 22. It functions as the remote control device 12. Therefore, hereinafter, the remote control functional part realized by the execution of the application 14 by the virtual machine 12 is also referred to as a “remote control unit 14”.
  • the remote control device 12 controls the communication unit 24 to perform IP communication with the roadside control device 5 included in the area Ai and local communication with the communication unit 24 of the other physical machine 2 and the communication unit 34 of the management server 3. Communication is possible.
  • the hypervisor 11 controls the communication unit 24 to perform IP communication with the roadside control device 5 included in the area Ai, and local communication with the communication unit 24 of the other physical machine 2 and the communication unit 34 of the management server 3. Is possible.
  • the virtual machines VM1 to VM6 distributed to the physical machines 2A to 2C are remote functions as functional parts executed by a part of hardware resources (resources) such as the processing unit 21 and the first storage unit 22 of the physical machines 2A to 2C.
  • resources such as the processing unit 21 and the first storage unit 22 of the physical machines 2A to 2C.
  • an uplink collection unit 26, a resource monitoring unit 27, a time zone acquisition unit 28, and a VM control unit 29 are provided.
  • the uplink collection unit 26 collects uplink information that the roadside control device 5 included in the area Ai transmits to the data center 1 in uplink.
  • the uplink information includes at least one information of a traffic index calculated by the roadside control device 5 in the area Ai and a remote control execution request and cancellation request generated by the roadside control device 5.
  • the traffic index includes at least one of the inflow traffic volume at the intersection included in the area Ai, the congestion length, the travel time of the road section, and the average speed of the vehicle.
  • the remote control execution request is to request the data center 1 to execute remote control when the roadside control device 5 at the intersection that is performing point control determines that remote control is necessary based on the traffic index calculated by itself. It is a communication frame for doing.
  • the remote control cancellation request is made when the roadside control device 5 determines that the remote control is unnecessary based on the traffic index while the traffic signal controller is executing the remote control with the signal control parameter generated by the virtual machine VMi. This is a communication frame for requesting the data center 1 to cancel remote control.
  • the physical machine 2A in FIG. 3 includes three virtual machines VM1 to VM3 corresponding to the areas A1 to A3. Accordingly, the uplink collection unit 26 of the physical machine 2A collects uplink information from the roadside control device 5 included in the areas A1 to A3. Similarly, the uplink collection unit 26 of the physical machine 2B collects uplink information from the roadside control device 5 included in the areas A4 and A5, and the uplink collection unit 26 of the physical machine 2C is included in the area A6. Uplink information from the roadside control device 5 is collected.
  • the resource monitoring unit 27 monitors the resource usage status of the virtual machine VMi that is executing the remote control.
  • the resources to be monitored include, for example, a core usage rate and a memory usage rate for each predetermined time in the virtual machine VMi.
  • the resource monitoring unit 27 of the physical machine 2A monitors the usage status of the resources of the virtual machines VM1 to VM3, and the resource monitoring unit 27 of the physical machine 2B monitors the usage status of the resources of the virtual machines VM4 and VM5.
  • the 2C resource monitoring unit 27 monitors the resource usage status of the virtual machine VM6.
  • the time zone acquisition unit 28 reads and acquires the time zone for executing remote control in the area Ai (for example, the commuting time zone from AM 7:00 to AM 10:00) from the second storage unit 23.
  • the time zone acquisition unit 28 of the physical machine 2A acquires the time zone specified for the areas A1 to A3 from the second storage unit 23, and the time zone acquisition unit 28 of the physical machine 2B is specified for the areas A4 and A5.
  • the time zone is acquired from the second storage unit 23, and the time zone acquisition unit 28 of the physical machine 2C acquires the time zone specified for the area A6 from the second storage unit 23.
  • the processing load on the virtual machine VMi is reduced or unnecessary.
  • the amount of resources used by the physical machine 2 be suppressed by terminating or pausing.
  • the VM control unit 29 of each virtual machine 12 performs “grade control” for switching the quality of remote control executed by the remote control unit 14 for the area Ai, and starts / ends the application 14 and the virtual OS 13 of the virtual machine VMi.
  • “operation state switching control” for transitioning operation states such as pause / restart can be executed. 3 exemplifies a case where each virtual machine 12 includes the VM control unit 29, but the hypervisor 11 may include the VM control unit 29.
  • Grade control includes, for example, high-quality surface control for all intersections in area Ai and some intersections in area Ai based on traffic conditions and resource usage conditions in area Ai. Control which switches surface control (or system control) with low quality is included.
  • the grade control includes high-load traffic signal control with high quality (for example, MODERATO) and low-load traffic signal control with low quality (for example, pattern control) based on the traffic conditions and resource usage conditions in the area Ai. ).
  • the quality of the remote control is set to “high level” when the resource usage state is less than a predetermined threshold, and the quality of the remote control is “ Set to low level.
  • the operation state switching control by the VM control unit 29 includes, for example, a process of automatically changing the operation state of the remote control unit 14 of the virtual machine VMi in accordance with the time zone of the area Ai. That is, the VM control unit 29 determines whether or not the current time is included in the time zone in which the remote control is executed in the area Ai.
  • the VM control unit 29 activates or restarts the remote control unit 14 of the virtual machine VMi when it is within the time zone, and ends the remote control unit 14 of the virtual machine VMi when it is outside the time zone. Or stop it.
  • the virtual OS 13 of the virtual machine 12 may be activated or resumed, terminated, or suspended according to activation, resumption, termination, or suspension of the remote control unit (application) 14.
  • the operation state switching control by the VM control unit 29 can be performed according to the number of traffic indicators in the area Ai. That is, in the case of a traffic index (inflow traffic volume, traffic jam length, travel time, etc.) that is more relevant to traffic jams as the value increases, the VM control unit 29 receives the traffic index received from the roadside control device 5 in area Ai. Is determined to be greater than or equal to a predetermined threshold.
  • a traffic index inflow traffic volume, traffic jam length, travel time, etc.
  • the VM control unit 29 activates or resumes the remote control unit 14 of the virtual machine VMi when it is equal to or greater than the threshold value, and terminates or pauses the remote control unit 14 of the virtual machine VMi when it is less than the threshold value.
  • the virtual OS 13 of the virtual machine 12 may be activated or resumed, terminated, or suspended according to activation, resumption, termination, or suspension of the remote control unit (application) 14.
  • the VM control unit 29 determines that the traffic index received from the roadside control device 5 in the area Ai is equal to or less than a predetermined threshold value. It is determined whether or not.
  • the VM control unit 29 activates or restarts the remote control unit 14 of the virtual machine VMi when it is equal to or less than the threshold value, and terminates the remote control unit 14 of the virtual machine VMi when it is less than the threshold value or Pause.
  • the virtual OS 13 of the virtual machine 12 may be activated or resumed, terminated, or suspended according to activation, resumption, termination, or suspension of the remote control unit (application) 14.
  • the switching control of the operation state by the VM control unit 29 can be performed according to the resource usage rate (for example, the memory usage rate every predetermined time) by the remote control unit 14 executing the remote control of the area Ai. .
  • the VM control unit 29 monitors the resource usage rate necessary for the remote control unit 14 to execute remote control, and if the resource usage rate being monitored exceeds a predetermined threshold value, the VM control unit 29 The VMi remote control unit 14 may be terminated or suspended.
  • the resource usage in the physical machine 2 can be suppressed below a predetermined threshold. Therefore, the usage fee of the physical machine 2 in the case of pay-per-use billing can be kept low, and the traffic control system can be operated at low cost.
  • the hypervisor 11 determines an optimum arrangement in accordance with the contents of the contract with the IaaS provider regarding which physical machine 2A to 2C the virtual machine VMi is to be arranged.
  • the hypervisors 11 of the physical machines 2A to 2C exchange information on the installation status of the virtual machines Ai of the other physical machines 2 at the present time, and cooperate with the hypervisors 11 of the other physical machines 2 for the above optimal placement control. Do it.
  • the hardware resource occupancy rate of one physical machine 2 there is no particular limitation on the hardware resource occupancy rate of one physical machine 2, and a billing system is assumed in which the amount of server usage is reduced as the number of unused physical machines 2 increases.
  • the physical machine 2C since there is one free space in the physical machine 2B, the physical machine 2C can be completely released by migrating the virtual machine VM6 of the physical machine 2C to the physical machine 2B. Therefore, the hypervisor 11 of the physical machines 2B and 2C migrates the virtual machine VM6 from the physical machine 2C to the physical machine 2B.
  • a charging system is assumed in which the occupancy rate of hardware resources of one physical machine 2 is restricted to a maximum of 70% and there is a physical machine 2 exceeding this, a penalty fee is generated.
  • the occupation rate of the physical machine 2A is the maximum and a penalty fee is generated.
  • the hypervisor 11 of the physical machines 2A and 2C migrates one of the virtual machines VM1 to VM3 from the physical machine 2A to the physical machine 2C.
  • the management server 3 includes management software 36 that operates on a predetermined OS.
  • the management software 36 can control the communication unit 34 to perform IP communication with the provider terminal 6 and the client terminal 7 and local communication with the communication unit 24 of each physical machine 2.
  • the management software 36 includes a provider management unit 37, an area management unit 38, and a data management unit 39 as functional parts executed by the processing unit 31.
  • the provider management unit 37 manages the operation state of the physical machines 2A to 2C assigned to the service provider. For example, the provider management unit 37 monitors the usage status of the hardware resources of the physical machines 2A to 2C, calculates a usage fee according to the usage status, and notifies the provider terminal 6 (in the case of usage-based charging).
  • the provider management unit 37 also manages the service provider identification information, the identification information of the physical machine 2 assigned to the provider, the contents of the use contract with the provider, and the like.
  • the area management unit 38 manages the area database DB1 (see FIG. 2) in the second storage unit 33.
  • the area database DB1 is a table in which identification information of the area Ai set by the service provider, the number and identification information of the intersections and roadside control devices 5 in the area Ai, identification information of the client terminal 7 corresponding to the area Ai, and the like are associated with each other. including.
  • the hypervisor 11 of the physical machine 2 refers to the area database DB1 of the management server 3 when newly constructing a virtual machine VMi in its own device, and identifies identification information of the newly constructed virtual machine VMi and area Ai. It associates with the various information including the above. Accordingly, the virtual machine VMi constructed in any one of the physical machines 2 includes the area Ai that is the object of remote control, the intersection and roadside control device 5 included in the area Ai, and the client that is the remote control service receiving entity. It is associated with the terminal 7.
  • the data management unit 39 manages the control database DB2 (see FIG. 2) in the second storage unit 33.
  • the control database DB2 associates identification information of the area Ai that is the control target of the virtual machine VMi, control data such as signal control parameters generated by the virtual machine VMi, identification information of the provider terminal 6 corresponding to the area Ai, and the like. Includes tables.
  • the provider terminal 6 can transmit a control data browsing request for all areas Ai to the data management unit 39.
  • the data management unit 39 reads out the control data of the area Ai designated by the browsing request from the control database DB 2 and provides the read control data to the provider terminal 6.
  • the client terminal 7 can transmit a control data browsing request for the area Ai where the client receives the remote control service to the data management unit 39.
  • the data management unit 39 reads the control data of the area Ai corresponding to the client from the control database DB 2 and provides the read control data to the client terminal 7.
  • FIG. 3 illustrates the case where the management server 3 holds only the management software 36
  • the management server 3 may be a server computer that can execute hardware resource virtualization in the same manner as the physical machine 2. . That is, by providing the management server 3 with the hypervisor 11 similar to the physical machine 2, the management server 3 may be included in one of the physical machines 2 that can construct the virtual machine VMi.
  • FIG. 4 is a perspective view showing the overall configuration of the traffic control system including the remote control device 12.
  • a grid structure in which a plurality of roads in the north-south direction and the east-west direction intersect with each other is assumed as an example of the road structure, but the present invention is not limited to this.
  • the area Ai may be other than Japan, it may be a road on which the vehicle 43 passes on the right side.
  • the traffic control system of this embodiment includes a vehicle 43 equipped with a remote control device 12 (virtual machine VMi), a roadside control device 5, a traffic signal device 41, and an in-vehicle communication device 42 (see FIG. 5). And a roadside sensor 44 and the like.
  • the remote control device 12 includes the virtual machine VMi constructed by the hypervisor 11 of the data center 1.
  • the roadside control device 5 is installed in the vicinity of the intersection Jk so that it can wirelessly communicate with the vehicle 43 passing through the road branched from the intersection Jk. Therefore, the roadside control device 5 can receive radio waves transmitted by the vehicle 43 that performs vehicle-to-vehicle communication with the in-vehicle communication device 42 on the road.
  • the roadside sensor 44 is connected to the roadside control device 5 via a predetermined communication line 45 (see FIG. 5).
  • a traffic signal controller 47 (see FIG. 5) of the traffic signal 41 is also connected to the roadside control device 5 via a predetermined communication line 45.
  • the roadside sensor 44 is installed at an appropriate place on the road in the area Ai mainly for the purpose of counting the number of vehicles flowing into the intersection Jk.
  • the roadside sensor 44 includes a vehicle sensor that senses the vehicle 43 passing directly below by ultrasonic waves, a monitoring camera that captures the traffic state of the vehicle 43 in time series, and an optical beacon that performs optical communication with the vehicle 43 using near infrared rays. Etc. are included.
  • the remote control device 12 transmits downlink information S1 including a remote control execution command, a signal control parameter, or a remote control release command to the roadside control device 5 of each intersection Jk included in the area Ai.
  • the downlink information S1 for the intersection Jk to which the remote control device 12 is downlinked is transmitted to the roadside control device 5 corresponding to the intersection Jk included in the area Ai via the public communication network 4 or the mobile communication network.
  • the remote control device 12 transmits the downlink information S1 for the intersection J1 to the roadside control device 5 at the intersection J1, and the downlink information S1 for the intersection J2 to the roadside control device 5 at the intersection J2.
  • each roadside control device 5 included in the area Ai receives the downlink information S1 for the intersection Jk corresponding to the own device.
  • the remote control device 12 When the remote control device 12 causes the traffic signals 41 of some or all of the intersections Jk included in the area Ai to start remote control, the remote control device 12 includes an “execution command” for remote control in the downlink information S1. When the remote control device 12 terminates the remote control to return to the point control by causing the traffic signals 41 at some or all of the intersections Jk included in the area Ai to return to the point control, the remote control device 12 includes the remote control “release command” in the downlink information S1. .
  • the remote control device 12 executes remote control for some or all of the intersections Jk included in the area Ai, the remote control device 12 performs system control or surface control on the part or all of the intersections Jk included in the area Ai.
  • the signal control parameter applied to the traffic signal 41 is generated for each intersection Jk.
  • the remote control device 12 includes the generated signal control parameter for each intersection Jk in the downlink information S1 and transmits the downlink to the roadside control device 5 at the corresponding intersection Jk.
  • the remote control device 12 can also include traffic information such as traffic jam information and traffic regulation information in the downlink information S1 and transmit it to the roadside control device 5.
  • the roadside control device 5 included in the area Ai transmits uplink information S2 including the traffic index calculated by itself and the “execution request” or “cancellation request” of the remote control to the remote control device 12 in uplink.
  • Uplink information S2 uplinked by the roadside control device 5 is transmitted to the remote control device 12 via the mobile communication network, the public communication network 4 or the like.
  • the sensor information that is the measurement result of the roadside sensor 44 includes vehicle sensor sensing information, surveillance camera image data, and the like.
  • the sensor information is collected by the roadside control device 5 at the corresponding intersection Jk.
  • the roadside control device 5 calculates a predetermined traffic index from the collected sensor information and the probe information received from the vehicle 43.
  • FIG. 5 is a plan view of the intersection Jk where the roadside control device 5 is installed.
  • the traffic signal 41 includes a plurality of signal lamps 46 that display the presence / absence of right of passage in each inflow path of the intersection Jk, and a traffic signal controller 47 that controls the timing when the signal lamps 46 are turned on and off.
  • the signal lamp 46 is connected to a traffic signal controller 47 via a predetermined signal control line 48.
  • the roadside sensor 44 is communicably connected to the traffic signal controller 47 via the communication line 45, and the traffic signal controller 47 is communicably connected to the roadside controller 5 via the communication line 45.
  • the roadside sensor 44 may be connected to the roadside control device 5 via the traffic signal controller 47.
  • the roadside control device 5 switches the control method of the intersection Jk to remote control when the execution command is included in the downlink information S1.
  • the roadside control device 5 returns the control method of the intersection Jk to the point control.
  • the roadside control device 5 receives the downlink information S1 including the signal control parameter from the remote control device 12, the roadside control device 5 transfers the signal control parameter to the traffic signal controller 47.
  • the roadside control device 5 can also wirelessly transmit the information to the vehicle 43 by broadcasting in order to provide the vehicle 43 with the signal switching timing and traffic information included in the received downlink information S1.
  • the remote control device 12 performs overall collection of uplink information S2 uplink-transmitted by the roadside control device 5 included in the area Ai, traffic signal control based on the information S2, information provision of control results, and the like. Specifically, the remote control device 12 extends “system control” for adjusting traffic signal 41 groups on the same road to the traffic signal 41 at the intersection Jk belonging to the area Ai, and extends this system control to the road network. “Surface control” can be performed.
  • the remote control device 12 transmits downlink information S1 including control data for every remote control calculation cycle (for example, 2.5 minutes) such as surface control, and every predetermined cycle (for example, 5 minutes). Downlink information S1 including traffic information is transmitted in the downlink.
  • FIG. 6 is a block diagram showing the internal configuration of the roadside control device 5 and the in-vehicle communication device 42.
  • the roadside control device 5 includes a wireless communication unit 52 to which an antenna 51 for wireless communication is connected, a wired communication unit 53 that communicates with the traffic signal controller 47 and the roadside sensor 44, and a CPU that performs communication control thereof.
  • a control unit 54 including a processor and a storage unit 55 including a storage device such as a ROM and a RAM connected to the control unit 54 are provided.
  • the storage unit 55 of the roadside control device 5 stores a computer program for communication control executed by the control unit 54, various data received from other wireless communication devices, and the like.
  • the control unit 54 of the roadside control device 5 includes a control switching unit 54A and a data relay unit 54B that performs a relay process on received data of the communication units 52 and 53 as functional units achieved by executing the computer program.
  • the data relay unit 54 ⁇ / b> B of the roadside control device 5 temporarily stores the signal control parameters received by the wireless communication unit 52 from the remote control device 12 in the storage unit 55, and the traffic signal controller 47 via the wired communication unit 53. Or broadcast transmission from the wireless communication unit 52 to the vehicle 43.
  • the data relay unit 54B temporarily stores the probe information received by the wireless communication unit 52 and the sensor information received by the wired communication unit 53 in the storage unit 55, and the remote control device via the wireless communication unit 52 Uplink transmission to 12 addressed.
  • the control switching unit 54 ⁇ / b> A of the roadside control device 5 switches the control method to be executed by the traffic signal controller 47 according to the content of the control command received from the remote control device 12. Specifically, when the traffic signal controller 47 receives the remote control execution command while the traffic signal controller 47 is executing the point control, the control switching unit 54A stops the point control, and the downlink information S1 received from the remote control device 12 is displayed. Signal control parameters such as lamp color switching timing included are transferred to the traffic signal controller 47.
  • the control switching unit 54B applies the lamp color switching timing to the traffic signal controller 47. The transfer is stopped and the traffic signal controller 47 restarts the point control.
  • the in-vehicle communication device 42 includes a communication unit 62 to which an antenna 61 for wireless communication is connected, a control unit 63 including a processor that performs communication control on the communication unit 62, a ROM connected to the control unit 63, And a storage unit 64 including a storage device such as a RAM.
  • the storage unit 64 of the in-vehicle communication device 42 stores a computer program for communication control executed by the control unit 63, various data received from other wireless communication devices, and the like.
  • the control unit 63 of the in-vehicle communication device 42 is a control unit that causes the communication unit 62 to perform wireless communication using a carrier sense method for vehicle-to-vehicle communication. Therefore, the communication unit 62 of the in-vehicle communication device 42 always senses the reception level of the predetermined carrier frequency, and when the value is equal to or higher than a certain threshold, wireless transmission is not performed, and when the value becomes less than the threshold Only intended to perform wireless transmission.
  • the control unit 63 of the in-vehicle communication device 42 generates probe information including information such as the vehicle ID of the vehicle 43, time information, vehicle position (latitude and longitude, etc.), vehicle speed, vehicle direction, vehicle attributes, etc., every predetermined time.
  • the generated probe information is broadcasted to the communication unit 62.
  • the wireless communication unit 52 of the roadside control device 5 includes a communication interface that can also communicate with the mobile terminal 49 owned by the pedestrian, and can perform inter-walk communication with the mobile terminal 49 of the pedestrian. it can.
  • Inter-walk communication between the portable terminal 49 and the roadside control device 5 can be used, for example, for providing information of the downlink information S1 to pedestrians.
  • the roadside control device 5 executes the pushbutton control of the traffic signal device 41
  • the portable terminal 49 transmits a pushbutton request by inter-step communication, and the roadside control device 5 that receives this request passes the traffic signal device 41. Processing such as start of switching of rights may be performed.
  • FIG. 7 is a flowchart illustrating an example of remote control execution processing (first execution processing) performed in cooperation between the roadside control device 5 and the physical machine 2 belonging to the area Ai.
  • “roadside control device 5” and “physical machine 2” are the processing subjects, but the actual processing subjects are the control switching unit 54A (see FIG. 6) of the roadside control device 5 and the physical machine 2.
  • This is a VM control unit 29 (see FIG. 3). This also applies to the processes of FIGS. 8 to 10 described later.
  • each roadside control device 5 belonging to area Ai collects data (sensor information, probe information, etc.) necessary for calculating the traffic index every predetermined time (step ST10).
  • a traffic index related to the intersection Jk is calculated based on the data (step ST11).
  • the roadside control device 5 determines whether or not the intersection Jk where the own device is installed can be handled by point control (step ST12).
  • This determination is performed based on whether or not the point control for the intersection Jk can be executed so that the traffic index satisfies a predetermined threshold. For example, assuming “traffic volume”, the roadside control device 5 determines that it is possible to cope with the point control when the traffic volume is less than a predetermined threshold value, and cannot handle it with the point control when the traffic volume is more than the threshold value. judge. If the determination result is affirmative, the roadside control device 5 continues the point control (step ST13) and repeats data collection for calculating the traffic index (step ST10).
  • the roadside control device 5 transmits a remote control execution request to the physical machine 2 (step ST14), and the physical machine 2 receives the execution request (step ST15). . Thereafter, the physical machine 2 determines the necessity of remote control in the area Ai based on the resource usage status in the own device, the time zone of the area Ai, etc., triggered by the reception of the execution request (step ST16, ST17).
  • the physical machine 2 uses less resources than the predetermined threshold and the current time is a time zone in which remote control is executed in the area Ai, the physical machine 2 is remote from the area Ai. It is determined that control is necessary.
  • the physical machine 2 waits until further execution requests are received. If the determination result is positive, the physical machine 2 performs remote control. An execution command is transmitted to the roadside control device 5 as a transmission source (step ST18). And the roadside control apparatus 5 of the transmission origin determines whether the execution command was received (step ST19).
  • the roadside control device 5 switches the control of the intersection Jk corresponding to the own device to the remote control (step ST20). Specifically, the roadside control device 5 stops the point control so far and transfers the signal control parameter received from the virtual machine VMi of the physical machine 2 to the traffic signal controller 47. If the determination result is negative, the roadside control device 5 continues the point control as it is (step ST13).
  • FIG. 8 is a flowchart showing an example of remote control release processing performed in cooperation between the roadside control device 5 and the physical machine 2 belonging to the area Ai.
  • each roadside control device 5 belonging to area Ai collects data (sensor information, probe information, etc.) necessary for calculating the traffic index every predetermined time (step ST30).
  • a traffic index related to the intersection Jk is calculated based on the data (step ST31).
  • the roadside control device 5 determines whether or not the intersection Jk where the device is installed can be handled by the point control (step ST32). As described above, this determination is performed based on whether or not the point control for the intersection Jk can be executed so that the traffic index satisfies a predetermined threshold. If the determination result is negative, the roadside control device 5 continues the remote control (step ST33) and repeats data collection for calculating the traffic index (step ST30).
  • the roadside control device 5 transmits a remote control release request to the physical machine 2 (step ST34), and the physical machine 2 receives the release request (step ST35). . Thereafter, the physical machine 2 determines the necessity of canceling the remote control in the area Ai based on the resource usage status in the own device, the time zone of the area Ai, etc., triggered by reception of the received cancel request. (Steps ST36 and ST37).
  • the physical machine 2 uses the resource usage status by the virtual machine VMi at a predetermined threshold value or more, or if the current time is not a time zone for executing the remote control in the area Ai, the physical machine 2 is remote from the area Ai. It is determined that the control needs to be released.
  • the physical machine 2 waits until a release request is received. If the determination result is positive, the physical machine 2 performs remote control. A cancellation command is transmitted to the roadside control device 5 as the transmission source (step ST38). And the roadside control apparatus 5 of the transmission source determines whether the cancellation
  • the roadside control device 5 switches the control of the intersection Jk corresponding to the own device to the point control (step ST40). Specifically, the roadside control device 5 stops the processing so far to transfer the signal control parameter received from the virtual machine VMi of the physical machine 2 to the traffic signal controller 47 and starts the point control. If the determination result is negative, the roadside control device 5 continues the remote control as it is (step ST33).
  • FIG. 9 is a flowchart illustrating another example of remote control execution processing performed in cooperation between the roadside control device 5 and the physical machine 2 belonging to the area Ai.
  • each roadside control device 5 belonging to area Ai collects data (sensor information, probe information, etc.) necessary for calculating traffic indexes at predetermined time intervals (step ST50).
  • a traffic index related to the intersection Jk is calculated based on the data (step ST51).
  • the roadside control device 5 transmits the calculated traffic index to the physical machine 2 (step ST52), and the physical machine 2 receives the traffic index (step ST53). Thereafter, the physical machine 2 determines the necessity of remote control in the area Ai based on the received traffic index, the resource usage status in the own device, the time zone of the area Ai (steps ST54 and ST55). In the second execution process, since the roadside control device 5 does not request execution of remote control, the physical machine 2 executes the determination of the necessity of remote control every predetermined time (for example, 2.5 minutes).
  • the physical machine 2 uses less resources than the predetermined threshold and the current time is a time zone in which remote control is executed in the area Ai, the physical machine 2 is remote from the area Ai. It is determined that control is necessary.
  • the physical machine 2 transmits an execution command to the roadside control device 5 (step ST56). After transmitting the traffic index to the physical machine 2, the roadside control device 5 determines whether or not to receive the execution command (step ST57).
  • the roadside control device 5 switches the control of the intersection Jk corresponding to the own device to the remote control (step ST58). Specifically, the roadside control device 5 stops the point control so far and transfers the signal control parameter received from the virtual machine VMi of the physical machine 2 to the traffic signal controller 47. If the determination result is negative, the road control device 5 continues the point control as it is (step ST59).
  • FIG. 10 is a flowchart showing another example of remote control cancellation processing performed in cooperation between the roadside control device 5 and the physical machine 2 belonging to the area Ai.
  • each roadside control device 5 belonging to area Ai collects data (sensor information, probe information, etc.) necessary for calculating traffic indexes every predetermined time (step ST70).
  • a traffic index related to the intersection Jk is calculated based on the data (step ST71).
  • the roadside control device 5 transmits the calculated traffic index to the physical machine 2 (step ST72), and the physical machine 2 receives the traffic index (step ST73). After that, the physical machine 2 determines the necessity of canceling the remote control in the area Ai based on the received traffic index, the resource usage status in the own device, the time zone of the area Ai (steps ST74 and ST75). . In the second release process, the roadside control device 5 does not request release of remote control, so the physical machine 2 determines whether or not to release remote control every predetermined time (for example, 2.5 minutes).
  • the physical machine 2 uses the resource usage status by the virtual machine VMi at a predetermined threshold value or more, or if the current time is not a time zone for executing the remote control in the area Ai, the physical machine 2 is remote from the area Ai. It is determined that the control needs to be released.
  • the physical machine 2 transmits a release command to the roadside control device 5 (step ST76). After transmitting the traffic index to the physical machine 2, the roadside control device 5 determines whether or not to receive the release command (step ST77).
  • the roadside control device 5 switches the control of the intersection Jk corresponding to the own device to the point control (step ST78). Specifically, the roadside control device 5 stops the previous processing for transferring the signal control parameter received from the virtual machine VMi of the physical machine 2 to the traffic signal controller 47 and switches to the point control. If the determination result is negative, the roadside control device 5 continues the remote control as it is (step ST79).
  • FIG.11 and FIG.12 is explanatory drawing which shows the other control which the remote control apparatus 12 of a traffic control system can perform.
  • FIG. 11A is an explanatory diagram of support for oversight prevention of signs
  • FIG. 11B is an explanatory diagram of support for prevention of rear-end collision
  • FIG. 12A is an explanatory diagram of the encounter collision prevention support
  • FIG. 12B is an explanatory diagram of the signal oversight prevention support.
  • a sign installed at a downstream intersection is notified to the vehicle 43 by a light beacon or the like on a curved road where the driver cannot see due to the presence of a building. This control helps prevent oversight.
  • a preceding vehicle waiting for a signal at a downstream intersection is shown on a curved road where the driver cannot visually recognize the presence of a building. It is control which notifies and assists the collision prevention with respect to a preceding vehicle.
  • FIG. 12A a vehicle parked on a downstream side road is shown on a curved road where the driver cannot visually check due to the presence of a building. This is a control that supports the prevention of a head-on collision with a vehicle on the side road.
  • the signal lamp installed at the downstream intersection is notified to the vehicle 43 by a light beacon or the like on the curved road where the driver cannot see due to the presence of the building. This control helps prevent oversight of the vessel.
  • the control shown in FIGS. 11 and 12 is performed at a relatively narrow point near the intersection, so that not only the remote control device 12 (virtual machine VMi) but also the roadside control device 5 performs the control independently. May be.
  • FIG. 13 is an explanatory diagram showing an example of eco-drive support that can be realized by the remote control device 12.
  • the roadside control device 5 in the area Ai broadcasts data such as signal control parameters, which are calculation results of the remote control device 12, to the vehicle 43, so that the vehicle travels on a road section in the area Ai.
  • the vehicle 43 inside can receive the signal switching timing at the downstream intersection in advance.
  • the road control device 5 sets the through band setting speed together with the signal control parameter that is the calculation result.
  • the vehicle 43 is notified. In this way, the vehicle 43 can travel without waiting for a signal at a plurality of downstream intersections as the vehicle 43 travels the system section according to the notified set speed. This improves the fuel efficiency of the vehicle 43 and leads to a reduction in CO2 emissions.
  • the remote control device 12 In addition to the above-described control, if various applications are added to the remote control device 12, the convenience of the remote control device 12 using the cloud system can be improved, and a more attractive traffic control system can be provided to the client. .
  • the remote control device 12 analyzes traffic information in the area Ai and provides it to the client terminal 7, the client can acquire useful traffic information.
  • the remote control device 12 may collect privilege information around the area Ai from an information special site or the like, and provide the obtained privilege information to the vehicle 43 from the road-side control device 5.
  • the privilege information refers to information that is a privilege for the driver of the vehicle 43 traveling in the area Ai, such as location information and a time zone of a store that performs time service. If the client distributes the privilege information for a fee, the advertising revenue from the information distribution can be obtained.
  • the remote control device 12 provides signal information in the area Ai, the above-mentioned eco-drive support can be realized in the area Ai managed by the client.
  • the remote control device 12 notifies the vehicle 43 in the area Ai of a traffic jam section, a detour, and the like via the roadside control device 5, thereby performing route guidance that is advantageous for traffic in the area Ai.
  • smooth vehicle traffic in the area Ai can be realized.
  • the VM control unit 29 determines whether to cause the remote control unit 14 of the virtual machine VMi to perform remote control according to the traffic situation of the area Ai. Since the process is performed, the remote control unit 14 of the virtual machine VMi can be appropriately stopped, paused, or degenerated according to the actual traffic situation. For this reason, compared with the case where the remote control unit 14 of the virtual machine VMi continues the remote control unconditionally, the resource usage of the physical machine 2 can be suppressed, and the traffic control system can be operated at a low cost. it can.
  • the VM control unit 29 of the physical machine 2 performs remote control on the remote control unit 14 of the virtual machine VMi based on the road traffic index calculated by the roadside control device 5 installed in the area Ai. Since it is determined whether or not to execute, it is not necessary for the remote control unit 14 of the virtual machine VMi to calculate the traffic index. For this reason, the hardware resources of the physical machine 2 can be saved as compared with the case where the remote control unit 14 of the virtual machine VMi calculates the traffic index.
  • the VM control unit 29 of the physical machine 2 controls the remote control unit 14 of the virtual machine VMi based on the resource usage rate necessary for the remote control unit 14 to execute remote control. Since the determination process for determining whether or not to execute is performed, for example, when the resource usage rate of the remote control unit 14 is equal to or greater than a predetermined threshold, it is possible to prevent remote control from being executed. For this reason, the amount of resources used in the physical machine 2 can be suppressed, and the traffic control system can be operated at low cost.
  • the remote control unit 14 of one virtual machine VMi since the area Ai where the remote control unit 14 of one virtual machine VMi performs remote control is composed of one subarea, the remote control unit 14 of one virtual machine VMi includes a plurality of subareas. Compared to remote control, the amount of resources required for the operation of the virtual machine VMi can be reduced to a small scale. For this reason, the introduction unit price of the traffic control system using the virtual machine VMi can be reduced, and the client can easily introduce the traffic control system using the cloud.
  • the VM control unit 29 of the physical machine 2 executes remote control on the remote control unit 14 of the virtual machine VMi when receiving an execution request from the roadside control device 5 installed in the area Ai. Therefore, the remote control unit 14 of the virtual machine VMi can perform remote control only when the necessity for remote control actually occurs. For this reason, compared with the case where the VM control unit 29 periodically determines the necessity of remote control, the hardware resources of the physical machine 2 can be effectively used.
  • the VM control unit 29 of the physical machine 2 performs a determination process as to whether or not the virtual machine VMi is to execute remote control at predetermined intervals (see FIG. 9).
  • the control unit 29 can automatically perform the determination process without waiting for the execution request from the roadside control device 5 to be received. Therefore, the above determination process can be performed more reliably.
  • the VM control unit 29 of the physical machine 2 causes the remote control unit 14 of the virtual machine VMi to execute the remote control based on the time zone for executing the remote control set in advance for the area Ai. Therefore, the remote control unit 14 of the virtual machine VMi can be operated only during the set time zone, and the virtual machine VMi can be stopped during other time zones. For this reason, hardware resources of the physical machine 2 can be used more efficiently than when the remote control unit 14 of the virtual machine VMi is operated regardless of the time zone.
  • the plurality of areas Ai that are remotely controlled by the remote control units 14 of the plurality of virtual machines VMi include areas that exist in different regions with a time difference. It is possible to distribute the operation time of a plurality of virtual machines VMi each in charge of remote control. For this reason, it is possible to reduce the time during which a plurality of virtual machines VMi operate simultaneously, and the hardware resources of the physical machine 2 can be efficiently used.
  • the remote control unit 14 of the virtual machine VMi performs traffic information analysis in the area Ai, provision of privilege information around the area Ai, provision of signal information in the area Ai, area in addition to remote control. Since the route guidance of the vehicle in Ai can be executed, the contents of the traffic service in the area Ai that can be used by the client using the virtual machine VMi are abundant. For this reason, it becomes easier for the client to introduce the cloud system of the present embodiment than in the case where these processes are not involved.
  • the control switching unit 54A of the roadside control device 5 determines whether or not the point control for the intersection Jk can be executed so that the traffic index at the intersection Jk satisfies the predetermined condition. If not, a remote control execution request is transmitted to the remote control device 12 which is the virtual machine VMi (see FIG. 7). Therefore, it is possible to request the remote control device 12 that is the virtual machine VMi to execute the remote control in accordance with the traffic situation in the area Ai.
  • the control switching unit 54A of the roadside control device 5 can execute the point control for the intersection Jk so that the traffic index at the intersection Jk satisfies the predetermined condition while the remote control is selected. If it can be executed, a remote control release request is transmitted to the remote control device 12 that is the virtual machine VMi (see FIG. 8). For this reason, it is possible to request the remote control device 12 that is the virtual machine VMi to release the remote control according to the traffic situation in the area Ai. Therefore, it is possible to prevent the remote control device 12 from continuing the remote control uselessly.
  • the roadside control device 5 capable of switching the traffic signal control control method at the intersection Jk included in the area Ai responds to the reception of the execution request from the VM control unit 29 of the physical machine 2.
  • the control method is switched to remote control, and the control method is switched to point control in response to reception of the release request (see FIGS. 7 to 10).
  • the point control can be executed on the intersection Jk, and the remote control and the point control are performed on each intersection Jk included in the area Ai. Both of these controls can be executed.
  • the virtual machine 12 that performs remote control is constructed using the virtualization software 11 of the data center 1. For this reason, regardless of the location of the area Ai, it is possible to construct an excellent traffic control system while minimizing an increase in the cost of infrastructure deployment on site.
  • a traffic control system can be constructed at low cost in any country and city, and the traffic control system in many countries can be constructed and managed centrally. can do.
  • the roadside control device 5 needs to be installed in the area Ai of the country or city specified by the client. Therefore, different businesses can be assumed depending on whether the client or the service provider bears the installation cost of the roadside control device 5 or the like.
  • control data such as signal control parameters obtained by remote control is on the client side and can be freely resold in the name of the client. In this way, control data such as signal control parameters can be a source of revenue for the client.
  • control data such as signal control parameters obtained by remote control is assumed to be on the provider side, and can be freely resold in the name of the provider. In this way, control data such as signal control parameters can be a source of revenue for the service provider.
  • priority control corresponding to trucks entering and leaving the logistics company around the logistics company
  • priority control corresponding to morning and evening pick-up around the school priority control according to the individual's wishes that are not particularly social issues. This is the case.
  • the service provider may be able to provide advertising information to the vehicle for a fee through an information providing medium.
  • the initial investment at the time of introducing the system can be suppressed.
  • a client can order a system from a service provider even from one intersection.
  • the client can realize a desired traffic control system with a minimum investment amount.
  • the virtual machine can be operated so as to minimize computer resources by performing degenerate operation of the virtual machine.
  • the remote control service once employed can be easily stopped.
  • the client can obtain income by selling the control data. It is done.
  • the service provider can centralize the operation and management of the traffic control system by the plurality of virtual machines Vi in the predetermined data center 1, the management cost of the plurality of traffic control systems can be reduced. Further, if the client outsources maintenance and management of information such as setting parameters necessary for operation of the traffic control system to the service provider, the maintenance of the traffic control system by the client becomes unnecessary.
  • the roadside control device 5 is a separate device from the traffic signal controller 47, but the roadside control device 5 may have the function of the traffic signal controller 47.
  • the remote control device 12 is composed of the virtual machine 2 virtually constructed in the physical machine 2 of the data center 1 .
  • the remote control device 12 is installed in a traffic control center or the like. It may also be a computer device for traffic signal control (also referred to as “central device”). That is, the remote control device 12 composed of a central device may be communicably connected to at least one roadside control device 5 belonging to the jurisdiction area.
  • the traffic control center is composed of dedicated facilities managed by the national, local government or private transport operators.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Software Systems (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Traffic Control Systems (AREA)

Abstract

The present invention makes it possible to operate, at a low cost, a traffic control system using a virtual machine of a cloud system. One embodiment of this invention relates to an information processing device (physical machine 2) which is provided with one or more virtual machines VMi constructed by the virtualization of hardware resources. The information processing device is provided with: a virtual machine VMi that has a remote control unit (application) 14 for executing remote control which is traffic signal control for controlling the right of way at a plurality of intersection points Jk included in a prescribed area Ai; and a determination processing unit (VM control unit 29) that performs processing to determine whether to cause the remote control unit 14 to execute remote control, in accordance with the traffic situation of the area Ai.

Description

情報処理装置、路側制御装置、クラウドシステム、コンピュータプログラム及び仮想マシンの運用方法Information processing apparatus, roadside control apparatus, cloud system, computer program, and virtual machine operation method
 本発明は、情報処理装置、路側制御装置、クラウドシステム、コンピュータプログラム及び仮想マシンの運用方法に関する。より具体的には、本発明は、クラウドシステムに構築する仮想マシンを交通管制システムに利用する技術に関する。 The present invention relates to an information processing apparatus, a roadside control apparatus, a cloud system, a computer program, and a virtual machine operation method. More specifically, the present invention relates to a technique for using a virtual machine constructed in a cloud system for a traffic control system.
 交通管制システムは、例えば、交通管制センターに設置された中央装置と、この中央装置と専用の通信回線により通信する交通信号制御機、車両感知器、情報板及び交通用監視端末などから構成されている(例えば、特許文献1参照)。
 かかる交通管制システムでは、管轄エリアの適所に配置した車両感知器の感知信号などから所定の道路区間の交通指標を算出し、算出した交通指標に基づいて、複数の交差点について最適な信号灯色の切り替えタイミングを設定するなどの交通感応制御が行われる。
The traffic control system includes, for example, a central device installed in a traffic control center, a traffic signal controller, a vehicle detector, an information board, and a traffic monitoring terminal that communicate with the central device through a dedicated communication line. (For example, refer to Patent Document 1).
In such a traffic control system, a traffic indicator for a predetermined road section is calculated from a detection signal of a vehicle detector arranged at an appropriate place in a jurisdiction area, and an optimal signal light color switching is performed for a plurality of intersections based on the calculated traffic indicator. Traffic sensitive control such as setting timing is performed.
特開2006-215977号公報JP 2006-215977 A
 上記の交通管制システムを新たに構築するには、少なくとも中央装置を設置する必要がある。従って、例えば他国にシステムを導入する場合を想定すると、初期投資に要する費用が高額となるため、システムの導入を躊躇されるおそれがある。
 また、システム事業者が多数国で交通管制システムを構築できたとしても、各国に配備した交通管制システムの維持管理が煩雑になるという問題もある。
In order to newly construct the above traffic control system, it is necessary to install at least a central device. Therefore, assuming that the system is introduced into another country, for example, the cost required for the initial investment becomes high, and there is a risk that the introduction of the system may be hesitant.
Moreover, even if a system operator can construct a traffic control system in many countries, there is a problem that the maintenance management of the traffic control system deployed in each country becomes complicated.
 そこで、データセンタのサーバコンピュータ(物理マシン)に交通管制のアプリケーションを実行する仮想マシンを構築し、中央装置が行っていた交通信号制御を仮想マシンに実行させることが考えられる。このようにすれば、少なくとも中央装置の設備コストが不要となり、交通管制システムの導入障壁が低くなる。
 しかし、現地の交通事情を考慮せずに仮想マシンを常に稼働させると、リソースの使用状況に応じて課金される従量制課金の場合には、クラウドサーバの使用量が高額になる。
Therefore, it is conceivable to construct a virtual machine that executes a traffic control application on a server computer (physical machine) in the data center, and to cause the virtual machine to execute traffic signal control performed by the central device. In this way, at least the equipment cost of the central device is unnecessary, and the introduction barrier of the traffic control system is lowered.
However, if the virtual machine is always operated without considering local traffic conditions, the usage amount of the cloud server becomes high in the case of pay-as-you-go charging that is charged according to the resource usage status.
 本発明は、かかる従来の問題点に鑑み、クラウドシステムの仮想マシンを利用した交通管制システムを低コストで運用できるようにすることを目的とする。 The present invention has been made in view of such conventional problems, and an object thereof is to enable a traffic control system using a virtual machine of a cloud system to be operated at a low cost.
 (1) 本発明の一態様に係る情報処理装置は、ハードウェア資源を仮想化して構築された1又は複数の仮想マシンを備える情報処理装置であって、所定のエリアに含まれる複数の交差点の通行権を制御対象とする交通信号制御である遠隔制御を実行する遠隔制御部を有する前記仮想マシンと、前記エリアの交通状況に応じて、前記遠隔制御部に前記遠隔制御を実行させるか否かの判定処理を行う判定処理部と、を備える。 (1) An information processing apparatus according to an aspect of the present invention is an information processing apparatus including one or more virtual machines constructed by virtualizing hardware resources, and includes a plurality of intersections included in a predetermined area. Whether to cause the remote control unit to execute the remote control according to the traffic situation of the area, and the virtual machine having a remote control unit that executes a remote control that is a traffic signal control whose traffic right is a control target And a determination processing unit that performs the determination process.
 (10) 本発明の一態様に係る路側制御装置は、交差点における交通信号制御の制御方式の切り替えが可能であり、切り替え可能な前記制御方式として下記に定義する地点制御と遠隔制御を含む路側制御装置であって、前記交差点を含む所定のエリア内の複数の交差点について、前記遠隔制御を実行する遠隔制御装置と通信する通信部と、前記交差点における交通指標が所定の条件を満たすように当該交差点に対する前記地点制御を実行可能であるかの判定を行い、この判定結果が否定的である場合に、前記遠隔制御装置に対する前記遠隔制御の実行要求を前記通信部に送信させる制御部と、を備える。
 地点制御:1つの交差点の通行権を制御対象とする交通信号制御
 遠隔制御:複数の交差点の通行権を制御対象とする交通信号制御
(10) A roadside control device according to an aspect of the present invention is capable of switching a traffic signal control control method at an intersection, and includes road control including point control and remote control defined below as the switchable control method. A communication unit that communicates with a remote control device that executes the remote control for a plurality of intersections in a predetermined area including the intersection, and the intersection so that a traffic index at the intersection satisfies a predetermined condition A control unit that determines whether or not the point control for the remote control device can be executed, and transmits a request for execution of the remote control to the remote control device to the communication unit when the determination result is negative. .
Point control: Traffic signal control that controls the right of traffic at one intersection Remote control: Traffic signal control that controls the right of traffic at multiple intersections
 (12) 本発明の一態様に係るクラウドシステムは、上述の情報処理装置と、前記情報処理装置と通信可能であり、前記エリアに含まれる前記交差点における交通信号制御の制御方式を切り替え可能な路側制御装置と、を備え、前記路側制御装置は、前記情報処理装置から前記遠隔制御の実行指令を受信した場合は、前記制御方式を遠隔制御に切り替え、前記情報処理装置から前記遠隔制御の解除指令を受信した場合は、前記制御方式を1つの交差点の通行権を制御対象とする交通信号制御である地点制御に切り替える。 (12) A cloud system according to an aspect of the present invention is capable of communicating with the information processing apparatus described above and the information processing apparatus, and is capable of switching a traffic signal control control method at the intersection included in the area. And when the remote control execution command is received from the information processing device, the roadside control device switches the control method to remote control, and the remote control release command from the information processing device. Is received, the control method is switched to point control which is traffic signal control for which the right of passage at one intersection is controlled.
 (13) 本発明の一態様に係るコンピュータプログラムは、ハードウェア資源を仮想化して構築された1又は複数の仮想マシンとして情報処理装置を機能させるためのコンピュータプログラムであって、前記仮想マシンの遠隔制御部が、所定のエリアに含まれる複数の交差点の通行権を制御対象とする交通信号制御である遠隔制御を実行するステップと、前記情報処理装置の判定処理部が、前記エリアの交通状況に応じて、前記遠隔制御部に前記遠隔制御を実行させるか否かの判定処理を行うステップと、を含む。 (13) A computer program according to an aspect of the present invention is a computer program for causing an information processing apparatus to function as one or a plurality of virtual machines constructed by virtualizing hardware resources. A step in which the control unit executes remote control, which is traffic signal control for controlling the right of traffic at a plurality of intersections included in a predetermined area, and the determination processing unit of the information processing device And a step of determining whether or not to cause the remote control unit to execute the remote control.
 (14) 本発明の一態様に係る方法は、情報処理装置のハードウェア資源を仮想化して構築された1又は複数の仮想マシンの運用方法であって、前記仮想マシンの遠隔制御部が、所定のエリアに含まれる複数の交差点の通行権を制御対象とする交通信号制御である遠隔制御を実行するステップと、前記情報処理装置の判定処理部が、前記エリアの交通状況に応じて、前記遠隔制御部に前記遠隔制御を実行させるか否かの判定処理を行うステップと、を含む。 (14) A method according to an aspect of the present invention is an operation method of one or a plurality of virtual machines constructed by virtualizing hardware resources of an information processing apparatus, wherein the remote control unit of the virtual machine has a predetermined A step of executing remote control, which is traffic signal control for controlling traffic rights of a plurality of intersections included in the area, and the determination processing unit of the information processing device performs the remote control according to the traffic situation of the area. And a step of determining whether or not to cause the control unit to execute the remote control.
 本発明によれば、クラウドシステムの仮想マシンを利用した交通管制システムを低コストで運用することができる。 According to the present invention, a traffic control system using a virtual machine of a cloud system can be operated at low cost.
本発明の実施形態に係るクラウドシステムの全体構成図である。1 is an overall configuration diagram of a cloud system according to an embodiment of the present invention. 物理マシンと管理サーバのハードウェア構成を示すブロック図である。It is a block diagram which shows the hardware constitutions of a physical machine and a management server. 物理マシンと管理サーバのソフトウェア構成を示すブロック図である。It is a block diagram which shows the software configuration of a physical machine and a management server. 遠隔制御装置を含む交通管制システムの全体構成を示す斜視図である。It is a perspective view which shows the whole structure of the traffic control system containing a remote control apparatus. 路側制御装置が設置された交差点の平面図である。It is a top view of the intersection where the roadside control apparatus was installed. 路側制御装置と車載通信機の内部構成を示すブロック図である。It is a block diagram which shows the internal structure of a roadside control apparatus and a vehicle-mounted communication apparatus. 遠隔制御の実行処理の一例を示すフローチャートである。It is a flowchart which shows an example of the execution process of remote control. 遠隔制御の解除処理の一例を示すフローチャートである。It is a flowchart which shows an example of the cancellation | release process of remote control. 遠隔制御の実行処理の別例を示すフローチャートである。It is a flowchart which shows another example of the execution process of remote control. 遠隔制御の解除処理の別例を示すフローチャートである。It is a flowchart which shows another example of the cancellation | release process of remote control. (a)は標識見落とし防止支援の説明図であり、(b)は追突防止支援の説明図である。(A) is explanatory drawing of a sign oversight prevention assistance, (b) is explanatory drawing of rear-end collision prevention assistance. (a)は出会い頭衝突防止支援の説明図であり、(b)は信号見落とし防止支援の説明図である。(A) is explanatory drawing of encounter collision prevention support, (b) is explanatory drawing of signal oversight prevention support. エコドライブ支援の一例を示す説明図である。It is explanatory drawing which shows an example of eco-drive support.
<本発明の実施形態の概要> 
 以下、本発明の実施形態の概要を列記して説明する。
 (1) 本実施形態の情報処理装置は、ハードウェア資源を仮想化して構築された1又は複数の仮想マシンを備える情報処理装置であって、所定のエリアに含まれる複数の交差点の通行権を制御対象とする交通信号制御である遠隔制御を実行する遠隔制御部を有する前記仮想マシンと、前記エリアの交通状況に応じて、前記遠隔制御部に前記遠隔制御を実行させるか否かの判定処理を行う判定処理部と、を備える。
<Outline of Embodiment of the Present Invention>
Hereinafter, an outline of embodiments of the present invention will be listed and described.
(1) An information processing apparatus according to the present embodiment is an information processing apparatus including one or more virtual machines constructed by virtualizing hardware resources, and has the right to pass through a plurality of intersections included in a predetermined area. The virtual machine having a remote control unit that executes a remote control that is a traffic signal control to be controlled, and a determination process for determining whether or not to cause the remote control unit to execute the remote control according to the traffic situation of the area And a determination processing unit that performs
 本実施形態の情報処理装置によれば、判定処理部が、エリアの交通状況に応じて仮想マシンの遠隔制御部に遠隔制御を実行させるか否かの判定処理を行うので、交通状況の実態に即して仮想マシンの遠隔制御部を適切に停止又は休止したり、縮退させたりすることができる。
 このため、無条件に仮想マシンの遠隔制御部が遠隔制御を継続する場合に比べて、情報処理装置のリソースの使用量を抑えることができ、交通管制システムを低コストで運用することができる。
According to the information processing apparatus of the present embodiment, the determination processing unit determines whether or not to cause the remote control unit of the virtual machine to execute remote control according to the traffic condition of the area. Accordingly, the remote control unit of the virtual machine can be appropriately stopped, paused, or degenerated.
For this reason, compared with the case where the remote control part of a virtual machine continues remote control unconditionally, the usage-amount of the resource of information processing apparatus can be restrained, and a traffic control system can be operated at low cost.
 (2) 本実施形態の情報処理装置において、前記判定処理部は、前記エリアに設置された路側制御装置が算出した道路の交通指標に基づいて、前記判定処理を行うことが好ましい。
 この場合、仮想マシンの遠隔制御部が交通指標を算出しなくてもよいので、仮想マシンの遠隔制御部が交通指標の算出を行う場合に比べて、情報処理装置におけるリソースの使用量を節約することができる。
(2) In the information processing apparatus of the present embodiment, it is preferable that the determination processing unit performs the determination process based on a road traffic index calculated by a roadside control device installed in the area.
In this case, since the remote control unit of the virtual machine does not have to calculate the traffic index, resource usage in the information processing apparatus is saved as compared with the case where the remote control unit of the virtual machine calculates the traffic index. be able to.
 (3) 本実施形態の情報処理装置において、前記判定処理部は、前記遠隔制御部が前記遠隔制御を実行するのに必要なリソース使用率に基づいて、前記判定処理を行うことが好ましい。
 この場合、例えば、遠隔制御部のリソース使用率が所定の閾値以上である場合は、遠隔制御を実行させないことにより、情報処理装置におけるリソースの使用量を抑えることができ、交通管制システムを低コストで運用することができる。
(3) In the information processing apparatus according to the present embodiment, it is preferable that the determination processing unit performs the determination processing based on a resource usage rate necessary for the remote control unit to execute the remote control.
In this case, for example, when the resource usage rate of the remote control unit is equal to or greater than a predetermined threshold value, the amount of resources used in the information processing apparatus can be suppressed by not performing the remote control, and the traffic control system can be reduced in cost. Can be used.
 (4) 本実施形態の情報処理装置において、前記遠隔制御部が前記遠隔制御を実行する前記エリアは、1つのサブエリアであることが好ましい。
 この場合、1つの仮想マシンの遠隔制御部が複数のサブエリアを遠隔制御する場合に比べて、仮想マシンの動作に必要なリソースの使用量が小規模に抑えられるので、仮想マシンの導入単価を比較的低額に抑えることができる。従って、本実施形態のクラウドサービスをクライアントが導入し易くなるという利点がある。
(4) In the information processing apparatus of the present embodiment, it is preferable that the area where the remote control unit executes the remote control is one sub-area.
In this case, compared to the case where the remote control unit of one virtual machine remotely controls a plurality of subareas, the amount of resources required for the operation of the virtual machine can be reduced to a small scale. It can be kept relatively low. Therefore, there is an advantage that the client can easily introduce the cloud service of the present embodiment.
 (5) 本実施形態の情報処理装置において、前記判定処理部は、前記エリアに設置された路側制御装置からの前記遠隔制御の実行要求の受信を契機として、前記判定処理を行うことが好ましい。
 このようにすれば、所定のエリアにおいて遠隔制御の必要性が実際に発生した場合にのみ、仮想マシンに遠隔制御を行わせることができるので、情報処理装置のハードウェア資源を有効に活用することができる。
(5) In the information processing apparatus according to the present embodiment, it is preferable that the determination processing unit performs the determination process in response to reception of the execution request for the remote control from the roadside control device installed in the area.
In this way, the virtual machine can be remotely controlled only when the necessity of remote control actually occurs in a predetermined area, so that the hardware resources of the information processing apparatus can be used effectively. Can do.
 (6) 本実施形態の情報処理装置において、前記判定処理部は、予め定められた所定周期ごとに前記判定処理を行うことにしてもよい。
 このようにすれば、路側制御装置からの実行要求の受信を待たずに判定処理が自動的に行われるので、判定処理をより確実に行うことができる。
(6) In the information processing apparatus according to the present embodiment, the determination processing unit may perform the determination processing at predetermined intervals.
In this way, the determination process is automatically performed without waiting for the execution request from the roadside control device to be received, so the determination process can be performed more reliably.
 (7) 本実施形態の情報処理装置において、前記判定処理部は、前記エリアについて予め設定した前記遠隔制御を実行する時間帯に基づいて、前記判定処理を行うことが好ましい。
 この場合、上記の時間帯だけ仮想マシンの遠隔制御部を動作させ、それ以外の時間帯は仮想マシンの遠隔制御部を停止させることができ、情報処理装置のハードウェア資源を効率的に利用することができる。
(7) In the information processing apparatus according to the present embodiment, it is preferable that the determination processing unit performs the determination process based on a time zone in which the remote control set in advance for the area is executed.
In this case, the remote control unit of the virtual machine can be operated only during the above-mentioned time period, and the remote control unit of the virtual machine can be stopped during other time periods, and the hardware resources of the information processing apparatus can be efficiently used. be able to.
 (8) 本実施形態の情報処理装置において、複数の前記仮想マシンの前記遠隔制御部が前記遠隔制御を行う複数の前記エリアには、時差のある異なる地域に存在するエリアが含まれることが好ましい。
 このようにすれば、時差のある地域のエリアの遠隔制御をそれぞれ担当する複数の仮想マシンの動作時間を分散できるので、情報処理装置のハードウェア資源を効率的に利用することができる。
(8) In the information processing apparatus according to the present embodiment, the plurality of areas in which the remote control units of the plurality of virtual machines perform the remote control preferably include areas that exist in different regions with a time difference. .
In this way, it is possible to distribute the operation time of a plurality of virtual machines each responsible for remote control of an area having a time difference, so that the hardware resources of the information processing apparatus can be used efficiently.
 (9) 本実施形態の情報処理装置において、前記仮想マシンの前記遠隔制御部は、前記遠隔制御の他に、下記の(a)~(d)のうちの少なくとも1つの処理を実行可能であることが好ましい。
 (a) エリア内の交通情報分析
 (b) エリア周辺の特典情報の提供
 (c) エリア内における信号情報の提供
 (d) エリア内における車両の経路誘導
(9) In the information processing apparatus of the present embodiment, the remote control unit of the virtual machine can execute at least one of the following (a) to (d) in addition to the remote control. It is preferable.
(A) Traffic information analysis in the area (b) Provision of privilege information around the area (c) Provision of signal information in the area (d) Route guidance of vehicles in the area
 この場合、仮想マシンがエリア内で実行する交通サービスの内容が豊富になるので、本実施形態のクラウドシステムをクライアントが導入し易くなるという利点がある。 In this case, since the contents of the traffic service executed by the virtual machine in the area are abundant, there is an advantage that the client can easily introduce the cloud system of the present embodiment.
 (10) 本実施形態の路側制御装置は、交差点における交通信号制御の制御方式の切り替えが可能であり、切り替え可能な前記制御方式として下記に定義する地点制御と遠隔制御を含む路側制御装置であって、前記交差点を含む所定のエリア内の複数の交差点について、前記遠隔制御を実行する遠隔制御装置と通信する通信部と、前記交差点における交通指標が所定の条件を満たすように当該交差点に対する前記地点制御を実行可能であるかの判定を行い、この判定結果が否定的である場合に、前記遠隔制御装置に対する前記遠隔制御の実行要求を前記通信部に送信させる制御部と、を備える。
 地点制御:1つの交差点の通行権を制御対象とする交通信号制御
 遠隔制御:複数の交差点の通行権を制御対象とする交通信号制御
(10) The roadside control device of the present embodiment is a roadside control device that can switch the traffic signal control method at an intersection and includes the point control and remote control defined below as the switchable control method. A communication unit that communicates with a remote control device that executes the remote control for a plurality of intersections in a predetermined area including the intersection, and the point for the intersection so that a traffic index at the intersection satisfies a predetermined condition A control unit that determines whether the control can be performed and, when the determination result is negative, a control unit that causes the communication unit to transmit an execution request for the remote control to the remote control device.
Point control: Traffic signal control that controls the right of traffic at one intersection Remote control: Traffic signal control that controls the right of traffic at multiple intersections
 本実施形態の路側制御装置によれば、制御部が、交差点における交通指標が所定の条件を満たすように当該交差点に対する地点制御を実行できない場合に、遠隔制御の実行要求を通信部に送信させるので、エリア内の交通状況に対応して、遠隔制御装置(具体的には、仮想マシン)に遠隔制御の実行を要求することができる。
 このため、地点制御では足りない交通状況となった場合に、遠隔制御装置に遠隔制御を開始させることができる。
According to the roadside control device of the present embodiment, when the control unit cannot execute the point control for the intersection so that the traffic index at the intersection satisfies the predetermined condition, the control unit causes the communication unit to transmit a remote control execution request. The remote control device (specifically, the virtual machine) can be requested to execute the remote control corresponding to the traffic situation in the area.
For this reason, when the traffic situation is insufficient with the point control, the remote control device can start the remote control.
 (11) 本実施形態の路側制御装置において、前記制御部は、前記制御部は、前記遠隔制御を選択中に前記判定を実行し、この判定結果が肯定的である場合に、前記遠隔制御装置に対する前記遠隔制御の解除要求を前記通信部に送信させるので、エリアAi内の交通状況に応じて、仮想マシンVMiである遠隔制御装置12に遠隔制御の解除を要求することができる。
 このため、地点制御で足りる交通状況となった場合に、遠隔制御装置が遠隔制御を無駄に継続するのを防止することができる。
(11) In the roadside control device of the present embodiment, the control unit performs the determination while the control unit is selecting the remote control, and when the determination result is affirmative, the remote control device The remote control cancellation request is transmitted to the communication unit, so that the remote control device 12 that is the virtual machine VMi can be requested to cancel the remote control according to the traffic situation in the area Ai.
For this reason, it is possible to prevent the remote control device from continuing the remote control uselessly when the traffic situation is sufficient for the point control.
 (12) 本実施形態のクラウドシステムは、上述の本実施形態の情報処理装置と、前記情報処理装置と通信可能であり、前記エリアに含まれる前記交差点における交通信号制御の制御方式を切り替え可能な路側制御装置と、を備え、前記路側制御装置は、前記情報処理装置から前記遠隔制御の実行指令を受信した場合は、前記制御方式を前記遠隔制御に切り替え、前記情報処理装置から前記遠隔制御の解除指令を受信した場合は、前記制御方式を1つの交差点の通行権を制御対象とする交通信号制御である地点制御に切り替える。 (12) The cloud system of the present embodiment can communicate with the information processing apparatus of the present embodiment described above and the information processing apparatus, and can switch the traffic signal control control method at the intersection included in the area. A roadside control device, and when the roadside control device receives the execution instruction of the remote control from the information processing device, the control method is switched to the remote control, and the remote control of the information processing device When a cancellation command is received, the control method is switched to point control which is traffic signal control with the right of passage at one intersection as a control target.
 本実施形態のクラウドシステムによれば、エリアに含まれる交差点における交通信号制御の制御方式を切り替え可能な路側制御装置が、実行指令の受信に応じて制御方式を遠隔制御に切り替え、解除指令の受信に応じて制御方式を地点制御に切り替えるので、エリアに含まれる各交差点に遠隔制御を実行しない場合は、当該交差点に地点制御を実行することができる。従って、エリアに含まれる交差点に対して、遠隔制御及び地点制御の双方の制御を実行することができる。 According to the cloud system of the present embodiment, the roadside control device capable of switching the traffic signal control method at the intersection included in the area switches the control method to the remote control in response to receiving the execution command, and receives the release command. Since the control method is switched to point control according to the above, when remote control is not executed at each intersection included in the area, the point control can be executed at the intersection. Therefore, both remote control and point control can be performed on the intersections included in the area.
 (13) 本実施形態のコンピュータプログラムは、ハードウェア資源を仮想化して構築された1又は複数の仮想マシンとして、上述の(1)~(9)に記載の情報処理装置を機能させるためのコンピュータプログラムである。
 従って、本実施形態のコンピュータプログラムは、上述の(1)~(9)に記載の情報処理装置と同様の作用効果を奏する。
(13) A computer program according to the present embodiment is a computer for causing the information processing apparatus described in (1) to (9) above to function as one or a plurality of virtual machines constructed by virtualizing hardware resources. It is a program.
Therefore, the computer program of the present embodiment has the same effects as the information processing apparatus described in the above (1) to (9).
 (14) 本実施形態の運用方法は、上述の(1)~(9)に記載の情報処理装置のハードウェア資源を仮想化して構築された1又は複数の運用方法である。
 従って、本実施形態の運用方法は、上述の(1)~(9)に記載の情報処理装置と同様の作用効果を奏する。
(14) The operation method of this embodiment is one or a plurality of operation methods constructed by virtualizing the hardware resources of the information processing apparatus described in (1) to (9) above.
Therefore, the operation method of this embodiment has the same effects as the information processing apparatus described in the above (1) to (9).
<本発明の実施形態の詳細> 
 以下、図面を参照して、本発明の実施形態の詳細を説明する。なお、以下に記載する実施形態の少なくとも一部を任意に組み合わせてもよい。
<Details of Embodiment of the Present Invention>
Hereinafter, details of embodiments of the present invention will be described with reference to the drawings. In addition, you may combine arbitrarily at least one part of embodiment described below.
 〔用語の定義〕
 本実施形態の詳細を説明するに当たり、まず、本明細書で用いる用語の定義を行う。
 「車両」:道路を通行する車両全般、例えば、道路交通法上の車両のことをいう。道路交通法上の車両は、自動車、原動機付自転車、軽車両及びトロリーバスを含む。本実施形態では、単に「車両」というときは、プローブ情報を送信可能な車載機を有するプローブ車両と、その車載機を有しない通常の車両の双方を含む。
〔Definition of terms〕
In describing the details of the present embodiment, first, terms used in this specification are defined.
“Vehicle”: refers to all vehicles passing on the road, for example, vehicles according to the Road Traffic Act. Vehicles under the Road Traffic Act include automobiles, motorbikes, light vehicles, and trolley buses. In the present embodiment, the term “vehicle” includes both a probe vehicle having an in-vehicle device capable of transmitting probe information and a normal vehicle having no in-vehicle device.
 「プローブ情報」:実際に道路を走行するプローブ車両の車載機から得られる車両に関する各種情報のことをいう。プローブデータ或いはフローティングカーデータと称されることもある。車両ID、車両位置、車両速度、車両方位及びこれらの発生時刻などのデータがこれに含まれる。 “Probe information”: Various information related to the vehicle obtained from the vehicle-mounted device of the probe vehicle that actually travels on the road. Sometimes referred to as probe data or floating car data. This includes data such as vehicle ID, vehicle position, vehicle speed, vehicle orientation, and the time of occurrence thereof.
 「交通信号制御機」:交通信号機の信号灯器を所定の灯色切り替えタイミングにて点灯及び消灯させる制御機のことをいう。
 本実施形態の交通信号制御機は、後述の地点制御及び遠隔制御の制御方式を実行可能である。交通信号制御機は、通常は、自機に対応する交差点について地点制御を実行している。後述の路側制御装置から信号制御パラメータを受信すると、受信した信号制御パラメータに従って自機に対応する交差点の信号灯器の灯色切り替えタイミングを決定する。
“Traffic signal controller”: A controller that turns on and off a signal lamp of a traffic signal at a predetermined lamp color switching timing.
The traffic signal controller of the present embodiment can execute a point control method and a remote control method described later. The traffic signal controller normally performs point control for an intersection corresponding to the traffic signal controller. When a signal control parameter is received from a roadside control device described later, the lamp color switching timing of the signal lamp at the intersection corresponding to the own aircraft is determined according to the received signal control parameter.
 「信号制御パラメータ」:一般には、後述のサイクル長、スプリット及びオフセットのことをいう。本実施形態では、交差点の信号灯器の灯色切り替えタイミング(各灯色の開始時刻及び表示時間など)も、これに含まれてもよいものとする。 “Signal control parameter”: Generally, this refers to the cycle length, split and offset described later. In the present embodiment, the lamp color switching timing (such as the start time and display time of each lamp color) of the signal lamp at the intersection may be included in this.
 「サイクル長」:交通信号機の青(又は赤)開始時刻から次の青(又は赤)開始時刻までの1サイクルの時間のことをいう。
 「スプリット」:各現示に割り当てられる時間(青信号時間や赤信号時間等)のサイクル長に対する割合のことをいう。
  「オフセット」:隣接する交差点間の青信号開始時刻のずれのことをいう。1サイクルの時間に対するパーセント又は秒で表される。
“Cycle length”: The time of one cycle from the blue (or red) start time of a traffic signal to the next blue (or red) start time.
“Split”: The ratio of the time (green signal time, red signal time, etc.) allocated to each display to the cycle length.
“Offset”: Refers to the deviation of the green signal start time between adjacent intersections. Expressed as a percentage or second of the time of one cycle.
 「路側センサ」:道路の交通状況をセンシングするために設置されたセンサ機器のことをいう。路側センサには、車両感知器、監視カメラ及び光ビーコンなどが含まれる。
 車両感知器は、直下を通行する車両を超音波などで1台ずつ感知する超音波式車両感知器などよりなり、監視カメラは、道路の動画像を撮影するCCDカメラなどよりなる。光ビーコンは、光通信対応の車載機と道路の所定位置で光通信を行い、インフラ側と所定の情報をやり取りする光通信装置である。
“Roadside sensor”: A sensor device installed to sense traffic conditions on the road. Roadside sensors include vehicle detectors, surveillance cameras, optical beacons and the like.
The vehicle sensor is composed of an ultrasonic vehicle sensor that senses a vehicle passing underneath one by one using ultrasonic waves, and the surveillance camera is composed of a CCD camera that captures a moving image of the road. An optical beacon is an optical communication device that performs optical communication with a vehicle-mounted device that supports optical communication at a predetermined position on a road and exchanges predetermined information with the infrastructure side.
 「遠隔制御装置」:後述の遠隔制御を実行可能な交通信号制御装置のことをいう。本実施形態の遠隔制御装置は、自装置が管理するエリアに含まれる交差点の交通信号制御機に、後述の遠隔制御を実行させるか否かの判定処理も行う。
 遠隔制御装置は、エリアに含まれる交差点の交通信号機に遠隔制御を実行させる場合には、遠隔制御の実行指令を含むダウンリンク情報や信号制御パラメータを含むダウンリンク情報を、当該交差点に対応する路側制御装置に送信する。
“Remote control device”: A traffic signal control device capable of executing remote control described later. The remote control device according to the present embodiment also performs a determination process as to whether or not the traffic signal controller at the intersection included in the area managed by the own device is to execute remote control described later.
When the remote control device causes the traffic signal at the intersection included in the area to execute remote control, the remote control device transmits the downlink information including the remote control execution command and the downlink information including the signal control parameter to the roadside corresponding to the intersection. Send to control device.
 「路側制御装置」:交差点における交通信号制御の制御方式の切り替えを行う、路側に設置された制御装置のことをいう。路側制御装置は、遠隔制御装置から受信する実行指令などに基づいて、交差点の交通信号制御の制御方式を切り替える。
 「サブエリア」:共通のサイクル長によって交通制御制御を行う1又は複数の交差点が含むように区分けされたエリアのことをいう。1つのサブエリアには、通常、少なくとも1つの重要交差点が含まれる。
“Roadside control device”: A control device installed on the roadside that switches the control method of traffic signal control at an intersection. The roadside control device switches the control method of traffic signal control at the intersection based on an execution command received from the remote control device.
“Sub-area”: An area that is divided to include one or more intersections that perform traffic control control according to a common cycle length. One subarea usually includes at least one important intersection.
 「重要交差点」:普段から負荷率が大きくボトルネックになることが多い交差点のことをいい、一般に、幹線・準幹線道路相互の交差点がこれに該当する。重要交差点では、通常、車両感知器などによりすべての流入路の交通需要が計測可能である。
 「一般交差点」:重要交差点に比べて従道路の交通需要が少なく、例えば単に横断歩行者の青時間を確保すればよいような交差点のことをいう。一般交差点では、車両感知器などによる一部の流入路の交通需要が計測可能であるか、交通需要の計測が不能である。
“Important intersection”: An intersection that usually has a large load factor and often becomes a bottleneck. In general, this is an intersection between trunk and semi-trunk roads. At important intersections, it is usually possible to measure the traffic demand on all inflow paths by means of vehicle detectors.
“General intersection”: An intersection where traffic demand on the secondary road is less than that of an important intersection, and for example, it is only necessary to secure the green time of a crossing pedestrian. At general intersections, it is possible to measure traffic demand on some inflow paths using vehicle detectors, or to measure traffic demand.
 「地点制御」:1つの交差点の通行権を制御対象とする交通信号制御の制御方式のことをいう。具体的には、他の交差点とは無関係に、1つの交差点の交通信号機の灯色切り替えタイミングを独立して制御する交通信号制御のことをいう。単独制御ともいう。
 地点制御では、通常、所定のタイムスケジュールに従って信号灯色を切り替える定周期制御が行われる。地点制御が実行される交差点において、歩行者押しボタン制御、リコール制御及び右折感応制御などの地点感応制御が行われる場合もある。
“Point control”: A traffic signal control method that controls the right of traffic at one intersection. Specifically, it means traffic signal control that independently controls the light color switching timing of a traffic signal at one intersection regardless of other intersections. Also called single control.
In the point control, a regular cycle control for switching the signal lamp color is usually performed according to a predetermined time schedule. In some intersections where point control is executed, point sensitive control such as pedestrian push button control, recall control, and right turn sensitive control may be performed.
 「系統制御」:1つの路線に沿って連続する複数の交差点について、信号表示に時間遅れが生じるように信号灯器の灯色切り替えタイミングを互いに関連づけて制御する交通信号制御のことをいう。系統制御を行う路線を「系統区間」という。
 例えば、系統制御には、サブエリアの系統区間に含まれる交差点間のオフセットを調節することにより、系統区間の特定方向を青信号で通過し易くしたり(優先オフセット)、逆に赤信号で停止し易くしたりする制御が含まれる。
“System control”: Traffic signal control for controlling the color switching timings of signal lamps in association with each other so as to cause a time delay in signal display at a plurality of intersections that continue along one route. A route for performing system control is referred to as a “system section”.
For example, in system control, by adjusting the offset between intersections included in the system section of the subarea, it is easier to pass a specific direction of the system section with a blue signal (priority offset), or conversely, stop with a red signal. Control to make it easier is included.
 「面制御」:面的に広がる道路網に含まれる複数の交差点について、信号灯器の灯色切り替えタイミングを互いに関連づけて制御する交通信号制御のことをいう。具体的には、系統制御を道路網に拡張した広域な交通信号制御のことをいう。 “Surface control”: Traffic signal control for controlling the color switching timing of signal lamps in relation to a plurality of intersections included in a road network that spreads across the surface. Specifically, it refers to wide-area traffic signal control that extends system control to the road network.
 「遠隔制御」:複数の交差点の通行権を制御対象とする交通信号制御の制御方式のことをいう。具体的には、所定のエリアに含まれる複数の交差点について、交通信号機の灯色切り替えタイミングを関連づけて制御する交通信号制御のことをいう。
 従って、上記の系統制御と面制御はいずれも遠隔制御に該当する。所定のエリアが系統区間であるエリア制御は、系統制御であり、所定のエリアが面的に広がる道路網であるエリア制御は、面制御である。
“Remote control”: A traffic signal control method that controls the right of traffic at multiple intersections. Specifically, it refers to traffic signal control for controlling a plurality of intersections included in a predetermined area in association with the lighting color switching timing of a traffic signal.
Therefore, both the above system control and surface control correspond to remote control. Area control in which the predetermined area is a system section is system control, and area control that is a road network in which the predetermined area spreads is surface control.
 遠隔制御装置とエリアの対応関係は、「1対1」でもよいし「1対多」でもよい。対応関係が1対1の場合は、1つの遠隔制御装置が、1つのエリアを管轄し、そのエリアに含まれる交差点の灯色切り替えタイミングを関連づける遠隔制御を行う。
 対応関係が1対多の場合は、1つの遠隔制御装置が、複数のエリアを管轄し、複数のエリアに含まれる交差点の灯色切り替えタイミングを関連づける遠隔制御を行う。複数の交差点の灯色切り替えタイミングの関連づけは、エリアごとに行ってもよいし、一部の複数のエリアについて行ってもよいし、すべてのエリアについて行ってもよい。
The correspondence between the remote control device and the area may be “one-to-one” or “one-to-many”. When the correspondence is one-to-one, one remote control device manages one area and performs remote control that associates the lamp color switching timings of intersections included in the area.
When the correspondence relationship is one-to-many, one remote control device controls a plurality of areas and performs remote control that associates the lamp color switching timings of intersections included in the plurality of areas. The association of the lamp color switching timings of a plurality of intersections may be performed for each area, may be performed for some of the plurality of areas, or may be performed for all areas.
 「サービスプロバイダ」:IaaS(Infrastructure as a Service)事業者が提供する仮想化が可能なハードウェア資源に仮想マシンを構築し、仮想マシンが実行するアプリケーションソフトウェアにより所定の交通信号制御のサービスを提供する事業者のことをいう。いわゆるSaaS(Software as a Service)事業者のことである。
 「クライアント」:SaaS事業者の仮想マシンが実行するアプリケーションソフトウェアにより所定の交通信号制御のサービスを享受する事業者のことをいう。
“Service Provider”: A virtual machine is constructed on hardware resources that can be virtualized provided by an IaaS (Infrastructure as a Service) provider, and a predetermined traffic signal control service is provided by application software executed by the virtual machine It means a business. It is a so-called SaaS (Software as a Service) operator.
“Client”: refers to an operator who enjoys a predetermined traffic signal control service using application software executed by the virtual machine of the SaaS operator.
 〔クラウドシステムの全体構成〕
 図1は、本実施形態のクラウドシステムの全体構成図である。
 図1に示すように、クラウドシステムは、IaaS事業者が運営するデータセンタ1に設置された情報処理装置である複数の物理マシン2と、物理マシン2を管理する情報処理装置である管理サーバ3と、インターネットなどの公衆通信網4を介してデータセンタ1と通信する路側制御装置5、プロバイダ端末6及びクライアント端末7とを備える。
[Overall configuration of cloud system]
FIG. 1 is an overall configuration diagram of a cloud system according to the present embodiment.
As shown in FIG. 1, the cloud system includes a plurality of physical machines 2 that are information processing apparatuses installed in a data center 1 operated by an IaaS provider, and a management server 3 that is an information processing apparatus that manages the physical machines 2. And a roadside control device 5, a provider terminal 6 and a client terminal 7 that communicate with the data center 1 via a public communication network 4 such as the Internet.
 複数の物理マシン2及び管理サーバ3は、CPU(Central Processing Unit)、メモリ、HDD(Hard Disk Drive)及び通信インタフェースなどのハードウェア資源を含むサーバコンピュータにより構成されている。
 複数の物理マシン2及び管理サーバ3は、データセンタ1に構築されたLAN(Local Area Network)によって通信可能である。管理サーバ3は、公衆通信網4を介してプロバイダ端末6及びクライアント端末7と通信可能である。
The plurality of physical machines 2 and the management server 3 are configured by server computers including hardware resources such as a CPU (Central Processing Unit), a memory, an HDD (Hard Disk Drive), and a communication interface.
The plurality of physical machines 2 and the management server 3 can communicate with each other via a LAN (Local Area Network) constructed in the data center 1. The management server 3 can communicate with the provider terminal 6 and the client terminal 7 via the public communication network 4.
 物理マシン2は、仮想化が可能なサーバコンピュータよりなり、仮想化ソフトウェア11と、1又は複数の仮想マシン12とを含む。仮想化ソフトウェア11は、物理マシン2のOS(Operating System)上で動作するホストOS型、或いは、ハイパーバイザ型のいずれであってもよい。
 もっとも、本実施形態では、物理マシン2における処理効率がより高いハイパーバイザ型の仮想化ソフトウェア11を想定する。
The physical machine 2 includes a server computer that can be virtualized, and includes virtualization software 11 and one or more virtual machines 12. The virtualization software 11 may be either a host OS type operating on an OS (Operating System) of the physical machine 2 or a hypervisor type.
However, in the present embodiment, the hypervisor type virtualization software 11 with higher processing efficiency in the physical machine 2 is assumed.
 仮想化ソフトウェア(以下、「ハイパーバイザ」という。)11は、仮想マシン12用のOSである仮想OS13(図3参照)を、物理マシン2のハードウェア資源の一部を割り当てて起動させることができる。
 これにより、1又は複数の仮想マシン12が1つの物理マシン2に構築され、仮想マシン12の仮想OS13に対応する所定のアプリケーションソフトウェア14(図3参照)が実行可能な状態となる。
The virtualization software (hereinafter referred to as “hypervisor”) 11 can activate a virtual OS 13 (see FIG. 3), which is an OS for the virtual machine 12, by allocating a part of the hardware resources of the physical machine 2. it can.
As a result, one or a plurality of virtual machines 12 are constructed in one physical machine 2, and a predetermined application software 14 (see FIG. 3) corresponding to the virtual OS 13 of the virtual machine 12 is ready to be executed.
 すなわち、仮想マシン12の仮想OS13では、サービスプロバイダ(SaaS事業者)がクライアントごとに所定のサービスを提供するアプリケーションソフトウェア14(図3参照)が動作する。
 クライアントは、サービスプロバイダと締結した所定の使用契約の範囲内で、アプリケーションソフトウェア14が実行する交通信号制御のサービスを享受する。
That is, in the virtual OS 13 of the virtual machine 12, application software 14 (see FIG. 3) is provided in which a service provider (SaaS provider) provides a predetermined service for each client.
The client enjoys the traffic signal control service executed by the application software 14 within the scope of a predetermined use contract concluded with the service provider.
 仮想マシン12のアプリケーションソフトウェア(以下、「アプリケーション」という。)14が提供するサービスは、道路の所定のエリアAi(i=1,2,……)における遠隔制御と、エリアAiにおける遠隔制御の要否の判定処理などである。
 すなわち、仮想マシン12は、クライアントとサービスプロバイダとの間で取り決めた所定の系統区間又は道路網よりなるエリアAiを制御対象として、遠隔制御などのサービスをクライアントに提供可能な交通信号制御装置として機能する。
The service provided by the application software (hereinafter referred to as “application”) 14 of the virtual machine 12 is necessary for remote control in a predetermined area Ai (i = 1, 2,...) Of the road and remote control in the area Ai. For example, a determination process of NO.
In other words, the virtual machine 12 functions as a traffic signal control device capable of providing a client with a service such as remote control with the area Ai formed by a predetermined system section or road network decided between the client and the service provider as a control target. To do.
 以下、サービスプロバイダが提供するアプリケーション14により遠隔制御を行う「仮想マシン」を、「遠隔制御装置」ともいう。
 また、1つのエリアAiに対応する1つの仮想マシン(遠隔制御装置)12の参照符号を、VMi(i=1,2,…)と記載する場合がある。
Hereinafter, a “virtual machine” that is remotely controlled by the application 14 provided by the service provider is also referred to as a “remote control device”.
Further, the reference symbol of one virtual machine (remote control device) 12 corresponding to one area Ai may be described as VMi (i = 1, 2,...).
 図1に示すように、本実施形態では、仮想マシンVMiとエリアAiの対応関係が1対1の場合を想定する。従って、仮想マシンVMiは、自身の制御対象として設定された1つのエリアAiについて遠隔制御を実行する。エリアAiは、日本国に限らず、世界のいずれの国にあってもよい。
 エリアAiに含まれる複数の交差点には、路側制御装置5が設置されている。エリアAiに含まれる路側制御装置5は、公衆通信網4を介して、当該エリアAiに対応するハイパーバイザ11及び仮想マシンVMiと通信可能である。
As shown in FIG. 1, in the present embodiment, a case is assumed where the correspondence between the virtual machine VMi and the area Ai is one-to-one. Therefore, the virtual machine VMi executes remote control for one area Ai set as its own control target. The area Ai is not limited to Japan, and may be in any country in the world.
Roadside control devices 5 are installed at a plurality of intersections included in the area Ai. The roadside control device 5 included in the area Ai can communicate with the hypervisor 11 and the virtual machine VMi corresponding to the area Ai via the public communication network 4.
 プロバイダ端末6は、サービスプロバイダが所有するIP通信が可能なコンピュータ装置である。クライアント端末7は、クライアントが所有するIP通信が可能なコンピュータ装置である。
 これらの端末6,7は、デスクトップパソコンやノートパソコンなどのコンピュータ端末であってもよいし、タブレット型コンピュータやスマートフォンなどのモバイル端末であってもよい。
The provider terminal 6 is a computer device capable of IP communication owned by a service provider. The client terminal 7 is a computer device capable of IP communication owned by a client.
These terminals 6 and 7 may be a computer terminal such as a desktop personal computer or a notebook personal computer, or may be a mobile terminal such as a tablet computer or a smartphone.
 図1のクラウドシステムにおいて、1つの仮想マシンVMiが遠隔制御を行う1つのエリアAiの規模は特に限定されないが、本実施形態では、1つの仮想マシンVMiの導入単価を抑えるため、エリアAiはサブエリアよりなるものとする。
 また、複数の仮想マシンVM1~VMnに対応するエリアA1~Anには、時差が異なる地域のエリアが含まれるものとする。すなわち、例えば、エリアA1は日本国に存在し、エリアA2は米国に存在する。
In the cloud system of FIG. 1, the scale of one area Ai in which one virtual machine VMi performs remote control is not particularly limited, but in this embodiment, the area Ai is a sub-area in order to suppress the unit price of one virtual machine VMi. It shall consist of areas.
In addition, it is assumed that areas A1 to An corresponding to the plurality of virtual machines VM1 to VMn include areas of regions having different time differences. That is, for example, area A1 exists in Japan and area A2 exists in the United States.
 管理サーバ3は、プロバイダ端末6から入力された使用要求に応じて、IaaS事業者とサービスプロバイダの間の使用契約の範囲内で、物理マシン2群のハードウェア資源をサービスプロバイダのために割り当てる。
 上記の使用契約には、仮想マシン12の動作に必要なハードウェア仕様、例えば、コア数とクロック周波数、メモリ容量(GB)、大容量記憶装置のデータ容量、IP通信の帯域幅(Gbps)、及び月額課金又は従量課金の種別などが含まれる。
The management server 3 allocates the hardware resources of the group of physical machines 2 for the service provider within the scope of the use contract between the IaaS provider and the service provider in response to the use request input from the provider terminal 6.
The above usage contract includes hardware specifications necessary for the operation of the virtual machine 12, such as the number of cores and clock frequency, memory capacity (GB), data capacity of a mass storage device, IP communication bandwidth (Gbps), And monthly charge or pay-per-use charge type.
 プロバイダ端末6は、仮想マシン12の仮想OS13上で動作させるアプリケーション14などのソフトウェアと、そのアプリケーション14の実行に必要な設定パラメータなどのデータを、管理サーバ3にアップロードする。
 管理サーバ3は、プロバイダ端末6からアップロードされたソフトウェア及びデータを、割り当てられた所定の物理マシン2の大容量記憶装置(図2の「第2記憶部23」)にインストールする。
The provider terminal 6 uploads software such as an application 14 to be operated on the virtual OS 13 of the virtual machine 12 and data such as setting parameters necessary for the execution of the application 14 to the management server 3.
The management server 3 installs the software and data uploaded from the provider terminal 6 in the assigned mass storage device (“second storage unit 23” in FIG. 2) of the predetermined physical machine 2.
 管理サーバ3は、仮想マシン12が遠隔制御により生成した制御データ(エリアAi内の交差点ごとの信号制御パラメータなど)を収集し、収集した制御データを制御データベースDB2(図2参照)に格納する。
 管理サーバ3は、プロバイダ端末6の閲覧要求に応じて、すべてのエリアAiの制御データをプロバイダ端末6に提供する。管理サーバ3は、クライアント端末7の閲覧要求に応じて、当該クライアント用の制御データをクライアント端末7に提供する。
The management server 3 collects control data (such as signal control parameters for each intersection in the area Ai) generated by the virtual machine 12 by remote control, and stores the collected control data in the control database DB2 (see FIG. 2).
The management server 3 provides the control data of all areas Ai to the provider terminal 6 in response to the browsing request of the provider terminal 6. The management server 3 provides the client terminal 7 with control data for the client in response to a browsing request from the client terminal 7.
 〔物理マシンと管理サーバのハードウェア構成〕
 図2は、物理マシン2と管理サーバ3のハードウェア構成を示すブロック図である。
 図2に示すように、物理マシン2は、処理部21、第1記憶部22、第2記憶部23及び通信部24を含む。これらは内部バス25によって接続されている。管理サーバ3は、処理部31、第1記憶部32、第2記憶部33及び通信部34を含む。これらは内部バス35によって接続されている。
[Hardware configuration of physical machine and management server]
FIG. 2 is a block diagram showing the hardware configuration of the physical machine 2 and the management server 3.
As illustrated in FIG. 2, the physical machine 2 includes a processing unit 21, a first storage unit 22, a second storage unit 23, and a communication unit 24. These are connected by an internal bus 25. The management server 3 includes a processing unit 31, a first storage unit 32, a second storage unit 33, and a communication unit 34. These are connected by an internal bus 35.
 物理マシン2において、処理部21は、仮想化が可能なマルチコアのCPUよりなる。第1記憶部22は、DRAM(Dynamic Random Access Memory)、SRAM(Static Random Access Memory)などの揮発性メモリよりなる。
 第2記憶部23は、HDD(Hard Disk Drive)、SSD(Solid State Drive)、USB(Universal Serial Bus)メモリ、SDメモリカードなどの不揮発性メモリよりなる。通信部24は、IP通信とLANの双方に対応する通信インタフェースよりなる。
In the physical machine 2, the processing unit 21 includes a multi-core CPU that can be virtualized. The first storage unit 22 includes a volatile memory such as a DRAM (Dynamic Random Access Memory) and an SRAM (Static Random Access Memory).
The second storage unit 23 includes a non-volatile memory such as an HDD (Hard Disk Drive), an SSD (Solid State Drive), a USB (Universal Serial Bus) memory, or an SD memory card. The communication unit 24 includes a communication interface that supports both IP communication and LAN.
 第2記憶部23には、ハイパーバイザ11及び仮想マシン12などのソフトウェアと、仮想マシン12が遠隔制御によって生成した制御データなどが格納される。
 処理部21は、第2記憶部23に格納されたハイパーバイザ11を読み出して、物理マシン2に含まれるハードウェア資源の一部を仮想化し、所定数の仮想マシン12を自装置である物理マシン2に構築する。
The second storage unit 23 stores software such as the hypervisor 11 and the virtual machine 12 and control data generated by the virtual machine 12 by remote control.
The processing unit 21 reads the hypervisor 11 stored in the second storage unit 23, virtualizes a part of hardware resources included in the physical machine 2, and converts a predetermined number of virtual machines 12 into a physical machine that is the own device. Build in 2.
 管理サーバ3において、処理部31は、例えばマルチコアのCPUよりなる。第1記憶部32は、DRAM、SRAMなどの揮発性メモリよりなる。
 第2記憶部33は、HDD、SSD、USBメモリ、SDメモリカードなどの不揮発性メモリよりなる。通信部34は、IP通信とLANの双方に対応する通信インタフェースよりなる。
In the management server 3, the processing unit 31 is composed of, for example, a multi-core CPU. The first storage unit 32 includes a volatile memory such as a DRAM or an SRAM.
The second storage unit 33 is composed of a nonvolatile memory such as an HDD, SSD, USB memory, or SD memory card. The communication unit 34 includes a communication interface that supports both IP communication and LAN.
 第2記憶部33には、サービスプロバイダに割り当てられた所定の物理マシン2などを監視する管理ソフトウェア36と、仮想マシンVMiとエリアAiとを関連づけるエリアデータベースDB1と、各仮想マシン12から受信した制御データを保持する制御データベースDB2などが格納される。
 処理部31は、第2記憶部33に格納された管理ソフトウェア36を読み出して、ハイパーバイザ11上で動作する仮想マシン12と、プロバイダ端末6及びクライアント端末7との関連づけなどを行う。
The second storage unit 33 includes management software 36 for monitoring a predetermined physical machine 2 assigned to the service provider, an area database DB1 for associating the virtual machine VMi with the area Ai, and the control received from each virtual machine 12. A control database DB2 that holds data is stored.
The processing unit 31 reads the management software 36 stored in the second storage unit 33 and associates the virtual machine 12 operating on the hypervisor 11 with the provider terminal 6 and the client terminal 7.
 〔物理マシンのソフトウェア構成〕
 図3は、物理マシン2と管理サーバ3のソフトウェア構成を示すブロック図である。
 図3に示すように、物理マシン2は、ハイパーバイザ11と1又は複数の仮想マシン12を含む。
[Physical machine software configuration]
FIG. 3 is a block diagram showing software configurations of the physical machine 2 and the management server 3.
As shown in FIG. 3, the physical machine 2 includes a hypervisor 11 and one or a plurality of virtual machines 12.
 図3の例では、最大3つの仮想マシン12を含めることができる物理マシン2を例示している。
 例えば、左側の物理マシン2Aは、3つの仮想マシンVM1~VM3を含み、中央の物理マシン2Bは、2つの仮想マシンVM4,VM5を含み、右側の物理マシン2Cは、1つの仮想マシンVN6を含む。
In the example of FIG. 3, a physical machine 2 that can include a maximum of three virtual machines 12 is illustrated.
For example, the left physical machine 2A includes three virtual machines VM1 to VM3, the central physical machine 2B includes two virtual machines VM4 and VM5, and the right physical machine 2C includes one virtual machine VN6. .
 仮想マシンVM1~VM6は、当該仮想マシン12用のOSである仮想OS13と、仮想OS13上で動作するアプリケーション14とを含む。
 仮想マシンVM1~VM6は、処理部21の一部のコア(リソース)と第1記憶部22の一部のメモリ(リソース)を用いてアプリケーション14を実行することにより、上述の遠隔制御を実行する遠隔制御装置12として機能する。従って、以下において、仮想マシン12がアプリケーション14の実行により実現される遠隔制御の機能部分を「遠隔制御部14」ともいう。
The virtual machines VM1 to VM6 include a virtual OS 13 that is an OS for the virtual machine 12, and an application 14 that operates on the virtual OS 13.
The virtual machines VM1 to VM6 execute the remote control described above by executing the application 14 using a part of the core (resource) of the processing unit 21 and a part of the memory (resource) of the first storage unit 22. It functions as the remote control device 12. Therefore, hereinafter, the remote control functional part realized by the execution of the application 14 by the virtual machine 12 is also referred to as a “remote control unit 14”.
 遠隔制御装置12は、通信部24を制御することにより、エリアAiに含まれる路側制御装置5とのIP通信と、他の物理マシン2の通信部24及び管理サーバ3の通信部34とのローカル通信が可能である。
 ハイパーバイザ11は、通信部24を制御することにより、エリアAiに含まれる路側制御装置5とのIP通信と、他の物理マシン2の通信部24及び管理サーバ3の通信部34とのローカル通信が可能である。
The remote control device 12 controls the communication unit 24 to perform IP communication with the roadside control device 5 included in the area Ai and local communication with the communication unit 24 of the other physical machine 2 and the communication unit 34 of the management server 3. Communication is possible.
The hypervisor 11 controls the communication unit 24 to perform IP communication with the roadside control device 5 included in the area Ai, and local communication with the communication unit 24 of the other physical machine 2 and the communication unit 34 of the management server 3. Is possible.
 物理マシン2A~2Cに分散する仮想マシンVM1~VM6は、物理マシン2A~2Cの処理部21及び第1記憶部22などのハードウェア資源(リソース)の一部によって実行される機能部分として、遠隔制御部14の他に、アップリンク収集部26、リソース監視部27、時間帯取得部28及びVM制御部29を備える。 The virtual machines VM1 to VM6 distributed to the physical machines 2A to 2C are remote functions as functional parts executed by a part of hardware resources (resources) such as the processing unit 21 and the first storage unit 22 of the physical machines 2A to 2C. In addition to the control unit 14, an uplink collection unit 26, a resource monitoring unit 27, a time zone acquisition unit 28, and a VM control unit 29 are provided.
 アップリンク収集部26は、エリアAiに含まれる路側制御装置5がデータセンタ1にアップリンク送信したアップリンク情報を収集する。
 アップリンク情報には、エリアAi内の路側制御装置5が算出した交通指標と、路側制御装置5が生成した遠隔制御の実行要求及び解除要求の少なくとも1つの情報が含まれる。交通指標には、エリアAiに含まれる交差点の流入交通量、渋滞長、道路区間の旅行時間及び車両の平均速度のうちの少なくとも1つが含まれる。
The uplink collection unit 26 collects uplink information that the roadside control device 5 included in the area Ai transmits to the data center 1 in uplink.
The uplink information includes at least one information of a traffic index calculated by the roadside control device 5 in the area Ai and a remote control execution request and cancellation request generated by the roadside control device 5. The traffic index includes at least one of the inflow traffic volume at the intersection included in the area Ai, the congestion length, the travel time of the road section, and the average speed of the vehicle.
 遠隔制御の実行要求は、地点制御を実行中の交差点の路側制御装置5が、自身が算出した交通指標に基づいて遠隔制御が必要と判定した場合に、データセンタ1に遠隔制御の実行を要求するための通信フレームである。
 遠隔制御の解除要求は、仮想マシンVMiが生成した信号制御パラメータにて交通信号制御機が遠隔制御を実行中に、路側制御装置5が交通指標に基づいて遠隔制御が不要と判定した場合に、データセンタ1に遠隔制御の解除を要求するための通信フレームである。
The remote control execution request is to request the data center 1 to execute remote control when the roadside control device 5 at the intersection that is performing point control determines that remote control is necessary based on the traffic index calculated by itself. It is a communication frame for doing.
The remote control cancellation request is made when the roadside control device 5 determines that the remote control is unnecessary based on the traffic index while the traffic signal controller is executing the remote control with the signal control parameter generated by the virtual machine VMi. This is a communication frame for requesting the data center 1 to cancel remote control.
 図3の物理マシン2Aには、エリアA1~A3に対応する3つの仮想マシンVM1~VM3が含まれる。従って、物理マシン2Aのアップリンク収集部26は、エリアA1~A3に含まれる路側制御装置5からのアップリンク情報を収集する。
 同様に、物理マシン2Bのアップリンク収集部26は、エリアA4,A5に含まれる路側制御装置5からのアップリンク情報を収集し、物理マシン2Cのアップリンク収集部26は、エリアA6に含まれる路側制御装置5からのアップリンク情報を収集する。
The physical machine 2A in FIG. 3 includes three virtual machines VM1 to VM3 corresponding to the areas A1 to A3. Accordingly, the uplink collection unit 26 of the physical machine 2A collects uplink information from the roadside control device 5 included in the areas A1 to A3.
Similarly, the uplink collection unit 26 of the physical machine 2B collects uplink information from the roadside control device 5 included in the areas A4 and A5, and the uplink collection unit 26 of the physical machine 2C is included in the area A6. Uplink information from the roadside control device 5 is collected.
 リソース監視部27は、遠隔制御を実行中の仮想マシンVMiのリソースの使用状況を監視する。監視対象のリソースには、例えば、仮想マシンVMiにおける所定時間ごとのコア使用率やメモリ使用率などが含まれる。
 物理マシン2Aのリソース監視部27は、仮想マシンVM1~VM3のリソースの使用状況を監視し、物理マシン2Bのリソース監視部27は、仮想マシンVM4,VM5のリソースの使用状況を監視し、物理マシン2Cのリソース監視部27は、仮想マシンVM6のリソースの使用状況を監視する。
The resource monitoring unit 27 monitors the resource usage status of the virtual machine VMi that is executing the remote control. The resources to be monitored include, for example, a core usage rate and a memory usage rate for each predetermined time in the virtual machine VMi.
The resource monitoring unit 27 of the physical machine 2A monitors the usage status of the resources of the virtual machines VM1 to VM3, and the resource monitoring unit 27 of the physical machine 2B monitors the usage status of the resources of the virtual machines VM4 and VM5. The 2C resource monitoring unit 27 monitors the resource usage status of the virtual machine VM6.
 時間帯取得部28は、エリアAiにおいて遠隔制御を実行する時間帯(例えば、AM7:00~AM10:00までの通勤時間帯など)を、第2記憶部23から読み出して取得する。
 物理マシン2Aの時間帯取得部28は、エリアA1~A3に指定された時間帯を第2記憶部23から取得し、物理マシン2Bの時間帯取得部28は、エリアA4,A5に指定された時間帯を第2記憶部23から取得し、物理マシン2Cの時間帯取得部28は、エリアA6に指定された時間帯を第2記憶部23から取得する。
The time zone acquisition unit 28 reads and acquires the time zone for executing remote control in the area Ai (for example, the commuting time zone from AM 7:00 to AM 10:00) from the second storage unit 23.
The time zone acquisition unit 28 of the physical machine 2A acquires the time zone specified for the areas A1 to A3 from the second storage unit 23, and the time zone acquisition unit 28 of the physical machine 2B is specified for the areas A4 and A5. The time zone is acquired from the second storage unit 23, and the time zone acquisition unit 28 of the physical machine 2C acquires the time zone specified for the area A6 from the second storage unit 23.
 ところで、仮想マシンVMiの単位時間ごとのリソースの使用状況(コア使用率及びメモリ使用率など)に応じて課金する「従量制課金」を想定すると、仮想マシンVMiの処理負荷を低減したり、不要な場合は終了又は休止させたりして、物理マシン2のリソースの使用量を抑えることが好ましい。 By the way, assuming “pay-as-you-go charging” in which charging is performed according to the resource usage status (core usage rate, memory usage rate, etc.) per unit time of the virtual machine VMi, the processing load on the virtual machine VMi is reduced or unnecessary. In such a case, it is preferable that the amount of resources used by the physical machine 2 be suppressed by terminating or pausing.
 そこで、各仮想マシン12のVM制御部29は、遠隔制御部14がエリアAiに対して実行する遠隔制御の品質を切り替える「グレード制御」と、仮想マシンVMiのアプリケーション14や仮想OS13の起動/終了及び休止/再開などの動作状態を遷移させる「動作状態の切替制御」を実行可能である。
 なお、図3の例では、各々の仮想マシン12がVM制御部29を備える場合を例示しているが、VM制御部29をハイパーバイザ11が備えていてもよい。
Therefore, the VM control unit 29 of each virtual machine 12 performs “grade control” for switching the quality of remote control executed by the remote control unit 14 for the area Ai, and starts / ends the application 14 and the virtual OS 13 of the virtual machine VMi. In addition, “operation state switching control” for transitioning operation states such as pause / restart can be executed.
3 exemplifies a case where each virtual machine 12 includes the VM control unit 29, but the hypervisor 11 may include the VM control unit 29.
 (グレード制御の例)
 グレード制御には、例えば、エリアAiの交通状況とリソースの使用状況に基づいて、エリアAi内の全交差点を対象とする品質が高い面制御と、エリアAi内の一部の交差点を対象とする品質が低い面制御(或いは系統制御)とを切り替える制御が含まれる。
 また、グレード制御は、エリアAiの交通状況とリソースの使用状況に基づいて、品質が高い高負荷の交通信号制御(例えば、MODERATO)と、品質が低い低負荷の交通信号制御(例えば、パターン制御)とを切り替える制御であってもよい。
(Example of grade control)
Grade control includes, for example, high-quality surface control for all intersections in area Ai and some intersections in area Ai based on traffic conditions and resource usage conditions in area Ai. Control which switches surface control (or system control) with low quality is included.
The grade control includes high-load traffic signal control with high quality (for example, MODERATO) and low-load traffic signal control with low quality (for example, pattern control) based on the traffic conditions and resource usage conditions in the area Ai. ).
 例えば、VM制御部29のグレード制御では、リソースの使用状況が所定の閾値未満である場合に、遠隔制御の品質が「高レベル」に設定され、閾値以上の場合に、遠隔制御の品質が「低レベル」に設定される。
 これにより、各エリアAiにおいて、必要最小限の遠隔制御の品質を確保しつつ、仮想マシンVMiの稼働に必要なリソース(バーチャルコアとメモリの双方)の増大を抑制することができる。
For example, in the grade control of the VM control unit 29, the quality of the remote control is set to “high level” when the resource usage state is less than a predetermined threshold, and the quality of the remote control is “ Set to low level.
Thereby, in each area Ai, it is possible to suppress an increase in resources (both virtual core and memory) necessary for the operation of the virtual machine VMi while ensuring the minimum necessary remote control quality.
 (動作状態の切替制御の例)
 VM制御部29による動作状態の切替制御には、例えば、エリアAiの時間帯に応じて、仮想マシンVMiの遠隔制御部14の動作状態を自動的に遷移させる処理が含まれる。すなわち、VM制御部29は、現在時刻がエリアAiで遠隔制御を実行する時間帯に含まれるか否かを判定する。
(Example of operation state switching control)
The operation state switching control by the VM control unit 29 includes, for example, a process of automatically changing the operation state of the remote control unit 14 of the virtual machine VMi in accordance with the time zone of the area Ai. That is, the VM control unit 29 determines whether or not the current time is included in the time zone in which the remote control is executed in the area Ai.
 そして、VM制御部29は、時間帯内である場合には、仮想マシンVMiの遠隔制御部14を起動又は再開させ、時間帯外である場合には、仮想マシンVMiの遠隔制御部14を終了又は休止させる。
 この場合、遠隔制御部(アプリケーション)14の起動又は再開及び終了又は休止に応じて、仮想マシン12の仮想OS13を起動又は再開させたり、終了又は休止させたりしてもよい。
Then, the VM control unit 29 activates or restarts the remote control unit 14 of the virtual machine VMi when it is within the time zone, and ends the remote control unit 14 of the virtual machine VMi when it is outside the time zone. Or stop it.
In this case, the virtual OS 13 of the virtual machine 12 may be activated or resumed, terminated, or suspended according to activation, resumption, termination, or suspension of the remote control unit (application) 14.
 これにより、遠隔制御が不要であるとして予め設定された時間帯において、物理マシン2のリソースの一部を開放することができる。
 このため、仮想マシンVMiの遠隔制御部14や仮想OS13が不要な時間帯で動作することによる、無駄な従量料金の発生を防止することができる。
As a result, a part of the resources of the physical machine 2 can be released in a time zone set in advance that remote control is unnecessary.
For this reason, generation | occurrence | production of the use fee which is useless by the remote control part 14 and virtual OS13 of virtual machine VMi operate | moving in an unnecessary time slot | zone can be prevented.
 VM制御部29による動作状態の切替制御は、エリアAiにおける交通指標の多寡に応じて行うこともできる。すなわち、値が大きいほど交通渋滞と関連が高くなる交通指標(流入交通量、渋滞長及び旅行時間など)の場合には、VM制御部29は、エリアAiの路側制御装置5から受信した交通指標が所定の閾値以上であるか否かを判定する。 The operation state switching control by the VM control unit 29 can be performed according to the number of traffic indicators in the area Ai. That is, in the case of a traffic index (inflow traffic volume, traffic jam length, travel time, etc.) that is more relevant to traffic jams as the value increases, the VM control unit 29 receives the traffic index received from the roadside control device 5 in area Ai. Is determined to be greater than or equal to a predetermined threshold.
 そして、VM制御部29は、閾値以上である場合には、仮想マシンVMiの遠隔制御部14を起動又は再開させ、閾値未満である場合には、仮想マシンVMiの遠隔制御部14を終了又は休止させる。
 この場合、遠隔制御部(アプリケーション)14の起動又は再開及び終了又は休止に応じて、仮想マシン12の仮想OS13を起動又は再開させたり、終了又は休止させたりしてもよい。
Then, the VM control unit 29 activates or resumes the remote control unit 14 of the virtual machine VMi when it is equal to or greater than the threshold value, and terminates or pauses the remote control unit 14 of the virtual machine VMi when it is less than the threshold value. Let
In this case, the virtual OS 13 of the virtual machine 12 may be activated or resumed, terminated, or suspended according to activation, resumption, termination, or suspension of the remote control unit (application) 14.
 また、値が小さいほど交通渋滞と関連が高くなる交通指標(車両の平均速度など)の場合には、VM制御部29は、エリアAiの路側制御装置5から受信した交通指標が所定の閾値以下であるか否かを判定する。 Further, in the case of a traffic index (such as an average speed of a vehicle) that is more relevant to traffic jams as the value is smaller, the VM control unit 29 determines that the traffic index received from the roadside control device 5 in the area Ai is equal to or less than a predetermined threshold value. It is determined whether or not.
 そして、VM制御部29は、閾値以下である場合には、仮想マシンVMiの遠隔制御部14を起動又は再開させ、その閾値未満である場合には、仮想マシンVMiの遠隔制御部14を終了又は休止させる。
 この場合、遠隔制御部(アプリケーション)14の起動又は再開及び終了又は休止に応じて、仮想マシン12の仮想OS13を起動又は再開させたり、終了又は休止させたりしてもよい。
Then, the VM control unit 29 activates or restarts the remote control unit 14 of the virtual machine VMi when it is equal to or less than the threshold value, and terminates the remote control unit 14 of the virtual machine VMi when it is less than the threshold value or Pause.
In this case, the virtual OS 13 of the virtual machine 12 may be activated or resumed, terminated, or suspended according to activation, resumption, termination, or suspension of the remote control unit (application) 14.
 これにより、エリアAiにおける遠隔制御がそれほど必要でない交通状況の場合に、物理マシン2のリソースの一部を開放することがでる。
 このため、現状の交通状況では、遠隔制御が必要でないエリアAiについて仮想マシンVMiの遠隔制御部14や仮想OS13が動作することによる、無駄な従量料金の発生を防止することができる。
As a result, a part of the resources of the physical machine 2 can be released in a traffic situation that does not require much remote control in the area Ai.
For this reason, in the current traffic situation, it is possible to prevent generation of useless metered charges due to the remote control unit 14 or the virtual OS 13 of the virtual machine VMi operating in the area Ai that does not require remote control.
 VM制御部29による動作状態の切替制御は、エリアAiの遠隔制御を実行中の遠隔制御部14によるリソース使用率(例えば、所定時間ごとのメモリの使用率)の多寡に応じて行うこともできる。
 すなわち、VM制御部29は、遠隔制御部14が遠隔制御を実行するのに必要なリソース使用率を監視し、監視中のリソース使用率が所定の閾値以上となった場合には、当該仮想マシンVMiの遠隔制御部14を終了又は休止させることにしてもよい。
The switching control of the operation state by the VM control unit 29 can be performed according to the resource usage rate (for example, the memory usage rate every predetermined time) by the remote control unit 14 executing the remote control of the area Ai. .
In other words, the VM control unit 29 monitors the resource usage rate necessary for the remote control unit 14 to execute remote control, and if the resource usage rate being monitored exceeds a predetermined threshold value, the VM control unit 29 The VMi remote control unit 14 may be terminated or suspended.
 これにより、物理マシン2におけるリソースの使用量を所定の閾値以下に抑制することができる。従って、従量制課金の場合の物理マシン2の使用料を低く抑えることができ、交通管制システムを低コストで運用することができる。 Thereby, the resource usage in the physical machine 2 can be suppressed below a predetermined threshold. Therefore, the usage fee of the physical machine 2 in the case of pay-per-use billing can be kept low, and the traffic control system can be operated at low cost.
 (仮想マシンの配置方法)
 本実施形態のハイパーバイザ11は、仮想マシンVMiをどの物理マシン2A~2Cに配置するかに関して、IaaS事業者との契約内容に即して最適な配置を決定する。
 物理マシン2A~2Cのハイパーバイザ11は、現時点における他の物理マシン2の仮想マシンAiの設置状況を情報交換しており、上記の最適配置制御を他の物理マシン2のハイパーバイザ11と協調して行う。
(Virtual machine placement method)
The hypervisor 11 according to the present embodiment determines an optimum arrangement in accordance with the contents of the contract with the IaaS provider regarding which physical machine 2A to 2C the virtual machine VMi is to be arranged.
The hypervisors 11 of the physical machines 2A to 2C exchange information on the installation status of the virtual machines Ai of the other physical machines 2 at the present time, and cooperate with the hypervisors 11 of the other physical machines 2 for the above optimal placement control. Do it.
 例えば、1つの物理マシン2のハードウェア資源の占有率に特に制約がなく、使用しない物理マシン2が多いほどサーバ使用量が安くなる課金制度を想定する。
 図3の例では、物理マシン2Bに1つ空きがあるので、物理マシン2Cの仮想マシンVM6を物理マシン2Bに移行すれば、物理マシン2Cを完全に解放することができる。そこで、物理マシン2B,2Cのハイパーバイザ11は、仮想マシンVM6を物理マシン2Cから物理マシン2Bに移行させる。
For example, there is no particular limitation on the hardware resource occupancy rate of one physical machine 2, and a billing system is assumed in which the amount of server usage is reduced as the number of unused physical machines 2 increases.
In the example of FIG. 3, since there is one free space in the physical machine 2B, the physical machine 2C can be completely released by migrating the virtual machine VM6 of the physical machine 2C to the physical machine 2B. Therefore, the hypervisor 11 of the physical machines 2B and 2C migrates the virtual machine VM6 from the physical machine 2C to the physical machine 2B.
 また、1つの物理マシン2のハードウェア資源の占有率が最大70%に制約され、これを超える物理マシン2がある場合はペナルティ料金が発生する課金制度を想定する。
 図3の例では、物理マシン2Aの占有率が最大限であり、ペナルティ料金が発生する状態であるが、物理マシン2Cに1つの仮想マシンVMiを増やしても制約に達しない。そこで、物理マシン2A,2Cのハイパーバイザ11は、仮想マシンVM1~VM3のうちのいずれか1つを物理マシン2Aから物理マシン2Cに移行させる。
Further, a charging system is assumed in which the occupancy rate of hardware resources of one physical machine 2 is restricted to a maximum of 70% and there is a physical machine 2 exceeding this, a penalty fee is generated.
In the example of FIG. 3, the occupation rate of the physical machine 2A is the maximum and a penalty fee is generated. However, even if one virtual machine VMi is added to the physical machine 2C, the restriction is not reached. Therefore, the hypervisor 11 of the physical machines 2A and 2C migrates one of the virtual machines VM1 to VM3 from the physical machine 2A to the physical machine 2C.
 〔管理サーバのソフトウェア構成〕
 図3に示すように、管理サーバ3は、所定のOS上で動作する管理ソフトウェア36を含む。管理ソフトウェア36は、通信部34を制御することにより、プロバイダ端末6及びクライアント端末7とのIP通信と、各物理マシン2の通信部24とのローカル通信が可能である。
[Management server software configuration]
As shown in FIG. 3, the management server 3 includes management software 36 that operates on a predetermined OS. The management software 36 can control the communication unit 34 to perform IP communication with the provider terminal 6 and the client terminal 7 and local communication with the communication unit 24 of each physical machine 2.
 管理ソフトウェア36は、処理部31により実行される機能部分として、プロバイダ管理部37、エリア管理部38及びデータ管理部39を備える。
 プロバイダ管理部37は、サービスプロバイダに割り当てた物理マシン2A~2Cの動作状態を管理する。例えば、プロバイダ管理部37は、物理マシン2A~2Cのハードウェア資源の使用状況を監視し、その使用状況に応じた従量料金を算出してプロバイダ端末6に通知する(従量制課金の場合)。
The management software 36 includes a provider management unit 37, an area management unit 38, and a data management unit 39 as functional parts executed by the processing unit 31.
The provider management unit 37 manages the operation state of the physical machines 2A to 2C assigned to the service provider. For example, the provider management unit 37 monitors the usage status of the hardware resources of the physical machines 2A to 2C, calculates a usage fee according to the usage status, and notifies the provider terminal 6 (in the case of usage-based charging).
 プロバイダ管理部37は、サービスプロバイダの識別情報と、プロバイダに割り当てた物理マシン2の識別情報と、プロバイダとの使用契約の内容なども管理する。
 エリア管理部38は、第2記憶部33のエリアデータベースDB1(図2参照)を管理する。エリアデータベースDB1は、サービスプロバイダが設定したエリアAiの識別情報、エリアAi内の交差点及び路側制御装置5の数と識別情報、及び、エリアAiに対応するクライアント端末7の識別情報などを関連づけたテーブルを含む。
The provider management unit 37 also manages the service provider identification information, the identification information of the physical machine 2 assigned to the provider, the contents of the use contract with the provider, and the like.
The area management unit 38 manages the area database DB1 (see FIG. 2) in the second storage unit 33. The area database DB1 is a table in which identification information of the area Ai set by the service provider, the number and identification information of the intersections and roadside control devices 5 in the area Ai, identification information of the client terminal 7 corresponding to the area Ai, and the like are associated with each other. including.
 物理マシン2のハイパーバイザ11は、自装置に仮想マシンVMiを新たに構築する場合には、管理サーバ3のエリアデータベースDB1を参照し、新たに構築する仮想マシンVMiと、エリアAiの識別情報を含む上記の各種情報との関連づけを行う。
 従って、いずれかの物理マシン2に構築された仮想マシンVMiは、遠隔制御の制御対象であるエリアAiと、エリアAiに含まれる交差点及び路側制御装置5と、遠隔制御のサービス享受主体であるクライアント端末7と関連づけられている。
The hypervisor 11 of the physical machine 2 refers to the area database DB1 of the management server 3 when newly constructing a virtual machine VMi in its own device, and identifies identification information of the newly constructed virtual machine VMi and area Ai. It associates with the various information including the above.
Accordingly, the virtual machine VMi constructed in any one of the physical machines 2 includes the area Ai that is the object of remote control, the intersection and roadside control device 5 included in the area Ai, and the client that is the remote control service receiving entity. It is associated with the terminal 7.
 データ管理部39は、第2記憶部33の制御データベースDB2(図2参照)を管理する。
 制御データベースDB2は、仮想マシンVMiの制御対象であるエリアAiの識別情報、仮想マシンVMiが生成した信号制御パラメータなどの制御データ、及び、エリアAiに対応するプロバイダ端末6の識別情報などを関連づけたテーブルを含む。
The data management unit 39 manages the control database DB2 (see FIG. 2) in the second storage unit 33.
The control database DB2 associates identification information of the area Ai that is the control target of the virtual machine VMi, control data such as signal control parameters generated by the virtual machine VMi, identification information of the provider terminal 6 corresponding to the area Ai, and the like. Includes tables.
 プロバイダ端末6は、すべてのエリアAiの制御データの閲覧要求をデータ管理部39に送信することができる。
 データ管理部39は、プロバイダ端末6からの閲覧要求に応じて、当該閲覧要求により指定されたエリアAiの制御データを制御データベースDB2から読み出し、読み出した制御データをプロバイダ端末6に提供する。
The provider terminal 6 can transmit a control data browsing request for all areas Ai to the data management unit 39.
In response to the browsing request from the provider terminal 6, the data management unit 39 reads out the control data of the area Ai designated by the browsing request from the control database DB 2 and provides the read control data to the provider terminal 6.
 クライアント端末7は、クライアントが遠隔制御のサービスを受けるエリアAiの制御データの閲覧要求をデータ管理部39に送信することができる。
 データ管理部39は、クライアント端末7からの閲覧要求に応じて、当該クライアントに対応するエリアAiの制御データを制御データベースDB2から読み出し、読み出した制御データをクライアント端末7に提供する。
The client terminal 7 can transmit a control data browsing request for the area Ai where the client receives the remote control service to the data management unit 39.
In response to a browsing request from the client terminal 7, the data management unit 39 reads the control data of the area Ai corresponding to the client from the control database DB 2 and provides the read control data to the client terminal 7.
 図3では、管理サーバ3が管理ソフトウェア36のみを保持する場合を例示しているが、管理サーバ3は、物理マシン2と同様にハードウェア資源の仮想化を実行できるサーバコンピュータであってもよい。
 すなわち、物理マシン2と同様のハイパーバイザ11を管理サーバ3に設けることにより、管理サーバ3を、仮想マシンVMiを構築できる物理マシン2の1つに含めることにしてもよい。
Although FIG. 3 illustrates the case where the management server 3 holds only the management software 36, the management server 3 may be a server computer that can execute hardware resource virtualization in the same manner as the physical machine 2. .
That is, by providing the management server 3 with the hypervisor 11 similar to the physical machine 2, the management server 3 may be included in one of the physical machines 2 that can construct the virtual machine VMi.
 〔交通管制システムの全体構成〕
 図4は、遠隔制御装置12を含む交通管制システムの全体構成を示す斜視図である。
 図4では、道路構造の一例として、南北方向と東西方向の複数の道路が互いに交差した碁盤目構造を想定しているが、これに限定されるものではない。また、エリアAiは日本国以外の場合もあるので、車両43が右側通行する道路であってもよい。
[Overall configuration of traffic control system]
FIG. 4 is a perspective view showing the overall configuration of the traffic control system including the remote control device 12.
In FIG. 4, a grid structure in which a plurality of roads in the north-south direction and the east-west direction intersect with each other is assumed as an example of the road structure, but the present invention is not limited to this. Further, since the area Ai may be other than Japan, it may be a road on which the vehicle 43 passes on the right side.
 図4に示すように、本実施形態の交通管制システムは、遠隔制御装置12(仮想マシンVMi)、路側制御装置5、交通信号機41、車載通信機42(図5参照)を搭載した車両43、及び路側センサ44などを含む。
 前述の通り、遠隔制御装置12は、データセンタ1のハイパーバイザ11により構築された仮想マシンVMiよりなる。交通信号機41と路側制御装置5は、エリアAiに含まれる交差点Jk(図1では、k=1~9)にそれぞれ設置されている。
As shown in FIG. 4, the traffic control system of this embodiment includes a vehicle 43 equipped with a remote control device 12 (virtual machine VMi), a roadside control device 5, a traffic signal device 41, and an in-vehicle communication device 42 (see FIG. 5). And a roadside sensor 44 and the like.
As described above, the remote control device 12 includes the virtual machine VMi constructed by the hypervisor 11 of the data center 1. The traffic signal 41 and the roadside control device 5 are respectively installed at the intersection Jk (k = 1 to 9 in FIG. 1) included in the area Ai.
 路側制御装置5は、交差点Jkから分岐する道路を通行する車両43と無線通信できるように、交差点Jkの近傍に設置されている。従って、路側制御装置5は、道路上で車載通信機42により車車間通信を行う車両43が送信する電波を受信することができる。
 路側センサ44は、所定の通信回線45(図5参照)を介して路側制御装置5と接続されている。交通信号機41の交通信号制御機47(図5参照)も、所定の通信回線45を介して路側制御装置5と接続されている。
The roadside control device 5 is installed in the vicinity of the intersection Jk so that it can wirelessly communicate with the vehicle 43 passing through the road branched from the intersection Jk. Therefore, the roadside control device 5 can receive radio waves transmitted by the vehicle 43 that performs vehicle-to-vehicle communication with the in-vehicle communication device 42 on the road.
The roadside sensor 44 is connected to the roadside control device 5 via a predetermined communication line 45 (see FIG. 5). A traffic signal controller 47 (see FIG. 5) of the traffic signal 41 is also connected to the roadside control device 5 via a predetermined communication line 45.
 路側センサ44は、主として交差点Jkに流入する車両台数をカウントする目的で、エリアAi内の道路の適所に設置されている。
 路側センサ44には、直下を通行する車両43を超音波等で感知する車両感知器、車両43の通行状況を時系列に撮影する監視カメラ、及び車両43と近赤外線による光通信を行う光ビーコンなどのうちの少なくとも1つが含まれる。
The roadside sensor 44 is installed at an appropriate place on the road in the area Ai mainly for the purpose of counting the number of vehicles flowing into the intersection Jk.
The roadside sensor 44 includes a vehicle sensor that senses the vehicle 43 passing directly below by ultrasonic waves, a monitoring camera that captures the traffic state of the vehicle 43 in time series, and an optical beacon that performs optical communication with the vehicle 43 using near infrared rays. Etc. are included.
 遠隔制御装置12は、遠隔制御の実行指令、信号制御パラメータ或いは遠隔制御の解除指令などを含むダウンリンク情報S1を、エリアAiに含まれる各交差点Jkの路側制御装置5に送信する。
 遠隔制御装置12がダウンリンクする交差点Jk用のダウンリンク情報S1は、公衆通信網4や移動体通信網などを経由して、エリアAiに含まれる交差点Jkに対応する路側制御装置5に伝送される。
The remote control device 12 transmits downlink information S1 including a remote control execution command, a signal control parameter, or a remote control release command to the roadside control device 5 of each intersection Jk included in the area Ai.
The downlink information S1 for the intersection Jk to which the remote control device 12 is downlinked is transmitted to the roadside control device 5 corresponding to the intersection Jk included in the area Ai via the public communication network 4 or the mobile communication network. The
 すなわち、遠隔制御装置12は、交差点J1の路側制御装置5には、交差点J1のためのダウンリンク情報S1を送信し、交差点J2の路側制御装置5には、交差点J2のためのダウンリンク情報S1を送信する。
 従って、エリアAiに含まれる各路側制御装置5は、自装置に対応する交差点Jkのためのダウンリンク情報S1をそれぞれ受信する。
That is, the remote control device 12 transmits the downlink information S1 for the intersection J1 to the roadside control device 5 at the intersection J1, and the downlink information S1 for the intersection J2 to the roadside control device 5 at the intersection J2. Send.
Accordingly, each roadside control device 5 included in the area Ai receives the downlink information S1 for the intersection Jk corresponding to the own device.
 遠隔制御装置12は、エリアAiに含まれる一部又は全部の交差点Jkの交通信号機41に遠隔制御を開始させる場合は、遠隔制御の「実行指令」をダウンリンク情報S1に含める。
 遠隔制御装置12は、エリアAiに含まれる一部又は全部の交差点Jkの交通信号機41に遠隔制御を終了させて地点制御に戻す場合は、遠隔制御の「解除指令」をダウンリンク情報S1に含める。
When the remote control device 12 causes the traffic signals 41 of some or all of the intersections Jk included in the area Ai to start remote control, the remote control device 12 includes an “execution command” for remote control in the downlink information S1.
When the remote control device 12 terminates the remote control to return to the point control by causing the traffic signals 41 at some or all of the intersections Jk included in the area Ai to return to the point control, the remote control device 12 includes the remote control “release command” in the downlink information S1. .
 遠隔制御装置12は、エリアAiに含まれる一部又は全部の交差点Jkについて遠隔制御を実行する場合には、エリアAiに含まれる一部又は全部の交差点Jkを制御対象とする系統制御又は面制御などを行い、交通信号機41に適用する信号制御パラメータを交差点Jkごとに生成する。
 遠隔制御装置12は、生成した交差点Jkごとの信号制御パラメータをダウンリンク情報S1に含め、対応する交差点Jkの路側制御装置5にダウンリンク送信する。
When the remote control device 12 executes remote control for some or all of the intersections Jk included in the area Ai, the remote control device 12 performs system control or surface control on the part or all of the intersections Jk included in the area Ai. The signal control parameter applied to the traffic signal 41 is generated for each intersection Jk.
The remote control device 12 includes the generated signal control parameter for each intersection Jk in the downlink information S1 and transmits the downlink to the roadside control device 5 at the corresponding intersection Jk.
 なお、遠隔制御装置12は、渋滞情報及び交通規制情報などの交通情報をダウンリンク情報S1に含めて、路側制御装置5に送信することもできる。
 エリアAiに含まれる路側制御装置5は、自身が算出した交通指標や、遠隔制御の「実行要求」又は「解除要求」などを含むアップリンク情報S2を、遠隔制御装置12にアップリンク送信する。
The remote control device 12 can also include traffic information such as traffic jam information and traffic regulation information in the downlink information S1 and transmit it to the roadside control device 5.
The roadside control device 5 included in the area Ai transmits uplink information S2 including the traffic index calculated by itself and the “execution request” or “cancellation request” of the remote control to the remote control device 12 in uplink.
 路側制御装置5がアップリンクするアップリンク情報S2は、移動体通信網や公衆通信網4などを経由して遠隔制御装置12に伝送される。
 路側センサ44の計測結果であるセンサ情報には、車両感知器の感知情報、監視カメラの画像データなどがこれに含まれる。これらのセンサ情報は、対応する交差点Jkの路側制御装置5が収集する。路側制御装置5は、収集したセンサ情報や車両43から受信したプローブ情報から、所定の交通指標を算出する。
Uplink information S2 uplinked by the roadside control device 5 is transmitted to the remote control device 12 via the mobile communication network, the public communication network 4 or the like.
The sensor information that is the measurement result of the roadside sensor 44 includes vehicle sensor sensing information, surveillance camera image data, and the like. The sensor information is collected by the roadside control device 5 at the corresponding intersection Jk. The roadside control device 5 calculates a predetermined traffic index from the collected sensor information and the probe information received from the vehicle 43.
 〔交差点付近のインフラ設備〕
 図5は、路側制御装置5が設置された交差点Jkの平面図である。
 図5に示すように、交通信号機41は、交差点Jkの各流入路に通行権の有無を表示する複数の信号灯器46と、信号灯器46が点灯及び消灯するタイミングを制御する交通信号制御機47とを備える。信号灯器46は、所定の信号制御線48を介して交通信号制御機47に接続されている。
[Infrastructure facilities near intersections]
FIG. 5 is a plan view of the intersection Jk where the roadside control device 5 is installed.
As shown in FIG. 5, the traffic signal 41 includes a plurality of signal lamps 46 that display the presence / absence of right of passage in each inflow path of the intersection Jk, and a traffic signal controller 47 that controls the timing when the signal lamps 46 are turned on and off. With. The signal lamp 46 is connected to a traffic signal controller 47 via a predetermined signal control line 48.
 路側センサ44は、通信回線45を介して交通信号制御機47と通信可能に接続され、交通信号制御機47は、通信回線45を介して路側制御装置5と通信可能に接続されている。路側センサ44は、交通信号制御機47を介して路側制御装置5と接続してもよい。 The roadside sensor 44 is communicably connected to the traffic signal controller 47 via the communication line 45, and the traffic signal controller 47 is communicably connected to the roadside controller 5 via the communication line 45. The roadside sensor 44 may be connected to the roadside control device 5 via the traffic signal controller 47.
 路側制御装置5は、ダウンリンク情報S1に実行指令が含まれる場合は、交差点Jkの制御方式を遠隔制御に切り替える。路側制御装置5は、ダウンリンク情報S1に解除指令が含まれる場合は、交差点Jkの制御方式を地点制御に戻す。
 路側制御装置5は、遠隔制御装置12から信号制御パラメータを含むダウンリンク情報S1を受信すると、その信号制御パラメータを交通信号制御機47に転送する。
The roadside control device 5 switches the control method of the intersection Jk to remote control when the execution command is included in the downlink information S1. When the release information is included in the downlink information S1, the roadside control device 5 returns the control method of the intersection Jk to the point control.
When the roadside control device 5 receives the downlink information S1 including the signal control parameter from the remote control device 12, the roadside control device 5 transfers the signal control parameter to the traffic signal controller 47.
 路側制御装置5は、受信したダウンリンク情報S1に含まれる信号切り替えタイミングと交通情報とを車両43に提供するために、それらの情報をブロードキャストで車両43に無線送信することもできる。 The roadside control device 5 can also wirelessly transmit the information to the vehicle 43 by broadcasting in order to provide the vehicle 43 with the signal switching timing and traffic information included in the received downlink information S1.
 遠隔制御装置12は、エリアAiに含まれる路側制御装置5がアップリンク送信するアップリンク情報S2の収集と、その情報S2に基づく交通信号制御及び制御結果の情報提供などを統括的に行う。
 具体的には、遠隔制御装置12は、エリアAiに属する交差点Jkの交通信号機41に対して、同一道路上の交通信号機41群を調整する「系統制御」や、この系統制御を道路網に拡張した「面制御」などを行うことができる。
The remote control device 12 performs overall collection of uplink information S2 uplink-transmitted by the roadside control device 5 included in the area Ai, traffic signal control based on the information S2, information provision of control results, and the like.
Specifically, the remote control device 12 extends “system control” for adjusting traffic signal 41 groups on the same road to the traffic signal 41 at the intersection Jk belonging to the area Ai, and extends this system control to the road network. “Surface control” can be performed.
 なお、遠隔制御装置12は、面制御などの遠隔制御の演算周期(例えば2.5分)ごとに制御データを含むダウンリンク情報S1をダウンリンク送信するとともに、所定周期(例えば5分)ごとに交通情報を含むダウンリンク情報S1をダウンリンク送信する。 The remote control device 12 transmits downlink information S1 including control data for every remote control calculation cycle (for example, 2.5 minutes) such as surface control, and every predetermined cycle (for example, 5 minutes). Downlink information S1 including traffic information is transmitted in the downlink.
 〔路側制御装置と車載通信機の構成〕
 図6は、路側制御装置5と車載通信機42の内部構成を示すブロック図である。
 路側制御装置5は、無線通信のためのアンテナ51が接続された無線通信部52と、交通信号制御機47及び路側センサ44と通信する有線通信部53と、それらの通信制御を行うCPU等のプロセッサよりなる制御部54と、制御部54に接続されたROMやRAM等の記憶装置よりなる記憶部55とを備える。
[Configuration of roadside control device and in-vehicle communication device]
FIG. 6 is a block diagram showing the internal configuration of the roadside control device 5 and the in-vehicle communication device 42.
The roadside control device 5 includes a wireless communication unit 52 to which an antenna 51 for wireless communication is connected, a wired communication unit 53 that communicates with the traffic signal controller 47 and the roadside sensor 44, and a CPU that performs communication control thereof. A control unit 54 including a processor and a storage unit 55 including a storage device such as a ROM and a RAM connected to the control unit 54 are provided.
 路側制御装置5の記憶部55は、制御部54が実行する通信制御のためのコンピュータプログラムや、他の無線通信機から受信した各種データなどを記憶している。
 路側制御装置5の制御部54は、上記コンピュータプログラムを実行することで達成される機能部として、制御切替部54Aと、各通信部52,53の受信データの中継処理を行うデータ中継部54Bとを有する。
The storage unit 55 of the roadside control device 5 stores a computer program for communication control executed by the control unit 54, various data received from other wireless communication devices, and the like.
The control unit 54 of the roadside control device 5 includes a control switching unit 54A and a data relay unit 54B that performs a relay process on received data of the communication units 52 and 53 as functional units achieved by executing the computer program. Have
 路側制御装置5のデータ中継部54Bは、無線通信部52が遠隔制御装置12から受信した信号制御パラメータをいったん記憶部55に一時的に記憶させ、有線通信部53を介して交通信号制御機47に転送したり、無線通信部52から車両43に向けてブロードキャスト送信したりする。
 また、データ中継部54Bは、無線通信部52が受信したプローブ情報と有線通信部53が受信したセンサ情報を、いったん記憶部55に一時的に記憶させ、無線通信部52を介して遠隔制御装置12宛にアップリンク送信させる。
The data relay unit 54 </ b> B of the roadside control device 5 temporarily stores the signal control parameters received by the wireless communication unit 52 from the remote control device 12 in the storage unit 55, and the traffic signal controller 47 via the wired communication unit 53. Or broadcast transmission from the wireless communication unit 52 to the vehicle 43.
In addition, the data relay unit 54B temporarily stores the probe information received by the wireless communication unit 52 and the sensor information received by the wired communication unit 53 in the storage unit 55, and the remote control device via the wireless communication unit 52 Uplink transmission to 12 addressed.
 路側制御装置5の制御切替部54Aは、遠隔制御装置12から受信する制御指令の内容に応じて、交通信号制御機47に実行させる制御方式の切り替えを行う。
 具体的には、制御切替部54Aは、交通信号制御機47が地点制御を実行中に遠隔制御の実行指令を受信すると、地点制御を中止させ、遠隔制御装置12から受信したダウンリンク情報S1に含まれる灯色切り替えタイミングなどの信号制御パラメータを交通信号制御機47に転送する。
The control switching unit 54 </ b> A of the roadside control device 5 switches the control method to be executed by the traffic signal controller 47 according to the content of the control command received from the remote control device 12.
Specifically, when the traffic signal controller 47 receives the remote control execution command while the traffic signal controller 47 is executing the point control, the control switching unit 54A stops the point control, and the downlink information S1 received from the remote control device 12 is displayed. Signal control parameters such as lamp color switching timing included are transferred to the traffic signal controller 47.
 また、制御切替部54Bは、交通信号制御機47が遠隔制御を実行中(灯色切り替えタイミングの転送中)に遠隔制御の解除指令を受信すると、灯色切り替えタイミングの交通信号制御機47への転送を中止し、交通信号制御機47に地点制御を再開させる。 Further, when the traffic signal controller 47 receives the remote control release command while the traffic signal controller 47 is executing the remote control (during transfer of the lamp color switching timing), the control switching unit 54B applies the lamp color switching timing to the traffic signal controller 47. The transfer is stopped and the traffic signal controller 47 restarts the point control.
 車載通信機42は、無線通信のためのアンテナ61が接続された通信部62と、この通信部62に対する通信制御を行うプロセッサ等よりなる制御部63と、この制御部63に接続されたROMやRAM等の記憶装置よりなる記憶部64とを備える。
 車載通信機42の記憶部64は、制御部63が実行する通信制御のためのコンピュータプログラムや、他の無線通信機から受信した各種データなどを記憶している。
The in-vehicle communication device 42 includes a communication unit 62 to which an antenna 61 for wireless communication is connected, a control unit 63 including a processor that performs communication control on the communication unit 62, a ROM connected to the control unit 63, And a storage unit 64 including a storage device such as a RAM.
The storage unit 64 of the in-vehicle communication device 42 stores a computer program for communication control executed by the control unit 63, various data received from other wireless communication devices, and the like.
 車載通信機42の制御部63は、車車間通信のためのキャリアセンス方式による無線通信を通信部62に行わせる制御部である。
 従って、車載通信機42の通信部62は、所定の搬送波周波数の受信レベルを常時感知しており、その値がある閾値以上である場合は無線送信を行わず、当該閾値未満になった場合にのみ無線送信を行うようになっている。
The control unit 63 of the in-vehicle communication device 42 is a control unit that causes the communication unit 62 to perform wireless communication using a carrier sense method for vehicle-to-vehicle communication.
Therefore, the communication unit 62 of the in-vehicle communication device 42 always senses the reception level of the predetermined carrier frequency, and when the value is equal to or higher than a certain threshold, wireless transmission is not performed, and when the value becomes less than the threshold Only intended to perform wireless transmission.
 車載通信機42の制御部63は、車両43の車両ID、時刻情報、車両位置(緯度及び経度など)、車両速度、車両方向、車両属性などの情報を含むプローブ情報を所定時間ごとに生成し、生成したプローブ情報を通信部62にブロードキャスト送信させる。
 図6に示すように、路側制御装置5の無線通信部52は、歩行者の所有する携帯端末49とも通信可能な通信インタフェースよりなり、歩行者の携帯端末49と歩路間通信を行うことができる。
The control unit 63 of the in-vehicle communication device 42 generates probe information including information such as the vehicle ID of the vehicle 43, time information, vehicle position (latitude and longitude, etc.), vehicle speed, vehicle direction, vehicle attributes, etc., every predetermined time. The generated probe information is broadcasted to the communication unit 62.
As shown in FIG. 6, the wireless communication unit 52 of the roadside control device 5 includes a communication interface that can also communicate with the mobile terminal 49 owned by the pedestrian, and can perform inter-walk communication with the mobile terminal 49 of the pedestrian. it can.
 携帯端末49と路側制御装置5との間の歩路間通信は、例えば、歩行者に対するダウンリンク情報S1の情報提供に利用することができる。
 路側制御装置5が交通信号機41の押しボタン制御を実行する場合には、歩路間通信によって携帯端末49が押しボタン要求を送信し、この要求を受信した路側制御装置5が交通信号機41の通行権の切り替えを開始するなどの処理を行うことにしてもよい。
Inter-walk communication between the portable terminal 49 and the roadside control device 5 can be used, for example, for providing information of the downlink information S1 to pedestrians.
When the roadside control device 5 executes the pushbutton control of the traffic signal device 41, the portable terminal 49 transmits a pushbutton request by inter-step communication, and the roadside control device 5 that receives this request passes the traffic signal device 41. Processing such as start of switching of rights may be performed.
 〔第1の実行処理〕
 図7は、エリアAiに属する路側制御装置5と物理マシン2が協働して行う、遠隔制御の実行処理の一例(第1の実行処理)を示すフローチャートである。
 図7では、「路側制御装置5」と「物理マシン2」が処理主体となっているが、実際の処理主体は、路側制御装置5の制御切替部54A(図6参照)と、物理マシン2のVM制御部29(図3参照)である。この点は、後述する図8~図10の処理の場合も同様である。
[First execution process]
FIG. 7 is a flowchart illustrating an example of remote control execution processing (first execution processing) performed in cooperation between the roadside control device 5 and the physical machine 2 belonging to the area Ai.
In FIG. 7, “roadside control device 5” and “physical machine 2” are the processing subjects, but the actual processing subjects are the control switching unit 54A (see FIG. 6) of the roadside control device 5 and the physical machine 2. This is a VM control unit 29 (see FIG. 3). This also applies to the processes of FIGS. 8 to 10 described later.
 図7に示すように、エリアAiに属する各路側制御装置5は、交通指標の算出に必要なデータ(センサ情報やプローブ情報など)を所定時間ごとに収集しており(ステップST10)、収集したデータに基づいて交差点Jkに関する交通指標を算出する(ステップST11)。
 次に、路側制御装置5は、自装置が設置されている交差点Jkについて、地点制御で対応可能か否かを判定する(ステップST12)。
As shown in FIG. 7, each roadside control device 5 belonging to area Ai collects data (sensor information, probe information, etc.) necessary for calculating the traffic index every predetermined time (step ST10). A traffic index related to the intersection Jk is calculated based on the data (step ST11).
Next, the roadside control device 5 determines whether or not the intersection Jk where the own device is installed can be handled by point control (step ST12).
 この判定は、交通指標が所定の閾値を満たすように、交差点Jkに対する地点制御を実行可能であるかによって行われる。例えば、「交通量」を想定すると、路側制御装置5は、交通量が所定の閾値未満の場合は、地点制御で対応可能と判定し、その閾値以上の場合には、地点制御で対応不可と判定する。
 上記の判定結果が肯定的である場合には、路側制御装置5は、地点制御を継続し(ステップST13)、交通指標の算出のためのデータ収集(ステップST10)を繰り返す。
This determination is performed based on whether or not the point control for the intersection Jk can be executed so that the traffic index satisfies a predetermined threshold. For example, assuming “traffic volume”, the roadside control device 5 determines that it is possible to cope with the point control when the traffic volume is less than a predetermined threshold value, and cannot handle it with the point control when the traffic volume is more than the threshold value. judge.
If the determination result is affirmative, the roadside control device 5 continues the point control (step ST13) and repeats data collection for calculating the traffic index (step ST10).
 上記の判定結果が否定的である場合は、路側制御装置5は、物理マシン2に遠隔制御の実行要求を送信し(ステップST14)、物理マシン2は、その実行要求を受信する(ステップST15)。
 その後、物理マシン2は、実行要求の受信を契機として、自装置でのリソースの使用状況や、エリアAiの時間帯などに基づいて、エリアAiにおける遠隔制御の必要性を判定する(ステップST16,ST17)。
If the determination result is negative, the roadside control device 5 transmits a remote control execution request to the physical machine 2 (step ST14), and the physical machine 2 receives the execution request (step ST15). .
Thereafter, the physical machine 2 determines the necessity of remote control in the area Ai based on the resource usage status in the own device, the time zone of the area Ai, etc., triggered by the reception of the execution request (step ST16, ST17).
 例えば、物理マシン2は、仮想マシンVMiによるリソースの使用状況が所定の閾値未満であり、かつ、現在時刻がエリアAiにおいて遠隔制御を実行する時間帯である場合には、当該エリアAiでの遠隔制御の必要性ありと判定する。 For example, if the physical machine 2 uses less resources than the predetermined threshold and the current time is a time zone in which remote control is executed in the area Ai, the physical machine 2 is remote from the area Ai. It is determined that control is necessary.
 上記の判定結果が否定的である場合には、物理マシン2は、更に実行要求の受信があるまで待機し、上記の判定結果が肯定的である場合には、物理マシン2は、遠隔制御の実行指令を送信元の路側制御装置5に送信する(ステップST18)。
 そして、送信元の路側制御装置5は、実行指令を受信したか否かを判定する(ステップST19)。
If the determination result is negative, the physical machine 2 waits until further execution requests are received. If the determination result is positive, the physical machine 2 performs remote control. An execution command is transmitted to the roadside control device 5 as a transmission source (step ST18).
And the roadside control apparatus 5 of the transmission origin determines whether the execution command was received (step ST19).
 上記の判定結果が肯定的である場合には、路側制御装置5は、自装置に対応する交差点Jkの制御を遠隔制御に切り替える(ステップST20)。具体的には、路側制御装置5は、これまでの地点制御を中止し、物理マシン2の仮想マシンVMiから受信する信号制御パラメータを交通信号制御機47に転送する。
 上記の判定結果が否定的である場合には、路側制御装置5は、そのまま地点制御を継続する(ステップST13)。
When the above determination result is affirmative, the roadside control device 5 switches the control of the intersection Jk corresponding to the own device to the remote control (step ST20). Specifically, the roadside control device 5 stops the point control so far and transfers the signal control parameter received from the virtual machine VMi of the physical machine 2 to the traffic signal controller 47.
If the determination result is negative, the roadside control device 5 continues the point control as it is (step ST13).
 〔第1の解除処理〕
 図8は、エリアAiに属する路側制御装置5と物理マシン2が協働して行う、遠隔制御の解除処理の一例を示すフローチャートである。
 図8に示すように、エリアAiに属する各路側制御装置5は、交通指標の算出に必要なデータ(センサ情報やプローブ情報など)を所定時間ごとに収集しており(ステップST30)、収集したデータに基づいて交差点Jkに関する交通指標を算出する(ステップST31)。
[First release processing]
FIG. 8 is a flowchart showing an example of remote control release processing performed in cooperation between the roadside control device 5 and the physical machine 2 belonging to the area Ai.
As shown in FIG. 8, each roadside control device 5 belonging to area Ai collects data (sensor information, probe information, etc.) necessary for calculating the traffic index every predetermined time (step ST30). A traffic index related to the intersection Jk is calculated based on the data (step ST31).
 次に、路側制御装置5は、自装置が設置されている交差点Jkについて、地点制御で対応可能か否かを判定する(ステップST32)。この判定は、前述の通り、交通指標が所定の閾値を満たすように、交差点Jkに対する地点制御を実行可能であるかによって行われる。
 上記の判定結果が否定的である場合には、路側制御装置5は、遠隔制御を継続し(スップST33)、交通指標の算出のためのデータ収集(ステップST30)を繰り返す。
Next, the roadside control device 5 determines whether or not the intersection Jk where the device is installed can be handled by the point control (step ST32). As described above, this determination is performed based on whether or not the point control for the intersection Jk can be executed so that the traffic index satisfies a predetermined threshold.
If the determination result is negative, the roadside control device 5 continues the remote control (step ST33) and repeats data collection for calculating the traffic index (step ST30).
 上記の判定結果が肯定的である場合は、路側制御装置5は、物理マシン2に遠隔制御の解除要求を送信し(ステップST34)、物理マシン2は、その解除要求を受信する(ステップST35)。
 その後、物理マシン2は、受信した解除要求の受信を契機として、自装置でのリソースの使用状況や、エリアAiの時間帯などに基づいて、エリアAiにおける遠隔制御の解除の必要性を判定する(ステップST36,ST37)。
If the determination result is affirmative, the roadside control device 5 transmits a remote control release request to the physical machine 2 (step ST34), and the physical machine 2 receives the release request (step ST35). .
Thereafter, the physical machine 2 determines the necessity of canceling the remote control in the area Ai based on the resource usage status in the own device, the time zone of the area Ai, etc., triggered by reception of the received cancel request. (Steps ST36 and ST37).
 例えば、物理マシン2は、仮想マシンVMiによるリソースの使用状況が所定の閾値以上である場合、或いは、現在時刻がエリアAiにおいて遠隔制御を実行する時間帯でない場合には、当該エリアAiでの遠隔制御の解除の必要性ありと判定する。 For example, if the physical machine 2 uses the resource usage status by the virtual machine VMi at a predetermined threshold value or more, or if the current time is not a time zone for executing the remote control in the area Ai, the physical machine 2 is remote from the area Ai. It is determined that the control needs to be released.
 上記の判定結果が否定的である場合には、物理マシン2は、更に解除要求の受信があるまで待機し、上記の判定結果が肯定的である場合には、物理マシン2は、遠隔制御の解除指令を送信元の路側制御装置5に送信する(ステップST38)。
 そして、送信元の路側制御装置5は、解除指令を受信したか否かを判定する(ステップST39)。
If the determination result is negative, the physical machine 2 waits until a release request is received. If the determination result is positive, the physical machine 2 performs remote control. A cancellation command is transmitted to the roadside control device 5 as the transmission source (step ST38).
And the roadside control apparatus 5 of the transmission source determines whether the cancellation | release instruction | command was received (step ST39).
 上記の判定結果が肯定的である場合には、路側制御装置5は、自装置に対応する交差点Jkの制御を地点制御に切り替える(ステップST40)。具体的には、路側制御装置5は、物理マシン2の仮想マシンVMiから受信する信号制御パラメータを交通信号制御機47に転送するこれまでの処理を中止し、地点制御を開始する。
 上記の判定結果が否定的である場合には、路側制御装置5は、そのまま遠隔制御を継続する(ステップST33)。
When the above determination result is affirmative, the roadside control device 5 switches the control of the intersection Jk corresponding to the own device to the point control (step ST40). Specifically, the roadside control device 5 stops the processing so far to transfer the signal control parameter received from the virtual machine VMi of the physical machine 2 to the traffic signal controller 47 and starts the point control.
If the determination result is negative, the roadside control device 5 continues the remote control as it is (step ST33).
 〔第2の実行処理〕
 図9は、エリアAiに属する路側制御装置5と物理マシン2が協働して行う、遠隔制御の実行処理の別例を示すフローチャートである。
 図9に示すように、エリアAiに属する各路側制御装置5は、交通指標の算出に必要なデータ(センサ情報やプローブ情報など)を所定時間ごとに収集しており(ステップST50)、収集したデータに基づいて交差点Jkに関する交通指標を算出する(ステップST51)。
[Second execution process]
FIG. 9 is a flowchart illustrating another example of remote control execution processing performed in cooperation between the roadside control device 5 and the physical machine 2 belonging to the area Ai.
As shown in FIG. 9, each roadside control device 5 belonging to area Ai collects data (sensor information, probe information, etc.) necessary for calculating traffic indexes at predetermined time intervals (step ST50). A traffic index related to the intersection Jk is calculated based on the data (step ST51).
 次に、路側制御装置5は、算出した交通指標を物理マシン2に送信し(ステップST52)、物理マシン2は、その交通指標を受信する(ステップST53)。
 その後、物理マシン2は、受信した交通指標、自装置でのリソースの使用状況、エリアAiの時間帯などに基づいて、エリアAiにおける遠隔制御の必要性を判定する(ステップST54,ST55)。第2の実行処理では、路側制御装置5が遠隔制御の実行を要求しないので、物理マシン2は、遠隔制御の必要性の判定を所定時間(例えば2.5分)ごとに実行する。
Next, the roadside control device 5 transmits the calculated traffic index to the physical machine 2 (step ST52), and the physical machine 2 receives the traffic index (step ST53).
Thereafter, the physical machine 2 determines the necessity of remote control in the area Ai based on the received traffic index, the resource usage status in the own device, the time zone of the area Ai (steps ST54 and ST55). In the second execution process, since the roadside control device 5 does not request execution of remote control, the physical machine 2 executes the determination of the necessity of remote control every predetermined time (for example, 2.5 minutes).
 例えば、物理マシン2は、仮想マシンVMiによるリソースの使用状況が所定の閾値未満であり、かつ、現在時刻がエリアAiにおいて遠隔制御を実行する時間帯である場合には、当該エリアAiでの遠隔制御の必要性ありと判定する。 For example, if the physical machine 2 uses less resources than the predetermined threshold and the current time is a time zone in which remote control is executed in the area Ai, the physical machine 2 is remote from the area Ai. It is determined that control is necessary.
 上記の判定結果が肯定的である場合には、物理マシン2は、実行指令を路側制御装置5に送信する(ステップST56)。
 路側制御装置5は、交通指標を物理マシン2に送信した後は、上記の実行指令を受信するか否かを判定している(ステップST57)。
When the determination result is affirmative, the physical machine 2 transmits an execution command to the roadside control device 5 (step ST56).
After transmitting the traffic index to the physical machine 2, the roadside control device 5 determines whether or not to receive the execution command (step ST57).
 上記の判定結果が肯定的である場合は、路側制御装置5は、自装置に対応する交差点Jkの制御を遠隔制御に切り替える(ステップST58)。具体的には、路側制御装置5は、これまでの地点制御を中止し、物理マシン2の仮想マシンVMiから受信する信号制御パラメータを交通信号制御機47に転送する。
 上記の判定結果が否定的である場合には、路側制御装置5は、そのまま地点制御を継続する(ステップST59)。
When the above determination result is affirmative, the roadside control device 5 switches the control of the intersection Jk corresponding to the own device to the remote control (step ST58). Specifically, the roadside control device 5 stops the point control so far and transfers the signal control parameter received from the virtual machine VMi of the physical machine 2 to the traffic signal controller 47.
If the determination result is negative, the road control device 5 continues the point control as it is (step ST59).
 〔第2の解除処理〕
 図10は、エリアAiに属する路側制御装置5と物理マシン2が協働して行う、遠隔制御の解除処理の別例を示すフローチャートである。
 図10に示すように、エリアAiに属する各路側制御装置5は、交通指標の算出に必要なデータ(センサ情報やプローブ情報など)を所定時間ごとに収集しており(ステップST70)、収集したデータに基づいて交差点Jkに関する交通指標を算出する(ステップST71)。
[Second release processing]
FIG. 10 is a flowchart showing another example of remote control cancellation processing performed in cooperation between the roadside control device 5 and the physical machine 2 belonging to the area Ai.
As shown in FIG. 10, each roadside control device 5 belonging to area Ai collects data (sensor information, probe information, etc.) necessary for calculating traffic indexes every predetermined time (step ST70). A traffic index related to the intersection Jk is calculated based on the data (step ST71).
 次に、路側制御装置5は、算出した交通指標を物理マシン2に送信し(ステップST72)、物理マシン2は、その交通指標を受信する(ステップST73)。
 その後、物理マシン2は、受信した交通指標、自装置でのリソースの使用状況、エリアAiの時間帯などに基づいて、エリアAiにおける遠隔制御の解除の必要性を判定する(ステップST74,ST75)。第2の解除処理では、路側制御装置5が遠隔制御の解除を要求しないので、物理マシン2は、遠隔制御の解除の必要性の判定を所定時間(例えば2.5分)ごとに実行する。
Next, the roadside control device 5 transmits the calculated traffic index to the physical machine 2 (step ST72), and the physical machine 2 receives the traffic index (step ST73).
After that, the physical machine 2 determines the necessity of canceling the remote control in the area Ai based on the received traffic index, the resource usage status in the own device, the time zone of the area Ai (steps ST74 and ST75). . In the second release process, the roadside control device 5 does not request release of remote control, so the physical machine 2 determines whether or not to release remote control every predetermined time (for example, 2.5 minutes).
 例えば、物理マシン2は、仮想マシンVMiによるリソースの使用状況が所定の閾値以上である場合、或いは、現在時刻がエリアAiにおいて遠隔制御を実行する時間帯でない場合には、当該エリアAiでの遠隔制御の解除の必要性ありと判定する。 For example, if the physical machine 2 uses the resource usage status by the virtual machine VMi at a predetermined threshold value or more, or if the current time is not a time zone for executing the remote control in the area Ai, the physical machine 2 is remote from the area Ai. It is determined that the control needs to be released.
 上記の判定結果が肯定的である場合には、物理マシン2は、解除指令を路側制御装置5に送信する(ステップST76)。
 路側制御装置5は、交通指標を物理マシン2に送信した後は、上記の解除指令を受信するか否かを判定している(ステップST77)。
If the determination result is affirmative, the physical machine 2 transmits a release command to the roadside control device 5 (step ST76).
After transmitting the traffic index to the physical machine 2, the roadside control device 5 determines whether or not to receive the release command (step ST77).
 上記の判定結果が肯定的である場合は、路側制御装置5は、自装置に対応する交差点Jkの制御を地点制御に切り替える(ステップST78)。具体的には、路側制御装置5は、物理マシン2の仮想マシンVMiから受信する信号制御パラメータを交通信号制御機47に転送するこれまでの処理を中止し、地点制御に切り替える。
 上記の判定結果が否定的である場合には、路側制御装置5は、そのまま遠隔制御を継続する(ステップST79)。
When the above determination result is affirmative, the roadside control device 5 switches the control of the intersection Jk corresponding to the own device to the point control (step ST78). Specifically, the roadside control device 5 stops the previous processing for transferring the signal control parameter received from the virtual machine VMi of the physical machine 2 to the traffic signal controller 47 and switches to the point control.
If the determination result is negative, the roadside control device 5 continues the remote control as it is (step ST79).
 〔遠隔制御装置が実行可能な他の制御〕
 図11及び図12は、交通管制システムの遠隔制御装置12が実行可能な他の制御を示す説明図である。具体的には、図11(a)は標識見落とし防止支援の説明図であり、図11(b)は追突防止支援の説明図である。
 また、図12(a)は出会い頭衝突防止支援の説明図であり、図12(b)は信号見落とし防止支援の説明図である。
[Other controls that can be executed by the remote control device]
FIG.11 and FIG.12 is explanatory drawing which shows the other control which the remote control apparatus 12 of a traffic control system can perform. Specifically, FIG. 11A is an explanatory diagram of support for oversight prevention of signs, and FIG. 11B is an explanatory diagram of support for prevention of rear-end collision.
FIG. 12A is an explanatory diagram of the encounter collision prevention support, and FIG. 12B is an explanatory diagram of the signal oversight prevention support.
 図11(a)の制御は、下流の交差点に設置された標識を、建物の存在によってドライバが目視できないカーブ形状の道路において、標識の存在を光ビーコンなどにより車両43に通知し、当該標識の見落とし防止を支援する制御である。
 図11(b)の制御は、下流の交差点で信号待ち中の先行車両を、建物の存在によってドライバが目視できないカーブ形状の道路において、先行車両の存在を監視カメラと光ビーコンなどにより車両43に通知し、先行車両に対する追突防止を支援する制御である。
In the control of FIG. 11A, a sign installed at a downstream intersection is notified to the vehicle 43 by a light beacon or the like on a curved road where the driver cannot see due to the presence of a building. This control helps prevent oversight.
In the control of FIG. 11B, a preceding vehicle waiting for a signal at a downstream intersection is shown on a curved road where the driver cannot visually recognize the presence of a building. It is control which notifies and assists the collision prevention with respect to a preceding vehicle.
 図12(a)の制御は、下流の脇道に停車中の車両を、建物の存在によってドライバが目視できないカーブ形状の道路において、脇道の車両の存在を監視カメラと光ビーコンなどにより後続の車両43に通知し、脇道の車両との出会い頭衝突の防止を支援する制御である。
 図12(b)の制御は、下流の交差点に設置された信号灯器を、建物の存在によってドライバが目視できないカーブ形状の道路において、信号灯器の存在を光ビーコンなどにより車両43に通知し、信号灯器の見落とし防止を支援する制御である。
In the control of FIG. 12A, a vehicle parked on a downstream side road is shown on a curved road where the driver cannot visually check due to the presence of a building. This is a control that supports the prevention of a head-on collision with a vehicle on the side road.
In the control of FIG. 12B, the signal lamp installed at the downstream intersection is notified to the vehicle 43 by a light beacon or the like on the curved road where the driver cannot see due to the presence of the building. This control helps prevent oversight of the vessel.
 なお、図11及び図12に示す制御は、交差点近傍の比較的狭い地点で行われる制御であるから、遠隔制御装置12(仮想マシンVMi)だけでなく、路側制御装置5が独自に行うことにしてもよい。 The control shown in FIGS. 11 and 12 is performed at a relatively narrow point near the intersection, so that not only the remote control device 12 (virtual machine VMi) but also the roadside control device 5 performs the control independently. May be.
 図13は、遠隔制御装置12により実現可能であるエコドライブ支援の一例を示す説明図である。
 本実施形態の交通管制システムでは、遠隔制御装置12の演算結果である信号制御パラメータなどのデータを、エリアAiの路側制御装置5が車両43にブロードキャスト送信するので、エリアAi内の道路区間を走行中の車両43は、下流交差点の信号切り替えタイミングを事前に受信することができる。
FIG. 13 is an explanatory diagram showing an example of eco-drive support that can be realized by the remote control device 12.
In the traffic control system of the present embodiment, the roadside control device 5 in the area Ai broadcasts data such as signal control parameters, which are calculation results of the remote control device 12, to the vehicle 43, so that the vehicle travels on a road section in the area Ai. The vehicle 43 inside can receive the signal switching timing at the downstream intersection in advance.
 そこで、遠隔制御装置12は、複数の交差点を青信号で通過できるスルーバンドとなるオフセット制御を実行した場合には、その演算結果である信号制御パラメータとともに、スルーバンドの設定速度を路側制御装置5により車両43に通知させる。
 このようにすれば、通知された設定速度通りに車両43が系統区間を走行することにより、下流の複数の交差点で信号待ちせずに通行することができる。これにより、車両43の燃費が向上するとともに、CO2排出量の削減にも繋がる。
Therefore, when the remote control device 12 executes the offset control that becomes a through band that can pass through a plurality of intersections with a blue signal, the road control device 5 sets the through band setting speed together with the signal control parameter that is the calculation result. The vehicle 43 is notified.
In this way, the vehicle 43 can travel without waiting for a signal at a plurality of downstream intersections as the vehicle 43 travels the system section according to the notified set speed. This improves the fuel efficiency of the vehicle 43 and leads to a reduction in CO2 emissions.
 上述の制御以外にも、遠隔制御装置12に種々のアプリケーションを追加すれば、クラウドシステムを利用した遠隔制御装置12の利便性が向上し、より魅力ある交通管制システムをクライアントに提供することができる。
 例えば、遠隔制御装置12が、エリアAi内の交通情報分析を行ってクライアント端末7に提供すれば、クライアントは有益な交通情報を取得することができる。
In addition to the above-described control, if various applications are added to the remote control device 12, the convenience of the remote control device 12 using the cloud system can be improved, and a more attractive traffic control system can be provided to the client. .
For example, if the remote control device 12 analyzes traffic information in the area Ai and provides it to the client terminal 7, the client can acquire useful traffic information.
 また、遠隔制御装置12が、エリアAi周辺の特典情報を情報専門サイトなどから収集し、得られた特典情報を車両43に路側制御装置5から提供することにしてもよい。特典情報とは、例えば、タイムサービスを実施する店舗の位置情報及び時間帯などの、エリアAi内を走行する車両43のドライバにとって特典となる情報のことをいう。
 そして、クライアントが特典情報の配信を有料で行うことにすれば、当該情報配信による広告収入が得られる。
Further, the remote control device 12 may collect privilege information around the area Ai from an information special site or the like, and provide the obtained privilege information to the vehicle 43 from the road-side control device 5. The privilege information refers to information that is a privilege for the driver of the vehicle 43 traveling in the area Ai, such as location information and a time zone of a store that performs time service.
If the client distributes the privilege information for a fee, the advertising revenue from the information distribution can be obtained.
 更に、遠隔制御装置12が、エリアAi内における信号情報を提供すれば、クライアントが管理するエリアAiにおいて、上述のエコドライブ支援などを実現できる。
 また、遠隔制御装置12が、路側制御装置5を介してエリアAi内の車両43に渋滞区間や迂回路などを通知することにより、エリアAi内の通行が有利となる経路誘導を行うことにすれば、エリアAiにおけるスムーズな車両通行を実現できる。
Furthermore, if the remote control device 12 provides signal information in the area Ai, the above-mentioned eco-drive support can be realized in the area Ai managed by the client.
In addition, the remote control device 12 notifies the vehicle 43 in the area Ai of a traffic jam section, a detour, and the like via the roadside control device 5, thereby performing route guidance that is advantageous for traffic in the area Ai. Thus, smooth vehicle traffic in the area Ai can be realized.
 〔クラウドシステムの効果〕
 本実施形態によれば、物理マシン2のVM制御部29(判定処理部)が、エリアAiの交通状況に応じて、仮想マシンVMiの遠隔制御部14に遠隔制御を実行させるか否かの判定処理を行うので、交通状況の実態に即して仮想マシンVMiの遠隔制御部14を適切に停止又は休止したり、縮退させたりすることができる。
 このため、無条件に仮想マシンVMiの遠隔制御部14が遠隔制御を継続する場合に比べて、物理マシン2のリソースの使用量を抑えることができ、交通管制システムを低コストで運用することができる。
[Effect of cloud system]
According to the present embodiment, the VM control unit 29 (determination processing unit) of the physical machine 2 determines whether to cause the remote control unit 14 of the virtual machine VMi to perform remote control according to the traffic situation of the area Ai. Since the process is performed, the remote control unit 14 of the virtual machine VMi can be appropriately stopped, paused, or degenerated according to the actual traffic situation.
For this reason, compared with the case where the remote control unit 14 of the virtual machine VMi continues the remote control unconditionally, the resource usage of the physical machine 2 can be suppressed, and the traffic control system can be operated at a low cost. it can.
 本実施形態によれば、物理マシン2のVM制御部29が、エリアAiに設置された路側制御装置5が算出した道路の交通指標に基づいて、仮想マシンVMiの遠隔制御部14に遠隔制御を実行させるか否かの判定処理を行うので、仮想マシンVMiの遠隔制御部14が交通指標を算出する必要がない。
 このため、仮想マシンVMiの遠隔制御部14が交通指標を算出する場合に比べて、物理マシン2のハードウェア資源を節約することができる。
According to the present embodiment, the VM control unit 29 of the physical machine 2 performs remote control on the remote control unit 14 of the virtual machine VMi based on the road traffic index calculated by the roadside control device 5 installed in the area Ai. Since it is determined whether or not to execute, it is not necessary for the remote control unit 14 of the virtual machine VMi to calculate the traffic index.
For this reason, the hardware resources of the physical machine 2 can be saved as compared with the case where the remote control unit 14 of the virtual machine VMi calculates the traffic index.
 本実施形態によれば、物理マシン2のVM制御部29が、遠隔制御部14が遠隔制御を実行するのに必要なリソース使用率に基づいて、仮想マシンVMiの遠隔制御部14に遠隔制御を実行させるか否かの判定処理を行うので、例えば、遠隔制御部14のリソース使用率が所定の閾値以上である場合は、遠隔制御を実行させないようにできる。
 このため、物理マシン2におけるリソースの使用量を抑えることができ、交通管制システムを低コストで運用することができる。
According to the present embodiment, the VM control unit 29 of the physical machine 2 controls the remote control unit 14 of the virtual machine VMi based on the resource usage rate necessary for the remote control unit 14 to execute remote control. Since the determination process for determining whether or not to execute is performed, for example, when the resource usage rate of the remote control unit 14 is equal to or greater than a predetermined threshold, it is possible to prevent remote control from being executed.
For this reason, the amount of resources used in the physical machine 2 can be suppressed, and the traffic control system can be operated at low cost.
 本実施形態によれば、1つの仮想マシンVMiの遠隔制御部14が遠隔制御を行うエリアAiが、1つのサブエリアよりなるので、1つの仮想マシンVMiの遠隔制御部14が複数のサブエリアを遠隔制御する場合に比べて、仮想マシンVMiの動作に必要なリソースの使用量を小規模に抑えることができる。
 このため、仮想マシンVMiを用いた交通管制システムの導入単価を廉価にでき、クラウドを利用した交通管制システムをクライアントが導入し易くなる。
According to the present embodiment, since the area Ai where the remote control unit 14 of one virtual machine VMi performs remote control is composed of one subarea, the remote control unit 14 of one virtual machine VMi includes a plurality of subareas. Compared to remote control, the amount of resources required for the operation of the virtual machine VMi can be reduced to a small scale.
For this reason, the introduction unit price of the traffic control system using the virtual machine VMi can be reduced, and the client can easily introduce the traffic control system using the cloud.
 本実施形態によれば、物理マシン2のVM制御部29が、エリアAiに設置された路側制御装置5からの実行要求の受信を契機として、仮想マシンVMiの遠隔制御部14に遠隔制御を実行させるか否かの判定処理を行うので(図7参照)、遠隔制御の必要性が実際に発生した場合にのみ、仮想マシンVMiの遠隔制御部14に遠隔制御を行わせることができる。
 このため、遠隔制御の必要性をVM制御部29が定期的に判定する場合に比べて、物理マシン2のハードウェア資源を有効に活用することができる。
According to the present embodiment, the VM control unit 29 of the physical machine 2 executes remote control on the remote control unit 14 of the virtual machine VMi when receiving an execution request from the roadside control device 5 installed in the area Ai. Therefore, the remote control unit 14 of the virtual machine VMi can perform remote control only when the necessity for remote control actually occurs.
For this reason, compared with the case where the VM control unit 29 periodically determines the necessity of remote control, the hardware resources of the physical machine 2 can be effectively used.
 本実施形態によれば、物理マシン2のVM制御部29が、予め定められた所定周期ごとに仮想マシンVMiに遠隔制御を実行させるか否かの判定処理を行うので(図9参照)、VM制御部29が、路側制御装置5からの実行要求の受信を待たずに判定処理を自動的に行うことができる。このため上記の判定処理をより確実に行うことができる。 According to the present embodiment, the VM control unit 29 of the physical machine 2 performs a determination process as to whether or not the virtual machine VMi is to execute remote control at predetermined intervals (see FIG. 9). The control unit 29 can automatically perform the determination process without waiting for the execution request from the roadside control device 5 to be received. Therefore, the above determination process can be performed more reliably.
 本実施形態によれば、物理マシン2のVM制御部29が、エリアAiについて予め設定した遠隔制御を実行する時間帯に基づいて、仮想マシンVMiの遠隔制御部14に遠隔制御を実行させるか否かの判定処理を行うので、設定された時間帯だけ仮想マシンVMiの遠隔制御部14を動作させ、それ以外の時間帯は仮想マシンVMiを停止させることができる。
 このため、時間帯に関係なく仮想マシンVMiの遠隔制御部14を動作させる場合に比べて、物理マシン2のハードウェア資源を効率的に利用することができる。
According to the present embodiment, whether or not the VM control unit 29 of the physical machine 2 causes the remote control unit 14 of the virtual machine VMi to execute the remote control based on the time zone for executing the remote control set in advance for the area Ai. Therefore, the remote control unit 14 of the virtual machine VMi can be operated only during the set time zone, and the virtual machine VMi can be stopped during other time zones.
For this reason, hardware resources of the physical machine 2 can be used more efficiently than when the remote control unit 14 of the virtual machine VMi is operated regardless of the time zone.
 本実施形態によれば、複数の仮想マシンVMiの遠隔制御部14が遠隔制御を行う複数のエリアAiには、時差のある異なる地域に存在するエリアが含まれるので、時差のある地域のエリアの遠隔制御をそれぞれ担当する複数の仮想マシンVMiの動作時間を分散することができる。
 このため、複数の仮想マシンVMiが同時に動作する時間を減らすことができ、物理マシン2のハードウェア資源を効率的に利用することができる。
According to the present embodiment, the plurality of areas Ai that are remotely controlled by the remote control units 14 of the plurality of virtual machines VMi include areas that exist in different regions with a time difference. It is possible to distribute the operation time of a plurality of virtual machines VMi each in charge of remote control.
For this reason, it is possible to reduce the time during which a plurality of virtual machines VMi operate simultaneously, and the hardware resources of the physical machine 2 can be efficiently used.
 本実施形態によれば、仮想マシンVMiの遠隔制御部14が、遠隔制御の他に、エリアAi内の交通情報分析、エリアAi周辺の特典情報の提供、エリアAi内における信号情報の提供、エリアAi内における車両の経路誘導などを実行可能であるから、クライアントが仮想マシンVMiを用いて利用できるエリアAi内の交通サービスの内容が豊富になる。
 このため、それらの処理を伴わない場合に比べて、本実施形態のクラウドシステムをクライアントが導入し易くなる。
According to the present embodiment, the remote control unit 14 of the virtual machine VMi performs traffic information analysis in the area Ai, provision of privilege information around the area Ai, provision of signal information in the area Ai, area in addition to remote control. Since the route guidance of the vehicle in Ai can be executed, the contents of the traffic service in the area Ai that can be used by the client using the virtual machine VMi are abundant.
For this reason, it becomes easier for the client to introduce the cloud system of the present embodiment than in the case where these processes are not involved.
 本実施形態によれば、路側制御装置5の制御切替部54Aが、交差点Jkにおける交通指標が所定の条件を満たすように当該交差点Jkに対する地点制御を実行可能であるかを判定し、実行可能ではなない場合に、仮想マシンVMiである遠隔制御装置12に対する遠隔制御の実行要求を送信する(図7参照)。
 このため、エリアAi内の交通状況に対応して、仮想マシンVMiである遠隔制御装置12に遠隔制御の実行を要求することができる。
According to the present embodiment, the control switching unit 54A of the roadside control device 5 determines whether or not the point control for the intersection Jk can be executed so that the traffic index at the intersection Jk satisfies the predetermined condition. If not, a remote control execution request is transmitted to the remote control device 12 which is the virtual machine VMi (see FIG. 7).
Therefore, it is possible to request the remote control device 12 that is the virtual machine VMi to execute the remote control in accordance with the traffic situation in the area Ai.
 本実施形態によれば、路側制御装置5の制御切替部54Aが、遠隔制御を選択中に、交差点Jkにおける交通指標が所定の条件を満たすように当該交差点Jkに対する地点制御を実行可能であるかを判定し、実行可能である場合に、仮想マシンVMiである遠隔制御装置12に対する遠隔制御の解除要求を送信する(図8参照)。
 このため、エリアAi内の交通状況に応じて、仮想マシンVMiである遠隔制御装置12に遠隔制御の解除を要求することができる。従って、遠隔制御装置12が遠隔制御を無駄に継続するのを防止することができる。
According to the present embodiment, whether or not the control switching unit 54A of the roadside control device 5 can execute the point control for the intersection Jk so that the traffic index at the intersection Jk satisfies the predetermined condition while the remote control is selected. If it can be executed, a remote control release request is transmitted to the remote control device 12 that is the virtual machine VMi (see FIG. 8).
For this reason, it is possible to request the remote control device 12 that is the virtual machine VMi to release the remote control according to the traffic situation in the area Ai. Therefore, it is possible to prevent the remote control device 12 from continuing the remote control uselessly.
 本実施形態のクラウドシステムによれば、エリアAiに含まれる交差点Jkにおける交通信号制御の制御方式を切替可能な路側制御装置5が、物理マシン2のVM制御部29からの実行要求の受信に応じて制御方式を遠隔制御に切り替え、解除要求の受信に応じて制御方式を地点制御に切り替える(図7~図10参照)。
 このため、仮想マシンVMiがエリアAiに含まれる交差点Jkに遠隔制御を実行しない場合は、当該交差点Jkに地点制御を実行でき、エリアAiに含まれる各交差点Jkに対して、遠隔制御及び地点制御の双方の制御を実行することができる。
According to the cloud system of the present embodiment, the roadside control device 5 capable of switching the traffic signal control control method at the intersection Jk included in the area Ai responds to the reception of the execution request from the VM control unit 29 of the physical machine 2. The control method is switched to remote control, and the control method is switched to point control in response to reception of the release request (see FIGS. 7 to 10).
For this reason, when the virtual machine VMi does not execute the remote control on the intersection Jk included in the area Ai, the point control can be executed on the intersection Jk, and the remote control and the point control are performed on each intersection Jk included in the area Ai. Both of these controls can be executed.
 〔クラウドシステムの他の特徴〕
 上述の通り、本実施形態のクラウドシステムでは、データセンタ1の仮想化ソフトウェア11を利用して、遠隔制御を行う仮想マシン12を構築する。このため、エリアAiの存在場所に関係なく、現地でのインフラ配備のコスト増加を最小限に抑えつつ、優れた交通管制システムを構築することができる。
[Other features of the cloud system]
As described above, in the cloud system of this embodiment, the virtual machine 12 that performs remote control is constructed using the virtualization software 11 of the data center 1. For this reason, regardless of the location of the area Ai, it is possible to construct an excellent traffic control system while minimizing an increase in the cost of infrastructure deployment on site.
 また、遠隔制御を実行するエリアAiの存在場所が限定されないので、どこの国や都市にも交通管制システムを安価に構築することができ、多数の国の交通管制システムを一元的に構築及び管理することができる。
 もっとも、路側制御装置5に関しては、クライアントが指定する国や都市のエリアAiに設置する必要がある。そこで、路側制御装置5などの設置費用をクライアントとサービスプロバイダのいずが負担するかにより、異なったビジネスを想定し得る。
In addition, since the location of the area Ai where the remote control is performed is not limited, a traffic control system can be constructed at low cost in any country and city, and the traffic control system in many countries can be constructed and managed centrally. can do.
However, the roadside control device 5 needs to be installed in the area Ai of the country or city specified by the client. Therefore, different businesses can be assumed depending on whether the client or the service provider bears the installation cost of the roadside control device 5 or the like.
 例えば、エリアAiに設置する路側制御装置5や、必要に応じて設置する路側センサ44の設置費用をクライアント負担とすることが考えられる。
 この場合には、遠隔制御によって得られた信号制御パラメータなどの制御データの所有権は、クライアント側にあるものとし、クライアント名義で自由に転売可能とすればよい。このようにすれば、信号制御パラメータなどの制御データがクライアントの収入源となり得る。
For example, it is conceivable that the installation cost of the roadside control device 5 installed in the area Ai and the roadside sensor 44 installed as necessary is paid to the client.
In this case, it is assumed that ownership of control data such as signal control parameters obtained by remote control is on the client side and can be freely resold in the name of the client. In this way, control data such as signal control parameters can be a source of revenue for the client.
 逆に、エリアAiに設置する路側制御装置5や、必要に応じて設置する路側センサ44の設置費用をプロバイダ負担とすることも考えられる。
 この場合には、遠隔制御によって得られた信号制御パラメータなどの制御データの所有権は、プロバイダ側にあるものとし、プロバイダ名義で自由に転売可能とすればよい。このようにすれば、信号制御パラメータなどの制御データがサービスプロバイダの収入源となり得る。
On the contrary, it is also conceivable that the installation cost of the road-side control device 5 installed in the area Ai and the road-side sensor 44 installed as necessary is paid by the provider.
In this case, the ownership of control data such as signal control parameters obtained by remote control is assumed to be on the provider side, and can be freely resold in the name of the provider. In this way, control data such as signal control parameters can be a source of revenue for the service provider.
 また、種々の優先制御を遠隔制御装置12に実行させることにより、ターゲットを絞ったこれまでにないサービスを展開することもできる。
 例えば、物流会社周辺におけるトラックの朝夕の入出庫に対応した優先制御や、学校周辺における朝夕の送迎に対応した優先制御や、特に社会問題にならない範囲での個人の希望に沿った優先制御などがこれに該当する。また、サービスプロバイダが、情報提供のメディアを介して広告情報を車両に有償で提供できることにしてもよい。
In addition, by causing the remote control device 12 to execute various priority controls, it is possible to develop an unprecedented service.
For example, priority control corresponding to trucks entering and leaving the logistics company around the logistics company, priority control corresponding to morning and evening pick-up around the school, and priority control according to the individual's wishes that are not particularly social issues. This is the case. Further, the service provider may be able to provide advertising information to the vehicle for a fee through an information providing medium.
 クライアントは、交通管制システムの中央装置を設置及び保有しなくてもよいので、システムを導入時の初期投資を抑えることができる。例えば、クライアントは、1つの交差点からでも、サービスプロバイダにシステムの発注が可能となる。
 また、クライアントは、必要最小限の投資額で、所望の交通管制システムを実現することができる。例えば、遠隔制御を必要としない時間帯には、仮想マシンを縮退運転することにより、計算機リソースが最小限となるように運用することができる。
Since the client does not need to install and own the central device of the traffic control system, the initial investment at the time of introducing the system can be suppressed. For example, a client can order a system from a service provider even from one intersection.
In addition, the client can realize a desired traffic control system with a minimum investment amount. For example, in a time zone that does not require remote control, the virtual machine can be operated so as to minimize computer resources by performing degenerate operation of the virtual machine.
 クライアントは、交通管制システムの中央装置を設置及び保有しなくてもよいので、いったん採用した遠隔制御のサービスの停止を簡便に行うことができる。
 また、クライアントは、路側制御装置5や路側センサ44を設置することを条件に、信号制御パラメータなどの制御データの所有権を獲得する契約の場合には、制御データを販売することで収入が得られる。
Since the client does not need to install and own the central device of the traffic control system, the remote control service once employed can be easily stopped.
In the case of a contract for acquiring ownership of control data such as signal control parameters on the condition that the roadside control device 5 and the roadside sensor 44 are installed, the client can obtain income by selling the control data. It is done.
 サービスプロバイダは、複数の仮想マシンViによる交通管制システムの運用及び管理を所定のデータセンタ1に一元化できるので、複数の交通管制システムの管理費を低減することができる。
 また、クライアントは、交通管制システムの運用に必要な設定パラメータなどの情報の維持管理を、サービスプロバイダにアウトソースすることにすれば、クライアントによる交通管制システムのメンテナンスが不要となる。
Since the service provider can centralize the operation and management of the traffic control system by the plurality of virtual machines Vi in the predetermined data center 1, the management cost of the plurality of traffic control systems can be reduced.
Further, if the client outsources maintenance and management of information such as setting parameters necessary for operation of the traffic control system to the service provider, the maintenance of the traffic control system by the client becomes unnecessary.
 〔その他の変形例〕
 今回開示した実施形態はすべての点で例示であって制限的なものではない。本発明の権利範囲は、上述の実施形態に限定されるものではなく、特許請求の範囲に記載された構成と均等の範囲内でのすべての変更が含まれる。
 例えば、上述の実施形態では、路側制御装置5が交通信号制御機47と別装置であったが、路側制御装置5が交通信号制御機47の機能を併有することにしてもよい。
[Other variations]
The embodiments disclosed herein are illustrative and non-restrictive in every respect. The scope of rights of the present invention is not limited to the above-described embodiments, but includes all modifications within the scope equivalent to the configurations described in the claims.
For example, in the above-described embodiment, the roadside control device 5 is a separate device from the traffic signal controller 47, but the roadside control device 5 may have the function of the traffic signal controller 47.
 上述の実施形態では、遠隔制御装置12が、データセンタ1の物理マシン2に仮想的に構築された仮想マシン2よりなる場合を例示したが、遠隔制御装置12は、交通管制センターなどに設置された交通信号制御のためのコンピュータ装置(「中央装置」ともいう。)であってよもよい。
 すなわち、中央装置よりなる遠隔制御装置12が、その管轄エリアに属する少なくとも1つの路側制御装置5と通信可能に接続されていてもよい。なお、交通管制センターは、国、地方自治体又は民間の交通事業者が管理する専用設備よりなる。
In the above-described embodiment, the case where the remote control device 12 is composed of the virtual machine 2 virtually constructed in the physical machine 2 of the data center 1 is illustrated. However, the remote control device 12 is installed in a traffic control center or the like. It may also be a computer device for traffic signal control (also referred to as “central device”).
That is, the remote control device 12 composed of a central device may be communicably connected to at least one roadside control device 5 belonging to the jurisdiction area. The traffic control center is composed of dedicated facilities managed by the national, local government or private transport operators.
 1 データセンタ
 2 物理マシン(情報処理装置)
 2A 物理マシン(情報処理装置)
 2B 物理マシン(情報処理装置)
 2C 物理マシン(情報処理装置)
 3 管理サーバ
 4 公衆通信網
 5 路側制御装置
 6 プロバイダ端末
 7 クライアント端末
 11 仮想化ソフトウェア(ハイパーバイザ)
 12 仮想マシン(遠隔制御装置)
 13 仮想OS
 14 アプリケーションソフトウェア(遠隔制御部)
 21 処理部
 22 第1記憶部
 23 第2記憶部
 24 通信部
 25 内部バス
 26 アップリンク収集部
 27 リソース監視部
 28 時間帯取得部
 29 VM制御部(判定処理部)
 31 処理部
 32 第1記憶部
 33 第2記憶部
 34 通信部
 35 内部バス
 36 管理ソフトウェア
 37 プロバイダ管理部
 38 エリア管理部
 39 データ管理部
 41 交通信号機
 42 車載通信機
 43 車両
 44 路側センサ
 45 通信回線
 46 信号灯器
 47 交通信号制御機
 48 信号制御線
 49 携帯端末
 51 アンテナ
 52 無線通信部
 53 有線通信部
 54 制御部
 54A 地点制御部
 54B 制御切替部
 54C データ中継部
 55 記憶部
 61 アンテナ
 62 通信部
 63 制御部
 64 記憶部
 Ai エリア
 VMi 仮想マシン
1 Data center 2 Physical machine (information processing equipment)
2A physical machine (information processing equipment)
2B physical machine (information processing equipment)
2C physical machine (information processing equipment)
3 Management Server 4 Public Communication Network 5 Roadside Control Device 6 Provider Terminal 7 Client Terminal 11 Virtualization Software (Hypervisor)
12 Virtual machine (remote control device)
13 Virtual OS
14 Application software (remote control unit)
21 processing unit 22 first storage unit 23 second storage unit 24 communication unit 25 internal bus 26 uplink collection unit 27 resource monitoring unit 28 time zone acquisition unit 29 VM control unit (determination processing unit)
Reference Signs List 31 processing unit 32 first storage unit 33 second storage unit 34 communication unit 35 internal bus 36 management software 37 provider management unit 38 area management unit 39 data management unit 41 traffic signal 42 in-vehicle communication device 43 vehicle 44 roadside sensor 45 communication line 46 Signal lamp 47 Traffic signal controller 48 Signal control line 49 Portable terminal 51 Antenna 52 Wireless communication part 53 Wired communication part 54 Control part 54A Point control part 54B Control switching part 54C Data relay part 55 Storage part 61 Antenna 62 Communication part 63 Control part 64 storage unit Ai area VMi virtual machine

Claims (14)

  1.  ハードウェア資源を仮想化して構築された1又は複数の仮想マシンを備える情報処理装置であって、
     所定のエリアに含まれる複数の交差点の通行権を制御対象とする交通信号制御である遠隔制御を実行する遠隔制御部を有する前記仮想マシンと、
     前記エリアの交通状況に応じて、前記遠隔制御部に前記遠隔制御を実行させるか否かの判定処理を行う判定処理部と、を備える情報処理装置。
    An information processing apparatus comprising one or more virtual machines constructed by virtualizing hardware resources,
    The virtual machine having a remote control unit that executes a remote control that is a traffic signal control that controls traffic rights of a plurality of intersections included in a predetermined area;
    An information processing apparatus comprising: a determination processing unit that performs a determination process as to whether or not to cause the remote control unit to execute the remote control according to traffic conditions in the area.
  2.  前記判定処理部は、前記エリアに設置された路側制御装置が算出した道路の交通指標に基づいて、前記判定処理を行う請求項1に記載の情報処理装置。 The information processing apparatus according to claim 1, wherein the determination processing unit performs the determination process based on a road traffic index calculated by a roadside control apparatus installed in the area.
  3.  前記判定処理部は、前記遠隔制御部が前記遠隔制御を実行するのに必要なリソース使用率に基づいて、前記判定処理を行う請求項1又は請求項2に記載の情報処理装置。 The information processing apparatus according to claim 1 or 2, wherein the determination processing unit performs the determination processing based on a resource usage rate necessary for the remote control unit to execute the remote control.
  4.  前記遠隔制御部が前記遠隔制御を実行する前記エリアは、1つのサブエリアである請求項1~請求項3のいずれか1項に記載の情報処理装置。 The information processing apparatus according to any one of claims 1 to 3, wherein the area where the remote control unit executes the remote control is one sub-area.
  5.  前記判定処理部は、前記エリアに設置された路側制御装置からの前記遠隔制御の実行要求の受信を契機として、前記判定処理を行う請求項1~請求項4のいずれか1項に記載の情報処理装置。 The information according to any one of claims 1 to 4, wherein the determination processing unit performs the determination processing in response to reception of an execution request for the remote control from a roadside control device installed in the area. Processing equipment.
  6.  前記判定処理部は、予め定められた所定周期ごとに前記判定処理を行う請求項1~請求項4のいずれか1項に記載の情報処理装置。 The information processing apparatus according to any one of claims 1 to 4, wherein the determination processing unit performs the determination processing at predetermined intervals.
  7.  前記判定処理部は、前記エリアについて予め設定した前記遠隔制御部が前記遠隔制御を実行する時間帯に基づいて、前記判定処理を行う請求項1~請求項6のいずれか1項に記載の情報処理装置。 The information according to any one of claims 1 to 6, wherein the determination processing unit performs the determination processing based on a time zone in which the remote control unit set in advance for the area executes the remote control. Processing equipment.
  8.  複数の前記仮想マシンの前記遠隔制御部が前記遠隔制御を行う複数の前記エリアには、時差のある異なる地域に存在するエリアが含まれる請求項1~請求項7のいずれか1項に記載の情報処理装置。 8. The area according to claim 1, wherein the plurality of areas in which the remote control units of the plurality of virtual machines perform the remote control include areas that exist in different areas with a time difference. Information processing device.
  9.  前記仮想マシンの前記遠隔制御部は、前記遠隔制御の他に、下記の(a)~(d)のうちの少なくとも1つの処理を実行可能である請求項1~請求項8のいずれか1項に記載の情報処理装置。
     (a) エリア内の交通情報分析
     (b) エリア周辺の特典情報の提供
     (c) エリア内における信号情報の提供
     (d) エリア内における車両の経路誘導
    9. The remote control unit of the virtual machine is capable of executing at least one of the following processes (a) to (d) in addition to the remote control. The information processing apparatus described in 1.
    (A) Traffic information analysis in the area (b) Provision of privilege information around the area (c) Provision of signal information in the area (d) Route guidance of vehicles in the area
  10.  交差点における交通信号制御の制御方式の切り替えが可能であり、切り替え可能な前記制御方式として下記に定義する地点制御と遠隔制御を含む路側制御装置であって、
     前記交差点を含む所定のエリア内の複数の交差点について、前記遠隔制御を実行する遠隔制御装置と通信する通信部と、
     前記交差点における交通指標が所定の条件を満たすように当該交差点に対する前記地点制御を実行可能であるかの判定を行い、この判定結果が否定的である場合に、前記遠隔制御装置に対する前記遠隔制御の実行要求を前記通信部に送信させる制御部と、を備える路側制御装置。
     地点制御:1つの交差点の通行権を制御対象とする交通信号制御
     遠隔制御:複数の交差点の通行権を制御対象とする交通信号制御
    It is possible to switch the control method of traffic signal control at an intersection, and is a roadside control device including point control and remote control defined below as the switchable control method,
    A communication unit that communicates with a remote control device that executes the remote control for a plurality of intersections in a predetermined area including the intersection;
    It is determined whether the point control for the intersection can be executed so that the traffic index at the intersection satisfies a predetermined condition. If the determination result is negative, the remote control of the remote control device A roadside control device comprising: a control unit that transmits an execution request to the communication unit.
    Point control: Traffic signal control that controls the right of traffic at one intersection Remote control: Traffic signal control that controls the right of traffic at multiple intersections
  11.  前記制御部は、前記遠隔制御を選択中に前記判定を実行し、この判定結果が肯定的である場合に、前記遠隔制御装置に対する前記遠隔制御の解除要求を前記通信部に送信させる請求項10に記載の路側制御装置。 The said control part performs the said determination while selecting the said remote control, and when this determination result is affirmation, the cancellation | release request | requirement of the said remote control with respect to the said remote control apparatus is transmitted to the said communication part. The roadside control device described in 1.
  12.  請求項1~請求項9のいずれか1項に記載の情報処理装置と、
     前記情報処理装置と通信可能であり、前記エリアに含まれる前記交差点における交通信号制御の制御方式を切り替え可能な路側制御装置と、を備え、
     前記路側制御装置は、前記情報処理装置から前記遠隔制御の実行指令を受信した場合は、前記制御方式を前記遠隔制御に切り替え、前記情報処理装置から前記遠隔制御の解除指令を受信した場合は、前記制御方式を1つの交差点の通行権を制御対象とする交通信号制御である地点制御に切り替えるクラウドシステム。
    An information processing apparatus according to any one of claims 1 to 9,
    A roadside control device capable of communicating with the information processing device and capable of switching a control method of traffic signal control at the intersection included in the area;
    When the roadside control device receives the remote control execution command from the information processing device, the control method is switched to the remote control, and when the remote control release command is received from the information processing device, The cloud system which switches the said control system to the spot control which is the traffic signal control which makes the control right the traffic right of one intersection.
  13.  ハードウェア資源を仮想化して構築された1又は複数の仮想マシンとして情報処理装置を機能させるためのコンピュータプログラムであって、
     前記仮想マシンの遠隔制御部が、所定のエリアに含まれる複数の交差点の通行権を制御対象とする交通信号制御である遠隔制御を実行するステップと、
     前記情報処理装置の判定処理部が、前記エリアの交通状況に応じて、前記遠隔制御部に前記遠隔制御を実行させるか否かの判定処理を行うステップと、を含むコンピュータプログラム。
    A computer program for causing an information processing apparatus to function as one or a plurality of virtual machines constructed by virtualizing hardware resources,
    The remote control unit of the virtual machine executes remote control that is traffic signal control for controlling the right of passage of a plurality of intersections included in a predetermined area;
    A computer program comprising: a determination processing unit of the information processing apparatus performing a determination process as to whether or not to cause the remote control unit to execute the remote control according to a traffic situation in the area.
  14.  情報処理装置のハードウェア資源を仮想化して構築された1又は複数の仮想マシンの運用方法であって、
     前記仮想マシンの遠隔制御部が、所定のエリアに含まれる複数の交差点の通行権を制御対象とする交通信号制御である遠隔制御を実行するステップと、
     前記情報処理装置の判定処理部が、前記エリアの交通状況に応じて、前記遠隔制御部に前記遠隔制御を実行させるか否かの判定処理を行うステップと、を含む仮想マシンの運用方法。
    An operation method of one or a plurality of virtual machines constructed by virtualizing hardware resources of an information processing apparatus,
    The remote control unit of the virtual machine executes remote control that is traffic signal control for controlling the right of passage of a plurality of intersections included in a predetermined area;
    A determination processing unit of the information processing apparatus performing a determination process as to whether or not to cause the remote control unit to execute the remote control according to a traffic situation in the area.
PCT/JP2015/069891 2015-01-19 2015-07-10 Information processing device, roadside control device, cloud system, computer program and virtual machine operation method WO2016117147A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-008032 2015-01-19
JP2015008032 2015-01-19
JPPCT/JP2015/058492 2015-03-20
PCT/JP2015/058492 WO2016098361A1 (en) 2014-12-15 2015-03-20 Road-side control device, computer program, and information processing method

Publications (1)

Publication Number Publication Date
WO2016117147A1 true WO2016117147A1 (en) 2016-07-28

Family

ID=56416711

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/069891 WO2016117147A1 (en) 2015-01-19 2015-07-10 Information processing device, roadside control device, cloud system, computer program and virtual machine operation method

Country Status (1)

Country Link
WO (1) WO2016117147A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018045671A (en) * 2016-09-18 2018-03-22 バイドゥ ネットコム サイエンス アンド テクノロジー(ペキン) カンパニー リミテッド Method and apparatus for scheduling cloud server
CN112491487A (en) * 2020-11-17 2021-03-12 北京中交国通智能交通系统技术有限公司 Tunnel traffic information wireless publishing method based on frequency modulation data broadcasting
JP2021057513A (en) * 2019-10-01 2021-04-08 ヤマハ発動機株式会社 Board work device and method for remote controlling board work device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002230686A (en) * 2001-02-06 2002-08-16 Matsushita Electric Ind Co Ltd Traffic control system and control method, and medium containing program therefor
US20040145497A1 (en) * 2003-01-29 2004-07-29 Pearson Jeremiah W. Automated traffic control system having an interactive emergency vehicle warning therein
JP2011096146A (en) * 2009-10-30 2011-05-12 Sumitomo Electric Ind Ltd Traffic signal control device and computer program
US20110191011A1 (en) * 2010-02-01 2011-08-04 Mcbride Kurtis System and Method for Modeling and Optimizing the Performance of Transportation Networks
JP2013101571A (en) * 2011-11-09 2013-05-23 Hitachi Automotive Systems Ltd Server and method managing locations of multiple communication terminals

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002230686A (en) * 2001-02-06 2002-08-16 Matsushita Electric Ind Co Ltd Traffic control system and control method, and medium containing program therefor
US20040145497A1 (en) * 2003-01-29 2004-07-29 Pearson Jeremiah W. Automated traffic control system having an interactive emergency vehicle warning therein
JP2011096146A (en) * 2009-10-30 2011-05-12 Sumitomo Electric Ind Ltd Traffic signal control device and computer program
US20110191011A1 (en) * 2010-02-01 2011-08-04 Mcbride Kurtis System and Method for Modeling and Optimizing the Performance of Transportation Networks
JP2013101571A (en) * 2011-11-09 2013-05-23 Hitachi Automotive Systems Ltd Server and method managing locations of multiple communication terminals

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018045671A (en) * 2016-09-18 2018-03-22 バイドゥ ネットコム サイエンス アンド テクノロジー(ペキン) カンパニー リミテッド Method and apparatus for scheduling cloud server
JP2021057513A (en) * 2019-10-01 2021-04-08 ヤマハ発動機株式会社 Board work device and method for remote controlling board work device
JP7234085B2 (en) 2019-10-01 2023-03-07 ヤマハ発動機株式会社 Board working device and remote control method for board working device
CN112491487A (en) * 2020-11-17 2021-03-12 北京中交国通智能交通系统技术有限公司 Tunnel traffic information wireless publishing method based on frequency modulation data broadcasting

Similar Documents

Publication Publication Date Title
US9761136B2 (en) Methods and software for managing vehicle priority in a self-organizing traffic control system
US11447152B2 (en) System and methods for partially instrumented connected automated vehicle highway systems
US20180349825A1 (en) Ridesharing managing device, ridesharing managing method, and storage medium
WO2019085846A1 (en) Planning method for express lane and unit
WO2016161676A1 (en) Resource allocation system, base station, device, and method
JP2020502718A (en) Connected adaptive vehicle traffic management system with digital prioritization
JP2018182661A (en) Communication system, on-vehicle equipment and program
CN110491147B (en) Traffic information processing method, traffic information processing device and terminal equipment
JP2001184593A (en) Road traffic system
CN112466115A (en) Bus intersection priority passing control system and method based on edge calculation
CN113965568A (en) Edge computing system for urban road C-V2X network
JP2020107080A (en) Traffic information processor
WO2017126379A1 (en) Traffic light control parameter update device and update method, and recording medium for computer program
WO2016117147A1 (en) Information processing device, roadside control device, cloud system, computer program and virtual machine operation method
CN112185168A (en) Vehicle lane changing method and device
JP2020027645A (en) Server, wireless communication method, computer program, and on-vehicle device
JP5316193B2 (en) Communication control device
US20220058956A1 (en) Vehicle management device, vehicle management method, and storage medium
JP2022515420A (en) How to support a car
US10492166B2 (en) Reporting of location information
JP7238443B2 (en) Base station and in-vehicle equipment
US20130207816A1 (en) Apparatus, system, and method to facilitate efficient public transportation
JP2018073299A (en) Information processing system, and search area designation method and program
JP7301103B2 (en) Methods, apparatus, devices, media and systems for operational control
CN110111600A (en) A kind of parking lot recommended method based on VANETs

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15878837

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15878837

Country of ref document: EP

Kind code of ref document: A1