WO2016115848A1 - 一种电能计量终端及电气火灾监控方法 - Google Patents

一种电能计量终端及电气火灾监控方法 Download PDF

Info

Publication number
WO2016115848A1
WO2016115848A1 PCT/CN2015/084351 CN2015084351W WO2016115848A1 WO 2016115848 A1 WO2016115848 A1 WO 2016115848A1 CN 2015084351 W CN2015084351 W CN 2015084351W WO 2016115848 A1 WO2016115848 A1 WO 2016115848A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrical fire
leakage current
electrical
fire
occurred
Prior art date
Application number
PCT/CN2015/084351
Other languages
English (en)
French (fr)
Inventor
范文学
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2016115848A1 publication Critical patent/WO2016115848A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/06Electric actuation of the alarm, e.g. using a thermally-operated switch
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R22/00Arrangements for measuring time integral of electric power or current, e.g. electricity meters
    • G01R22/06Arrangements for measuring time integral of electric power or current, e.g. electricity meters by electronic methods
    • G01R22/061Details of electronic electricity meters
    • G01R22/068Arrangements for indicating or signaling faults

Definitions

  • the present application relates to, but is not limited to, electrical fire monitoring technology, and more particularly to an electric energy metering terminal and an electrical fire monitoring method.
  • Electrical fire monitoring belongs to the advanced pre-alarm system. Unlike the traditional automatic fire alarm system, the early warning of the electrical fire monitoring system is to avoid losses, while the traditional automatic fire alarm system is to reduce losses. Electrical fires and traditional fires usually exist at the same time and interact with each other. Building fires occur frequently, causing huge losses to the country and people's lives and property, and the number of fires caused by electrical faults and the losses caused by electrical fires account for the first place in all types of fires.
  • the power-off operation can be automatic power-off of the system or manual power-off, depending on whether the building is equipped with an automatic power-off device.
  • the alarm system sends an alarm signal to the power-off operation by the on-duty personnel.
  • firefighters will also notify the relevant personnel to perform power-off operations during fire fighting.
  • This traditional method can not automatically cut off the power supply in time and effectively, prevent the spread of fire, and at the same time bring obstacles to fire fighting, which can easily cause electric shock accidents and seriously threaten people's lives and property safety.
  • Grid security is also a concern for power system maintenance and end-users, because over time, cables will experience different degrees of aging due to different working conditions, resulting in leakage, and cable leakage is not only energy waste, but more importantly, it may cause Electrical fires thus endanger the safety of major life and property.
  • Current energy metering terminals such as smart meters, are usually installed in areas such as family life, commercial activities, factories, etc. The energy metering terminals are only used for basic energy metering functions such as metering and reporting of electricity. The existing methods of handling electrical fires cannot timely control the spread of electrical fires, and cannot cut off the power supply in time, affecting the safety of the fire fighting process.
  • the embodiment of the invention provides an electric energy measuring terminal and an electric fire monitoring method, which can realize the basic electric energy measurement and realize the monitoring of the fire, improve the timely determination of the electric fire and the power-off treatment, and prevent the fire from occurring and prevent the fire from expanding, and Safety protection provided by safe fire fighting.
  • An embodiment of the present invention provides an energy metering terminal, including: a sampling unit, a determining unit, and a processing unit;
  • a sampling unit configured to acquire a leakage current on a load line of the energy metering terminal in real time through a high-precision residual current transformer
  • the determining unit is configured to determine whether an electrical fire occurs according to a leakage current on the load line acquired in real time;
  • the processing unit is configured to perform on-off control of the circuit load by a switch set in advance based on a determination result as to whether or not an electrical fire has occurred.
  • the determining unit is configured to
  • the leakage current value is compared with a preset alarm threshold, and when the leakage current value is greater than the alarm threshold, the determination occurs. Electrical fire warning; when the leakage current value of the preset duration is greater than the alarm threshold, it is determined that an electrical fire occurs; when the leakage current value is less than or equal to the alarm threshold, or the leakage current value is less than the preset duration When it is equal to the alarm threshold, it is determined that no electrical fire has occurred.
  • the electric energy metering terminal is disposed on the low-voltage three-phase four-wire power supply line, or the three-phase three-wire power supply line, or the single-phase power supply line.
  • the power metering terminal further includes:
  • the expansion unit is configured to add, by using the expansion interface, a sensor other than the high-precision residual current transformer to determine whether an electrical fire occurs, on the power metering terminal;
  • the extension determining unit is configured to determine whether an electrical fire has occurred according to the information acquired by the sensor on the extension unit, and send a determination result of whether an electrical fire has occurred to the processing unit;
  • the extension communication unit is configured to acquire, from the extension determination unit, information for determining whether an electrical fire has occurred and transmit the information to the primary station control center, and/or transmit a determination result of the occurrence of the electrical fire to the communication terminal of the relevant worker, And/or send an on/off signal of electrical equipment related to electrical fires to control the on/off of related electrical equipment and perform electrical fire control.
  • an embodiment of the present invention provides an electrical fire monitoring method, including:
  • the on/off control of the circuit load is performed by a switch set in advance based on the judgment result of whether or not an electrical fire has occurred.
  • determining, according to the leakage current on the load line obtained by sampling, whether an electrical fire occurs occurs specifically includes:
  • the leakage current value is compared with a preset alarm threshold, and when the leakage current value is greater than the alarm threshold, the determination occurs. Electrical fire warning; when the leakage current value of the preset time is greater than the alarm threshold, it is determined that an electrical fire occurs; when the leakage current value is less than or equal to the alarm threshold, or the leakage current value is less than or equal to the preset duration When the alarm threshold is reached, it is determined that no electrical fire has occurred.
  • the method further includes: adding, by using an expansion interface, a sensor other than the high-precision residual current transformer that can be used to determine whether an electrical fire occurs, and obtaining, from the sensor, an electrical fire for determining whether an electrical fire occurs. Information to determine if an electrical fire has occurred.
  • the method further includes:
  • Information for determining whether an electrical fire has occurred or information for determining that an electrical fire has occurred is transmitted to the communication center of the primary station control center and/or the related worker to perform an electrical fire control process.
  • the method further includes:
  • the information on the occurrence of the electrical fire is transmitted, and the disconnection signal of the electrical equipment related to the electrical fire is transmitted to perform the disconnection control of the related electrical equipment, and the electrical fire control process is performed.
  • Embodiments of the present invention also provide a computer readable storage medium storing computer executable instructions for performing the above method of electrical fire monitoring.
  • the technical solution of the present application includes: a sampling unit, a judging unit, and a processing unit; wherein the sampling unit is adapted to obtain a leakage current on a load line of the electric energy measuring terminal through a high-precision residual current transformer in real time; It is suitable for judging whether an electrical fire occurs according to the leakage current on the load line acquired in real time; the processing unit is adapted to perform the on/off control of the circuit load through a preset switch according to the judgment result of whether or not an electrical fire occurs.
  • the embodiment of the invention can prevent the occurrence of electrical fire by integrating the fire monitoring function in the electric energy metering terminal; and can prevent the spread of the electric fire by timely circuit breaking treatment for the fire that has occurred, and at the same time provide rescue work for the fire extinguishing Safety protection to avoid electric shocks during fire fighting.
  • the electrical fire related information is sent to relevant departments and staff, and timely feedback and processing of electrical fires can be realized, and the work efficiency of handling electrical fires can be improved.
  • FIG. 1 is a structural block diagram of an energy metering terminal according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a connection circuit of an electric energy metering terminal according to an embodiment of the present invention
  • FIG. 3 is a flow chart of an electrical fire monitoring method according to an embodiment of the present invention.
  • FIG. 4 is a structural block diagram of an energy metering terminal according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a network structure of an energy metering terminal in an application process according to an embodiment of the present invention.
  • FIG. 1 is a structural block diagram of an energy metering terminal according to an embodiment of the present invention. As shown in FIG. 1, the method includes: a sampling unit, a determining unit, and a processing unit;
  • the high-precision residual current transformer refers to a current transformer having the function of sampling the residual current, for example, the model AKH-0.66L residual current transformer;
  • the determining unit is adapted to determine whether an electrical fire occurs according to a leakage current on the load line acquired in real time;
  • the judgment unit is specifically adapted to,
  • the leakage current value is compared with a preset alarm threshold value, and when the leakage current value is greater than the alarm threshold value, the judgment is made.
  • An electrical fire alarm occurs; when the leakage current value of the preset time is greater than the alarm threshold, it is determined that an electrical fire has occurred; otherwise, it is determined that no electrical fire has occurred.
  • the measurement range of high-precision residual current transformer 10 ⁇ 3000mA; the size of the alarm threshold is generally not less than 20mA, generally can be between 20 ⁇ 1000mA, the parameter range of the alarm threshold, the specific value is set according to the actual situation Preferably, it can be set to 300 mA; the preset duration can be set to 60 s, and can be adjusted according to the location of the electrical fire and the power supply range.
  • FIG. 2 is a schematic diagram of a connection circuit of an electric energy metering terminal according to an embodiment of the present invention.
  • a high-precision residual current transformer is disposed between a power supply side input and a load side output, and the load line of the electric energy metering terminal is obtained in real time.
  • Leakage current after the analog-to-digital conversion of the leakage current on the load line by the judging unit, the leakage current value is obtained. Since the leakage current on the load line is acquired in real time, the leakage current value of the analog-to-digital conversion varies according to the change of the leakage current on the load line.
  • the leakage current value is greater than the alarm threshold, it is judged that an electrical fire alarm occurs; when the leakage current value of the preset duration is greater than the alarm threshold, it is determined that an electrical fire occurs; otherwise, it is determined that no electrical fire has occurred.
  • the electric energy metering terminal of the embodiment of the invention can be used in a low-voltage three-phase four-wire power supply line, or a three-phase three-wire power supply line, or a single-phase power supply line.
  • the processing unit is adapted to perform on-off control of the circuit load by a switch provided in advance based on the determination result of whether or not an electrical fire has occurred.
  • the energy metering terminal of the embodiment of the invention further includes an expansion unit and an extended communication interface;
  • the expansion unit is adapted to add a sensor for determining whether an electrical fire occurs in addition to the high-precision residual current transformer on the power metering terminal through the expansion interface; here, the sensor that can be used to determine whether an electrical fire occurs is that the temperature can be collected, A sensor for determining whether or not electrical fire information has occurred, such as smoke.
  • the extension judging unit is adapted to determine whether an electrical fire has occurred according to the information acquired by the sensor on the extension unit, and send a judgment result of whether an electrical fire has occurred to the processing unit;
  • the extension communication unit is adapted to acquire, from the extension determination unit, information obtained by the sensor for determining whether an electrical fire has occurred and send it to the primary station control center, and/or transmit a determination result of the occurrence of the electrical fire to the communication terminal of the relevant worker And/or sending an on/off signal of electrical equipment related to electrical fires to control the on and off of related electrical equipment,
  • the extended communication port is mainly realized by extending the local communication connection, including wired or wireless parts; mainly including small wireless (RF433, RF470 and other free frequency bands), ZigBee, WiFi, PLC, RS485, M-BUS, etc.
  • small wireless RF433, RF470 and other free frequency bands
  • ZigBee ZigBee
  • WiFi Wireless Fidelity
  • PLC Personal Communications
  • RS485, M-BUS etc.
  • the wireless signal that controls the switch of the electrical related device is sent through ZigBee or WiFi to realize the switch control of the circuit; the operator network is used to obtain information for judging whether an electrical fire has occurred and sent to the control center of the main station; The operator sends the judgment result of the electrical fire to the communication terminal of the relevant staff.
  • FIG. 3 is a flowchart of an electrical fire monitoring method according to an embodiment of the present invention. As shown in FIG. 3, the method includes:
  • Step 300 Acquire a leakage current on a load line of the energy metering terminal in real time through a high-precision residual current transformer;
  • Step 301 Determine whether an electrical fire occurs according to a leakage current on a load line acquired in real time
  • the step specifically includes: performing analog-to-digital conversion on the leakage current on the load line acquired in real time. After the leakage current value, the leakage current value is compared with a preset alarm threshold. When the leakage current value is greater than the alarm threshold, it is determined that an electrical fire alarm occurs; when the preset current length is greater than the alarm value At the threshold, it is determined that an electrical fire has occurred; otherwise, it is determined that no electrical fire has occurred.
  • Step 302 Perform on/off control of the circuit load by a preset switch according to a determination result of whether or not an electrical fire has occurred.
  • the method of the embodiment of the present invention further includes: adding, by using an expansion interface, a sensor other than the high-precision residual current transformer that can be used to determine whether an electrical fire occurs, and obtaining an electrical fire obtained by the sensor for determining whether an electrical fire occurs. Information used to determine if an electrical fire has occurred.
  • Information for determining whether an electrical fire has occurred or information for determining that an electrical fire has occurred is transmitted to the communication center of the primary station control center and/or the related worker to perform an electrical fire control process.
  • the disconnection signal of the electrical equipment related to the electrical fire is transmitted, the disconnection control of the related electrical equipment is performed, and the electrical fire control process is performed.
  • the method of the embodiment of the invention is used for determining the electrical fire on the low-voltage three-phase four-wire power supply line, or the three-phase three-wire power supply line, or the single-phase power supply line.
  • the electric energy metering terminal of the invention can realize basic electric energy metering function, and can be applied to electrical fire monitoring in industrial and mining enterprises, national key fire fighting units, shopping malls, office buildings, institutions, schools, hospitals, civil buildings, high-end entertainment places and the like.
  • FIG. 4 is a structural block diagram of an electric energy metering terminal according to an embodiment of the present invention.
  • a conventional unit including a metering unit, a storage unit, a clock unit, a power supply, a display unit, and a button unit of the electric energy metering terminal is included; among them,
  • the measuring unit is suitable for measuring real-time voltage, current, power, power factor, frequency, etc., measuring current and historical active power, demand and so on.
  • the storage unit stores the meter parameters, historical power, demand, frozen data, and load curve.
  • the clock unit maintains the system calendar clock accurately, facilitates multi-rate metering, and records the event occurrence time.
  • the power supply unit completes the DC power supply required for the smart meter (for example, the mains is converted to DC +3.3V, +5V, 12V, etc.) to realize the power failure detection function.
  • the display unit displays the measured voltage, current, power, power factor, frequency parameter, current and historical power, demand information, and alarm information.
  • Button unit data input, display item query, parameter change, manual closing, etc.
  • the sampling unit is adapted to obtain the leakage current on the load line of the energy metering terminal in real time through the high precision residual current transformer;
  • the determining unit is adapted to determine whether an electrical fire occurs according to the leakage current on the load line acquired in real time; specifically, the determining unit is configured to convert the leakage current on the load line obtained in real time into a leakage current value through an analog to digital value, The leakage current value is compared with a preset alarm threshold. When the leakage current value is greater than the alarm threshold, it is determined that an electrical fire alarm occurs; when the preset leakage current value is greater than the alarm threshold, the determination occurs. Electrical fire; otherwise, it is judged that no electrical fire has occurred.
  • the processing unit is adapted to perform on-off control of the circuit load by a switch provided in advance based on the determination result of whether or not an electrical fire has occurred.
  • a temperature sensor, a smoke sensor, a fire detector, a gas leak infrared detector, an access detector, and the like which can be used to determine whether an electrical fire has occurred, may be connected through the expansion unit;
  • the extended communication unit is suitable for remotely pulling the brake through the command of the main station control center when the electrical fire is judged to occur, and the power processing unit can automatically perform the power-off operation, terminate the user load, and effectively prevent the occurrence of electrical fire or Effectively control the spread of electrical fires.
  • the storage unit and the clock unit provide an important basis for obtaining complete electrical fire information and subsequent adjustment analysis according to the monitoring and judgment of the electrical fire, or the time of the electrical fire event and the event record of the processing unit.
  • FIG. 5 is a schematic diagram of a network structure of an electric energy metering terminal in an application process according to an embodiment of the present invention, wherein the electric energy metering terminal has a sampling unit, a judging unit and a processing unit built therein, as shown in FIG. 5, through the extension of the circuit and the main station.
  • the networking of the control center, the fire control center and the user terminal enables the judgment information of the electrical fire to be timely fed back to the relevant part to provide technical support for the timely handling of the electrical fire.
  • the solution provided by the embodiment of the invention can prevent the occurrence of electrical fire by integrating the fire monitoring function in the electric energy metering terminal; and the timely occurrence of the on-and-off treatment of the fire that has occurred can greatly reduce the spreading speed of the electric fire, and at the same time Fire fighting provides safety for rescue work and avoids electric shocks during fire fighting.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Alarm Systems (AREA)

Abstract

一种电能计量终端和电气火灾监控的方法,包括:采样单元,适用于通过高精度剩余电流互感器实时获取电能计量终端的负载线路上的漏电流(300);判断单元,适用于根据实时获取的负载线路上的漏电流判断是否发生电气火灾(301);处理单元,适用于根据是否发生电气火灾的判断结果,通过预先设置的开关进行电路负荷的通断控制(302)。通过在电能计量终端集成火灾监控功能,可以预防电气火灾的发生;对已发生的火灾,通过及时的电路通断处理,可以大大降低电气火灾的蔓延速度,同时为消防灭火提供救援工作的安全保障,避免消防灭火过程中触电事件。

Description

一种电能计量终端及电气火灾监控方法 技术领域
本申请涉及但不限于电气火灾监控技术,尤指一种电能计量终端及电气火灾监控方法。
背景技术
电气火灾监控属于先期预报警系统,与传统火灾自动报警系统不同的是,电气火灾监控系统早期报警是为了避免损失,而传统火灾自动报警系统是为了减少损失。电气火灾与传统火灾,通常同时存在,相互影响。建筑物火灾频频发生,会给国家和人民生命财产造成巨大损失,而电气故障引发的火灾次数和电气火灾造成的损失占各类火灾的首位。
火灾发生的时候,为了保证救火的安全,一般要求着火的建筑立即断电。断电操作可以是系统自动断电,也可以采用人工断电,这取决于建筑是否设置自动断电装置。一般情况下,民用建筑内不设置自动断电装置,最多只设置消防(火警)报警系统,在火灾发生时,报警系统发出报警信号由值班人员进行断电操作。没有报警系统的建筑,救火时,消防人员也将通知有关人员进行断电操作。这种传统的方式不能及时有效地自动切断电源、控制防止火势蔓延,同时给消防灭火带来障碍,极易引起触电事故,严重威胁着人民生命及财产安全。
电网安全也是电力系统维护和最终用户关心的问题,因为随着时间的推移,电缆因工作条件不一样会出现不同程度的老化现象进而产生漏电,而电缆漏电不仅能源浪费,更重要的是可能引起电气火灾并因此危及重大生命财产安全。目前的电能计量终端如智能电表,通常安装在家庭生活、商业活动场所、工厂等区域,电能计量终端仅用于对电量进行计量及上报等基本电能计量功能。现有的电气火灾的处理方法,无法对电气火灾蔓延进行及时的控制,不能及时切断电源,影响消防灭火过程的安全。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本发明实施例提供一种电能计量终端及电气火灾监控方法,能够实现基本电能计量的同时实现对火灾的监控,提升电气火灾判断和断电处理的及时,为预防火灾发生、防止火灾扩大、及进行安全消防灭火提供的安全保障。
本发明实施例提供了一种电能计量终端,其特征在于,包括:采样单元、判断单元和处理单元;其中,
采样单元,设置为通过高精度剩余电流互感器实时获取电能计量终端的负载线路上的漏电流;
判断单元,设置为根据实时获取的负载线路上的漏电流判断是否发生电气火灾;
处理单元,设置为根据是否发生电气火灾的判断结果,通过预先设置的开关进行电路负荷的通断控制。
可选地,其中,所述判断单元是设置为,
对实时获取的所述负载线路上的漏电流通过模数转换为漏电流数值后,将漏电流数值与预先设置的报警阀值进行比较,当漏电流数值大于所述报警阀值时,判定发生电气火灾预警;当预设时长内漏电流数值均大于所述报警阀值时,判定发生电气火灾;当漏电流数值小于或等于所述报警阀值时,或者预设时长内漏电流数值均小于或等于所述报警阀值时,判定未发生电气火灾。
可选地,其中,该电能计量终端设置于低压三相四线供电线路、或三相三线供电线路、或单相供电线路。
可选地,该电能计量终端还包括:
扩展单元,设置为通过扩展接口在电能计量终端上添加除高精度剩余电流互感器以外的可用于判断是否发生电气火灾的传感器;
扩展判断单元,设置为用于根据扩展单元上的传感器获取的信息,判断是否发生电气火灾,并将是否发生电气火灾的判断结果发送给所述处理单元;
扩展通信单元,设置为从扩展判断单元获取用于判断是否发生电气火灾的信息并将所述信息发送到主站控制中心、和/或发送发生电气火灾的判断结果到相关工作人员的通信终端、和/或发送与电气火灾相关的电气设备的通断信号,以控制相关电气设备的通断,进行电气火灾的控制处理。
另一方面,本发明实施例还提供一种电气火灾监控方法,包括:
通过高精度剩余电流互感器实时获取电能计量终端的负载线路上的漏电流;
根据实时获取的负载线路上的漏电流判断是否发生电气火灾;
根据是否发生电气火灾的判断结果,通过预先设置的开关进行电路负荷的通断控制。
可选地,其中,所述根据采样获得的负载线路上的漏电流判断是否发生电气火灾具体包括:
对实时获取的所述负载线路上的漏电流通过模数转换为漏电流数值后,将漏电流数值与预先设置的报警阀值进行比较,当漏电流数值大于所述报警阀值时,判定发生电气火灾预警;当预设时长内漏电流数值均大于报警阀值时,判定发生电气火灾;当漏电流数值小于或等于所述报警阀值时,或者预设时长内漏电流数值均小于或等于所述报警阀值时,判定未发生电气火灾。
可选地,该方法还包括:通过扩展接口在电能计量终端上添加除高精度剩余电流互感器以外的可用于判断是否发生电气火灾的传感器,从所述传感器获取用于判断是否发生电气火灾的信息,以判断是否发生电气火灾。
可选地,该方法还包括:
将用于判断是否发生电气火灾的信息或判断发生电气火灾的信息发送到主站控制中心、和/或相关工作人员的通信终端,以进行电气火灾的控制处理。
可选地,该方法还包括:
根据判断发生电气火灾的信息,发送与电气火灾相关的电气设备的断开信号,以进行相关电气设备的断开控制,进行电气火灾的控制处理。
本发明实施例还提供一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行上述电气火灾监控的方法。
与相关技术相比,本申请技术方案包括:采样单元、判断单元和处理单元;其中,采样单元,适用于通过高精度剩余电流互感器实时获取电能计量终端的负载线路上的漏电流;判断单元,适用于根据实时获取的负载线路上的漏电流判断是否发生电气火灾;处理单元,适用于根据是否发生电气火灾的判断结果,通过预先设置的开关进行电路负荷的通断控制。本发明实施例通过在电能计量终端集成火灾监控功能,可以预防电气火灾的发生;对已发生火灾,可以通过及时的电路通断处理,大大降低电气火灾的蔓延速度,同时为消防灭火提供救援工作的安全保障,避免消防灭火过程中触电事件。另外,通过扩展的通信端口,将电气火灾相关信息发送到相关部门和工作人员,可以实现电气火灾的及时反馈和处理,提高处理电气火灾的工作效率。
在阅读并理解了附图和详细描述后,可以明白其它方面。
附图概述
此处所说明的附图用来提供对本发明实施例的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1为本发明实施例的电能计量终端的结构框图;
图2为本发明实施例的电能计量终端的连接电路示意图;
图3为本发明实施例的电气火灾监控方法的流程图;
图4为本发明实施例的电能计量终端的结构框图;
图5是本发明实施例的电能计量终端在应用过程中的网络结构示意图。
本发明的较佳实施方式
下文中将结合附图对本发明的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
图1为本发明实施例的电能计量终端的结构框图,如图1所示,包括:采样单元、判断单元和处理单元;其中,
采样单元,适用于通过高精度剩余电流互感器实时获取电能计量终端的 负载线路上的漏电流;这里,高精度剩余电流互感器是指具备采样剩余电流的功能的电流互感器,例如型号为AKH-0.66L剩余电流互感器;
判断单元,适用于根据实时获取的负载线路上的漏电流判断是否发生电气火灾;
判断单元具体适用于,
对实时获取的所述负载线路上的漏电流通过模数转换为漏电流数值后,将漏电流数值与预先设置的报警阀值进行比对,当漏电流数值大于所述报警阀值时,判断发生电气火灾预警;当预设时长内漏电流数值均大于报警阀值时,判定发生电气火灾;否则,判断未发生电气火灾。
需要说明的是,高精度剩余电流互感器测量范围:10~3000mA;报警阈值的大小一般不小于20mA一般的可以取20~1000mA之间,报警阈值的参数范围,具体数值大小根据实际情况设定,较佳地,可以设定为300mA;预设时长可以设定为60S,根据电气火灾所处位置和供电范围等,可以进行调整。
图2为本发明实施例的电能计量终端的连接电路示意图,如图2所示,在供电侧输入和负载侧输出之间设置高精度剩余电流互感器,实时获取电能计量终端的负载线路上的漏电流,通过判断单元对负载线路上的漏电流进行模数转换后,得到漏电流数值。由于负载线路上的漏电流是实时获取的,因此模数转换的漏电流数值根据负载线路上的漏电流的变化而变化。当出现漏电流数值大于报警阀值时,判断发生电气火灾预警;当预设时长内漏电流数值均大于报警阀值时,判定发生电气火灾;否则,判断未发生电气火灾。
本发明实施例的电能计量终端可以设置在低压三相四线供电线路、或三相三线供电线路、或单相供电线路中使用。
需要说明的是,以低压三相系统为例,当电路正常(三相线和中性线共同穿过剩余电流互感器的铁芯线圈)时,三相电路中的电流矢量和为零(Ia+Ib+Ic+In=0),高精度剩余电流互感器实时获取电能计量终端的负载线路上的漏电流为零(Id=0);当任一相或中性线发生漏电时,三相电路中的电流矢量和不等于零(Ia+Ib+Ic+In≠0),高精度剩余电流互感器实时获取 电能计量终端的负载线路上的漏电流(Id≠0)。根据报警阈值的设定,可以判断电路是否发生电气火灾。
处理单元,适用于根据是否发生电气火灾的判断结果,通过预先设置的开关进行电路负荷的通断控制。
本发明实施例的电能计量终端还包括扩展单元和扩展通信接口;其中,
扩展单元,适用于通过扩展接口在电能计量终端上添加除高精度剩余电流互感器以外的可用于判断是否发生电气火灾的传感器;这里,可用于判断是否发生电气火灾的传感器是指可以采集温度、烟雾等用于判断是否发生电气火灾信息的传感器。
扩展判断单元,适用于根据扩展单元上传感器获取的信息,判断是否发生电气火灾,并将是否发生电气火灾的判断结果发送给处理单元;
扩展通信单元,适用于从扩展判断单元获取所述传感器获得的用于判断是否发生电气火灾的信息并发送到主站控制中心、和/或发送发生电气火灾的判断结果到相关工作人员的通信终端、和/或发送与电气火灾相关的电气设备的通断信号,以控制相关电气设备的通断,
进行电气火灾的控制处理。
需要说明的是,扩展的通信端口主要通过扩展本地的通信连接实现,包括有线或无线部分;主要包括小无线(RF433、RF470等免费频段)、ZigBee、WiFi、PLC、RS485、M-BUS等,当然还可以通过运营商的2G、3G、4G等无线网络实现扩展。例如、当发现电气火灾时,通过ZigBee、WiFi发送控制电气相关设备开关的无线信号,实现电路的开关控制;通过运营商网络用于获取判断是否发生电气火灾的信息并发送到主站控制中心;通过运营商发送发生电气火灾的判断结果到相关工作人员的通信终端。
图3为本发明实施例的电气火灾监控方法的流程图,如图3所示,包括:
步骤300、通过高精度剩余电流互感器实时获取电能计量终端的负载线路上的漏电流;
步骤301、根据实时获取的负载线路上的漏电流判断是否发生电气火灾;
本步骤具体包括:对实时获取的所述负载线路上的漏电流通过模数转换 为漏电流数值后,将漏电流数值与预先设置的报警阀值进行比对,当漏电流数值大于所述报警阀值时,判断发生电气火灾预警;当预设时长内漏电流数值均大于报警阀值时,判定发生电气火灾;否则,判断未发生电气火灾。
步骤302、根据是否发生电气火灾的判断结果,通过预先设置的开关进行电路负荷的通断控制。
本发明实施例的方法还包括:通过扩展接口在电能计量终端上添加除高精度剩余电流互感器以外的可用于判断是否发生电气火灾的传感器,获取所述传感器获得的用于判断是否发生电气火灾的信息,用于判断是否发生电气火灾。
本发明实施例的方法还包括:
将用于判断是否发生电气火灾的信息或判断发生电气火灾的信息发送到主站控制中心、和/或相关工作人员的通信终端,以进行电气火灾的控制处理。
本发明实施例的方法还包括:
根据判断发生电气火灾的信息,发送与电气火灾相关的电气设备的断开信号,进行相关电气设备的断开控制,进行电气火灾的控制处理。
本发明实施例的方法用于低压三相四线供电线路、或三相三线供电线路、或单相供电线路上电气火灾的判断。
以下通过具体实施例对本发明电能计量终端的工作过程进行清楚详细的说明,实施例并不用于限制本发明的保护范围。
实施例1
本发明电能计量终端能够实现基本的电能计量功能,可以应用在工矿企业、国家重点消防单位、商场、写字楼、机关、学校、医院、民用建筑、高档娱乐场所等领域的电气火灾监控。
图4为本发明实施例的电能计量终端的结构框图,如图4所示,包含有电能计量终端原有的计量单元、存储单元、时钟单元、电源供电、显示单元、按键单元等常规单元;其中,
计量单元,适用于测量实时电压、电流、功率、功率因数、频率等,计量当前及历史有功电量、需量等。
存储单元,存储电表参数、历史电量、需量、冻结数据、负荷曲线。
时钟单元,维持系统日历时钟准确,便于实现多费率计量,同时记录事件发生时刻等。
电源单元,完成智能电表所需的直流电源供电(如市电转换为直流+3.3V、+5V、12V等),实现掉电检测功能。
显示单元,显示实测电压、电流、功率、功率因素、频率参数,当前及历史电量、需量信息,告警信息等。
按键单元,数据的输入、显示项目查询、参数更改、手动合闸等。
本地通信单元(下行通信)、小无线(RF433、RF470等免费频段)、ZigBee、WiFi、PLC、RS485、M-BUS等通信模块,适用于实现远程集抄、控制功能
为了实现电气火灾的判断,添加了采样单元、判断单元和处理单元;
采样单元,适用于通过高精度剩余电流互感器实时获取电能计量终端的负载线路上的漏电流;
判断单元,适用于根据实时获取的负载线路上的漏电流判断是否发生电气火灾;具体的,判断单元用于对实时获取的所述负载线路上的漏电流通过模数转换为漏电流数值后,将漏电流数值与预先设置的报警阀值进行比对,当漏电流数值大于所述报警阀值时,判断发生电气火灾预警;当预设时长内漏电流数值均大于报警阀值时,判定发生电气火灾;否则,判断未发生电气火灾。
处理单元,适用于根据是否发生电气火灾的判断结果,通过预先设置的开关进行电路负荷的通断控制。
为了更为及时的进行电气火灾的处理,通过扩展单元连接可温度传感器、烟雾传感器、火警探测、燃气泄漏红外探测器、门禁探测器等可用于判断是否发生电气火灾的传感器;
扩展通信单元,适用于当判断发生电气火灾时,通过主站控制中心命令远程拉闸,通过电能计量终端的处理单元,可以实现自动执行断电操作,终止用户负载,有效预防电气火灾的发生或,有效控制电气火灾的蔓延。
存储单元和时钟单元根据电气火灾的监控和判断,或进行电气火灾事件的时间和处理单元的事件记录,为获取完整的电气火灾信息和后续调整分析提供重要依据。
图5是本发明实施例的电能计量终端在应用过程中的网络结构示意图,其中,电能计量终端内置了采样单元、判断单元和处理单元,如图5所示,通过电路的扩展和与主站控制中心、消防监控中心和用户终端的联网,使电气火灾的判断信息可以及时的反馈到相关部分,对电气火灾的及时处理提供技术支持。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器、磁盘或光盘等。可选地,上述实施例的全部或部分步骤也可以使用一个或多个集成电路来实现。相应地,上述实施例中的各模块/单元可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。本发明不限制于任何特定形式的硬件和软件的结合。
虽然本发明所揭露的实施方式如上,但所述的内容仅为便于理解本发明而采用的实施方式,并非用以限定本发明。任何本发明所属领域内的技术人员,在不脱离本发明所揭露的精神和范围的前提下,可以在实施的形式及细节上进行任何的修改与变化,但本发明的专利保护范围,仍须以所附的权利要求书所界定的范围为准。
工业实用性
本发明实施例提供的方案,通过在电能计量终端集成火灾监控功能,可以预防电气火灾的发生;对已发生的火灾,通过及时的电路通断处理,可以大大降低电气火灾的蔓延速度,同时为消防灭火提供救援工作的安全保障,避免消防灭火过程中触电事件。

Claims (10)

  1. 一种电能计量终端,包括:
    采样单元,设置为通过高精度剩余电流互感器实时获取电能计量终端的负载线路上的漏电流;
    判断单元,设置为根据实时获取的负载线路上的漏电流判断是否发生电气火灾;
    处理单元,设置为根据是否发生电气火灾的判断结果,通过预先设置的开关进行电路负荷的通断控制。
  2. 根据权利要求1所述的电能计量终端,其中,所述判断单元是设置为:
    对实时获取的所述负载线路上的漏电流通过模数转换为漏电流数值后,将漏电流数值与预先设置的报警阀值进行比较;当漏电流数值大于所述报警阀值时,判定发生电气火灾预警;当预设时长内漏电流数值均大于所述报警阀值时,判定发生电气火灾;当漏电流数值小于或等于所述报警阀值时,或者预设时长内漏电流数值均小于或等于所述报警阀值时,判定未发生电气火灾。
  3. 根据权利要求1或2所述的电能计量终端,其中,该电能计量终端设置于低压三相四线供电线路、或三相三线供电线路、或单相供电线路。
  4. 根据权利要求1~3任一项所述的电能计量终端,还包括:
    扩展单元,设置为通过扩展接口在电能计量终端上添加除高精度剩余电流互感器以外的可用于判断是否发生电气火灾的传感器;
    扩展判断单元,设置为根据扩展单元上的传感器获取的信息,判断是否发生电气火灾,并将是否发生电气火灾的判断结果发送给所述处理单元;
    扩展通信单元,设置为从扩展判断单元获取用于判断是否发生电气火灾的信息并将所述信息发送到主站控制中心、和/或发送发生电气火灾的判断结果到相关工作人员的通信终端、和/或发送与电气火灾相关的电气设备的通断信号,以控制相关电气设备的通断,进行电气火灾的控制处理。
  5. 一种电气火灾监控方法,包括:
    通过高精度剩余电流互感器实时获取电能计量终端的负载线路上的漏电流;
    根据实时获取的负载线路上的漏电流判断是否发生电气火灾;
    根据是否发生电气火灾的判断结果,通过预先设置的开关进行电路负荷的通断控制。
  6. 根据权利要求5所述的方法,其中,所述根据采样获得的负载线路上的漏电流判断是否发生电气火灾具体包括:
    对实时获取的所述负载线路上的漏电流通过模数转换为漏电流数值后,将漏电流数值与预先设置的报警阀值进行比较;当漏电流数值大于所述报警阀值时,判定发生电气火灾预警;当预设时长内漏电流数值均大于报警阀值时,判定发生电气火灾;当漏电流数值小于或等于所述报警阀值时,或者预设时长内漏电流数值均小于或等于所述报警阀值时,判定未发生电气火灾。
  7. 根据权利要求5或6所述的方法,还包括:通过扩展接口在电能计量终端上添加除高精度剩余电流互感器以外的可用于判断是否发生电气火灾的传感器,从所述传感器获取用于判断是否发生电气火灾的信息,以判断是否发生电气火灾。
  8. 根据权利要求7所述的方法,还包括:
    将所述用于判断是否发生电气火灾的信息或判断发生电气火灾的信息发送到主站控制中心、和/或相关工作人员的通信终端,以进行电气火灾的控制处理。
  9. 根据权利要求7所述的方法,还包括:
    根据判断发生电气火灾的信息,发送与电气火灾相关的电气设备的断开信号,以进行相关电气设备的断开控制,进行电气火灾的控制处理。
  10. 一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行上述权利要求5-9任一项所述的方法。
PCT/CN2015/084351 2015-01-23 2015-07-17 一种电能计量终端及电气火灾监控方法 WO2016115848A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510036076.4 2015-01-23
CN201510036076.4A CN104658163A (zh) 2015-01-23 2015-01-23 一种电能计量终端及电气火灾监控方法

Publications (1)

Publication Number Publication Date
WO2016115848A1 true WO2016115848A1 (zh) 2016-07-28

Family

ID=53249230

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/084351 WO2016115848A1 (zh) 2015-01-23 2015-07-17 一种电能计量终端及电气火灾监控方法

Country Status (2)

Country Link
CN (1) CN104658163A (zh)
WO (1) WO2016115848A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108534839A (zh) * 2018-06-22 2018-09-14 浙江源控节能科技有限公司 电力安全检测系统
CN113176523A (zh) * 2021-04-27 2021-07-27 深圳供电局有限公司 一种基于多传感器的电力设备火灾预警方法及系统
CN113726014A (zh) * 2021-09-01 2021-11-30 广东省珩祥安全科技有限公司 基于断路器的用电监控方法及系统
CN113990019A (zh) * 2021-10-12 2022-01-28 广西电网有限责任公司河池供电局 一种具有电气火灾预警的应急电源自动投切装置及方法
CN114167158A (zh) * 2021-10-13 2022-03-11 安徽先兆科技有限公司 一种常见用电器电气安全隐患智能识别方法及系统
CN114333210A (zh) * 2021-11-19 2022-04-12 浙江弘锐物联科技有限公司 一种联网型组合式电气火灾探测器
CN116665424A (zh) * 2023-07-27 2023-08-29 小熊电子科技秦皇岛有限公司 一种火灾自动报警消防联动系统
CN116665393A (zh) * 2023-05-30 2023-08-29 营口天成消防设备有限公司 一种电气火灾监控方法及系统

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104658163A (zh) * 2015-01-23 2015-05-27 中兴通讯股份有限公司 一种电能计量终端及电气火灾监控方法
CN108171957B (zh) * 2016-12-07 2021-11-30 中兴通讯股份有限公司 抄表方法及装置、系统、通信网关
CN106597080A (zh) * 2016-12-31 2017-04-26 中车太原机车车辆有限公司 铁路机车用牵引电机固定分路电阻电流监测装置和方法
CN107154093A (zh) * 2017-05-23 2017-09-12 康体佳智能科技(深圳)有限公司 一种酒店入住自助系统
CN107093247A (zh) * 2017-05-23 2017-08-25 康体佳智能科技(深圳)有限公司 一种远程共享门锁系统
CN107134033A (zh) * 2017-05-23 2017-09-05 康体佳智能科技(深圳)有限公司 一种远程门禁识别系统
CN106997648A (zh) * 2017-06-02 2017-08-01 惠州市锦励科技有限公司 一种基于物联网的远程火灾监控电表系统
CN109377704B (zh) * 2018-12-08 2021-07-09 湖南明盛高新科技有限公司 一种电气设备专用的节能型电气火灾探测器
CN109995143A (zh) * 2019-04-24 2019-07-09 任金伟 一种电气设备安全装置
CN110942585A (zh) * 2019-11-12 2020-03-31 远江信息技术有限公司 一种楼宇监控系统及其监控方法
CN117975702A (zh) * 2024-04-01 2024-05-03 国网山东省电力公司菏泽供电公司 一种变电站防火监控识别方法及系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201066671Y (zh) * 2007-01-12 2008-05-28 利安电气(鹤山)科技发展有限公司 监控式剩余电流动作保护继电器
CN201266829Y (zh) * 2008-10-08 2009-07-01 巨邦电气有限公司 剩余电流式电气火灾监控探测器
CN201796452U (zh) * 2010-09-02 2011-04-13 佛山市南电开关有限公司 电气火灾监控探测器
CN201876970U (zh) * 2010-09-14 2011-06-22 深圳市华力特电气股份有限公司 一种电气火灾智能测控装置
CN103268835A (zh) * 2013-05-22 2013-08-28 中山市福瑞特科技产业有限公司 一种带功率显示功能的电气火灾监控探测器
US20140305779A1 (en) * 2013-04-11 2014-10-16 Joseph Mezzo Circuit breaker indication device
CN104658163A (zh) * 2015-01-23 2015-05-27 中兴通讯股份有限公司 一种电能计量终端及电气火灾监控方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201066671Y (zh) * 2007-01-12 2008-05-28 利安电气(鹤山)科技发展有限公司 监控式剩余电流动作保护继电器
CN201266829Y (zh) * 2008-10-08 2009-07-01 巨邦电气有限公司 剩余电流式电气火灾监控探测器
CN201796452U (zh) * 2010-09-02 2011-04-13 佛山市南电开关有限公司 电气火灾监控探测器
CN201876970U (zh) * 2010-09-14 2011-06-22 深圳市华力特电气股份有限公司 一种电气火灾智能测控装置
US20140305779A1 (en) * 2013-04-11 2014-10-16 Joseph Mezzo Circuit breaker indication device
CN103268835A (zh) * 2013-05-22 2013-08-28 中山市福瑞特科技产业有限公司 一种带功率显示功能的电气火灾监控探测器
CN104658163A (zh) * 2015-01-23 2015-05-27 中兴通讯股份有限公司 一种电能计量终端及电气火灾监控方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108534839A (zh) * 2018-06-22 2018-09-14 浙江源控节能科技有限公司 电力安全检测系统
CN113176523A (zh) * 2021-04-27 2021-07-27 深圳供电局有限公司 一种基于多传感器的电力设备火灾预警方法及系统
CN113176523B (zh) * 2021-04-27 2022-07-26 深圳供电局有限公司 一种基于多传感器的电力设备火灾预警方法及系统
CN113726014A (zh) * 2021-09-01 2021-11-30 广东省珩祥安全科技有限公司 基于断路器的用电监控方法及系统
CN113726014B (zh) * 2021-09-01 2022-07-12 广东省珩祥安全科技有限公司 基于断路器的用电监控方法及系统
CN113990019A (zh) * 2021-10-12 2022-01-28 广西电网有限责任公司河池供电局 一种具有电气火灾预警的应急电源自动投切装置及方法
CN114167158A (zh) * 2021-10-13 2022-03-11 安徽先兆科技有限公司 一种常见用电器电气安全隐患智能识别方法及系统
CN114333210A (zh) * 2021-11-19 2022-04-12 浙江弘锐物联科技有限公司 一种联网型组合式电气火灾探测器
CN116665393A (zh) * 2023-05-30 2023-08-29 营口天成消防设备有限公司 一种电气火灾监控方法及系统
CN116665393B (zh) * 2023-05-30 2023-12-22 营口天成消防设备有限公司 一种电气火灾监控方法及系统
CN116665424A (zh) * 2023-07-27 2023-08-29 小熊电子科技秦皇岛有限公司 一种火灾自动报警消防联动系统
CN116665424B (zh) * 2023-07-27 2023-10-20 小熊电子科技秦皇岛有限公司 一种火灾自动报警消防联动系统

Also Published As

Publication number Publication date
CN104658163A (zh) 2015-05-27

Similar Documents

Publication Publication Date Title
WO2016115848A1 (zh) 一种电能计量终端及电气火灾监控方法
CN201229642Y (zh) 电气火灾探测器
CN109524939B (zh) 一种基于电气火灾联网监测平台的远程断电干预方法
CN207503430U (zh) 家居安防监控报警系统
CN202472377U (zh) 用户燃气安全隐患预警及处理系统
CN209657457U (zh) 一种用电安全动态监控系统
CN207731442U (zh) 一种分布式智能电气火灾监控系统
CN104638768A (zh) 一种基于居民用电的智能配电安全控制终端
CN104460614A (zh) 一种酒店能耗智能远程监控和管理系统
CN203745860U (zh) 环网柜电缆接头温度监控系统
CN108415338A (zh) 一种学生宿舍安全监控系统及方法
CN204858743U (zh) 智能配电台区配电变压器侧安装的智能终端
CN205334531U (zh) 输电线路走廊树障及时清理智能预警系统
CN204243909U (zh) 一种sf6高压断路器气体泄漏远程监测装置
CN111768599B (zh) Ac380v回路电气安全管控方法及系统
CN205880608U (zh) 一种用于楼体厨房的火灾自动监控系统
CN205864070U (zh) 一种高压输电线路在线监测装置
CN205644932U (zh) 一种低功耗高压开关柜无线测温装置
CN112102598A (zh) 一种消防系统
CN204886193U (zh) 电力用户超容监测系统
CN206363485U (zh) 无线区域消防管理系统
CN212752303U (zh) 一种基于物联网以及有线组网的智慧用电监测预警系统
CN212158839U (zh) 一种基于nb-iot的配电设备运行监测系统
CN209979727U (zh) 电气综合监控模块
CN211294122U (zh) 一种楼宇智能化系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15878519

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15878519

Country of ref document: EP

Kind code of ref document: A1