WO2016114495A1 - 심해용 엄비리컬 케이블 - Google Patents

심해용 엄비리컬 케이블 Download PDF

Info

Publication number
WO2016114495A1
WO2016114495A1 PCT/KR2015/013064 KR2015013064W WO2016114495A1 WO 2016114495 A1 WO2016114495 A1 WO 2016114495A1 KR 2015013064 W KR2015013064 W KR 2015013064W WO 2016114495 A1 WO2016114495 A1 WO 2016114495A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
deep sea
fluid transmission
signal line
umbilical cable
Prior art date
Application number
PCT/KR2015/013064
Other languages
English (en)
French (fr)
Inventor
채광수
권지운
전동만
Original Assignee
엘에스전선 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150108666A external-priority patent/KR20160088782A/ko
Application filed by 엘에스전선 주식회사 filed Critical 엘에스전선 주식회사
Publication of WO2016114495A1 publication Critical patent/WO2016114495A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/14Submarine cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/18Protection against damage caused by wear, mechanical force or pressure; Sheaths; Armouring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/28Protection against damage caused by moisture, corrosion, chemical attack or weather
    • H01B7/282Preventing penetration of fluid, e.g. water or humidity, into conductor or cable

Definitions

  • umbilical cables must have stability to function effectively in complex environments such as high hydrostatic pressure, tidal currents and waves in deep seas, structural design technology, data analysis and manufacturing technology to withstand and balance loads due to vertical laying. Development and production are possible.
  • Umbrical cables are designed to have a resistance to hydrostatic pressure by implementing wet conditions with a structure that can penetrate seawater from the seabed, but it is difficult to realize complete wet conditions because they are arranged over a very long area in the real sea area. many.
  • FIG. 1 is a cross-sectional view of a conventional deep sea umbilical cable 1, in which a core 10 having three inner tubes 12 is located at the center thereof. Located. Four signal lines 22 are provided outside the core 10.
  • the inner tube 12 is divided into a hydraulic line and a chemical line to function.
  • the signal line 22 has a quad structure having four signal lines in which a plurality of core wires are connected.
  • the lines with relatively small stiffness may not be able to take place in the association process and thus may be separated, so that the association is not performed well. It may not work well and the shape may be broken and the roundness may not be maintained.
  • the central support can be effectively settled inside the core, and the union can be made smoothly by overcoming the stiffness difference between the lines when the core is fed together.
  • Embodiments of the present invention seek to be effectively seated inside the core by bringing the center support closer to other components within the core.
  • a core including at least one signal line and a fluid transmission line, and a central support positioned in the center of the core and in contact with and supporting the signal line and the fluid transmission line.
  • a central portion located at the center of the core, and a plurality of extensions extending from the central portion between the signal line and the fluid transmission line, the length R from the center of the core to the end of the extension portion and the combined outer diameter D of the core;
  • the curvature of the central portion and the plurality of extension portions may be formed to be the same as the curvature of the signal line or fluid transmission line in contact.
  • a core including at least one signal line and a fluid transmission line, a central portion positioned at the core, and a plurality of extensions extending from the central portion between the signal line and the fluid transmission line.
  • a center support wherein the center support comprises a first seating portion surrounding and supporting at least a portion of the signal line, and a second seating portion surrounding and supporting at least a portion of the fluid transmission line.
  • Umbilical cables may be provided.
  • the first seating portion may be formed between any two neighboring extensions of the plurality of extensions, and may be formed stepped with respect to the two extensions so as to cover at least a portion of the signal line.
  • the second seating part may be formed between any two adjacent ones of the plurality of extensions, and may be formed stepped with respect to the two extensions so as to cover at least a portion of the fluid transmission line.
  • the length of the groove formed by the first seating part may be longer than the length of the groove formed by the second seating part.
  • the center support may be provided with a deep sea umbilical cable, characterized in that it comprises a central portion located in the center of the core, and a plurality of extensions extending from the central portion between the signal line and the fluid transmission line.
  • the difference in bending strength of the two types of lines may be five or more times.
  • Deep sea umbilical cable according to the present invention may be made to further include a filler to fill the gap inside the core to mitigate the external impact.
  • Deep sea umbilical cable according to the present invention is provided on the outside of the core, further comprises a core sheath surrounding to maintain the shape of the core, the plurality of extensions may extend to the core sheath.
  • the deep sea umbilical cable according to the present invention may further include a plurality of fluid transmission lines disposed outside the core sheath.
  • Deep sea umbilical cable according to the present invention may be provided on the outside of the inner sheath to further include an outer armor of a dual structure to protect the internal structure, reinforce the tensile strength.
  • Deep sea umbilical cable according to the present invention is provided on the outside of the outer armor, it may further comprise an outer sheath to protect the interior from external impact or corrosion action.
  • 1 is a cross-sectional view of a conventional deep sea umbilical cable
  • Figure 4 is a cross-sectional view showing a core joint structure of the deep sea umbilical cable according to an embodiment of the present invention
  • Figure 5 is a configuration diagram showing the point where the twist of the center support during the core union of the deep sea umbilical cable according to an embodiment of the present invention
  • FIG. 7 is a perspective view of a deep sea umbilical cable according to another embodiment of the present invention.
  • FIG. 8 is a cross-sectional view showing a center support structure according to another embodiment of the present invention.
  • FIG. 9 is a cross-sectional view showing a center support structure according to another embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of a deep sea umbilical cable according to an embodiment of the present invention
  • Figure 3 is a perspective view of a deep sea umbilical cable according to an embodiment of the present invention
  • Figure 4 is an embodiment of the present invention
  • Fig. 1 is a cross-sectional view showing the core association structure of the deep sea umbilical cable according to the example.
  • Figure 5 is a block diagram showing a point where the twist of the center support when the core of the deep sea umbilical cable according to an embodiment of the present invention.
  • a deep sea umbilical cable 1000 is largely a core including at least one or more signal lines 210 and fluid transmission lines 110 and 120. And a central support 220 positioned in the center of the core 200 and in contact with and supported by the signal line 210 and the fluid transmission lines 110 and 120.
  • the signal line 210 having a relatively small rigidity is disposed as a core as much as possible, the bending stress applied to the signal line is minimized even in a severe bending environment, thereby enabling stable signal transmission.
  • the fluid transmission lines 110 and 120 located inside the core 200 may include a chemical line 120 for transmitting chemical injected to lower the viscosity of crude oil.
  • the chemical line 120 serves to transmit chemicals to reduce viscosity by spraying crude oil, that is, crude oil.
  • crude oil that is, crude oil.
  • ethylene glycol, alcohol, or the like may be used as a chemical substance to be injected to crude oil.
  • the chemical line 120 is made of a steel tube and the two chemical lines 120 may be made to have the same outer diameter.
  • the steel tube may be a tube made of Super Duplex Stainless Steel (SDSS).
  • the signal line 210 may have a quad structure in which four signal lines 212 in which a plurality of core lines 214 are stranded are provided. Insulation of the signal lines 212 may be made of a cross linking polyethylene (XLPE) material.
  • XLPE cross linking polyethylene
  • the four signal lines 212 may be associated by surrounding the outer side of the associated bedding 213.
  • the associated bedding 213 may be made of high density polyethylene (HDPE) having excellent wear resistance, corrosion resistance, and UV protection.
  • HDPE high density polyethylene
  • a shielding layer 215 made of copper is formed outside the associated bedding 213 to serve as a shield for smooth signal transmission of the signal line 212.
  • a center support 220 is provided at the center of the core 200, and the two signal lines 210 and the two chemical lines 120 are symmetrically disposed about the center support 220.
  • center supporter 220 the signal line 210, and the chemical line 120 pass through a die and undergo an association process.
  • the radius R of the center support 220 is greater than or equal to the value of a 2 measured at Point A. It is preferable to form.
  • a 1 since a 1 has a relationship that increases as D increases, it may represent a relationship between a 1 and D as follows.
  • Equation as above can be derived, and if this is more generalized by calculating the experimental average value through several experiments, it can be expressed as below.
  • the length of the extension portion 224 of the center support 220 is determined to satisfy the above formula in relation to the combined outer diameter D of the core 200, the center support It is possible to improve the support function of the 220 and increase the cohesion of the signal line 210 and the fluid transmission line (110, 120) to increase the coupling force of the association.
  • the extension portion 224 is preferably extended to the core sheath 250 to improve the support function of the central support 220 and for structural stability.
  • a plurality of fluid transmission lines 110 and 120 are additionally disposed around the core 200.
  • the fluid transmission lines 110 and 120 outside the core 200 are hydraulic lines for transmitting oil for hydraulic operation. 110).
  • the hydraulic line 110 forms a passage through which oil (oil) flows so as to deliver hydraulic pressure to equipment for hydraulic driving such as a hydraulic cylinder.
  • the fluid transmission line including the chemical line 120 and the hydraulic line 110 described above are all made of steel tubes, and the outer diameter thereof may also be the same size.
  • the steel tube may be a tube made of Super Duplex Stainless Steel (SDSS).
  • SDSS Super Duplex Stainless Steel
  • eight hydraulic lines 110 may be provided around the core 200, and two chemical lines 120 may be disposed inside the core 200.
  • Deep sea umbilical cable 1000 is provided between the fluid transmission line (110, 120) provided outside the core 200, the fluid transmission line (110, 120) and the core 200 ) May further include at least one filler 130 in surface contact.
  • the filler 130 is provided between the fluid transmission lines 110 and 120, that is, the hydraulic lines 110, which are provided outside the core 200, and the core 200 as well as the fluid transmission lines 110 and 120. It is formed to make a surface contact to uniformly transmit a high hydrostatic pressure to the core 200, it is possible to prevent local stress concentration on the inner core (200).
  • the filler 130 applied to the deep sea umbilical cable 1000 according to the present invention makes surface contact with the core 200 and the fluid transmission line, thereby ultimately supporting the deep sea umbilical cable 1000. To increase the structural stability.
  • eight pillars 130 are provided between the hydraulic lines 110, and the specific number, size, and arrangement of the pillars 130 may be modified as necessary.
  • the filler 130 may be formed to have a longer length than the length of the circular arc formed by the inner circumferential surface contacting the core 200.
  • Specific shape of the filler 130 may be variously modified according to the number, size, shape and arrangement of the core 200 and the fluid transmission line.
  • An inner sheath 140 may be provided outside the hydraulic line 110.
  • the inner sheath 140 serves to protect the core 200 and the fluid transmission line therein by absorbing the external shock, and both thermoplastic and thermosetting raw materials such as PVC, PE, and PU may be used.
  • the outer armor 150 may be provided outside the inner sheath 140.
  • the outer armor 150 has a dual structure, and may serve to protect the internal structure and to reinforce the tensile strength of the deep sea umbilical cable 1000.
  • An outer sheath 160 may be provided outside the outer armor 150.
  • the outer sheath 160 is provided at the outermost part of the deep sea umbilical cable 1000 to protect the deep sea umbilical cable 1000 from external impact or corrosion.
  • the outer sheath 160 may be a raw material such as HDPE having excellent wear resistance, corrosion resistance, and UV protection.
  • FIG. 6 is a cross-sectional view of a deep sea umbilical cable according to another embodiment of the present invention
  • Figure 7 is a perspective view of a deep sea umbilical cable according to another embodiment of the present invention
  • Figure 8 is another embodiment of the present invention It is sectional drawing which shows the center support structure which concerns on an example.
  • the deep sea umbilical cable 1000 also includes a core 200 including a signal line 210 and fluid transmission lines 110 and 120, and a signal line at a central portion of the core 200. And a central support 320 that contacts and supports the fluid transmission lines 110 and 120.
  • the signal line 210 may have a quad structure in which four signal lines 212 in which a plurality of core lines 214 are stranded are provided. Insulation of the signal lines 212 may be made of an XLPE material.
  • the four signal lines 212 may be associated by surrounding the associated bedding 213.
  • the associated bedding 213 may be made of HDPE as in the previous embodiment.
  • a signal line filler 211 is provided between the signal lines 212 to fill gaps so as to increase circular holding force.
  • the signal line filler 211 is a selectable component, and may be configured only by the associated bedding 213 outside the signal line 212.
  • a shielding layer 215 made of copper is formed outside the associated bedding 213 to serve as a shield for smooth signal transmission of the signal line 212.
  • the signal line inner sheath 216, the signal line armor 217, and the signal line outer sheath 218 may be sequentially formed outside the shielding layer 215.
  • the signal line inner sheath 216 and the signal line outer sheath 218 may be made of HDPE material in the same manner as the associated bedding 213.
  • center support 320 is also located at the center of the core 200 and serves to support and support the signal line 210 and the fluid transmission lines 110 and 120.
  • the center support 320 includes a central portion 322 positioned at the center of the core 200, and a plurality of extension portions 324 extending from the central portion 322 between the signal line 210 and the chemical line 120. ) Is made.
  • the center support 320 in this embodiment includes a first seating portion 326 and at least a portion of the fluid transmission lines 110 and 120 that surround and support at least a portion of the signal line 210. It includes a second seating portion 328 surrounding and supporting a portion.
  • the first seating portion 326 is formed between any two extension portions 324 adjacent to each other among the plurality of extension portions 324, and the signal line It may be formed stepped with respect to the two extensions 324 to wrap at least a portion of (210).
  • the extension part 224 of the central supporter 220 extends smoothly to the core sheath 250 and is signaled in a space between the extension parts 224 adjacent to each other.
  • the line 210 and the chemical line 120 are seated.
  • the first seating portion 326 is formed such that the signal line 210 is seated between the neighboring extension portions 324.
  • the first seating part 326 is formed in a groove shape with respect to the stepped point S positioned at a predetermined portion of the extension part 324, and the signal line 210. Grooves surrounding a portion of the fine shape may be formed to extend to the neighboring extension (324).
  • the first seating part 326 is a part surrounding a part of the signal line 210, and is bent with a part not surrounding the signal line 210 of the extension part 324 based on the step S. It is formed stepped.
  • the first seating portion 326 may be formed to face each other based on the center portion 322, and thus may be seated on the first seating portion 326 such that two signal lines 210 are symmetrical to each other.
  • the second seating portion 328 is formed between any two of the extension portion 324 adjacent to each other of the plurality of extension portion 324, to wrap at least a portion of the fluid transmission line (110, 120) It may be formed stepped with respect to the two extensions 324 to be.
  • the second seating part 328 may be formed to face each other between the first seating part 326.
  • the second seating part 328 is also formed in a groove shape with respect to the step S located at a predetermined portion of the extension part 324, and a groove shape surrounding a part of the chemical line 120 is fine. It may be formed to extend to this neighboring extension 324.
  • the second seating part 328 also covers a part of the chemical line 120, and is bent to be stepped with a part of the extension part 324 not covering the chemical line 120 based on the step S. It is formed.
  • the length of the groove formed by the first seating part 326 is longer than the length of the groove formed by the second seating part 328.
  • the radius of the signal line 210 is not only larger than the radius of the chemical line 120, but also to closely wrap the signal line 210 having a relatively small rigidity to broaden the structural stability.
  • Figure 9 shows a central support structure according to another embodiment of the present invention.
  • the first seating part 326 may be formed to have a recessed shape surrounding a part of the signal line 210, and may be smoothly connected to a portion of the extension part 324 that does not surround the signal line 210.
  • the second seating portion 328 may also be formed in a groove shape to surround a portion of the chemical line 120, and may be smoothly connected to a portion of the extension portion 324 that does not surround the chemical line 120.
  • the seating portion is formed in a groove shape
  • a variety of embodiments in which the stepped point S does not exist may be applied.
  • the center support 320 guides the signal line 210 and the chemical line 120. It is an important task to make sure that the unity and settlement are made smoothly.
  • the stiffness difference between the signal line 210 and the fluid transmission lines 110 and 120 may be expressed by bending stiffness, and the difference in bending strength between the two types of lines may be five times or more.
  • the difference in bending strength decreases to nearly 5 times, but the difference in bending strength is greater when the signal line armor 217 is not provided. You lose.
  • the difference in bending strength is 5 times or more, and the center support ( The first seating portion 326 and the second seating portion 328 formed at 320 may serve to smoothly federate by overcoming the difference in bending strength or rigidity.
  • the outer diameter of the signal line 210 may be increased or the armor may be increased to reduce the stiffness difference with the fluid transmission lines 110 and 120 made of steel tubes and to increase the rigidity of the signal line 210. 217) can not only consider the method of reinforcing, etc., the total cable outer diameter is increased to implement a compact structure, there is a problem that can increase the manufacturing cost.
  • first seating part 326 and the second seating part 328 have a stepped shape between the extension part 324, the first seating part 326 and the second seating part 328 are provided to be in close contact with the signal line 210 and the chemical line 120. It is possible to achieve an optimal structure for solving the above problems. That is, the structural stability of the core 200 including the signal line 210 and the fluid transmission lines 110 and 120 having such bending strength to rigidity can be improved.
  • first seating portion 326 and the second seating portion 328 wrap the signal line 210 and the fluid transmission lines 110 and 120 more stably, maintaining the union inside the core, and the roundness and shape bearing force. It can play a role of increasing the.
  • the deep sea umbilical cable according to the embodiments of the present invention described so far can be effectively seated inside the core by more closely contacting the center support with other components inside the core, and overcomes the stiffness difference between the lines when the core is combined. This can provide a structure where alliance can be made smoothly.

Abstract

심해용 엄비리컬 케이블이 개시된다. 본 발명에 따른 심해용 엄비리컬 케이블은 코어 내부 선재들의 밀착성 증대로 심해의 정수압에 효과적으로 대응할 수 있고, 심해의 높은 정수압에 대한 엄비리컬 케이블의 저항능력 및 내부 지지력을 높여 함몰 현상을 방지하고, 원형 유지력을 높일 수 있는 구조를 제공할 수 있다.

Description

심해용 엄비리컬 케이블
본 발명은 심해용 엄비리컬 케이블에 관한 것으로, 더욱 상세하게는 중심지지체를 코어 내부에 효과적으로 안착시킬 수 있고, 코어 연합 시 각 라인간의 강성차를 극복하여 연합이 원할하게 이루어질 수 있으며, 심해의 높은 정수압에 대한 저항능력 및 내부 지지력을 높여 함몰 현상을 방지하고, 원형 유지력을 높일 수 있는 심해용 엄비리컬 케이블에 관한 것이다.
최근 급성장하는 신흥국의 에너지 수요증가, 육지 자원의 고갈 등으로 인하여 에너지 부족과 고유가 현상이 지속되면서 심해 유전 및 해저 자원탐사가 점차 활발해지는 추세이다. 이러한 배경에서 해양 엔지니어링용 케이블인 엄비리컬 케이블(umbilical cable)에 대한 수요도 점차 증가하고 있다.
‘umbilical’은 탯줄이라는 의미가 내포되어 있으며 그만큼 엄비리컬 케이블은 해양 엔지니어링 분야에서 다양하고 중요한 역할을 수행하고 있다.
일반적으로 엄비리컬 케이블은 해양 엔지니어링에 사용되는 복합케이블의 통칭으로 사용되는데, 크게 지질탐사용, 석유 시추용, ROV용 등으로 나뉘며, 해저장비에 연결되어 장비에 전원을 공급하거나 제어하고 모니터링 장비의 신호를 전송하는 역할을 수행한다.
이러한 엄비리컬 케이블은 심해의 높은 정수압, 조류, 파도 등 복잡한 환경에서도 효과적으로 기능을 다할 수 있는 안정성과, 수직 포설에 의한 하중을 견디고 균형을 확보하는 구조설계 기술, 데이터 분석 및 제조 기술을 갖추어야만 개발과 생산이 가능하다.
특히, 심해의 경우, 예를 들어 수심 2,000m에서 대기압의 200배가 되는 등 매우 높은 정수압이 발생하는데, 이러한 높은 압력으로 인해 엄비리컬 케이블의 원형 유지 문제가 대두된다.
엄비리컬 케이블은 해저에서 바닷물이 스며들 수 있는 구조로 이루어져 wet condition을 구현함으로써 정수압에 대한 저항력을 갖도록 설계가 되지만, 실 해역에서는 매우 긴 영역에 걸쳐 배치되기 때문에 완전한 wet condition을 구현하는데 어려움이 많다.
또한, 엄비리컬 케이블 내부 구조상 공극이 많기 때문에 완전한 wet condition이 구현되지 않은 상태에서는 높은 정수압에 의한 함몰(collapse) 현상이 발생할 수 있다.
기존 엄비리컬 케이블의 일 예를 도면을 통해 설명하면, 도 1은 종래의 심해용 엄비리컬 케이블(1)의 단면도로서, 세 개의 이너튜브(12)를 구비한 코어(10)가 중심부에 위치한다. 그리고, 상기 코어(10) 외측으로는 신호라인(22)이 네 개 구비된다.
상기 이너튜브(12)는 유압라인과 케미컬라인으로 구분되어 기능하게 되며, 상기 신호라인(22)은 복수의 심선이 연선된 신호선이 4개 구비된 쿼드구조로 이루어진다.
상기 코어(10) 외측과 내측의 공극을 메우기 위하여 다양한 형태의 필러가 구비되고, 코어(10) 중심부에는 중심지지체(14)가 이너튜브(12)와 함께 연합되어 배치된다.
그런데 상기와 같은 종래의 심해용 엄비리컬 케이블(1)은 중심지지체(14)와 주변 구성들간 특히 이너튜브(12)와 밀착되지 않아 공극이 발생하기 때문에 전술한 높은 정수압에 대한 지지력이 약해지는 문제가 있다.
그리고, 상기 코어(10) 외측으로 신호라인(22)이 배치되기 때문에 가혹한 굽힘 환경에서 신호라인(22)에 가해지는 굽힘 응력(bending stress)이 커서 신호라인(22)에 포함된 신호선이 단선될 수 있는 문제가 있다.
또한, 다양한 형태의 필러를 적용하여 재료비 및 가공비가 증가하고, 다양한 설비를 마련해야 한다는 부담이 있다.
그리고, 상기 코어(10) 연합 시 코어(10)를 이루는 라인 재질 간에 강성차가 있는 경우 강성이 상대적으로 작은 라인은 연합과정에서 자리를 잡지 못하고 이탈할 수 있기 때문에 연합이 잘 이루어지지 않아 서로 밀착이 잘 안되며 모양이 깨짐으로써 진원도를 유지하지 못하는 경우가 발생할 수 있다.
따라서, 위와 같은 문제점을 해결하여 중심지지체를 코어 내부에 효과적으로 안착시킬 수 있고, 코어 연합 시 각 라인간의 강성차를 극복하여 연합이 원할하게 이루어질 수 있으며, 심해의 높은 정수압에 대한 저항능력 및 내부 지지력을 높여 함몰 현상을 방지하고, 원형 유지력을 높일 수 있는 심해용 엄비리컬 케이블의 필요성이 대두되고 있다.
본 발명의 실시예들은 중심지지체를 코어 내부의 다른 구성들과 더욱 밀착시킴으로써 효과적으로 코어 내부에 안착시키고자 한다.
또한, 코어 연합 시 각 라인간의 강성차를 극복하여 연합이 원할하게 이루어질 수 있는 구조를 제공하고자 한다.
또한, 코어 내부 라인들의 밀착성 증대로 심해의 정수압에 효과적으로 대응하고자 한다.
또한, 심해의 높은 정수압에 대한 엄비리컬 케이블의 저항능력 및 내부 지지력을 높여 함몰 현상을 방지하고, 원형 유지력을 높이고자 한다.
또한, 상대적으로 강성이 작은 신호 라인을 최대한 코어로 배치하여 가혹한 굽힘 환경에서도 굽힘 응력을 최소화하여 안정적인 신호 전송을 하고자 한다.
본 발명의 일 측면에 의하면 적어도 하나 이상의 신호라인과 유체전송라인을 포함하는 코어와, 상기 코어 중심부에 위치하며 신호라인 및 유체전송라인과 접촉하여 지지하는 중심지지체를 포함하며, 상기 중심지지체는 상기 코어 중심에 위치하는 중심부와, 상기 중심부로부터 상기 신호라인과 상기 유체전송라인 사이로 연장되는 복수의 연장부를 구비하고, 상기 코어의 중심에서부터 상기 연장부의 말단까지의 길이 R과 상기 코어의 연합 외경 D 사이에는 R ≥ α × tan(β/D) × D, α=0.7, β=0.64의 관계가 성립하는 것을 특징으로 하는 심해용 엄비리컬 케이블이 제공될 수 있다.
상기 중심부와 복수의 연장부가 이루는 곡률은 접촉하는 신호라인 또는 유체전송라인의 곡률과 동일하게 형성될 수 있다.
본 발명의 다른 측면에 의하면 적어도 하나 이상의 신호라인과 유체전송라인을 포함하는 코어 및, 상기 코어 중심에 위치하는 중심부와, 상기 중심부로부터 상기 신호라인과 상기 유체전송라인 사이로 연장되는 복수의 연장부를 구비하는 중심지지체를 포함하고, 상기 중심지지체는 상기 신호라인의 적어도 일부를 감싸며 지지하는 제1 안착부와, 상기 유체전송라인의 적어도 일부를 감싸며 지지하는 제2 안착부를 포함하여 이루어지는 것을 특징으로 하는 심해용 엄비리컬 케이블이 제공될 수 있다.
상기 제1 안착부는 상기 복수의 연장부 중 서로 이웃하는 임의의 두 연장부 사이에 형성되되, 상기 신호라인의 적어도 일부를 감쌀 수 있도록 상기 두 연장부에 대하여 단차지게 형성될 수 있다.
상기 제2 안착부는 상기 복수의 연장부 중 서로 이웃하는 임의의 두 연장부 사이에 형성되되, 상기 유체 전송라인의 적어도 일부를 감쌀 수 있도록 상기 두 연장부에 대하여 단차지게 형성될 수 있다.
상기 제1 안착부가 이루는 홈의 길이는 상기 제2 안착부가 이루는 홈의 길이보다 더 길게 이루어질 수 있다.
본 발명의 또 다른 측면에 의하면 서로 다른 굽힘강도(bending stiffness)를 갖는 두 종류의 라인을 구비하는 코어와, 상기 코어 중심부에 위치하며 상기 두 종류의 라인과 접촉하여 지지하는 중심지지체를 포함하며, 상기 중심지지체는 상기 코어 중심에 위치하는 중심부와, 상기 중심부로부터 상기 신호라인과 상기 유체전송라인 사이로 연장되는 복수의 연장부를 구비하는 것을 특징으로 하는 심해용 엄비리컬 케이블이 제공될 수 있다.
상기 두 종류의 라인의 굽힘강도 차이는 5배 이상일 수 있다.
본 발명에 따른 심해용 엄비리컬 케이블은 상기 코어 내부의 공극을 메우도록 채워져 외부충격을 완화하는 충진재를 더 포함하여 이루어질 수 있다.
본 발명에 따른 심해용 엄비리컬 케이블은 상기 코어 외측에 구비되며, 코어의 형상을 유지하도록 둘러싸는 코어쉬스를 더 포함하며, 상기 복수의 연장부는 상기 코어쉬스까지 연장될 수 있다.
본 발명에 따른 심해용 엄비리컬 케이블은 상기 코어쉬스 외측에 배치되는 복수의 유체전송라인을 더 포함하여 이루어질 수 있다.
본 발명에 따른 심해용 엄비리컬 케이블은 상기 코어쉬스 외측에 배치된 복수의 유체전송라인 사이에 배치되는 복수의 필러를 더 포함하여 이루어질 수 있다.
본 발명에 따른 심해용 엄비리컬 케이블은 상기 복수의 유체전송라인 외측에 구비되며, 외부 충격을 흡수하여 내부의 코어와 유체전송라인을 보호하는 내부쉬스를 더 포함하여 이루어질 수 있다.
본 발명에 따른 심해용 엄비리컬 케이블은 상기 내부쉬스 외측에 구비되어 내부 구조를 보호하고, 인장강도를 보강하는 이중구조의 외부아머를 더 포함하여 이루어질 수 있다.
본 발명에 따른 심해용 엄비리컬 케이블은 상기 외부아머 외측에 구비되며, 외부 충격이나 부식 작용으로부터 내부를 보호하는 외부쉬스를 더 포함하여 이루어질 수 있다.
본 발명의 실시예들은 중심지지체를 코어 내부의 다른 구성들과 더욱 밀착시킴으로써 효과적으로 코어 내부에 안착시킬 수 있다.
또한, 코어 연합 시 각 라인간의 강성차를 극복하여 연합이 원할하게 이루어질 수 있는 구조를 제공할 수 있다.
또한, 코어 내부 라인들의 밀착성 증대로 심해의 정수압에 효과적으로 대응할 수 있다.
또한, 심해의 높은 정수압에 대한 엄비리컬 케이블의 저항능력 및 내부 지지력을 높여 함몰 현상을 방지하고, 원형 유지력을 높일 수 있다.
또한, 상대적으로 강성이 작은 신호 라인을 최대한 코어로 배치하여 가혹한 굽힘 환경에서도 굽힘 응력을 최소화하여 안정적인 신호 전송을 할 수 있다.
도 1은 종래의 심해용 엄비리컬 케이블의 단면도
도 2는 본 발명의 일 실시예에 따른 심해용 엄비리컬 케이블의 단면도
도 3은 본 발명의 일 실시예에 따른 심해용 엄비리컬 케이블의 사시도
도 4는 본 발명의 일 실시예에 따른 심해용 엄비리컬 케이블의 코어 연합구조를 도시한 단면구성도
도 5는 본 발명의 일 실시예에 따른 심해용 엄비리컬 케이블의 코어 연합 시 중심지지체의 꼬임이 발생하는 지점을 도시한 구성도
도 6은 본 발명의 다른 실시예에 따른 심해용 엄비리컬 케이블의 단면도
도 7은 본 발명의 다른 실시예에 따른 심해용 엄비리컬 케이블의 사시도
도 8은 본 발명의 다른 실시예에 따른 중심지지체 구조를 도시한 단면도
도 9는 본 발명의 또 다른 실시예에 따른 중심지지체 구조를 도시한 단면도
이하, 첨부한 도면들을 참조하여 본 발명의 바람직한 실시예들을 상세히 설명하기로 한다. 그러나, 본 발명은 여기서 설명되는 실시예들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 오히려, 여기서 소개되는 실시예들은 개시된 내용이 철저하고 완전해질 수 있도록, 그리고 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 제공되는 것이다. 명세서 전체에 걸쳐서 동일한 참조번호들은 동일한 구성요소들을 나타낸다.
도 2는 본 발명의 일 실시예에 따른 심해용 엄비리컬 케이블의 단면도이고, 도 3은 본 발명의 일 실시예에 따른 심해용 엄비리컬 케이블의 사시도이며, 도 4는 본 발명의 일 실시예에 따른 심해용 엄비리컬 케이블의 코어 연합구조를 도시한 단면구성도이다. 도 5는 본 발명의 일 실시예에 따른 심해용 엄비리컬 케이블의 코어 연합 시 중심지지체의 꼬임이 발생하는 지점을 도시한 구성도이다.
도 2 내지 도 5를 참조하면, 본 발명의 일 실시예에 따른 심해용 엄비리컬 케이블(1000)은 크게, 적어도 하나 이상의 신호라인(210)과 유체전송라인(110, 120)을 포함하는 코어(200)와, 상기 코어(200) 중심부에 위치하며 신호라인(210) 및 유체전송라인(110, 120)과 접촉하여 지지하는 중심지지체(220)를 포함하여 이루어질 수 있다.
본 실시예에서 상기 코어(200)는 2개의 신호라인(210)을 구비하여 해저에 구비된 시추장비에 제어신호를 전송하는 electric cable의 역할을 수행하는 한편, 2개의 유체전송라인(110, 120)을 추가로 더 포함하여 이루어진다.
이와 같이 상대적으로 강성이 작은 신호 라인(210)을 최대한 코어로 배치하면 가혹한 굽힘 환경에서도 신호 라인이 받는 굽힘 응력이 최소화되어 안정적인 신호 전송을 할 수 있다.
여기서 상기 코어(200) 내부에 위치한 유체전송라인(110, 120)은 원유의 점성을 낮추도록 분사되는 케미컬을 전송하는 케미컬라인(120)으로 이루어질 수 있다. 상기 케미컬라인(120)은 원유 즉, crude oil에 분사하여 점성을 떨어뜨리기 위하여 화학물질을 전송하는 역할을 수행한다. 원유에 분사할 수 있도록 전송되는 화학물질로는 예를 들어 에틸렌 글리콜 또는 알코올 등이 사용될 수 있다.
상기 케미컬라인(120)은 스틸튜브로 이루어지며 2개의 케미컬라인(120)은 동일한 외경을 갖도록 이루어질 수 있다. 한편, 스틸튜브는 슈퍼 듀플렉스강(SDSS: Super Duplex Stainless Steel)으로 이루어진 튜브일 수 있다.
상기 신호라인(210)은 복수의 심선(214)이 연선된 신호선(212)이 4 개가 구비된 쿼드 구조로 이루어질 수 있다. 상기 신호선(212)들의 절연은 XLPE(Cross Linking-Polyethylene) 재질로 이루어질 수 있다.
상기 4개의 신호선(212)들은 그 외측을 연합배딩(213)이 둘러쌈으로써 연합될 수 있다. 상기 연합베딩(213)은 내마모성, 내부식성, UV protection이 우수한 HDPE(High Density Polyethylene)로 이루어질 수 있다.
상기 연합베딩(213) 외측으로는 구리로 이루어진 차폐층(215)이 형성되어 신호선(212)의 원활한 신호 전송을 위한 차폐 역할을 수행한다.
상기 차폐층(215) 외측으로는 신호라인 내부쉬스(216)와 신호라인 아머(217) 및 신호라인 외부쉬스(218)가 순차적으로 형성될 수 있다. 여기서 상기 신호라인 내부쉬스(216)와 신호라인 외부쉬스(218)는 연합베딩(213)과 동일하게 HDPE 재질로 이루어질 수 있다.
상기 코어(200) 중심부에는 중심지지체(220)가 구비되어, 상기 2개의 신호라인(210)과 2개의 케미컬라인(120)이 상기 중심지지체(220)를 중심으로 대칭되게 배치된다.
상기 중심지지체(220)는 코어(200) 중심부에 위치하며 신호라인(210) 및 유체전송라인(110, 120)과 접촉하여 지지하는 역할을 수행한다. 상기 중심지지체(220)는 상기 코어(200) 중심에 위치하는 중심부(222)와, 상기 중심부(222)로부터 상기 신호라인(210)과 상기 케미컬라인(120) 사이로 연장되는 복수의 연장부(224)를 구비할 수 있다.
본 실시예에서 상기 연장부(224)는 4개가 구비되며 각각의 연장부(224) 사이에는 하나의 신호라인(210) 또는 케미컬라인(120)이 배치된다. 구체적으로, 상기 2개의 신호라인(210)은 상기 중심부(222)를 기준으로 서로 대칭되는 위치에 배치되며, 상기 2개의 케미컬라인(120) 또한 상기 중심부(222)를 기준으로 서로 대칭되는 위치에 배치될 수 있다.
여기서 상기 중심지지체(220)와 신호라인(210) 및 케미컬라인(120)은 다이스(dies)를 통과하면서 연합과정을 거치게 된다.
이때, 신호라인(210)과 스틸튜브로 이루어진 케미컬라인(120)의 강성차를 극복하고 중심지지체(220)가 신호라인(210) 및 케미컬라인(120)을 가이드하여 밀착하면서 잘 안착되기 위해서는 중심지지체(220)의 연장부(224) 길이 즉, 중심지지체(220) 반경을 적정한 값으로 결정할 필요가 있다.
구체적인 사항을 도 4와 도 5를 참조하여 설명하면, 우선 A는 중심지지체(220)의 꼬임 발생 지점이고, a1은 연합 중심선상 다이(die) 끝 단에서 A 점까지 거리이며, a2는 A 점과 신호라인(210) 중심선까지의 수직 거리이다. 전술한 변수를 포함한 설계변수들을 정리하면 아래와 같다.
* Point A : 중심지지체의 꼬임 발생 지점
* a1 : 연합 중심선 상 다이스(dies) 끝 단에서 A 점까지 거리
* a2 : A 점과 신호라인 중심선까지의 수직 거리
* R : 중심지지체 반경(코어의 중심에서부터 연장부의 말단까지의 길이)
* t : 연장부의 최소 두께
* a : 단면 설계 변수 유체전송라인 간 거리
* b : 단면 설계 변수 신호라인 간 거리
* dS : 신호라인 외경
* dT : 유체전송라인 외경
상기 신호라인(210)과 스틸튜브로 이루어진 유체전송라인(120)의 강성차를 극복하고 연합을 원활하게 하기 위하여 중심지지체(220) 반경 R을 Point A에서 측정되는 a2값보다 크거나 같도록 형성하는 것이 바람직하다.
상기 Point A는 실제 연합 작업 과정에서 확인한 결과 중심지지체(220)에 의한 각 라인의 안착이 이루어지는 지점인데 이때 상대적으로 강성이 작은 신호라인(210)을 커버할 수 있는 중심지지체(220) 반경 R을 규정(R≥a2)함으로써 중심지지체(220)의 지지기능을 향상시키고 신호라인(210) 및 유체전송라인(110, 120)과의 밀착성을 높여 연합의 결합력을 상승시킬 수 있다.
그런데 상기 도출된 수식 R≥a2는 제조 설비 및 연합 공정상에서 확인되는 파라미터이므로, 이를 실험값을 활용하여 실제 엄비리컬 케이블 자체에서 도출되는 기하학적 파라미터의 관계로 전환하면 아래와 같다.
도 4와 도 5를 참조하여 설명하면, D는 연합외경으로서 실제 제품에 적용된 실험값을 x라고 가정하고, 이때 a1은 실험값이 y라고 가정하며, 상기 신호라인(210)이 다이스(dies)를 향해 진입되는 각도 θ는 실험값이 z라고 가정한다. 여기서 a2 = a1 × tanθ 이므로, R ≥ a2를 R ≥ a1 × tanθ로 나타낼 수 있는데, 위의 실험값을 이용하여 위 수식을 R과 D의 관계로 변환하는 과정은 아래와 같다.
먼저, a1은 D가 증가함에 따라 증가하는 관계에 있으므로 아래와 같이 a1과 D의 관계를 나타낼 수 있다.
a1 : D = y : x ∴ a1 = (y/x) × D
그리고 θ는 D가 증가함에 따라 감소하는 관계에 있으므로 아래와 같이 θ와 D의 관계를 나타낼 수 있다.
θ : (1/D) = z : x ∴ θ = (z/x) × (1/D)
이와 같이 도출된 a1과 θ를 전술한 R ≥ a1 × tanθ에 대입하여 수식을 조합하면
R ≥ (y/x) × tan ((z/x)×(1/D)) × D
위와 같은 수식을 도출할 수 있으며, 이를 수차례의 실험을 통한 실험 평균값을 산정하여 좀 더 일반화하면 아래와 같이 나타낼 수 있다.
R ≥ α × tan(β/D) × D, α=0.7, β=0.64
전술한 바와 같이, R과 a1, a2와의 함수관계를 R과 D의 함수관계로 전환함으로써 제조 설비 및 연합 공정상에서 적용되는 파라미터로 표시된 수식을 실제 심해용 엄비리컬 케이블(1000) 자체에서 도출되는 기하학적 파라미터가 적용된 수식으로 전환할 수 있다.
그리고 이를 제품상에 적용하여 중심지지체(220)의 연장부(224) 길이 즉, 중심지지체(220)의 반경 R을 코어(200)의 연합 외경 D와의 관계에서 위 수식을 만족하도록 결정함으로써 중심지지체(220)의 지지기능을 향상시키고 신호라인(210) 및 유체전송라인(110, 120)과의 밀착성을 높여 연합의 결합력을 상승시킬 수 있다. 도 2 및 도 6에 도시된 바와 같이, 상기 연장부(224)는 중심지지체(220)의 지지기능을 향상시키고 구조적인 안정성을 위해 코어 쉬스(250)까지 연장되는 것이 바람직하다.
한편, 상기 연장부(224)의 최소 두께 t는 2mm 이상으로 이루어지는 것이 바람직하다. 상기 연장부(224) 최소 두께는 적어도 압출공정 시 압착에 의한 형태 변화에도 불구하고 연합을 지지하도록 형태를 유지할 수 있는 두께 이상으로 이루어져야 하며 실제 공정에서 두께 변화를 주어 확인한 결과 그 값은 2mm인 것으로 파악되었다.
이때, 신호라인(210)간 거리(b) 및 유체전송라인(110, 120)간 거리(a)는 연장부(224) 두께를 기준으로 코어(200)의 진원도를 고려하여 결정한 후 배치할 수 있다.
그리고 도 2에서 보는 바와 같이, 상기 중심부(222)와 복수의 연장부(224)가 이루는 곡률은 각각 접촉하는 신호라인(210) 또는 유체전송라인(110, 120)의 곡률과 동일하게 형성되는 것이 바람직하다.
상기 중심부(222)와 복수의 연장부(224)가 이루는 곡률을 위와 같이 형성함으로써 중심지지체(220)와 신호라인(210) 및 유체전송라인(110, 120) 사이의 공극 발생을 최소화하고 간단한 구조로 재료비와 가공비를 절감할 수 있다.
또한, 심해의 높은 정수압에 대한 저항능력 및 내부 지지력을 높여 함몰 현상을 방지하며, 신호라인(210)과 유체전송라인(110, 120)의 밀착성 증대로 심해의 정수압에 효과적으로 대응 가능한 장점이 있다.
상기 중심지지체(220), 신호라인(210) 및 유체전송라인(110, 120) 사이의 공극을 메우도록 충진재(240)가 구비될 수 있다. 상기 충진재(240)로는 yarn 충진이 적용되어 코어(200)의 진원도를 유지하고 외부충격을 완화할 수 있다. 또한 상기 코어(200) 외측으로는 코어쉬스(250)가 적용되어 전체 코어(200) 연합의 형상을 유지할 수 있다.
상기 코어(200) 주변에는 복수의 유체전송라인(110, 120)이 추가로 배치되는데, 상기 코어(200) 외측의 유체전송라인(110, 120)은 유압작동을 위한 오일을 전송하는 유압라인(110)으로 이루어질 수 있다. 상기 유압라인(110)은 유압실린더 등 유압 구동을 위한 장비에 유압을 전달할 수 있도록 오일(oil)이 유동하는 통로를 이룬다.
본 실시예에서 전술한 케미컬라인(120)과 유압라인(110)을 포함한 유체전송라인은 모두 스틸튜브로 이루어지며 그 외경 또한 동일한 크기로 이루어질 수 있다. 한편, 스틸튜브는 슈퍼 듀플렉스강(SDSS: Super Duplex Stainless Steel)으로 이루어진 튜브일 수 있다. 그리고, 상기 유압라인(110)은 상기 코어(200) 외측 주위에 8개가 구비될 수 있으며, 상기 케미컬라인(120)은 코어(200) 내부에 2개가 배치될 수 있다.
상기 유압라인(110)과 케미컬라인(120)으로 이루어진 유체전송라인(110, 120)의 개수와 크기 형태 및 배치 등은 도 2와 도 3에 도시된 예에 한정되는 것은 아니며, 사용자의 필요에 따라 다양하게 변형되어 실시될 수 있다. 예를 들면, 도 2 및 도 3에는 유압라인(110)이 코어 외측에 구비되고, 케미컬라인(120)이 코어 내측에 구비되는 실시예가 도시되었지만, 이와 반대로 유압라인(110)이 코어 내측에 구비되고, 케미컬라인(120)이 코어 외측에 구비되는 등 다양한 배치가 가능하다.
본 발명에 따른 심해용 엄비리컬 케이블(1000)은 상기 코어(200) 외측에 구비된 유체전송라인(110, 120) 사이에 구비되며, 상기 유체전송라인(110, 120) 및 상기 코어(200)와 면접촉을 이루는 적어도 하나의 필러(130)를 더 포함하여 이루어질 수 있다.
상기 필러(130)는 코어(200) 외측에 구비된 유체전송라인(110, 120) 즉, 유압라인(110) 사이사이에 구비되며, 유체전송라인(110, 120)뿐만 아니라 코어(200)와 면접촉을 이루도록 형성되어 높은 정수압을 코어(200)에 균일하게 전달하고, 내부 코어(200)에 국부적인 응력집중을 방지할 수 있다.
종래에는 도 1과 같이 엄비리컬 케이블 내부에 다양한 형태의 필러가 배치되었는데, 이러한 기존의 필러는 다른 라인들과 면접촉을 이루지 못하고 선접촉을 이루게 되므로 구조적으로 불안정하며, 높은 정수압에서 함몰 현상에 취약한 문제가 있었다.
이와 달리 본 발명에 따른 심해용 엄비리컬 케이블(1000)에 적용되는 필러(130)는 코어(200) 및 유체전송라인과 면접촉을 이룸으로써 궁극적으로 심해용 엄비리컬 케이블(1000)의 지지력을 높이고 구조적 안정성을 향상시킬 수 있다.
본 실시예에서 상기 필러(130)는 상기 유압라인(110) 사이에 8개가 구비되는데, 상기 필러(130)의 구체적인 개수, 크기 및 배치는 필요에 따라 변형 실시될 수 있다.
그리고, 도 2와 도 3에 도시된 것처럼, 상기 필러(130)는 상기 코어(200)와 접촉하는 내주면이 이루는 원호의 길이보다 외주면이 이루는 원호의 길이가 더 길게 형성될 수 있다.
상기 필러(130)의 구체적인 형상은 상기 코어(200)와 유체전송라인의 개수와 크기, 형태 및 배치에 따라 다양하게 변형 실시될 수 있음은 물론이다.
상기 유압라인(110) 외측으로는 내부쉬스(140)가 구비될 수 있다. 상기 내부쉬스(140)는 외부 충격을 흡수함으로써 그 내부의 코어(200)와 유체전송라인을 보호하는 역할을 수행하며, PVC, PE, PU 등 열가소성 및 열경화성 원료가 모두 사용 가능하다.
상기 내부쉬스(140) 외측으로는 외부아머(150)가 구비될 수 있다. 본 실시예에서 상기 외부아머(150)는 이중구조로 이루어져 있는데, 내부 구조를 보호함과 아울러 심해용 엄비리컬 케이블(1000)의 인장강도를 보강하는 역할을 함께 수행할 수 있다.
상기 외부아머(150) 외측으로는 외부시스(160)가 구비될 수 있다. 상기 외부쉬스(160)는 심해용 엄비리컬 케이블(1000)의 최외곽에 구비되어 외부 충격이나 부식 작용으로부터 심해용 엄비리컬 케이블(1000)을 보호한다. 상기 외부쉬스(160)는 내마모성, 내부식성, UV protection이 우수한 HDPE 등의 원료가 사용 가능하다.
도 6은 본 발명의 다른 실시예에 따른 심해용 엄비리컬 케이블의 단면도이고, 도 7은 본 발명의 다른 실시예에 따른 심해용 엄비리컬 케이블의 사시도이며, 도 8은 본 발명의 다른 실시예에 따른 중심지지체 구조를 도시한 단면도이다.
도 6 내지 도 8을 참조하여 본 발명의 다른 실시예에 따른 심해용 엄비리컬 케이블(1000)의 구조를 설명하면 다음과 같다. 본 실시예에 따른 심해용 엄비리컬 케이블(1000) 또한 신호라인(210)과 유체전송라인(110, 120)을 포함하는 코어(200)와, 상기 코어(200) 중심부에 위치하며 신호라인(210) 및 유체전송라인(110, 120)과 접촉하여 지지하는 중심지지체(320)를 포함하여 이루어질 수 있다.
이전 실시예와 동일하게 상기 신호라인(210)은 복수의 심선(214)이 연선된 신호선(212)이 4 개가 구비된 쿼드 구조로 이루어질 수 있다. 그리고 상기 신호선(212)들의 절연은 XLPE 재질로 이루어질 수 있다.
상기 4개의 신호선(212)들은 그 외측을 연합베딩(213)이 둘러쌈으로써 연합될 수 있다. 상기 연합베딩(213)은 이전 실시예와 마찬가지로 HDPE로 이루어질 수 있다.
상기 신호선(212)의 사이에는 신호라인 필러(211)가 구비되어 원형 유지력을 높일 수 있도록 공극을 메울 수 있다. 상기 신호라인 필러(211)는 선택 가능한 구성요소이며, 상기 신호선(212) 외측의 연합베딩(213)만으로 연합을 구성할 수 있다.
상기 연합베딩(213) 외측으로는 구리로 이루어진 차폐층(215)이 형성되어 신호선(212)의 원활한 신호 전송을 위한 차폐 역할을 수행한다.
상기 차폐층(215) 외측으로는 신호라인 내부쉬스(216)와 신호라인 아머(217) 및 신호라인 외부쉬스(218)가 순차적으로 형성될 수 있다. 여기서 상기 신호라인 내부쉬스(216)와 신호라인 외부쉬스(218)는 연합베딩(213)과 동일하게 HDPE 재질로 이루어질 수 있다.
그리고 상기 중심지지체(320)는 역시 코어(200) 중심부에 위치하며 신호라인(210) 및 유체전송라인(110, 120)과 접촉하여 지지하는 역할을 수행한다. 상기 중심지지체(320)는 상기 코어(200) 중심에 위치하는 중심부(322)와, 상기 중심부(322)로부터 상기 신호라인(210)과 상기 케미컬라인(120) 사이로 연장되는 복수의 연장부(324)를 구비하여 이루어진다.
다만 이전 실시예와 다르게 본 실시예에서 상기 중심지지체(320)는 상기 신호라인(210)의 적어도 일부를 감싸며 지지하는 제1 안착부(326)와, 상기 유체전송라인(110, 120)의 적어도 일부를 감싸며 지지하는 제2 안착부(328)를 포함하여 이루어진다.
구체적으로 도 6 내지 도 8에 도시된 바와 같이, 상기 제1 안착부(326)는 상기 복수의 연장부(324) 중 서로 이웃하는 임의의 두 연장부(324) 사이에 형성되되, 상기 신호라인(210)의 적어도 일부를 감쌀 수 있도록 상기 두 연장부(324)에 대하여 단차지게 형성될 수 있다.
이전 실시예에서는 도 2와 도 3에 도시된 바와 같이 상기 중심지지체(220)의 연장부(224)가 매끈하게 코어쉬스(250)까지 연장되고 서로 이웃하는 연장부(224) 사이의 공간에 신호라인(210)과 케미컬라인(120)이 안착된다.
그러나 본 실시예에서는 서로 이웃하는 연장부(324) 사이에 신호라인(210)이 안착되도록 제1 안착부(326)가 형성된다. 구체적으로 도 8에 도시된 것처럼 상기 제1 안착부(326)는 연장부(324)의 일정 부분에 위치하는 단차점(S)을 기준으로 홈이 파인 형상으로 형성되며, 상기 신호라인(210)의 일부를 감싸는 홈이 파인 형상이 이웃하는 연장부(324)까지 이어지도록 형성될 수 있다.
즉, 상기 제1 안착부(326)는 상기 신호라인(210)의 일부를 감싸는 부분으로서, 단차점(S)을 기준으로 연장부(324) 중 신호라인(210)을 감싸지 않는 부분과 굴곡되어 단차지게 형성되는 것이다. 이러한 제1 안착부(326)는 상기 중심부(322)를 기준으로 서로 마주보게 형성되며 그에 따라 두 개의 신호라인(210)이 서로 대칭되도록 제1 안착부(326)에 안착될 수 있다.
한편, 상기 제2 안착부(328)는 상기 복수의 연장부(324) 중 서로 이웃하는 임의의 두 연장부(324) 사이에 형성되되, 상기 유체전송라인(110, 120)의 적어도 일부를 감쌀 수 있도록 상기 두 연장부(324)에 대하여 단차지게 형성될 수 있다.
구체적으로 본 실시예에서 상기 제2 안착부(328)는 제1 안착부(326) 사이에 두 개가 서로 마주보도록 형성될 수 있다. 상기 제2 안착부(328) 또한 연장부(324)의 일정 부분에 위치하는 단차점(S)을 기준으로 홈이 파인 형상으로 형성되며, 상기 케미컬라인(120)의 일부를 감싸는 홈이 파인 형상이 이웃하는 연장부(324)까지 이어지도록 형성될 수 있다.
상기 제2 안착부(328)도 상기 케미컬라인(120)의 일부를 감싸는 부분으로서, 단차점(S)을 기준으로 연장부(324) 중 케미컬라인(120)을 감싸지 않는 부분과 굴곡되어 단차지게 형성되는 것이다.
여기서 상기 제1 안착부(326)가 이루는 홈의 길이는 상기 제2 안착부(328)가 이루는 홈의 길이보다 더 길게 이루어진다. 상기 신호라인(210)의 반경이 상기 케미컬라인(120)의 반경보다 클 뿐만 아니라 상대적으로 강성이 작은 신호라인(210)을 더 밀착하여 넓게 감싸서 구조적 안정성을 높이기 위함이다.
한편, 본 발명의 또 다른 실시예에 따른 중심지지체 구조를 도 9에 도시한다.
제1 안착부(326)는 신호라인(210)의 일부를 감싸며 홈이 파인 형상으로 형성되고, 연장부(324) 중 신호라인(210)을 감싸지 않는 부분과 매끈하게 연결될 수 있다.
마찬가지로, 상기 제2 안착부(328)도 케미컬라인(120)의 일부를 감싸며 홈이 파인 형상으로 형성되고, 연장부(324) 중 케미컬라인(120)을 감싸지 않는 부분과 매끈하게 연결될 수 있다.
본 실시예에 도시한 바와 같이, 안착부가 홈이 파인 형상으로 형성되기만 한다면, 단차점(S)이 존재하지 않는 다양한 형태의 실시예를 적용할 수 있다.
전술한 바와 같이, 일반 electric cable인 신호라인(210)과 스틸튜브로 이루어진 케미컬라인(120)의 강성차를 극복하고 중심지지체(320)가 신호라인(210) 및 케미컬라인(120)을 가이드하여 밀착하면서 잘 안착시켜 연합을 원활하게 이루어질 수 있게 하는 것이 중요한 과제이다.
상기 신호라인(210)과 유체전송라인(110, 120)의 강성차이는 굽힘강도(bending stiffness)로 표현될 수 있는데, 상기 두 종류의 라인의 굽힘강도 차이는 5배 이상일 수 있다.
상기 신호라인(210)이 굽힘강도를 증가시키는 신호라인 아머(217)까지 구비하는 경우 굽힘강도 차이가 5배에 근접하게 작아지지만, 신호라인 아머(217)가 없는 경우에는 굽힘강도 차이가 더 커지게 된다.
본 발명의 실시예에서와 같이 코어(200) 내부에 신호라인(210)과 스틸튜브로 이루어진 케미컬라인(120)이 함께 구비되는 경우 굽힘강도의 차이는 5배 이상이 되며 이때에 상기 중심지지체(320)에 형성된 제1 안착부(326)와 제2 안착부(328)가 그 굽힘강도 내지 강성 차이를 극복하여 연합이 원활하게 이루어질 수 있게 하는 역할을 수행하게 된다.
굽힘강도 차이가 5배 미만인 경우에는 스틸 튜브로 이루어진 유체전송라인(110, 120)과의 강성차이를 줄이고 신호라인(210)의 강성을 높이기 위해 신호라인(210)의 외경을 증가시키거나 아머(217)를 보강하는 방법 등을 고려할 수 밖에 없어 전체 케이블 외경이 증가함으로써 컴팩트한 구조를 구현할 수 없으며, 제조비용이 상승할 수 있는 문제점이 있다.
상기 제1 안착부(326)와 제2 안착부(328)는 상기 연장부(324) 사이에서 단차진 형상으로 이루어져 신호라인(210)과 케미컬라인(120)에 더욱 밀착한 상태로 구비되므로, 전술한 과제를 해결하기 위한 최적의 구조를 이룰 수 있다. 즉, 이러한 굽힘강도 내지 강성 차이를 가지는 신호라인(210)과 유체전송라인(110, 120)을 포함하는 코어(200)의 구조적 안정성을 높일 수 있는 것이다.
그리고 이러한 제1 안착부(326)와 제2 안착부(328)는 신호라인(210)과 유체전송라인(110, 120)을 더욱 안정적으로 감싸면서 코어 내부의 연합을 유지시키고, 진원도와 형상지지력을 높이는 역할을 수행할 수 있다.
본 실시예에 따른 심해용 엄비리컬 케이블(1000)의 코어(200) 외측 구조는 이전 실시예에서 설명한 바와 동일하므로, 자세한 설명을 생략한다.
지금까지 설명한 본 발명의 실시예들에 따른 심해용 엄비리컬 케이블은 중심지지체를 코어 내부의 다른 구성들과 더욱 밀착시킴으로써 효과적으로 코어 내부에 안착시킬 수 있고, 코어 연합 시 각 라인간의 강성차를 극복하여 연합이 원할하게 이루어질 수 있는 구조를 제공할 수 있다.
또한, 코어 내부 라인들의 밀착성 증대로 심해의 정수압에 효과적으로 대응할 수 있고, 심해의 높은 정수압에 대한 엄비리컬 케이블의 저항능력 및 내부 지지력을 높여 함몰 현상을 방지하고, 원형 유지력을 높일 수 있다.
상기에서는 본 발명의 일 실시예를 참조하여 설명하였지만, 해당 기술분야의 당업자는 이하에서 서술하는 특허청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경 실시할 수 있을 것이다. 그러므로 변형된 실시가 기본적으로 본 발명의 특허청구범위의 구성요소를 포함한다면 모두 본 발명의 기술적 범주에 포함된다고 보아야 한다.

Claims (15)

  1. 적어도 하나 이상의 신호라인과 유체전송라인을 포함하는 코어;
    상기 코어 중심부에 위치하며 신호라인 및 유체전송라인과 접촉하여 지지하는 중심지지체;를 포함하며,
    상기 중심지지체는 상기 코어 중심에 위치하는 중심부와, 상기 중심부로부터 상기 신호라인과 상기 유체전송라인 사이로 연장되는 복수의 연장부를 구비하고,
    상기 코어의 중심에서부터 상기 연장부의 말단까지의 길이 R과 상기 코어의 연합 외경 D 사이에는
    R ≥ α × tan(β/D) × D, α=0.7, β=0.64
    의 관계가 성립하는 것을 특징으로 하는 심해용 엄비리컬 케이블.
  2. 제1항에 있어서,
    상기 중심부와 복수의 연장부가 이루는 곡률은 접촉하는 신호라인 또는 유체전송라인의 곡률과 동일하게 형성되는 것을 특징으로 하는 심해용 엄비리컬 케이블.
  3. 적어도 하나 이상의 신호라인과 유체전송라인을 포함하는 코어; 및
    상기 코어 중심에 위치하는 중심부와, 상기 중심부로부터 상기 신호라인과 상기 유체전송라인 사이로 연장되는 복수의 연장부를 구비하는 중심지지체;를 포함하고,
    상기 중심지지체는 상기 신호라인의 적어도 일부를 감싸며 지지하는 제1 안착부와, 상기 유체전송라인의 적어도 일부를 감싸며 지지하는 제2 안착부를 포함하여 이루어지는 것을 특징으로 하는 심해용 엄비리컬 케이블.
  4. 제3항에 있어서,
    상기 제1 안착부는 상기 복수의 연장부 중 서로 이웃하는 임의의 두 연장부 사이에 형성되되, 상기 신호라인의 적어도 일부를 감쌀 수 있도록 상기 두 연장부에 대하여 단차지게 형성되는 것을 특징으로 하는 심해용 엄비리컬 케이블.
  5. 제3항에 있어서,
    상기 제2 안착부는 상기 복수의 연장부 중 서로 이웃하는 임의의 두 연장부 사이에 형성되되, 상기 유체 전송라인의 적어도 일부를 감쌀 수 있도록 상기 두 연장부에 대하여 단차지게 형성되는 것을 특징으로 하는 심해용 엄비리컬 케이블.
  6. 제3항에 있어서,
    상기 제1 안착부가 이루는 홈의 길이는 상기 제2 안착부가 이루는 홈의 길이보다 더 길게 이루어지는 것을 특징으로 하는 심해용 엄비리컬 케이블.
  7. 서로 다른 굽힘강도를 갖는 두 종류의 라인을 구비하는 코어;
    상기 코어 중심부에 위치하며 상기 두 종류의 라인과 접촉하여 지지하는 중심지지체;를 포함하며,
    상기 중심지지체는 상기 코어 중심에 위치하는 중심부와, 상기 중심부로부터 상기 두 종류의 라인 사이로 연장되는 복수의 연장부를 구비하는 것을 특징으로 하는 심해용 엄비리컬 케이블.
  8. 제7항에 있어서,
    상기 두 종류의 라인의 굽힘강도 차이는 5배 이상인 것을 특징으로 하는 심해용 엄비리컬 케이블.
  9. 제1항 내지 제8항 중 어느 하나의 항에 있어서,
    상기 코어 내부의 공극을 메우도록 채워져 외부충격을 완화하는 충진재를 더 포함하는 심해용 엄비리컬 케이블.
  10. 제1항 내지 제8항 중 어느 하나의 항에 있어서,
    상기 코어 외측에 구비되며, 코어의 형상을 유지하도록 둘러싸는 코어쉬스를 더 포함하며,
    상기 복수의 연장부는 상기 코어쉬스까지 연장되는 것을 특징으로 하는 심해용 엄비리컬 케이블.
  11. 제10항에 있어서,
    상기 코어쉬스 외측에 배치되는 복수의 유체전송라인을 더 포함하는 심해용 엄비리컬 케이블.
  12. 제11항에 있어서,
    상기 코어쉬스 외측에 배치된 복수의 유체전송라인 사이에 배치되는 복수의 필러를 더 포함하는 심해용 엄비리컬 케이블.
  13. 제11항에 있어서,
    상기 복수의 유체전송라인 외측에 구비되며, 외부 충격을 흡수하여 내부의 코어와 유체전송라인을 보호하는 내부쉬스를 더 포함하는 심해용 엄비리컬 케이블.
  14. 제13항에 있어서,
    상기 내부쉬스 외측에 구비되어 내부 구조를 보호하고, 인장강도를 보강하는 이중구조의 외부아머를 더 포함하는 심해용 엄비리컬 케이블.
  15. 제14항에 있어서,
    상기 외부아머 외측에 구비되며, 외부 충격이나 부식 작용으로부터 내부를 보호하는 외부쉬스를 더 포함하는 심해용 엄비리컬 케이블.
PCT/KR2015/013064 2015-01-16 2015-12-02 심해용 엄비리컬 케이블 WO2016114495A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20150007993 2015-01-16
KR10-2015-0007993 2015-01-16
KR1020150108666A KR20160088782A (ko) 2015-01-16 2015-07-31 심해용 엄비리컬 케이블
KR10-2015-0108666 2015-07-31

Publications (1)

Publication Number Publication Date
WO2016114495A1 true WO2016114495A1 (ko) 2016-07-21

Family

ID=56406011

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/013064 WO2016114495A1 (ko) 2015-01-16 2015-12-02 심해용 엄비리컬 케이블

Country Status (2)

Country Link
KR (1) KR102591166B1 (ko)
WO (1) WO2016114495A1 (ko)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109851837A (zh) * 2018-12-26 2019-06-07 宋秒 一种掺杂有碳材料的聚苯乙烯泡沫保温板加工工艺
CN111354509A (zh) * 2020-05-01 2020-06-30 黄汝芬 一种脐带缆系统
CN113035421A (zh) * 2021-03-07 2021-06-25 广东电网有限责任公司广州供电局 低压柔性电缆
CN114566314A (zh) * 2022-02-28 2022-05-31 华远高科电缆有限公司 一种新能源光伏智慧型铜合金电力电缆
CN115831451A (zh) * 2023-02-15 2023-03-21 东方交联电力电缆有限公司 一种抗电晕光伏用电力电缆

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5902958A (en) * 1996-04-26 1999-05-11 Norsk Subsea Cable As Arrangement in a cable
US6239363B1 (en) * 1995-09-29 2001-05-29 Marine Innovations, L.L.C. Variable buoyancy cable
US20060096777A1 (en) * 2002-05-01 2006-05-11 Charles Glew High performance support-separators for communications cables
WO2009128725A1 (en) * 2008-04-15 2009-10-22 Aker Subsea As Sz-laid aluminium power umbilical
KR20120046745A (ko) * 2009-07-16 2012-05-10 쓰리엠 이노베이티브 프로퍼티즈 컴파니 수중 복합 케이블 및 방법

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5122652B1 (ko) * 1971-02-22 1976-07-12
EP1122569A3 (en) 2000-02-02 2007-05-16 W.L. GORE & ASSOCIATES GmbH Quad cable
GB0618108D0 (en) * 2006-09-14 2006-10-25 Technip France Sa Subsea umbilical
US20110147543A1 (en) * 2008-09-30 2011-06-23 Toshiba Mitsubishi-Electric Indus. Sys. Corp. Wire holder and wire bundling structure
US20130312996A1 (en) * 2012-05-24 2013-11-28 Schlumberger Technology Corporation Pressure balanced coiled tubing cable and connection

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6239363B1 (en) * 1995-09-29 2001-05-29 Marine Innovations, L.L.C. Variable buoyancy cable
US5902958A (en) * 1996-04-26 1999-05-11 Norsk Subsea Cable As Arrangement in a cable
US20060096777A1 (en) * 2002-05-01 2006-05-11 Charles Glew High performance support-separators for communications cables
WO2009128725A1 (en) * 2008-04-15 2009-10-22 Aker Subsea As Sz-laid aluminium power umbilical
KR20120046745A (ko) * 2009-07-16 2012-05-10 쓰리엠 이노베이티브 프로퍼티즈 컴파니 수중 복합 케이블 및 방법

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109851837A (zh) * 2018-12-26 2019-06-07 宋秒 一种掺杂有碳材料的聚苯乙烯泡沫保温板加工工艺
CN111354509A (zh) * 2020-05-01 2020-06-30 黄汝芬 一种脐带缆系统
CN113035421A (zh) * 2021-03-07 2021-06-25 广东电网有限责任公司广州供电局 低压柔性电缆
CN114566314A (zh) * 2022-02-28 2022-05-31 华远高科电缆有限公司 一种新能源光伏智慧型铜合金电力电缆
CN115831451A (zh) * 2023-02-15 2023-03-21 东方交联电力电缆有限公司 一种抗电晕光伏用电力电缆
CN115831451B (zh) * 2023-02-15 2023-04-28 东方交联电力电缆有限公司 一种抗电晕光伏用电力电缆

Also Published As

Publication number Publication date
KR20230031866A (ko) 2023-03-07
KR102591166B1 (ko) 2023-10-19

Similar Documents

Publication Publication Date Title
WO2016114495A1 (ko) 심해용 엄비리컬 케이블
EP2920627B1 (en) Optical fiber / electrical composite cable assembly with sealed breakout kit
US9235021B2 (en) Optical fiber / electrical composite cable assembly with sealed breakout kit
CN104318990B (zh) 用于水下脐带缆充油式贯穿密封方法及装置
US11270812B2 (en) Power umbilical with impact protection
US6374022B1 (en) Bend limiting device for cables
EP3304665B1 (en) A rigid joint assembly
KR20160088782A (ko) 심해용 엄비리컬 케이블
IE57483B1 (en) Armoured cables
WO2016192779A1 (en) A rigid joint assembly
CN218003790U (zh) 一种铠装光缆和非铠装光缆互连的井下光缆互联接头
AU773849B2 (en) Bend limiting device for cables
CN116435025B (zh) 一种电力施工用电力电缆
CN211654402U (zh) 一种聚氯乙烯绝缘软电缆电线
CN218824842U (zh) 一种高强度抗拉抗压式探测光缆
CN219738581U (zh) 一种具有耐拉伸功能的复合电缆
CN218384541U (zh) 一种起重机用多芯线缆
CN220189287U (zh) 一种具有保护结构的电缆
CN219512848U (zh) 一种抗击效果好的护套
WO2022149803A1 (ko) 이종 전력 케이블 코어 접속장치 및 이를 구비하는 이종 전력 케이블 접속 시스템
CN209929004U (zh) 一种防水的柔软性装备电缆
KR20160099885A (ko) 심해용 엄비리컬 케이블
CN107316702B (zh) Wmf高传输承荷探测电缆
CN208173278U (zh) 聚氯乙烯绝缘汽车低压电缆
NO20210762A1 (en) An umbilical cable system and appurtenant method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15878139

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15878139

Country of ref document: EP

Kind code of ref document: A1