WO2016114169A1 - Receiving apparatus, communication apparatus, calculation method, and computer program - Google Patents

Receiving apparatus, communication apparatus, calculation method, and computer program Download PDF

Info

Publication number
WO2016114169A1
WO2016114169A1 PCT/JP2016/050096 JP2016050096W WO2016114169A1 WO 2016114169 A1 WO2016114169 A1 WO 2016114169A1 JP 2016050096 W JP2016050096 W JP 2016050096W WO 2016114169 A1 WO2016114169 A1 WO 2016114169A1
Authority
WO
WIPO (PCT)
Prior art keywords
digital data
signal
value
converted
timing
Prior art date
Application number
PCT/JP2016/050096
Other languages
French (fr)
Japanese (ja)
Inventor
大輔 宮脇
Original Assignee
株式会社オートネットワーク技術研究所
住友電装株式会社
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オートネットワーク技術研究所, 住友電装株式会社, 住友電気工業株式会社 filed Critical 株式会社オートネットワーク技術研究所
Publication of WO2016114169A1 publication Critical patent/WO2016114169A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B13/00Burglar, theft or intruder alarms
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B13/00Burglar, theft or intruder alarms
    • G08B13/22Electrical actuation
    • G08B13/24Electrical actuation by interference with electromagnetic field distribution
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving

Definitions

  • the present application relates to a receiving device that calculates digital data representing the waveform of each signal when the received analog signal is separated into two signals that are orthogonal to each other, and a communication system including the receiving device.
  • the present invention also relates to a calculation method and computer program for calculating digital data representing the waveform of each signal when an arbitrary analog signal is separated into two signals whose phases are orthogonal to each other.
  • a receiving apparatus that receives an analog signal from the outside and separates the received analog signal into two signals whose phases are orthogonal to each other is known.
  • the receiving apparatus converts each separated signal into digital data, and performs various processes such as demodulation of the analog signal by using the converted digital data.
  • a receiving apparatus includes a quadrature detector and an A / D converter, thereby acquiring the digital data.
  • the receiving apparatus separates an analog signal received using a quadrature detector into two signals that are orthogonal to each other. Thereafter, the receiving apparatus converts each separated signal into digital data using an A / D converter.
  • the receiving device (array antenna device) described in Patent Document 1 converts a received analog signal into digital data in advance by an A / D converter. Thereafter, the receiving device multiplies the converted digital data by a sine wave signal and a cosine wave signal, thereby separating the analog signal into two signals whose phases are orthogonal to each other, and represents digital data representing the waveform of each signal. Is calculated.
  • a receiving apparatus including a plurality of receiving antennas is known in order to increase the receiving sensitivity of a desired analog signal.
  • Such a receiving apparatus needs to perform various processes on each analog signal received by each receiving antenna.
  • a receiving device that acquires desired digital data using a quadrature detector and an A / D converter
  • quadrature detectors as many quadrature detectors as the number of reception antennas are necessary, and the components of the analog circuit that constitutes the quadrature detector Score increases. Therefore, there is a problem that the cost for configuring the receiver increases.
  • a sine wave signal or a cosine wave signal is multiplied with all digital data converted by the A / D converter. Therefore, when there are a plurality of receiving antennas, there is a problem that the processing load of the receiving apparatus increases.
  • the purpose of the present application is to reduce the number of parts required to acquire digital data representing the waveform of each signal when the received analog signal is separated into two signals whose phases are orthogonal to each other, and to reduce the processing load upon acquisition. It is an object to provide a receiving apparatus, a communication system, a calculation method, and a computer program that can be reduced.
  • a receiving device receives an analog signal, and based on the received analog signal and an analog periodic signal corresponding to the analog signal, the analog signal is a first signal and a first signal whose phases are orthogonal to each other.
  • a second A / D converter that converts the periodic signal into second digital data in synchronization with the first digital data, and among the second digital data converted by the second A / D converter, 1 of the periodic signal from a predetermined time point / 4 second digital data converted at each timing corresponding to the time when an integral multiple of four cycles has passed, and the first digital data converted in synchronization with each of the second digital data
  • the waveform of the first signal is expressed by multiplying the selection unit to be selected, and the value of the first digital data and the value of the second digital data that are selected by the selection unit and converted at
  • a first calculation unit that calculates digital data, a value of the first digital data converted at the arbitrary timing, and a second digital that is selected by the selection unit and converted at one timing continuous to the arbitrary timing
  • the waveform of the second signal is obtained by multiplying the value of the data, or by multiplying the value of the second digital data converted at the arbitrary timing and the value of the first digital data converted at the one timing.
  • a second calculation unit that calculates digital data representing.
  • a communication system includes the above-described reception device and a transmission device that transmits an analog signal, and the reception device receives the analog signal transmitted from the transmission device, and receives the received analog signal.
  • Digital data representing the waveform of each signal when the signal is separated into a first signal and a second signal whose phases are orthogonal to each other is calculated.
  • the calculation method is based on separation of an analog signal into a first signal and a second signal whose phases are orthogonal to each other based on an arbitrary analog signal and an analog periodic signal corresponding to the analog signal.
  • the second digital data converted at each timing corresponding to the point in time that has passed, and the first digital data converted in synchronization with each of the second digital data are selected.
  • a digital signal representing the waveform of the first signal by multiplying the value of the first digital data and the value of the second digital data selected at the selection step and converted at an arbitrary timing synchronized with each other.
  • the computer program according to one embodiment of the present invention is based on an arbitrary analog signal and an analog periodic signal corresponding to the analog signal, and separates the analog signal into two signals whose phases are orthogonal to each other.
  • a second A / D conversion unit that converts the periodic signal into second digital data, and second digital data converted by the second A / D conversion unit, which is a quarter cycle of the periodic signal from a predetermined time point.
  • the second digital data converted at each timing corresponding to the time point at which the integral multiple has elapsed, and the second digital data are changed in synchronization with the second digital data.
  • a selection unit that selects the first digital data, and by multiplying the value of the first digital data and the value of the second digital data that are selected by the selection unit and converted at any timing synchronized with each other,
  • a first calculation unit that calculates digital data representing a waveform of the first signal, a value of the first digital data converted at the arbitrary timing, and one timing selected by the selection unit and continuing to the arbitrary timing Or by multiplying the value of the second digital data converted at step 1 or the value of the second digital data converted at the arbitrary timing and the value of the first digital data converted at the one timing. And functioning as a second calculation unit for calculating digital data representing the waveform of the second signal.
  • the present application can be realized not only as a receiving device and a communication system including such a characteristic processing unit, but also as a communication method using such characteristic processing as a step, It can be realized as a program for execution. Further, it can be realized as a semiconductor integrated circuit that realizes part or all of the receiving device and the communication system, or can be realized as another system including the receiving device and the communication system.
  • the number of parts required for acquiring digital data representing the waveform of each signal when the received analog signal is separated into two signals whose phases are orthogonal to each other is reduced, and the processing load for acquisition is reduced. Can be reduced.
  • FIG. 1 is a schematic diagram illustrating a configuration example of a communication system according to Embodiment 1.
  • FIG. It is a block diagram which shows the structure of a transmitter. It is a block diagram which shows the structure of a receiver. It is a flowchart which shows the process sequence of the receiver when detecting the penetration
  • FIG. 6 is a block diagram illustrating a configuration of a receiving device according to Embodiment 2.
  • FIG. It is a flowchart which shows the process sequence of the receiver when detecting the penetration
  • a receiving apparatus receives an analog signal, and the first analog signals are in phase with each other based on the received analog signal and an analog periodic signal corresponding to the analog signal.
  • a receiving device for calculating digital data representing a waveform of each signal when separated into a signal and a second signal, a first A / D converter for converting a received analog signal into first digital data, and the first A A second A / D converter that converts the periodic signal into second digital data in synchronization with the / D converter, and the second digital data converted by the second A / D converter from the predetermined time point to the period Second digital data converted at each timing corresponding to a point when an integral multiple of a quarter period of the signal has elapsed, and first digital data converted in synchronization with each of the second digital data By multiplying the value of the first digital data and the value of the second digital data that are selected by the selection unit and converted at an arbitrary timing synchronized with each other.
  • a first calculation unit that calculates digital data to be represented, and a value of the first digital data converted at the arbitrary timing and the second selection unit selected by the selection unit and converted at one timing continuous to the arbitrary timing
  • a second calculating unit that calculates digital data representing the waveform.
  • the first A / D conversion unit converts the received analog signal into first digital data.
  • the second A / D conversion unit converts an analog periodic signal corresponding to the received analog signal into second digital data in synchronization with the first A / D conversion unit.
  • the selection unit converts the second digital data converted by the second A / D conversion unit at each timing corresponding to a point when an integral multiple of 1 ⁇ 4 period of the periodic signal has elapsed from a predetermined point in time. Select data.
  • the selection unit selects the first digital data converted in synchronization with each of the second digital data.
  • the first calculation unit is digital data that represents the waveform of the first signal by multiplying the value of the first digital data and the value of the second digital data that are selected by the selection unit and converted at an arbitrary timing synchronized with each other. Is calculated.
  • the second calculation unit calculates the value of the first digital data converted at the arbitrary timing and the value of the second digital data selected by the selection unit and converted at one timing continuous to the arbitrary timing. By multiplying, digital data representing the waveform of the second signal is calculated. Alternatively, the second calculation unit multiplies the value of the second digital data converted at the arbitrary timing by the value of the first digital data converted at the one timing, whereby the second signal Digital data representing the waveform is calculated.
  • digital data representing the waveform of each signal when the received analog signal is separated into two signals whose phases are orthogonal to each other can be calculated without using a quadrature detector. Therefore, the number of parts required for acquiring the digital data can be reduced. Further, digital data representing the waveform of each signal can be calculated using the first digital data and the second digital data selected by the selection unit. Therefore, it is possible to reduce the processing load when acquiring the digital data. Note that the second calculation unit only needs to be configured to multiply the first digital data and the second digital data whose phases are different from each other corresponding to a quarter period of the periodic signal.
  • the periodic signal has a sine wave shape having an initial phase corresponding to the analog signal, and the selection unit is a second digital data corresponding to the value of the periodic signal when the phase is 90 degrees or 270 degrees.
  • the first digital data converted in synchronization with the second digital data is selected.
  • the periodic signal has a sine wave shape having an initial phase corresponding to the analog signal.
  • the selection unit selects at least the second digital data corresponding to the value of the periodic signal when the phase is 90 degrees or 270 degrees and the first digital data converted in synchronization with the second digital data.
  • the value of the periodic signal when the phase is 90 degrees or 270 degrees is the maximum value or the minimum value of the periodic signal. Therefore, for example, by selecting the value of the periodic signal when the phase is 90 degrees, 180 degrees, 270 degrees, and 360 degrees, the local maximum point, the local minimum point, and the center point of the periodic signal can be acquired.
  • the selection unit can select the second digital data representing the outline of the periodic signal and the first digital data converted in synchronization with the second digital data by acquiring each point. Therefore, the values of the digital data calculated by the first calculation unit and the second calculation unit can be made closer to the values of the first signal and the second signal, respectively.
  • the receiving device includes a plurality of receiving antennas. Further, the receiving device calculates digital data representing the waveform of each signal when the analog signals received by the plurality of receiving antennas are separated into the first signal and the second signal whose phases are orthogonal to each other.
  • a communication system includes the above-described reception device and a transmission device that transmits an analog signal, and the reception device receives and receives an analog signal transmitted from the transmission device.
  • Digital data representing the waveform of each signal when the analog signal is separated into a first signal and a second signal whose phases are orthogonal to each other is calculated.
  • the present application includes the above-described receiving device and a transmitting device that transmits an analog signal.
  • the receiving device receives the analog signal transmitted from the transmitting device, and calculates digital data representing the waveform of each signal when the received analog signal is separated into a first signal and a second signal whose phases are orthogonal to each other. Therefore, digital data representing the waveform of each signal when the received analog signal is separated into two signals whose phases are orthogonal to each other can be calculated without using a quadrature detector. Therefore, it is possible to reduce the number of parts of the receiving device required when acquiring the digital data. Further, the receiving device can calculate digital data representing the waveform of each signal using the first digital data and the second digital data selected by the selection unit. Therefore, it is possible to reduce the processing load on the receiving apparatus when acquiring the digital data.
  • the transmission device is configured to transmit an analog signal as needed, and the reception device stores information related to the analog signal received in a specific state around itself, and stores the information in the storage unit.
  • the specific state and the analog signal are transmitted based on the calculated information and the values calculated by the first calculation unit and the second calculation unit when receiving the analog signal transmitted from the transmission device as needed.
  • the transmission device transmits an analog signal as needed.
  • the receiving device stores information on the analog signal received in a specific state around the receiving device in the storage unit. Based on the information stored in the storage unit and the values calculated by the first calculation unit and the second calculation unit described above when receiving the analog signal transmitted from the transmission device as needed And the surrounding state when the analog signal is transmitted are compared by the comparator. Based on the comparison result of the comparison unit, the reception device detects an event that has occurred in the transmission device and its own communication range by the detection unit. Therefore, the receiving apparatus can detect a change in state within the communication range.
  • the information stored in the storage unit is a feature amount related to the specific state, and the reception device is based on each value calculated by the first calculation unit and the second calculation unit.
  • a feature amount calculation unit that calculates a feature amount related to the surrounding state is further provided, and the comparison unit compares the feature amount calculated by the feature amount calculation unit with the feature amount related to the specific state.
  • a configuration is preferred.
  • the information stored in the storage unit of the receiving device is a feature amount related to a specific state.
  • the reception device calculates the feature amount related to the surrounding state of the reception device by the feature amount calculation unit.
  • the comparison unit compares the feature amount calculated by the feature amount calculation unit with the feature amount related to the specific state stored in the storage unit.
  • the analog signal is converted into a first signal and a second signal whose phases are orthogonal to each other.
  • the waveform of the first signal is represented by multiplying the selection step to be selected, and the value of the first digital data and the value of the second digital data selected at the selection step and converted at any timing synchronized with each other.
  • the waveform of the second signal is obtained by multiplying the value of the data, or by multiplying the value of the second digital data converted at the arbitrary timing and the value of the first digital data converted at the one timing.
  • the first A / D conversion step converts an analog signal into first digital data.
  • the periodic signal corresponding to the analog signal is converted into second digital data.
  • the selection step the second digital data converted at each timing to be loaded when an integral multiple of 1 ⁇ 4 period of the periodic signal has elapsed from a predetermined time point in the second digital data converted in the second A / D conversion step. Select data.
  • the selection step the first digital data converted in synchronization with the second digital data is selected.
  • digital data representing the waveform of the first signal is obtained by multiplying the value of the first digital data and the value of the second digital data selected at the selection step and converted at an arbitrary timing synchronized with each other. Is calculated.
  • the second calculation step the value of the first digital data converted at the arbitrary timing and the value of the second digital data selected by the selection unit and converted at one timing continuous to the arbitrary timing are calculated. By multiplying, digital data representing the waveform of the second signal is calculated.
  • the second calculation step multiplies the value of the second digital data converted at the arbitrary timing by the value of the first digital data converted at the one timing, so that the second signal Digital data representing the waveform is calculated. Therefore, digital data representing the waveform of each signal when the received analog signal is separated into two signals whose phases are orthogonal to each other can be calculated without using a quadrature detector. Therefore, by using the calculation method of the present application, it is possible to reduce the number of components having a configuration required when acquiring the digital data.
  • digital data representing the waveform of each signal can be calculated using the first digital data and the second digital data selected in the selection step. Therefore, the processing load of the configuration using the calculation method of the present application when acquiring the digital data can be reduced.
  • the second calculation step may be a procedure that multiplies the first digital data and the second digital data that are different in phase from each other by an amount corresponding to a quarter period of the periodic signal.
  • the computer program according to one aspect of the present invention is based on the fact that the analog signal is separated into two signals whose phases are orthogonal to each other based on an arbitrary analog signal and an analog periodic signal corresponding to the analog signal.
  • a second A / D converter that converts the periodic signal into second digital data, and the second digital data converted by the second A / D converter 1 / of the periodic signal from a predetermined time point.
  • a selection unit that selects the converted first digital data, and a value of the first digital data and a value of the second digital data that are selected by the selection unit and converted at any timing synchronized with each other,
  • a first calculation unit that calculates digital data representing a waveform of the first signal, a value of the first digital data converted at the arbitrary timing, and the selection unit, and one selected continuously from the arbitrary timing Multiply the value of the second digital data converted at the timing, or multiply the value of the second digital data converted at the arbitrary timing and the value of the first digital data converted at the one timing.
  • it functions as a second calculator that calculates digital data representing the waveform of the second signal.
  • the computer converts an analog signal into first digital data, and converts a periodic signal corresponding to the analog signal into second digital data.
  • the computer selects, from the converted second digital data, the second digital data converted at each timing corresponding to the time when an integral multiple of 1 ⁇ 4 period of the periodic signal has elapsed from a predetermined time. Further, the computer selects the first digital data converted in synchronization with the second digital data.
  • the computer multiplies the value of the first digital data and the value of the second digital data, which are converted at an arbitrary timing synchronized with each other, among the selected first digital data and second digital data, thereby obtaining the first signal.
  • the digital data representing the waveform is calculated.
  • the computer includes a value of the first digital data converted at the arbitrary timing, and a value of the second digital data converted at one timing continuous to the arbitrary timing among the selected second digital data. Is multiplied to calculate digital data representing the waveform of the second signal.
  • the second calculation unit multiplies the value of the second digital data converted at the arbitrary timing by the value of the first digital data converted at the one timing, whereby the second signal Digital data representing the waveform is calculated. Therefore, digital data representing the waveform of each signal when the received analog signal is separated into two signals whose phases are orthogonal to each other can be calculated without using a quadrature detector. Therefore, the number of parts required for acquiring the digital data can be reduced.
  • digital data representing the waveform of each signal can be calculated using the first digital data and the second digital data selected by causing the computer to function as a selection unit. Therefore, it is possible to reduce the processing load on the computer when acquiring the digital data.
  • the computer functions as the second calculation unit, it is only necessary to multiply the first digital data and the second digital data whose phases are different from each other corresponding to a quarter period of the periodic signal.
  • FIG. 1 is a schematic diagram illustrating a configuration example of a communication system according to the first embodiment.
  • the communication system according to the first embodiment includes a receiving device 1 and a transmitting device 2 that are provided in a passenger compartment of the vehicle C.
  • the transmission device 2 includes a transmission antenna 2a and transmits an analog radio signal from the transmission antenna 2a.
  • the receiving apparatus 1 includes a plurality of receiving antennas 1a, and receives an analog radio signal transmitted from the transmitting apparatus 2 via each receiving antenna 1a.
  • the radio signal received by the receiving apparatus 1 includes, for example, a radio signal directly propagated from the transmission antenna 2a to the reception antenna 1a, a radio signal reflected and propagated at various locations such as an inner wall, a seat, and a floor surface in the vehicle interior and a vehicle Radio signals reflected and propagated at various places such as outdoor persons and obstacles are included.
  • the receiving device 1 and the transmitting device 2 are connected via a communication line 3 and output an analog reference signal described later from the transmitting device 2 to the receiving device 1.
  • the receiving device 1 detects an event occurring in the communication range of the transmitting device 2 and itself based on the analog radio signal and the reference signal transmitted from the transmitting device.
  • the receiving device 1 detects, for example, the presence or absence of an intruder into the passenger compartment of the vehicle C and the presence or absence of a person approaching the vehicle C as events.
  • the radio signal transmitted by the transmission device 2 and the reference signal output are analog signals.
  • the configuration and processing when the receiving device 1 detects the presence or absence of an intruder into the vehicle interior of the vehicle C will be mainly described.
  • FIG. 2 is a block diagram illustrating a configuration of the transmission device 2.
  • the transmission device 2 includes a control unit 21, a storage unit 22, a temporary storage unit 23, a transmission unit 24, and an output unit 25, and each unit is connected via a bus.
  • the control unit 21 includes, for example, one or more CPUs (Central Processing Unit), a multi-core CPU, and the like.
  • the control unit 21 reads a later-described control program stored in the storage unit 22 and controls each unit.
  • the storage unit 22 includes a nonvolatile memory such as an EEPROM (Electrically-Erasable-and Programmable-ROM), a flash memory, and an HDD (Hard Disk-Drive).
  • the storage unit 22 stores a control program.
  • the control program is a computer program in which the processing content when the control unit 21 transmits a wireless signal, the processing content when the reference signal is output, and the processing content when each unit is controlled is described.
  • the temporary storage unit 23 is configured by a memory such as SRAM (Static RAM) or DRAM (Dynamic RAM).
  • SRAM Static RAM
  • DRAM Dynamic RAM
  • the transmission unit 24 is connected to the transmission antenna 2a, and transmits a radio signal having a predetermined frequency from the transmission antenna 2a according to the control of the control unit 21.
  • the predetermined frequency is, for example, a frequency within various frequency bands such as an LF (LowencyFrequency) band and an UHF (Ultra High Frequency) band, and is not particularly limited.
  • the radio signal need not be modulated, but may be modulated by various modulation schemes.
  • the receiving device 1 is connected to the output unit 25 via the communication line 3.
  • the control unit 21 causes the oscillation circuit to generate a reference signal corresponding to a radio signal to be transmitted to the transmission unit 24, and outputs the reference signal from the output unit 25 to the reception device 1.
  • the reference signal is a periodic signal.
  • the reference signal is the same analog signal as the radio signal.
  • the reference signal is a carrier wave before modulation.
  • the reference signal is an analog signal indicating a sine wave waveform.
  • FIG. 3 is a block diagram showing the configuration of the receiving device 1.
  • the receiving device 1 includes a control unit 11, a storage unit 12, a temporary storage unit 13, a receiving unit 14, a reading unit 15, and a second A / D conversion unit 16, and each unit is connected via a bus.
  • the control unit 11 includes, for example, one or a plurality of CPUs, a multi-core CPU, and the like. The control unit 11 reads a control program described later stored in the storage unit 12 and controls each unit.
  • the storage unit 12 includes a nonvolatile memory such as an EEPROM, a flash memory, or an HDD.
  • the storage unit 12 stores reference information 12a.
  • the reference information 12a is information related to a radio signal received by the receiving device 1 when the surroundings of the receiving device 1 are in a specific state.
  • the reference information 12a is, for example, information related to the arrival angle of the radio signal and information related to the delay profile when the radio signal transmitted from the transmission device 2 is received by each of the receiving antennas 1a in a state where there is no person in the cabin of the vehicle C. This is information related to radio wave propagation characteristics such as.
  • the control unit 11 refers to the reference information 12a when detecting whether or not the vehicle C has entered the passenger compartment.
  • the storage unit 12 stores a control program.
  • the control program is a computer program in which processing details when a wireless signal is received from the transmission device 2, processing details when a reference signal is input, and processing details for controlling each unit are described.
  • the temporary storage unit 13 is configured by a memory such as SRAM or DRAM.
  • the temporary storage unit 13 temporarily stores various data generated by the control unit 11 performing processing based on the control program.
  • the reception unit 14 includes the same number of first A / D conversion units 14a as the number of reception antennas 1a.
  • the first A / D converter 14a includes, for example, an A / D converter, and is connected to one receiving antenna 1a.
  • the first A / D converter 14a converts an analog signal received from the connected receiving antenna 1a into digital data.
  • the reception unit 14 causes the first A / D conversion unit 14 a to convert the received analog signal into digital data, and outputs the converted digital data to the control unit 11.
  • the digital data converted by the first A / D conversion unit 14a is referred to as first digital data.
  • the reading unit 15 is configured to be able to read information from the recording medium 4 such as a CD-ROM, DVD, Blu-ray disc, or flexible disk.
  • the control unit 11 stores the data recorded on the recording medium 4 read by the reading unit 15 in the temporary storage unit 13 or the storage unit 12.
  • a control program 4 a for operating the receiving device 1 by being executed by the control unit 11 is recorded.
  • the control program stored in the storage unit 12 may be a copy of the control program 4 a read by the reading unit 15 from the recording medium 4.
  • the recording medium 4 may store other information to be stored in the storage unit 12 such as the reference information 12 a and the control unit 11 may store the information in the storage unit 12.
  • the second A / D conversion unit 16 includes, for example, an A / D converter, converts an input analog signal into digital data, and outputs the converted digital data to the control unit 11.
  • the second A / D conversion unit 16 is connected to the input / output unit 17.
  • the input / output unit 17 is connected to the transmission device 2 via the communication line 3.
  • the input / output unit 17 is an interface that inputs the reference signal output from the transmission device 2 and outputs the input reference signal to the second A / D conversion unit 16. is there.
  • the second A / D conversion unit 16 converts the reference signal output from the input / output unit 17 into digital data in accordance with an instruction from the control unit 11.
  • the digital data converted by the second A / D converter 16 is referred to as second digital data.
  • the transmission device 2 repeatedly transmits a radio signal at a predetermined time interval such as 1 second.
  • the transmission device 2 outputs a reference signal to the reception device 1 every time a radio signal is transmitted.
  • the reception device 1 Each time the reception antenna 1a receives the radio signal from the transmission device 2, the reception device 1 separates the reception signal corresponding to each reception antenna 1a into two signals whose phases are orthogonal to each other. Calculate digital data to represent.
  • the receiving device 1 detects the presence or absence of an intruder using each calculated digital data and the reference information 12a stored in the storage unit 12.
  • digital data representing the waveform of the signal corresponding to the first signal of the present application is referred to as an in-phase component
  • digital data representing the waveform corresponding to the second signal of the present application is referred to as a quadrature component.
  • the transmission apparatus 2 demonstrated the example which transmits a radio signal repeatedly, you may transmit a radio signal continuously.
  • FIG. 4 is a flowchart showing a processing procedure of the receiving apparatus 1 when detecting entry into the vehicle interior.
  • the control unit 11 of the reception device 1 determines whether or not the reception unit 14 has received a radio signal transmitted from the transmission device 2 (step S11). When it determines with not receiving the radio signal (S11: NO), the control part 11 waits until it receives a radio signal.
  • step S12 determines whether or not a reference signal from the transmission device 2 has been input to the input / output unit 17 (step S12). When it determines with the reference signal not being input (S12: NO), the control part 11 waits until a reference signal is input. Note that the processing in step S11 and step S12 may be performed in parallel, or the processing order may be reversed. In addition, when one of the reception of the radio signal and the input of the reference signal is not performed until a predetermined time such as 1 second elapses, the control unit 11 finishes the process. May be.
  • the control unit 11 When it is determined that the reference signal has been input (S12: YES), the control unit 11 performs a component calculation process (step S13).
  • the component calculation process is a process of calculating an in-phase component and a quadrature component in each radio signal received by each receiving antenna 1a. The component calculation process is executed using the received radio signal and the input reference signal, details of which will be described later.
  • the control unit 11 calculates the feature amount using the in-phase component and the quadrature component calculated from the radio signal received by each receiving antenna 1a (step S14).
  • the feature amount is a feature amount related to the surrounding state of the reception device 1 when the wireless signal from the transmission device 2 is received in step S11.
  • the control unit 11 calculates information related to the arrival angle of the received radio signal using the calculated in-phase component and quadrature component.
  • the control unit 11 functions as a feature amount calculation unit by executing a control program in step S14.
  • control unit 11 compares the calculated feature amount with the reference information 12a stored in the storage unit 12 (step S15). For example, the control unit 11 performs comparison using a comparison method of various information such as the calculated feature amount and the correlation value of the reference information 12a.
  • the control unit 11 functions as a comparison unit by executing a control program in step S15.
  • control unit 11 determines the presence or absence of an intruder into the vehicle C based on the comparison result of step S15 (step S16). For example, when the comparison is performed by calculating the correlation with the reference information 12a in step S15, the control unit 11 determines that there is an intruder when the correlation is equal to or less than a predetermined value.
  • the predetermined value is, for example, 0.9.
  • the control unit 11 functions as a detection unit by executing a control program in step S16.
  • the control unit 11 If it is determined that there is an intruder (S16: YES), the control unit 11 outputs an alarm (step S17).
  • the control unit 11 may output a warning by sounding a horn of the vehicle C by in-vehicle communication such as CAN (Controller Area Network) communication, or output a warning by blinking the headlight of the vehicle C. May be.
  • the control unit 11 is configured to be connectable to a communication network such as the Internet, and by notifying that the intruder is located in the passenger compartment through the communication network to the portable device possessed by the owner of the vehicle C. An alarm may be output. Thereafter, the control unit 11 finishes the process.
  • FIG. 5 is an explanatory diagram for explaining the processing procedure of the component calculation processing.
  • the received radio signal and the input reference signal are converted into digital data by the first A / D conversion process and the second A / D conversion process, respectively.
  • the control unit 11 converts the radio signal received by each receiving antenna 1a into first digital data by the corresponding first A / D conversion unit 14a.
  • the control unit 11 converts the input reference signal into second digital data by the second A / D conversion unit 16.
  • the control unit 11 synchronizes the first A / D conversion process and the second A / D conversion process.
  • the control unit 11 stores the first digital data and the second digital data converted in synchronization in association with a later-described conversion result table 131 (see FIG. 6) stored in the temporary storage unit 13.
  • a selection process is performed on the first digital data converted by the first A / D conversion process and the second digital data converted by the second A / D conversion process.
  • the control unit 11 selects second digital data corresponding to the maximum point, the minimum point, and the zero cross point of the waveform of the reference signal.
  • the maximum point is the phase of the reference signal that is an integer multiple of 90 degrees
  • the minimum point is the phase of the reference signal that is an integer multiple of 270 degrees.
  • the zero cross point is the center of the waveform of the reference signal.
  • the value of the zero cross point is Vref. That is, in the selection process, the second digital data converted at each timing corresponding to an integral multiple of a quarter period of the reference signal is selected.
  • control unit 11 selects the first digital data converted in synchronization with each of the second digital data. Further, in the selection process, the control unit 11 stores the first digital data and the second digital data converted at timing synchronized with each other in a selection result table 132 (see FIG. 8) described later stored in the temporary storage unit 13. Store in association with each other.
  • a first calculation process and a second calculation process are performed.
  • the control unit 11 multiplies the value of the first digital data and the value of the second digital data selected in the selection process and converted at a timing synchronized with each other.
  • the control unit 11 uses the value of the second digital data used for the multiplication of the first calculation process as the value of the other first digital data different from the first digital data used for the multiplication of the first calculation process. Multiply by.
  • the other first digital data is converted at a timing shifted by 1 ⁇ 4 period of the reference signal as compared with the first digital data used for multiplication in the first calculation process.
  • the second digital data is multiplied by the first digital data converted in synchronism with the first digital data converted at a timing shifted by a quarter cycle from the first digital data.
  • each of the in-phase component and the quadrature component can be calculated.
  • FIG. 6 is an explanatory diagram showing a specific example of the conversion result table 131
  • FIG. 7 is an explanatory diagram conceptually showing the conversion result of the second A / D conversion process
  • FIG. 8 is a specific example of the selection result table 132
  • FIG. 9 is an explanatory diagram showing a specific example of the calculation result table 133.
  • the example in case the receiver 1 is provided with the two receiving antennas 1a is shown.
  • the first digital data obtained by converting the radio signal received by one receiving antenna 1a to the t-th in the first A / D conversion process is V11 [t]
  • the radio signal received by the other receiving antenna 1a is converted.
  • the first digital data thus set is assumed to be V12 [t].
  • the second digital data obtained by converting the reference signal to the t-th in the second A / D conversion process is represented as V2 [t].
  • the conversion result table 131 stores the first digital data V11, V12 and the second digital data V2 for each timing number.
  • the timing number represents the order converted by the first A / D conversion process or the second A / D conversion process.
  • the value of the second digital data converted by the second A / D conversion process changes depending on the conversion timing.
  • the value that the second digital data can take is within the range of values that the reference signal can take.
  • the selection result table 132 stores first digital data V11 and V12 and second digital data V2 for each selection number.
  • the selection number represents the order in which the control unit 11 selects the second digital data V2 from the conversion result table 131.
  • the selection result table 132 stores second digital data corresponding to the maximum point, the minimum point, and the zero-cross point of the reference signal by the selection process.
  • V2 [3] in FIG. 8 is the second digital data selected as the maximum point of the reference signal by the control unit 11 as shown in FIG.
  • the calculation result table 133 stores the in-phase component and the quadrature component of each receiving antenna 1a for each calculation number.
  • the calculation number represents the order in which the control unit 11 calculates the in-phase component and the quadrature component.
  • the control unit 11 multiplies the value of the first digital data and the value of the second digital data that have the same selection number in the selection result table 132, that is, converted at the same timing, to thereby obtain the in-phase component. calculate.
  • the control unit 11 converts the first digital data converted from each other at a timing in which the value of the selection number is shifted by one in the selection result table 132, that is, shifted by 1 ⁇ 4 period of the reference signal.
  • the quadrature component is calculated by multiplying the second digital data.
  • FIG. 10 is a flowchart showing a subroutine of component calculation processing.
  • the control unit 11 of the receiving device 1 performs a first A / D conversion process and a second A / D conversion process (step S21).
  • the control unit 11 instructs each of the first A / D conversion unit 14a and the second A / D conversion unit 16 to synchronize the radio signal and the reference signal with the first digital data and the second digital data at a predetermined sampling timing.
  • the control unit 11 causes the first A / D conversion unit 14a and the second A / D conversion unit 16 to convert the time corresponding to 1/10 of the cycle of the reference signal.
  • control unit 11 stores the converted first digital data and second digital data in the conversion result table 131 (step S22).
  • the control unit 11 stores the first digital data and the second digital data converted in synchronization in the conversion result table 131 so that they have the same timing number.
  • the control unit 11 calculates the second digital data corresponding to the maximum point, the minimum point, and the zero cross point of the reference signal and the corresponding first digital data.
  • a selection process is performed (step S23). As described above, in the selection process, the second digital data corresponding to the maximum point, the minimum point, and the zero-cross point are selected in association with the first digital data converted in synchronization with the second digital data.
  • control unit 11 performs a first calculation process based on the second digital data and the first digital data stored in the selection result table 132 (step S24), and then performs a second calculation process (step S25). .
  • the control unit 11 stores the calculation result in the calculation result table 133 in each of the first calculation process and the second calculation process. Thereafter, the control unit 11 finishes the component calculation process.
  • the control unit 11 functions as a selection unit by executing a control program in step S23.
  • control part 11 functions as a 1st calculation part by executing a control program by step S24.
  • control unit 11 functions as a second calculation unit by executing a control program in step S25.
  • FIG. 11 is a flowchart showing a subroutine of selection processing.
  • the control unit 11 of the receiving device 1 secures the area of the counter n in the temporary storage unit 13, and sets the value of the counter n to 1 (step S31).
  • the control unit 11 initializes a flag (step S32).
  • the flag is increased from the value of the second digital data converted earlier in the value of the second digital data converted later in the two second digital data in which the timing converted by the second A / D conversion process continues. It is information indicating whether or not it is decreasing. For example, when the second digital data converted later is increased from the previously converted second digital data, the flag value is 1, and when the second digital data is decreased, the flag value is ⁇ 1. It is.
  • the control unit 11 secures a flag area in the temporary storage unit 13 and performs initialization by setting the value of the flag to 0.
  • the control unit 11 reads the binary values V2 [n] and V2 [n + 1] from the conversion result table 131 of the temporary storage unit 13 (step S33). For example, when the value of the counter n is 1, the control unit 11 reads the binary values V2 [1] and V2 [2] from the conversion result table 131. Thereafter, the control unit 11 determines whether or not the read value of V2 [n + 1] is larger than the value of V2 [n] (step S34).
  • step S35 determines whether or not the value of the flag is a value indicating a decrease. For example, the control unit 11 determines whether or not the value of the flag is -1. When it determines with it not being a value which shows reduction (S35: NO), the control part 11 advances a process to step S37.
  • step S35 If it is determined that the value indicates a decrease (S35: YES), the control unit 11 assumes that V2 [n] corresponds to the minimum point of the reference signal, and V2 [n] and the corresponding first digital data V11 [ n] and V12 [n] are stored in the selection result table 132 (step S36). Thereafter, the control unit 11 sets a value indicating an increase in the flag value, assuming that the value of V2 [n + 1] read in step S33 is increased from the value of V2 [n] (step S37). For example, the control unit 11 sets the value of the flag to 1.
  • step S34 when it is determined in step S34 that the value of V2 [n + 1] is equal to or less than the value of V2 [n] (S34: NO), the control unit 11 determines whether or not the flag value is an increase value. Determination is made (step S38). For example, the control unit 11 determines whether or not the value of the flag is 1. When it determines with it not being a value which shows increase (S38: NO), the control part 11 advances a process to step S40.
  • the control unit 11 When it is determined that the value indicates an increase (S38: YES), the control unit 11 assumes that V2 [n] corresponds to the maximum point of the reference signal, and V2 [n] and the corresponding first digital data V11 [ n] and V12 [n] are stored in the selection result table 132 (step S39). Thereafter, the control unit 11 sets a value indicating a decrease in the value of the flag, assuming that the value of V2 [n + 1] read in step S33 has decreased from the value of V2 [n] (step S40). For example, the control unit 11 sets the flag value to -1.
  • step S37 or step S40 a value indicating increase or a value indicating decrease is set as the flag value.
  • the value of the counter n is updated so as to increase by one. That is, the value of the flag determined in the process of step S35 or step S38 is not a value based on the determination result in step S34 performed immediately before the process but a value based on the determination result in the previous step S34. For example, the flag value determined in step S35 or step S38 when the value of the counter n is 2 is the flag value set in step S37 or step S40 when the value of the counter n is 1.
  • the control unit 11 determines in step S34 that the value of V2 [n] is larger than the value of V2 [n + 1], and in step S35, the value of V2 [n] decreases from the value of V2 [n ⁇ 1]. It is assumed that V2 [n] is a local minimum point when it is determined that the value of the flag is set. For example, when each of the second digital data converted by the second A / D conversion process has a value as shown in FIG. 7, the control unit 11 assumes that V2 [7] and V2 [17] are minimum points, In step S36, it is stored in the selection result table 132.
  • control unit 11 determines in step S34 that the value of V2 [n] is less than or equal to the value of V2 [n + 1], and in step S35, the value of V2 [n] increases from the value of V2 [n ⁇ 1]. It is assumed that V2 [n] is the maximum point when it is determined that the value of the flag is set. For example, when each of the second digital data converted by the second A / D conversion process has a value as shown in FIG. 7, the control unit 11 assumes that V2 [3] and V2 [12] are maximum points, In step S36, it is stored in the selection result table 132.
  • the controller 11 determines whether or not V2 [n] is the second digital data corresponding to the center of the waveform of the reference signal, that is, the zero cross point (step S41). . For example, when the value of V2 [n] is smaller than Vref and the value of V2 [n + 1] is larger than Vref, the control unit 11 determines that the second digital data corresponds to the zero cross point. In addition, for example, when the value of V2 [n] is larger than Vref and the value of V2 [n + 1] is smaller than Vref, the control unit 11 also provides second digital data in which V2 [n] corresponds to the zero cross point.
  • step S42 If it is determined that the second digital data does not correspond to the zero cross point (S41: NO), the control unit 11 advances the process to step S43.
  • the control unit 11 selects V2 [n] and the corresponding first digital data V11 [n], V12 [n] as the selection result table 132. (Step S42).
  • control unit 11 determines whether the selection of the second digital data corresponding to the maximum point, the minimum point, and the zero cross point is completed (step S43). For example, the control unit 11 makes a determination based on whether or not all the second digital data stored in the conversion result table 131 has been read at least once. If it is determined that the selection has not been completed (S43: NO), the control unit 11 increments the counter n by 1 (step S44), and returns the process to step S33. When it determines with selection having been completed (S43: YES), the control part 11 finishes a selection process.
  • FIG. 12 is a flowchart showing a subroutine of the first calculation process.
  • the control unit 11 of the receiving device 1 secures the area of the counter i in the temporary storage unit 13, and sets 1 to the value of the counter i (step S51).
  • the control unit 11 reads out the i-th first digital data and the i-th second digital data with the selection number from the selection result table 132, and multiplies the read values (step S52). For example, when the value of the counter i is 1, the control unit 11 multiplies one value of V11 [3] or V12 [3] by the value of V2 [3]. Then, the control part 11 memorize
  • control unit 11 determines whether or not the first digital data for all antennas whose selection numbers in the selection result table 132 are stored in the i-th row are multiplied with the second digital data stored in the i-th row. Is determined (step S54). When it determines with not multiplying all antennas (S54: NO), the control part 11 returns a process to step S52. For example, when the control unit 11 multiplies the value of V11 [3] and the value of V2 [3] by the process of the previous step S52, the value of V12 [3] and V2 [3] by the process of the next step S52. Multiply by the value of.
  • step S55 the control unit 11 determines whether all multiplications have been completed. For example, the control unit 11 determines whether or not multiplication of all the first digital data stored in the selection result table 132 with the corresponding second digital data is completed. When it is determined that the full multiplication has not been completed (S55: NO), the control unit 11 increments the counter i by 1 (step S56), and returns the process to step S52. When it is determined that all multiplications have been completed (S55: YES), the control unit 11 ends the first calculation process.
  • FIG. 13 is a flowchart showing a subroutine of the second calculation process.
  • the control unit 11 of the receiving device 1 secures the area of the counter j in the temporary storage unit 13, and sets 1 to the value of the counter j (step S61).
  • the control unit 11 reads the first digital data with the selection number j + 1 and the second digital data with the jth from the selection result table 132, and multiplies the read values (step S62). For example, when the value of the counter j is 1, the control unit 11 multiplies one value of V11 [5] or V12 [5] by the value of V2 [3]. Then, the control part 11 memorize
  • control unit 11 determines whether or not the first digital data for all antennas whose selection numbers in the selection result table 132 are stored in the (j + 1) th row are multiplied with the second digital data stored in the jth. Is determined (step S64). When it determines with not multiplying all antennas (S64: NO), the control part 11 returns a process to step S62. For example, when the control unit 11 multiplies the value of V11 [5] and the value of V2 [3] in the process of the previous step S62, the value of V12 [5] and V2 [3] in the process of the next step S62. Multiply by the value of.
  • step S65 determines whether all multiplications have been completed. For example, the control unit 11 determines whether all the second digital data stored in the selection result table 132 have been multiplied with the corresponding first digital data. When it is determined that the full multiplication has not been completed (S65: NO), the control unit 11 increments the counter j by 1 (step S66), and returns the process to step S62. When it is determined that all multiplications have been completed (S65: YES), the control unit 11 ends the second calculation process.
  • the control unit 11 uses the value of the second digital data different from the second digital data used for the multiplication of the first calculation process to the first digital data used for the multiplication of the first calculation process. Multiply the data value.
  • the other second digital data is converted at a timing shifted by 1 ⁇ 4 period of the reference signal as compared with the second digital data used for the multiplication in the first calculation process. Even in this case, the control unit 11 can calculate the orthogonal component.
  • the receiving apparatus 1 calculates digital data representing the waveform of each signal when the received analog signal is separated into two signals whose phases are orthogonal to each other without using a quadrature detector. Can do. Therefore, the number of parts required for acquiring the digital data can be reduced. Further, digital data representing the waveform of each signal can be calculated using the first digital data and the second digital data selected by the selection process. Therefore, it is possible to reduce the processing load when acquiring the digital data.
  • the maximum point, the minimum point, and the center point of the reference signal can be acquired.
  • the second digital data representing the outline of the reference signal and the first digital data converted in synchronization with the second digital data it is possible to select the second digital data representing the outline of the reference signal and the first digital data converted in synchronization with the second digital data. . Therefore, the value of the digital data calculated in the first calculation process and the second calculation process can be made closer to the value of each signal when the received analog signal is separated into two signals whose phases are orthogonal to each other.
  • the receiving device 1 can detect a change in state within the communication range with the transmitting device 2.
  • the example in which the receiving device 1 detects the presence or absence of an intruder in the cabin of the vehicle C has been described.
  • the vehicle 1 Other events occurring inside the room may be detected, or other events occurring outside the vehicle compartment may be detected.
  • the receiving device 1 may detect whether a person approaches the vehicle C as an event that has occurred outside the passenger compartment.
  • the reference information 12a stored in the storage unit 12 of the receiving device 1 is, for example, wireless when the receiving antenna 1a receives the wireless signal transmitted from the transmitting device 2 in the state where there is no person around the vehicle C.
  • step S ⁇ b> 16 in FIG. 4 the control unit 11 of the receiving device 1 determines whether or not a person approaches the vehicle C by the same process as described above. If it is determined in step S16 that there is a person approaching (S16: YES), the control unit 11 is convenient when getting on the vehicle C, such as turning on an interior lamp for lighting of the vehicle C (not shown). Vehicle control that can improve performance.
  • the second calculation process is performed after the first calculation process is performed, but the second calculation process is performed.
  • the first calculation process may be performed later. Further, the first calculation process and the second calculation process may be performed in parallel.
  • the receiving device 1 uses the reference signal output from the transmitting device 2 and digital data representing the waveform of each signal when the radio signal from the transmitting device 2 is separated into two signals whose phases are orthogonal to each other. Was calculated.
  • the second embodiment an example in which the receiving device 1 generates a reference signal and calculates the second digital data will be described. Since the other configurations and operations except the configurations and operations described below are the same as those in the first embodiment, detailed description on the same configurations and descriptions of the operations and effects are omitted for the sake of brevity.
  • the receiving device 1 and the transmitting device 2 are not connected by the communication line 3.
  • transmission of a radio signal from the transmission device 2 to the reception device 1 has been described.
  • a radio signal is further transmitted from the reception device 1 to the transmission device 2. Therefore, in addition to the configuration described in the first embodiment, the transmission device 2 includes a reception antenna for receiving a radio signal and a reception unit that outputs the radio signal received from the reception antenna to the control unit 21.
  • FIG. 14 is a block diagram illustrating a configuration of the receiving device 1 according to the second embodiment.
  • the receiving device 1 according to the second embodiment does not include the input / output unit 17 but includes the transmitting unit 18 and the oscillation circuit 19.
  • the transmission unit 18 is connected to the control unit 11 via a bus, and transmits a radio signal from a transmission antenna (not shown) according to an instruction from the control unit 11.
  • the oscillation circuit 19 is connected to the second A / D conversion unit 16, generates a reference signal according to an instruction from the control unit 11, and outputs the reference signal to the second A / D conversion unit 16.
  • the second A / D converter 16 converts the reference signal from the oscillation circuit 19 into second digital data.
  • FIG. 15 is a flowchart showing the processing procedure of the receiving apparatus 1 when detecting entry into the vehicle interior. Note that the processing from step S74 to step S78 in FIG. 15 is the same as the processing from step S13 to step S17 in FIG.
  • the control unit 11 of the reception device 1 wirelessly transmits a transmission request for a wireless signal for detecting an event occurring in the passenger compartment of the vehicle C to the transmission device 2 (step S71). Thereafter, the control unit 11 determines whether or not a radio signal is received from the transmission device 2 that has received the transmission request (step S72). When it determines with not receiving the radio signal (S72: NO), the control part 11 waits until a radio signal is received.
  • the control unit 11 If it is determined that a radio signal has been received (S72: YES), the control unit 11 generates a reference signal corresponding to the oscillation circuit 19 corresponding to the received radio signal (step S73). For example, the control unit 11 stores in advance information related to the phase of a radio signal transmitted by the transmission device 2, and causes the oscillation circuit 19 to generate a reference signal based on the information. Thereafter, the control unit 11 advances the process to step S74 and subsequent steps using the received wireless signal and the reference signal generated by the oscillation circuit 19.
  • the receiving device 1 does not connect the transmitting device 2 via the communication line 3, and the waveform of each signal when the received analog signal is separated into two signals whose phases are orthogonal to each other is obtained. Representing digital data can be calculated.
  • Modification In the modification, an example will be described in which a subroutine for selection processing is executed in a processing procedure different from the processing procedure shown in FIG. Since the other configurations and operations except for the configurations and operations described below are the same as those in the first and second embodiments, a detailed description of the same configuration and a description of the operations and effects are omitted for the sake of brevity. .
  • FIG. 16 is a flowchart showing a subroutine of selection processing in the modification.
  • the control unit 11 of the receiving device 1 secures the area of the counter n in the temporary storage unit 13 and sets the value of the counter n to 2 (step S81).
  • the control unit 11 reads the three values V2 [n ⁇ 1], V2 [n], and V2 [n + 1] from the conversion result table 131 in the temporary storage unit 13 (step S82). For example, when the value of the counter n is 2, the control unit 11 reads out the three values V2 [1], V2 [2], and V2 [3] from the conversion result table 131.
  • the control unit 11 performs a maximum point determination process using the read three values of V2 [n ⁇ 1], V2 [n], and V2 [n + 1] (step S83).
  • the maximum point determination process is a process for determining whether or not V2 [n] is the second digital data corresponding to the maximum point of the waveform of the reference signal.
  • the control unit 11 has a value of V2 [n].
  • V2 [n] When it is larger than the values of V2 [n ⁇ 1] and V2 [n + 1], it is determined that V2 [n] is a local maximum point.
  • the control unit 11 corresponds to V2 [3] and V2 [12] as local maximum points. It determines with it being 2nd digital data.
  • step S84 determines whether or not V2 [n] is the second digital data corresponding to the maximum point by the maximum point determination process.
  • V2 [n] is the second digital data corresponding to the maximum point
  • step S85 the control unit 11 determines whether or not V2 [n] is already stored in the selection result table 132.
  • Step S85 determines with having memorize
  • the control part 11 advances a process to step S91.
  • step S85: NO the control unit 11 stores V2 [n] and the corresponding first digital data V11 [n], V12 [n] in the selection result table 132 (step S86). Thereafter, the process proceeds to step S91.
  • the minimum point determination process is a process for determining whether or not V2 [n] is second digital data corresponding to the minimum point of the waveform of the reference signal. For example, the control unit 11 has a value of V2 [n]. When the value is smaller than the values of V2 [n ⁇ 1] and V [n + 1], it is determined that the value of V2 [n] is a minimum point. For example, when each of the second digital data converted by the second A / D conversion process has a value as shown in FIG. 7, the control unit 11 corresponds to V2 [7] and V [17] as minimum points. It determines with it being 2nd digital data.
  • control unit 11 determines whether or not V2 [n] is the second digital data corresponding to the minimum point by the minimum point determination process (step S88). When it is determined that V [n] is the second digital data corresponding to the minimum point (S88: YES), the control unit 11 advances the process to step S85.
  • step S89 The process of step S89 is the same as the process of step S41 in FIG.
  • control unit 11 determines whether or not V [n] is the second digital data corresponding to the zero cross point by the zero cross point determination process (step S90). When it is determined that V2 [n] is the zero cross point (S90: YES), the process proceeds to step S85.
  • step S91 the control unit 11 may determine whether all the second digital data stored in the conversion result table 131 has been read at least once, or in step S86 by a predetermined selection number. The determination may be made based on whether or not processing has been performed. If it is determined that the selection has not been completed (S91: NO), the control unit 11 increments the counter n by 1 (step S92), and the process returns to step S82. When it determines with selection having been completed (S91: YES), the control part 11 finishes a selection process.
  • the control unit 11 can select the second digital data corresponding to the maximum point, the minimum point, and the zero cross point even when the selection process is performed according to the above processing procedure.
  • the processing procedure of the selection processing subroutine described above is only an example, and any processing procedure can be used as long as the second digital data corresponding to the maximum point, the minimum point, and the zero-cross point of the reference signal can be selected. Needless to say, the processing procedure may be other than that shown in FIG.
  • Embodiment 1 and 2 and a modification demonstrated detecting the event which generate

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Theoretical Computer Science (AREA)
  • Electromagnetism (AREA)
  • Signal Processing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Burglar Alarm Systems (AREA)
  • Analogue/Digital Conversion (AREA)
  • Transceivers (AREA)

Abstract

Provided is a receiving apparatus capable of reducing the number of components needed when acquiring digital data representing the waveform of each signal when received analog signals are separated into two signals having mutually orthogonal phases and capable of reducing the processing load when acquiring said digital data. The receiving apparatus converts received analog signals into first digital data at a first A/D conversion unit and converts periodic signals corresponding to the analog signals into second digital data at a second A/D conversion unit. The receiving apparatus, with a selection unit, selects the second digital data converted at time points corresponding to when an integral multiple of 1/4 the period of the periodic signals has elapsed from a predetermined time point and the first digital data converted synchronously with each of the second digital data. The receiving apparatus, on the basis of the selected data, calculates digital data representing the waveform of each signal when the analog signals are separated into two signals having mutually orthogonal phases at a first calculation unit and a second calculation unit.

Description

受信装置、通信システム、算出方法、及びコンピュータプログラムReception device, communication system, calculation method, and computer program
 本願は、受信したアナログ信号を互いに位相が直交する2つの信号に分離したときにおける各信号の波形を表すデジタルデータを算出する受信装置及び当該受信装置を備える通信システムに関する。また、本発明は、任意のアナログ信号を互いに位相が直交する2つの信号に分離したときにおける各信号の波形を表すデジタルデータを算出する算出方法及びコンピュータプログラムに関する。 The present application relates to a receiving device that calculates digital data representing the waveform of each signal when the received analog signal is separated into two signals that are orthogonal to each other, and a communication system including the receiving device. The present invention also relates to a calculation method and computer program for calculating digital data representing the waveform of each signal when an arbitrary analog signal is separated into two signals whose phases are orthogonal to each other.
 従来、外部からアナログ信号を受信し、受信したアナログ信号を互いに位相が直交する2つの信号に分離する受信装置が知られている。当該受信装置は、分離した各信号を夫々デジタルデータに変換し、変換した各デジタルデータを用いることで、当該アナログ信号の復調等の種々の処理を行う。一般に、受信装置は直交検波器及びA/Dコンバータを備えることにより、当該デジタルデータを取得する。具体的には、受信装置は、直交検波器を用いて受信したアナログ信号を直交する2つの信号に分離する。その後、受信装置は、分離した各信号夫々に対してA/Dコンバータを用いてデジタルデータに変換する。 Conventionally, a receiving apparatus that receives an analog signal from the outside and separates the received analog signal into two signals whose phases are orthogonal to each other is known. The receiving apparatus converts each separated signal into digital data, and performs various processes such as demodulation of the analog signal by using the converted digital data. In general, a receiving apparatus includes a quadrature detector and an A / D converter, thereby acquiring the digital data. Specifically, the receiving apparatus separates an analog signal received using a quadrature detector into two signals that are orthogonal to each other. Thereafter, the receiving apparatus converts each separated signal into digital data using an A / D converter.
 一方、特許文献1に記載の受信装置(アレーアンテナ装置)は、受信したアナログ信号をA/Dコンバータによりデジタルデータに予め変換する。その後、当該受信装置は、変換したデジタルデータに正弦波信号及び余弦波信号を掛け合わせることで、当該アナログ信号を互いに位相が直交する2つの信号に分離したときにおける各信号の波形を表すデジタルデータを算出する。 On the other hand, the receiving device (array antenna device) described in Patent Document 1 converts a received analog signal into digital data in advance by an A / D converter. Thereafter, the receiving device multiplies the converted digital data by a sine wave signal and a cosine wave signal, thereby separating the analog signal into two signals whose phases are orthogonal to each other, and represents digital data representing the waveform of each signal. Is calculated.
特許第5190536号公報Japanese Patent No. 5190536
 近年、所望のアナログ信号の受信感度を高めるべく複数の受信アンテナを備える受信装置が知られている。このような受信装置は、各受信アンテナで受信したアナログ信号夫々について各種の処理を行う必要がある。上述のように、直交検波器及びA/Dコンバータを用いて所望のデジタルデータを取得する受信装置の場合、受信アンテナの数だけ直交検波器が必要となり、直交検波器を構成するアナログ回路の部品点数が増加する。そのため、受信機を構成するコストが増大する問題がある。また、特許文献1に記載の受信装置では、A/Dコンバータが変換したデジタルデータ全てについて正弦波信号又は余弦波信号が掛け合わされている。そのため、受信アンテナが複数の場合、受信装置の処理負荷が増大する問題がある。 In recent years, a receiving apparatus including a plurality of receiving antennas is known in order to increase the receiving sensitivity of a desired analog signal. Such a receiving apparatus needs to perform various processes on each analog signal received by each receiving antenna. As described above, in the case of a receiving device that acquires desired digital data using a quadrature detector and an A / D converter, as many quadrature detectors as the number of reception antennas are necessary, and the components of the analog circuit that constitutes the quadrature detector Score increases. Therefore, there is a problem that the cost for configuring the receiver increases. Moreover, in the receiving apparatus described in Patent Document 1, a sine wave signal or a cosine wave signal is multiplied with all digital data converted by the A / D converter. Therefore, when there are a plurality of receiving antennas, there is a problem that the processing load of the receiving apparatus increases.
 本願の目的は、受信したアナログ信号を互いに位相が直交する2つの信号に分離したときにおける各信号の波形を表すデジタルデータを取得する際に要する部品点数を削減し、かつ取得に際しての処理負荷を軽減することができる受信装置、通信システム、算出方法、及びコンピュータプログラムを提供することにある。 The purpose of the present application is to reduce the number of parts required to acquire digital data representing the waveform of each signal when the received analog signal is separated into two signals whose phases are orthogonal to each other, and to reduce the processing load upon acquisition. It is an object to provide a receiving apparatus, a communication system, a calculation method, and a computer program that can be reduced.
 本発明の一態様に係る受信装置は、アナログ信号を受信し、受信したアナログ信号及び該アナログ信号に対応するアナログの周期信号に基づいて、該アナログ信号を互いに位相が直交する第1信号及び第2信号に分離したときにおける各信号の波形を表すデジタルデータを算出する受信装置であって、受信したアナログ信号を第1デジタルデータに変換する第1A/D変換部と、該第1A/D変換部に同期して、前記周期信号を第2デジタルデータに変換する第2A/D変換部と、該第2A/D変換部が変換した第2デジタルデータの内、所定時点から前記周期信号の1/4周期の整数倍が経過した時点に相当する各タイミングで変換された第2デジタルデータ、及び該第2デジタルデータ夫々に同期して変換された第1デジタルデータを選択する選択部と、該選択部に選択され、互いに同期する任意のタイミングで変換された第1デジタルデータの値及び第2デジタルデータの値を乗算することで、前記第1信号の波形を表すデジタルデータを算出する第1算出部と、前記任意のタイミングで変換された第1デジタルデータの値及び前記選択部に選択され、前記任意のタイミングに連続する一のタイミングで変換された第2デジタルデータの値を乗算するか、あるいは前記任意のタイミングで変換された第2デジタルデータの値及び前記一のタイミングで変換された第1デジタルデータの値を乗算することで、前記第2信号の波形を表すデジタルデータを算出する第2算出部とを備える。 A receiving device according to one embodiment of the present invention receives an analog signal, and based on the received analog signal and an analog periodic signal corresponding to the analog signal, the analog signal is a first signal and a first signal whose phases are orthogonal to each other. A receiving device for calculating digital data representing a waveform of each signal when separated into two signals, a first A / D converter for converting a received analog signal into first digital data, and the first A / D conversion A second A / D converter that converts the periodic signal into second digital data in synchronization with the first digital data, and among the second digital data converted by the second A / D converter, 1 of the periodic signal from a predetermined time point / 4 second digital data converted at each timing corresponding to the time when an integral multiple of four cycles has passed, and the first digital data converted in synchronization with each of the second digital data, The waveform of the first signal is expressed by multiplying the selection unit to be selected, and the value of the first digital data and the value of the second digital data that are selected by the selection unit and converted at an arbitrary timing synchronized with each other. A first calculation unit that calculates digital data, a value of the first digital data converted at the arbitrary timing, and a second digital that is selected by the selection unit and converted at one timing continuous to the arbitrary timing The waveform of the second signal is obtained by multiplying the value of the data, or by multiplying the value of the second digital data converted at the arbitrary timing and the value of the first digital data converted at the one timing. And a second calculation unit that calculates digital data representing.
 本発明の一態様に係る通信システムは、上述の受信装置と、アナログ信号を送信する送信装置とを備え、前記受信装置は、前記送信装置から送信されたアナログ信号を受信し、受信したアナログ信号を互いに位相が直交する第1信号及び第2信号に分離したときにおける各信号の波形を表すデジタルデータを算出するようにしてある。 A communication system according to one embodiment of the present invention includes the above-described reception device and a transmission device that transmits an analog signal, and the reception device receives the analog signal transmitted from the transmission device, and receives the received analog signal. Digital data representing the waveform of each signal when the signal is separated into a first signal and a second signal whose phases are orthogonal to each other is calculated.
 本発明の一態様に係る算出方法は、任意のアナログ信号及び該アナログ信号に対応するアナログの周期信号に基づいて、該アナログ信号を互いに位相が直交する第1信号及び第2信号に分離したときにおける各信号の波形を表すデジタルデータを算出する算出方法であって、前記アナログ信号を第1デジタルデータに変換する第1A/D変換ステップと、該第1A/D変換ステップに同期して、前記周期信号を第2デジタルデータに変換する第2A/D変換ステップと、該第2A/D変換ステップで変換された第2デジタルデータの内、所定時点から前記周期信号の1/4周期の整数倍が経過した時点に相当する各タイミングで変換された第2デジタルデータ、及び該第2デジタルデータ夫々に同期して変換された第1デジタルデータを選択する選択ステップと、該選択ステップで選択され、互いに同期する任意のタイミングで変換された第1デジタルデータの値及び第2デジタルデータの値を乗算することで、前記第1信号の波形を表すデジタルデータを算出する第1算出ステップと、前記任意のタイミングで変換された第1デジタルデータの値及び前記選択部に選択され、前記任意のタイミングに連続する一のタイミングで変換された第2デジタルデータの値を乗算するか、あるいは前記任意のタイミングで変換された第2デジタルデータの値及び前記一のタイミングで変換された第1デジタルデータの値を乗算することで、前記第2信号の波形を表すデジタルデータを算出する第2算出ステップとを含む。 The calculation method according to one aspect of the present invention is based on separation of an analog signal into a first signal and a second signal whose phases are orthogonal to each other based on an arbitrary analog signal and an analog periodic signal corresponding to the analog signal. A digital data representing a waveform of each signal in the first A / D conversion step for converting the analog signal into first digital data, and in synchronization with the first A / D conversion step, A second A / D conversion step for converting the periodic signal into second digital data, and the second digital data converted in the second A / D conversion step, which is an integral multiple of a quarter period of the periodic signal from a predetermined time point The second digital data converted at each timing corresponding to the point in time that has passed, and the first digital data converted in synchronization with each of the second digital data are selected. A digital signal representing the waveform of the first signal by multiplying the value of the first digital data and the value of the second digital data selected at the selection step and converted at an arbitrary timing synchronized with each other. A first calculation step for calculating data; a value of the first digital data converted at the arbitrary timing; and the second digital data selected by the selection unit and converted at one timing continuous with the arbitrary timing. Or the value of the second digital data converted at the arbitrary timing and the value of the first digital data converted at the one timing to multiply the waveform of the second signal. A second calculation step of calculating digital data to be represented.
 本発明の一態様に係るコンピュータプログラムは、任意のアナログ信号及び該アナログ信号に対応するアナログの周期信号に基づいて、該アナログ信号を互いに位相が直交する2つの信号に分離したときにおける各信号の波形を表すデジタルデータを、コンピュータに算出させるコンピュータプログラムであって、前記コンピュータを、前記アナログ信号を第1デジタルデータに変換する第1A/D変換部と、該第1A/D変換部に同期して、前記周期信号を第2デジタルデータに変換する第2A/D変換部と、該第2A/D変換部が変換した第2デジタルデータの内、所定時点から前記周期信号の1/4周期の整数倍が経過した時点に相当する各タイミングで変換された第2デジタルデータ、及び該第2デジタルデータ夫々に同期して変換された第1デジタルデータを選択する選択部と、該選択部に選択され、互いに同期する任意のタイミングで変換された第1デジタルデータの値及び第2デジタルデータの値を乗算することで、前記第1信号の波形を表すデジタルデータを算出する第1算出部と、前記任意のタイミングで変換された第1デジタルデータの値及び前記選択部に選択され、前記任意のタイミングに連続する一のタイミングで変換された第2デジタルデータの値を乗算するか、あるいは前記任意のタイミングで変換された第2デジタルデータの値及び前記一のタイミングで変換された第1デジタルデータの値を乗算することで、前記第2信号の波形を表すデジタルデータを算出する第2算出部として機能させる。 The computer program according to one embodiment of the present invention is based on an arbitrary analog signal and an analog periodic signal corresponding to the analog signal, and separates the analog signal into two signals whose phases are orthogonal to each other. A computer program for causing a computer to calculate digital data representing a waveform, wherein the computer is synchronized with a first A / D converter that converts the analog signal into first digital data, and the first A / D converter. A second A / D conversion unit that converts the periodic signal into second digital data, and second digital data converted by the second A / D conversion unit, which is a quarter cycle of the periodic signal from a predetermined time point. The second digital data converted at each timing corresponding to the time point at which the integral multiple has elapsed, and the second digital data are changed in synchronization with the second digital data. A selection unit that selects the first digital data, and by multiplying the value of the first digital data and the value of the second digital data that are selected by the selection unit and converted at any timing synchronized with each other, A first calculation unit that calculates digital data representing a waveform of the first signal, a value of the first digital data converted at the arbitrary timing, and one timing selected by the selection unit and continuing to the arbitrary timing Or by multiplying the value of the second digital data converted at step 1 or the value of the second digital data converted at the arbitrary timing and the value of the first digital data converted at the one timing. And functioning as a second calculation unit for calculating digital data representing the waveform of the second signal.
 なお、本願は、このような特徴的な処理部を備える受信装置、通信システムとして実現することができるだけでなく、かかる特徴的な処理をステップとする通信方法として実現したり、かかるステップをコンピュータに実行させるためのプログラムとして実現したりすることができる。また、受信装置及び通信システムの一部又は全部を実現する半導体集積回路として実現したり、受信装置及び通信システムを含むその他のシステムとして実現したりすることができる。 Note that the present application can be realized not only as a receiving device and a communication system including such a characteristic processing unit, but also as a communication method using such characteristic processing as a step, It can be realized as a program for execution. Further, it can be realized as a semiconductor integrated circuit that realizes part or all of the receiving device and the communication system, or can be realized as another system including the receiving device and the communication system.
 上記によれば、受信したアナログ信号を互いに位相が直交する2つの信号に分離したときにおける各信号の波形を表すデジタルデータを取得する際に要する部品点数を削減し、かつ取得に際しての処理負荷を軽減することができる。 According to the above, the number of parts required for acquiring digital data representing the waveform of each signal when the received analog signal is separated into two signals whose phases are orthogonal to each other is reduced, and the processing load for acquisition is reduced. Can be reduced.
実施形態1における通信システムの構成例を示す模式図である。1 is a schematic diagram illustrating a configuration example of a communication system according to Embodiment 1. FIG. 送信装置の構成を示すブロック図である。It is a block diagram which shows the structure of a transmitter. 受信装置の構成を示すブロック図である。It is a block diagram which shows the structure of a receiver. 車室内への侵入を検知するときにおける受信装置の処理手順を示すフローチャートである。It is a flowchart which shows the process sequence of the receiver when detecting the penetration | invasion into a vehicle interior. 成分算出処理の処理手順を説明する説明図である。It is explanatory drawing explaining the process sequence of a component calculation process. 変換結果テーブルの具体例を示す説明図である。It is explanatory drawing which shows the specific example of a conversion result table. 第2A/D変換処理の変換結果を概念的に示す説明図である。It is explanatory drawing which shows notionally the conversion result of a 2nd A / D conversion process. 選択結果テーブルの具体例を示す説明図である。It is explanatory drawing which shows the specific example of a selection result table. 算出結果テーブルの具体例を示す説明図である。It is explanatory drawing which shows the specific example of a calculation result table. 成分算出処理のサブルーチンを示すフローチャートである。It is a flowchart which shows the subroutine of a component calculation process. 選択処理のサブルーチンを示すフローチャートである。It is a flowchart which shows the subroutine of a selection process. 第1算出処理のサブルーチンを示すフローチャートである。It is a flowchart which shows the subroutine of a 1st calculation process. 第2算出処理のサブルーチンを示すフローチャートである。It is a flowchart which shows the subroutine of a 2nd calculation process. 実施形態2における受信装置の構成を示すブロック図である。6 is a block diagram illustrating a configuration of a receiving device according to Embodiment 2. FIG. 車室内への侵入を検知するときにおける受信装置の処理手順を示すフローチャートである。It is a flowchart which shows the process sequence of the receiver when detecting the penetration | invasion into a vehicle interior. 変形例における選択処理のサブルーチンを示すフローチャートである。It is a flowchart which shows the subroutine of the selection process in a modification.
[本発明の実施形態の説明]
 最初に本発明の実施態様を列記して説明する。また、以下に記載する実施形態の少なくとも一部を任意に組み合わせてもよい。
[Description of Embodiment of the Present Invention]
First, embodiments of the present invention will be listed and described. Moreover, you may combine arbitrarily at least one part of embodiment described below.
(1)本発明の一態様に係る受信装置は、アナログ信号を受信し、受信したアナログ信号及び該アナログ信号に対応するアナログの周期信号に基づいて、該アナログ信号を互いに位相が直交する第1信号及び第2信号に分離したときにおける各信号の波形を表すデジタルデータを算出する受信装置であって、受信したアナログ信号を第1デジタルデータに変換する第1A/D変換部と、該第1A/D変換部に同期して、前記周期信号を第2デジタルデータに変換する第2A/D変換部と、該第2A/D変換部が変換した第2デジタルデータの内、所定時点から前記周期信号の1/4周期の整数倍が経過した時点に相当する各タイミングで変換された第2デジタルデータ、及び該第2デジタルデータ夫々に同期して変換された第1デジタルデータを選択する選択部と、該選択部に選択され、互いに同期する任意のタイミングで変換された第1デジタルデータの値及び第2デジタルデータの値を乗算することで、前記第1信号の波形を表すデジタルデータを算出する第1算出部と、前記任意のタイミングで変換された第1デジタルデータの値及び前記選択部に選択され、前記任意のタイミングに連続する一のタイミングで変換された第2デジタルデータの値を乗算するか、あるいは前記任意のタイミングで変換された第2デジタルデータの値及び前記一のタイミングで変換された第1デジタルデータの値を乗算することで、前記第2信号の波形を表すデジタルデータを算出する第2算出部とを備える。 (1) A receiving apparatus according to an aspect of the present invention receives an analog signal, and the first analog signals are in phase with each other based on the received analog signal and an analog periodic signal corresponding to the analog signal. A receiving device for calculating digital data representing a waveform of each signal when separated into a signal and a second signal, a first A / D converter for converting a received analog signal into first digital data, and the first A A second A / D converter that converts the periodic signal into second digital data in synchronization with the / D converter, and the second digital data converted by the second A / D converter from the predetermined time point to the period Second digital data converted at each timing corresponding to a point when an integral multiple of a quarter period of the signal has elapsed, and first digital data converted in synchronization with each of the second digital data By multiplying the value of the first digital data and the value of the second digital data that are selected by the selection unit and converted at an arbitrary timing synchronized with each other. A first calculation unit that calculates digital data to be represented, and a value of the first digital data converted at the arbitrary timing and the second selection unit selected by the selection unit and converted at one timing continuous to the arbitrary timing By multiplying the value of the digital data, or by multiplying the value of the second digital data converted at the arbitrary timing and the value of the first digital data converted at the one timing, A second calculating unit that calculates digital data representing the waveform.
 本願にあっては、第1A/D変換部は、受信したアナログ信号を第1デジタルデータに変換する。第2A/D変換部は、当該第1A/D変換部に同期して、受信したアナログ信号に対応するアナログの周期信号を第2デジタルデータに変換する。選択部は、第2A/D変換部が変換した第2デジタルデータの内、所定時点から当該周期信号の1/4周期の整数倍が経過した時点に相当する各タイミングで変換された第2デジタルデータを選択する。また、選択部は、当該第2デジタルデータ夫々に同期して変換された第1デジタルデータを選択する。第1算出部は、選択部に選択され、互いに同期する任意のタイミングで変換された第1デジタルデータの値及び第2デジタルデータの値を乗算することで、第1信号の波形を表すデジタルデータを算出する。第2算出部は、当該任意のタイミングで変換された第1デジタルデータの値と、選択部に選択され、当該任意のタイミングに連続する一のタイミングで変換された第2デジタルデータの値とを乗算することで、第2信号の波形を表すデジタルデータを算出する。あるいは、第2算出部は、当該任意のタイミングで変換された第2デジタルデータの値と、当該一のタイミングで変換された第1デジタルデータの値とを乗算することで、当該第2信号の波形を表すデジタルデータを算出する。
 従って、直交検波器を用いることなく、受信したアナログ信号を互いに位相が直交する2つの信号に分離したときにおける各信号の波形を表すデジタルデータを算出することができる。そのため、当該デジタルデータを取得する際に要する部品点数を削減することができる。また、選択部により選択された第1デジタルデータ及び第2デジタルデータを用いて当該各信号の波形を表すデジタルデータを算出することができる。そのため、当該デジタルデータを取得するに際して処理負荷を軽減することができる。なお、第2算出部は、周期信号の1/4周期に相当するだけ互いに位相が異なる第1デジタルデータ及び第2デジタルデータを乗算するように構成されていればよい。
In the present application, the first A / D conversion unit converts the received analog signal into first digital data. The second A / D conversion unit converts an analog periodic signal corresponding to the received analog signal into second digital data in synchronization with the first A / D conversion unit. The selection unit converts the second digital data converted by the second A / D conversion unit at each timing corresponding to a point when an integral multiple of ¼ period of the periodic signal has elapsed from a predetermined point in time. Select data. The selection unit selects the first digital data converted in synchronization with each of the second digital data. The first calculation unit is digital data that represents the waveform of the first signal by multiplying the value of the first digital data and the value of the second digital data that are selected by the selection unit and converted at an arbitrary timing synchronized with each other. Is calculated. The second calculation unit calculates the value of the first digital data converted at the arbitrary timing and the value of the second digital data selected by the selection unit and converted at one timing continuous to the arbitrary timing. By multiplying, digital data representing the waveform of the second signal is calculated. Alternatively, the second calculation unit multiplies the value of the second digital data converted at the arbitrary timing by the value of the first digital data converted at the one timing, whereby the second signal Digital data representing the waveform is calculated.
Therefore, digital data representing the waveform of each signal when the received analog signal is separated into two signals whose phases are orthogonal to each other can be calculated without using a quadrature detector. Therefore, the number of parts required for acquiring the digital data can be reduced. Further, digital data representing the waveform of each signal can be calculated using the first digital data and the second digital data selected by the selection unit. Therefore, it is possible to reduce the processing load when acquiring the digital data. Note that the second calculation unit only needs to be configured to multiply the first digital data and the second digital data whose phases are different from each other corresponding to a quarter period of the periodic signal.
(2)前記周期信号は、前記アナログ信号に対応する初期位相を有する正弦波状をなし、前記選択部は、位相が90度又は270度のときにおける前記周期信号の値に対応する第2デジタルデータ、及び該第2デジタルデータに同期して変換された第1デジタルデータを少なくとも選択するようにしてある構成が好ましい。 (2) The periodic signal has a sine wave shape having an initial phase corresponding to the analog signal, and the selection unit is a second digital data corresponding to the value of the periodic signal when the phase is 90 degrees or 270 degrees. In addition, it is preferable that at least the first digital data converted in synchronization with the second digital data is selected.
 本願にあっては、周期信号はアナログ信号に応じた初期位相を有する正弦波状をなしている。選択部は、位相が90度又は270度のときにおける周期信号の値に対応する第2デジタルデータと、当該第2デジタルデータに同期して変換された第1デジタルデータを少なくとも選択する。位相が90度又は270度のときにおける周期信号の値は、当該周期信号の極大値又は極小値である。従って、例えば位相が90度、180度、270度、及び360度のときにおける周期信号の値が選択されることによって、周期信号の極大点、極小点、及び中心点を取得することができる。選択部は、各点を取得することにより、周期信号の概形を表す第2デジタルデータと、当該第2デジタルデータに同期して変換された第1デジタルデータを選択することができる。そのため、第1算出部及び第2算出部夫々が算出するデジタルデータの値を、当該第1信号及び第2信号夫々の値により近づけることができる。 In the present application, the periodic signal has a sine wave shape having an initial phase corresponding to the analog signal. The selection unit selects at least the second digital data corresponding to the value of the periodic signal when the phase is 90 degrees or 270 degrees and the first digital data converted in synchronization with the second digital data. The value of the periodic signal when the phase is 90 degrees or 270 degrees is the maximum value or the minimum value of the periodic signal. Therefore, for example, by selecting the value of the periodic signal when the phase is 90 degrees, 180 degrees, 270 degrees, and 360 degrees, the local maximum point, the local minimum point, and the center point of the periodic signal can be acquired. The selection unit can select the second digital data representing the outline of the periodic signal and the first digital data converted in synchronization with the second digital data by acquiring each point. Therefore, the values of the digital data calculated by the first calculation unit and the second calculation unit can be made closer to the values of the first signal and the second signal, respectively.
(3)複数の受信アンテナを備え、前記複数の受信アンテナが受信したアナログ信号夫々を互いに位相が直交する第1信号及び第2信号に分離したときにおける各信号の波形を表すデジタルデータを算出するようにしてある構成が好ましい。 (3) Calculate digital data representing a waveform of each signal provided with a plurality of receiving antennas and separating the analog signals received by the plurality of receiving antennas into a first signal and a second signal whose phases are orthogonal to each other. Thus, a certain configuration is preferable.
 本願にあっては、受信装置は複数の受信アンテナを備える。また、受信装置は、当該複数の受信アンテナが受信したアナログ信号夫々を互いに位相が直交する第1信号及び第2信号に分離したときにおける各信号の波形を表すデジタルデータを算出する。 In the present application, the receiving device includes a plurality of receiving antennas. Further, the receiving device calculates digital data representing the waveform of each signal when the analog signals received by the plurality of receiving antennas are separated into the first signal and the second signal whose phases are orthogonal to each other.
(4)本発明の一態様に係る通信システムは、上述の受信装置と、アナログ信号を送信する送信装置とを備え、前記受信装置は、前記送信装置から送信されたアナログ信号を受信し、受信したアナログ信号を互いに位相が直交する第1信号及び第2信号に分離したときにおける各信号の波形を表すデジタルデータを算出するようにしてある。 (4) A communication system according to an aspect of the present invention includes the above-described reception device and a transmission device that transmits an analog signal, and the reception device receives and receives an analog signal transmitted from the transmission device. Digital data representing the waveform of each signal when the analog signal is separated into a first signal and a second signal whose phases are orthogonal to each other is calculated.
 本願にあっては、上述の受信装置とアナログ信号を送信する送信装置とを備える。受信装置は、送信装置から送信されたアナログ信号を受信し、受信したアナログ信号を互いに位相が直交する第1信号及び第2信号に分離したときにおける各信号の波形を表すデジタルデータを算出する。従って、直交検波器を用いることなく、受信したアナログ信号を互いに位相が直交する2つの信号に分離したときにおける各信号の波形を表すデジタルデータを算出することができる。そのため、当該デジタルデータを取得する際に要する受信装置の部品点数を削減することができる。また、受信装置は、上述の選択部により選択された第1デジタルデータ及び第2デジタルデータを用いて当該各信号の波形を表すデジタルデータを算出することができる。そのため、当該デジタルデータを取得するに際して受信装置の処理負荷を軽減することができる。 The present application includes the above-described receiving device and a transmitting device that transmits an analog signal. The receiving device receives the analog signal transmitted from the transmitting device, and calculates digital data representing the waveform of each signal when the received analog signal is separated into a first signal and a second signal whose phases are orthogonal to each other. Therefore, digital data representing the waveform of each signal when the received analog signal is separated into two signals whose phases are orthogonal to each other can be calculated without using a quadrature detector. Therefore, it is possible to reduce the number of parts of the receiving device required when acquiring the digital data. Further, the receiving device can calculate digital data representing the waveform of each signal using the first digital data and the second digital data selected by the selection unit. Therefore, it is possible to reduce the processing load on the receiving apparatus when acquiring the digital data.
(5)前記送信装置はアナログ信号を随時送信するようにしてあり、前記受信装置は、自身の周囲が特定の状態で受信したアナログ信号に係る情報を記憶する記憶部と、該記憶部に記憶された情報、並びに前記送信装置から随時送信されたアナログ信号を受信したときに前記第1算出部及び第2算出部が算出した各値に基づいて、前記特定の状態及び前記アナログ信号が送信されたときの自身の周囲の状態を比較する比較部と、該比較部の比較結果に基づいて、前記送信装置及び自身の通信範囲内で生じた事象を検知する検知部とを備える構成が好ましい。 (5) The transmission device is configured to transmit an analog signal as needed, and the reception device stores information related to the analog signal received in a specific state around itself, and stores the information in the storage unit. The specific state and the analog signal are transmitted based on the calculated information and the values calculated by the first calculation unit and the second calculation unit when receiving the analog signal transmitted from the transmission device as needed. It is preferable to include a comparison unit that compares the surrounding state of the transmission device and a detection unit that detects an event that occurs within the communication range of the transmission device based on the comparison result of the comparison unit.
 本願にあっては、送信装置はアナログ信号を随時送信する。受信装置は、自身の周囲が特定の状態で受信したアナログ信号に係る情報を記憶部にて記憶する。受信装置は、記憶部に記憶された情報と、送信装置から随時送信されたアナログ信号を受信したときに上述の第1算出部及び第2算出部が算出した各値とに基づいて、当該特定の状態及びアナログ信号が送信されたときの周囲の状態を比較部にて比較する。受信装置は、比較部の比較結果に基づいて、送信装置及び自身の通信範囲内で生じた事象を検知部にて検知する。従って、受信装置は、当該通信範囲内の状態の変化を検知することができる。 In the present application, the transmission device transmits an analog signal as needed. The receiving device stores information on the analog signal received in a specific state around the receiving device in the storage unit. Based on the information stored in the storage unit and the values calculated by the first calculation unit and the second calculation unit described above when receiving the analog signal transmitted from the transmission device as needed And the surrounding state when the analog signal is transmitted are compared by the comparator. Based on the comparison result of the comparison unit, the reception device detects an event that has occurred in the transmission device and its own communication range by the detection unit. Therefore, the receiving apparatus can detect a change in state within the communication range.
(6)前記記憶部に記憶された情報は、前記特定の状態に係る特徴量であり、前記受信装置は、前記第1算出部及び第2算出部が算出した各値に基づいて、自身の周囲の状態に係る特徴量を算出する特徴量算出部を更に備え、前記比較部は、前記特徴量算出部が算出した特徴量と前記特定の状態に係る特徴量とを比較するようにしてある構成が好ましい。 (6) The information stored in the storage unit is a feature amount related to the specific state, and the reception device is based on each value calculated by the first calculation unit and the second calculation unit. A feature amount calculation unit that calculates a feature amount related to the surrounding state is further provided, and the comparison unit compares the feature amount calculated by the feature amount calculation unit with the feature amount related to the specific state. A configuration is preferred.
 本願にあっては、受信装置の記憶部に記憶された情報は、特定の状態に係る特徴量である。受信装置は、第1算出部及び第2算出部が算出した各値に基づいて、自身の周囲の状態に係る特徴量を特徴量算出部にて算出する。また、比較部は、特徴量算出部が算出した特徴量と、記憶部に記憶された特定の状態に係る特徴量とを比較する。 In the present application, the information stored in the storage unit of the receiving device is a feature amount related to a specific state. Based on the values calculated by the first calculation unit and the second calculation unit, the reception device calculates the feature amount related to the surrounding state of the reception device by the feature amount calculation unit. The comparison unit compares the feature amount calculated by the feature amount calculation unit with the feature amount related to the specific state stored in the storage unit.
(7)本発明の一態様に係る算出方法は、任意のアナログ信号及び該アナログ信号に対応するアナログの周期信号に基づいて、該アナログ信号を互いに位相が直交する第1信号及び第2信号に分離したときにおける各信号の波形を表すデジタルデータを算出する算出方法であって、前記アナログ信号を第1デジタルデータに変換する第1A/D変換ステップと、該第1A/D変換ステップに同期して、前記周期信号を第2デジタルデータに変換する第2A/D変換ステップと、該第2A/D変換ステップで変換された第2デジタルデータの内、所定時点から前記周期信号の1/4周期の整数倍が経過した時点に相当する各タイミングで変換された第2デジタルデータ、及び該第2デジタルデータ夫々に同期して変換された第1デジタルデータを選択する選択ステップと、該選択ステップで選択され、互いに同期する任意のタイミングで変換された第1デジタルデータの値及び第2デジタルデータの値を乗算することで、前記第1信号の波形を表すデジタルデータを算出する第1算出ステップと、前記任意のタイミングで変換された第1デジタルデータの値及び前記選択部に選択され、前記任意のタイミングに連続する一のタイミングで変換された第2デジタルデータの値を乗算するか、あるいは前記任意のタイミングで変換された第2デジタルデータの値及び前記一のタイミングで変換された第1デジタルデータの値を乗算することで、前記第2信号の波形を表すデジタルデータを算出する第2算出ステップとを含む。 (7) In the calculation method according to one aspect of the present invention, based on an arbitrary analog signal and an analog periodic signal corresponding to the analog signal, the analog signal is converted into a first signal and a second signal whose phases are orthogonal to each other. A calculation method for calculating digital data representing a waveform of each signal when separated, wherein the analog signal is converted into first digital data, and the first A / D conversion step is synchronized with the first A / D conversion step. A second A / D conversion step for converting the periodic signal into second digital data, and the second digital data converted in the second A / D conversion step from the predetermined time point to a quarter period of the periodic signal. Second digital data converted at each timing corresponding to the time when an integral multiple of the first multiple has passed, and first digital data converted in synchronization with each of the second digital data The waveform of the first signal is represented by multiplying the selection step to be selected, and the value of the first digital data and the value of the second digital data selected at the selection step and converted at any timing synchronized with each other. A first calculation step for calculating digital data; a value of the first digital data converted at the arbitrary timing; and a second digital signal selected by the selection unit and converted at one timing continuous with the arbitrary timing The waveform of the second signal is obtained by multiplying the value of the data, or by multiplying the value of the second digital data converted at the arbitrary timing and the value of the first digital data converted at the one timing. A second calculation step of calculating digital data representing
 本願にあっては、第1A/D変換ステップは、アナログ信号を第1デジタルデータに変換する。第2A/D変換ステップは、当該アナログ信号に対応する周期信号を第2デジタルデータに変換する。選択ステップは、第2A/D変換ステップで変換された第2デジタルデータの内、所定時点から周期信号の1/4周期の整数倍が経過した時点に装填する各タイミングで変換された第2デジタルデータを選択する。また、選択ステップは、当該第2デジタルデータに同期して変換された第1デジタルデータを選択する。第1算出ステップは、選択ステップで選択され、互いに同期する任意のタイミングで変換された第1デジタルデータの値及び第2デジタルデータの値を乗算することで、第1信号の波形を表すデジタルデータを算出する。第2算出ステップは、当該任意のタイミングで変換された第1デジタルデータの値と、選択部に選択され、当該任意のタイミングに連続する一のタイミングで変換された第2デジタルデータの値とを乗算することで、第2信号の波形を表すデジタルデータを算出する。あるいは、第2算出ステップは、当該任意のタイミングで変換された第2デジタルデータの値と、当該一のタイミングで変換された第1デジタルデータの値とを乗算することで、当該第2信号の波形を表すデジタルデータを算出する。
 従って、直交検波器を用いることなく、受信したアナログ信号を互いに位相が直交する2つの信号に分離したときにおける各信号の波形を表すデジタルデータを算出することができる。そのため、本願の算出方法を用いることにより、当該デジタルデータを取得する際に要する構成の部品点数を削減することができる。また、選択ステップにより選択された第1デジタルデータ及び第2デジタルデータを用いて当該各信号の波形を表すデジタルデータを算出することができる。そのため、当該デジタルデータを取得するに際して本願の算出方法を用いる構成の処理負荷を軽減することができる。なお、第2算出ステップは、周期信号の1/4周期に相当するだけ互いに位相が異なる第1デジタルデータ及び第2デジタルデータを乗算するような手順であればよい。
In the present application, the first A / D conversion step converts an analog signal into first digital data. In the second A / D conversion step, the periodic signal corresponding to the analog signal is converted into second digital data. In the selection step, the second digital data converted at each timing to be loaded when an integral multiple of ¼ period of the periodic signal has elapsed from a predetermined time point in the second digital data converted in the second A / D conversion step. Select data. In the selection step, the first digital data converted in synchronization with the second digital data is selected. In the first calculation step, digital data representing the waveform of the first signal is obtained by multiplying the value of the first digital data and the value of the second digital data selected at the selection step and converted at an arbitrary timing synchronized with each other. Is calculated. In the second calculation step, the value of the first digital data converted at the arbitrary timing and the value of the second digital data selected by the selection unit and converted at one timing continuous to the arbitrary timing are calculated. By multiplying, digital data representing the waveform of the second signal is calculated. Alternatively, the second calculation step multiplies the value of the second digital data converted at the arbitrary timing by the value of the first digital data converted at the one timing, so that the second signal Digital data representing the waveform is calculated.
Therefore, digital data representing the waveform of each signal when the received analog signal is separated into two signals whose phases are orthogonal to each other can be calculated without using a quadrature detector. Therefore, by using the calculation method of the present application, it is possible to reduce the number of components having a configuration required when acquiring the digital data. Further, digital data representing the waveform of each signal can be calculated using the first digital data and the second digital data selected in the selection step. Therefore, the processing load of the configuration using the calculation method of the present application when acquiring the digital data can be reduced. The second calculation step may be a procedure that multiplies the first digital data and the second digital data that are different in phase from each other by an amount corresponding to a quarter period of the periodic signal.
(8)本発明の一態様に係るコンピュータプログラムは、任意のアナログ信号及び該アナログ信号に対応するアナログの周期信号に基づいて、該アナログ信号を互いに位相が直交する2つの信号に分離したときにおける各信号の波形を表すデジタルデータを、コンピュータに算出させるコンピュータプログラムであって、前記コンピュータを、前記アナログ信号を第1デジタルデータに変換する第1A/D変換部と、該第1A/D変換部に同期して、前記周期信号を第2デジタルデータに変換する第2A/D変換部と、該第2A/D変換部が変換した第2デジタルデータの内、所定時点から前記周期信号の1/4周期の整数倍が経過した時点に相当する各タイミングで変換された第2デジタルデータ、及び該第2デジタルデータ夫々に同期して変換された第1デジタルデータを選択する選択部と、該選択部に選択され、互いに同期する任意のタイミングで変換された第1デジタルデータの値及び第2デジタルデータの値を乗算することで、前記第1信号の波形を表すデジタルデータを算出する第1算出部と、前記任意のタイミングで変換された第1デジタルデータの値及び前記選択部に選択され、前記任意のタイミングに連続する一のタイミングで変換された第2デジタルデータの値を乗算するか、あるいは前記任意のタイミングで変換された第2デジタルデータの値及び前記一のタイミングで変換された第1デジタルデータの値を乗算することで、前記第2信号の波形を表すデジタルデータを算出する第2算出部として機能させる。 (8) The computer program according to one aspect of the present invention is based on the fact that the analog signal is separated into two signals whose phases are orthogonal to each other based on an arbitrary analog signal and an analog periodic signal corresponding to the analog signal. A computer program for causing a computer to calculate digital data representing the waveform of each signal, wherein the computer converts the analog signal into first digital data, and the first A / D converter. In synchronization with the second digital data, a second A / D converter that converts the periodic signal into second digital data, and the second digital data converted by the second A / D converter 1 / of the periodic signal from a predetermined time point. The second digital data converted at each timing corresponding to the time point at which an integral multiple of four cycles has passed, and the second digital data are synchronized with each other. A selection unit that selects the converted first digital data, and a value of the first digital data and a value of the second digital data that are selected by the selection unit and converted at any timing synchronized with each other, A first calculation unit that calculates digital data representing a waveform of the first signal, a value of the first digital data converted at the arbitrary timing, and the selection unit, and one selected continuously from the arbitrary timing Multiply the value of the second digital data converted at the timing, or multiply the value of the second digital data converted at the arbitrary timing and the value of the first digital data converted at the one timing. Thus, it functions as a second calculator that calculates digital data representing the waveform of the second signal.
 本願にあっては、コンピュータは、アナログ信号を第1デジタルデータに変換し、当該アナログ信号に対応する周期信号を第2デジタルデータに変換する。コンピュータは、変換された第2デジタルデータの内、所定時点から当該周期信号の1/4周期の整数倍が経過した時点に相当する各タイミングで変換された第2デジタルデータを選択する。また、コンピュータは、当該第2デジタルデータに同期して変換された第1デジタルデータを選択する。コンピュータは、選択された第1デジタルデータ及び第2デジタルデータの内、互いに同期する任意のタイミングで変換された第1デジタルデータの値及び第2デジタルデータの値を乗算することで、第1信号の波形を表すデジタルデータを算出する。コンピュータは、当該任意のタイミングで変換された第1デジタルデータの値と、選択された第2デジタルデータの内、当該任意のタイミングに連続する一のタイミングで変換された第2デジタルデータの値とを乗算することで、第2信号の波形を表すデジタルデータを算出する。あるいは、第2算出部は、当該任意のタイミングで変換された第2デジタルデータの値と、当該一のタイミングで変換された第1デジタルデータの値とを乗算することで、当該第2信号の波形を表すデジタルデータを算出する。
 従って、直交検波器を用いることなく、受信したアナログ信号を互いに位相が直交する2つの信号に分離したときにおける各信号の波形を表すデジタルデータを算出することができる。そのため、当該デジタルデータを取得する際に要する部品点数を削減することができる。また、コンピュータを選択部として機能させることにより選択した第1デジタルデータ及び第2デジタルデータを用いて当該各信号の波形を表すデジタルデータを算出することができる。そのため、当該デジタルデータを取得するに際してコンピュータの処理負荷を軽減することができる。なお、コンピュータを第2算出部として機能させる際に、周期信号の1/4周期に相当するだけ互いに位相が異なる第1デジタルデータ及び第2デジタルデータを乗算するようにすればよい。
In the present application, the computer converts an analog signal into first digital data, and converts a periodic signal corresponding to the analog signal into second digital data. The computer selects, from the converted second digital data, the second digital data converted at each timing corresponding to the time when an integral multiple of ¼ period of the periodic signal has elapsed from a predetermined time. Further, the computer selects the first digital data converted in synchronization with the second digital data. The computer multiplies the value of the first digital data and the value of the second digital data, which are converted at an arbitrary timing synchronized with each other, among the selected first digital data and second digital data, thereby obtaining the first signal. The digital data representing the waveform is calculated. The computer includes a value of the first digital data converted at the arbitrary timing, and a value of the second digital data converted at one timing continuous to the arbitrary timing among the selected second digital data. Is multiplied to calculate digital data representing the waveform of the second signal. Alternatively, the second calculation unit multiplies the value of the second digital data converted at the arbitrary timing by the value of the first digital data converted at the one timing, whereby the second signal Digital data representing the waveform is calculated.
Therefore, digital data representing the waveform of each signal when the received analog signal is separated into two signals whose phases are orthogonal to each other can be calculated without using a quadrature detector. Therefore, the number of parts required for acquiring the digital data can be reduced. In addition, digital data representing the waveform of each signal can be calculated using the first digital data and the second digital data selected by causing the computer to function as a selection unit. Therefore, it is possible to reduce the processing load on the computer when acquiring the digital data. When the computer functions as the second calculation unit, it is only necessary to multiply the first digital data and the second digital data whose phases are different from each other corresponding to a quarter period of the periodic signal.
[本発明の実施形態の詳細]
 本発明の実施形態に係る通信システムの具体例を、以下に図面を参照しつつ説明する。なお、本発明はこれらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
[Details of the embodiment of the present invention]
A specific example of a communication system according to an embodiment of the present invention will be described below with reference to the drawings. In addition, this invention is not limited to these illustrations, is shown by the claim, and it is intended that all the changes within the meaning and range equivalent to the claim are included.
 (実施形態1)
 図1は、実施形態1における通信システムの構成例を示す模式図である。実施形態1における通信システムは、車両Cの車室内に設けられた受信装置1及び送信装置2を備える。送信装置2は、送信アンテナ2aを備え、当該送信アンテナ2aからアナログの無線信号を送信する。受信装置1は、複数の受信アンテナ1aを備え、各受信アンテナ1aを介して送信装置2から送信されたアナログの無線信号を受信する。受信装置1が受信する無線信号は例えば、送信アンテナ2aから受信アンテナ1aへ直接伝播した無線信号の他、車室内の内壁、座席、床面等の各場所で反射して伝播した無線信号及び車室外の人物、障害物等の各場所で反射して伝播した無線信号が含まれる。受信装置1及び送信装置2は通信線3を介して接続しており、送信装置2から受信装置1へ後述するアナログの参照信号を出力する。受信装置1は、送信装置から送信されたアナログの無線信号及び参照信号に基づいて、送信装置2及び自身の通信範囲内で生じた事象の検知を行う。実施形態1における受信装置1は例えば、車両Cの車室内への侵入者の有無、車両Cに対する人物の接近の有無等を事象として検知する。なお、以下では特に断らない限り、送信装置2が送信する無線信号及び出力する参照信号はアナログの信号である。また、以下では受信装置1が車両Cの車室内への侵入者の有無を検知するときの構成及び処理について主に説明する。
(Embodiment 1)
FIG. 1 is a schematic diagram illustrating a configuration example of a communication system according to the first embodiment. The communication system according to the first embodiment includes a receiving device 1 and a transmitting device 2 that are provided in a passenger compartment of the vehicle C. The transmission device 2 includes a transmission antenna 2a and transmits an analog radio signal from the transmission antenna 2a. The receiving apparatus 1 includes a plurality of receiving antennas 1a, and receives an analog radio signal transmitted from the transmitting apparatus 2 via each receiving antenna 1a. The radio signal received by the receiving apparatus 1 includes, for example, a radio signal directly propagated from the transmission antenna 2a to the reception antenna 1a, a radio signal reflected and propagated at various locations such as an inner wall, a seat, and a floor surface in the vehicle interior and a vehicle Radio signals reflected and propagated at various places such as outdoor persons and obstacles are included. The receiving device 1 and the transmitting device 2 are connected via a communication line 3 and output an analog reference signal described later from the transmitting device 2 to the receiving device 1. The receiving device 1 detects an event occurring in the communication range of the transmitting device 2 and itself based on the analog radio signal and the reference signal transmitted from the transmitting device. The receiving device 1 according to the first embodiment detects, for example, the presence or absence of an intruder into the passenger compartment of the vehicle C and the presence or absence of a person approaching the vehicle C as events. In the following description, unless otherwise specified, the radio signal transmitted by the transmission device 2 and the reference signal output are analog signals. In the following, the configuration and processing when the receiving device 1 detects the presence or absence of an intruder into the vehicle interior of the vehicle C will be mainly described.
 図2は、送信装置2の構成を示すブロック図である。送信装置2は、制御部21、記憶部22、一時記憶部23、送信部24、及び出力部25を備え、各部がバスを介して接続されている。制御部21は、例えば一又は複数のCPU(Central Processing Unit)、マルチコアCPU等により構成される。制御部21は、記憶部22に記憶されている後述の制御プログラムを読み出し、各部を制御する。 FIG. 2 is a block diagram illustrating a configuration of the transmission device 2. The transmission device 2 includes a control unit 21, a storage unit 22, a temporary storage unit 23, a transmission unit 24, and an output unit 25, and each unit is connected via a bus. The control unit 21 includes, for example, one or more CPUs (Central Processing Unit), a multi-core CPU, and the like. The control unit 21 reads a later-described control program stored in the storage unit 22 and controls each unit.
 記憶部22は、EEPROM(Electrically Erasable and Programmable ROM)、フラッシュメモリ、HDD(Hard Disk Drive)等の不揮発性メモリにより構成される。記憶部22には、制御プログラムが記憶されている。制御プログラムは、制御部21が無線信号を送信するときの処理内容、参照信号を出力するときの処理内容、及び各部を制御するときの処理内容とが記述されたコンピュータプログラムである。 The storage unit 22 includes a nonvolatile memory such as an EEPROM (Electrically-Erasable-and Programmable-ROM), a flash memory, and an HDD (Hard Disk-Drive). The storage unit 22 stores a control program. The control program is a computer program in which the processing content when the control unit 21 transmits a wireless signal, the processing content when the reference signal is output, and the processing content when each unit is controlled is described.
 一時記憶部23は、SRAM(Static RAM)、DRAM(Dynamic RAM)等のメモリにより構成される。一時記憶部23は、制御部21が制御プログラムによる処理を行うことによって生ずる各種データを一時記憶する。 The temporary storage unit 23 is configured by a memory such as SRAM (Static RAM) or DRAM (Dynamic RAM). The temporary storage unit 23 temporarily stores various data generated by the control unit 21 performing processing based on the control program.
 送信部24は、送信アンテナ2aに接続されており、制御部21の制御に従って所定周波数の無線信号を当該送信アンテナ2aから送信する。所定周波数は例えば、LF(Low Frequency)帯、UHF(Ultra High Frequency)帯等の各種の周波数帯域内の周波数であり、特には限定されない。また、無線信号は変調されている必要はないが、種々の変調方式により変調されていてもよい。 The transmission unit 24 is connected to the transmission antenna 2a, and transmits a radio signal having a predetermined frequency from the transmission antenna 2a according to the control of the control unit 21. The predetermined frequency is, for example, a frequency within various frequency bands such as an LF (LowencyFrequency) band and an UHF (Ultra High Frequency) band, and is not particularly limited. The radio signal need not be modulated, but may be modulated by various modulation schemes.
 出力部25には、通信線3を介して受信装置1が接続されている。制御部21は例えば、送信部24に送信させる無線信号に対応する参照信号を発振回路に生成させ、出力部25から受信装置1に出力する。参照信号は周期信号であり、例えば、無線信号に変調が行われていないときは当該無線信号と同じアナログ信号であり、変調が行われているときは変調前の搬送波である。実施形態1において参照信号は正弦波の波形を示すアナログ信号である。 The receiving device 1 is connected to the output unit 25 via the communication line 3. For example, the control unit 21 causes the oscillation circuit to generate a reference signal corresponding to a radio signal to be transmitted to the transmission unit 24, and outputs the reference signal from the output unit 25 to the reception device 1. The reference signal is a periodic signal. For example, when the radio signal is not modulated, the reference signal is the same analog signal as the radio signal. When the modulation is performed, the reference signal is a carrier wave before modulation. In the first embodiment, the reference signal is an analog signal indicating a sine wave waveform.
 図3は、受信装置1の構成を示すブロック図である。受信装置1は、制御部11、記憶部12、一時記憶部13、受信部14、読取部15、第2A/D変換部16を備え、各部がバスを介して接続されている。制御部11は、例えば一又は複数のCPU、マルチコアCPU等により構成される。制御部11は、記憶部12に記憶されている後述の制御プログラムを読み出し、各部を制御する。 FIG. 3 is a block diagram showing the configuration of the receiving device 1. The receiving device 1 includes a control unit 11, a storage unit 12, a temporary storage unit 13, a receiving unit 14, a reading unit 15, and a second A / D conversion unit 16, and each unit is connected via a bus. The control unit 11 includes, for example, one or a plurality of CPUs, a multi-core CPU, and the like. The control unit 11 reads a control program described later stored in the storage unit 12 and controls each unit.
 記憶部12は、EEPROM、フラッシュメモリ、HDD等の不揮発性メモリにより構成される。記憶部12には、基準情報12aが記憶されている。基準情報12aは、受信装置1の周囲が特定の状態のときに、受信装置1が受信した無線信号に係る情報である。基準情報12aは例えば、車両Cの車室内に人がいない状態で送信装置2から送信された無線信号を受信アンテナ1a夫々で受信したときの無線信号の到来角に係る情報、遅延プロファイルに係る情報等の電波伝搬特性に係る情報である。制御部11は、車両Cの車室内への侵入の有無を検知する際に当該基準情報12aを参照する。また、記憶部12には、制御プログラムが記憶されている。制御プログラムは、送信装置2から無線信号を受信したときの処理内容、参照信号を入力したときの処理内容、及び各部を制御する処理内容が記述されたコンピュータプログラムである。 The storage unit 12 includes a nonvolatile memory such as an EEPROM, a flash memory, or an HDD. The storage unit 12 stores reference information 12a. The reference information 12a is information related to a radio signal received by the receiving device 1 when the surroundings of the receiving device 1 are in a specific state. The reference information 12a is, for example, information related to the arrival angle of the radio signal and information related to the delay profile when the radio signal transmitted from the transmission device 2 is received by each of the receiving antennas 1a in a state where there is no person in the cabin of the vehicle C. This is information related to radio wave propagation characteristics such as. The control unit 11 refers to the reference information 12a when detecting whether or not the vehicle C has entered the passenger compartment. The storage unit 12 stores a control program. The control program is a computer program in which processing details when a wireless signal is received from the transmission device 2, processing details when a reference signal is input, and processing details for controlling each unit are described.
 一時記憶部13は、SRAM、DRAM等のメモリにより構成される。一時記憶部13は、制御部11が制御プログラムによる処理を行うことによって生ずる各種データを一時記憶する。 The temporary storage unit 13 is configured by a memory such as SRAM or DRAM. The temporary storage unit 13 temporarily stores various data generated by the control unit 11 performing processing based on the control program.
 受信部14は、受信アンテナ1aの数と同数の第1A/D変換部14aを備える。第1A/D変換部14aは、例えばA/Dコンバータを備え、一の受信アンテナ1aに接続されている。第1A/D変換部14aは、接続された受信アンテナ1aから受信したアナログ信号をデジタルデータに変換する。受信部14は、制御部11の指示に従って、第1A/D変換部14aに受信したアナログ信号をデジタルデータに変換させ、変換したデジタルデータを制御部11に出力する。以下では、第1A/D変換部14aが変換したデジタルデータを第1デジタルデータと称する。 The reception unit 14 includes the same number of first A / D conversion units 14a as the number of reception antennas 1a. The first A / D converter 14a includes, for example, an A / D converter, and is connected to one receiving antenna 1a. The first A / D converter 14a converts an analog signal received from the connected receiving antenna 1a into digital data. In accordance with an instruction from the control unit 11, the reception unit 14 causes the first A / D conversion unit 14 a to convert the received analog signal into digital data, and outputs the converted digital data to the control unit 11. Hereinafter, the digital data converted by the first A / D conversion unit 14a is referred to as first digital data.
 読取部15は、CD-ROM、DVD、ブルーレイディスク、又はフレキシブルディスク等である記録媒体4から情報を読み取ることが可能に構成されている。制御部11は、読取部15により読み出された記録媒体4に記録されているデータを、一時記憶部13に記憶するか、又は記憶部12に記憶する。記録媒体4には、制御部11が実行することにより受信装置1が動作するための制御プログラム4aが記録されている。記憶部12に記憶されている制御プログラムは、記録媒体4から読取部15が読み取った制御プログラム4aの複製であってもよい。なお、記録媒体4には、基準情報12a等の記憶部12に記憶されるべき他の情報を記憶しておき、制御部11が記憶部12に記憶するのに用いてもよい。 The reading unit 15 is configured to be able to read information from the recording medium 4 such as a CD-ROM, DVD, Blu-ray disc, or flexible disk. The control unit 11 stores the data recorded on the recording medium 4 read by the reading unit 15 in the temporary storage unit 13 or the storage unit 12. In the recording medium 4, a control program 4 a for operating the receiving device 1 by being executed by the control unit 11 is recorded. The control program stored in the storage unit 12 may be a copy of the control program 4 a read by the reading unit 15 from the recording medium 4. The recording medium 4 may store other information to be stored in the storage unit 12 such as the reference information 12 a and the control unit 11 may store the information in the storage unit 12.
 第2A/D変換部16は、例えばA/Dコンバータを備え、入力されたアナログ信号をデジタルデータに変換し、変換したデジタルデータを制御部11に出力する。また、第2A/D変換部16は入出力部17に接続されている。入出力部17は、通信線3を介して送信装置2と接続されており、送信装置2が出力した参照信号を入力し、入力した参照信号を第2A/D変換部16に出力するインタフェースである。第2A/D変換部16は、制御部11の指示に従って、入出力部17が出力した参照信号をデジタルデータに変換する。以下では、第2A/D変換部16が変換したデジタルデータを第2デジタルデータと称する。 The second A / D conversion unit 16 includes, for example, an A / D converter, converts an input analog signal into digital data, and outputs the converted digital data to the control unit 11. The second A / D conversion unit 16 is connected to the input / output unit 17. The input / output unit 17 is connected to the transmission device 2 via the communication line 3. The input / output unit 17 is an interface that inputs the reference signal output from the transmission device 2 and outputs the input reference signal to the second A / D conversion unit 16. is there. The second A / D conversion unit 16 converts the reference signal output from the input / output unit 17 into digital data in accordance with an instruction from the control unit 11. Hereinafter, the digital data converted by the second A / D converter 16 is referred to as second digital data.
 以上のように構成された通信システムにおいて、送信装置2は、例えば1秒等の所定の時間間隔で反復的に無線信号を送信する。また、送信装置2は、無線信号を送信する都度、参照信号を受信装置1に出力する。受信装置1は、送信装置2からの無線信号を受信アンテナ1a夫々が受信する都度、各受信アンテナ1aに対応する受信信号を互いに位相が直交する2つの信号に分離したときにおける各信号の波形を表すデジタルデータを算出する。受信装置1は、算出した各デジタルデータ及び記憶部12に記憶された基準情報12aを用いて侵入者の有無を検知する。以下では当該2つの信号の内、本願の第1信号に相当する信号の波形を表すデジタルデータを同相成分と称し、本願の第2信号に相当する波形を表すデジタルデータを、直交成分と称する。なお、送信装置2は無線信号を反復的に送信する例を説明したが、連続的に無線信号を送信してもよい。 In the communication system configured as described above, the transmission device 2 repeatedly transmits a radio signal at a predetermined time interval such as 1 second. In addition, the transmission device 2 outputs a reference signal to the reception device 1 every time a radio signal is transmitted. Each time the reception antenna 1a receives the radio signal from the transmission device 2, the reception device 1 separates the reception signal corresponding to each reception antenna 1a into two signals whose phases are orthogonal to each other. Calculate digital data to represent. The receiving device 1 detects the presence or absence of an intruder using each calculated digital data and the reference information 12a stored in the storage unit 12. Hereinafter, of the two signals, digital data representing the waveform of the signal corresponding to the first signal of the present application is referred to as an in-phase component, and digital data representing the waveform corresponding to the second signal of the present application is referred to as a quadrature component. In addition, although the transmission apparatus 2 demonstrated the example which transmits a radio signal repeatedly, you may transmit a radio signal continuously.
 図4は、車室内への侵入を検知するときにおける受信装置1の処理手順を示すフローチャートである。受信装置1の制御部11は、受信部14が送信装置2から送信された無線信号を受信したか否かを判定する(ステップS11)。無線信号を受信していないと判定した場合(S11:NO)、制御部11は無線信号を受信するまで待機する。 FIG. 4 is a flowchart showing a processing procedure of the receiving apparatus 1 when detecting entry into the vehicle interior. The control unit 11 of the reception device 1 determines whether or not the reception unit 14 has received a radio signal transmitted from the transmission device 2 (step S11). When it determines with not receiving the radio signal (S11: NO), the control part 11 waits until it receives a radio signal.
 無線信号を受信したと判定した場合(S11:YES)、制御部11は送信装置2からの参照信号が入出力部17に入力されたか否かを判定する(ステップS12)。参照信号が入力されていないと判定した場合(S12:NO)、制御部11は参照信号が入力されるまで待機する。なお、ステップS11及びステップS12の処理は並列的に行われてもよいし、処理の順序が反対であってもよい。また、無線信号の受信及び参照信号の入力の一方が行われてから、例えば1秒等の所定時間が経過するまでの間に他方が行われなかった場合、制御部11は処理を終えるようにしてもよい。 When it is determined that a wireless signal has been received (S11: YES), the control unit 11 determines whether or not a reference signal from the transmission device 2 has been input to the input / output unit 17 (step S12). When it determines with the reference signal not being input (S12: NO), the control part 11 waits until a reference signal is input. Note that the processing in step S11 and step S12 may be performed in parallel, or the processing order may be reversed. In addition, when one of the reception of the radio signal and the input of the reference signal is not performed until a predetermined time such as 1 second elapses, the control unit 11 finishes the process. May be.
 参照信号が入力されたと判定した場合(S12:YES)、制御部11は成分算出処理を行う(ステップS13)。成分算出処理は、各受信アンテナ1aで受信した無線信号夫々における同相成分及び直交成分を算出する処理である。成分算出処理は、受信した無線信号及び入力した参照信号を用いて実行され、その詳細は後述する。 When it is determined that the reference signal has been input (S12: YES), the control unit 11 performs a component calculation process (step S13). The component calculation process is a process of calculating an in-phase component and a quadrature component in each radio signal received by each receiving antenna 1a. The component calculation process is executed using the received radio signal and the input reference signal, details of which will be described later.
 次いで、制御部11は、各受信アンテナ1aで受信した無線信号から算出した同相成分及び直交成分を用いて、特徴量を算出する(ステップS14)。特徴量は、ステップS11で送信装置2からの無線信号を受信したときにおける受信装置1の周囲の状態に係る特徴量である。例えば、制御部11は算出した同相成分及び直交成分を用いて受信した無線信号の到来角に係る情報を算出する。制御部11はステップS14で制御プログラムを実行することにより、特徴量算出部として機能する。 Next, the control unit 11 calculates the feature amount using the in-phase component and the quadrature component calculated from the radio signal received by each receiving antenna 1a (step S14). The feature amount is a feature amount related to the surrounding state of the reception device 1 when the wireless signal from the transmission device 2 is received in step S11. For example, the control unit 11 calculates information related to the arrival angle of the received radio signal using the calculated in-phase component and quadrature component. The control unit 11 functions as a feature amount calculation unit by executing a control program in step S14.
 次いで、制御部11は、算出した特徴量と記憶部12に記憶された基準情報12aとを比較する(ステップS15)。制御部11は例えば、算出した特徴量及び基準情報12aの相関値等の各種の情報の比較方法により比較を行う。制御部11はステップS15で制御プログラムを実行することにより、比較部として機能する。 Next, the control unit 11 compares the calculated feature amount with the reference information 12a stored in the storage unit 12 (step S15). For example, the control unit 11 performs comparison using a comparison method of various information such as the calculated feature amount and the correlation value of the reference information 12a. The control unit 11 functions as a comparison unit by executing a control program in step S15.
 次いで、制御部11は、ステップS15の比較結果に基づいて車両Cへの侵入者の有無を判定する(ステップS16)。制御部11は例えば、ステップS15にて基準情報12aとの相関を算出することにより比較を行った場合、当該相関が所定値以下で侵入者有りと判定する。所定値は例えば0.9である。制御部11はステップS16で制御プログラムを実行することにより、検知部として機能する。 Next, the control unit 11 determines the presence or absence of an intruder into the vehicle C based on the comparison result of step S15 (step S16). For example, when the comparison is performed by calculating the correlation with the reference information 12a in step S15, the control unit 11 determines that there is an intruder when the correlation is equal to or less than a predetermined value. The predetermined value is, for example, 0.9. The control unit 11 functions as a detection unit by executing a control program in step S16.
 侵入者有りと判定した場合(S16:YES)、制御部11は警報を出力する(ステップS17)。制御部11は例えば、CAN(Controller Area Network)通信等の車載通信により、車両Cの警笛を鳴らすことにより警報を出力してもよいし、車両Cのヘッドライトを点滅させることにより警報を出力してもよい。また、制御部11はインターネット等の通信網に接続可能に構成され、当該通信網を介して車両Cの所有者が所持する携帯機等に侵入者が車室内に所在することを通知することにより警報を出力するようにしてもよい。その後、制御部11は処理を終える。一方、侵入者無しと判定した場合(S16:NO)、制御部11は警報を出力することなく処理を終える。 If it is determined that there is an intruder (S16: YES), the control unit 11 outputs an alarm (step S17). For example, the control unit 11 may output a warning by sounding a horn of the vehicle C by in-vehicle communication such as CAN (Controller Area Network) communication, or output a warning by blinking the headlight of the vehicle C. May be. In addition, the control unit 11 is configured to be connectable to a communication network such as the Internet, and by notifying that the intruder is located in the passenger compartment through the communication network to the portable device possessed by the owner of the vehicle C. An alarm may be output. Thereafter, the control unit 11 finishes the process. On the other hand, when it determines with there being no intruder (S16: NO), the control part 11 complete | finishes a process, without outputting an alarm.
 次に、成分算出処理について説明する。成分算出処理では、第1A/D変換処理、第2A/D変換処理、選択処理、第1算出処理、及び第2算出処理が複合的に行われる。図5は、成分算出処理の処理手順を説明する説明図である。 Next, the component calculation process will be described. In the component calculation process, the first A / D conversion process, the second A / D conversion process, the selection process, the first calculation process, and the second calculation process are performed in combination. FIG. 5 is an explanatory diagram for explaining the processing procedure of the component calculation processing.
 成分算出処理では、まず受信した無線信号及び入力した参照信号が夫々、第1A/D変換処理及び第2A/D変換処理にてデジタルデータに変換される。第1A/D変換処理では、制御部11は各受信アンテナ1aが受信した無線信号を対応する第1A/D変換部14aによって第1デジタルデータに変換する。第2A/D変換処理では、制御部11は入力された参照信号を第2A/D変換部16によって第2デジタルデータに変換する。このとき、制御部11は、第1A/D変換処理と第2A/D変換処理とを同期させる。また、制御部11は、同期して変換した第1デジタルデータ及び第2デジタルデータを一時記憶部13に記憶された後述の変換結果テーブル131(図6参照)に対応付けて記憶する。 In the component calculation process, first, the received radio signal and the input reference signal are converted into digital data by the first A / D conversion process and the second A / D conversion process, respectively. In the first A / D conversion process, the control unit 11 converts the radio signal received by each receiving antenna 1a into first digital data by the corresponding first A / D conversion unit 14a. In the second A / D conversion process, the control unit 11 converts the input reference signal into second digital data by the second A / D conversion unit 16. At this time, the control unit 11 synchronizes the first A / D conversion process and the second A / D conversion process. Further, the control unit 11 stores the first digital data and the second digital data converted in synchronization in association with a later-described conversion result table 131 (see FIG. 6) stored in the temporary storage unit 13.
 その後、第1A/D変換処理にて変換された第1デジタルデータ及び第2A/D変換処理にて変換された第2デジタルデータについて選択処理が行われる。選択処理では、制御部11は参照信号の波形の極大点、極小点、及びゼロクロス点に相当する第2デジタルデータを選択する。極大点は参照信号の位相が90度の整数倍であり、極小点は参照信号の位相が270度の整数倍である。ゼロクロス点は、参照信号の波形の中心であり、実施形態1においてはゼロクロス点の値をVrefとする。即ち、選択処理では、参照信号の周期の1/4周期の整数倍に相当する各タイミングで変換された第2デジタルデータが選択される。また選択処理では、制御部11は、当該第2デジタルデータ夫々に同期して変換された第1デジタルデータを選択する。更に選択処理では、制御部11は、互いに同期するタイミングで変換された当該第1デジタルデータ及び第2デジタルデータを、一時記憶部13に記憶された後述の選択結果テーブル132(図8参照)に対応付けて記憶する。 Thereafter, a selection process is performed on the first digital data converted by the first A / D conversion process and the second digital data converted by the second A / D conversion process. In the selection process, the control unit 11 selects second digital data corresponding to the maximum point, the minimum point, and the zero cross point of the waveform of the reference signal. The maximum point is the phase of the reference signal that is an integer multiple of 90 degrees, and the minimum point is the phase of the reference signal that is an integer multiple of 270 degrees. The zero cross point is the center of the waveform of the reference signal. In the first embodiment, the value of the zero cross point is Vref. That is, in the selection process, the second digital data converted at each timing corresponding to an integral multiple of a quarter period of the reference signal is selected. In the selection process, the control unit 11 selects the first digital data converted in synchronization with each of the second digital data. Further, in the selection process, the control unit 11 stores the first digital data and the second digital data converted at timing synchronized with each other in a selection result table 132 (see FIG. 8) described later stored in the temporary storage unit 13. Store in association with each other.
 その後、成分算出処理では、第1算出処理及び第2算出処理が行われる。第1算出処理では、制御部11は選択処理で選択され、互いに同期するタイミングで変換された第1デジタルデータの値及び第2デジタルデータの値を乗算する。第2算出処理では、制御部11は第1算出処理の乗算に用いた第1デジタルデータと異なる他の第1デジタルデータの値を、第1算出処理の乗算に用いた第2デジタルデータの値に乗算する。他の第1デジタルデータは、第1算出処理の乗算に用いた第1デジタルデータと比べ、参照信号の1/4周期分ずれたタイミングで変換されている。このように、第2デジタルデータを、同期して変換された第1デジタルデータと、当該第1デジタルデータから1/4周期ずれたタイミングで変換された第1デジタルデータとに夫々に掛け合わせることで、同相成分及び直交成分夫々を算出することができる。 Thereafter, in the component calculation process, a first calculation process and a second calculation process are performed. In the first calculation process, the control unit 11 multiplies the value of the first digital data and the value of the second digital data selected in the selection process and converted at a timing synchronized with each other. In the second calculation process, the control unit 11 uses the value of the second digital data used for the multiplication of the first calculation process as the value of the other first digital data different from the first digital data used for the multiplication of the first calculation process. Multiply by. The other first digital data is converted at a timing shifted by ¼ period of the reference signal as compared with the first digital data used for multiplication in the first calculation process. In this way, the second digital data is multiplied by the first digital data converted in synchronism with the first digital data converted at a timing shifted by a quarter cycle from the first digital data. Thus, each of the in-phase component and the quadrature component can be calculated.
 ここで、成分算出処理にて一時記憶部13に一時記憶される変換結果テーブル131、選択結果テーブル132、及び算出結果テーブル133の具体例を示す。図6は変換結果テーブル131の具体例を示す説明図であり、図7は第2A/D変換処理の変換結果を概念的に示す説明図であり、図8は選択結果テーブル132の具体例を示す説明図であり、図9は算出結果テーブル133の具体例を示す説明図である。以下では、受信装置1が2つの受信アンテナ1aを備えている場合の例を示す。一方の受信アンテナ1aで受信された無線信号が第1A/D変換処理にてt番目に変換された第1デジタルデータをV11[t]とし、他方の受信アンテナ1aで受信された無線信号が変換された第1デジタルデータをV12[t]とする。また、参照信号が第2A/D変換処理にてt番目に変換された第2デジタルデータをV2[t]とする。 Here, specific examples of the conversion result table 131, the selection result table 132, and the calculation result table 133 that are temporarily stored in the temporary storage unit 13 in the component calculation process are shown. 6 is an explanatory diagram showing a specific example of the conversion result table 131, FIG. 7 is an explanatory diagram conceptually showing the conversion result of the second A / D conversion process, and FIG. 8 is a specific example of the selection result table 132. FIG. 9 is an explanatory diagram showing a specific example of the calculation result table 133. Below, the example in case the receiver 1 is provided with the two receiving antennas 1a is shown. The first digital data obtained by converting the radio signal received by one receiving antenna 1a to the t-th in the first A / D conversion process is V11 [t], and the radio signal received by the other receiving antenna 1a is converted. The first digital data thus set is assumed to be V12 [t]. Further, the second digital data obtained by converting the reference signal to the t-th in the second A / D conversion process is represented as V2 [t].
 図6に示すように、変換結果テーブル131には、第1デジタルデータV11、V12、及び第2デジタルデータV2がタイミング番号毎に記憶されている。タイミング番号は、第1A/D変換処理又は第2A/D変換処理によって変換された順番を表している。また、図7に示すように、第2A/D変換処理によって変換された第2デジタルデータは、変換されるタイミングによって、値が変わる。第2デジタルデータがとり得る値は、参照信号がとり得る値の範囲内にある。 As shown in FIG. 6, the conversion result table 131 stores the first digital data V11, V12 and the second digital data V2 for each timing number. The timing number represents the order converted by the first A / D conversion process or the second A / D conversion process. Further, as shown in FIG. 7, the value of the second digital data converted by the second A / D conversion process changes depending on the conversion timing. The value that the second digital data can take is within the range of values that the reference signal can take.
 図8に示すように、選択結果テーブル132には、第1デジタルデータV11、V12、及び第2デジタルデータV2が選択番号毎に記憶されている。選択番号は、制御部11が変換結果テーブル131から第2デジタルデータV2を選択した順番を表している。選択結果テーブル132には、選択処理によって参照信号の極大点、極小点、及びゼロクロス点に相当する第2デジタルデータが記憶されている。例えば、図8中のV2[3]は、図7に示すように制御部11によって参照信号の極大点として選択された第2デジタルデータである。 As shown in FIG. 8, the selection result table 132 stores first digital data V11 and V12 and second digital data V2 for each selection number. The selection number represents the order in which the control unit 11 selects the second digital data V2 from the conversion result table 131. The selection result table 132 stores second digital data corresponding to the maximum point, the minimum point, and the zero-cross point of the reference signal by the selection process. For example, V2 [3] in FIG. 8 is the second digital data selected as the maximum point of the reference signal by the control unit 11 as shown in FIG.
 図9に示すように、算出結果テーブル133には、算出番号毎に、各受信アンテナ1aの同相成分及び直交成分が記憶されている。算出番号は、制御部11が同相成分及び直交成分を算出した順番を表している。第1算出処理において制御部11は、選択結果テーブル132にて選択番号が同じ、即ち同じタイミングで変換された第1デジタルデータの値及び第2デジタルデータの値を乗算することで、同相成分を算出する。また、第2算出処理において制御部11は、選択結果テーブル132にて選択番号の値が1つずれている、即ち参照信号の1/4周期分ずれたタイミングで互いに変換された第1デジタルデータ及び第2デジタルデータを乗算することで、直交成分を算出する。 As shown in FIG. 9, the calculation result table 133 stores the in-phase component and the quadrature component of each receiving antenna 1a for each calculation number. The calculation number represents the order in which the control unit 11 calculates the in-phase component and the quadrature component. In the first calculation process, the control unit 11 multiplies the value of the first digital data and the value of the second digital data that have the same selection number in the selection result table 132, that is, converted at the same timing, to thereby obtain the in-phase component. calculate. In the second calculation process, the control unit 11 converts the first digital data converted from each other at a timing in which the value of the selection number is shifted by one in the selection result table 132, that is, shifted by ¼ period of the reference signal. And the quadrature component is calculated by multiplying the second digital data.
 次に成分算出処理の処理手順の詳細を説明する。なお、以下では適宜、図6~図9に示した例を用いて説明する。 Next, the details of the processing procedure of the component calculation process will be described. Hereinafter, description will be made using the examples shown in FIGS. 6 to 9 as appropriate.
 図10は、成分算出処理のサブルーチンを示すフローチャートである。受信装置1の制御部11は、第1A/D変換処理及び第2A/D変換処理を行う(ステップS21)。制御部11は、各第1A/D変換部14a及び第2A/D変換部16夫々に指示を出し、所定のサンプリングタイミングで同期して無線信号及び参照信号を第1デジタルデータ及び第2デジタルデータに変換させる。所定のサンプリングタイミングにおいて制御部11は例えば、参照信号の周期の1/10に相当する時間が経過する都度、第1A/D変換部14a及び第2A/D変換部16に変換させる。 FIG. 10 is a flowchart showing a subroutine of component calculation processing. The control unit 11 of the receiving device 1 performs a first A / D conversion process and a second A / D conversion process (step S21). The control unit 11 instructs each of the first A / D conversion unit 14a and the second A / D conversion unit 16 to synchronize the radio signal and the reference signal with the first digital data and the second digital data at a predetermined sampling timing. To convert to At a predetermined sampling timing, for example, the control unit 11 causes the first A / D conversion unit 14a and the second A / D conversion unit 16 to convert the time corresponding to 1/10 of the cycle of the reference signal.
 次いで、制御部11は、変換した第1デジタルデータ及び第2デジタルデータを変換結果テーブル131に記憶する(ステップS22)。制御部11は、同期して変換された第1デジタルデータ及び第2デジタルデータが同一のタイミング番号となるように変換結果テーブル131に記憶する。その後、制御部11は変換結果テーブル131に記憶された第2デジタルデータに基づいて、参照信号の極大点、極小点、及びゼロクロス点に相当する第2デジタルデータと対応する第1デジタルデータとの選択処理を行う(ステップS23)。上述のように選択処理においては、極大点、極小点、及びゼロクロス点に相当する第2デジタルデータと、当該第2デジタルデータ夫々と同期して変換された第1デジタルデータとを対応付けて選択結果テーブル132に記憶する。次いで、制御部11は、選択結果テーブル132に記憶された第2デジタルデータ及び第1デジタルデータに基づいて、第1算出処理を行い(ステップS24)、その後第2算出処理を行う(ステップS25)。制御部11は、第1算出処理及び第2算出処理夫々で、算出結果テーブル133に算出結果を記憶する。その後、制御部11は成分算出処理を終える。なお、制御部11は、ステップS23で制御プログラムを実行することにより選択部として機能する。また、制御部11はステップS24で制御プログラムを実行することにより第1算出部として機能する。更に、制御部11はステップS25で制御プログラムを実行することにより第2算出部として機能する。 Next, the control unit 11 stores the converted first digital data and second digital data in the conversion result table 131 (step S22). The control unit 11 stores the first digital data and the second digital data converted in synchronization in the conversion result table 131 so that they have the same timing number. Thereafter, based on the second digital data stored in the conversion result table 131, the control unit 11 calculates the second digital data corresponding to the maximum point, the minimum point, and the zero cross point of the reference signal and the corresponding first digital data. A selection process is performed (step S23). As described above, in the selection process, the second digital data corresponding to the maximum point, the minimum point, and the zero-cross point are selected in association with the first digital data converted in synchronization with the second digital data. Store in the result table 132. Next, the control unit 11 performs a first calculation process based on the second digital data and the first digital data stored in the selection result table 132 (step S24), and then performs a second calculation process (step S25). . The control unit 11 stores the calculation result in the calculation result table 133 in each of the first calculation process and the second calculation process. Thereafter, the control unit 11 finishes the component calculation process. Note that the control unit 11 functions as a selection unit by executing a control program in step S23. Moreover, the control part 11 functions as a 1st calculation part by executing a control program by step S24. Furthermore, the control unit 11 functions as a second calculation unit by executing a control program in step S25.
 図11は、選択処理のサブルーチンを示すフローチャートである。受信装置1の制御部11は、カウンタnの領域を一時記憶部13に確保し、当該カウンタnの値を1に設定する(ステップS31)。次いで、制御部11はフラグを初期化する(ステップS32)。フラグは、第2A/D変換処理によって変換されたタイミングが連続する2つの第2デジタルデータにおいて、後に変換された第2デジタルデータの値が先に変換された第2デジタルデータの値から増加しているか減少しているかを示す情報である。例えば、後に変換された第2デジタルデータの方が、先に変換された第2デジタルデータから増加している場合、フラグの値は1であり、減少している場合、フラグの値は-1である。制御部11は例えば、フラグの領域を一時記憶部13に確保し、当該フラグの値を0に設定することで初期化を行う。 FIG. 11 is a flowchart showing a subroutine of selection processing. The control unit 11 of the receiving device 1 secures the area of the counter n in the temporary storage unit 13, and sets the value of the counter n to 1 (step S31). Next, the control unit 11 initializes a flag (step S32). The flag is increased from the value of the second digital data converted earlier in the value of the second digital data converted later in the two second digital data in which the timing converted by the second A / D conversion process continues. It is information indicating whether or not it is decreasing. For example, when the second digital data converted later is increased from the previously converted second digital data, the flag value is 1, and when the second digital data is decreased, the flag value is −1. It is. For example, the control unit 11 secures a flag area in the temporary storage unit 13 and performs initialization by setting the value of the flag to 0.
 次いで、制御部11は、一時記憶部13の変換結果テーブル131から、V2[n]、及びV2[n+1]の2値を読み出す(ステップS33)。例えば、カウンタnの値が1であったとき、制御部11は変換結果テーブル131からV2[1]及びV2[2]の2値を読み出す。その後、制御部11は読み出したV2[n+1]の値がV2[n]の値よりも大きいか否かを判定する(ステップS34)。 Next, the control unit 11 reads the binary values V2 [n] and V2 [n + 1] from the conversion result table 131 of the temporary storage unit 13 (step S33). For example, when the value of the counter n is 1, the control unit 11 reads the binary values V2 [1] and V2 [2] from the conversion result table 131. Thereafter, the control unit 11 determines whether or not the read value of V2 [n + 1] is larger than the value of V2 [n] (step S34).
 V2[n+1]の値がV2[n]よりも大きいと判定した場合(S34:YES)、制御部11は、フラグの値が減少を示す値であるか否かを判定する(ステップS35)。制御部11は例えば、フラグの値が-1であるか否かにより判定を行う。減少を示す値でないと判定した場合(S35:NO)、制御部11はステップS37に処理を進める。減少を示す値であると判定した場合(S35:YES)、制御部11は、V2[n]が参照信号の極小点に相当するとして、当該V2[n]及び対応する第1デジタルデータV11[n]、V12[n]を選択結果テーブル132に記憶する(ステップS36)。その後、制御部11は、ステップS33で読み出したV2[n+1]の値がV2[n]の値から増加しているとして、フラグの値に増加を示す値を設定する(ステップS37)。制御部11は例えば、フラグの値を1に設定する。 When it is determined that the value of V2 [n + 1] is larger than V2 [n] (S34: YES), the control unit 11 determines whether or not the value of the flag is a value indicating a decrease (step S35). For example, the control unit 11 determines whether or not the value of the flag is -1. When it determines with it not being a value which shows reduction (S35: NO), the control part 11 advances a process to step S37. If it is determined that the value indicates a decrease (S35: YES), the control unit 11 assumes that V2 [n] corresponds to the minimum point of the reference signal, and V2 [n] and the corresponding first digital data V11 [ n] and V12 [n] are stored in the selection result table 132 (step S36). Thereafter, the control unit 11 sets a value indicating an increase in the flag value, assuming that the value of V2 [n + 1] read in step S33 is increased from the value of V2 [n] (step S37). For example, the control unit 11 sets the value of the flag to 1.
 一方、ステップS34においてV2[n+1]の値がV2[n]の値以下であると判定した場合(S34:NO)、制御部11は、フラグの値が増加を示す値であるか否かを判定する(ステップS38)。制御部11は例えば、フラグの値が1であるか否かにより判定を行う。増加を示す値でないと判定した場合(S38:NO)、制御部11はステップS40に処理を進める。増加を示す値であると判定した場合(S38:YES)、制御部11は、V2[n]が参照信号の極大点に相当するとして、当該V2[n]及び対応する第1デジタルデータV11[n]、V12[n]を選択結果テーブル132に記憶する(ステップS39)。その後、制御部11はステップS33で読み出したV2[n+1]の値がV2[n]の値から減少しているとして、フラグの値に減少を示す値を設定する(ステップS40)。制御部11は例えば、フラグの値を-1に設定する。 On the other hand, when it is determined in step S34 that the value of V2 [n + 1] is equal to or less than the value of V2 [n] (S34: NO), the control unit 11 determines whether or not the flag value is an increase value. Determination is made (step S38). For example, the control unit 11 determines whether or not the value of the flag is 1. When it determines with it not being a value which shows increase (S38: NO), the control part 11 advances a process to step S40. When it is determined that the value indicates an increase (S38: YES), the control unit 11 assumes that V2 [n] corresponds to the maximum point of the reference signal, and V2 [n] and the corresponding first digital data V11 [ n] and V12 [n] are stored in the selection result table 132 (step S39). Thereafter, the control unit 11 sets a value indicating a decrease in the value of the flag, assuming that the value of V2 [n + 1] read in step S33 has decreased from the value of V2 [n] (step S40). For example, the control unit 11 sets the flag value to -1.
 ここで、ステップS37又はステップS40において、増加を示す値又は減少を示す値がフラグの値として設定される。また、後述のステップS44でカウンタnの値が1ずつ増えるように更新される。即ち、ステップS35又はステップS38の処理で判定されるフラグの値は、当該処理の直前に行われたステップS34による判定結果に基づく値ではなく、先のステップS34における判定結果に基づく値である。例えば、カウンタnの値が2のときにステップS35又はステップS38で判定されるフラグの値は、カウンタnの値が1のときにステップS37又はステップS40で設定されたフラグの値である。
 従って、制御部11は、ステップS34でV2[n]の値がV2[n+1]の値よりも大きいと判定し、ステップS35でV2[n]の値がV2[n-1]の値から減少しているフラグの値であると判定した場合に、V2[n]が極小点であるとする。例えば、第2A/D変換処理によって変換された第2デジタルデータ夫々が図7に示したような値であるとき、制御部11はV2[7]及びV2[17]を極小点であるとし、ステップS36で選択結果テーブル132に記憶する。
 また、制御部11は、ステップS34でV2[n]の値がV2[n+1]の値以下であると判定し、ステップS35でV2[n]の値がV2[n-1]の値から増加しているフラグの値であると判定した場合に、V2[n]が極大点であるとする。例えば、第2A/D変換処理によって変換された第2デジタルデータ夫々が図7に示したような値であるとき、制御部11はV2[3]及びV2[12]を極大点であるとし、ステップS36で選択結果テーブル132に記憶する。
Here, in step S37 or step S40, a value indicating increase or a value indicating decrease is set as the flag value. In step S44 described later, the value of the counter n is updated so as to increase by one. That is, the value of the flag determined in the process of step S35 or step S38 is not a value based on the determination result in step S34 performed immediately before the process but a value based on the determination result in the previous step S34. For example, the flag value determined in step S35 or step S38 when the value of the counter n is 2 is the flag value set in step S37 or step S40 when the value of the counter n is 1.
Therefore, the control unit 11 determines in step S34 that the value of V2 [n] is larger than the value of V2 [n + 1], and in step S35, the value of V2 [n] decreases from the value of V2 [n−1]. It is assumed that V2 [n] is a local minimum point when it is determined that the value of the flag is set. For example, when each of the second digital data converted by the second A / D conversion process has a value as shown in FIG. 7, the control unit 11 assumes that V2 [7] and V2 [17] are minimum points, In step S36, it is stored in the selection result table 132.
Further, the control unit 11 determines in step S34 that the value of V2 [n] is less than or equal to the value of V2 [n + 1], and in step S35, the value of V2 [n] increases from the value of V2 [n−1]. It is assumed that V2 [n] is the maximum point when it is determined that the value of the flag is set. For example, when each of the second digital data converted by the second A / D conversion process has a value as shown in FIG. 7, the control unit 11 assumes that V2 [3] and V2 [12] are maximum points, In step S36, it is stored in the selection result table 132.
 制御部11は、ステップS37又はステップS40の処理を行った後、V2[n]が参照信号の波形の中心即ちゼロクロス点に相当する第2デジタルデータであるか否かを判定する(ステップS41)。制御部11は例えば、V2[n]の値がVrefよりも小さく、かつV2[n+1]の値がVrefよりも大きいときにゼロクロス点に相当する第2デジタルデータであると判定する。また、制御部11は例えば、V2[n]の値がVrefよりも大きく、かつV2[n+1]の値がVrefよりも小さいときにも、V2[n]がゼロクロス点に相当する第2デジタルデータであると判定する。例えば、第2A/D変換処理によって変換された第2デジタルデータ夫々が図7に示したような値であるとき、制御部11は、V2[5]、V2[9]、V2[15]をゼロクロス点に相当する第2デジタルデータであると判定する。 After performing the process of step S37 or step S40, the controller 11 determines whether or not V2 [n] is the second digital data corresponding to the center of the waveform of the reference signal, that is, the zero cross point (step S41). . For example, when the value of V2 [n] is smaller than Vref and the value of V2 [n + 1] is larger than Vref, the control unit 11 determines that the second digital data corresponds to the zero cross point. In addition, for example, when the value of V2 [n] is larger than Vref and the value of V2 [n + 1] is smaller than Vref, the control unit 11 also provides second digital data in which V2 [n] corresponds to the zero cross point. It is determined that For example, when each of the second digital data converted by the second A / D conversion process has a value as shown in FIG. 7, the control unit 11 sets V2 [5], V2 [9], and V2 [15]. The second digital data corresponding to the zero cross point is determined.
 ゼロクロス点に相当する第2デジタルデータでないと判定した場合(S41:NO)、制御部11はステップS43に処理を進める。ゼロクロス点に相当する第2デジタルデータであると判定した場合(S41:YES)、制御部11はV2[n]及び対応する第1デジタルデータV11[n]、V12[n]を選択結果テーブル132に記憶する(ステップS42)。 If it is determined that the second digital data does not correspond to the zero cross point (S41: NO), the control unit 11 advances the process to step S43. When it is determined that the second digital data corresponds to the zero cross point (S41: YES), the control unit 11 selects V2 [n] and the corresponding first digital data V11 [n], V12 [n] as the selection result table 132. (Step S42).
 次いで、制御部11は極大点、極小点、及びゼロクロス点に相当する第2デジタルデータの選択が完了したか否かを判定する(ステップS43)。制御部11は例えば、変換結果テーブル131内に記憶されている全ての第2デジタルデータが少なくとも1回読み出されたか否かによって判定を行う。選択が完了していないと判定した場合(S43:NO)、制御部11はカウンタnに1の値をインクリメントし(ステップS44)、ステップS33に処理を戻す。選択が完了したと判定した場合(S43:YES)、制御部11は選択処理を終える。 Next, the control unit 11 determines whether the selection of the second digital data corresponding to the maximum point, the minimum point, and the zero cross point is completed (step S43). For example, the control unit 11 makes a determination based on whether or not all the second digital data stored in the conversion result table 131 has been read at least once. If it is determined that the selection has not been completed (S43: NO), the control unit 11 increments the counter n by 1 (step S44), and returns the process to step S33. When it determines with selection having been completed (S43: YES), the control part 11 finishes a selection process.
 図12は、第1算出処理のサブルーチンを示すフローチャートである。受信装置1の制御部11は、カウンタiの領域を一時記憶部13に確保し、当該カウンタiの値に1を設定する(ステップS51)。次いで、制御部11は選択番号がi番目の第1デジタルデータ及びi番目の第2デジタルデータを選択結果テーブル132から読み出し、読み出した値を乗算する(ステップS52)。例えば、カウンタiの値が1である場合、制御部11はV11[3]又はV12[3]の一方の値とV2[3]の値とを乗算する。その後、制御部11は、ステップS52の算出結果を同相成分として、算出結果テーブル133に記憶する(ステップS53)。 FIG. 12 is a flowchart showing a subroutine of the first calculation process. The control unit 11 of the receiving device 1 secures the area of the counter i in the temporary storage unit 13, and sets 1 to the value of the counter i (step S51). Next, the control unit 11 reads out the i-th first digital data and the i-th second digital data with the selection number from the selection result table 132, and multiplies the read values (step S52). For example, when the value of the counter i is 1, the control unit 11 multiplies one value of V11 [3] or V12 [3] by the value of V2 [3]. Then, the control part 11 memorize | stores the calculation result of step S52 in the calculation result table 133 as an in-phase component (step S53).
 次いで、制御部11は、選択結果テーブル132中における選択番号がi番目の行に記憶された全アンテナ分の第1デジタルデータが、i番目に記憶された第2デジタルデータと乗算をしたか否かを判定する(ステップS54)。全アンテナ分の乗算をしていないと判定した場合(S54:NO)、制御部11はステップS52に処理を戻す。制御部11は例えば、先のステップS52の処理でV11[3]の値とV2[3]の値とを乗算した場合、次のステップS52の処理でV12[3]の値とV2[3]の値とを乗算する。 Next, the control unit 11 determines whether or not the first digital data for all antennas whose selection numbers in the selection result table 132 are stored in the i-th row are multiplied with the second digital data stored in the i-th row. Is determined (step S54). When it determines with not multiplying all antennas (S54: NO), the control part 11 returns a process to step S52. For example, when the control unit 11 multiplies the value of V11 [3] and the value of V2 [3] by the process of the previous step S52, the value of V12 [3] and V2 [3] by the process of the next step S52. Multiply by the value of.
 全アンテナ分の乗算をしたと判定した場合(S54:YES)、制御部11は全乗算が完了したか否かを判定する(ステップS55)。制御部11は、例えば選択結果テーブル132に記憶された全ての第1デジタルデータについて対応する第2デジタルデータとの乗算が完了したか否かにより判定を行う。全乗算が完了していないと判定した場合(S55:NO)、制御部11はカウンタiに1の値をインクリメントし(ステップS56)、ステップS52に処理を戻す。全乗算が完了したと判定した場合(S55:YES)、制御部11は第1算出処理を終える。 If it is determined that all antennas have been multiplied (S54: YES), the control unit 11 determines whether all multiplications have been completed (step S55). For example, the control unit 11 determines whether or not multiplication of all the first digital data stored in the selection result table 132 with the corresponding second digital data is completed. When it is determined that the full multiplication has not been completed (S55: NO), the control unit 11 increments the counter i by 1 (step S56), and returns the process to step S52. When it is determined that all multiplications have been completed (S55: YES), the control unit 11 ends the first calculation process.
 図13は、第2算出処理のサブルーチンを示すフローチャートである。受信装置1の制御部11は、カウンタjの領域を一時記憶部13に確保し、当該カウンタjの値に1を設定する(ステップS61)。次いで、制御部11は選択番号がj+1番目の第1デジタルデータ及びj番目の第2デジタルデータを選択結果テーブル132から読み出し、読み出した値を乗算する(ステップS62)。例えば、カウンタjの値が1である場合、制御部11は、制御部11は、V11[5]又はV12[5]の一方の値とV2[3]の値とを乗算する。その後、制御部11は、ステップS62の算出結果を直交成分として、算出結果テーブル133に記憶する(ステップS63)。 FIG. 13 is a flowchart showing a subroutine of the second calculation process. The control unit 11 of the receiving device 1 secures the area of the counter j in the temporary storage unit 13, and sets 1 to the value of the counter j (step S61). Next, the control unit 11 reads the first digital data with the selection number j + 1 and the second digital data with the jth from the selection result table 132, and multiplies the read values (step S62). For example, when the value of the counter j is 1, the control unit 11 multiplies one value of V11 [5] or V12 [5] by the value of V2 [3]. Then, the control part 11 memorize | stores the calculation result of step S62 in the calculation result table 133 as an orthogonal component (step S63).
 次いで、制御部11は、選択結果テーブル132中における選択番号がj+1番目の行に記憶された全アンテナ分の第1デジタルデータが、j番目に記憶された第2デジタルデータと乗算をしたか否かを判定する(ステップS64)。全アンテナ分の乗算をしていないと判定した場合(S64:NO)、制御部11はステップS62に処理を戻す。制御部11は例えば、先のステップS62の処理でV11[5]の値とV2[3]の値とを乗算した場合、次のステップS62の処理でV12[5]の値とV2[3]の値とを乗算する。 Next, the control unit 11 determines whether or not the first digital data for all antennas whose selection numbers in the selection result table 132 are stored in the (j + 1) th row are multiplied with the second digital data stored in the jth. Is determined (step S64). When it determines with not multiplying all antennas (S64: NO), the control part 11 returns a process to step S62. For example, when the control unit 11 multiplies the value of V11 [5] and the value of V2 [3] in the process of the previous step S62, the value of V12 [5] and V2 [3] in the process of the next step S62. Multiply by the value of.
 全アンテナ分の乗算をしたと判定した場合(S64:YES)、制御部11は全乗算が完了したか否かを判定する(ステップS65)。制御部11は、例えば選択結果テーブル132に記憶された全ての第2デジタルデータについて、対応する第1デジタルデータとの乗算が完了したか否かにより判定を行う。全乗算が完了していないと判定した場合(S65:NO)、制御部11はカウンタjに1の値をインクリメントし(ステップS66)、ステップS62に処理を戻す。全乗算が完了したと判定した場合(S65:YES)、制御部11は第2算出処理を終える。 If it is determined that all antennas have been multiplied (S64: YES), the control unit 11 determines whether all multiplications have been completed (step S65). For example, the control unit 11 determines whether all the second digital data stored in the selection result table 132 have been multiplied with the corresponding first digital data. When it is determined that the full multiplication has not been completed (S65: NO), the control unit 11 increments the counter j by 1 (step S66), and returns the process to step S62. When it is determined that all multiplications have been completed (S65: YES), the control unit 11 ends the second calculation process.
 なお、実施形態1の第2算出処理においては、ステップS62でj+1番目の第1デジタルデータ及びj番目の第2デジタルデータを乗算することを説明したが、j番目の第1デジタルデータ及びj+1番目の第2デジタルデータを乗算するようにしてもよい。即ち、第2算出処理において、制御部11は、第1算出処理の乗算に用いた第2デジタルデータと異なる他の第2デジタルデータの値を、第1算出処理の乗算に用いた第1デジタルデータの値に乗算する。他の第2デジタルデータは、第1算出処理の乗算に用いた第2デジタルデータと比べ、参照信号の1/4周期分ずれたタイミングで変換されている。この場合にあっても、制御部11は直交成分を算出することができる。 In the second calculation process of the first embodiment, it has been described that the j + 1-th first digital data and the j-th second digital data are multiplied in step S62. However, the j-th first digital data and the j + 1-th digital data are described. The second digital data may be multiplied. That is, in the second calculation process, the control unit 11 uses the value of the second digital data different from the second digital data used for the multiplication of the first calculation process to the first digital data used for the multiplication of the first calculation process. Multiply the data value. The other second digital data is converted at a timing shifted by ¼ period of the reference signal as compared with the second digital data used for the multiplication in the first calculation process. Even in this case, the control unit 11 can calculate the orthogonal component.
 以上の構成及び処理によって、受信装置1は、直交検波器を用いることなく、受信したアナログ信号を互いに位相が直交する2つの信号に分離したときにおける各信号の波形を表すデジタルデータを算出することができる。そのため、当該デジタルデータを取得する際に要する部品点数を削減することができる。また、選択処理により選択された第1デジタルデータ及び第2デジタルデータを用いて当該各信号の波形を表すデジタルデータを算出することができる。そのため、当該デジタルデータを取得するに際して処理負荷を軽減することができる。 With the above configuration and processing, the receiving apparatus 1 calculates digital data representing the waveform of each signal when the received analog signal is separated into two signals whose phases are orthogonal to each other without using a quadrature detector. Can do. Therefore, the number of parts required for acquiring the digital data can be reduced. Further, digital data representing the waveform of each signal can be calculated using the first digital data and the second digital data selected by the selection process. Therefore, it is possible to reduce the processing load when acquiring the digital data.
 また、例えば位相が90度、180度、270度、及び360度のときにおける周期信号が選択されることによって、参照信号の極大点、極小点、及び中心点を取得することができる。選択処理にて、各点が取得されることにより、参照信号の概形を表す第2デジタルデータと、当該第2デジタルデータに同期して変換された第1デジタルデータとを選択することができる。そのため、第1算出処理及び第2算出処理で算出するデジタルデータの値を、受信したアナログ信号を互いに位相が直交する2つの信号に分離したときの各信号の値により近づけることができる。 Also, for example, by selecting a periodic signal when the phase is 90 degrees, 180 degrees, 270 degrees, and 360 degrees, the maximum point, the minimum point, and the center point of the reference signal can be acquired. By acquiring each point in the selection process, it is possible to select the second digital data representing the outline of the reference signal and the first digital data converted in synchronization with the second digital data. . Therefore, the value of the digital data calculated in the first calculation process and the second calculation process can be made closer to the value of each signal when the received analog signal is separated into two signals whose phases are orthogonal to each other.
 また、受信装置1は、送信装置2との通信範囲内の状態の変化を検知することができる。なお、実施形態1においては、受信装置1は、車両Cの車室内への侵入者の有無を検知する例を説明したが、送信装置2との通信範囲内で生じた事象であれば、車室内で生じたその他の事象を検知するようにしてもよいし、車室外で生じたその他の事象を検知するようにしてもよい。
 例えば、受信装置1は車両Cに対する人物の接近の有無を車室外で生じた事象として検知するようにしてもよい。このとき、受信装置1の記憶部12に記憶された基準情報12aは例えば、車両Cの周辺に人がいない状態で送信装置2から送信された無線信号を受信アンテナ1a夫々で受信したときの無線信号の到来角に係る情報、遅延プロファイルに係る情報である。またこのとき、図4中のステップS16においては、受信装置1の制御部11は上述と同様の処理により車両Cに対する人物の接近の有無を判定する。そしてステップS16で人物の接近があると判定した場合(S16:YES)、制御部11は、図示しない車両Cの電飾用等の車内灯を点灯する等の、車両Cに乗車する際に利便性が向上し得る車両制御を行う。
In addition, the receiving device 1 can detect a change in state within the communication range with the transmitting device 2. In the first embodiment, the example in which the receiving device 1 detects the presence or absence of an intruder in the cabin of the vehicle C has been described. However, if the event occurs within the communication range with the transmitting device 2, the vehicle 1 Other events occurring inside the room may be detected, or other events occurring outside the vehicle compartment may be detected.
For example, the receiving device 1 may detect whether a person approaches the vehicle C as an event that has occurred outside the passenger compartment. At this time, the reference information 12a stored in the storage unit 12 of the receiving device 1 is, for example, wireless when the receiving antenna 1a receives the wireless signal transmitted from the transmitting device 2 in the state where there is no person around the vehicle C. Information related to the arrival angle of the signal and information related to the delay profile. At this time, in step S <b> 16 in FIG. 4, the control unit 11 of the receiving device 1 determines whether or not a person approaches the vehicle C by the same process as described above. If it is determined in step S16 that there is a person approaching (S16: YES), the control unit 11 is convenient when getting on the vehicle C, such as turning on an interior lamp for lighting of the vehicle C (not shown). Vehicle control that can improve performance.
 なお、実施形態1における成分算出処理においては、図10に示したように、第1算出処理が行われた後に第2算出処理が行われることを説明したが、第2算出処理が行われた後に第1算出処理が行われてもよい。また、第1算出処理及び第2算出処理が並列的に行われてもよい。 In the component calculation process in the first embodiment, as illustrated in FIG. 10, it has been described that the second calculation process is performed after the first calculation process is performed, but the second calculation process is performed. The first calculation process may be performed later. Further, the first calculation process and the second calculation process may be performed in parallel.
 (実施形態2)
 実施形態1においては、受信装置1は送信装置2が出力した参照信号を用いて、送信装置2からの無線信号を位相が直交する2つの信号に分離したときにおける各信号の波形を表すデジタルデータを算出した。実施形態2では、受信装置1が参照信号を生成して当該第2デジタルデータを算出する例を説明する。なお、以下で説明する構成及び作用を除くその他の構成及び作用は上述の実施の形態1と同様であるため、同様の構成に関する詳細な説明及びその作用効果の説明は簡潔のため省略する。
(Embodiment 2)
In the first embodiment, the receiving device 1 uses the reference signal output from the transmitting device 2 and digital data representing the waveform of each signal when the radio signal from the transmitting device 2 is separated into two signals whose phases are orthogonal to each other. Was calculated. In the second embodiment, an example in which the receiving device 1 generates a reference signal and calculates the second digital data will be described. Since the other configurations and operations except the configurations and operations described below are the same as those in the first embodiment, detailed description on the same configurations and descriptions of the operations and effects are omitted for the sake of brevity.
 実施形態2における通信システムにおいて、受信装置1及び送信装置2は、通信線3によって接続されていない。実施形態1においては、送信装置2から受信装置1へ無線信号を送信することを説明したが、実施形態2では更に、受信装置1から送信装置2へ無線信号を送信する。そのため、送信装置2は実施形態1で説明した構成に加え、無線信号を受信するための受信アンテナ及び当該受信アンテナから受信した無線信号を制御部21へ出力する受信部を備えている。 In the communication system according to Embodiment 2, the receiving device 1 and the transmitting device 2 are not connected by the communication line 3. In the first embodiment, transmission of a radio signal from the transmission device 2 to the reception device 1 has been described. However, in the second embodiment, a radio signal is further transmitted from the reception device 1 to the transmission device 2. Therefore, in addition to the configuration described in the first embodiment, the transmission device 2 includes a reception antenna for receiving a radio signal and a reception unit that outputs the radio signal received from the reception antenna to the control unit 21.
 次に、実施形態2の受信装置1について説明する。図14は、実施形態2における受信装置1の構成を示すブロック図である。実施形態2の受信装置1は、入出力部17を備えておらず、送信部18及び発振回路19を備えている。送信部18はバスを介して制御部11に接続し、制御部11の指示に従って図示しない送信アンテナから無線信号を送信する。発振回路19は第2A/D変換部16に接続され、制御部11の指示に従って参照信号を生成し、第2A/D変換部16に出力する。第2A/D変換部16は、発振回路19からの参照信号を第2デジタルデータに変換する。 Next, the receiving device 1 according to the second embodiment will be described. FIG. 14 is a block diagram illustrating a configuration of the receiving device 1 according to the second embodiment. The receiving device 1 according to the second embodiment does not include the input / output unit 17 but includes the transmitting unit 18 and the oscillation circuit 19. The transmission unit 18 is connected to the control unit 11 via a bus, and transmits a radio signal from a transmission antenna (not shown) according to an instruction from the control unit 11. The oscillation circuit 19 is connected to the second A / D conversion unit 16, generates a reference signal according to an instruction from the control unit 11, and outputs the reference signal to the second A / D conversion unit 16. The second A / D converter 16 converts the reference signal from the oscillation circuit 19 into second digital data.
 図15は、車室内への侵入を検知するときにおける受信装置1の処理手順を示すフローチャートである。なお、図15中のステップS74~ステップS78までの処理は、図4中のステップS13~ステップS17までの処理と同様であるため、説明を省略する。 FIG. 15 is a flowchart showing the processing procedure of the receiving apparatus 1 when detecting entry into the vehicle interior. Note that the processing from step S74 to step S78 in FIG. 15 is the same as the processing from step S13 to step S17 in FIG.
 受信装置1の制御部11は、車両Cの車室内で生じた事象を検知するための無線信号の送信要求を送信装置2に無線送信する(ステップS71)。その後、制御部11は、当該送信要求を受信した送信装置2から無線信号を受信したか否かを判定する(ステップS72)。無線信号を受信していないと判定した場合(S72:NO)、制御部11は無線信号を受信するまで待機する。 The control unit 11 of the reception device 1 wirelessly transmits a transmission request for a wireless signal for detecting an event occurring in the passenger compartment of the vehicle C to the transmission device 2 (step S71). Thereafter, the control unit 11 determines whether or not a radio signal is received from the transmission device 2 that has received the transmission request (step S72). When it determines with not receiving the radio signal (S72: NO), the control part 11 waits until a radio signal is received.
 無線信号を受信したと判定した場合(S72:YES)、制御部11は受信した無線信号に対応する発振回路19に対応する参照信号を生成させる(ステップS73)。例えば、制御部11は送信装置2が送信する無線信号の位相に係る情報等を予め記憶しておき、当該情報に基づいて発振回路19に参照信号を生成させる。その後、制御部11は受信した無線信号及び発振回路19が生成した参照信号を用いてステップS74以降に処理を進める。 If it is determined that a radio signal has been received (S72: YES), the control unit 11 generates a reference signal corresponding to the oscillation circuit 19 corresponding to the received radio signal (step S73). For example, the control unit 11 stores in advance information related to the phase of a radio signal transmitted by the transmission device 2, and causes the oscillation circuit 19 to generate a reference signal based on the information. Thereafter, the control unit 11 advances the process to step S74 and subsequent steps using the received wireless signal and the reference signal generated by the oscillation circuit 19.
 以上の構成及び処理によって、受信装置1は、送信装置2と通信線3を介して接続することなく、受信したアナログ信号を互いに位相が直交する2つの信号に分離したときにおける各信号の波形を表すデジタルデータを算出することができる。 With the above-described configuration and processing, the receiving device 1 does not connect the transmitting device 2 via the communication line 3, and the waveform of each signal when the received analog signal is separated into two signals whose phases are orthogonal to each other is obtained. Representing digital data can be calculated.
 (変形例)
 変形例では、図11で示した処理手順とは異なる処理手順にて、選択処理のサブルーチンが実行される例について説明する。なお、以下で説明する構成及び作用を除くその他の構成及び作用は上述の実施の形態1及び2と同様であるため、同様の構成に関する詳細な説明及びその作用効果の説明は簡潔のため省略する。
(Modification)
In the modification, an example will be described in which a subroutine for selection processing is executed in a processing procedure different from the processing procedure shown in FIG. Since the other configurations and operations except for the configurations and operations described below are the same as those in the first and second embodiments, a detailed description of the same configuration and a description of the operations and effects are omitted for the sake of brevity. .
 図16は、変形例における選択処理のサブルーチンを示すフローチャートである。受信装置1の制御部11は、カウンタnの領域を一時記憶部13に確保し、当該カウンタnの値を2に設定する(ステップS81)。次いで、制御部11は、一時記憶部13の変換結果テーブル131から、V2[n-1]、V2[n]、及びV2[n+1]の3値を読み出す(ステップS82)。例えばカウンタnの値が2であったとき、制御部11は変換結果テーブル131からV2[1]、V2[2]、及びV2[3]の3値を読み出す。 FIG. 16 is a flowchart showing a subroutine of selection processing in the modification. The control unit 11 of the receiving device 1 secures the area of the counter n in the temporary storage unit 13 and sets the value of the counter n to 2 (step S81). Next, the control unit 11 reads the three values V2 [n−1], V2 [n], and V2 [n + 1] from the conversion result table 131 in the temporary storage unit 13 (step S82). For example, when the value of the counter n is 2, the control unit 11 reads out the three values V2 [1], V2 [2], and V2 [3] from the conversion result table 131.
 その後、制御部11は読み出したV2[n-1]、V2[n]、及びV2[n+1]の3値を用いて極大点判定処理を行う(ステップS83)。極大点判定処理は、V2[n]が参照信号の波形の極大点に相当する第2デジタルデータであるか否かを判定する処理であり、制御部11は例えば、V2[n]の値がV2[n-1]及びV2[n+1]の値よりも大きいとき、V2[n]が極大点であると判定する。例えば、第2A/D変換処理によって変換された第2デジタルデータ夫々が図7に示したような値であるとき、制御部11は、V2[3]及びV2[12]を極大点に相当する第2デジタルデータであると判定する。 Thereafter, the control unit 11 performs a maximum point determination process using the read three values of V2 [n−1], V2 [n], and V2 [n + 1] (step S83). The maximum point determination process is a process for determining whether or not V2 [n] is the second digital data corresponding to the maximum point of the waveform of the reference signal. For example, the control unit 11 has a value of V2 [n]. When it is larger than the values of V2 [n−1] and V2 [n + 1], it is determined that V2 [n] is a local maximum point. For example, when each of the second digital data converted by the second A / D conversion process has a value as shown in FIG. 7, the control unit 11 corresponds to V2 [3] and V2 [12] as local maximum points. It determines with it being 2nd digital data.
 次いで、制御部11は、極大点判定処理によってV2[n]が極大点に相当する第2デジタルデータであるか否かを判定する(ステップS84)。V2[n]が極大点に相当する第2デジタルデータであると判定した場合(S84:YES)、制御部11は、V2[n]が選択結果テーブル132に記憶済みであるか否かを判定する(ステップS85)。記憶済みであると判定した場合(S85:YES)、制御部11はステップS91に処理を進める。記憶済みでないと判定した場合(S85:NO)、制御部11はV2[n]及び対応する第1デジタルデータV11[n]、V12[n]を選択結果テーブル132に記憶し(ステップS86)、その後ステップS91に処理を進める。 Next, the control unit 11 determines whether or not V2 [n] is the second digital data corresponding to the maximum point by the maximum point determination process (step S84). When it is determined that V2 [n] is the second digital data corresponding to the maximum point (S84: YES), the control unit 11 determines whether or not V2 [n] is already stored in the selection result table 132. (Step S85). When it determines with having memorize | stored (S85: YES), the control part 11 advances a process to step S91. When it is determined that it has not been stored (S85: NO), the control unit 11 stores V2 [n] and the corresponding first digital data V11 [n], V12 [n] in the selection result table 132 (step S86). Thereafter, the process proceeds to step S91.
 V2[n]が極大点に相当する第2デジタルデータでないと判定した場合(S84:NO)、制御部11は、V2[n-1]、V2[n]、及びV2[n+1]の3値を用いて極小点判定処理を行う(ステップS87)。極小点判定処理は、V2[n]が参照信号の波形の極小点に相当する第2デジタルデータであるか否かを判定する処理であり、制御部11は例えば、V2[n]の値がV2[n-1]及びV[n+1]の値よりも小さいとき、V2[n]の値が極小点であると判定する。例えば、第2A/D変換処理によって変換された第2デジタルデータ夫々が図7に示したような値であるとき、制御部11は、V2[7]及びV[17]を極小点に相当する第2デジタルデータであると判定する。 When it is determined that V2 [n] is not the second digital data corresponding to the maximum point (S84: NO), the control unit 11 determines the three values V2 [n−1], V2 [n], and V2 [n + 1]. The minimum point determination process is performed using (Step S87). The minimum point determination process is a process for determining whether or not V2 [n] is second digital data corresponding to the minimum point of the waveform of the reference signal. For example, the control unit 11 has a value of V2 [n]. When the value is smaller than the values of V2 [n−1] and V [n + 1], it is determined that the value of V2 [n] is a minimum point. For example, when each of the second digital data converted by the second A / D conversion process has a value as shown in FIG. 7, the control unit 11 corresponds to V2 [7] and V [17] as minimum points. It determines with it being 2nd digital data.
 次いで、制御部11は、極小点判定処理によってV2[n]が極小点に相当する第2デジタルデータであるか否かを判定する(ステップS88)。V[n]が極小点に相当する第2デジタルデータであると判定した場合(S88:YES)、制御部11は、ステップS85に処理を進める。 Next, the control unit 11 determines whether or not V2 [n] is the second digital data corresponding to the minimum point by the minimum point determination process (step S88). When it is determined that V [n] is the second digital data corresponding to the minimum point (S88: YES), the control unit 11 advances the process to step S85.
 V2[n]が極小点に相当する第2デジタルデータでないと判定した場合(S88:NO)、制御部11はV2[n-1]、V2[n]、及びV2[n+1]の3値を用いてゼロクロス点判定処理を行う(ステップS89)。ステップS89の処理は、実施形態1における図11中のステップS41の処理と同様であるため説明を省略する。 When it is determined that V2 [n] is not the second digital data corresponding to the minimum point (S88: NO), the control unit 11 calculates the three values V2 [n−1], V2 [n], and V2 [n + 1]. The zero-cross point determination process is performed using them (step S89). The process of step S89 is the same as the process of step S41 in FIG.
 次いで、制御部11は、ゼロクロス点判定処理によってV[n]がゼロクロス点に相当する第2デジタルデータであるか否かを判定する(ステップS90)。V2[n]がゼロクロス点であると判定した場合(S90:YES)、ステップS85に処理を進める Next, the control unit 11 determines whether or not V [n] is the second digital data corresponding to the zero cross point by the zero cross point determination process (step S90). When it is determined that V2 [n] is the zero cross point (S90: YES), the process proceeds to step S85.
 V2[n]がゼロクロス点に相当する第2デジタルデータでないと判定した場合(S90:NO)、制御部11は極大点、極小点、及びゼロクロス点に相当する第2デジタルデータの選択が完了したか否かを判定する(ステップS91)。制御部11は例えば、変換結果テーブル131内に記憶されている全ての第2デジタルデータが少なくとも1回読み出されたか否かによって判定してもよいし、予め定めた選択番号分だけステップS86の処理が行われたか否かによって判定してもよい。選択が完了していないと判定した場合(S91:NO)、制御部11はカウンタnに1の値をインクリメントし(ステップS92)、ステップS82に処理を戻す。選択が完了したと判定した場合(S91:YES)、制御部11は選択処理を終える。 When it is determined that V2 [n] is not the second digital data corresponding to the zero cross point (S90: NO), the control unit 11 has completed the selection of the second digital data corresponding to the maximum point, the minimum point, and the zero cross point. It is determined whether or not (step S91). For example, the control unit 11 may determine whether all the second digital data stored in the conversion result table 131 has been read at least once, or in step S86 by a predetermined selection number. The determination may be made based on whether or not processing has been performed. If it is determined that the selection has not been completed (S91: NO), the control unit 11 increments the counter n by 1 (step S92), and the process returns to step S82. When it determines with selection having been completed (S91: YES), the control part 11 finishes a selection process.
 制御部11は、以上の処理手順によって選択処理を行った場合であっても、極大点、極小点、及びゼロクロス点に相当する第2デジタルデータを選択することができる。なお、上述した選択処理のサブルーチンの処理手順は何れも例示であり、参照信号の極大点、極小点、及びゼロクロス点に相当する第2デジタルデータが選択可能な処理手順であれば、図11及び図16中に示した処理手順以外であってもよいことは言うまでもない。 The control unit 11 can select the second digital data corresponding to the maximum point, the minimum point, and the zero cross point even when the selection process is performed according to the above processing procedure. Note that the processing procedure of the selection processing subroutine described above is only an example, and any processing procedure can be used as long as the second digital data corresponding to the maximum point, the minimum point, and the zero-cross point of the reference signal can be selected. Needless to say, the processing procedure may be other than that shown in FIG.
 なお、実施形態1及び2並びに変形例における通信システムは、車両Cの車室内で生じた事象を検知することを説明したが、その他の室内空間で生じた事象を検知するように構成してもよい。 In addition, although the communication system in Embodiment 1 and 2 and a modification demonstrated detecting the event which generate | occur | produced in the vehicle interior of the vehicle C, it may be comprised so that the event which occurred in the other indoor space may be detected. Good.
 今回開示された実施の形態はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は、上記した意味ではなく、請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。 It should be considered that the embodiment disclosed this time is illustrative in all respects and not restrictive. The scope of the present invention is defined not by the above-described meaning but by the scope of claims, and is intended to include all modifications within the meaning and scope equivalent to the scope of claims.
 1 受信装置
 1a 受信アンテナ
 2 送信装置
 2a 送信アンテナ
 3 通信線
 4 記録媒体
 4a 制御プログラム
 11 制御部(選択部、第1算出部、第2算出部)
 12 記憶部
 12a 基準情報
 13 一時記憶部
 14 受信部
 14a 第1A/D変換部
 15 読取部
 16 第2A/D変換部
 17 入出力部
 18 送信部
 19 発振回路
 21 制御部
 22 記憶部
 23 一時記憶部
 24 送信部
 25 出力部
 
DESCRIPTION OF SYMBOLS 1 Reception apparatus 1a Reception antenna 2 Transmission apparatus 2a Transmission antenna 3 Communication line 4 Recording medium 4a Control program 11 Control part (selection part, 1st calculation part, 2nd calculation part)
DESCRIPTION OF SYMBOLS 12 Memory | storage part 12a Reference | standard information 13 Temporary memory | storage part 14 Reception part 14a 1st A / D conversion part 15 Reading part 16 2nd A / D conversion part 17 Input / output part 18 Transmission part 19 Oscillation circuit 21 Control part 22 Storage part 23 Temporary storage part 24 transmitter 25 output unit

Claims (6)

  1.  アナログ信号を受信し、受信したアナログ信号及び該アナログ信号に対応するアナログの周期信号に基づいて、該アナログ信号を互いに位相が直交する第1信号及び第2信号に分離したときにおける各信号の波形を表すデジタルデータを算出する受信装置であって、
     受信したアナログ信号を第1デジタルデータに変換する第1A/D変換部と、
     該第1A/D変換部に同期して、前記周期信号を第2デジタルデータに変換する第2A/D変換部と、
     該第2A/D変換部が変換した第2デジタルデータの内、所定時点から前記周期信号の1/4周期の整数倍が経過した時点に相当する各タイミングで変換された第2デジタルデータ、及び該第2デジタルデータ夫々に同期して変換された第1デジタルデータを選択する選択部と、
     該選択部に選択され、互いに同期する任意のタイミングで変換された第1デジタルデータの値及び第2デジタルデータの値を乗算することで、前記第1信号の波形を表すデジタルデータを算出する第1算出部と、
     前記任意のタイミングで変換された第1デジタルデータの値及び前記選択部に選択され、前記任意のタイミングに連続する一のタイミングで変換された第2デジタルデータの値を乗算するか、あるいは前記任意のタイミングで変換された第2デジタルデータの値及び前記一のタイミングで変換された第1デジタルデータの値を乗算することで、前記第2信号の波形を表すデジタルデータを算出する第2算出部と
     を備える受信装置。
    The waveform of each signal when an analog signal is received and the analog signal is separated into a first signal and a second signal whose phases are orthogonal to each other based on the received analog signal and an analog periodic signal corresponding to the analog signal A receiving device for calculating digital data representing
    A first A / D converter that converts the received analog signal into first digital data;
    A second A / D converter that converts the periodic signal into second digital data in synchronization with the first A / D converter;
    Of the second digital data converted by the second A / D converter, the second digital data converted at each timing corresponding to the time when an integral multiple of ¼ period of the periodic signal has elapsed from a predetermined time, and A selection unit for selecting the first digital data converted in synchronization with each of the second digital data;
    A digital data representing the waveform of the first signal is calculated by multiplying the value of the first digital data and the value of the second digital data selected by the selection unit and converted at an arbitrary timing synchronized with each other. 1 calculation unit;
    Multiply the value of the first digital data converted at the arbitrary timing and the value of the second digital data selected by the selection unit and converted at one timing continuous to the arbitrary timing, or the arbitrary A second calculation unit that calculates digital data representing the waveform of the second signal by multiplying the value of the second digital data converted at the timing of the first digital data and the value of the first digital data converted at the one timing And a receiving device.
  2.  前記周期信号は、前記アナログ信号に対応する初期位相を有する正弦波状をなし、
     前記選択部は、位相が90度又は270度のときにおける前記周期信号の値に対応する第2デジタルデータ、及び該第2デジタルデータに同期して変換された第1デジタルデータを少なくとも選択するようにしてある
     請求項1に記載の受信装置。
    The periodic signal has a sinusoidal shape having an initial phase corresponding to the analog signal,
    The selection unit selects at least the second digital data corresponding to the value of the periodic signal when the phase is 90 degrees or 270 degrees, and the first digital data converted in synchronization with the second digital data. The receiving device according to claim 1.
  3.  複数の受信アンテナを備え、
     前記複数の受信アンテナが受信したアナログ信号夫々を互いに位相が直交する第1信号及び第2信号に分離したときにおける各信号の波形を表すデジタルデータを算出するようにしてある
     請求項1又は2に記載の受信装置。
    With multiple receiving antennas,
    The digital data representing the waveform of each signal when the analog signals received by the plurality of receiving antennas are separated into a first signal and a second signal whose phases are orthogonal to each other is calculated. The receiving device described.
  4.  請求項1から3までの何れか一つに記載の受信装置と、
     アナログ信号を送信する送信装置と
     を備え、
     前記受信装置は、前記送信装置から送信されたアナログ信号を受信し、受信したアナログ信号を互いに位相が直交する第1信号及び第2信号に分離したときにおける各信号の波形を表すデジタルデータを算出するようにしてある
     通信システム。
    A receiving device according to any one of claims 1 to 3,
    A transmitter for transmitting an analog signal,
    The receiving device receives the analog signal transmitted from the transmitting device, and calculates digital data representing the waveform of each signal when the received analog signal is separated into a first signal and a second signal whose phases are orthogonal to each other There is a communication system.
  5.  任意のアナログ信号及び該アナログ信号に対応するアナログの周期信号に基づいて、該アナログ信号を互いに位相が直交する第1信号及び第2信号に分離したときにおける各信号の波形を表すデジタルデータを算出する算出方法であって、
     前記アナログ信号を第1デジタルデータに変換する第1A/D変換ステップと、
     該第1A/D変換ステップに同期して、前記周期信号を第2デジタルデータに変換する第2A/D変換ステップと、
     該第2A/D変換ステップで変換された第2デジタルデータの内、所定時点から前記周期信号の1/4周期の整数倍が経過した時点に相当する各タイミングで変換された第2デジタルデータ、及び該第2デジタルデータ夫々に同期して変換された第1デジタルデータを選択する選択ステップと、
     該選択ステップで選択され、互いに同期する任意のタイミングで変換された第1デジタルデータの値及び第2デジタルデータの値を乗算することで、前記第1信号の波形を表すデジタルデータを算出する第1算出ステップと、
     前記任意のタイミングで変換された第1デジタルデータの値及び前記選択部に選択され、前記任意のタイミングに連続する一のタイミングで変換された第2デジタルデータの値を乗算するか、あるいは前記任意のタイミングで変換された第2デジタルデータの値及び前記一のタイミングで変換された第1デジタルデータの値を乗算することで、前記第2信号の波形を表すデジタルデータを算出する第2算出ステップと
     を含む算出方法。
    Based on an arbitrary analog signal and an analog periodic signal corresponding to the analog signal, digital data representing the waveform of each signal when the analog signal is separated into a first signal and a second signal whose phases are orthogonal to each other is calculated. A calculation method for
    A first A / D conversion step of converting the analog signal into first digital data;
    A second A / D conversion step for converting the periodic signal into second digital data in synchronization with the first A / D conversion step;
    Second digital data converted at each timing corresponding to a time point at which an integral multiple of ¼ period of the periodic signal has elapsed from a predetermined time point among the second digital data converted in the second A / D conversion step, And a selection step of selecting the first digital data converted in synchronism with each of the second digital data,
    The digital data representing the waveform of the first signal is calculated by multiplying the value of the first digital data and the value of the second digital data selected at the selection step and converted at an arbitrary timing synchronized with each other. 1 calculation step;
    Multiply the value of the first digital data converted at the arbitrary timing and the value of the second digital data selected by the selection unit and converted at one timing continuous to the arbitrary timing, or the arbitrary A second calculation step of calculating digital data representing the waveform of the second signal by multiplying the value of the second digital data converted at the timing of the first digital data and the value of the first digital data converted at the one timing. A calculation method including and.
  6.  任意のアナログ信号及び該アナログ信号に対応するアナログの周期信号に基づいて、該アナログ信号を互いに位相が直交する2つの信号に分離したときにおける各信号の波形を表すデジタルデータを、コンピュータに算出させるコンピュータプログラムであって、
     前記コンピュータを、
     前記アナログ信号を第1デジタルデータに変換する第1A/D変換部と、
     該第1A/D変換部に同期して、前記周期信号を第2デジタルデータに変換する第2A/D変換部と、
     該第2A/D変換部が変換した第2デジタルデータの内、所定時点から前記周期信号の1/4周期の整数倍が経過した時点に相当する各タイミングで変換された第2デジタルデータ、及び該第2デジタルデータ夫々に同期して変換された第1デジタルデータを選択する選択部と、
     該選択部に選択され、互いに同期する任意のタイミングで変換された第1デジタルデータの値及び第2デジタルデータの値を乗算することで、前記第1信号の波形を表すデジタルデータを算出する第1算出部と、
     前記任意のタイミングで変換された第1デジタルデータの値及び前記選択部に選択され、前記任意のタイミングに連続する一のタイミングで変換された第2デジタルデータの値を乗算するか、あるいは前記任意のタイミングで変換された第2デジタルデータの値及び前記一のタイミングで変換された第1デジタルデータの値を乗算することで、前記第2信号の波形を表すデジタルデータを算出する第2算出部と
     して機能させるためのコンピュータプログラム。
     
    Based on an arbitrary analog signal and an analog periodic signal corresponding to the analog signal, the computer calculates digital data representing the waveform of each signal when the analog signal is separated into two signals whose phases are orthogonal to each other. A computer program,
    The computer,
    A first A / D converter that converts the analog signal into first digital data;
    A second A / D converter that converts the periodic signal into second digital data in synchronization with the first A / D converter;
    Of the second digital data converted by the second A / D converter, the second digital data converted at each timing corresponding to the time when an integral multiple of ¼ period of the periodic signal has elapsed from a predetermined time, and A selection unit for selecting the first digital data converted in synchronization with each of the second digital data;
    A digital data representing the waveform of the first signal is calculated by multiplying the value of the first digital data and the value of the second digital data selected by the selection unit and converted at an arbitrary timing synchronized with each other. 1 calculation unit;
    Multiply the value of the first digital data converted at the arbitrary timing and the value of the second digital data selected by the selection unit and converted at one timing continuous to the arbitrary timing, or the arbitrary A second calculation unit that calculates digital data representing the waveform of the second signal by multiplying the value of the second digital data converted at the timing of the first digital data and the value of the first digital data converted at the one timing A computer program that functions as a computer.
PCT/JP2016/050096 2015-01-14 2016-01-05 Receiving apparatus, communication apparatus, calculation method, and computer program WO2016114169A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015005266A JP2016131327A (en) 2015-01-14 2015-01-14 Receiver, communication system, calculation method, and computer program
JP2015-005266 2015-01-14

Publications (1)

Publication Number Publication Date
WO2016114169A1 true WO2016114169A1 (en) 2016-07-21

Family

ID=56405716

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/050096 WO2016114169A1 (en) 2015-01-14 2016-01-05 Receiving apparatus, communication apparatus, calculation method, and computer program

Country Status (2)

Country Link
JP (1) JP2016131327A (en)
WO (1) WO2016114169A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020007494A1 (en) * 2018-07-06 2020-01-09 Telefonaktiebolaget Lm Ericsson (Publ) Receiver circuit for an antenna array system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007028436A (en) * 2005-07-20 2007-02-01 Matsushita Electric Ind Co Ltd Wireless communication apparatus and communication quality estimation method
JP2012060669A (en) * 2011-11-17 2012-03-22 Panasonic Corp Array antenna device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007028436A (en) * 2005-07-20 2007-02-01 Matsushita Electric Ind Co Ltd Wireless communication apparatus and communication quality estimation method
JP2012060669A (en) * 2011-11-17 2012-03-22 Panasonic Corp Array antenna device

Also Published As

Publication number Publication date
JP2016131327A (en) 2016-07-21

Similar Documents

Publication Publication Date Title
US9915724B2 (en) Method, apparatus and system of determining a time of arrival of a wireless communication signal
JP4977806B2 (en) Radar imaging apparatus, imaging method and program thereof
WO2018132237A3 (en) Systems and methods to select or transmitting frequency domain patterns for phase tracking reference signals
US8817578B2 (en) Sonic wave output device, voice communication device, sonic wave output method and program
US7541995B1 (en) Electromagnetic signal proximity detection systems and methods
JP2012163403A (en) Electronic scanning type radar system, and method and program for estimating direction of received wave
EP2789181A1 (en) Method, apparatus, and computer program product for secure distance bounding based on direction measurement
US20220060236A1 (en) Configuration of beamforming settings for a wireless radio transceiver device
JP2012132846A (en) Electron-scanning radar device, reception wave direction estimation method, and reception wave direction estimation program
CN111757218A (en) Audio file playing method, distributed sound system and main sound box
US20080031473A1 (en) Method of providing listener with sounds in phase and apparatus thereof
JP6355546B2 (en) Target detection device
KR20200007259A (en) Remote controller and control method thereof
WO2016114169A1 (en) Receiving apparatus, communication apparatus, calculation method, and computer program
JP6411831B2 (en) Direction of arrival estimation device, position estimation device, position estimation system
WO2017006415A1 (en) Direction finder
WO2016158665A1 (en) Signal conversion device, reception device, and transmission/reception device
US11658797B2 (en) Synchronization timing detector, wireless communication device, and non-transitory computer-readable recording medium
WO2020137725A1 (en) Distance measuring device
JP5143284B2 (en) Mobile receiver
JPWO2020246002A1 (en) Radar signal processing equipment, radar system and signal processing method
JP6476707B2 (en) Wireless device, wireless system, wireless device control method, and program
JP2019009624A (en) Diversity receiving device
KR102558348B1 (en) Apparatus and Method for Estimating Angle of Arrival based on Ultra-Wideband Wireless Communication
JP6811914B2 (en) Obstacle detector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16737240

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16737240

Country of ref document: EP

Kind code of ref document: A1