WO2016114064A1 - Time and space diagram, information processing device, and program - Google Patents

Time and space diagram, information processing device, and program Download PDF

Info

Publication number
WO2016114064A1
WO2016114064A1 PCT/JP2015/085310 JP2015085310W WO2016114064A1 WO 2016114064 A1 WO2016114064 A1 WO 2016114064A1 JP 2015085310 W JP2015085310 W JP 2015085310W WO 2016114064 A1 WO2016114064 A1 WO 2016114064A1
Authority
WO
WIPO (PCT)
Prior art keywords
orbit
sun
celestial
information
time
Prior art date
Application number
PCT/JP2015/085310
Other languages
French (fr)
Japanese (ja)
Inventor
開知 杉山
Original Assignee
開知 杉山
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 開知 杉山 filed Critical 開知 杉山
Priority to JP2016549808A priority Critical patent/JP6222881B2/en
Publication of WO2016114064A1 publication Critical patent/WO2016114064A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D5/00Sheets united without binding to form pads or blocks
    • B42D5/04Calendar blocks
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B27/00Planetaria; Globes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B5/00Electrically-operated educational appliances
    • G09B5/02Electrically-operated educational appliances with visual presentation of the material to be studied, e.g. using film strip

Definitions

  • the present invention relates to a space-time diagram representing time and space, and an information processing apparatus and program for displaying the space-time diagram.
  • calendars also called calendars
  • a date and twenty-four milestones corresponding to the date are arranged and displayed in an arc shape, and a mark indicating the rotation of the earth and a mark indicating the appearance of the moon are displayed on the date display portion.
  • a calendar that is displayed in association with is disclosed.
  • the present invention has been made in view of the above-described circumstances, and displays a spatiotemporal diagram that can visually recognize the relationship between positions of a plurality of celestial bodies in the solar system and time, and an image of the spatiotemporal diagram.
  • An object is to provide an information processing apparatus and a program.
  • the orbits of a plurality of celestial bodies in the solar system the positions on the orbits of the plurality of celestial bodies, and the positions on the orbits of the plurality of celestial bodies and at least a calendar
  • the predetermined celestial body of the plurality of celestial bodies is arranged at a position where the actual distance from the sun to the predetermined celestial body or a distance close to the distance is indicated at a predetermined scale.
  • a ring-shaped region surrounded by a circle whose radius is the closest distance to the sun and a circle whose radius is the furthest distance to the sun in the orbit of the predetermined celestial body,
  • the position is represented by information on an angle from a reference direction in a predetermined direction from the center of the sun.
  • the orbits of multiple celestial bodies include the orbits of Mercury, Venus, Earth, Moon, Mars, Jupiter, Saturn, Uranus, Neptune, and Pluto.
  • Mercury's orbit, Venus's orbit, Earth's orbit, Moon's orbit, and Mars's orbit are the actual distances from the sun to each celestial body in the solar system from the perspective of looking at the solar system from above the Earth's North Pole. Or, it is placed at a position close to that distance on a scale of 1 trillion, and each of Jupiter's orbit, Saturn's orbit, Uranus's orbit, Neptune's orbit, and Pluto's orbit are different from the corresponding scale. It may be represented by an orbit that is shown to scale and is closer to the sun than the actual orbit.
  • the information processing apparatus displays a spatio-temporal image on a display device.
  • a clock unit that identifies the current time; and a control unit that displays images of all or some of the celestial bodies at positions corresponding to the current time identified by the clock unit. It may be configured.
  • the control unit may display an image of the celestial object selected by the user.
  • the control unit may enlarge and display an image of an area in the space-time diagram selected by the user.
  • the program according to the present invention is characterized by causing an information processing apparatus to execute processing for displaying an image of a spatiotemporal diagram on a display device.
  • a time specifying process for specifying the current time and an image of all or some of the celestial objects at a position corresponding to the current time specified by the time specifying process are displayed.
  • the display process may display an image of a celestial object selected by the user.
  • an image of a region in the spatiotemporal diagram selected by the user may be enlarged and displayed.
  • the spatio-temporal view arranges orbits of a plurality of celestial bodies in the solar system, positions on the orbits of the plurality of celestial bodies, and time information corresponding to these positions. You can know the relationship between the position of celestial bodies and time, and deepen your understanding of the history of the calendar and astronomy.
  • FIG. 3 is an enlarged view showing a partial region of the region shown in FIG. 2.
  • FIG. 2nd Embodiment It is a block diagram which shows the structure of the information processing apparatus of 3rd Embodiment. It is a figure which shows the example of a display of the image displayed on a display apparatus. It is a flowchart which shows the flow of the process which the information processing apparatus of 3rd Embodiment performs. It is a block diagram which shows the structure of the information processing system of 4th Embodiment. It is a table
  • FIG. 1 is a diagram showing a spatio-temporal diagram 1 of the first embodiment.
  • FIG. 2 is an enlarged view showing a quarter of the space-time diagram 1 shown in FIG.
  • FIG. 3 is an enlarged view showing a part of the region shown in FIG. 1 to 3, when the paper surface is viewed in the direction of the sign in the figure, the right direction of the paper surface is the + X axis direction, the left direction of the paper surface is the -X axis direction, and the upward direction of the paper surface is the + Y axis direction. The downward direction on the paper surface is taken as the -Y axis direction.
  • the direction from the center point O toward the ⁇ X axis direction is set as a reference direction, and an angle of 0 ° to 360 ° is attached counterclockwise from the reference direction (see FIGS. 2 and 3). That is, the ⁇ X axis direction is 0 degree (or 360 degrees), the ⁇ Y axis direction is 90 degrees, the + X axis direction is 180 degrees, and the + Y axis direction is 270 degrees.
  • region shown in FIG. 2 is the lower left quarter region (region indicated by the arrow in FIG. 1) of the spatiotemporal diagram 1 shown in FIG. 3 is a region from 0 degrees to 30 degrees in the region illustrated in FIG. 2 (region indicated by an arrow in FIG. 2).
  • the spatio-temporal map 1 shown in FIGS. 1 to 3 is a diagram illustrating the relationship between the position of the solar system celestial bodies (planets, dwarf planets, and satellites) and time on a plane. That is, FIG. 1 is a diagram in which the orbits of a plurality of celestial bodies in the solar system, the positions on the orbits of the plurality of celestial bodies, and the time information corresponding to the positions on the orbits of the plurality of celestial bodies are arranged on a plane. is there. As shown in FIG.
  • the spatio-temporal diagram 1 shows planets revolving around the sun (Mercury 10, Venus 20, Earth 30, Mars 50, Jupiter 60, Saturn 70, Uranus 80, as a plurality of celestial bodies in the solar system. Neptune 90), a dwarf planet (Pluto 100) revolving around the sun, and a moon (moon) orbiting the earth are depicted.
  • the center point O in the spatiotemporal diagram 1 corresponds to the position of the sun (the center position of the sun).
  • the spatiotemporal diagram 1 depicts each celestial body from the viewpoint of viewing the solar system from far above the north pole of the earth 30 (above the earth axis of the earth 30).
  • Mercury 10 is a planet orbiting closest to the Sun, and moves on an elliptical orbit (hereinafter referred to as Mercury's orbit 11) having a central point O as one focal point.
  • Mercury's orbit 11 a ring-shaped region surrounded by a circle having a radius closest to the sun and a circle having a radius farthest from the sun on the Mercury orbit 11 is defined as an orbital region 12 of Mercury 10. I'm drawing. By drawing the orbital region 12 in the spatiotemporal diagram 1, the fluctuation width of the orbit of Mercury 10 can be easily recognized.
  • the position of the perihelion 13 (that is, the point closest to the sun) of Mercury 10 and the position of the far day point 14 (that is, the point farthest from the sun) are also drawn. ing.
  • the position of the white triangle symbol is the position of the perihelion 13 of Mercury 10
  • the position of the black triangle symbol is the position of the perihelion 14 of Mercury 10.
  • the perihelion point 13 is at a position of about 80 degrees on the Mercury orbit 11
  • the far day point 14 (that is, the point farthest from the sun) is about about the Mercury orbit 11.
  • the position is 260 degrees.
  • Venus 20 is a planet that goes around the sun next to Mercury 10. Similarly to Mercury 10, Venus 20 moves on an elliptical orbit (hereinafter referred to as Venus orbit 21) having a central point O as one focal point.
  • the Venus orbit 21 is a circular orbit.
  • a ring-shaped region surrounded by a circle having a radius closest to the sun and a circle having a radius farthest from the sun in the Venus orbit 21 is depicted as an orbital region 22 of Venus 20. .
  • the orbital region 22 in the spatiotemporal diagram 1 it is possible to easily recognize the fluctuation width of the orbit of Venus 20. As shown in FIGS. 1 to 3, the orbital region 22 of Venus 20 is narrower than the orbital region 12 of Mercury 10.
  • the position of the perihelion 23 and the position of the far-day point 24 of Venus 20 are also drawn.
  • the perihelion point 23 is at a position of about 130 degrees on the Venus orbit 21
  • the far day point 24 is at a position of about 310 degrees on the Venus orbit 21.
  • the Earth 30 is a planet that goes around the Sun after Venus 20.
  • the earth 30 also moves on an elliptical orbit (hereinafter referred to as the earth orbit 31) having the central point O as one focal point.
  • the earth 30 a ring-shaped region surrounded by a circle having a radius that is the distance closest to the sun in the earth orbit 31 and a circle having a radius that is the distance farthest from the sun is depicted as an orbital area 32 of the earth 30. .
  • the orbital region 32 of the earth 30 is narrower than the orbital region 12 of Mercury 10 and wider than the orbital region 22 of Venus 20.
  • the position of the perihelion 33 and the position of the perihelion 34 of the earth 30 are also drawn.
  • the perihelion point 33 is at a position of about 100 degrees on the earth orbit 31, and the far day point 34 is at a position of about 280 degrees on the earth orbit 31.
  • the spatiotemporal diagram 1 also depicts the orbit of the moon (hereinafter referred to as the lunar orbit 40) around the earth 30.
  • the lunar orbit 40 As the earth 30 rotates around the sun counterclockwise, the moon rotates around the earth 30 counterclockwise. A wavy orbit centered on the sun, such that the moon orbit 40 moves back and forth between the inside and outside of the earth orbit 31 when the movement of the earth 30 and the moon is seen from a position far above the earth axis of the earth 30. It becomes.
  • the position where the moon is farthest from the sun is the full moon 41, and the position where the moon is closest to the sun is the new moon 42.
  • Mars 50 is a planet that goes around the sun next to Earth 30.
  • the Mars 50 also moves on an elliptical orbit (hereinafter referred to as the Mars orbit 51) having the central point O as one focal point.
  • the Mars orbit 51 also moves on an elliptical orbit (hereinafter referred to as the Mars orbit 51) having the central point O as one focal point.
  • a ring-shaped region surrounded by a circle having a radius closest to the sun in the Mars orbit 51 and a circle having a radius farthest from the sun is depicted as an orbital region 52 of Mars 50. .
  • the orbital region 52 of Mars 50 is wider than the orbital region 12 of Mercury 10.
  • the position of the perihelion 53 and the position of the perihelion 54 of the Mars 50 are also drawn.
  • the perihelion point 53 is at a position of about 335 degrees on the Mars orbit 51
  • the far day point 54 is at a position of about 155 degrees on the Mars orbit 51.
  • Jupiter 60 is a planet that goes around the sun next to Mars 50.
  • Jupiter 60 also moves on an elliptical orbit (hereinafter referred to as Jupiter orbit 61) having the central point O as one focal point.
  • a circular orbit closer to the sun than the actual orbit of Jupiter 60 is drawn as the Jupiter orbit 61.
  • the position of the perihelion 62 and the position of the far day 63 of Jupiter 60 are also drawn.
  • the perihelion point 62 is located at about 15 degrees on the Jupiter orbit 61
  • the far day point 63 is located at about 195 degrees on the Jupiter orbit 61.
  • Saturn 70 is a planet that goes around the sun next to Jupiter 60. Saturn 70 also moves on an elliptical orbit (hereinafter referred to as Saturn orbit 71) having the central point O as one focal point. However, in the example shown in FIG. 1, a circular orbit closer to the sun than the actual orbit of Saturn 70 is drawn as the Saturn orbit 71. In the spatiotemporal diagram 1, the position of the perihelion 72 and the position of the distant sun 73 of Saturn 70 are also drawn. The perihelion point 72 is at a position of about 95 degrees on the Saturn orbit 71, and the far day point 73 is at a position of about 275 degrees on the Saturn orbit 71.
  • Uranus 80 is a planet that orbits the sun next to Saturn 70. Uranus 80 also moves on an elliptical orbit (hereinafter referred to as Uranus orbit 81) having the central point O as one focal point. However, in the example shown in FIG. 1, a circular orbit closer to the sun than the actual orbit of Uranus 80 is drawn as the Uranus orbit 81. In the spatiotemporal diagram 1, the position of the perihelion 82 and the position of the distant sun 83 of Uranus 80 are also drawn. The perihelion point 82 is at a position of about 170 degrees on the Uranus orbit 81, and the far day point 83 is at a position of about 350 degrees on the Uranus orbit 81.
  • Neptune 90 is a planet that goes around the sun after Uranus 80. Neptune 90 also moves on an elliptical orbit (hereinafter referred to as Neptune orbit 91) having the central point O as one focal point. However, in the example shown in FIG. 1, a circular orbit closer to the sun than the actual orbit of Neptune 90 is drawn as the Neptune orbit 91. In the spatio-temporal diagram 1, the position of the perihelion 92 and the position of the distant point 93 of Neptune 90 are also drawn. The perihelion point 92 is at a position of about 45 degrees on the Neptune orbit 91, and the far day point 93 is at a position of about 225 degrees on the Neptune orbit 91.
  • Pluto 100 is a quasi-planet that travels the farthest of the sun. Pluto 100 also moves on an elliptical orbit (hereinafter referred to as Pluto's orbit 101) having the central point O as one focal point. However, in the example shown in FIG. 1, a circular orbit closer to the sun than the actual orbit of Pluto 100 is drawn as the Pluto orbit 101. In the spatiotemporal diagram 1, the position of the perihelion 102 and the position of the perihelion 103 of Pluto 100 are also drawn. The perihelion point 102 is at a position of about 220 degrees on the Pluto orbit 101, and the far day point 103 is at a position of about 40 degrees on the Pluto orbit 101.
  • the Mercury orbit 11, Venus orbit 21, Earth orbit 31, lunar orbit 40, and Mars orbit 51 represent the actual distance from the sun to their celestial bodies or a distance close to that distance at a predetermined scale.
  • the orbits of the above celestial bodies represent the actual distance from the sun to those celestial bodies in the solar system or a distance close to that distance on a scale of 1 trillion.
  • the diameter of the earth orbit 31 is 30 cm.
  • the Jupiter orbit 61, Saturn orbit 71, Uranus orbit 81, Neptune orbit 91, and Pluto orbit 101 are expressed in a predetermined scale (for example, 1 / trillion) as described above.
  • each celestial body in the solar system is shown in a circle. If the size of the circle of each celestial body is expressed by a predetermined scale (for example, 1 / trillion), each celestial body is too small to be seen. Accordingly, the circle of each celestial body is represented by a scale obtained by multiplying a predetermined scale (for example, 1 / trillion) by a predetermined time (for example, 100 times).
  • each celestial body is represented by a circle of a different size in order to make it easy to recognize the position of each celestial body. That is, the circle of each celestial body in FIGS. 1 and 2 is shown larger than the circle of each celestial body in FIG.
  • the size of the circle of each celestial body in FIG. 3 is the size of the actual circle of each celestial body in FIG. 1 or the size of the circle of each actual celestial body.
  • the spatiotemporal diagram 1 shows an angle of 15 degrees counterclockwise from the reference direction ( ⁇ X axis direction) (0 degrees, 15 degrees, 30 degrees, 45 degrees,... ⁇ 360 degrees) is drawn.
  • ⁇ X axis direction 0 degrees, 15 degrees, 30 degrees, 45 degrees,... ⁇ 360 degrees
  • an angle (about 1 degree) corresponding to the distance that the earth 30 moves on the earth orbit 31 in one day is divided by a plurality of lines 200.
  • a circle indicating the position of the earth 30 is represented in each area (each area corresponding to one day of the earth 30) divided by a plurality of lines 200 in the orbital area 32 of the earth 30. Thereby, the position of the earth 30 every day is known.
  • a date as calendar information is associated with the position of the earth 30.
  • 201 year / month / day
  • day of week 202 are shown.
  • a date and day of a certain year are allocated.
  • March 21, 2014 to March 20, 2015 (365 days) are allocated.
  • the date 201 is assigned such that the 0 degree position is the day of autumn, the 90 degree position is the day of the winter solstice, the 180 degree position is the day of the spring equinox, and the 270 degree position is the day of the summer solstice.
  • the autumn day is September 23, the winter solstice day is December 22, the spring equinox day is March 21, and the summer solstice day is June 21.
  • a circle indicating the position of the Mercury 10 is represented at a position corresponding to the movement distance of the Mercury 10 every certain time (for example, several days). Thereby, the position of Mercury 10 every predetermined time is known.
  • date information every predetermined time (for example, several days) is described in association with the position of Mercury 10.
  • a circle indicating the position of Venus 20 is represented at a position corresponding to the movement distance of Venus 20 every certain time (for example, several days). Thereby, the position of Venus 20 for every predetermined time is known.
  • the space-time diagram 1 shows date information 203 for each predetermined time (for example, several days) in association with the position of Venus 20.
  • a circle indicating the position of the Mars 50 is shown at a position corresponding to the moving distance of the Mars 50 every certain time (for example, several days). Thereby, the position of Mars 50 for every predetermined time is known.
  • date information for each predetermined time for example, month
  • the spatiotemporal map 1 is located at a position corresponding to the movement distance of Jupiter 60, Saturn 70, Uranus 80, Neptune 90, and Pluto 100 for a certain time (for example, year). Circles indicating the positions of these objects are shown.
  • the spatio-temporal map 1 corresponds to the positions of Jupiter 60, Saturn 70, Uranus 80, Neptune 90, and Pluto 100 for each predetermined time (for example, year). Date information is displayed.
  • the orbits of a plurality of celestial bodies in the solar system As described above, in the spatio-temporal diagram 1, the orbits of a plurality of celestial bodies in the solar system, the positions on the orbits of the plurality of celestial bodies, and the time information corresponding to these positions are arranged. You can know the relationship between the position of the celestial body and time. This will deepen your understanding of the calendar and astronomy.
  • the “year” is determined by the revolution period of the earth 30 that moves around the sun
  • the “month” is determined by the revolution period of the moon that moves around the earth 30
  • the “day” is determined by the rotation period of the earth 30. ing.
  • the calendar is determined by the earth 30 and the movement of the moon around the sun, it is possible to immediately understand the formation of the calendar just by looking at the spatiotemporal diagram 1.
  • the speed of the Earth 30 (the distance traveled per day) around the sun is not constant, and the first half and the second half of the year are not the same number of days (for example, from March 21, 2014 to March 20, 2015) In the case of, the first half is 186 days and the second half is 179 days, and there is a shift of 7 days.)
  • the quarter of one year is not the same number of days (the first quarter is 92 days, the second quarter is 94th, 90th in the third quarter, 89th in the fourth quarter). You can also intuitively understand the changing seasons.
  • the space-time diagram 1 can be used as a calendar.
  • the Western calendar is associated with the position of the earth 30 as calendar information, it can be used as a calendar (calendar) written in the Western calendar generally used in Japan.
  • various calendar information used in each country or region of the world can be associated with the position of the earth 30. Therefore, it can be used as a calendar for various countries and regions in one format. It can also be understood that the equinox, autumn, winter solstice and summer solstice are common throughout the world.
  • a predetermined celestial body for example, Mercury 10, Venus 20, Earth 30, Moon, Mars 50
  • a predetermined celestial body has an actual distance from the sun to the predetermined celestial body or a distance close to the predetermined distance to a predetermined scale. Therefore, the distance between the celestial bodies can be visually recognized.
  • the spatiotemporal diagram 1 shows a ring-shaped region (orbital regions 12, 22) surrounded by a circle whose radius is the distance closest to the sun and a circle whose radius is the furthest distance to the sun on the orbit of each celestial body. , 32, 52), the fluctuation width of the orbit of each celestial body can be easily recognized. That is, it can be recognized that there is a difference in distance between the sun and each celestial body by the blur width.
  • the perihelion and far-perihel of each celestial body can be easily recognized. It can also be recognized that the speed of the celestial body at the perihelion point and a position near the point is faster than the speed of the celestial body at the far day point and the position near the point.
  • the spatio-temporal map 1 shows the positions of the moons that move around the earth 30, so what orbits the moon moves in, and when the full moon 41 and the new moon 42 appear.
  • Etc. can also be understood. Further, for example, it can be easily recognized that December 22, 2014 is a Fudan solstice where the winter solstice and the new moon 42 overlap. Also, it is easy to recognize that the time of the full moon 41 and the new moon 42 will shift slightly from year to year and will return to its original position in 1919 (the Fudan winter solstice is once in 1919). Can do.
  • each celestial body rotates the sun counterclockwise, so that the position of each celestial body in the solar system can be seen from the viewpoint of the universe far above the north pole of the Earth 30. Therefore, the position of each celestial body in the solar system can be seen like a watch.
  • the position of each celestial body is associated with the angle information from the reference position, the position of each celestial body can be easily recognized by the angle information (frequency from the reference position), and the angle information and By associating time information (calendar information), it can be easily used as a calendar of each country or region in the world.
  • Spatio-temporal map 1 is not limited to calendar applications, but can be used for fortune-telling based on the arrangement of celestial bodies. Moreover, if the relationship between the position of each celestial body and the biorhythm of life forms (including people) is known, it can be used to determine the behavior pattern of life forms.
  • FIG. 4 is a diagram showing a spatiotemporal diagram 3 of the second embodiment.
  • the spatio-temporal diagram 3 shown in FIG. 4 is a diagram illustrating the relationship between the position of the solar system celestial bodies and time on a plane, similar to the spatio-temporal diagram 1 shown in FIGS.
  • a circle indicating the position of the earth is not drawn, but actually a circle indicating the position of the earth every day is drawn.
  • only the earth and the moon (and their orbits) are drawn, but celestial bodies (and their orbits) of the solar system other than the earth and the moon may be drawn.
  • the center point O corresponds to the position of the sun (center position of the sun).
  • a plurality of concentric regions 300, 312, 330, and 340 centering on the center point O are provided.
  • the seasons of spring, summer, autumn, and winter are written in association with the position of the earth.
  • an earth orbit 311 drawn when the earth moves is drawn in the orbital region 312.
  • the spatio-temporal view 3 also shows a wavy lunar orbit 320 drawn when the moon moves.
  • a full moon 321 where the moon is farthest from the sun and a new moon 322 where the moon is closest to the sun are also depicted in the spatiotemporal diagram 3.
  • the name of the month (new moon, first string, full moon, last string) is written as time information in association with the position of the month.
  • calendar information date as time information is written in association with the position of the earth.
  • the relationship between the position of the moon and the time can be easily recognized, and the understanding of the name of the moon can be deepened.
  • the age of the moon may be written together with the name of the moon or instead of the name of the moon.
  • FIGS. 1 to 4 are examples, and are not limited to the configurations shown in these drawings.
  • Mercury 10, Venus 20, Earth 30, Moon, Mars 50, Jupiter 60, Saturn 70, Uranus 80, Neptune 90, and Pluto 100 are shown as celestial bodies in the solar system. It may also represent quasi-planets such as Ellis and Ceres, satellites of planets such as Phobos and Deimos, and small solar system bodies such as comets. An artificial satellite may also be represented.
  • information such as the position of the star outside the solar system and the position (direction) of the constellation may be represented.
  • Information such as these constellations may be arranged in a region corresponding to the position (direction) from the sun in the spatiotemporal maps 1 and 3, or may be arranged in a space outside the orbits of a plurality of celestial bodies in the solar system. .
  • the constellation attached to the region in the direction from the sun toward the earth 30 is observed at night.
  • the constellation attached to the region in the direction from the earth 30 toward the sun is observed in the daytime.
  • the space-time maps 1 and 3 when the constellation information is attached in this way, a constellation close to the path of the sun (the ecliptic) on the celestial sphere may be selectively attached.
  • the spatio-temporal maps 1 and 3 may be attached with names of lunar months such as Satsuki, Kisaragi, Yayoi, and Satsuki as time information.
  • lunar months such as Satsuki, Kisaragi, Yayoi, and Satsuki
  • six days such as first win, friendship, first move, Buddha, Daan, and red lip may be added as time information.
  • information such as the number of days in the first half or the second half of a year, the number of days in a quarter, etc. may be written as time information.
  • information on various passages such as twenty-four passages and five passages may be written as time information.
  • the spatio-temporal maps 1 and 3 by placing a mark (for example, a pin) at the current position of each celestial body, the position of each celestial body can be easily recognized.
  • the medium on which the spatiotemporal diagrams 1 and 3 are represented may be not only paper but also various media such as plastic and metal.
  • the spatiotemporal diagrams 1 and 3 may be represented on a wall surface of a building.
  • the spatiotemporal diagrams 1 and 3 may be drawn on the ground or may be made as a building.
  • the spatiotemporal diagrams 1 and 3 are displayed on a medium such as paper.
  • the spatiotemporal diagrams 1 and 3 are displayed on the display device. Is displayed.
  • FIG. 5 is a block diagram illustrating a configuration of the information processing apparatus 501 according to the third embodiment.
  • An information terminal 501 as an information processing apparatus according to the third embodiment is, for example, a computer that processes information.
  • the information terminal 501 includes a display device 502 such as a liquid crystal display that displays an image on a display screen 502A, a keyboard 503 serving as input means for inputting information based on a user operation, and A mouse 504 is connected.
  • a display device 502 such as a liquid crystal display that displays an image on a display screen 502A
  • a keyboard 503 serving as input means for inputting information based on a user operation
  • a mouse 504 is connected.
  • the information terminal 501 includes an arithmetic processing unit 510 and a storage unit 520.
  • the arithmetic processing unit 510 is a processing unit that performs various arithmetic processes.
  • the arithmetic processing unit 510 includes a display control unit (control unit) 511, an operation control unit 512, an image processing unit (control unit) 513, and a clock unit 514.
  • the arithmetic processing unit 510 includes a processor such as a CPU (Central Processing Unit), and the processing or control executed by the processor based on the program 530 stored in the storage unit 520 is the display control unit 511, operation control. This corresponds to the unit 512, the image processing unit 513, and the clock unit 514.
  • CPU Central Processing Unit
  • the display control unit 511 performs control to display an image on the display screen 502A of the display device 502.
  • the operation control unit 512 performs control to input information according to the operation of the keyboard 503 and the mouse 504 by the user.
  • the image processing unit 513 performs image processing in accordance with the operation of the keyboard 503 and the mouse 504 by the user or automatically.
  • the clock unit 514 acquires current time information by measuring the current time such as date, hour, minute, and second by itself, or acquires current time information from an external device (device that measures standard time). The clock unit 514 recognizes the current time based on the acquired current time information.
  • the storage unit 520 stores various types of information.
  • the information stored in the storage unit 520 includes a program 530 that causes the arithmetic processing unit 510 to execute processing. Further, the information stored in the storage unit 520 includes the image data of the spatiotemporal diagram 1 shown in FIGS. 1 to 3 and the image data of the spatiotemporal diagram 3 shown in FIG. 4.
  • the spatiotemporal maps 1 and 3 are composed of a plurality of image data such as celestial images, orbit images, orbital region images, perihelion and far-day images, and time information (text information) such as a calendar. .
  • the information stored in the storage unit 520 includes information on the position of each celestial body in the solar system from the past to the future (for example, information on the position of each celestial object for each day).
  • the information stored in the storage unit 520 includes image data such as various buttons displayed on the display screen 502A of the display device 502.
  • FIG. 6 is a diagram illustrating a display example of an image displayed on the display device 502.
  • the image of the spatiotemporal diagram 1 shown in FIGS. 1 to 3 is displayed on the display screen 502 ⁇ / b> A of the display device 502.
  • a time display area 601 for displaying the current time (year / month / day) is provided at the lower right of the display screen 502A of the display device 502.
  • a display screen 502A of the display device 502 displays a cursor 602 that moves according to the operation of the user's mouse 504.
  • a selection button for selecting a celestial body to be displayed (and / or a trajectory of the celestial body) is displayed on the upper right of the display screen 502A of the display device 502.
  • selection buttons a first selection button 611 (selected as “All” in FIG. 6) for selecting all celestial bodies and a second selection button 612 (selected as “Mercury” in FIG. 6) for selecting Mercury 10 are selected.
  • Button a third selection button 613 for selecting Venus 20 (a button labeled “Mercury” in FIG. 6), and a fourth selection button 614 for selecting Mars 50 (a button labeled “Mars” in FIG. 6).
  • a fifth selection button 615 for selecting Jupiter 60 a button labeled “Jupiter” in FIG.
  • a sixth selection button 616 for selecting Saturn 70 (a button labeled “Saturn” in FIG. 6)
  • a seventh selection button 617 for selecting Uranus 80 (a button labeled “Uranus” in FIG. 6)
  • an eighth selection button 618 for selecting Neptune 90 (a button labeled “Neptune” in FIG. 6)
  • Pluto 100 Select 9th With-option button 619 (button that was expressed in FIG. 6 as "Pluto"), is provided.
  • the selection button a button for selecting the earth 30 or a button for selecting the moon may be provided. By selecting one or more of these selection buttons, the selected celestial body (and / or orbit) is displayed.
  • FIG. 7 is a flowchart showing a flow of processing executed by the information processing apparatus of the third embodiment.
  • the processing illustrated in FIG. 7 is started.
  • the clock unit 514 first acquires the current time information by measuring the current time by itself, or acquires the current time information from the external device (step S1).
  • the clock unit 514 recognizes the current time based on the acquired current time information.
  • the display control unit 511 reads out the image of the spatiotemporal diagram 1 stored in the storage unit 520 and displays it on the display screen 502A of the display device 502 (step S2).
  • the image processing unit 513 generates an image of a celestial body arranged at a position corresponding to the current time recognized by the clock unit 514.
  • the display control unit 511 displays the image of the spatiotemporal diagram 1 generated by the image processing unit 513.
  • the display control unit 511 displays the current time recognized by the clock unit 514 in the time display area 601 and reads out the images of the selection buttons 611 to 619 stored in the storage unit 520 and displays them on the display screen 502A. indicate.
  • the display control unit 511 reads the image of the cursor 602 stored in the storage unit 520 and displays it on the display screen 502A.
  • the operation control unit 512 always checks whether information corresponding to a user operation is input from the keyboard 503 or the mouse 504.
  • the operation control unit 512 inputs, for example, information on clicking an image with the mouse 504 (position information indicating a clicked position) as enlarged display instruction information.
  • the operation control unit 512 receives information about an instruction for enlargement display, the operation control unit 512 outputs the information to the image processing unit 513.
  • the image processing unit 513 determines whether or not there has been an instruction for enlargement display by the user based on whether or not enlargement display instruction information has been output from the operation control unit 512 (step S3).
  • the image processing unit 513 determines that there is an instruction for enlargement display, the image processing unit 513 specifies an image (clicked image) selected by the user based on information on the instruction for enlargement display, and an image obtained by enlarging the specified image is displayed. Generate.
  • the display control unit 511 enlarges and displays the image generated by the image processing unit 513 on the display screen 502A (step S4).
  • the operation control unit 512 inputs, for example, information on the click of the selection button by the mouse 504 (position information indicating the clicked position) as selection display instruction information.
  • the operation control unit 512 receives information on a selection display instruction
  • the operation control unit 512 outputs the information to the image processing unit 513.
  • the image processing unit 513 determines whether there is a selection display instruction by the user based on whether the selection display instruction information is output from the operation control unit 512 (step S5). If the image processing unit 513 determines that there has been an instruction for selection display, the image processing unit 513 specifies a selection button (clicked selection button) selected by the user based on information on the instruction for selection display, and responds to the specified selection button. Generate only the image of the celestial object.
  • the display control unit 511 displays the image generated by the image processing unit 513 on the display screen 502A (step S6).
  • the operation control unit 512 inputs time information (for example, date) based on, for example, an operation of the keyboard 503 by the user. When the time information is input, the operation control unit 512 outputs the time information to the image processing unit 513.
  • the image processing unit 513 determines whether there is a time instruction from the user based on whether the time information is output from the operation control unit 512 (step S7). If the image processing unit 513 determines that there is an instruction for time, the image processing unit 513 specifies the time specified by the user based on the time information.
  • the image processing unit 513 specifies the position of the celestial object corresponding to the time specified by the user based on the information on the position of each celestial object in the solar system from the past to the future stored in the storage unit 520.
  • the image processing unit 513 generates an image of the celestial body arranged at the specified position.
  • the display control unit 511 displays the image generated by the image processing unit 513 on the display screen 502A (step S8). For example, the user inputs his / her date of birth into the information terminal 501 as time information.
  • the image processing unit 513 identifies the position of the celestial object corresponding to the date of birth designated by the user, and generates an image of the celestial object arranged at the identified position.
  • the display control unit 511 displays the image generated by the image processing unit 513 on the display screen 502A.
  • FIG. 6 the case where the image of the spatiotemporal diagram 1 of the first embodiment is displayed on the display device 502 has been described.
  • the image of the spatiotemporal diagram 3 of the second embodiment is displayed on the display device 502. This is realized with the same configuration.
  • the information processing apparatus 501 displays the images of the spatiotemporal diagrams 1 and 3 on the display device, so that the user can display the spatiotemporal maps 1 and 3 displayed on a medium other than paper or the like. Can be recognized.
  • a clock unit 514 for specifying the current time and images of all or some of the celestial bodies among the plurality of celestial bodies are displayed at positions corresponding to the current time specified by the clock unit 514.
  • display control units 511 and 513 According to such a configuration, the position of the celestial body corresponding to the current time can be displayed.
  • the control units 511 and 513 display an image of the celestial object selected by the user. According to such a configuration, the current position of the celestial object can be displayed only for the celestial object that the user wants to see. Therefore, displaying all the celestial images can prevent the display of the images from becoming complicated. This is particularly effective when the display screen 502A of the display device 502 is small.
  • the control units 511 and 513 display an enlarged image of the region in the spatiotemporal diagrams 1 and 3 selected by the user. According to such a configuration, it is possible to allow the user to recognize details such as celestial images and orbit images. Also in this case, a great effect is exhibited when the display screen 502A of the display device 502 is small.
  • control units 511 and 513 may highlight the images of the celestial bodies arranged at positions corresponding to the current time or the time specified by the user.
  • the highlight display is a display that illuminates the celestial image, blinks the celestial image, or changes the color of the celestial image.
  • the control units 511 and 513 may display lines connecting the images of the celestial bodies arranged at positions corresponding to the current time or the time specified by the user.
  • control units 511 and 513 may be configured to display lines connecting the images of the celestial bodies arranged at the positions corresponding to the current time or the time specified by the user and the center point O, respectively.
  • the third embodiment is a stand-alone system. However, the present invention is not limited to such a system.
  • an information processing system SYS connected through a communication network such as a client server system will be described.
  • components that are the same as or equivalent to those in the third embodiment are given the same reference numerals, and descriptions thereof are omitted or simplified.
  • FIG. 8 is a block diagram showing the configuration of the information processing system SYS of the fourth embodiment.
  • the information processing system SYS includes a client terminal 501 ⁇ / b> A and a server (information processing apparatus) 700.
  • the arithmetic processing unit 510A of the client terminal 501A includes a display control unit 511, an operation control unit 512, and a communication unit 515.
  • the display control unit 511 and the operation control unit 512 correspond to the display control unit 511 and the operation control unit 512 illustrated in FIG. 5.
  • the storage unit 520 illustrated in FIG. 8 corresponds to the storage unit 520 illustrated in FIG.
  • the storage unit 520 illustrated in FIG. 8 does not include the program 530 unlike the storage unit 520 illustrated in FIG.
  • the storage unit 520 shown in FIG. 8 does not store the image data of the spatiotemporal diagrams 1 and 3.
  • the communication unit 515 of the arithmetic processing unit 510A illustrated in FIG. 8 transmits and receives data to and from the server 700 via the communication network 800.
  • the server 700 includes an arithmetic processing unit 710 and a storage unit 720.
  • the arithmetic processing unit 710 includes a communication unit 711, an image processing unit (control unit) 712, and a clock unit 713.
  • the communication unit 711 transmits / receives data to / from the client terminal 501A via the communication network 800.
  • the image processing unit 712 executes image processing in accordance with the operation of the keyboard 503 and the mouse 504 by the user or automatically.
  • the image processing unit 712 is a processing unit corresponding to the image processing unit 513 illustrated in FIG.
  • the clock unit 713 acquires current time information by measuring the current time by itself, or acquires current time information from an external device (device that measures standard time). The clock unit 713 recognizes the current time based on the acquired current time information.
  • the clock unit 713 is a processing unit corresponding to the clock unit 514 shown in FIG.
  • the arithmetic processing unit 710 includes a processor such as a CPU (Central Processing Unit), and the processing or control executed by the processor based on the program 730 stored in the storage unit 720 is the communication unit 711 and the image processing unit. 712 and the clock unit 713.
  • a processor such as a CPU (Central Processing Unit)
  • the processing or control executed by the processor based on the program 730 stored in the storage unit 720 is the communication unit 711 and the image processing unit. 712 and the clock unit 713.
  • the storage unit 720 stores various information.
  • the information stored in the storage unit 720 includes a program 730 that causes the arithmetic processing unit 710 to execute processing, the image data of the spatiotemporal diagram 1 shown in FIGS. 1 to 3 and the image of the spatiotemporal diagram 3 shown in FIG. Contains data.
  • the information stored in the storage unit 720 includes information on the position of each celestial body in the solar system from the past to the future.
  • the information stored in the storage unit 720 also includes image data such as various buttons displayed on the display screen 502A of the display device 502.
  • the operation control unit 512 When the user operates the keyboard 503 or the mouse 504 to specify enlarged display instruction information, selection display instruction information, or time information (for example, date), the operation control unit 512 inputs the information. . Then, the communication unit 515 transmits the information to the server 700 via the communication network 800.
  • the communication unit 711 receives information from the client terminal 501A.
  • the clock unit 713 acquires current time information indicating the current time and recognizes the current time.
  • the image processing unit 712 generates an image according to an instruction from the user based on the information received by the communication unit 711.
  • the communication unit 711 transmits the image data generated by the image processing unit 712 to the client terminal 501A via the communication network 800.
  • the display control unit 511 outputs the image data transmitted from the server 700 to the display device 502 for display.
  • the information terminal 501 in the third embodiment and the client terminal 501A in the fourth embodiment are computers, but may be a mobile phone, a smartphone, a tablet terminal, or the like.
  • images on a plane that is, two-dimensional images
  • a three-dimensional image may be displayed.
  • the information terminal 501 and the client terminal 501A may display the spatiotemporal diagrams 1 and 3 in a three-dimensional manner using a hologram.
  • the seasonal information in a predetermined region or place (for example, Honshu, Shonai region, Yamagata Prefecture) is associated with the time information.
  • Information on seasonal ingredients such as vegetables, fruits and seafood (eg turnips, mizuna, strawberries, squid, scallops), and information on typical menus of dishes using seasonal ingredients (eg, squid and mizuna spaghetti) ) May be attached.
  • seasonal food information and menu information may be classified and attached.
  • information on seasonal foods may be classified for each type such as vegetables, fruits, and seafood.
  • a single region or place may be selected, but a plurality of regions or places may be selected.
  • regions or places may be selected, in the spatio-temporal map 1 etc., information on seasonal ingredients and information on typical menus of dishes using seasonal ingredients are shown separately for each area and place. May be.
  • time information corresponding to the position of the earth is described in the spatio-temporal map 1 or the like, information on the year and time corresponding to the time information may be attached together with the time information.
  • FIG. 9 is a table showing data representing the relationship between the sun and the planets in the solar system.
  • the orbital length radius a is the radius in the major axis direction of the elliptical orbit of each planet (Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune).
  • the straight line including the orbital radius a passes through the center of the elliptical orbit and two focal points.
  • the orbital radius a is represented in astronomical units.
  • the astronomical unit is a unit used in astronomy, and is a unit in which the distance between the earth and the sun is 1.
  • the eccentricity e is the eccentricity of the elliptical orbit of each planet.
  • the distance from the center of the elliptical orbit to the focal point is represented by ae (that is, the orbital length radius ⁇ the eccentricity).
  • the eccentricity of the Earth fluctuates between about 0 and about 0.05 due to the interaction of gravity between planets.
  • the orbital inclination (orbital inclination angle) i refers to the angle between the orbital plane and the reference plane of a celestial body (planet of the solar system) that orbits around a certain celestial body (the sun in FIG. 9).
  • the perihelion meridian ⁇ is an angle indicating the direction of the perihelion.
  • the ascending intersection is a point on the orbit where the celestial body passes through the reference plane from the lower side to the upper side among the intersection points of the orbit of the celestial body and the reference plane.
  • the ascending intersection yellow longitude ⁇ is an angle measured from the equinox to the ascending intersection along the orbital plane in the direction of the earth's revolution.
  • the direction of the orbit is determined by the three angles of perihelion longitude, ascending intersection longitude and orbit inclination angle i.
  • the minimum distance from the sun to each planet corresponds to the distance between the sun and each planet at the perihelion point (perihelion distance). Further, the maximum distance from the sun to each planet corresponds to the distance between the sun and each planet at the far day point (far day point distance). Further, an intermediate distance between the perihelion distance and the far day point distance corresponds to the orbital length radius a.
  • the unit of these distances is 10 8 km.
  • the unit of the radius of the working area (also referred to as the influence area) is 10 6 km.
  • the stellar average motion ⁇ is indicated by the average solar day
  • the stellar revolution period P is indicated by the average solar year.
  • the orbital average speed is the average speed when each planet moves in orbit. The unit of this speed is km / s.
  • the association period is a period when a certain celestial body is observed from the earth and comes to the same position with respect to the sun on the celestial sphere, that is, the angle of separation from the sun becomes the same value. This is the time interval when the celestial body comes to the position of the sun.
  • the table shown in FIG. 9 is based on the NAOJ scientific chronology table (2014 edition).
  • Uranus orbit 90 ... Neptune (celestial), 91 ... Neptune orbit (orbit), 100 ... Pluto (celestial body), 101 ... Pluto orbit (orbit), 501 ... Information terminal (information processing device), 511 ... Display control unit (control unit), 513 ... Image processing unit (control unit) 514: Clock unit, 520: Storage unit, 700: Server (information processing unit) Device), 712 ... image processing unit (control unit), 713 ... clock unit, SYS ... information processing system

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Educational Administration (AREA)
  • Educational Technology (AREA)
  • Theoretical Computer Science (AREA)
  • Astronomy & Astrophysics (AREA)
  • Instructional Devices (AREA)

Abstract

[Problem] To provide a time and space diagram with which it is possible to visually perceive the relationship between time and the position of a plurality of solar system celestial bodies, and to provide an information processing device and a program that display an image of the time and space diagram. [Solution] A time and space diagram 1, etc. that arranges: the orbits 11, etc. of a plurality of solar system celestial bodies 10, etc.; the positions of the plurality of celestial bodies 10, etc. on the orbits 11, etc.; time information that corresponds to the positions of the plurality of celestial bodies 10, etc. on the orbits 11, etc. and that includes at least calendar information; and a ring-shaped region 12, etc. that is bordered by a circle that has a radius that is the smallest distance from the orbit of a prescribed celestial body 10, etc. from among the plurality of celestial bodies 10, etc. to the sun and by a circle that has a radius that is the greatest distance from said orbit to the sun. The prescribed celestial body 10, etc. from among the plurality of celestial bodies 10, etc. is arranged in positions that demonstrate, on a prescribed reduced scale, the actual distances from the sun to the prescribed celestial body 10, etc. or distances that are close to the actual distances. The positions of each of the celestial bodies from the sun are expressed by information on an angle from a reference direction that heads in a prescribed direction from the center of the sun.

Description

時空間図、情報処理装置及びプログラムSpace-time diagram, information processing apparatus and program
 本発明は、時間と空間を表す時空間図、並びにその時空間図を表示する情報処理装置及びプログラムに関する。 The present invention relates to a space-time diagram representing time and space, and an information processing apparatus and program for displaying the space-time diagram.
 従来から、時間の流れを年・月・週・日などの単位で数えられるように体系付けた暦(カレンダーともいう。)として、様々な形式のものが知られている。例えば特許文献1には、日付とその日付に対応する二十四節気とを円弧状に配置して表示し、日付を表示する部分に地球の自転を示すマークと月の見え方を示すマークとを関連付けて表示したカレンダーが開示されている。 Conventionally, there are various types of calendars (also called calendars) organized so that the flow of time can be counted in units such as years, months, weeks, and days. For example, in Patent Document 1, a date and twenty-four milestones corresponding to the date are arranged and displayed in an arc shape, and a mark indicating the rotation of the earth and a mark indicating the appearance of the moon are displayed on the date display portion. A calendar that is displayed in association with is disclosed.
特開2008-207407号公報JP 2008-207407 A
 しかしながら、上記特許文献1に記載されたカレンダーにおいては、太陽を中心とした地球の位置と、その位置に対応する日付や二十四節気などの情報とがわかるだけで、太陽系における複数の天体の位置と時間との関係がわからない。太陽系の複数の天体の位置と時間との関係がわかれば、暦の成り立ちや天文学などの理解を深めることができる。 However, in the calendar described in the above-mentioned Patent Document 1, it is only necessary to know the position of the earth centered on the sun and the information such as the date and twenty-four seasonal air corresponding to the position. I don't know the relationship between location and time. Knowing the relationship between the position of multiple celestial bodies in the solar system and time, you can deepen your understanding of the history of the calendar and astronomy.
 本発明は、前述した事情に鑑みてなされたものであり、太陽系の複数の天体の位置と時間との関係を視覚的に認識することができる時空間図、並びにその時空間図の画像を表示する情報処理装置及びプログラムを提供することを目的とする。 The present invention has been made in view of the above-described circumstances, and displays a spatiotemporal diagram that can visually recognize the relationship between positions of a plurality of celestial bodies in the solar system and time, and an image of the spatiotemporal diagram. An object is to provide an information processing apparatus and a program.
 上記目的を達成するために、本発明に係る時空間図では、太陽系の複数の天体の軌道と、複数の天体の軌道上の位置と、複数の天体の軌道上の位置に対応しかつ少なくとも暦の情報を含む時間情報と、を配し、複数の天体のうちの所定の天体は、太陽から当該所定の天体までの実際の距離又はその距離に近い距離を所定の縮尺で示した位置に配され、当該所定の天体の軌道上における太陽に最も近い距離を半径とする円と太陽に最も遠い距離を半径とする円とで囲われたリング状の領域を配し、各天体の太陽からの位置は、太陽の中心から所定の方向に向かう基準方向からの角度の情報で表されることを特徴とする。 In order to achieve the above object, in the space-time map according to the present invention, the orbits of a plurality of celestial bodies in the solar system, the positions on the orbits of the plurality of celestial bodies, and the positions on the orbits of the plurality of celestial bodies and at least a calendar The predetermined celestial body of the plurality of celestial bodies is arranged at a position where the actual distance from the sun to the predetermined celestial body or a distance close to the distance is indicated at a predetermined scale. A ring-shaped region surrounded by a circle whose radius is the closest distance to the sun and a circle whose radius is the furthest distance to the sun in the orbit of the predetermined celestial body, The position is represented by information on an angle from a reference direction in a predetermined direction from the center of the sun.
 また、地球の周囲を回る月の軌道と、月の満月及び新月の位置とを配してもよい。また、複数の天体の軌道は、水星の軌道、金星の軌道、地球の軌道、月の軌道、火星の軌道、木星の軌道、土星の軌道、天王星の軌道、海王星の軌道、及び冥王星の軌道を含み、水星の軌道、金星の軌道、地球の軌道、月の軌道、及び火星の軌道のそれぞれは、地球の北極のはるか上方から太陽系を見た視点で太陽系における太陽から各天体までの実際の距離又はその距離に近い距離を1兆分の1の縮尺で示した位置に配され、木星の軌道、土星の軌道、天王星の軌道、海王星の軌道、及び冥王星の軌道のそれぞれは、当該縮尺と異なる縮尺で示され実際の軌道よりも太陽からの距離が近い軌道で表されてもよい。 Also, the moon's orbit around the earth and the position of the full moon and new moon may be arranged. The orbits of multiple celestial bodies include the orbits of Mercury, Venus, Earth, Moon, Mars, Jupiter, Saturn, Uranus, Neptune, and Pluto. Including, Mercury's orbit, Venus's orbit, Earth's orbit, Moon's orbit, and Mars's orbit are the actual distances from the sun to each celestial body in the solar system from the perspective of looking at the solar system from above the Earth's North Pole. Or, it is placed at a position close to that distance on a scale of 1 trillion, and each of Jupiter's orbit, Saturn's orbit, Uranus's orbit, Neptune's orbit, and Pluto's orbit are different from the corresponding scale. It may be represented by an orbit that is shown to scale and is closer to the sun than the actual orbit.
 また、本発明に係る情報処理装置は、時空間図の画像を表示装置に表示することを特徴とする。 The information processing apparatus according to the present invention displays a spatio-temporal image on a display device.
 また、現在の時間を特定する時計部と、時計部で特定された現在の時間に対応する位置に、複数の天体のうちの全部又は一部の天体の画像を表示する制御部と、を含む構成でもよい。また、制御部は、利用者により選択された天体の画像を表示してもよい。また、制御部は、利用者により選択された時空間図内の領域の画像を拡大表示してもよい。 A clock unit that identifies the current time; and a control unit that displays images of all or some of the celestial bodies at positions corresponding to the current time identified by the clock unit. It may be configured. The control unit may display an image of the celestial object selected by the user. In addition, the control unit may enlarge and display an image of an area in the space-time diagram selected by the user.
 また、本発明に係るプログラムは、情報処理装置に、時空間図の画像を表示装置に表示する処理を実行させることを特徴とする。 The program according to the present invention is characterized by causing an information processing apparatus to execute processing for displaying an image of a spatiotemporal diagram on a display device.
 また、情報処理装置に、現在の時間を特定する時間特定処理と、時間特定処理で特定された現在の時間に対応する位置に、複数の天体のうちの全部又は一部の天体の画像を表示する表示処理と、を実行させてもよい。また、表示処理は、利用者により選択された天体の画像を表示してもよい。また、表示処理は、利用者により選択された時空間図内の領域の画像を拡大表示してもよい。 In addition, on the information processing device, a time specifying process for specifying the current time and an image of all or some of the celestial objects at a position corresponding to the current time specified by the time specifying process are displayed. Display processing to be executed. The display process may display an image of a celestial object selected by the user. In the display process, an image of a region in the spatiotemporal diagram selected by the user may be enlarged and displayed.
 本発明によれば、時空間図は、太陽系における複数の天体の軌道と、複数の天体の軌道上の位置と、それらの位置に対応する時間情報とを配置しているので、太陽系の複数の天体の位置と時間との関係を知ることができ、暦の成り立ちや天文学などの理解を深めることができる。 According to the present invention, the spatio-temporal view arranges orbits of a plurality of celestial bodies in the solar system, positions on the orbits of the plurality of celestial bodies, and time information corresponding to these positions. You can know the relationship between the position of celestial bodies and time, and deepen your understanding of the history of the calendar and astronomy.
第1実施形態の時空間図を示す図である。It is a figure which shows the time-space figure of 1st Embodiment. 図1に示した時空間図の1/4の領域を示す拡大図である。It is an enlarged view which shows the area | region of 1/4 of the space-time figure shown in FIG. 図2に示した領域の一部の領域を示す拡大図である。FIG. 3 is an enlarged view showing a partial region of the region shown in FIG. 2. 第2実施形態の時空間図を示す図である。It is a figure which shows the time-space figure of 2nd Embodiment. 第3実施形態の情報処理装置の構成を示すブロック図である。It is a block diagram which shows the structure of the information processing apparatus of 3rd Embodiment. 表示装置に表示される画像の表示例を示す図である。It is a figure which shows the example of a display of the image displayed on a display apparatus. 第3実施形態の情報処理装置が実行する処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the process which the information processing apparatus of 3rd Embodiment performs. 第4実施形態の情報処理システムの構成を示すブロック図である。It is a block diagram which shows the structure of the information processing system of 4th Embodiment. 太陽系における太陽と惑星との関係を表すデータを示す表である。It is a table | surface which shows the data showing the relationship between the sun and a planet in a solar system.
 以下、本発明の実施形態について図面を参照しながら説明する。ただし、本発明はこれに限定されるものではない。また、図面においては、実施形態を説明するため、一部分を大きく又は強調して記載するなど適宜縮尺を変更して表現することがある。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the present invention is not limited to this. Further, in the drawings, in order to describe the embodiment, the scale may be appropriately changed and expressed, for example, with a part enlarged or emphasized.
 <第1実施形態>
 図1は、第1実施形態の時空間図1を示す図である。また、図2は、図1に示した時空間図1の1/4の領域を示す拡大図である。また、図3は、図2に示した領域の一部の領域を示す拡大図である。図1から図3において、紙面を図中の符号の向きに見た場合、紙面の右方向を+X軸方向とし、紙面の左方向が-X軸方向とし、紙面の上方向を+Y軸方向とし、紙面の下方向を-Y軸方向とする。また、中心点Oから-X軸方向に向かう方向を基準方向とし、基準方向から反時計回りに0度から360度の角度が付されている(図2及び図3参照)。すなわち、-X軸方向が0度(又は360度)であり、-Y軸方向が90度であり、+X軸方向が180度であり、+Y軸方向が270度である。
<First Embodiment>
FIG. 1 is a diagram showing a spatio-temporal diagram 1 of the first embodiment. FIG. 2 is an enlarged view showing a quarter of the space-time diagram 1 shown in FIG. FIG. 3 is an enlarged view showing a part of the region shown in FIG. 1 to 3, when the paper surface is viewed in the direction of the sign in the figure, the right direction of the paper surface is the + X axis direction, the left direction of the paper surface is the -X axis direction, and the upward direction of the paper surface is the + Y axis direction. The downward direction on the paper surface is taken as the -Y axis direction. Further, the direction from the center point O toward the −X axis direction is set as a reference direction, and an angle of 0 ° to 360 ° is attached counterclockwise from the reference direction (see FIGS. 2 and 3). That is, the −X axis direction is 0 degree (or 360 degrees), the −Y axis direction is 90 degrees, the + X axis direction is 180 degrees, and the + Y axis direction is 270 degrees.
 なお、図2に示す領域は、図1に示す時空間図1の左下1/4の領域(図1において矢印で示す領域)である。また、図3に示す領域は、図2に示す領域における0度から30度までの領域(図2において矢印で示す領域)である。 Note that the region shown in FIG. 2 is the lower left quarter region (region indicated by the arrow in FIG. 1) of the spatiotemporal diagram 1 shown in FIG. 3 is a region from 0 degrees to 30 degrees in the region illustrated in FIG. 2 (region indicated by an arrow in FIG. 2).
 図1から図3に示す時空間図1は、太陽系の天体(惑星、準惑星、衛星)の位置と時間との関係を平面上に図案化したものである。すなわち、時空間図1は、太陽系の複数の天体の軌道と、複数の天体の軌道上の位置と、複数の天体の軌道上の位置に対応する時間情報と、を平面上に配置した図である。図1に示すように、時空間図1には、太陽系の複数の天体として、太陽の周りを公転する惑星(水星10、金星20、地球30、火星50、木星60、土星70、天王星80、海王星90)と、太陽の周りを公転する準惑星(冥王星100)と、地球の周りを回る衛星(月)とが描かれている。なお、時空間図1の中心点Oは太陽の位置(太陽の中心位置)に相当する。また、時空間図1は、地球30の北極のはるか上方(地球30の地軸の上方)から太陽系を見た視点で各天体を描いている。 The spatio-temporal map 1 shown in FIGS. 1 to 3 is a diagram illustrating the relationship between the position of the solar system celestial bodies (planets, dwarf planets, and satellites) and time on a plane. That is, FIG. 1 is a diagram in which the orbits of a plurality of celestial bodies in the solar system, the positions on the orbits of the plurality of celestial bodies, and the time information corresponding to the positions on the orbits of the plurality of celestial bodies are arranged on a plane. is there. As shown in FIG. 1, the spatio-temporal diagram 1 shows planets revolving around the sun (Mercury 10, Venus 20, Earth 30, Mars 50, Jupiter 60, Saturn 70, Uranus 80, as a plurality of celestial bodies in the solar system. Neptune 90), a dwarf planet (Pluto 100) revolving around the sun, and a moon (moon) orbiting the earth are depicted. The center point O in the spatiotemporal diagram 1 corresponds to the position of the sun (the center position of the sun). In addition, the spatiotemporal diagram 1 depicts each celestial body from the viewpoint of viewing the solar system from far above the north pole of the earth 30 (above the earth axis of the earth 30).
 水星10は、太陽の最も近くを回る惑星であり、中心点Oを1つの焦点とする楕円軌道(以下、水星軌道11という。)上を動く。時空間図1には、水星軌道11上における太陽に最も近い距離を半径とする円と太陽に最も遠い距離を半径とする円とで囲われたリング状の領域を水星10の軌道領域12として描いている。時空間図1に軌道領域12を描くことによって、水星10の軌道のぶれ幅を容易に認識することができる。時空間図1には、水星10の近日点13(つまり、太陽からの距離が最も近くになる点)の位置及び遠日点14(つまり、太陽からの距離が最も遠くになる点)の位置も描かれている。白い三角の記号の位置が水星10の近日点13の位置であり、黒い三角の記号の位置が水星10の遠日点14の位置である。図1に示すように、近日点13は、水星軌道11上における約80度の位置となっており、遠日点14(つまり、太陽からの距離が最も遠くになる点)は、水星軌道11上における約260度の位置となっている。 Mercury 10 is a planet orbiting closest to the Sun, and moves on an elliptical orbit (hereinafter referred to as Mercury's orbit 11) having a central point O as one focal point. In the spatiotemporal diagram 1, a ring-shaped region surrounded by a circle having a radius closest to the sun and a circle having a radius farthest from the sun on the Mercury orbit 11 is defined as an orbital region 12 of Mercury 10. I'm drawing. By drawing the orbital region 12 in the spatiotemporal diagram 1, the fluctuation width of the orbit of Mercury 10 can be easily recognized. In the spatiotemporal diagram 1, the position of the perihelion 13 (that is, the point closest to the sun) of Mercury 10 and the position of the far day point 14 (that is, the point farthest from the sun) are also drawn. ing. The position of the white triangle symbol is the position of the perihelion 13 of Mercury 10, and the position of the black triangle symbol is the position of the perihelion 14 of Mercury 10. As shown in FIG. 1, the perihelion point 13 is at a position of about 80 degrees on the Mercury orbit 11, and the far day point 14 (that is, the point farthest from the sun) is about about the Mercury orbit 11. The position is 260 degrees.
 金星20は、水星10の次に太陽の近くを回る惑星である。金星20も、水星10と同様に、中心点Oを1つの焦点とする楕円軌道(以下、金星軌道21という。)上を動く。金星軌道21は円形に近い軌道となっている。金星20についても、金星軌道21における太陽に最も近い距離を半径とする円と太陽に最も遠い距離を半径とする円とで囲われたリング状の領域を金星20の軌道領域22として描いている。時空間図1に軌道領域22を描くことによって、金星20の軌道のぶれ幅を容易に認識することができる。図1から図3に示すように、金星20の軌道領域22は水星10の軌道領域12よりも幅が狭い。時空間図1には、金星20の近日点23の位置及び遠日点24の位置も描かれている。近日点23は、金星軌道21上における約130度の位置となっており、遠日点24は、金星軌道21上における約310度の位置となっている。 Venus 20 is a planet that goes around the sun next to Mercury 10. Similarly to Mercury 10, Venus 20 moves on an elliptical orbit (hereinafter referred to as Venus orbit 21) having a central point O as one focal point. The Venus orbit 21 is a circular orbit. As for Venus 20, a ring-shaped region surrounded by a circle having a radius closest to the sun and a circle having a radius farthest from the sun in the Venus orbit 21 is depicted as an orbital region 22 of Venus 20. . By drawing the orbital region 22 in the spatiotemporal diagram 1, it is possible to easily recognize the fluctuation width of the orbit of Venus 20. As shown in FIGS. 1 to 3, the orbital region 22 of Venus 20 is narrower than the orbital region 12 of Mercury 10. In the spatio-temporal diagram 1, the position of the perihelion 23 and the position of the far-day point 24 of Venus 20 are also drawn. The perihelion point 23 is at a position of about 130 degrees on the Venus orbit 21, and the far day point 24 is at a position of about 310 degrees on the Venus orbit 21.
 地球30は、金星20の次に太陽の近くを回る惑星である。地球30も、中心点Oを1つの焦点とする楕円軌道(以下、地球軌道31という。)上を動く。地球30についても、地球軌道31における太陽に最も近い距離を半径とする円と太陽に最も遠い距離を半径とする円とで囲われたリング状の領域を地球30の軌道領域32として描いている。時空間図1に軌道領域32を描くことによって、地球30の軌道のぶれ幅を容易に認識することができる。図1から図3に示すように、地球30の軌道領域32は、水星10の軌道領域12よりも幅が狭く、金星20の軌道領域22よりも幅が広い。時空間図1には、地球30の近日点33の位置及び遠日点34の位置も描かれている。近日点33は、地球軌道31上における約100度の位置となっており、遠日点34は、地球軌道31上における約280度の位置となっている。 The Earth 30 is a planet that goes around the Sun after Venus 20. The earth 30 also moves on an elliptical orbit (hereinafter referred to as the earth orbit 31) having the central point O as one focal point. As for the earth 30, a ring-shaped region surrounded by a circle having a radius that is the distance closest to the sun in the earth orbit 31 and a circle having a radius that is the distance farthest from the sun is depicted as an orbital area 32 of the earth 30. . By drawing the orbit region 32 in the spatio-temporal diagram 1, it is possible to easily recognize the fluctuation width of the orbit of the earth 30. As shown in FIGS. 1 to 3, the orbital region 32 of the earth 30 is narrower than the orbital region 12 of Mercury 10 and wider than the orbital region 22 of Venus 20. In the spatiotemporal diagram 1, the position of the perihelion 33 and the position of the perihelion 34 of the earth 30 are also drawn. The perihelion point 33 is at a position of about 100 degrees on the earth orbit 31, and the far day point 34 is at a position of about 280 degrees on the earth orbit 31.
 図1から図3に示すように、時空間図1には、地球30の周りを回る月の軌道(以下、月軌道40という。)も描かれている。地球30が太陽の周囲を反時計回りに回るとともに、月が地球30の周囲を反時計回りに回る。地球30の地軸のはるか上方の位置から地球30と月の動きを見た場合、月軌道40は地球軌道31の内側と外側とを行ったり来たりするような、太陽を中心とした波状の軌道となる。月軌道40において、月が太陽に最も遠ざかる位置が満月41であり、月が太陽に最も近づく位置が新月42である。時空間図1に月軌道40を描くことによって、月が地球を追い抜いたり地球に追い抜かれたりしながら太陽の周りを回っていることがわかる。 As shown in FIGS. 1 to 3, the spatiotemporal diagram 1 also depicts the orbit of the moon (hereinafter referred to as the lunar orbit 40) around the earth 30. As the earth 30 rotates around the sun counterclockwise, the moon rotates around the earth 30 counterclockwise. A wavy orbit centered on the sun, such that the moon orbit 40 moves back and forth between the inside and outside of the earth orbit 31 when the movement of the earth 30 and the moon is seen from a position far above the earth axis of the earth 30. It becomes. In the moon orbit 40, the position where the moon is farthest from the sun is the full moon 41, and the position where the moon is closest to the sun is the new moon 42. By drawing the lunar orbit 40 in the spatio-temporal diagram 1, it can be seen that the moon is moving around the sun while overtaking the earth and overtaking the earth.
 火星50は、地球30の次に太陽の近くを回る惑星である。火星50も、中心点Oを1つの焦点とする楕円軌道(以下、火星軌道51という。)上を動く。火星50についても、火星軌道51における太陽に最も近い距離を半径とする円と太陽に最も遠い距離を半径とする円とで囲われたリング状の領域を火星50の軌道領域52として描いている。時空間図1に軌道領域52を描くことによって、火星50の軌道のぶれ幅を容易に認識することができる。図1から図3に示すように、火星50の軌道領域52は、水星10の軌道領域12よりも幅が広い。時空間図1には、火星50の近日点53の位置及び遠日点54の位置も描かれている。近日点53は、火星軌道51上における約335度の位置となっており、遠日点54は、火星軌道51上における約155度の位置となっている。 Mars 50 is a planet that goes around the sun next to Earth 30. The Mars 50 also moves on an elliptical orbit (hereinafter referred to as the Mars orbit 51) having the central point O as one focal point. Also for Mars 50, a ring-shaped region surrounded by a circle having a radius closest to the sun in the Mars orbit 51 and a circle having a radius farthest from the sun is depicted as an orbital region 52 of Mars 50. . By drawing the orbital region 52 in the spatio-temporal diagram 1, it is possible to easily recognize the fluctuation width of the orbit of Mars 50. As shown in FIGS. 1 to 3, the orbital region 52 of Mars 50 is wider than the orbital region 12 of Mercury 10. In the spatiotemporal diagram 1, the position of the perihelion 53 and the position of the perihelion 54 of the Mars 50 are also drawn. The perihelion point 53 is at a position of about 335 degrees on the Mars orbit 51, and the far day point 54 is at a position of about 155 degrees on the Mars orbit 51.
 木星60は、火星50の次に太陽の近くを回る惑星である。木星60も、中心点Oを1つの焦点とする楕円軌道(以下、木星軌道61という。)上を動く。ただし、図1に示す例では、木星軌道61として、実際の木星60の軌道よりも太陽からの距離が近い円形の軌道を描いている。時空間図1には、木星60の近日点62の位置及び遠日点63の位置も描かれている。近日点62は、木星軌道61上における約15度の位置となっており、遠日点63は、木星軌道61上における約195度の位置となっている。 Jupiter 60 is a planet that goes around the sun next to Mars 50. Jupiter 60 also moves on an elliptical orbit (hereinafter referred to as Jupiter orbit 61) having the central point O as one focal point. However, in the example illustrated in FIG. 1, a circular orbit closer to the sun than the actual orbit of Jupiter 60 is drawn as the Jupiter orbit 61. In the spatiotemporal diagram 1, the position of the perihelion 62 and the position of the far day 63 of Jupiter 60 are also drawn. The perihelion point 62 is located at about 15 degrees on the Jupiter orbit 61, and the far day point 63 is located at about 195 degrees on the Jupiter orbit 61.
 土星70は、木星60の次に太陽の近くを回る惑星である。土星70も、中心点Oを1つの焦点とする楕円軌道(以下、土星軌道71という。)上を動く。ただし、図1に示す例では、土星軌道71として、実際の土星70の軌道よりも太陽からの距離が近い円形の軌道を描いている。時空間図1には、土星70の近日点72の位置及び遠日点73の位置も描かれている。近日点72は、土星軌道71上における約95度の位置となっており、遠日点73は、土星軌道71上における約275度の位置となっている。 Saturn 70 is a planet that goes around the sun next to Jupiter 60. Saturn 70 also moves on an elliptical orbit (hereinafter referred to as Saturn orbit 71) having the central point O as one focal point. However, in the example shown in FIG. 1, a circular orbit closer to the sun than the actual orbit of Saturn 70 is drawn as the Saturn orbit 71. In the spatiotemporal diagram 1, the position of the perihelion 72 and the position of the distant sun 73 of Saturn 70 are also drawn. The perihelion point 72 is at a position of about 95 degrees on the Saturn orbit 71, and the far day point 73 is at a position of about 275 degrees on the Saturn orbit 71.
 天王星80は、土星70の次に太陽の近くを回る惑星である。天王星80も、中心点Oを1つの焦点とする楕円軌道(以下、天王星軌道81という。)上を動く。ただし、図1に示す例では、天王星軌道81として、実際の天王星80の軌道よりも太陽からの距離が近い円形の軌道を描いている。時空間図1には、天王星80の近日点82の位置及び遠日点83の位置も描かれている。近日点82は、天王星軌道81上における約170度の位置となっており、遠日点83は、天王星軌道81上における約350度の位置となっている。 Uranus 80 is a planet that orbits the sun next to Saturn 70. Uranus 80 also moves on an elliptical orbit (hereinafter referred to as Uranus orbit 81) having the central point O as one focal point. However, in the example shown in FIG. 1, a circular orbit closer to the sun than the actual orbit of Uranus 80 is drawn as the Uranus orbit 81. In the spatiotemporal diagram 1, the position of the perihelion 82 and the position of the distant sun 83 of Uranus 80 are also drawn. The perihelion point 82 is at a position of about 170 degrees on the Uranus orbit 81, and the far day point 83 is at a position of about 350 degrees on the Uranus orbit 81.
 海王星90は、天王星80の次に太陽の近くを回る惑星である。海王星90も、中心点Oを1つの焦点とする楕円軌道(以下、海王星軌道91という。)上を動く。ただし、図1に示す例では、海王星軌道91として、実際の海王星90の軌道よりも太陽からの距離が近い円形の軌道を描いている。時空間図1には、海王星90の近日点92の位置及び遠日点93の位置も描かれている。近日点92は、海王星軌道91上における約45度の位置となっており、遠日点93は、海王星軌道91上における約225度の位置となっている。 Neptune 90 is a planet that goes around the sun after Uranus 80. Neptune 90 also moves on an elliptical orbit (hereinafter referred to as Neptune orbit 91) having the central point O as one focal point. However, in the example shown in FIG. 1, a circular orbit closer to the sun than the actual orbit of Neptune 90 is drawn as the Neptune orbit 91. In the spatio-temporal diagram 1, the position of the perihelion 92 and the position of the distant point 93 of Neptune 90 are also drawn. The perihelion point 92 is at a position of about 45 degrees on the Neptune orbit 91, and the far day point 93 is at a position of about 225 degrees on the Neptune orbit 91.
 冥王星100は、太陽の最も遠くを回る準惑星である。冥王星100も、中心点Oを1つの焦点とする楕円軌道(以下、冥王星軌道101という。)上を動く。ただし、図1に示す例では、冥王星軌道101として、実際の冥王星100の軌道よりも太陽からの距離が近い円形の軌道を描いている。時空間図1には、冥王星100の近日点102の位置及び遠日点103の位置も描かれている。近日点102は、冥王星軌道101上における約220度の位置となっており、遠日点103は、冥王星軌道101上における約40度の位置となっている。 Pluto 100 is a quasi-planet that travels the farthest of the sun. Pluto 100 also moves on an elliptical orbit (hereinafter referred to as Pluto's orbit 101) having the central point O as one focal point. However, in the example shown in FIG. 1, a circular orbit closer to the sun than the actual orbit of Pluto 100 is drawn as the Pluto orbit 101. In the spatiotemporal diagram 1, the position of the perihelion 102 and the position of the perihelion 103 of Pluto 100 are also drawn. The perihelion point 102 is at a position of about 220 degrees on the Pluto orbit 101, and the far day point 103 is at a position of about 40 degrees on the Pluto orbit 101.
 時空間図1において、水星軌道11、金星軌道21、地球軌道31、月軌道40、及び火星軌道51は、太陽からそれらの天体までの実際の距離又はその距離に近い距離を所定の縮尺で表している。例えば、上記の天体の軌道は、太陽系における太陽からそれらの天体までの実際の距離又はその距離に近い距離を1兆分の1の縮尺で表している。この場合、地球軌道31の直径は30cmとなる。一方、時空間図1において、木星軌道61、土星軌道71、天王星軌道81、海王星軌道91、及び冥王星軌道101は、上述したように、所定の縮尺(例えば1兆分の1)で表しておらず、実際の天体の軌道よりも太陽からの距離が近い軌道を表している。ただし、木星軌道61、土星軌道71、天王星軌道81、海王星軌道91、及び冥王星軌道101についても、水星軌道11、金星軌道21、地球軌道31、月軌道40、及び火星軌道51と同じ縮尺で表してもよい。 In the spatiotemporal diagram 1, the Mercury orbit 11, Venus orbit 21, Earth orbit 31, lunar orbit 40, and Mars orbit 51 represent the actual distance from the sun to their celestial bodies or a distance close to that distance at a predetermined scale. ing. For example, the orbits of the above celestial bodies represent the actual distance from the sun to those celestial bodies in the solar system or a distance close to that distance on a scale of 1 trillion. In this case, the diameter of the earth orbit 31 is 30 cm. On the other hand, in the spatiotemporal diagram 1, the Jupiter orbit 61, Saturn orbit 71, Uranus orbit 81, Neptune orbit 91, and Pluto orbit 101 are expressed in a predetermined scale (for example, 1 / trillion) as described above. It represents an orbit that is closer to the sun than the actual orbit of the celestial body. However, the Jupiter orbit 61, Saturn orbit 71, Uranus orbit 81, Neptune orbit 91, and Pluto orbit 101 are also expressed in the same scale as the Mercury orbit 11, Venus orbit 21, Earth orbit 31, moon orbit 40, and Mars orbit 51. May be.
 時空間図1においては、太陽系の各天体の軌道上の位置を円で示している。各天体の円の大きさを所定の縮尺(例えば1兆分の1)で表すと、各天体が小さすぎて見えなくなってしまう。従って、各天体の円については、所定の縮尺(例えば1兆分の1)を所定倍(例えば100倍)した縮尺で表している。なお、図1から図3において、各天体の位置を認識しやすくするために、異なる大きさの円で各天体を表している。すなわち、図1及び図2の各天体の円を図3の各天体の円よりも大きく表している。図3の各天体の円の大きさが時空間図1における実際の各天体の円の大きさ又は実際の各天体の円の大きさに近い大きさである。 In space-time map 1, the position of each celestial body in the solar system is shown in a circle. If the size of the circle of each celestial body is expressed by a predetermined scale (for example, 1 / trillion), each celestial body is too small to be seen. Accordingly, the circle of each celestial body is represented by a scale obtained by multiplying a predetermined scale (for example, 1 / trillion) by a predetermined time (for example, 100 times). In FIGS. 1 to 3, each celestial body is represented by a circle of a different size in order to make it easy to recognize the position of each celestial body. That is, the circle of each celestial body in FIGS. 1 and 2 is shown larger than the circle of each celestial body in FIG. The size of the circle of each celestial body in FIG. 3 is the size of the actual circle of each celestial body in FIG. 1 or the size of the circle of each actual celestial body.
 図2及び図3に示すように、時空間図1には、基準方向(-X軸方向)から反時計回りに15度ずつの角度(0度、15度、30度、45度、・・・、360度)が描かれている。また、図3に示すように、時空間図1は、地球30が地球軌道31上を1日に動く距離に相当する角度(約1度)を複数の線200で区切っている。地球30の軌道領域32内における、複数の線200で区切られた各領域(地球30の1日に相当する各領域)には、地球30の位置を示す円が表されている。これにより、地球30の1日毎の位置がわかる。また、地球30の軌道領域32と火星50の軌道領域52の間の領域内における、複数の線200で区切られた各領域には、地球30の位置に対応つけて、暦の情報としての日付201(年月日)及び曜日202が表記されている。 As shown in FIG. 2 and FIG. 3, the spatiotemporal diagram 1 shows an angle of 15 degrees counterclockwise from the reference direction (−X axis direction) (0 degrees, 15 degrees, 30 degrees, 45 degrees,...・ 360 degrees) is drawn. As shown in FIG. 3, in the spatiotemporal diagram 1, an angle (about 1 degree) corresponding to the distance that the earth 30 moves on the earth orbit 31 in one day is divided by a plurality of lines 200. A circle indicating the position of the earth 30 is represented in each area (each area corresponding to one day of the earth 30) divided by a plurality of lines 200 in the orbital area 32 of the earth 30. Thereby, the position of the earth 30 every day is known. In addition, in each region divided by a plurality of lines 200 in the region between the orbital region 32 of the earth 30 and the orbital region 52 of Mars 50, a date as calendar information is associated with the position of the earth 30. 201 (year / month / day) and day of week 202 are shown.
 日付201及び曜日202としては、ある1年間(365日又は366日)の日付及び曜日が割り振られる。図3に示す例では、西暦2014年3月21日から2015年3月20日(365日)が割り振られている。また、日付201は、0度の位置が秋分の日、90度の位置が冬至の日、180度の位置が春分の日、270度の位置が夏至の日となるように割り当てられている。図3に示す例では、秋分の日が9月23日、冬至の日が12月22日、春分の日が3月21日、夏至の日が6月21日となる。 As the date 201 and the day of the week 202, a date and day of a certain year (365 days or 366 days) are allocated. In the example shown in FIG. 3, March 21, 2014 to March 20, 2015 (365 days) are allocated. The date 201 is assigned such that the 0 degree position is the day of autumn, the 90 degree position is the day of the winter solstice, the 180 degree position is the day of the spring equinox, and the 270 degree position is the day of the summer solstice. In the example shown in FIG. 3, the autumn day is September 23, the winter solstice day is December 22, the spring equinox day is March 21, and the summer solstice day is June 21.
 図3に示すように、時空間図1は、水星10の一定の時間(例えば数日)毎の移動距離に相当する位置に水星10の位置を示す円が表されている。これにより、水星10の所定の時間毎の位置がわかる。また、図3には示していないが、時空間図1は、水星10の位置に対応つけて、所定の時間(例えば数日)毎の日付の情報が表記される。また、図3に示すように、時空間図1は、金星20の一定の時間(例えば数日)毎の移動距離に相当する位置に金星20の位置を示す円が表されている。これにより、金星20の所定の時間毎の位置がわかる。また、図3に示すように、時空間図1は、金星20の位置に対応つけて、所定の時間(例えば数日)毎の日付の情報203が表記されている。 As shown in FIG. 3, in the spatiotemporal diagram 1, a circle indicating the position of the Mercury 10 is represented at a position corresponding to the movement distance of the Mercury 10 every certain time (for example, several days). Thereby, the position of Mercury 10 every predetermined time is known. Although not shown in FIG. 3, in the spatio-temporal diagram 1, date information every predetermined time (for example, several days) is described in association with the position of Mercury 10. As shown in FIG. 3, in the spatiotemporal diagram 1, a circle indicating the position of Venus 20 is represented at a position corresponding to the movement distance of Venus 20 every certain time (for example, several days). Thereby, the position of Venus 20 for every predetermined time is known. As shown in FIG. 3, the space-time diagram 1 shows date information 203 for each predetermined time (for example, several days) in association with the position of Venus 20.
 図3に示すように、時空間図1は、火星50の一定の時間(例えば数日)毎の移動距離に相当する位置に火星50の位置を示す円が表されている。これにより、火星50の所定の時間毎の位置がわかる。また、図3には示していないが、時空間図1は、火星50の位置に対応つけて、所定の時間(例えば月)毎の日付の情報が表記される。また、図1及び図2に示すように、時空間図1は、木星60、土星70、天王星80、海王星90及び冥王星100の一定の時間(例えば年)毎の移動距離に相当する位置に、それらの天体の位置を示す円が表されている。これにより、それらの天体の所定の時間毎の位置がわかる。また、図1から図3には示していないが、時空間図1は、木星60、土星70、天王星80、海王星90及び冥王星100の位置に対応つけて、所定の時間(例えば年)毎の日付の情報が表記される。 As shown in FIG. 3, in the spatio-temporal diagram 1, a circle indicating the position of the Mars 50 is shown at a position corresponding to the moving distance of the Mars 50 every certain time (for example, several days). Thereby, the position of Mars 50 for every predetermined time is known. Although not shown in FIG. 3, in the spatiotemporal diagram 1, date information for each predetermined time (for example, month) is described in association with the position of the Mars 50. As shown in FIGS. 1 and 2, the spatiotemporal map 1 is located at a position corresponding to the movement distance of Jupiter 60, Saturn 70, Uranus 80, Neptune 90, and Pluto 100 for a certain time (for example, year). Circles indicating the positions of these objects are shown. As a result, the positions of those celestial bodies at every predetermined time can be known. Although not shown in FIGS. 1 to 3, the spatio-temporal map 1 corresponds to the positions of Jupiter 60, Saturn 70, Uranus 80, Neptune 90, and Pluto 100 for each predetermined time (for example, year). Date information is displayed.
 上記したように、時空間図1においては、太陽系における複数の天体の軌道と、複数の天体の軌道上の位置と、それらの位置に対応する時間情報とを配置しているので、太陽系の複数の天体の位置と時間との関係を知ることができる。これにより、暦の成り立ちや天文学などの理解を深めることができる。 As described above, in the spatio-temporal diagram 1, the orbits of a plurality of celestial bodies in the solar system, the positions on the orbits of the plurality of celestial bodies, and the time information corresponding to these positions are arranged. You can know the relationship between the position of the celestial body and time. This will deepen your understanding of the calendar and astronomy.
 すなわち、太陽の周りを回る地球30の公転周期によって「年」が決められ、地球30の周りを回る月の公転周期によって「月」が決められ、地球30の自転周期によって「日」が決められている。このように、暦は太陽の周りを回る地球30と月の動きによって決められているので、時空間図1を見ただけで直ちに暦の成り立ちを理解することができる。また、太陽の周りを回る地球30の速度(1日の移動距離)が一定でないこと、1年のうちの上半期と下半期が同じ日数でないこと(例えば、2014年3月21日から2015年3月20日の場合は、上半期が186日で下半期が179日であり、7日分のずれがあること)、1年を4分割した四半期も同じ日数でないこと(第1四半期は92日、第2四半期は94日、第3四半期は90日、第4四半期は89日)などについても理解することができる。また、季節の移り変わりも直感的に理解することができる。 That is, the “year” is determined by the revolution period of the earth 30 that moves around the sun, the “month” is determined by the revolution period of the moon that moves around the earth 30, and the “day” is determined by the rotation period of the earth 30. ing. Thus, since the calendar is determined by the earth 30 and the movement of the moon around the sun, it is possible to immediately understand the formation of the calendar just by looking at the spatiotemporal diagram 1. Also, the speed of the Earth 30 (the distance traveled per day) around the sun is not constant, and the first half and the second half of the year are not the same number of days (for example, from March 21, 2014 to March 20, 2015) In the case of, the first half is 186 days and the second half is 179 days, and there is a shift of 7 days.) The quarter of one year is not the same number of days (the first quarter is 92 days, the second quarter is 94th, 90th in the third quarter, 89th in the fourth quarter). You can also intuitively understand the changing seasons.
 また、太陽の周りを回る地球30の位置と時間との関係だけでなく、太陽系における地球30以外の天体の位置と時間との関係も知ることができる。従って、日付を知るための暦として利用するだけでなく、天文学などの学術的な理解も深めるために利用することもできる。例えば、所定の時間(例えば日、月、年の単位)で各天体がどのくらい移動するのか、ある時間(例えば年月日)における太陽系の複数の天体の位置がどの位置にあるかを知ることができる。また、太陽系における各天体の配置が同じ形になることは二度とないこと、各天体はどのような軌道を描いて動くのか、各天体が何年で太陽を1周するのか、などについても視覚的に認識することができる。 In addition, not only the relationship between the position of the earth 30 that moves around the sun and time, but also the relationship between the position of celestial bodies other than the earth 30 in the solar system and time can be known. Therefore, it can be used not only as a calendar for knowing dates, but also for deepening academic understanding of astronomy. For example, knowing how much each celestial body moves in a predetermined time (for example, day, month, year), and where the positions of a plurality of celestial bodies in the solar system at a certain time (for example, date) are known. it can. In addition, the arrangement of each celestial body in the solar system will never be the same shape, what trajectory each celestial body will move in, and how many years each celestial body makes one round of the sun, etc. Can be recognized.
 また、複数の天体のうちの地球30の位置に対応する時間情報は、少なくとも暦の情報を含むので、時空間図1を暦として利用することができる。ここで、暦の情報として西暦を地球30の位置に対応つければ、日本で一般に利用されている西暦で表記された暦(カレンダー)として利用することができる。しかし、時空間図1では、世界各国又は地域で用いられている様々な暦の情報を地球30の位置に対応つけることもできる。従って、1つのフォーマットで様々な国や地域の暦として利用することができる。また、春分や秋分、冬至、夏至は世界共通であることも理解することができる。 In addition, since the time information corresponding to the position of the earth 30 among the plurality of celestial bodies includes at least calendar information, the space-time diagram 1 can be used as a calendar. Here, if the Western calendar is associated with the position of the earth 30 as calendar information, it can be used as a calendar (calendar) written in the Western calendar generally used in Japan. However, in the spatio-temporal diagram 1, various calendar information used in each country or region of the world can be associated with the position of the earth 30. Therefore, it can be used as a calendar for various countries and regions in one format. It can also be understood that the equinox, autumn, winter solstice and summer solstice are common throughout the world.
 また、複数の天体のうちの所定の天体(例えば水星10、金星20、地球30、月、火星50)は、太陽から当該所定の天体までの実際の距離又はその距離に近い距離を所定の縮尺で示した位置に配置しているので、各天体間の距離についても視覚的に認識することができる。 Further, a predetermined celestial body (for example, Mercury 10, Venus 20, Earth 30, Moon, Mars 50) among a plurality of celestial bodies has an actual distance from the sun to the predetermined celestial body or a distance close to the predetermined distance to a predetermined scale. Therefore, the distance between the celestial bodies can be visually recognized.
 また、時空間図1は、各天体の軌道上における太陽に最も近い距離を半径とする円と太陽に最も遠い距離を半径とする円とで囲われたリング状の領域(軌道領域12,22,32,52)を表しているので、各天体の軌道のぶれ幅を容易に認識することができる。つまり、ぶれ幅だけ太陽と各天体の距離に差があることを認識することができる。また、各天体の近日点や遠日点も容易に認識することができる。また、近日点及びその点に近い位置における天体の速度は、遠日点及びその点に近い位置の天体の速度よりも速いことも認識することができる。 In addition, the spatiotemporal diagram 1 shows a ring-shaped region (orbital regions 12, 22) surrounded by a circle whose radius is the distance closest to the sun and a circle whose radius is the furthest distance to the sun on the orbit of each celestial body. , 32, 52), the fluctuation width of the orbit of each celestial body can be easily recognized. That is, it can be recognized that there is a difference in distance between the sun and each celestial body by the blur width. In addition, the perihelion and far-perihel of each celestial body can be easily recognized. It can also be recognized that the speed of the celestial body at the perihelion point and a position near the point is faster than the speed of the celestial body at the far day point and the position near the point.
 また、時空間図1は、地球30の周囲を回る月の位置を配置しているので、月がどのような軌道を描いて動くのか、満月41や新月42はどのようなタイミングで現れるのか、などについても理解することができる。また、例えば2014年12月22日が冬至と新月42が重なる朔旦冬至であることも容易に認識することができる。また、満月41や新月42の時期が年毎に少しずつずれていき、19年で元の位置にくること(朔旦冬至も19年に1度であること)についても容易に認識することができる。 In addition, the spatio-temporal map 1 shows the positions of the moons that move around the earth 30, so what orbits the moon moves in, and when the full moon 41 and the new moon 42 appear. , Etc. can also be understood. Further, for example, it can be easily recognized that December 22, 2014 is a Fudan solstice where the winter solstice and the new moon 42 overlap. Also, it is easy to recognize that the time of the full moon 41 and the new moon 42 will shift slightly from year to year and will return to its original position in 1919 (the Fudan winter solstice is once in 1919). Can do.
 また、時空間図1においては、各天体は太陽を反時計回りに回るので、地球30の北極のはるか上方の宇宙の位置からの視点で太陽系の各天体の位置を見ることができる。従って、時計を見るように太陽系の各天体の位置を見ることができる。また、各天体の位置と基準位置からの角度の情報を対応つけているので、各天体の位置が角度の情報(基準位置からの度数)によって容易に認識することができるとともに、角度の情報と時間の情報(暦の情報)を対応つけることで容易に世界各国又は地域の暦として利用することができる。 Also, in the spatiotemporal diagram 1, each celestial body rotates the sun counterclockwise, so that the position of each celestial body in the solar system can be seen from the viewpoint of the universe far above the north pole of the Earth 30. Therefore, the position of each celestial body in the solar system can be seen like a watch. In addition, since the position of each celestial body is associated with the angle information from the reference position, the position of each celestial body can be easily recognized by the angle information (frequency from the reference position), and the angle information and By associating time information (calendar information), it can be easily used as a calendar of each country or region in the world.
 時空間図1は、暦などの用途に限らず、天体の配置に基づく占いに利用されることも考えられる。また、各天体の位置と生命体(人を含む)のバイオリズムとの関係がわかれば、生命体の行動パターンの決定にも利用され得る。 Spatio-temporal map 1 is not limited to calendar applications, but can be used for fortune-telling based on the arrangement of celestial bodies. Moreover, if the relationship between the position of each celestial body and the biorhythm of life forms (including people) is known, it can be used to determine the behavior pattern of life forms.
 <第2実施形態>
 図4は、第2実施形態の時空間図3を示す図である。図4に示す時空間図3は、図1から図3に示す時空間図1と同様に、太陽系の天体の位置と時間との関係を平面上に図案化したものである。なお、図4においては、地球の位置を示す円が描かれていないが、実際には地球の1日毎の位置を示す円が描かれる。図4においては、地球と月(及びこれらの軌道)だけを描いているが、地球と月以外の太陽系の天体(及びこれらの軌道)を描いてもよい。
Second Embodiment
FIG. 4 is a diagram showing a spatiotemporal diagram 3 of the second embodiment. The spatio-temporal diagram 3 shown in FIG. 4 is a diagram illustrating the relationship between the position of the solar system celestial bodies and time on a plane, similar to the spatio-temporal diagram 1 shown in FIGS. In FIG. 4, a circle indicating the position of the earth is not drawn, but actually a circle indicating the position of the earth every day is drawn. In FIG. 4, only the earth and the moon (and their orbits) are drawn, but celestial bodies (and their orbits) of the solar system other than the earth and the moon may be drawn.
 図4において、中心点Oは太陽の位置(太陽の中心位置)に相当する。時空間図1には、中心点Oを中心とした同心円状の複数の領域300,312,330,340が設けられている。最も内側の内側領域300には、地球の位置に対応つけて春、夏、秋、冬の季節が表記されている。また、図1等に示した時空間図1と同様に、時空間図3には、地球が移動する際に描く地球軌道311が軌道領域312内に描かれている。また、時空間図3には、月が移動する際に描く波状の月軌道320も描かれている。また、月軌道320において、月が太陽に最も遠ざかる位置の満月321と、月が太陽に最も近づく位置の新月322も時空間図3に描かれている。 In FIG. 4, the center point O corresponds to the position of the sun (center position of the sun). In the spatiotemporal diagram 1, a plurality of concentric regions 300, 312, 330, and 340 centering on the center point O are provided. In the innermost inner area 300, the seasons of spring, summer, autumn, and winter are written in association with the position of the earth. Similarly to the spatiotemporal diagram 1 shown in FIG. 1 and the like, in the spatiotemporal diagram 3, an earth orbit 311 drawn when the earth moves is drawn in the orbital region 312. The spatio-temporal view 3 also shows a wavy lunar orbit 320 drawn when the moon moves. In the lunar orbit 320, a full moon 321 where the moon is farthest from the sun and a new moon 322 where the moon is closest to the sun are also depicted in the spatiotemporal diagram 3.
 図4に示すように、第1外側領域330には、月の位置に対応つけて、時間情報としての月の呼び名(新月、上弦、満月、下弦)を表記している。また、図4に示すように、第2外側領域340には、地球の位置に対応つけて、時間情報としての暦の情報(日付)を表記している。 As shown in FIG. 4, in the first outer region 330, the name of the month (new moon, first string, full moon, last string) is written as time information in association with the position of the month. Further, as shown in FIG. 4, in the second outer region 340, calendar information (date) as time information is written in association with the position of the earth.
 図4に示す時空間図3によれば、月の位置と時間との関係が容易に認識することができるとともに、月の呼び名についての理解を深めることができる。なお、三日月などの月の呼び名について時空間図3に表記してもよい。また、時空間図3には、月の呼び名とともに又は月の呼び名に代えて、月齢を表記してもよい。 According to the time-space diagram 3 shown in FIG. 4, the relationship between the position of the moon and the time can be easily recognized, and the understanding of the name of the moon can be deepened. In addition, you may write in the spatio-temporal figure 3 about the name of the moon, such as a crescent moon. Also, in the spatiotemporal diagram 3, the age of the moon may be written together with the name of the moon or instead of the name of the moon.
 なお、図1から図4に示した時空間図1,3は一例であって、これらの図に示した構成に限定されない。例えば、太陽系の天体として、水星10、金星20、地球30、月、火星50、木星60、土星70、天王星80、海王星90、冥王星100を表していたが、これらの天体以外の天体、例えば、エリス、ケレスなどの準惑星や、フォボス、ダイモスなどの惑星の衛星、彗星などの太陽系小天体なども表してもよい。また、人工衛星を表してもよい。また、時空間図1,3において、太陽系の外の星の位置や星座の位置(方角)などの情報を表してもよい。これら星座などの情報は、時空間図1,3において、太陽からの位置(方角)に対応する領域に配置してもよく、太陽系における複数の天体の軌道の外側のスペースに配されてもよい。この場合、時空間図1,3において、太陽から地球30に向かう方向の領域に付されている星座は夜に観測される。一方、地球30から太陽に向かう方向の領域に付されている星座は昼に観測される。また、時空間図1,3において、このように星座の情報が付される場合、天球上での太陽の通り道(黄道)に近い星座を選択的に付してもよい。 It should be noted that the spatiotemporal diagrams 1 and 3 shown in FIGS. 1 to 4 are examples, and are not limited to the configurations shown in these drawings. For example, Mercury 10, Venus 20, Earth 30, Moon, Mars 50, Jupiter 60, Saturn 70, Uranus 80, Neptune 90, and Pluto 100 are shown as celestial bodies in the solar system. It may also represent quasi-planets such as Ellis and Ceres, satellites of planets such as Phobos and Deimos, and small solar system bodies such as comets. An artificial satellite may also be represented. In the spatiotemporal maps 1 and 3, information such as the position of the star outside the solar system and the position (direction) of the constellation may be represented. Information such as these constellations may be arranged in a region corresponding to the position (direction) from the sun in the spatiotemporal maps 1 and 3, or may be arranged in a space outside the orbits of a plurality of celestial bodies in the solar system. . In this case, in the spatiotemporal maps 1 and 3, the constellation attached to the region in the direction from the sun toward the earth 30 is observed at night. On the other hand, the constellation attached to the region in the direction from the earth 30 toward the sun is observed in the daytime. Further, in the space- time maps 1 and 3, when the constellation information is attached in this way, a constellation close to the path of the sun (the ecliptic) on the celestial sphere may be selectively attached.
 また、時空間図1,3には、時間情報として、睦月、如月、弥生、卯月などの陰暦の月の名称を付してもよい。また、時空間図1,3には、時間情報として、先勝、友引、先負、仏滅、大安、赤口という六曜を付してもよい。また、時空間図1,3には、時間情報として、1年の上半期や下半期の日数、四半期の日数などの情報を表記してもよい。また、時空間図1,3には、時間情報として、二十四節気、五節句などの雑節の情報を表記してもよい。 In addition, the spatio- temporal maps 1 and 3 may be attached with names of lunar months such as Satsuki, Kisaragi, Yayoi, and Satsuki as time information. In the spatio-temporal diagrams 1 and 3, six days such as first win, friendship, first move, Buddha, Daan, and red lip may be added as time information. In the spatiotemporal diagrams 1 and 3, information such as the number of days in the first half or the second half of a year, the number of days in a quarter, etc. may be written as time information. Also, in the spatio-temporal diagrams 1 and 3, information on various passages such as twenty-four passages and five passages may be written as time information.
 また、時空間図1,3において、現在の各天体の位置に目印を配置する(例えばピンをさす)ことにより、容易に各天体の位置を認識することができる。また、時空間図1,3が表される媒体としては、紙だけでなく、プラスチック、金属などの各種媒体であってもよい。また、時空間図1,3は建物の壁面などに表されてもよい。また、時空間図1,3は地上に描かれてもよく、また、建築物として作られてもよい。 Also, in the spatio- temporal maps 1 and 3, by placing a mark (for example, a pin) at the current position of each celestial body, the position of each celestial body can be easily recognized. Further, the medium on which the spatiotemporal diagrams 1 and 3 are represented may be not only paper but also various media such as plastic and metal. In addition, the spatiotemporal diagrams 1 and 3 may be represented on a wall surface of a building. The spatiotemporal diagrams 1 and 3 may be drawn on the ground or may be made as a building.
 <第3実施形態>
 上記第1実施形態及び上記第2実施形態では、時空間図1,3を紙などの媒体に表示する構成であったが、第3実施形態では、時空間図1,3を表示装置に画像として表示する構成としたものである。
<Third Embodiment>
In the first embodiment and the second embodiment, the spatiotemporal diagrams 1 and 3 are displayed on a medium such as paper. In the third embodiment, the spatiotemporal diagrams 1 and 3 are displayed on the display device. Is displayed.
 図5は、第3実施形態の情報処理装置501の構成を示すブロック図である。第3実施形態の情報処理装置としての情報端末501は、例えば、情報を処理するコンピュータである。図5に示すように、情報端末501は、画像を表示画面502Aに表示する例えば液晶ディスプレイのような表示装置502と、ユーザの操作に基づいて情報を入力するための入力手段としてのキーボード503及びマウス504とが接続される。 FIG. 5 is a block diagram illustrating a configuration of the information processing apparatus 501 according to the third embodiment. An information terminal 501 as an information processing apparatus according to the third embodiment is, for example, a computer that processes information. As shown in FIG. 5, the information terminal 501 includes a display device 502 such as a liquid crystal display that displays an image on a display screen 502A, a keyboard 503 serving as input means for inputting information based on a user operation, and A mouse 504 is connected.
 情報端末501は、演算処理部510及び記憶部520を備えている。演算処理部510は、各種演算処理を行う処理部である。この演算処理部510は、表示制御部(制御部)511、操作制御部512、画像処理部(制御部)513、及び時計部514を有している。なお、演算処理部510は、CPU(Central Processing Unit)などのプロセッサを有し、そのプロセッサが記憶部520に記憶されているプログラム530に基づいて実行する処理又は制御が表示制御部511、操作制御部512、画像処理部513、及び時計部514に相当する。 The information terminal 501 includes an arithmetic processing unit 510 and a storage unit 520. The arithmetic processing unit 510 is a processing unit that performs various arithmetic processes. The arithmetic processing unit 510 includes a display control unit (control unit) 511, an operation control unit 512, an image processing unit (control unit) 513, and a clock unit 514. The arithmetic processing unit 510 includes a processor such as a CPU (Central Processing Unit), and the processing or control executed by the processor based on the program 530 stored in the storage unit 520 is the display control unit 511, operation control. This corresponds to the unit 512, the image processing unit 513, and the clock unit 514.
 表示制御部511は、表示装置502の表示画面502Aに画像を表示する制御を行う。操作制御部512は、ユーザによるキーボード503やマウス504の操作に応じて情報を入力する制御を行う。画像処理部513は、ユーザによるキーボード503やマウス504の操作に応じて、又は自動的に画像処理を行う。時計部514は、年月日や時分秒などの現在時刻を自身で計測することで現在時刻情報を取得し、又は外部装置(標準時間を計測する装置)から現在時刻情報を取得する。時計部514は取得した現在時刻情報に基づいて現在の時刻を認識する。 The display control unit 511 performs control to display an image on the display screen 502A of the display device 502. The operation control unit 512 performs control to input information according to the operation of the keyboard 503 and the mouse 504 by the user. The image processing unit 513 performs image processing in accordance with the operation of the keyboard 503 and the mouse 504 by the user or automatically. The clock unit 514 acquires current time information by measuring the current time such as date, hour, minute, and second by itself, or acquires current time information from an external device (device that measures standard time). The clock unit 514 recognizes the current time based on the acquired current time information.
 記憶部520は、各種情報を記憶する。記憶部520に記憶される情報には、演算処理部510に処理を実行させるプログラム530が含まれる。また、記憶部520に記憶される情報には、図1から図3に示した時空間図1の画像データや、図4に示した時空間図3の画像データが含まれる。時空間図1,3は、天体の画像、軌道の画像、軌道領域の画像、近日点及び遠日点の画像などの複数の画像データと、暦などの時間情報(テキスト情報)などとで構成されている。また、記憶部520に記憶される情報には、過去から未来にわたる太陽系の各天体の位置の情報(例えば1日毎の各天体の位置の情報)が含まれる。また、記憶部520に記憶される情報には、表示装置502の表示画面502Aに表示される各種ボタンなどの画像データも含まれる。 The storage unit 520 stores various types of information. The information stored in the storage unit 520 includes a program 530 that causes the arithmetic processing unit 510 to execute processing. Further, the information stored in the storage unit 520 includes the image data of the spatiotemporal diagram 1 shown in FIGS. 1 to 3 and the image data of the spatiotemporal diagram 3 shown in FIG. 4. The spatiotemporal maps 1 and 3 are composed of a plurality of image data such as celestial images, orbit images, orbital region images, perihelion and far-day images, and time information (text information) such as a calendar. . The information stored in the storage unit 520 includes information on the position of each celestial body in the solar system from the past to the future (for example, information on the position of each celestial object for each day). The information stored in the storage unit 520 includes image data such as various buttons displayed on the display screen 502A of the display device 502.
 図6は、表示装置502に表示される画像の表示例を示す図である。図6に示す例では、表示装置502の表示画面502Aには図1から図3に示した時空間図1の画像が表示されている。また、表示装置502の表示画面502Aの右下には、現在の時間(年月日)を表示する時間表示領域601が設けられている。また、表示装置502の表示画面502Aには、ユーザのマウス504の操作に応じて移動するカーソル602が表示されている。 FIG. 6 is a diagram illustrating a display example of an image displayed on the display device 502. In the example shown in FIG. 6, the image of the spatiotemporal diagram 1 shown in FIGS. 1 to 3 is displayed on the display screen 502 </ b> A of the display device 502. A time display area 601 for displaying the current time (year / month / day) is provided at the lower right of the display screen 502A of the display device 502. A display screen 502A of the display device 502 displays a cursor 602 that moves according to the operation of the user's mouse 504.
 また、表示装置502の表示画面502Aの右上には、表示する天体(及び/又は天体の軌道)を選択するための選択ボタンが表示されている。選択ボタンとしては、すべての天体を選択する第1選択ボタン611(図6中「全て」と表記したボタン)と、水星10を選択する第2選択ボタン612(図6中「水星」と表記したボタン)と、金星20を選択する第3選択ボタン613(図6中「水星」と表記したボタン)と、火星50を選択する第4選択ボタン614(図6中「火星」と表記したボタン)と、木星60を選択する第5選択ボタン615(図6中「木星」と表記したボタン)と、土星70を選択する第6選択ボタン616(図6中「土星」と表記したボタン)と、天王星80を選択する第7選択ボタン617(図6中「天王星」と表記したボタン)と、海王星90を選択する第8選択ボタン618(図6中「海王星」と表記したボタン)と、冥王星100を選択する第9選択ボタン619(図6中「冥王星」と表記したボタン)と、が設けられている。なお、選択ボタンとして、地球30を選択するボタンや、月を選択するボタンを設けてもよい。これらの選択ボタンのいずれか1つ又は複数が選択されることにより、選択された天体(及び/又は軌道)が表示される。 Also, a selection button for selecting a celestial body to be displayed (and / or a trajectory of the celestial body) is displayed on the upper right of the display screen 502A of the display device 502. As selection buttons, a first selection button 611 (selected as “All” in FIG. 6) for selecting all celestial bodies and a second selection button 612 (selected as “Mercury” in FIG. 6) for selecting Mercury 10 are selected. Button), a third selection button 613 for selecting Venus 20 (a button labeled “Mercury” in FIG. 6), and a fourth selection button 614 for selecting Mars 50 (a button labeled “Mars” in FIG. 6). A fifth selection button 615 for selecting Jupiter 60 (a button labeled “Jupiter” in FIG. 6), a sixth selection button 616 for selecting Saturn 70 (a button labeled “Saturn” in FIG. 6), A seventh selection button 617 for selecting Uranus 80 (a button labeled “Uranus” in FIG. 6), an eighth selection button 618 for selecting Neptune 90 (a button labeled “Neptune” in FIG. 6), and Pluto 100 Select 9th With-option button 619 (button that was expressed in FIG. 6 as "Pluto"), is provided. As the selection button, a button for selecting the earth 30 or a button for selecting the moon may be provided. By selecting one or more of these selection buttons, the selected celestial body (and / or orbit) is displayed.
 図7は、第3実施形態の情報処理装置が実行する処理の流れを示すフローチャートである。例えば情報端末501が起動されること又はプログラム530が起動されることにより、図7に示す処理が開始される。図7に示す処理において、まず、時計部514は、現在時刻を自身で計測することで現在時刻情報を取得し、又は外部装置から現在時刻情報を取得する(ステップS1)。時計部514は取得した現在時刻情報に基づいて現在の時刻を認識する。次に、表示制御部511は、記憶部520に記憶されている時空間図1の画像を読み出して表示装置502の表示画面502Aに表示する(ステップS2)。このとき、画像処理部513は、時計部514により認識された現在の時刻に対応した位置に配置された天体の画像を生成する。そして、表示制御部511は、画像処理部513で生成された時空間図1の画像を表示する。また、表示制御部511は、時計部514で認識された現在の時刻を時間表示領域601に表示するとともに、記憶部520に記憶されている選択ボタン611~619の画像を読み出して表示画面502Aに表示する。また、表示制御部511は、記憶部520に記憶されているカーソル602の画像を読み出して表示画面502Aに表示する。 FIG. 7 is a flowchart showing a flow of processing executed by the information processing apparatus of the third embodiment. For example, when the information terminal 501 is activated or the program 530 is activated, the processing illustrated in FIG. 7 is started. In the process shown in FIG. 7, the clock unit 514 first acquires the current time information by measuring the current time by itself, or acquires the current time information from the external device (step S1). The clock unit 514 recognizes the current time based on the acquired current time information. Next, the display control unit 511 reads out the image of the spatiotemporal diagram 1 stored in the storage unit 520 and displays it on the display screen 502A of the display device 502 (step S2). At this time, the image processing unit 513 generates an image of a celestial body arranged at a position corresponding to the current time recognized by the clock unit 514. The display control unit 511 displays the image of the spatiotemporal diagram 1 generated by the image processing unit 513. In addition, the display control unit 511 displays the current time recognized by the clock unit 514 in the time display area 601 and reads out the images of the selection buttons 611 to 619 stored in the storage unit 520 and displays them on the display screen 502A. indicate. Further, the display control unit 511 reads the image of the cursor 602 stored in the storage unit 520 and displays it on the display screen 502A.
 操作制御部512は、常に、キーボード503やマウス504からユーザの操作に応じた情報が入力されたか否か確認している。操作制御部512は、例えばマウス504による画像のクリックの情報(クリックされた位置を示す位置情報)を、拡大表示の指示の情報として入力する。操作制御部512は、拡大表示の指示の情報を入力した場合、その情報を画像処理部513に出力する。画像処理部513は、操作制御部512から拡大表示の指示の情報が出力されたか否かにより、ユーザによる拡大表示の指示があったか否かを判定する(ステップS3)。画像処理部513は、拡大表示の指示があったと判定した場合、拡大表示の指示の情報に基づいてユーザにより選択された画像(クリックされた画像)を特定し、特定した画像を拡大した画像を生成する。表示制御部511は、画像処理部513で生成された画像を表示画面502Aに拡大表示する(ステップS4)。 The operation control unit 512 always checks whether information corresponding to a user operation is input from the keyboard 503 or the mouse 504. The operation control unit 512 inputs, for example, information on clicking an image with the mouse 504 (position information indicating a clicked position) as enlarged display instruction information. When the operation control unit 512 receives information about an instruction for enlargement display, the operation control unit 512 outputs the information to the image processing unit 513. The image processing unit 513 determines whether or not there has been an instruction for enlargement display by the user based on whether or not enlargement display instruction information has been output from the operation control unit 512 (step S3). If the image processing unit 513 determines that there is an instruction for enlargement display, the image processing unit 513 specifies an image (clicked image) selected by the user based on information on the instruction for enlargement display, and an image obtained by enlarging the specified image is displayed. Generate. The display control unit 511 enlarges and displays the image generated by the image processing unit 513 on the display screen 502A (step S4).
 操作制御部512は、例えばマウス504による選択ボタンのクリックの情報(クリックされた位置を示す位置情報)を、選択表示の指示の情報として入力する。操作制御部512は、選択表示の指示の情報を入力した場合、その情報を画像処理部513に出力する。画像処理部513は、操作制御部512から選択表示の指示の情報が出力されたか否かにより、ユーザによる選択表示の指示があったか否かを判定する(ステップS5)。画像処理部513は、選択表示の指示があったと判定した場合、選択表示の指示の情報に基づいてユーザにより選択された選択ボタン(クリックされた選択ボタン)を特定し、特定した選択ボタンに応じた天体の画像だけの画像を生成する。表示制御部511は、画像処理部513で生成された画像を表示画面502Aに表示する(ステップS6)。 The operation control unit 512 inputs, for example, information on the click of the selection button by the mouse 504 (position information indicating the clicked position) as selection display instruction information. When the operation control unit 512 receives information on a selection display instruction, the operation control unit 512 outputs the information to the image processing unit 513. The image processing unit 513 determines whether there is a selection display instruction by the user based on whether the selection display instruction information is output from the operation control unit 512 (step S5). If the image processing unit 513 determines that there has been an instruction for selection display, the image processing unit 513 specifies a selection button (clicked selection button) selected by the user based on information on the instruction for selection display, and responds to the specified selection button. Generate only the image of the celestial object. The display control unit 511 displays the image generated by the image processing unit 513 on the display screen 502A (step S6).
 操作制御部512は、例えばユーザによるキーボード503の操作に基づき、時間情報(例えば年月日)を入力する。操作制御部512は、時間情報を入力した場合、その時間情報を画像処理部513に出力する。画像処理部513は、操作制御部512から時間情報が出力されたか否かにより、ユーザによる時間の指示があったか否かを判定する(ステップS7)。画像処理部513は、時間の指示があったと判定した場合、時間情報に基づいてユーザにより指定された時間を特定する。そして、画像処理部513は、記憶部520に記憶されている過去から未来にわたる太陽系の各天体の位置の情報に基づいて、ユーザによって指定された時間に対応した天体の位置を特定する。画像処理部513は、特定した位置に配置された天体の画像を生成する。表示制御部511は、画像処理部513で生成した画像を表示画面502Aに表示する(ステップS8)。例えば、ユーザは、自分の生年月日を時間情報として情報端末501に入力する。画像処理部513は、ユーザによって指定された生年月日に対応した天体の位置を特定し、特定した位置に配置された天体の画像を生成する。そして、表示制御部511は、画像処理部513で生成した画像を表示画面502Aに表示する。 The operation control unit 512 inputs time information (for example, date) based on, for example, an operation of the keyboard 503 by the user. When the time information is input, the operation control unit 512 outputs the time information to the image processing unit 513. The image processing unit 513 determines whether there is a time instruction from the user based on whether the time information is output from the operation control unit 512 (step S7). If the image processing unit 513 determines that there is an instruction for time, the image processing unit 513 specifies the time specified by the user based on the time information. Then, the image processing unit 513 specifies the position of the celestial object corresponding to the time specified by the user based on the information on the position of each celestial object in the solar system from the past to the future stored in the storage unit 520. The image processing unit 513 generates an image of the celestial body arranged at the specified position. The display control unit 511 displays the image generated by the image processing unit 513 on the display screen 502A (step S8). For example, the user inputs his / her date of birth into the information terminal 501 as time information. The image processing unit 513 identifies the position of the celestial object corresponding to the date of birth designated by the user, and generates an image of the celestial object arranged at the identified position. Then, the display control unit 511 displays the image generated by the image processing unit 513 on the display screen 502A.
 なお、図6においては、第1実施形態の時空間図1の画像が表示装置502に表示される場合について説明したが、第2実施形態の時空間図3の画像が表示装置502に表示される場合についても同様の構成で実現される。 In FIG. 6, the case where the image of the spatiotemporal diagram 1 of the first embodiment is displayed on the display device 502 has been described. However, the image of the spatiotemporal diagram 3 of the second embodiment is displayed on the display device 502. This is realized with the same configuration.
 以上のように、第3実施形態では、情報処理装置501は、時空間図1,3の画像を表示装置に表示するので、ユーザは紙などの媒体以外に表示される時空間図1,3を認識することができる。また、第3実施形態では、現在の時間を特定する時計部514と、時計部514で特定された現在の時間に対応する位置に、複数の天体のうちの全部又は一部の天体の画像を表示する制御部511,513と、を含む。このような構成によれば、現在の時間に対応する天体の位置を表示することができる。 As described above, in the third embodiment, the information processing apparatus 501 displays the images of the spatiotemporal diagrams 1 and 3 on the display device, so that the user can display the spatiotemporal maps 1 and 3 displayed on a medium other than paper or the like. Can be recognized. In the third embodiment, a clock unit 514 for specifying the current time, and images of all or some of the celestial bodies among the plurality of celestial bodies are displayed at positions corresponding to the current time specified by the clock unit 514. And display control units 511 and 513. According to such a configuration, the position of the celestial body corresponding to the current time can be displayed.
 また、第3実施形態では、制御部511,513は、利用者により選択された天体の画像を表示する。このような構成によれば、ユーザが見たい天体についてだけ、天体の現在の位置を表示することができる。従って、すべての天体の画像を表示することによって、画像の表示が煩雑となってしまうのを防止することができる。特に、表示装置502の表示画面502Aが小さい場合に効果的である。また、第3実施形態では、制御部511,513は、利用者により選択された時空間図1,3内の領域の画像を拡大表示する。このような構成によれば、天体の画像や軌道の画像などの細部についてもユーザに認識させることができる。この場合も、表示装置502の表示画面502Aが小さいときに大きな効果を発揮する。 In the third embodiment, the control units 511 and 513 display an image of the celestial object selected by the user. According to such a configuration, the current position of the celestial object can be displayed only for the celestial object that the user wants to see. Therefore, displaying all the celestial images can prevent the display of the images from becoming complicated. This is particularly effective when the display screen 502A of the display device 502 is small. In the third embodiment, the control units 511 and 513 display an enlarged image of the region in the spatiotemporal diagrams 1 and 3 selected by the user. According to such a configuration, it is possible to allow the user to recognize details such as celestial images and orbit images. Also in this case, a great effect is exhibited when the display screen 502A of the display device 502 is small.
 なお、上記第3実施形態において、制御部511,513が、現在の時間又はユーザにより指定された時間に対応する位置に配置された各天体の画像を強調表示させる構成でもよい。強調表示とは、天体の画像を光らせたり、天体の画像を点滅させたり、天体の画像の色を変えたりするような表示である。また、制御部511,513が、現在の時間又はユーザにより指定された時間に対応する位置に配置された各天体の画像をそれぞれ結ぶ線を表示させる構成でもよい。また、制御部511,513が、現在の時間又はユーザにより指定された時間に対応する位置に配置された各天体の画像と中心点Oとをそれぞれ結ぶ線を表示させる構成でもよい。 In the third embodiment, the control units 511 and 513 may highlight the images of the celestial bodies arranged at positions corresponding to the current time or the time specified by the user. The highlight display is a display that illuminates the celestial image, blinks the celestial image, or changes the color of the celestial image. Alternatively, the control units 511 and 513 may display lines connecting the images of the celestial bodies arranged at positions corresponding to the current time or the time specified by the user. Further, the control units 511 and 513 may be configured to display lines connecting the images of the celestial bodies arranged at the positions corresponding to the current time or the time specified by the user and the center point O, respectively.
 <第4実施形態>
 上記第3実施形態では、スタンドアローンの形態のシステムである。しかし、そのような形態のシステムには限定されない。第4実施形態では、例えばクライアントサーバシステムなどの通信ネットワークを通じて接続された情報処理システムSYSについて説明する。以下の説明において、上記第3実施形態と同一又は同等の構成部分については同一符号を付けて説明を省略又は簡略化する。
<Fourth embodiment>
The third embodiment is a stand-alone system. However, the present invention is not limited to such a system. In the fourth embodiment, an information processing system SYS connected through a communication network such as a client server system will be described. In the following description, components that are the same as or equivalent to those in the third embodiment are given the same reference numerals, and descriptions thereof are omitted or simplified.
 図8は、第4実施形態の情報処理システムSYSの構成を示すブロック図である。図8に示すように、情報処理システムSYSは、クライアント端末501Aとサーバ(情報処理装置)700とを備えている。クライアント端末501Aの演算処理部510Aにおいて、表示制御部511と、操作制御部512と、通信部515とを有している。これらの処理部のうち、表示制御部511及び操作制御部512は、図5に示した表示制御部511及び操作制御部512に相当する。また、図8に示す記憶部520は、図5に示す記憶部520に相当する。ただし、図8に示す記憶部520は、図5に示した記憶部520と異なり、プログラム530を備えていない。また、図8に示す記憶部520には、時空間図1,3の画像データなども記憶されていない。 FIG. 8 is a block diagram showing the configuration of the information processing system SYS of the fourth embodiment. As illustrated in FIG. 8, the information processing system SYS includes a client terminal 501 </ b> A and a server (information processing apparatus) 700. The arithmetic processing unit 510A of the client terminal 501A includes a display control unit 511, an operation control unit 512, and a communication unit 515. Among these processing units, the display control unit 511 and the operation control unit 512 correspond to the display control unit 511 and the operation control unit 512 illustrated in FIG. 5. Further, the storage unit 520 illustrated in FIG. 8 corresponds to the storage unit 520 illustrated in FIG. However, the storage unit 520 illustrated in FIG. 8 does not include the program 530 unlike the storage unit 520 illustrated in FIG. Further, the storage unit 520 shown in FIG. 8 does not store the image data of the spatiotemporal diagrams 1 and 3.
 図8に示す演算処理部510Aの通信部515は、通信ネットワーク800を介してサーバ700とデータを送受信する。サーバ700は、演算処理部710と記憶部720とを備えている。演算処理部710は、通信部711と、画像処理部(制御部)712と、時計部713とを有している。通信部711は、通信ネットワーク800を介してクライアント端末501Aとデータを送受信する。画像処理部712は、ユーザによるキーボード503やマウス504の操作に応じて、又は自動的に画像処理を実行する。この画像処理部712は、図5に示した画像処理部513に対応する処理部である。時計部713は、現在時刻を自身で計測することで現在時刻情報を取得し、又は外部装置(標準時間を計測する装置)から現在時刻情報を取得する。時計部713は取得した現在時刻情報に基づいて現在の時刻を認識する。この時計部713は、図5に示した時計部514に対応する処理部である。 The communication unit 515 of the arithmetic processing unit 510A illustrated in FIG. 8 transmits and receives data to and from the server 700 via the communication network 800. The server 700 includes an arithmetic processing unit 710 and a storage unit 720. The arithmetic processing unit 710 includes a communication unit 711, an image processing unit (control unit) 712, and a clock unit 713. The communication unit 711 transmits / receives data to / from the client terminal 501A via the communication network 800. The image processing unit 712 executes image processing in accordance with the operation of the keyboard 503 and the mouse 504 by the user or automatically. The image processing unit 712 is a processing unit corresponding to the image processing unit 513 illustrated in FIG. The clock unit 713 acquires current time information by measuring the current time by itself, or acquires current time information from an external device (device that measures standard time). The clock unit 713 recognizes the current time based on the acquired current time information. The clock unit 713 is a processing unit corresponding to the clock unit 514 shown in FIG.
 なお、演算処理部710は、CPU(Central Processing Unit)などのプロセッサを有し、そのプロセッサが記憶部720に記憶されているプログラム730に基づいて実行する処理又は制御が通信部711、画像処理部712、及び時計部713に相当する。 The arithmetic processing unit 710 includes a processor such as a CPU (Central Processing Unit), and the processing or control executed by the processor based on the program 730 stored in the storage unit 720 is the communication unit 711 and the image processing unit. 712 and the clock unit 713.
 記憶部720は、各種情報を記憶する。記憶部720に記憶される情報には、演算処理部710に処理を実行させるプログラム730、図1から図3に示した時空間図1の画像データや図4に示した時空間図3の画像データが含まれる。記憶部720に記憶される情報には、過去から未来にわたる太陽系の各天体の位置の情報が含まれる。また、記憶部720に記憶される情報には、表示装置502の表示画面502Aに表示される各種ボタンなどの画像データも含まれる。 The storage unit 720 stores various information. The information stored in the storage unit 720 includes a program 730 that causes the arithmetic processing unit 710 to execute processing, the image data of the spatiotemporal diagram 1 shown in FIGS. 1 to 3 and the image of the spatiotemporal diagram 3 shown in FIG. Contains data. The information stored in the storage unit 720 includes information on the position of each celestial body in the solar system from the past to the future. The information stored in the storage unit 720 also includes image data such as various buttons displayed on the display screen 502A of the display device 502.
 ユーザがキーボード503やマウス504を操作して、拡大表示の指示の情報、選択表示の指示の情報、又は時間情報(例えば年月日)を指定すると、操作制御部512がそれらの情報を入力する。そして、通信部515がそれらの情報を通信ネットワーク800を介してサーバ700に送信する。サーバ700において、通信部711は、クライアント端末501Aからの情報を受信する。時計部713は、現在の時刻を示す現在時刻情報を取得して現在の時刻を認識する。画像処理部712は、通信部711で受信された情報に基づいてユーザによる指示に応じた画像を生成する。通信部711は、画像処理部712で生成された画像データを通信ネットワーク800を介してクライアント端末501Aに送信する。クライアント端末501Aにおいて、表示制御部511は、サーバ700から送信された画像データを表示装置502に出力して表示させる。 When the user operates the keyboard 503 or the mouse 504 to specify enlarged display instruction information, selection display instruction information, or time information (for example, date), the operation control unit 512 inputs the information. . Then, the communication unit 515 transmits the information to the server 700 via the communication network 800. In the server 700, the communication unit 711 receives information from the client terminal 501A. The clock unit 713 acquires current time information indicating the current time and recognizes the current time. The image processing unit 712 generates an image according to an instruction from the user based on the information received by the communication unit 711. The communication unit 711 transmits the image data generated by the image processing unit 712 to the client terminal 501A via the communication network 800. In the client terminal 501A, the display control unit 511 outputs the image data transmitted from the server 700 to the display device 502 for display.
 このような構成によれば、クライアント端末501Aが大容量のデータを記憶しておく必要がなくなり、データ管理を一元化できるなど、コストを低減させることができる。 According to such a configuration, it is not necessary for the client terminal 501A to store a large amount of data, so that data management can be unified and costs can be reduced.
 以上、本発明の実施形態を説明したが、本発明の技術的範囲は、上記の実施形態に記載の範囲には限定されない。本発明の趣旨を逸脱しない範囲で、上記の実施形態に、多様な変更又は改良を加えることが可能である。また、上記の実施形態で説明した要件の1つ以上は、省略されることがある。そのような変更又は改良、省略した形態も本発明の技術的範囲に含まれる。また、上記した実施形態や変形例の構成を適宜組み合わせて適用することも可能である。 As mentioned above, although embodiment of this invention was described, the technical scope of this invention is not limited to the range as described in said embodiment. Various modifications or improvements can be added to the above embodiment without departing from the spirit of the present invention. In addition, one or more of the requirements described in the above embodiments may be omitted. Such modifications, improvements, and omitted forms are also included in the technical scope of the present invention. In addition, the configurations of the above-described embodiments and modifications can be applied in appropriate combinations.
 例えば、時空間図1等において、時間情報として暦の情報を表記する場合に、どの角度から1年の暦の情報を開始させるか、どの日付から1年の暦の情報を開始させるか、などについても適宜変更可能である。また、時空間図1等において、角度の情報をどの方向を基準として表記していくかについても適宜変更可能である。また、上記の第3実施形態における情報端末501や上記の第4実施形態におけるクライアント端末501Aはコンピュータとしていたが、携帯電話やスマートフォン、タブレット端末などであってもよい。また、上記の第3実施形態及び第4実施形態では、表示装置502の表示画面502Aに表示する時空間図1,3として平面上の画像(つまり2次元の画像)を表示させていたが、3次元の画像を表示させてもよい。また、情報端末501やクライアント端末501Aは、ホログラムで立体的に時空間図1,3を表示させてもよい。 For example, when notifying calendar information as time information in the spatio-temporal chart 1 or the like, from which angle to start calendar information for one year, from which date to start calendar information for one year, etc. The above can also be changed as appropriate. In addition, in the spatio-temporal diagram 1 or the like, it is possible to appropriately change which direction is used as the reference for the angle information. The information terminal 501 in the third embodiment and the client terminal 501A in the fourth embodiment are computers, but may be a mobile phone, a smartphone, a tablet terminal, or the like. In the third and fourth embodiments described above, images on a plane (that is, two-dimensional images) are displayed as the spatiotemporal diagrams 1 and 3 displayed on the display screen 502A of the display device 502. A three-dimensional image may be displayed. In addition, the information terminal 501 and the client terminal 501A may display the spatiotemporal diagrams 1 and 3 in a three-dimensional manner using a hologram.
 また、時空間図1等において、地球の位置に対応する時間情報を表記する場合に、当該時間情報に対応させて、所定の地域や場所(例えば、本州、山形県庄内地方)における、旬の野菜や、果実、魚介などの旬の食材の情報(例えば、カブ、水菜、イチゴ、ヤリイカ、ホタテ)や、旬の食材を用いた料理の代表的なメニューの情報(例えば、ヤリイカと水菜のスパゲッティー)を付してもよい。この場合、旬の食材の情報とメニューの情報とを区分して付してもよい。また、旬の食材の情報は、例えば野菜や、果実、魚介といった種類ごとに区分して付してもよい。また、所定の地域や場所としては、単一の地域あるいは場所を選択してもよいが、複数の地域や場所を選択してもよい。複数の地域や場所を選択した場合、時空間図1等において、旬の食材の情報や旬の食材を用いた料理の代表的なメニューの情報については、地域や場所ごとに区分して表記してもよい。 In addition, when the time information corresponding to the position of the earth is described in the spatio-temporal map 1 etc., the seasonal information in a predetermined region or place (for example, Honshu, Shonai region, Yamagata Prefecture) is associated with the time information. Information on seasonal ingredients such as vegetables, fruits and seafood (eg turnips, mizuna, strawberries, squid, scallops), and information on typical menus of dishes using seasonal ingredients (eg, squid and mizuna spaghetti) ) May be attached. In this case, seasonal food information and menu information may be classified and attached. In addition, information on seasonal foods may be classified for each type such as vegetables, fruits, and seafood. In addition, as the predetermined region or place, a single region or place may be selected, but a plurality of regions or places may be selected. When multiple regions or places are selected, in the spatio-temporal map 1 etc., information on seasonal ingredients and information on typical menus of dishes using seasonal ingredients are shown separately for each area and place. May be.
 また、時空間図1等において、地球の位置に対応する時間情報を表記する場合に、当該時間情報とともに、当該時間情報に対応する歳時記の情報を付してもよい。 In addition, when time information corresponding to the position of the earth is described in the spatio-temporal map 1 or the like, information on the year and time corresponding to the time information may be attached together with the time information.
 <太陽系に関する詳細データ>
 図9は、太陽系における太陽と惑星との関係を表すデータを示す表である。図9において、軌道長半径aは、各惑星(水星、金星、地球、火星、木星、土星、天王星、海王星)の楕円軌道の長軸方向の半径である。軌道長半径aを含む直線は、楕円軌道の中心と2つの焦点を通る。図9では軌道長半径aを天文単位で表している。天文単位は、天文学で用いられる単位で、地球と太陽との間の距離を1とした単位である。離心率eは、各惑星の楕円軌道の離心率である。楕円軌道の中心から焦点までの距離(離心距離)は、ae(つまり軌道長半径×離心率)で表される。なお、惑星間の重力の相互作用により、地球の離心率は略0から約0.05の間で振れている。
<Detailed data on the solar system>
FIG. 9 is a table showing data representing the relationship between the sun and the planets in the solar system. In FIG. 9, the orbital length radius a is the radius in the major axis direction of the elliptical orbit of each planet (Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune). The straight line including the orbital radius a passes through the center of the elliptical orbit and two focal points. In FIG. 9, the orbital radius a is represented in astronomical units. The astronomical unit is a unit used in astronomy, and is a unit in which the distance between the earth and the sun is 1. The eccentricity e is the eccentricity of the elliptical orbit of each planet. The distance from the center of the elliptical orbit to the focal point (eccentric distance) is represented by ae (that is, the orbital length radius × the eccentricity). The eccentricity of the Earth fluctuates between about 0 and about 0.05 due to the interaction of gravity between planets.
 軌道傾斜(軌道傾斜角)iとは、ある天体(図9では太陽)の周りを軌道運動する天体(太陽系の惑星)について、その軌道面と基準面とのなす角度のことをいう。近日点黄経ωは、近日点の方向を示す角度である。昇交点は、天体の軌道と基準面の交点のうち、天体が基準面を下側から上側に通過する軌道上の点である。昇交点黄経Ωは、春分から昇交点まで軌道面に沿って地球の公転の方向に測った角度である。近日点黄経、昇交点黄経、軌道傾斜角iの3つの角度によって軌道の向きが決まる。 The orbital inclination (orbital inclination angle) i refers to the angle between the orbital plane and the reference plane of a celestial body (planet of the solar system) that orbits around a certain celestial body (the sun in FIG. 9). The perihelion meridian ω is an angle indicating the direction of the perihelion. The ascending intersection is a point on the orbit where the celestial body passes through the reference plane from the lower side to the upper side among the intersection points of the orbit of the celestial body and the reference plane. The ascending intersection yellow longitude Ω is an angle measured from the equinox to the ascending intersection along the orbital plane in the direction of the earth's revolution. The direction of the orbit is determined by the three angles of perihelion longitude, ascending intersection longitude and orbit inclination angle i.
 太陽から各惑星までの距離の最小が近日点における太陽と各惑星との距離(近日点距離)に相当する。また、太陽から各惑星までの距離の最大が遠日点における太陽と各惑星との距離(遠日点距離)に相当する。また、近日点距離と遠日点距離の中間の距離が軌道長半径aに相当する。なお、これらの距離の単位は10の8乗kmである。作用圏(影響圏ともいう。)半径の距離の単位は10の6乗kmである。対恒星平均運動μは平均太陽日で示し、対恒星公転周期Pは平均太陽年で示している。軌道平均速度は、各惑星が軌道上を移動するときの平均速度である。この速度の単位はkm/sである。会合周期は、ある天体を地球から観測した時に、天球上で太陽に対して同じ位置に来る、すなわち太陽との離角が同じ値になる周期である。その天体が太陽との合の位置に来る時間間隔であり、地球から見たその天体の見かけの公転周期と言える。なお、図9に示した表は、国立天文台の理科年表表(2014年度版)に基づくものである。 The minimum distance from the sun to each planet corresponds to the distance between the sun and each planet at the perihelion point (perihelion distance). Further, the maximum distance from the sun to each planet corresponds to the distance between the sun and each planet at the far day point (far day point distance). Further, an intermediate distance between the perihelion distance and the far day point distance corresponds to the orbital length radius a. The unit of these distances is 10 8 km. The unit of the radius of the working area (also referred to as the influence area) is 10 6 km. The stellar average motion μ is indicated by the average solar day, and the stellar revolution period P is indicated by the average solar year. The orbital average speed is the average speed when each planet moves in orbit. The unit of this speed is km / s. The association period is a period when a certain celestial body is observed from the earth and comes to the same position with respect to the sun on the celestial sphere, that is, the angle of separation from the sun becomes the same value. This is the time interval when the celestial body comes to the position of the sun. The table shown in FIG. 9 is based on the NAOJ scientific chronology table (2014 edition).
 上記した各実施形態において、太陽系における各天体の位置及び動きは図9に示したデータに基づき作成すれば、より一層、太陽系における各天体の位置及び動きを再現することができる。 In each embodiment described above, if the position and movement of each celestial body in the solar system are created based on the data shown in FIG. 9, the position and movement of each celestial body in the solar system can be further reproduced.
 1,3…時空間図、10…水星(天体)、11…水星軌道(軌道)、12…軌道領域、20…金星(天体)、21…金星軌道(軌道)、22…軌道領域、30…地球(天体)、31…地球軌道(軌道)、32…軌道領域、40…月軌道(軌道)、50…火星(天体)、51…火星軌道(軌道)、52…軌道領域、60…木星(天体)、61…木星軌道(軌道)、70…土星(天体)、71…土星軌道(軌道)、80…天王星(天体)、81…天王星軌道(軌道)、90…海王星(天体)、91…海王星軌道(軌道)、100…冥王星(天体)、101…冥王星軌道(軌道)、501…情報端末(情報処理装置)、511…表示制御部(制御部)、513…画像処理部(制御部)、514…時計部、520…記憶部、700…サーバ(情報処理装置)、712…画像処理部(制御部)、713…時計部、SYS…情報処理システム DESCRIPTION OF SYMBOLS 1,3 ... Spatio-temporal map, 10 ... Mercury (celestial body), 11 ... Mercury orbit (orbit), 12 ... Orbit area, 20 ... Venus (celestial body), 21 ... Venus orbit (orbit), 22 ... Orbit area, 30 ... Earth (celestial body), 31 ... Earth orbit (orbit), 32 ... Orbital region, 40 ... Moon orbit (orbital), 50 ... Mars (celestial body), 51 ... Mars orbit (orbital), 52 ... Orbital region, 60 ... Jupiter ( Celestial), 61 ... Jupiter orbit, 70 ... Saturn (celestial), 71 ... Saturn orbit, 80 ... Uranus (celestial), 81 ... Uranus orbit, 90 ... Neptune (celestial), 91 ... Neptune orbit (orbit), 100 ... Pluto (celestial body), 101 ... Pluto orbit (orbit), 501 ... Information terminal (information processing device), 511 ... Display control unit (control unit), 513 ... Image processing unit (control unit) 514: Clock unit, 520: Storage unit, 700: Server (information processing unit) Device), 712 ... image processing unit (control unit), 713 ... clock unit, SYS ... information processing system

Claims (11)

  1.  太陽系の複数の天体の軌道と、
     前記複数の天体の軌道上の位置と、
     前記複数の天体の軌道上の位置に対応しかつ少なくとも暦の情報を含む時間情報と、を配し、
     前記複数の天体のうちの所定の天体は、前記太陽から当該所定の天体までの実際の距離又はその距離に近い距離を所定の縮尺で示した位置に配され、当該所定の天体の軌道上における前記太陽に最も近い距離を半径とする円と前記太陽に最も遠い距離を半径とする円とで囲われたリング状の領域を配し、
     前記各天体の前記太陽からの位置は、前記太陽の中心から所定の方向に向かう基準方向からの角度の情報で表されることを特徴とする時空間図。
    The orbits of several celestial bodies in the solar system,
    Positions of the plurality of celestial bodies in orbit;
    Time information corresponding to positions on the orbits of the plurality of celestial bodies and including at least calendar information,
    The predetermined celestial body of the plurality of celestial bodies is arranged at a position that shows an actual distance from the sun to the predetermined celestial body or a distance close to the distance at a predetermined scale, and the predetermined celestial body is on the orbit of the predetermined celestial body. A ring-shaped region surrounded by a circle having a radius closest to the sun and a circle having a radius farthest from the sun;
    The position of each celestial body from the sun is represented by information on an angle from a reference direction in a predetermined direction from the center of the sun.
  2.  地球の周囲を回る月の軌道と、前記月の満月及び新月の位置とを配した請求項1に記載の時空間図。 The spatiotemporal map according to claim 1, wherein the orbit of the moon orbiting around the earth and the positions of the full moon and the new moon of the moon are arranged.
  3.  前記複数の天体の軌道は、水星の軌道、金星の軌道、地球の軌道、月の軌道、火星の軌道、木星の軌道、土星の軌道、天王星の軌道、海王星の軌道、及び冥王星の軌道を含み、前記水星の軌道、前記金星の軌道、前記地球の軌道、前記月の軌道、及び前記火星の軌道のそれぞれは、前記地球の北極のはるか上方から太陽系を見た視点で太陽系における前記太陽から各天体までの実際の距離又はその距離に近い距離を1兆分の1の縮尺で示した位置に配され、前記木星の軌道、前記土星の軌道、前記天王星の軌道、前記海王星の軌道、及び前記冥王星の軌道のそれぞれは、当該縮尺と異なる縮尺で示され実際の軌道よりも前記太陽からの距離が近い軌道で表される請求項1又は請求項2に記載の時空間図。 The orbits of the celestial bodies include the orbit of Mercury, the orbit of Venus, the orbit of Earth, the orbit of the moon, the orbit of Mars, the orbit of Jupiter, the orbit of Saturn, the orbit of Uranus, the orbit of Neptune, and the orbit of Pluto. The orbit of Mercury, the orbit of Venus, the orbit of the earth, the orbit of the moon, and the orbit of Mars are each from the sun in the solar system from the viewpoint of looking at the solar system from above the north pole of the earth. The actual distance to the celestial body or a distance close to that distance is shown at a scale of 1 / trillion, the orbit of Jupiter, the orbit of Saturn, the orbit of Uranus, the orbit of Neptune, and the The space-time map according to claim 1 or 2, wherein each of the orbits of Pluto is represented by an orbit that is shown at a different scale from the scale and is closer to the sun than the actual orbit.
  4.  請求項1から請求項3のいずれか1項に記載の時空間図の画像を表示装置に表示することを特徴とする情報処理装置。 An information processing apparatus that displays the image of the spatio-temporal view according to any one of claims 1 to 3 on a display device.
  5.  現在の時間を特定する時計部と、
     前記時計部で特定された現在の時間に対応する位置に、前記複数の天体のうちの全部又は一部の天体の画像を表示する制御部と、を含む請求項4に記載の情報処理装置。
    A clock that identifies the current time,
    The information processing apparatus according to claim 4, further comprising: a control unit that displays an image of all or some of the plurality of celestial bodies at a position corresponding to the current time specified by the clock unit.
  6.  前記制御部は、利用者により選択された天体の画像を表示する請求項5に記載の情報処理装置。 The information processing apparatus according to claim 5, wherein the control unit displays an image of a celestial body selected by a user.
  7.  前記制御部は、利用者により選択された前記時空間図内の領域の画像を拡大表示する請求項5又は請求項6に記載の情報処理装置。 The information processing apparatus according to claim 5 or 6, wherein the control unit enlarges and displays an image of an area in the space-time diagram selected by a user.
  8.  情報処理装置に、
     請求項1から請求項3のいずれか1項に記載の時空間図の画像を表示装置に表示する処理を実行させることを特徴とするプログラム。
    In the information processing device,
    The program which performs the process which displays the image of the spatio-temporal map of any one of Claim 1 to 3 on a display apparatus.
  9.  前記情報処理装置に、
     現在の時間を特定する時間特定処理と、
     前記時間特定処理で特定された現在の時間に対応する位置に、前記複数の天体のうちの全部又は一部の惑星の画像を表示する表示処理と、を実行させる請求項8に記載のプログラム。
    In the information processing apparatus,
    A time identification process for identifying the current time;
    The program according to claim 8, wherein display processing for displaying images of all or part of the planets of the plurality of celestial bodies at a position corresponding to the current time specified by the time specifying processing is executed.
  10.  前記表示処理は、利用者により選択された天体の画像を表示する請求項9に記載のプログラム。 The program according to claim 9, wherein the display process displays an image of a celestial object selected by a user.
  11.  前記表示処理は、利用者により選択された前記時空間図内の領域の画像を拡大表示する請求項9又は請求項10に記載のプログラム

     
    The program according to claim 9 or 10, wherein the display process enlarges and displays an image of an area in the space-time diagram selected by a user.

PCT/JP2015/085310 2015-01-13 2015-12-17 Time and space diagram, information processing device, and program WO2016114064A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016549808A JP6222881B2 (en) 2015-01-13 2015-12-17 Information processing apparatus and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015003807 2015-01-13
JP2015-003807 2015-01-13

Publications (1)

Publication Number Publication Date
WO2016114064A1 true WO2016114064A1 (en) 2016-07-21

Family

ID=56405619

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/085310 WO2016114064A1 (en) 2015-01-13 2015-12-17 Time and space diagram, information processing device, and program

Country Status (2)

Country Link
JP (1) JP6222881B2 (en)
WO (1) WO2016114064A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111179649A (en) * 2019-11-22 2020-05-19 广东小天才科技有限公司 Wearable device-based astronomical knowledge learning method and wearable device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005501284A (en) * 2001-08-31 2005-01-13 マムスタードットカム A globe device that rotates and revolves simultaneously
JP4010422B1 (en) * 2007-02-24 2007-11-21 哲夫 中屋 calendar

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5233327Y2 (en) * 1972-03-30 1977-07-29
JPS5695720U (en) * 1979-12-20 1981-07-29
JPS5923369A (en) * 1982-07-30 1984-02-06 日本電気ホームエレクトロニクス株式会社 Star display
JPH0720775A (en) * 1993-06-30 1995-01-24 Matsushita Electric Ind Co Ltd Star chart display device
US5701678A (en) * 1996-01-17 1997-12-30 Wang; Jen-Hu Space-time tracker

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005501284A (en) * 2001-08-31 2005-01-13 マムスタードットカム A globe device that rotates and revolves simultaneously
JP4010422B1 (en) * 2007-02-24 2007-11-21 哲夫 中屋 calendar

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
IMA: "Jibun wa Doko ni Irundarou?", UCHU NO RHYTHM O KURASHI NI TSUNAGERU JIKUKAN CHIZU 'CHIKYUREKI, 5 June 2014 (2014-06-05), Retrieved from the Internet <URL:http://greenz.jp/2014/06/05/chikyureki> [retrieved on 20160301] *
TEAM CHIKYUREKI ZENTAI KAIGO: "Musubi no Hibi", 29 July 2011 (2011-07-29), Retrieved from the Internet <URL:http://blogwatawata.blog.fc2.com/blog-entry-985.html> [retrieved on 20160301] *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111179649A (en) * 2019-11-22 2020-05-19 广东小天才科技有限公司 Wearable device-based astronomical knowledge learning method and wearable device
CN111179649B (en) * 2019-11-22 2021-11-05 广东小天才科技有限公司 Wearable device-based astronomical knowledge learning method and wearable device

Also Published As

Publication number Publication date
JPWO2016114064A1 (en) 2017-04-27
JP6222881B2 (en) 2017-11-01

Similar Documents

Publication Publication Date Title
US10579226B2 (en) Time proximity based map user interactions
US9262381B2 (en) Array of documents with past, present and future portions thereof
KR102505595B1 (en) Visualizing user interfaces in hybrid smartwatches
Zotti et al. The simulated sky: Stellarium for cultural astronomy research
US8843824B1 (en) Providing temporal information to users
Zahn et al. Sector models—a toolkit for teaching general relativity: II. Geodesics
JP6222881B2 (en) Information processing apparatus and program
US9852657B2 (en) Solar educational monument
US20180025661A1 (en) Educational computer puzzle
Wright Archimedes, astronomy, and the planetarium
KR100709308B1 (en) A New Timepiece having the Celestial Map
Hamm Ptolemy's Planetary Theory: An English Translation of Book One, Part A of the Planetary Hypotheses with Introduction and Commentary
Cercel et al. Planetarium-an augmented reality application
JP6743100B2 (en) Celestial clock device
US20090135676A1 (en) Method and device for celestial time keeping
Timberlake et al. Finding our place in the solar system: the scientific story of the Copernican revolution
Andrew Astronomy apps for mobile devices, a first catalog
CA2638101A1 (en) Position based multi-dimensional locating system and method
Tian et al. Development of a Multi-viewpoint AR-Based Mobile Learning System for Supporting Lunar Observation
Tarng et al. The application of virtual reality in astronomy education
Gangui et al. From the scale model of the sky to the armillary sphere
Scott Visualization of flat and curved spacetimes with simple cartography tools
Irás et al. Wheels of Geography: Interactive renewal of antique educational instruments
JP3515987B2 (en) World map clock
JP3180549U (en) calendar

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016549808

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15878015

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15878015

Country of ref document: EP

Kind code of ref document: A1