WO2016113948A1 - Method and apparatus for manufacturing electronic device - Google Patents

Method and apparatus for manufacturing electronic device Download PDF

Info

Publication number
WO2016113948A1
WO2016113948A1 PCT/JP2015/076493 JP2015076493W WO2016113948A1 WO 2016113948 A1 WO2016113948 A1 WO 2016113948A1 JP 2015076493 W JP2015076493 W JP 2015076493W WO 2016113948 A1 WO2016113948 A1 WO 2016113948A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
pulse
electronic device
laser light
organic layer
Prior art date
Application number
PCT/JP2015/076493
Other languages
French (fr)
Japanese (ja)
Inventor
福田 和浩
伸明 高橋
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2016113948A1 publication Critical patent/WO2016113948A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/12Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/351Working by laser beam, e.g. welding, cutting or boring for trimming or tuning of electrical components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources

Definitions

  • the present invention relates to an electronic device manufacturing method and a manufacturing apparatus therefor.
  • organic EL element organic electroluminescence element
  • organic thin-film solar cell organic thin-film solar cell
  • liquid crystal display element liquid crystal display element
  • Patent Document 1 an evaporating substance released from a deposition source is vapor-deposited on a band-shaped substrate by using a band-shaped mask that is partly in close contact with the substrate and runs synchronously.
  • Patent Document 2 discloses a display device that forms a pattern of an organic layer by selectively removing portions of a first organic layer and a second organic layer formed on an auxiliary electrode by irradiating with a laser beam. A manufacturing method is disclosed.
  • Patent Document 3 discloses an organic EL in which a sacrificial layer is formed on an electrode layer, an organic layer or the like is formed on the electrode layer, and the organic layer is removed by irradiating laser light in order to reduce damage to the electrode layer.
  • An element manufacturing method is disclosed.
  • Patent Document 4 discloses a method of manufacturing an organic electronic device that forms a pattern by performing laser ablation on an upper conductive layer using a pulse laser.
  • the method of manufacturing an organic EL element described in Patent Document 1 since the mask is in contact with the substrate, residues on the mask may move to the substrate, resulting in a decrease in pattern accuracy.
  • the laser intensity is not sufficiently controlled, and there is a concern of damaging the electrode under the organic layer.
  • the sacrificial layer uses an inorganic material or a binder, which hinders light emission efficiency.
  • the method for manufacturing an organic electronic device described in Patent Document 4 is not limited to an organic layer, but is formed by patterning only on a layer called an upper conductive layer, and the application target is limited.
  • an object of the present invention is to provide an electronic device having an organic layer, which can suppress the damage of the organic layer on the substrate side and can form a high-definition organic layer pattern in a simple process.
  • a manufacturing method and a manufacturing apparatus are provided.
  • the inventors of the present invention have repeatedly investigated the solution to the above problem, and by using a pulse of laser light having a specific wavelength and a specific pulse width for the organic layer and other layers of the electronic device. It has been found that a pattern can be formed with high accuracy and the above-mentioned problems can be solved.
  • the present invention has the following configuration.
  • An electronic device manufacturing method for manufacturing an electronic device having an organic layer on a substrate comprising: forming a layer including the organic layer on the substrate; and irradiating the layer including the organic layer with a pulse of laser light Forming a pattern, wherein the laser light pulse has a wavelength of 300 to 400 nm and the laser light has a pulse width of 1 to 100 psec.
  • An electronic device manufacturing apparatus for manufacturing an electronic device having an organic layer on a substrate, the apparatus forming a layer including the organic layer on the substrate, and irradiating the layer including the organic layer with a pulse of laser light
  • an electronic device manufacturing apparatus including a vacuum chamber for performing pattern formation of the layer including the organic layer in a vacuum.
  • a high-definition organic layer pattern is formed by a simple process while suppressing damage to the organic layer on the substrate side. It becomes possible.
  • FIG. 5 is a schematic cross-sectional view of the AA plane of FIG. 4. It is a plane schematic diagram of the part processed by irradiation of the laser beam of circular top hat distribution.
  • FIG. 7 is a schematic cross-sectional view of the BB plane in FIG. 6.
  • the electronic device having an organic layer is basically an electronic device having a thin plate shape such as an organic EL element, an organic thin film solar cell (organic photoelectric conversion element), a liquid crystal display element, a touch panel, and electronic paper. It has an organic layer.
  • the organic layer is a layer involved in the expression of the function as an electronic device in the various electronic devices described above, and is basically formed of an organic substance to express the function.
  • a layer that needs to be patterned For example, in the case of an organic EL element, layers such as an organic light-emitting layer, an electron transport layer, a hole transport layer, a hole blocking layer, an electron blocking layer, an electron injection layer, and a hole injection layer correspond.
  • layers such as a bulk heterojunction layer, a hole transport layer, an electron transport layer, a hole block layer, an electron block layer, an electron injection layer, and a hole injection layer correspond.
  • various types of substrates are used depending on the type of electronic device.
  • the material of the substrate is not particularly limited, and may be transparent or opaque.
  • the material of the substrate is largely divided into a glass substrate and a resin substrate. Examples of the glass of the glass substrate include alkali glass, non-alkali glass, and quartz glass.
  • the resin for the resin substrate examples include polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyethersulfone (PES), polyetherimide, polyetheretherketone, polyphenylene sulfide, polyarylate, polyimide, and polycarbonate (PC). , Cellulose triacetate (TAC), cellulose acetate propionate (CAP) and the like. Among these, polyethylene terephthalate (PET) and polyethylene naphthalate (PEN) are preferable.
  • the substrate may be a single wafer or may be long.
  • a long substrate is usually wound in a roll shape, and an electronic device can be continuously produced by a roll-to-roll method.
  • organic EL element which is a typical electronic device will be described as an example, but the present invention can be applied to other electronic devices as appropriate.
  • the electronic device manufacturing method of the present embodiment is an electronic device manufacturing method for manufacturing an organic EL element having an organic layer on a substrate, and a step of forming a layer including the organic layer on the substrate (hereinafter referred to as “organic”).
  • an electronic device may be configured by simply forming a single organic layer or a plurality of organic layers on a substrate.
  • a process for forming a layer other than an organic layer on a substrate is usually required depending on the type of electronic device, the type of layers constituting the electronic device, and the like.
  • the layer other than the organic layer include a metal layer functioning as an electrode layer and a conductive layer, and a layer made of an inorganic compound functioning as a sealing layer and a protective layer.
  • the step of forming layers other than these organic layers is performed as necessary.
  • a light emitting layer for example, hole transport layer / light emitting layer / hole blocking layer / electron transport layer
  • Organic layer formation process In the organic layer forming step, various types of organic layer forming methods are used in accordance with the type of the target electronic device and the type of the organic layer.
  • the formation method of the organic layer is roughly divided into a vapor phase method and a liquid phase method.
  • the vapor phase method include a (vacuum) vapor deposition method, a sputtering method, an ion plating method, a CVD (Chemical Vapor Deposition) method, and a molecular beam epitaxy method, but a vacuum vapor deposition method is common.
  • the liquid phase method include a coating method, a printing method, and an ink jet method.
  • a pulse of laser light is used as means for removing a part of the layer including the organic layer by heating to a high temperature. Processing that forms a pattern by irradiating a layer including an organic layer with a pulse of laser light is also called laser ablation processing. Even a material that melts only at a fairly high temperature under atmospheric pressure can generate a plasma by irradiating a pulse of laser light and instantaneously melt, evaporate, and scatter the irradiated solid substance. is there.
  • Irradiation with a pulse of laser light is performed along a preset pattern while scanning the organic layer with a small-diameter laser light, and only a specific part of the organic layer is removed to form a pattern on the organic layer.
  • the diameter of the laser beam irradiated portion is generally 10 to 500 ⁇ m.
  • the pattern of the organic layer can be formed with a high degree of freedom and accuracy by adjusting (alignment) the position to be removed by the laser light based on position information.
  • the processing method by laser pulse irradiation has little thermal damage to the periphery of the processing part, and it is possible to form a pattern by evaporating and scattering the organic layer even in vacuum or under atmospheric pressure. It is. However, when processing is performed under atmospheric pressure, the scattered matter may collide with gas molecules in the atmosphere during a relatively short flight distance to form particles and contaminate the surrounding apparatus. On the other hand, when processing is performed in a vacuum, the flying distance of the flying object becomes relatively long, and it is possible to remove the flying object by being exhausted by a vacuum pump or the like. Therefore, in order to increase the accuracy of pattern formation, it is preferable to perform the pattern formation process in a vacuum.
  • Pattern formation by laser light pulse irradiation can be used not only for pattern formation of organic layers but also for pattern formation of metal layers other than organic layers and layers made of inorganic compounds.
  • the layers other than the organic layer formed on the organic layer are simultaneously evaporated and scattered when the lower organic layer is evaporated and scattered, thereby enabling pattern formation.
  • laser beams that are continuously irradiated and laser beams that are irradiated intermittently.
  • the former is called a continuous wave and the latter is called a pulse wave.
  • a pulsed laser that can obtain a sufficiently high peak power and energy density is suitable.
  • the wavelength of the laser light pulse used in this embodiment is in the ultraviolet region of 300 to 400 nm from the viewpoint of the removal efficiency of the organic layer. Among them, the one with a wavelength of 355 nm is most preferable because of easy availability.
  • the pulse widths (irradiation time) of commercially available and available pulse lasers include femtoseconds (50 to 500 fsec), picoseconds (1 to 100 psec), and nanoseconds (1 to 100 nsec).
  • femtosecond laser light if the power is low, only the surface layer can be processed. If the power is increased, the substrate may be damaged.
  • nanosecond laser light the organic film can be removed if only the organic film is present on the substrate. However, if the metal film is present under the organic film, the underlying metal film may be damaged. is there.
  • the laser light pulse used in the present embodiment has a pulse width of 1 to 100 psec.
  • the pulse width is preferably 1 to 15 psec.
  • the energy intensity distribution (beam profile) of the laser beam can be measured using a CCD power meter or the like.
  • the intensity distribution can be quantified and visually expressed.
  • FIG. 3 is a schematic diagram showing the energy intensity distribution of the laser beam. The vertical axis represents energy intensity, and the horizontal axis represents position coordinates.
  • FIG. 4 is a schematic plan view of a portion processed by irradiation with a Gaussian-distributed laser beam
  • FIG. 5 is a schematic cross-sectional view of the AA plane.
  • the distribution of energy intensity can be made uniform in a distribution shape called a top hat distribution by using a laser beam homogenizer (diffractive optical element) or the like (see FIG. 2).
  • the processed shape of the laser beam irradiation portion has a wall surface that rises vertically.
  • FIG. 6 is a schematic plan view of a portion processed by irradiation with laser light having a circular top hat distribution
  • FIG. 7 is a schematic cross-sectional view of the BB plane.
  • the irradiation shape of the pulse of laser light is usually circular. However, by using a homogenizer, a diffraction grating, a condensing lens, etc., the irradiation shape of the pulse of the laser beam can have a uniform energy distribution of a specific shape such as a rectangle, an ellipse, or a line. .
  • FIG. 8 is a schematic plan view of a portion processed by irradiation with laser light having a square top hat distribution
  • FIG. 9 is a schematic cross-sectional view of the CC plane.
  • the processing depth can be controlled more precisely.
  • the overlap amount of laser light pulses is 50% or less.
  • the overlap amount is more preferably 30% or less, and further preferably 10% or less.
  • FIG. 10 shows an irradiation region 1 when one shot of a pulse of laser light having a rectangular irradiation shape is irradiated. It shows that the length in the vertical direction is 120 with respect to the length 100 in the horizontal direction.
  • FIG. 11 shows irradiation regions 2, 3, and 4 when three shots of the same rectangular laser light pulse as in FIG. 10 are irradiated.
  • the overlap amount means the ratio of the area of the portion irradiated with overlapping (overlapping) with respect to the entire irradiation area when a plurality of pulses are irradiated in an overlapping manner.
  • the irradiation area of one shot is 100
  • the irradiation shape of the laser light pulse is preferably rectangular. By making the irradiation shape of the laser light pulse rectangular, it becomes easy to precisely control the overlap amount of the laser light pulse, and the processing depth can be controlled more precisely at the nanometer level. Become.
  • the energy intensity distribution of the pulse of the laser beam is preferably made uniform by using a homogenizer or the like from the viewpoint that the processing depth can be controlled more precisely.
  • the variation in energy intensity within the pulse of the laser light is preferably within a range of ⁇ 30% with respect to the average value of the energy intensity of the pulse, and more preferably within a range of ⁇ 20%. Preferably, it is in the range of ⁇ 10%.
  • the variation in energy intensity within the pulse of laser light and the average value of the energy intensity of the pulse can be measured using a CCD power meter or the like as shown in FIG.
  • measurement can be performed relatively easily by using Coherent's BeamView Analyzer or the like.
  • This measuring device can measure the intensity distribution by receiving laser light with a CMOS sensor and changing the amount of energy into an electrical signal for each pixel area.
  • a LaserCam-HR-UV sensor can be used, and measurement can be performed with a pixel number of 1280 ⁇ 1024 pixels within a sensor area of 8.5 ⁇ 6.8 mm.
  • the average value of the energy intensity of the laser light pulse is obtained as the most frequent value (mJ / cm 2 ) of the top flat portion.
  • the variation in energy intensity within the pulse of the laser beam is a histogram of the light reception level of each element, the distribution divided into the top flat part and the other two is measured, the peak value of the strongest intensity with respect to the average value and Define the distribution as a percentage of each difference in the bottom value of the weakest intensity. That peak value to the average value is 100 mJ / cm 2 is the case bottom value at 120 mJ / cm 2 is 90 mJ / cm 2, determined as +20 to -10%.
  • the average value of the energy intensity (energy density) of the laser light pulse is preferably 10 to 300 mJ / cm 2 and more preferably 40 to 100 mJ / cm 2 from the viewpoint of efficiently removing the organic layer.
  • FIG. 12 is a schematic cross-sectional view for illustrating an example of processing of an organic EL element by a pulse of laser light.
  • an organic layer (underlying layer, thickness 10 nm) 12, a metal layer (electrode, thickness 10 nm) 13, an organic layer (hole injection layer, hole transport layer, light emitting layer) in order on the substrate 11.
  • the three layers of the electron transport layer, the laminated film composed of the electron injection layer, and a thickness of 200 nm are formed.
  • a barrier film in which an acrylic clear hard coat layer having a thickness of about 5 ⁇ m was provided on a PET film having a thickness of 100 ⁇ m and a barrier layer made of SiO 2 having a thickness of about 1 ⁇ m was used.
  • This organic EL element is irradiated with a pulse 10 of laser light.
  • the depth of the processed part can be controlled by changing the energy intensity of the laser light pulse.
  • FIG. 13 is a schematic cross-sectional view for illustrating an example of processing of an organic EL element by a pulse of laser light, as in FIG. FIG. 13 shows four processed portions from left to right as a specific example.
  • a pulse of laser light a square having a wavelength of 355 nm, a pulse width of 12 psec, and a pulse irradiation shape (energy intensity distribution shape) of 200 ⁇ m ⁇ 200 ⁇ m was used.
  • energy intensity 50mJ / cm 2, 80mJ / cm 2, 100mJ / cm 2, 200mJ / cm 2 of laser light pulses 10A, 10B, 10C is processed cross-sectional view at the time of irradiation with the 10D It is shown. It is shown that the depth of the processed portion increases as the output of the laser light pulse increases.
  • the organic layer forming step and the pattern forming step can be performed in various combinations depending on the layer configuration of the organic EL element.
  • an organic EL device having a three-layer structure of electrode layer (anode) / organic layer (light emitting layer) / electrode layer (cathode)
  • three layers are formed on a substrate and then three layers are formed by laser light pulses.
  • laser light pulses By evaporating and scattering all of them simultaneously, an organic EL element having three layers having the same pattern can be manufactured in a single pattern forming process.
  • a pattern forming process is performed by a pulse of laser light, and a pattern is formed by evaporating and scattering one layer at a time.
  • Organic EL elements having different patterns can be manufactured.
  • the electronic device manufacturing apparatus of the present embodiment is an electronic device manufacturing apparatus that manufactures an organic EL element having an organic layer on a substrate, and an apparatus that forms a layer including the organic layer on the substrate (hereinafter, referred to as an “organic EL device”).
  • An organic EL device A device that irradiates a layer including the organic layer with a pulse of laser light (hereinafter may be referred to as a “laser light irradiation device”), and the organic A vacuum chamber for performing pattern formation of the layer including the layer in a vacuum.
  • a vapor deposition method is a vapor deposition device, a sputtering device, or the like
  • a liquid phase method is a coating device, an inkjet device, or the like.
  • a known apparatus can be appropriately used depending on the type of the electronic device and the type of the organic layer.
  • the laser beam irradiation device is a device capable of irradiating a predetermined position of the organic layer with a pulse of laser light having a pulse wavelength of 300 to 400 nm and a pulse width of 1 to 100 psec.
  • the laser beam irradiation device has a control device that precisely adjusts (aligns) the position of the substrate so that the laser beam pulse can be accurately irradiated to a predetermined position of the organic layer. Is preferred.
  • the laser light irradiation device for example, Talisker-HE manufactured by COHERENT can be used.
  • the organic EL element manufacturing apparatus of the present embodiment performs pattern formation of a layer including an organic layer in a vacuum. This is a device that can perform the pattern forming process in a vacuum.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

Provided are a method and apparatus for manufacturing an electronic device having organic layers, in which damage to the layer on the substrate side of the organic layers is minimized, and a high-definition organic-layer pattern can be formed with a simple procedure. A method for manufacturing an electronic device in which an electronic device having organic layers (12, 14) is manufactured on a substrate (11), wherein the method for manufacturing the electronic device is characterized in having a step for forming a layer including the organic layers (12, 14) on the substrate (11), and a step for irradiating the layer including the organic layers (12, 14) with a pulse (10) of laser light to form a pattern, the wavelength of the pulse (10) of laser light being 300-400 nm, and the width of the pulse (10) of laser light being 1-100 psec. The present invention is, additionally, an apparatus for manufacturing the electronic device.

Description

電子デバイスの製造方法と製造装置Electronic device manufacturing method and manufacturing apparatus
 本発明は、電子デバイスの製造方法とそのための製造装置に関する。 The present invention relates to an electronic device manufacturing method and a manufacturing apparatus therefor.
 近年、有機エレクトロルミネッセンス素子(以下、「有機EL素子」と記載する。)、有機薄膜太陽電池、液晶ディスプレイ素子等の有機層を有する電子デバイスが種々開発されている。これらの電子デバイスは、小型サイズとしたり、薄板状とすることによって、携帯時や設置する際に取り扱いが容易となり、省スペース化され、輸送時や保管時の取り扱いもし易くなる。そのためには、基板上に精細な有機層のパターン(形状、寸法)を形成することが求められる。 In recent years, various electronic devices having an organic layer such as an organic electroluminescence element (hereinafter referred to as “organic EL element”), an organic thin-film solar cell, and a liquid crystal display element have been developed. These electronic devices are small in size or thin, so that they are easy to handle when being carried or installed, space-saving, and easy to handle during transportation and storage. For this purpose, it is required to form a fine organic layer pattern (shape, dimension) on the substrate.
 このような電子デバイスを構成する有機層のパターンを形成する方法としては、従来から種々の方法が開示されている。特許文献1には、帯状の基板上に、基板と一部が密着しかつ同期して走行する帯状のマスクを用いて、蒸着源より放出された蒸発物質を蒸着させることで、有機発光層のパターンを形成する有機EL素子の製造方法が開示されている。特許文献2には、補助電極上に形成された第1の有機層と第2の有機層の部分をレーザ光で照射することによって選択的に除去して、有機層のパターンを形成する表示装置の製造方法が開示されている。特許文献3には、電極層に対するダメージを低減するために、電極層上に犠牲層を形成し、その上に有機層等を形成して、レーザ光を照射して有機層を除去する有機EL素子の製造方法が開示されている。特許文献4には、パルスレーザーを使用して上部導電層にレーザーアブレーションを行って、パターンを形成する有機電子デバイスを製作する方法が開示されている。 Conventionally, various methods have been disclosed as a method for forming a pattern of an organic layer constituting such an electronic device. In Patent Document 1, an evaporating substance released from a deposition source is vapor-deposited on a band-shaped substrate by using a band-shaped mask that is partly in close contact with the substrate and runs synchronously. A method of manufacturing an organic EL element that forms a pattern is disclosed. Patent Document 2 discloses a display device that forms a pattern of an organic layer by selectively removing portions of a first organic layer and a second organic layer formed on an auxiliary electrode by irradiating with a laser beam. A manufacturing method is disclosed. Patent Document 3 discloses an organic EL in which a sacrificial layer is formed on an electrode layer, an organic layer or the like is formed on the electrode layer, and the organic layer is removed by irradiating laser light in order to reduce damage to the electrode layer. An element manufacturing method is disclosed. Patent Document 4 discloses a method of manufacturing an organic electronic device that forms a pattern by performing laser ablation on an upper conductive layer using a pulse laser.
特開2003-173870号公報JP 2003-173870 A 特開2008-288075号公報JP 2008-288075 A 特開2014-143086号公報JP 2014-143086 A 特表2009-508321号公報Special table 2009-508321 gazette
 しかしながら、特許文献1に記載の有機EL素子の製造方法では、マスクが基板と接触しているため、マスク上の残渣等が基板に移行することがあり、パターン精度が低下する。特許文献2に記載の表示装置の製造方法では、レーザ強度の制御が十分ではなく、有機層の下の電極等にダメージを与える懸念がある。特許文献3に記載の有機EL素子の製造方法では、犠牲層は無機系材料やバインダを使用するものであるため、発光効率の妨げとなる。特許文献4に記載の有機電子デバイスを製作する方法は、有機層ではなく、上部導電層という層のみにパターン形成するものであり、適用対象が限られたものである。 However, in the method of manufacturing an organic EL element described in Patent Document 1, since the mask is in contact with the substrate, residues on the mask may move to the substrate, resulting in a decrease in pattern accuracy. In the manufacturing method of the display device described in Patent Document 2, the laser intensity is not sufficiently controlled, and there is a concern of damaging the electrode under the organic layer. In the method of manufacturing an organic EL element described in Patent Document 3, the sacrificial layer uses an inorganic material or a binder, which hinders light emission efficiency. The method for manufacturing an organic electronic device described in Patent Document 4 is not limited to an organic layer, but is formed by patterning only on a layer called an upper conductive layer, and the application target is limited.
 本発明は、このような状況に鑑みてなされたものである。すなわち、本発明の課題は、有機層の基板側の層に損傷を与えることを抑制し、簡便な工程で、高精細な有機層のパターンを形成することが可能な、有機層を有する電子デバイスの製造方法と製造装置を提供することである。 The present invention has been made in view of such a situation. That is, an object of the present invention is to provide an electronic device having an organic layer, which can suppress the damage of the organic layer on the substrate side and can form a high-definition organic layer pattern in a simple process. A manufacturing method and a manufacturing apparatus are provided.
 本発明者らは、上記課題の解決策について検討を重ねたところ、電子デバイスが有する有機層およびその他の層に対して、特定の波長と特定のパルス幅を有するレーザー光のパルスを用いることによって、精度よくパターンを形成することが可能となり、上記課題を解決し得ることを見出した。
 本発明は、以下のような構成を有している。
The inventors of the present invention have repeatedly investigated the solution to the above problem, and by using a pulse of laser light having a specific wavelength and a specific pulse width for the organic layer and other layers of the electronic device. It has been found that a pattern can be formed with high accuracy and the above-mentioned problems can be solved.
The present invention has the following configuration.
 1.有機層を有する電子デバイスを基板上に製造する電子デバイスの製造方法であって、前記基板上に前記有機層を含む層を形成する工程と、前記有機層を含む層にレーザー光のパルスを照射してパターンを形成する工程とを有し、前記レーザー光のパルスの波長が300~400nmであり、前記レーザー光のパルス幅が1~100psecであることを特徴とする電子デバイスの製造方法。 1. An electronic device manufacturing method for manufacturing an electronic device having an organic layer on a substrate, comprising: forming a layer including the organic layer on the substrate; and irradiating the layer including the organic layer with a pulse of laser light Forming a pattern, wherein the laser light pulse has a wavelength of 300 to 400 nm and the laser light has a pulse width of 1 to 100 psec.
 2.前記レーザー光のパルス内のエネルギー強度のばらつきが、パルスのエネルギー強度の平均値に対して±30%の範囲内であることを特徴とする前記1に記載の電子デバイスの製造方法。 2. 2. The method of manufacturing an electronic device according to 1 above, wherein a variation in energy intensity within the pulse of the laser light is within a range of ± 30% with respect to an average value of the energy intensity of the pulse.
 3.前記レーザー光のパルスの照射形状が矩形であることを特徴とする前記1または前記2に記載の電子デバイスの製造方法。 3. 3. The method of manufacturing an electronic device according to 1 or 2 above, wherein the irradiation shape of the pulse of the laser light is rectangular.
 4.前記レーザー光のパルスのオーバーラップ量が50%以下であることを特徴とする前記1~3のいずれか1項に記載の電子デバイスの製造方法。 4. 4. The method of manufacturing an electronic device according to any one of 1 to 3, wherein an overlap amount of the laser light pulse is 50% or less.
 5.前記有機層を含む層にレーザー光のパルスを照射してパターンを形成する工程を真空中で行うことを特徴とする前記1~4のいずれか1項に記載の電子デバイスの製造方法。 5. 5. The method of manufacturing an electronic device according to any one of 1 to 4, wherein the step of forming a pattern by irradiating a layer including the organic layer with a pulse of laser light is performed in a vacuum.
 6.有機層を有する電子デバイスを基板上に製造する電子デバイスの製造装置であって、前記基板上に前記有機層を含む層を形成する装置と、前記有機層を含む層にレーザー光のパルスを照射する装置と、前記有機層を含む層のパターン形成を真空中で行うための真空チャンバを備える電子デバイスの製造装置。 6. An electronic device manufacturing apparatus for manufacturing an electronic device having an organic layer on a substrate, the apparatus forming a layer including the organic layer on the substrate, and irradiating the layer including the organic layer with a pulse of laser light And an electronic device manufacturing apparatus including a vacuum chamber for performing pattern formation of the layer including the organic layer in a vacuum.
 本発明の有機層を有する電子デバイスの製造方法および製造装置によると、有機層の基板側の層に損傷を与えることを抑制して、簡便な工程で、高精細な有機層のパターンを形成することが可能となる。 According to the method and apparatus for manufacturing an electronic device having an organic layer of the present invention, a high-definition organic layer pattern is formed by a simple process while suppressing damage to the organic layer on the substrate side. It becomes possible.
レーザー光のエネルギー強度の分布を表した模式図で、ガウシアン分布を表した図である。It is the model showing distribution of the energy intensity of a laser beam, and is a figure showing Gaussian distribution. レーザー光のエネルギー強度の分布を表した模式図で、トップハット分布を表した図である。It is the model showing distribution of the energy intensity of a laser beam, and is a figure showing top hat distribution. レーザー光のエネルギー強度の分布を表した模式図である。It is the schematic diagram showing distribution of the energy intensity of a laser beam. ガウシアン分布のレーザー光の照射によって加工された部分の平面模式図である。It is a plane schematic diagram of the part processed by irradiation of the laser beam of Gaussian distribution. 図4のA-A面の断面模式図である。FIG. 5 is a schematic cross-sectional view of the AA plane of FIG. 4. 円形のトップハット分布のレーザー光の照射によって加工された部分の平面模式図である。It is a plane schematic diagram of the part processed by irradiation of the laser beam of circular top hat distribution. 図6のB-B面の断面模式図である。FIG. 7 is a schematic cross-sectional view of the BB plane in FIG. 6. 正方形のトップハット分布のレーザー光の照射によって加工された部分の平面模式図である。It is a plane schematic diagram of the part processed by irradiation of the laser beam of square top hat distribution. 図8のC-C面の断面模式図である。It is a cross-sectional schematic diagram of the CC plane of FIG. 矩形のレーザー光のパルスを1ショット照射したときの照射領域を示す平面模式図である。It is a plane schematic diagram which shows an irradiation area | region when one shot of a pulse of a rectangular laser beam is irradiated. 矩形のレーザー光のパルスを3ショット照射したときの照射領域を示す平面模式図である。It is a plane schematic diagram which shows the irradiation area | region when the pulse of a rectangular laser beam is irradiated 3 shots. レーザー光のパルスによる有機EL素子の加工の実施例を示すための模式的断面図であるIt is typical sectional drawing for showing the Example of a process of the organic EL element by the pulse of a laser beam. レーザー光のパルスによる有機EL素子の加工の実施例を示すための模式的断面図であるIt is typical sectional drawing for showing the Example of a process of the organic EL element by the pulse of a laser beam.
 以下、本発明を実施するための形態を説明するが、本発明は、以下に説明する実施形態に何ら制限されず、本発明の要旨を逸脱しない範囲内で実施形態を任意に変更して実施することが可能である。 DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Modes for carrying out the present invention will be described below, but the present invention is not limited to the embodiments described below, and the embodiments are arbitrarily changed within the scope of the present invention. Is possible.
 本実施形態において、有機層を有する電子デバイスとは、有機EL素子、有機薄膜太陽電池(有機光電変換素子)、液晶ディスプレイ素子、タッチパネル、電子ペーパ等の基本的に薄板状の電子デバイスであり、有機層を有することを特徴とするものである。 In the present embodiment, the electronic device having an organic layer is basically an electronic device having a thin plate shape such as an organic EL element, an organic thin film solar cell (organic photoelectric conversion element), a liquid crystal display element, a touch panel, and electronic paper. It has an organic layer.
 本実施形態において、有機層とは、上記各種の電子デバイスにおいて、電子デバイスとしての機能の発現に関与している層であって、基本的に有機物から形成されており、機能を発現するためにパターン化されることを必要としている層である。例えば、有機EL素子であれば、有機発光層、電子輸送層、正孔輸送層、正孔阻止層、電子阻止層、電子注入層、正孔注入層等の層が相当する。有機薄膜太陽電池であれば、バルクヘテロジャンクション層、正孔輸送層、電子輸送層、正孔ブロック層、電子ブロック層、電子注入層、正孔注入層等の層が相当する。 In the present embodiment, the organic layer is a layer involved in the expression of the function as an electronic device in the various electronic devices described above, and is basically formed of an organic substance to express the function. A layer that needs to be patterned. For example, in the case of an organic EL element, layers such as an organic light-emitting layer, an electron transport layer, a hole transport layer, a hole blocking layer, an electron blocking layer, an electron injection layer, and a hole injection layer correspond. In the case of an organic thin-film solar cell, layers such as a bulk heterojunction layer, a hole transport layer, an electron transport layer, a hole block layer, an electron block layer, an electron injection layer, and a hole injection layer correspond.
 本実施形態において、基板としては、電子デバイスの種類によって種々の種類のものが使用される。基板の材料に特に限定はなく、また透明であっても不透明であってもよい。基板の材料としては大きく、ガラス基板と樹脂基板とに分けられる。ガラス基板のガラスとしては、アルカリガラス、無アルカリガラス、石英ガラス等が挙げられる。 In this embodiment, various types of substrates are used depending on the type of electronic device. The material of the substrate is not particularly limited, and may be transparent or opaque. The material of the substrate is largely divided into a glass substrate and a resin substrate. Examples of the glass of the glass substrate include alkali glass, non-alkali glass, and quartz glass.
 樹脂基板の樹脂としては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリエーテルスルホン(PES)、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリフェニレンスルフィド、ポリアリレート、ポリイミド、ポリカーボネート(PC)、セルローストリアセテート(TAC)、セルロースアセテートプロピオネート(CAP)等が挙げられる。この中でも、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)が好ましい。 Examples of the resin for the resin substrate include polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyethersulfone (PES), polyetherimide, polyetheretherketone, polyphenylene sulfide, polyarylate, polyimide, and polycarbonate (PC). , Cellulose triacetate (TAC), cellulose acetate propionate (CAP) and the like. Among these, polyethylene terephthalate (PET) and polyethylene naphthalate (PEN) are preferable.
 基板は、枚葉であってもよいし、長尺であってもよい。長尺の基板は、通常ロール状に巻かれており、ロールツーロール方式で連続的に電子デバイスを製造することが可能である。 The substrate may be a single wafer or may be long. A long substrate is usually wound in a roll shape, and an electronic device can be continuously produced by a roll-to-roll method.
 以下では、代表的な電子デバイスである有機EL素子を例に挙げて説明するが、他の電子デバイスに対しても同様に適宜適用し得るものである。 Hereinafter, an organic EL element which is a typical electronic device will be described as an example, but the present invention can be applied to other electronic devices as appropriate.
[電子デバイスの製造方法]
 本実施形態の電子デバイスの製造方法は、有機層を有する有機EL素子を基板上に製造する電子デバイスの製造方法であって、基板上に有機層を含む層を形成する工程(以下、「有機層形成工程」と記載することもある。)と、有機層を含む層にレーザー光のパルスを照射してパターンを形成する工程(以下、「パターン形成工程」と記載することもある。)とを有している。
[Electronic device manufacturing method]
The electronic device manufacturing method of the present embodiment is an electronic device manufacturing method for manufacturing an organic EL element having an organic layer on a substrate, and a step of forming a layer including the organic layer on the substrate (hereinafter referred to as “organic”). A layer forming step ”), a step of forming a pattern by irradiating a layer including an organic layer with a pulse of laser light (hereinafter also referred to as a“ pattern forming step ”), and have.
 電子デバイスの製造方法として、基板上に単独または複数の有機層を形成するだけで電子デバイスが構成される場合がある。しかし、電子デバイスの種類や電子デバイスを構成する層の種類等に応じて、通常は、基板上に有機層以外の層を形成する工程が必要とされる。有機層以外の層としては、例えば、電極層や導電層として機能する金属層や封止層や保護層として機能する無機化合物からなる層などがある。本実施形態の電子デバイスの製造方法において、これらの有機層以外の層を形成する工程は必要に応じて行われる。 As an electronic device manufacturing method, an electronic device may be configured by simply forming a single organic layer or a plurality of organic layers on a substrate. However, a process for forming a layer other than an organic layer on a substrate is usually required depending on the type of electronic device, the type of layers constituting the electronic device, and the like. Examples of the layer other than the organic layer include a metal layer functioning as an electrode layer and a conductive layer, and a layer made of an inorganic compound functioning as a sealing layer and a protective layer. In the method for manufacturing an electronic device according to this embodiment, the step of forming layers other than these organic layers is performed as necessary.
 例えば、有機EL素子の場合であれば、基板上に、陽極としての金属層を形成する工程、発光層としての有機層(例えば、正孔輸送層/発光層/正孔阻止層/電子輸送層)を形成する工程、陰極としての金属層を形成する工程、封止層および保護層としての無機層を形成する工程を順番に経て、有機EL素子が製造される。 For example, in the case of an organic EL device, a step of forming a metal layer as an anode on a substrate, an organic layer as a light emitting layer (for example, hole transport layer / light emitting layer / hole blocking layer / electron transport layer) ), A step of forming a metal layer as a cathode, and a step of forming an inorganic layer as a sealing layer and a protective layer, in order, an organic EL element is manufactured.
(有機層形成工程)
 有機層形成工程では、対象とする電子デバイスの種類や有機層の種類に応じて、種々の種類の有機層の形成方法が用いられる。有機層の形成方法は、大きく気相法と液相法とに分けられる。気相法としては、(真空)蒸着法、スパッタリング法、イオンプレーティング法、CVD(Chemical Vapor Deposition)法、分子線エピタキシー法などの方法が挙げられるが、真空蒸着法が一般的である。また、液相法としては、塗布法、印刷法、インクジェット法などの方法が挙げられる。
(Organic layer formation process)
In the organic layer forming step, various types of organic layer forming methods are used in accordance with the type of the target electronic device and the type of the organic layer. The formation method of the organic layer is roughly divided into a vapor phase method and a liquid phase method. Examples of the vapor phase method include a (vacuum) vapor deposition method, a sputtering method, an ion plating method, a CVD (Chemical Vapor Deposition) method, and a molecular beam epitaxy method, but a vacuum vapor deposition method is common. Examples of the liquid phase method include a coating method, a printing method, and an ink jet method.
(パターン形成工程)
 パターン形成工程では、有機層を含む層の一部を高温に加熱して除去する手段として、レーザー光のパルスを用いる。有機層を含む層にレーザー光のパルスを照射してパターンを形成する加工は、レーザーアブレーション加工とも呼ばれる。大気圧下でかなりの高温でしか溶融しない材料であっても、レーザー光のパルスを照射することによって、プラズマを発生させ、照射された固体物質を瞬時に溶融、蒸発、飛散させることが可能である。
(Pattern formation process)
In the pattern forming step, a pulse of laser light is used as means for removing a part of the layer including the organic layer by heating to a high temperature. Processing that forms a pattern by irradiating a layer including an organic layer with a pulse of laser light is also called laser ablation processing. Even a material that melts only at a fairly high temperature under atmospheric pressure can generate a plasma by irradiating a pulse of laser light and instantaneously melt, evaporate, and scatter the irradiated solid substance. is there.
 レーザー光のパルスによる照射は、小径のレーザー光によって有機層をスキャニングしつつ、予め設定されたパターンに沿って照射が行われ、有機層の特定の部分のみを除去して、有機層上にパターンを形成させる。レーザー光の照射部分の直径としては一般的に10~500μmのものが用いられる。本実施形態においては、レーザー光によって除去する位置を位置情報によって調整(アライメント)することによって、有機層のパターンを高い自由度と精度で形成することができる。 Irradiation with a pulse of laser light is performed along a preset pattern while scanning the organic layer with a small-diameter laser light, and only a specific part of the organic layer is removed to form a pattern on the organic layer. To form. The diameter of the laser beam irradiated portion is generally 10 to 500 μm. In the present embodiment, the pattern of the organic layer can be formed with a high degree of freedom and accuracy by adjusting (alignment) the position to be removed by the laser light based on position information.
 レーザー光のパルスの照射による加工方法は、加工部周辺への熱損傷が少なく、真空中であっても大気圧下であっても有機層を蒸発、飛散させて、パターンを形成することが可能である。しかし、大気圧下で加工を行うと、飛散物は比較的短い飛行距離の間に大気中の気体分子と衝突して、粒子を形成し、周辺の装置内を汚染する懸念がある。一方、真空中で加工を行うと、飛散物の飛行距離は比較的長くなり、真空ポンプ等によって排気されて、飛散物を除去することが可能である。そのため、パターン形成の精度を上げるためには、パターン形成工程は、真空中で行うことが好ましい。 The processing method by laser pulse irradiation has little thermal damage to the periphery of the processing part, and it is possible to form a pattern by evaporating and scattering the organic layer even in vacuum or under atmospheric pressure. It is. However, when processing is performed under atmospheric pressure, the scattered matter may collide with gas molecules in the atmosphere during a relatively short flight distance to form particles and contaminate the surrounding apparatus. On the other hand, when processing is performed in a vacuum, the flying distance of the flying object becomes relatively long, and it is possible to remove the flying object by being exhausted by a vacuum pump or the like. Therefore, in order to increase the accuracy of pattern formation, it is preferable to perform the pattern formation process in a vacuum.
 レーザー光のパルスの照射によるパターン形成は、有機層のパターン形成のみならず、有機層以外の金属層や無機化合物からなる層などのパターン形成のためにも使用することができる。一般的に、有機層の上部に形成された有機層以外の層は、下層の有機層が蒸発、飛散されることによって、同時に蒸発、飛散されるため、パターン形成を可能としている。 Pattern formation by laser light pulse irradiation can be used not only for pattern formation of organic layers but also for pattern formation of metal layers other than organic layers and layers made of inorganic compounds. In general, the layers other than the organic layer formed on the organic layer are simultaneously evaporated and scattered when the lower organic layer is evaporated and scattered, thereby enabling pattern formation.
 レーザー光には、連続的に照射されるものと、断続的に照射されるものがあり、前者を連続波、後者をパルス波と呼ぶ。本実施形態のパターン形成には、レーザー光が十分に大きなピークパワーやエネルギー密度を得ることができるパルスレーザーが適している。 There are laser beams that are continuously irradiated and laser beams that are irradiated intermittently. The former is called a continuous wave and the latter is called a pulse wave. For the pattern formation of this embodiment, a pulsed laser that can obtain a sufficiently high peak power and energy density is suitable.
 一般に市販され、入手可能なレーザー光の波長としては、1550nm、1064nm、532nm、355nm、266nm、248nm、410-2500nm(可変)といったものが存在する。しかし、レーザー光のパルスの波長が400nmを超えるときは、有機膜にレーザー光が有効に吸収されにくいため、効率的に加工することができない。また、レーザー光のパルスの波長が300nm未満のときは、基板にもレーザー光のエネルギーが吸収されるため、基板にダメージを与える懸念がある。そのため、本実施形態において用いるレーザー光のパルスの波長は、有機層の除去効率の観点から、300~400nmの紫外線領域のものを用いる。中でも入手のし易さから波長355nmのものが最も好ましい。       As commercially available and available laser light wavelengths, there are 1550 nm, 1064 nm, 532 nm, 355 nm, 266 nm, 248 nm, 410-2500 nm (variable). However, when the wavelength of the laser light pulse exceeds 400 nm, the laser light cannot be effectively absorbed by the organic film, so that it cannot be processed efficiently. Further, when the wavelength of the laser light pulse is less than 300 nm, the energy of the laser light is also absorbed by the substrate, which may cause damage to the substrate. Therefore, the wavelength of the laser light pulse used in this embodiment is in the ultraviolet region of 300 to 400 nm from the viewpoint of the removal efficiency of the organic layer. Among them, the one with a wavelength of 355 nm is most preferable because of easy availability.
 一般に市販され、入手可能なパルスレーザーのパルス幅(照射時間)には、フェムト秒(50~500fsec)、ピコ秒(1~100psec)、ナノ秒(1~100nsec)のものがある。しかし、フェムト秒のレーザー光では、パワーが少ないと表層のみしか加工できず、パワーを増加させると基板にダメージを与える懸念がある。また、ナノ秒のレーザー光では、基板上に有機膜のみが存在する場合は、有機膜は除去可能であるが、有機膜の下層に金属膜が存在すると下層の金属膜にダメージを与える懸念がある。 The pulse widths (irradiation time) of commercially available and available pulse lasers include femtoseconds (50 to 500 fsec), picoseconds (1 to 100 psec), and nanoseconds (1 to 100 nsec). However, with femtosecond laser light, if the power is low, only the surface layer can be processed. If the power is increased, the substrate may be damaged. Also, with nanosecond laser light, the organic film can be removed if only the organic film is present on the substrate. However, if the metal film is present under the organic film, the underlying metal film may be damaged. is there.
 一方、ピコ秒のレーザー光では、下層に金属膜が存在してもパワーコントロールによって有機膜の加工深さを調整することが可能である。そのため、本実施形態において用いるレーザー光のパルスは、パルス幅が1~100psecであるものを用いる。パルス幅は好ましくは1~15psecである。 On the other hand, with a picosecond laser beam, the processing depth of the organic film can be adjusted by power control even if a metal film is present in the lower layer. Therefore, the laser light pulse used in the present embodiment has a pulse width of 1 to 100 psec. The pulse width is preferably 1 to 15 psec.
 レーザー光のエネルギー強度の分布(ビームプロファイル)は、CCD方式のパワーメーター等を用いて測定することができる。またレーザー光のエネルギー強度の分布を解析して、強度分布を定量化して視覚的に表現することができる。図3は、レーザー光のエネルギー強度の分布を表した模式図である。縦軸はエネルギー強度を、横軸は位置座標を表している。 The energy intensity distribution (beam profile) of the laser beam can be measured using a CCD power meter or the like. In addition, by analyzing the energy intensity distribution of the laser beam, the intensity distribution can be quantified and visually expressed. FIG. 3 is a schematic diagram showing the energy intensity distribution of the laser beam. The vertical axis represents energy intensity, and the horizontal axis represents position coordinates.
 レーザー光は一般に、ガウシアン分布と呼ばれるエネルギー強度の分布を有している(図1参照)。この場合、中央部のエネルギー強度が高く、中央部から離れるに従ってエネルギー強度が低下するため、レーザー光の照射部の加工形状は、なだらかな傾斜を有したものとなる。図4は、ガウシアン分布のレーザー光の照射によって加工された部分の平面模式図であり、図5は、そのA-A面の断面模式図である。 Laser light generally has a distribution of energy intensity called a Gaussian distribution (see FIG. 1). In this case, the energy intensity in the central part is high, and the energy intensity decreases with increasing distance from the central part. Therefore, the processed shape of the laser light irradiation part has a gentle slope. FIG. 4 is a schematic plan view of a portion processed by irradiation with a Gaussian-distributed laser beam, and FIG. 5 is a schematic cross-sectional view of the AA plane.
 一方、レーザー光をホモジナイザー(回折光学素子)などを用いて、トップハット分布と呼ばれる分布形状にエネルギー強度の分布を均一化させることができる(図2参照)。この場合のレーザー光の照射部の加工形状は、垂直に立ち上がる壁面を有したものとなる。図6は、円形のトップハット分布のレーザー光の照射によって加工された部分の平面模式図であり、図7は、そのB-B面の断面模式図である。このように、レーザー光のエネルギー強度分布を均一化させることによって、加工された部分と加工されない部分との差異が明確となり、パターン形成の精度を高めることができる。 On the other hand, the distribution of energy intensity can be made uniform in a distribution shape called a top hat distribution by using a laser beam homogenizer (diffractive optical element) or the like (see FIG. 2). In this case, the processed shape of the laser beam irradiation portion has a wall surface that rises vertically. FIG. 6 is a schematic plan view of a portion processed by irradiation with laser light having a circular top hat distribution, and FIG. 7 is a schematic cross-sectional view of the BB plane. Thus, by making the energy intensity distribution of the laser light uniform, the difference between the processed portion and the non-processed portion becomes clear, and the accuracy of pattern formation can be increased.
 レーザー光のパルスの照射形状(エネルギー強度の分布形状)は通常は円形である。しかし、ホモジナイザー、回折格子、集光レンズ等を用いることによって、レーザー光のパルスの照射形状を、矩形、楕円形、ライン状などの特定形状の均一なエネルギー分布を有したものとすることができる。図8は、正方形のトップハット分布のレーザー光の照射によって加工された部分の平面模式図であり、図9は、そのC-C面の断面模式図である。 The irradiation shape of the pulse of laser light (energy intensity distribution shape) is usually circular. However, by using a homogenizer, a diffraction grating, a condensing lens, etc., the irradiation shape of the pulse of the laser beam can have a uniform energy distribution of a specific shape such as a rectangle, an ellipse, or a line. . FIG. 8 is a schematic plan view of a portion processed by irradiation with laser light having a square top hat distribution, and FIG. 9 is a schematic cross-sectional view of the CC plane.
 レーザー光のパルスを、基板上の有機層を含む層に断続的に複数回照射して、パターン形成を行っていく場合、複数のレーザー光のパルスにおけるオーバーラップ量(重ね合せ量)(後記)を制御することで、加工深さをより精密にコントロールすることができる。 When pattern formation is performed by intermittently irradiating the layer including the organic layer on the substrate multiple times with a pulse of laser light, the overlap amount (overlapping amount) of multiple laser light pulses (described later) By controlling, the processing depth can be controlled more precisely.
 加工深さをより精密にコントロールするためには、レーザー光のパルスのオーバーラップ量が50%以下であることが好ましい。オーバーラップ量は30%以下であることがより好ましく、10%以下であることがさらに好ましい。 In order to control the processing depth more precisely, it is preferable that the overlap amount of laser light pulses is 50% or less. The overlap amount is more preferably 30% or less, and further preferably 10% or less.
 図10は、照射形状が矩形のレーザー光のパルスを1ショット照射したときの照射領域1を示している。横方向の長さ100に対して縦方向の長さが120であることを示している。図11は、図10と同じ矩形のレーザー光のパルスを3ショット照射したときの照射領域2、3、4を示している。 FIG. 10 shows an irradiation region 1 when one shot of a pulse of laser light having a rectangular irradiation shape is irradiated. It shows that the length in the vertical direction is 120 with respect to the length 100 in the horizontal direction. FIG. 11 shows irradiation regions 2, 3, and 4 when three shots of the same rectangular laser light pulse as in FIG. 10 are irradiated.
 オーバーラップ量とは、複数のパルスを重ねて照射した際に、全照射面積に対してオーバーラップ(重ね合わせ)して照射された部分の面積の割合を意味する。図11の2または4において、1ショットの照射面積を100としたときに、オーバーラップして照射された部分の面積が20であるため、100×20/100=20(%)がオーバーラップ量となる。 The overlap amount means the ratio of the area of the portion irradiated with overlapping (overlapping) with respect to the entire irradiation area when a plurality of pulses are irradiated in an overlapping manner. In 2 or 4 of FIG. 11, when the irradiation area of one shot is 100, the area of the overlapping irradiated area is 20, so that the overlap amount is 100 × 20/100 = 20 (%). It becomes.
 レーザー光のパルスの照射形状(エネルギー強度の分布形状)は矩形であることが好ましい。レーザー光のパルスの照射形状を矩形とすることによって、レーザー光のパルスのオーバーラップ量を精密に制御することが容易となり、加工深さをナノメーターレベルでより精密にコントロールすることができるようになる。 The irradiation shape of the laser light pulse (energy intensity distribution shape) is preferably rectangular. By making the irradiation shape of the laser light pulse rectangular, it becomes easy to precisely control the overlap amount of the laser light pulse, and the processing depth can be controlled more precisely at the nanometer level. Become.
 レーザー光のパルスのエネルギー強度分布は、加工深さをより精密にコントロールすることを可能にするとの観点から、ホモジナイザーなどを用いて均一化されていることが好ましい。具体的には、レーザー光のパルス内のエネルギー強度のばらつきは、パルスのエネルギー強度の平均値に対して±30%の範囲内であることが好ましく、±20%の範囲内であることがより好ましく、±10%の範囲内であることがさらに好ましい。 The energy intensity distribution of the pulse of the laser beam is preferably made uniform by using a homogenizer or the like from the viewpoint that the processing depth can be controlled more precisely. Specifically, the variation in energy intensity within the pulse of the laser light is preferably within a range of ± 30% with respect to the average value of the energy intensity of the pulse, and more preferably within a range of ± 20%. Preferably, it is in the range of ± 10%.
 レーザー光のパルス内のエネルギー強度のばらつきとパルスのエネルギー強度の平均値は、図3に示したように、CCD方式のパワーメーター等を用いて測定することができる。例えば、Coherent社製のBeamView Analyzer等を用いれば、比較的容易に計測が可能である。この計測機器は、レーザー光をCMOSセンサーで受光することで、そのエネルギー量を画素エリア毎に電気信号に変えて強度分布を計測することができる。UV領域のレーザー光には、LaserCam-HR-UVセンサーを用いることができ、センサーエリア8.5×6.8mm内で1280×1024ピクセルの画素数で計測できる。特にトップハット形状のレーザー光に対しては、Plateau Uniformityモードで均一性を評価することが好ましい。レーザー光のパルスのエネルギー強度の平均値は、トップフラット部の最頻度値(mJ/cm)として求められる。また、レーザー光のパルス内のエネルギー強度のばらつきは、各素子の受光レベルをヒストグラム化し、トップフラット部とそれ以外の2つに別れた分布を測定し、前記平均値に対する最強強度のピーク値と最弱強度のボトム値の各差分のパーセンテージで分布を定義する。即ち平均値が100mJ/cmに対しピーク値が120mJ/cmでボトム値が90mJ/cmの場合は、+20~-10%として求められる。 The variation in energy intensity within the pulse of laser light and the average value of the energy intensity of the pulse can be measured using a CCD power meter or the like as shown in FIG. For example, measurement can be performed relatively easily by using Coherent's BeamView Analyzer or the like. This measuring device can measure the intensity distribution by receiving laser light with a CMOS sensor and changing the amount of energy into an electrical signal for each pixel area. For laser light in the UV region, a LaserCam-HR-UV sensor can be used, and measurement can be performed with a pixel number of 1280 × 1024 pixels within a sensor area of 8.5 × 6.8 mm. In particular, it is preferable to evaluate uniformity in the Plateau Uniformity mode for a top-hat laser beam. The average value of the energy intensity of the laser light pulse is obtained as the most frequent value (mJ / cm 2 ) of the top flat portion. In addition, the variation in energy intensity within the pulse of the laser beam is a histogram of the light reception level of each element, the distribution divided into the top flat part and the other two is measured, the peak value of the strongest intensity with respect to the average value and Define the distribution as a percentage of each difference in the bottom value of the weakest intensity. That peak value to the average value is 100 mJ / cm 2 is the case bottom value at 120 mJ / cm 2 is 90 mJ / cm 2, determined as +20 to -10%.
 レーザー光のパルスのエネルギー強度(エネルギー密度)の平均値としては、有機層の除去を効率的に行うという観点から、10~300mJ/cmが好ましく、40~100mJ/cmがより好ましい。 The average value of the energy intensity (energy density) of the laser light pulse is preferably 10 to 300 mJ / cm 2 and more preferably 40 to 100 mJ / cm 2 from the viewpoint of efficiently removing the organic layer.
 図12は、レーザー光のパルスによる有機EL素子の加工の実施例を示すための模式的断面図である。図12には、基板11上に順番に有機層(下地層、厚さ10nm)12、金属層(電極、厚さ10nm)13、有機層(正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層からなる積層膜、厚さ200nm)14の3層が形成されている。基板11としては、厚み100μmのPETフィルム上に、厚み約5μmのアクリル系クリアハードコート層を設け、更に約1μmのSiOからなるバリア層を設けたバリアフィルムを用いた。この有機EL素子にレーザー光のパルス10を照射する。レーザー光のパルスのエネルギー強度を変えることによって、加工部の深さをコントロールすることができる。 FIG. 12 is a schematic cross-sectional view for illustrating an example of processing of an organic EL element by a pulse of laser light. In FIG. 12, an organic layer (underlying layer, thickness 10 nm) 12, a metal layer (electrode, thickness 10 nm) 13, an organic layer (hole injection layer, hole transport layer, light emitting layer) in order on the substrate 11. The three layers of the electron transport layer, the laminated film composed of the electron injection layer, and a thickness of 200 nm are formed. As the substrate 11, a barrier film in which an acrylic clear hard coat layer having a thickness of about 5 μm was provided on a PET film having a thickness of 100 μm and a barrier layer made of SiO 2 having a thickness of about 1 μm was used. This organic EL element is irradiated with a pulse 10 of laser light. The depth of the processed part can be controlled by changing the energy intensity of the laser light pulse.
 図13は、図12と同じく、レーザー光のパルスによる有機EL素子の加工の実施例を示すための模式的断面図である。図13には、具体例として、左から右へ4ヶ所の加工部が示されている。レーザー光のパルスとしては、波長355nmであって、パルス幅が12psecであり、パルスの照射形状(エネルギー強度の分布形状)が200μm×200μmの正方形のものを用いた。左から右へそれぞれ、エネルギー強度50mJ/cm、80mJ/cm、100mJ/cm、200mJ/cmのレーザー光のパルス10A、10B、10C、10Dを照射したときの加工された断面図が示されている。レーザー光のパルスの出力が増大するにつれて、加工部の深さが増大することが示されている。 FIG. 13 is a schematic cross-sectional view for illustrating an example of processing of an organic EL element by a pulse of laser light, as in FIG. FIG. 13 shows four processed portions from left to right as a specific example. As a pulse of laser light, a square having a wavelength of 355 nm, a pulse width of 12 psec, and a pulse irradiation shape (energy intensity distribution shape) of 200 μm × 200 μm was used. Respectively, from left to right, energy intensity 50mJ / cm 2, 80mJ / cm 2, 100mJ / cm 2, 200mJ / cm 2 of laser light pulses 10A, 10B, 10C, is processed cross-sectional view at the time of irradiation with the 10D It is shown. It is shown that the depth of the processed portion increases as the output of the laser light pulse increases.
 本実施形態において、有機層形成工程とパターン形成工程は、有機EL素子の層構成に応じて、種々の組み合わせで行うことができる。例えば、電極層(陽極)/有機層(発光層)/電極層(陰極)の3層構造からなる有機EL素子の場合、基板上に3層を形成させた後にレーザー光のパルスによって、3層すべてを同時に蒸発、飛散させることによって、1回のパターン形成工程で3層が同一のパターンを有する有機EL素子を製造することができる。また、3層の各層を形成する毎に、レーザー光のパルスによるパターン形成工程を行い、1層ずつ蒸発、飛散させることによってパターンを形成し、それを3回繰り返すことによって、3層の各層が異なるパターンを有する有機EL素子を製造することができる。 In the present embodiment, the organic layer forming step and the pattern forming step can be performed in various combinations depending on the layer configuration of the organic EL element. For example, in the case of an organic EL device having a three-layer structure of electrode layer (anode) / organic layer (light emitting layer) / electrode layer (cathode), three layers are formed on a substrate and then three layers are formed by laser light pulses. By evaporating and scattering all of them simultaneously, an organic EL element having three layers having the same pattern can be manufactured in a single pattern forming process. In addition, each time the three layers are formed, a pattern forming process is performed by a pulse of laser light, and a pattern is formed by evaporating and scattering one layer at a time. Organic EL elements having different patterns can be manufactured.
[電子デバイスの製造装置]
 本実施形態の電子デバイスの製造装置は、有機層を有する有機EL素子を基板上に製造する電子デバイスの製造装置であって、前記基板上に前記有機層を含む層を形成する装置(以下、「有機層形成装置」と記載することもある)と、前記有機層を含む層にレーザー光のパルスを照射する装置(以下、「レーザー光照射装置」と記載することもある)と、前記有機層を含む層のパターン形成を真空中で行うための真空チャンバとを備えている。
[Electronic device manufacturing equipment]
The electronic device manufacturing apparatus of the present embodiment is an electronic device manufacturing apparatus that manufactures an organic EL element having an organic layer on a substrate, and an apparatus that forms a layer including the organic layer on the substrate (hereinafter, referred to as an “organic EL device”). A device that irradiates a layer including the organic layer with a pulse of laser light (hereinafter may be referred to as a “laser light irradiation device”), and the organic A vacuum chamber for performing pattern formation of the layer including the layer in a vacuum.
 有機層形成装置としては、有機層を形成する方法に応じて、種々の種類の装置が使用される。すなわち、気相法であれば、蒸着装置、スパッタリング装置等であり、液相法であれば、塗布装置、インクジェット装置等である。前記した電子デバイスの種類や有機層の種類に応じて適宜公知の装置を用いることができる。 As the organic layer forming device, various types of devices are used depending on the method of forming the organic layer. That is, a vapor deposition method is a vapor deposition device, a sputtering device, or the like, and a liquid phase method is a coating device, an inkjet device, or the like. A known apparatus can be appropriately used depending on the type of the electronic device and the type of the organic layer.
 レーザー光照射装置は、パルスの波長が300~400nmであり、パルス幅が1~100psecであるレーザー光のパルスを有機層の所定の位置に照射することが可能な装置である。また、レーザー光照射装置は、レーザー光のパルスを有機層の所定の位置に的確に照射することが可能となるように、基板の位置を精密に調整(アライメント)する制御装置を備えていることが好ましい。レーザー光照射装置は、例えばCOHERENT社製Talisker-HE等を用いることができる。 The laser beam irradiation device is a device capable of irradiating a predetermined position of the organic layer with a pulse of laser light having a pulse wavelength of 300 to 400 nm and a pulse width of 1 to 100 psec. In addition, the laser beam irradiation device has a control device that precisely adjusts (aligns) the position of the substrate so that the laser beam pulse can be accurately irradiated to a predetermined position of the organic layer. Is preferred. As the laser light irradiation device, for example, Talisker-HE manufactured by COHERENT can be used.
 また、前記したように、パターン形成工程は真空中で行うとパターン精度が向上することから、本実施形態の有機EL素子の製造装置は、有機層を含む層のパターン形成を真空中で行うための真空チャンバを備えており、パターン形成工程を真空中で行うことを可能とする装置である。 As described above, since the pattern accuracy is improved when the pattern forming process is performed in a vacuum, the organic EL element manufacturing apparatus of the present embodiment performs pattern formation of a layer including an organic layer in a vacuum. This is a device that can perform the pattern forming process in a vacuum.
 10  レーザー光のパルス
 11  基板
 12、14 有機層
 13  金属層
10 Laser Pulse 11 Substrate 12, 14 Organic Layer 13 Metal Layer

Claims (6)

  1.  有機層を有する電子デバイスを基板上に製造する電子デバイスの製造方法であって、
     前記基板上に前記有機層を含む層を形成する工程と、
     前記有機層を含む層にレーザー光のパルスを照射してパターンを形成する工程とを有し、
     前記レーザー光のパルスの波長が300~400nmであり、
     前記レーザー光のパルス幅が1~100psecであることを特徴とする電子デバイスの製造方法。
    An electronic device manufacturing method for manufacturing an electronic device having an organic layer on a substrate,
    Forming a layer including the organic layer on the substrate;
    Irradiating a layer containing the organic layer with a pulse of laser light to form a pattern,
    The wavelength of the laser light pulse is 300 to 400 nm,
    A method of manufacturing an electronic device, wherein a pulse width of the laser light is 1 to 100 psec.
  2.  前記レーザー光のパルス内のエネルギー強度のばらつきが、パルスのエネルギー強度の平均値に対して±30%の範囲内であることを特徴とする請求項1に記載の電子デバイスの製造方法。 2. The method of manufacturing an electronic device according to claim 1, wherein the variation of the energy intensity in the pulse of the laser beam is within a range of ± 30% with respect to the average value of the energy intensity of the pulse.
  3.  前記レーザー光のパルスの照射形状が矩形であることを特徴とする請求項1または請求項2に記載の電子デバイスの製造方法。 3. The method of manufacturing an electronic device according to claim 1, wherein an irradiation shape of the laser light pulse is rectangular.
  4.  前記レーザー光のパルスのオーバーラップ量が50%以下であることを特徴とする請求項1~3のいずれか1項に記載の電子デバイスの製造方法。 The method of manufacturing an electronic device according to any one of claims 1 to 3, wherein an overlap amount of the pulse of the laser light is 50% or less.
  5.  前記有機層を含む層にレーザー光のパルスを照射してパターンを形成する工程を真空中で行うことを特徴とする請求項1~4のいずれか1項に記載の電子デバイスの製造方法。 5. The method of manufacturing an electronic device according to claim 1, wherein the step of irradiating the layer including the organic layer with a pulse of laser light to form a pattern is performed in a vacuum.
  6.  有機層を有する電子デバイスを基板上に製造する電子デバイスの製造装置であって、
     前記基板上に前記有機層を含む層を形成する装置と、
     前記有機層を含む層にレーザー光のパルスを照射する装置と、
     前記有機層を含む層のパターン形成を真空中で行うための真空チャンバを備える電子デバイスの製造装置。
    An electronic device manufacturing apparatus for manufacturing an electronic device having an organic layer on a substrate,
    An apparatus for forming a layer including the organic layer on the substrate;
    An apparatus for irradiating a layer including the organic layer with a pulse of laser light;
    An electronic device manufacturing apparatus including a vacuum chamber for performing pattern formation of a layer including the organic layer in a vacuum.
PCT/JP2015/076493 2015-01-13 2015-09-17 Method and apparatus for manufacturing electronic device WO2016113948A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015004295 2015-01-13
JP2015-004295 2015-01-13

Publications (1)

Publication Number Publication Date
WO2016113948A1 true WO2016113948A1 (en) 2016-07-21

Family

ID=56408937

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/076493 WO2016113948A1 (en) 2015-01-13 2015-09-17 Method and apparatus for manufacturing electronic device

Country Status (1)

Country Link
WO (1) WO2016113948A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000036385A (en) * 1998-07-21 2000-02-02 Sony Corp Manufacture of organic el display
JP2005310771A (en) * 2004-04-22 2005-11-04 Hewlett-Packard Development Co Lp Patterning method of organic light emitting diode device
JP2009538231A (en) * 2006-05-25 2009-11-05 エレクトロ サイエンティフィック インダストリーズ インコーポレーテッド Wafer scribing with ultrashort laser pulses
WO2012133203A1 (en) * 2011-03-30 2012-10-04 シャープ株式会社 Method for forming vapor deposition film pattern, and method for manufacturing organic electroluminescent display device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000036385A (en) * 1998-07-21 2000-02-02 Sony Corp Manufacture of organic el display
JP2005310771A (en) * 2004-04-22 2005-11-04 Hewlett-Packard Development Co Lp Patterning method of organic light emitting diode device
JP2009538231A (en) * 2006-05-25 2009-11-05 エレクトロ サイエンティフィック インダストリーズ インコーポレーテッド Wafer scribing with ultrashort laser pulses
WO2012133203A1 (en) * 2011-03-30 2012-10-04 シャープ株式会社 Method for forming vapor deposition film pattern, and method for manufacturing organic electroluminescent display device

Similar Documents

Publication Publication Date Title
Schoonderbeek et al. Laser Processing of Thin Films for Photovoltaic Applications.
US8568963B2 (en) Method of manufacturing mask for depositing thin film
CN104737363B (en) Method and diffraction optical element for patterned film electrochemical appliance
KR20150029414A (en) Method for manufacturing metal mask and metal mask using the same
US20110287682A1 (en) Organic el display manufacturing method
US10840449B2 (en) Method for producing resin film having fine pattern, method for producing organic el display device, base film for forming fine pattern, and resin film provided with supporting member
Tseng et al. Electrode patterning on PEDOT: PSS thin films by pulsed ultraviolet laser for touch panel screens
US7964416B2 (en) Manufacturing method of organic EL display
US11148230B2 (en) Method of manufacturing deposition mask
US10124438B2 (en) Method of patterning graphene holes and method of fabricating graphene transparent electrode by using pulse laser
Kim et al. Morphologies of femtosecond laser ablation of ITO thin films using gaussian or quasi-flat top beams for OLED repair
WO2016169358A1 (en) Display substrate preparation method, display substrate and display device
TW201318746A (en) A method of generating a high quality hole or recess or well in a substrate
Kim et al. Ablation depth control with 40 nm resolution on ITO thin films using a square, flat top beam shaped femtosecond NIR laser
Fernandes et al. Femtosecond laser ablation of ITO/ZnO for thin film solar cells
US9457426B2 (en) Method of manufacturing mask
JP2014509968A (en) Curing system and method
US10886128B2 (en) Method and apparatus for manufacturing vapor deposition mask
Choi et al. A study of ultrafast ablation on ITO thin films with wavelengths of 513 and 1026 nm for high resolution patterning
WO2016113948A1 (en) Method and apparatus for manufacturing electronic device
TW201230435A (en) Method for manufacturing organic EL elements
KR20150121340A (en) Laser machining method for film depth control using beam-shaping and pulse-count adjusting
Tan et al. Improved patterning of ITO coated with gold masking layer on glass substrate using nanosecond fiber laser and etching
Naithani et al. Excimer laser patterning of PEDOT: PSS thin-films on flexible barrier foils: A surface analysis study
Harrison et al. A study of stitch line formation during high speed laser patterning of thin film indium tin oxide transparent electrodes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15877900

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15877900

Country of ref document: EP

Kind code of ref document: A1