WO2016113447A1 - Distributed wireless system and method for the classification and localisation of failures in an underground electrical distribution network - Google Patents

Distributed wireless system and method for the classification and localisation of failures in an underground electrical distribution network Download PDF

Info

Publication number
WO2016113447A1
WO2016113447A1 PCT/ES2016/000005 ES2016000005W WO2016113447A1 WO 2016113447 A1 WO2016113447 A1 WO 2016113447A1 ES 2016000005 W ES2016000005 W ES 2016000005W WO 2016113447 A1 WO2016113447 A1 WO 2016113447A1
Authority
WO
WIPO (PCT)
Prior art keywords
network
sensor
fault
electrical distribution
distribution network
Prior art date
Application number
PCT/ES2016/000005
Other languages
Spanish (es)
French (fr)
Inventor
Carlos LÉON DE MORA
Antonio GARCÍA DELGADO
Francisco Javier Molina Cantero
Joaquín LUQUE RODRIGUEZ
Julio BARBANCHO CONCEJERO
Enrique Personal Vazquez
Diego Francisco Larios Marin
Original Assignee
Universidad De Sevilla
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad De Sevilla filed Critical Universidad De Sevilla
Publication of WO2016113447A1 publication Critical patent/WO2016113447A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • G01R31/081Locating faults in cables, transmission lines, or networks according to type of conductors
    • G01R31/083Locating faults in cables, transmission lines, or networks according to type of conductors in cables, e.g. underground
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C17/00Arrangements for transmitting signals characterised by the use of a wireless electrical link
    • G08C17/02Arrangements for transmitting signals characterised by the use of a wireless electrical link using a radio link
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/18Self-organising networks, e.g. ad-hoc networks or sensor networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/12Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment
    • Y04S40/126Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment using wireless data transmission

Definitions

  • the present invention falls within the field of methods and equipment for locating faults in electrical distribution lines, and more specifically in underground medium voltage electrical distribution lines.
  • FCi Missing Circuit Indicators
  • FCis ⁇ as indicated for example in US79691 55-B2 which, using a measure of the voltage phase, are able to determine the direction of the power flow caused by the taita . Following these directions it is possible to determine the section under fault, even in these networks with distributed generation.
  • the information generated by this type of devices is usually visual (light pilot or mobile element) that allow the operator to know, by means of a Direct Inspection, the status of the device.
  • wireless communication that allows access to information remotely. These systems are based on short distance radio links, or GSM or GPRS communications.
  • VVO2007032697-A1 presents a method to locate faults by dividing the lines of a transmission or distribution system into sections and assuming a hypothetical location in at least one of these sections, based on the measurements of the currents, in the fault conditions and also in pre-failo, in all seasons terminals of the system, and also, of the measurement of the phase of the line voltage, in the conditions of failure and pre-failure, in one of the terminal stations of the system.
  • AU2008200131 -A1 describes a system for locating the point of failure, using several slave stations that collect data on the pre-failure situation of the distribution line and a master station, where all this information is received and processed, deducting a single point of failure, from a greater set of possibilities compatible with the measurements.
  • WO2013G9 G28-A1 proposes a deployment of a sensor system for recording electrical parameters, in low voltage networks
  • These measuring elements use a GPS system for synchronization and will be connected at the ends of the distribution lines (one per line) and will communicate with the base station through a broadband connection.
  • US201302Q59GG-A1 proposes an electrical distribution network management system, based on a deployment of sensors in aerial electrical distribution networks, recording information of an electrical and mechanical nature Each of these sensors communicates directly with a receiving station, which registers and processes the information of the nodes, trying to determine the characteristics of the installation, facilitating maintenance oppressions.
  • WSN wireless sensor networks
  • a network of wireless sensors is made up of a series of small, low-power devices (nodes), capable of wireless communication between them and collaborating to analyze a common phenomenon.
  • Sensor networks have many applications [7], one of the main ones being ubiquitous and pervasive monitoring of an environment.
  • the application of wireless sensor network technology in the field of electrical distribution networks is an emerging alternative, with numerous contributions in recent years, both of a general nature [8, 9], as applicable in specific aspects, such as : surveillance of overhead lines (10), monitoring of distributed generation systems (11, or management of charging systems of hybrid electric vehicles, etc.)
  • surveillance of overhead lines (10) monitoring of distributed generation systems (11, or management of charging systems of hybrid electric vehicles, etc.
  • 11 distributed generation systems
  • management of charging systems of hybrid electric vehicles etc.
  • the networks in no case has the networks been applied from wireless sensors to the iocaiization of faults in underground power lines, which constitutes one of the novelties of the present invention.
  • the present invention relates to a system and method for locating faults in medium voltage electrical distribution underground lines.
  • a system designed as a network of wireless sensors with multiple non-intrusive current sensors, which allows the detection, classification and location of the taitas.
  • the distributed wireless system for the classification and location of faults in an underground electrical distribution network comprises a network of wireless sensors distributed in an underground electrical distribution network
  • the wireless sensor network is formed by a plurality of sensor devices that constitute the sensor nodes of the network.
  • Each sensor device is magnetically collected to a conductor of the underground electrical distribution network to be monitored, the sensor devices of the network being distributed so that all sections of conductors between branches have collected at least one sensor device
  • Each sensor device has a wireless communication module for communication with other network sensing devices located within its reach, data processing means and current measurement means that circulates for the conductor to which it is associated.
  • the sensing devices are synchronized 'and configured to, once detected fault event, identify the type of originated Falia and ei point of the network of underground power distribution where the fault has occurred through the exchange of messages between different sensor devices, with information on the synchronized current measurements and through the analysis of the phasor information of said synchronized current measurements, taking into account the network topology.
  • the sensor devices are preferably configured for;
  • ⁇ ⁇ classify the type of fault in the affected segment, determining the line or lines of the segment subject to the fault and the type of insulation fault produced, and in particular if the fault is caused by a grounding or a loss of insulation inside the cable,
  • the sensor devices are preferably configured to perform the joint synchronization using the zero-pass detection of the current measurements of the sensor nodes, and taking into account the situation of the sensor nodes within the underground electrical distribution network to be monitored and that the fasonai sum of currents in all nodes is equal to zero.
  • the sensor devices have a power coil that surrounds the conductor and through which it receives the power supply.
  • the current measurement means of the sensor devices preferably comprise at least one Rogowski coil.
  • the sensing devices can be located in the underground air distribution network, so that they can monitor the entire power flow of the underground electrical distribution network
  • the system may additionally comprise a control unit and a gateway with wireless communication capability configured to collect information from the wireless sensor network and transmit it to the control unit
  • Another aspect of the present invention relates to a method of classifying and locating faults in an underground air distribution network.
  • the procedure includes:
  • wireless sensor network in an underground electrical distribution network, said wireless sensor network being formed by a plurality of sensor devices synchronized with each other and constituting the sensor nodes of the network; where each sensor device is associated with a conductor of the underground electrical distribution network to be monitored, the sensor devices of the network being distributed so that all the sections of conductors between branches have at least one sensor device associated;
  • the sensor network To achieve the detection and location of faults, in addition to the measurement itself of the current flowing through the lines, it is necessary that the sensor network provide two basic services: a method of formation and routing of messages, and a mechanism of time synchronization that allows to share a global clock between all the devices. Both are classic problems of sensor networks, for which multiple solutions have been proposed [12, 13, 14], but even today it is not a closed line of research, since there are no optimal algorithms for all applications.
  • the present invention includes a method of global time synchronization using the distributed system of current measurements of the sensor network. Thanks to these distributed measures and through a collaborative method, a global clock can be estimated and calibrated for the sensor network that supports, among other things, the implementation of information routing methods that minimize energy consumption electric
  • the new system of location of faults in underground electrical distribution lines is therefore based on the collaborative analysis of the net flows of currents acquired through the use of a network of non-intrusive sensors that communicate wirelessly, forming a network of sensors Wireless (WS)
  • WS Wireless
  • the advantage of this approach with a sensor network is that it does not require any type of module information and / or voltage phase, parameters not accessible without perforation in the shielded cables presently present in the underground power distribution lines .
  • the system only requires the current measurements acquired directly by the nodes, which ai Exchange information, are able to detect, classify and locate the faults, both in traditional distribution systems (with unidirectional current flows), and in systems with generation distributed, where the power flow can change direction.
  • the method of the present invention therefore allows the monitoring of a medium voltage underground electrical network by means of e!
  • Use of a network of wireless sensors that with a non-intrusive procedure allow the measurement of the currents that circulate through the network to be monitored.
  • the network is able to monitor the state of the lines, as well as to classify and locate the possible failures that may occur in them.
  • the system consists of a deployment of sensor nodes, distributed from ta! In this way, it is necessary to ensure that all cable frames between branches have at least one current meter collected.
  • the communications structure is automatically formed by exchanging messages, based on prior knowledge of the structure of the electricity grid.
  • the method of synchronization of the sensor nodes takes advantage of the previous knowledge of the topology of the electrical network and the situation of the sensor nodes to synchronize, with high precision, a common globa ⁇ clock among all the nodes of the monitoring network This synchronization of time is necessary to be able to detect and locate possible faults or defects that may occur on the monitored underground power grid.
  • the system uses the knowledge that the sum of fasoriai currents in all nodes is equal to zero.
  • the method for the classification and location of faults in underground electrical distribution lines allows the fault to be located once it has been detected (by means of the protection relay, located at the head of the line), based on the analysis of the fasoriai current information recorded by the different sensor nodes and known topology of the distribution network, including the location of each node within it.
  • the location method based on this information is structured in three phases: determination of the line section between two transformation centers where the fault is found, classification of the type of fault and, finally, the estimation of the specific point of that section, in which the fault originated.
  • the knowledge of this position allows the isolation of the fault and the restoration of the electricity supply to be carried out more quickly and accurately, considerably improving the continuity of the supply.
  • Figure 1 represents the general structure of a wireless sensor network.
  • Figure 2 shows the connection of a sensor node to the conductor to be monitored.
  • Figure 3 shows the internal structure of a sensor node.
  • Figure 4 shows the structure of a sensor network for monitoring the underground electrical network, where each box can have one or more sensor nodes.
  • Figures 5A, 5B and 5C represent a model of the simple underground distribution network on which a deployment of nodes in the different boxes has been made.
  • Figure 5C is a continuation of Figure 58 and this in turn is a continuation of Figure 5A.
  • the method and system of the present invention are based on the deployment of a wireless sensor network that allows the detection, classification and location of anomalies in underground electrical distribution lines.
  • Figure 1 shows a network of wireless sensors 2 distributed in an underground electrical distribution network 1 and formed by a plurality of low consumption sensor devices 3 (or sensor nodes), with wireless communication capability between them and collaborating to analyze a common phenomenon.
  • the wireless sensor network 2 communicates with a control center 4, formed by a gateway 5 with wireless capability (in communication with sensor devices 3) and connected to a counter unit! 6 (eg a computer).
  • Each sensor device 3 of the network also called a sensor node, is designed to operate autonomously by acquiring its energy directly from the mea, from a non-intrusive connection with it, since the device only has to be collected around the distribution network conductor, without the need for drilling or sectioning itself, as shown in Figure 2, which represents the way of connecting a sensor device 3 to the conductor 7 moniton ar.
  • FIG. 3 shows the internal structure of the sensor devices 3.
  • Each of these nodes is formed by a wireless communication module (Le. A radio transceiver 30 ⁇ that allows communication within the underground pipeline itself with other sensor devices 3 , data processing means (for example, a microcontroller 31) that processes the information, a power supply 32 and an input-output subsystem 33, responsible for the monltorlzaconstruissus of the environment through the different measurement systems that compose it , among them a current measurement module 34 that circulates through the conductor 7 of the distribution network, and an I / O interface for other sensors 35 useful for the distribution company (such as temperature sensor, humidity sensor , light intensity sensor, vibration sensor, sound sensor, etc.), which would provide more information about the environment or working conditions of the in
  • the sensor device 3 of the invention has the ability to integrate additional sensors for the monitoring of the installation, which allow the use of the communications infrastructure to provide additional information to the company that owns the installation.
  • the sensor devices 3 are designed to, apart from being economical, allow rapid network deployment. Fundamentally the device network
  • the present invention raises a system whose development is deployed over a network of wireless sensors.
  • the network is formed by a series of devices, called nodes, which are responsible for interacting with each other, so that through their interaction they allow the monitoring of their environment.
  • nodes which are responsible for interacting with each other, so that through their interaction they allow the monitoring of their environment.
  • the following components are distinguished:
  • Control unit 8 It is an element, generally located in the control center 4, with which the user interacts and allows him to retrieve the information of the sensor nodes regarding the state of the underground electrical distribution network under analysis, indicating, in the event of a breakdown, the section in which it occurred and its location within! same, making it easier for them to operate their tasks of isolation and repair of the fault. In addition, it is responsible for storing the corresponding historical records of detected faifas.
  • This element is a node that on the one hand allows communication with the control unit 6 through a standard port and on the other it integrates a radio transceiver compatible with that used in the other devices that make up the network.
  • This device is responsible for redirecting the inquiries of the operators through the wireless sensor network 2. Thanks to this device, the control unit 6 can collect the information on the operating status of the underground electrical distribution network 1, as well as the internal status (remaining battery, error rate, etc.) of each of the sensor devices 3.
  • the gateway 5 is also responsible for making the necessary steps to ensure that the route tables of all the routes are kept updated network nodes, so that access is guaranteed through adequate retransmission using intermediate nodes to any element of the network.
  • Sensor devices 3 or nodes It is understood by sensor nodes, or simply nodes, a series of low-cost and low-cost sensor devices 3 that allow interaction between wires through the use of wireless communications and that allow a localized part of the problem to solve, so that through its interaction you can find the global solution of the problem.
  • the nodes proposed for the present invention consist of the following elements or subsystems (see Figure 3): o Wireless communications subsystem: It will consist of a low consumption radio transceiver 30. The frequency of the carrier signal will be chosen based on the network topology, seeking a minimization of transmission losses.
  • the sensor devices 3 receive the energy for their correct operation through a supply coil 38 ( Figure 2.) surrounding the conductor 7, by means of which all the electronic circuits of the sensor can be fed together with suitable electronics .
  • a supply coil 38 Figure 2.
  • the power system consists of a backup energy storage system, such as a battery or a high capacity capacitor that will allow these devices to continue operating after the appearance of a fault in the distribution network, situation in which there is no longer a per-conductor energy flow and, therefore, the node could not be fed through the supply coil 36.
  • a backup energy storage system such as a battery or a high capacity capacitor that will allow these devices to continue operating after the appearance of a fault in the distribution network, situation in which there is no longer a per-conductor energy flow and, therefore, the node could not be fed through the supply coil 36.
  • o I / O Subsystem 33 Allows the monitoring of the environment through the different measurement systems that compose it. In this case the most important magnitude is The current through conductor 7 of the distribution network, measured through a current measurement sensor, preferably one or several Rogowski coils 37 ( Figure 2), whose behavior is defined by:
  • n is the number of turns
  • A the area of the section of the torch formed by the coil and ⁇
  • vacuum permeability (4 ⁇ ⁇ ⁇ 10 "? (Vs) / (A m))
  • each coil allows the estimation of the current flowing through a conductor.
  • nodes are provided with up to a maximum of one coil per conductor, typically three in conventional three-phase installations.
  • the present invention can also be developed considering nodes with a single coil, so that several are installed per cassette, thereby achieving greater redundancy in communications and, therefore, a greater reliability of them.
  • o Processing subsystem Pre-assigned preferably by means of a microcontroller 31, it is responsible for the management of communications and the processing of the information necessary for the realization of the different methods or procedures described below. In addition, it is responsible for the aggregations of data necessary to minimize the use of the wireless communications channel, thereby increasing the reliability of! system.
  • the deployment of the sensor network is carried out within the boxes of the underground distribution lines to be monitored, preferably complying with the following premises:
  • a current measurement sensor is placed for each of the lines that cross the box 8.
  • this may require the installation of one or more nodes per cabinet.
  • sensor devices 3 When a fork of drivers occurs. In this case, sensor devices 3 must be placed at the exit of each fork although the coverage conditions do not require it. For example, in the case that a three-phase line separates into two branches, six sensor elements are necessary, three for each branch, placing one in each of the phases of the three-phase line.
  • the algorithm for network formation is based on a flood algorithm, e: what will start on the bridge device of the gateway 5, generating a series of tricks that will be relayed to all the nodes in order to obtain the number of minimum jumps for communication between all nodes.
  • This process is called wireless network discovery, executing the following procedure:
  • a given node either at the request of the Information system or because it has been a long time without exchanging information with other nodes, sends a message in redcast that will be received by a series of nodes, informing of its battery level.
  • a series of nodes receive this message. These nodes are called neighboring nodes of the issuance. With this information, the nodes update their table of local routes, with which they determine the number of jumps between the node that originated the message and the operative bridge or gateway 5.
  • the giobal map of routes to be used over the network is calculated by using a minimum weight overlay tree algorithm designed for wireless sensor networks.
  • the weight of the covering tree takes into account various parameters, such as the topology of the electrical network to be monitored, the battery level of the nodes or the physical distance between sensor nodes to determine the optimal communication paths.
  • the information system is responsible for updating these routes in case there are not enough communications in the network to keep the route tables updated, maximizing the functionality of the network and the giobal battery life
  • the nodes are continuously measuring the current of the cable or cables to which they are associated. From the shape of the measured wave, each node calculates from a global internal clock a time stamp (timestamp) in which the zero crossing of the positive slope of the wave occurs. That is, the nodes are continuously measuring the current and processing it so that they always have in memory the magnitude and phase of the current, referred to their internal clock.
  • time stamp time stamp
  • a node sends a synchronization message to the child nodes ⁇ those hierarchically inferior in the distribution network architecture electrical) and considers as last synchronization time its last crossing through the zero of positive slope detected. • Due to the lags and the operation of the radio transceivers, the broadcast time is unknown, but it can be assumed, due to the speed of transmission of the communications via radio, that all the child nodes will receive the message In the same instant of time.
  • Each of the child nodes considers at this point the reception time as the origin of synchronization time, and they send to the parent node (the hierarchically superior one in the architecture of the electricity distribution network, and which has originated the synchronization process ) a message with the current module and the time lag between its last zero crossing of positive slope and the reception time of the synchronization message.
  • the parent node after receiving the information from all of its child nodes, adds the current magnitudes of all these interestingly and determines the phase resulting from the aggregation.
  • the error introduced due to the unknown time of receipt of the message is estimated from the time lag between the aggregate phase and the phase considered as the origin of time.
  • the parent node sends a message in redcast to the nodes informing of the overall time in which the reception of the message originated.
  • Each of the child nodes uses that information to calibrate their internal global clock.
  • Figure 5 (which due to its extension has been subdivided into Figure 5A - which includes the substation and the first and second segments-, Fsgura SO - which includes an intermediate segment f - and Figure SC - which includes the last segment z-) represents a simple underground electrical distribution network 1, without bifurcations, in which the deployment of the sensor network has been carried out in the different boxes 8.
  • the underground electrical distribution network 1 shown in Figures 5A, 58 and 5C comprises a substation 9, a piuraiity of segments 1 G (a segment is the section of the power line that separates two transformation centers 1 1) with their respective transformation centers 1 1. In the segment f a Jerusalema is located. The location is carried out collaboratively by all the nodes of the ed, while the classification is carried out by the nodes that are right in front of the transformation centers.
  • the unimmented procedure is divided into the following phases:
  • This first stage consists in comparing the input currents of segment f with the output currents of segment f.
  • the input current of segment f is calculated from the current data measured by the sensor devices 3 of the segment immediately before the transformation center f-1, segment f-1, and the own consumption of! Transformation center f-1
  • the output currents of segment f are calculated from the current input values of each of the transformation centers that hang from that line section, including the own transformation center f, Additionally
  • Another way to calculate the output currents of segment f would be through the consumption recorded by the nodes of the next segment f + 1, adding the current that is derived by the transformation center f.
  • I S EN ⁇ ⁇ ⁇ 15 is the current measured by any of the sensor nodes of the segment (f-1) of the line x
  • i SE is the current measured by any of sensor nodes segment (f + 1) for the line x
  • i C r 'MJ is current IA measured in ei transformer (f-1) for the line x
  • This analysis is performed for each of the phases (A, B and C) independently, to know the existence of a fault.
  • segment f Once the segment 10 under fault is determined (segment f in Figure 58), it is possible to classify the type of fault based on the lines (phases A, B, C) from the input and output data of the segment. affected and the type of fault that has occurred in the isolation. This analysis is divided into two parts -
  • a and ⁇ ' Sxf represent the currents that would circulate through the conductor and through the cable mafia of line x, in the segments of segment f after the point of failure.
  • This analysis can be done through the cclaborative analysis of the sensors of the affected segment, IF the return of the current is through the mesh ; All these sensors must measure approximately the same (equation 4).
  • I sm f ⁇ represents any of the currents measured by the sensor devices 3 located in the segments of the segment prior to the point of lack of the line x, e ⁇ ⁇ , ( ⁇ ⁇ represents any of the measured currents by ios sensor devices 3 located in manholes segment f;. subsequent ai fault point of the line x tant, if this condition is met n defined in (4) for all sensors ⁇ s segment is determined that lack it is for a fault in the internal insulation, otherwise, it is determined that the fault is due to a direct grounding at the point of failure.
  • the next step is to estimate the point at which the fault is found within the segment.
  • two important variants are distinguished:
  • the monitoring network can easily determine the operating status of the underground power grid.

Abstract

The invention relates to a distributed wireless system and method for the classification and localisation of failures in an underground electrical distribution network, comprising sensor devices (3), forming a network of wireless sensors (2), distributed in the underground electrical distribution network (1) and coupled to conductors (7) of the network (1) such that all the sections of conductors between bifurcations have an associated sensor device (3). The sensor devices (3) comprise means for measuring the current (34) that circulates via the conductor (7), being synchronised with one another and configured to identify the type of failure occurring and the localisation thereof by means of the interchange of messages, between the different sensor devices (3), with information relating to the synchronised current measurements and by means of the analysis of the phasor information of said synchronised current measurements, taking into consideration the topology of the network.

Description

Figure imgf000003_0001
Figure imgf000003_0001
DESCRIPCIÓN DESCRIPTION
Campo de la invención Field of the Invention
La presente invención se engloba dentro del campo de los métodos y equipes para la localización de faltas en lineas de distribución eléctricas, y más concretamente en líneas subterráneas de distribución eléctricas de media tensión.  The present invention falls within the field of methods and equipment for locating faults in electrical distribution lines, and more specifically in underground medium voltage electrical distribution lines.
Antecedentes de la Invención Background of the Invention
Es tarea fundamental ce las compañías eléctricas garantizar ei suministre de energía a los usuarios en condiciones de continuidad y calidad. Asi, ia localización de faltas en lineas eléctricas se convierte en una tarea prioritaria para estas compañías. Una vez detectada una falla, estimar automáticamente su posición desde el centro de control aporta grandes ventajas desde ei punto de vista de caiídad del servicio, ya que disminuye tanto ei tiempo de restauración como el numero de maniobras necesarias Por esto es muy atractivo, en términos de calidad y economía, ¡a implantación de sistemas de localización de esta naturaleza.  It is a fundamental task of the electricity companies to guarantee the supply of energy to the users in conditions of continuity and quality. Thus, the location of faults in power lines becomes a priority task for these companies. Once a fault has been detected, automatically estimating its position from the control center provides great advantages from the point of view of the service quality, since it reduces both the restoration time and the number of maneuvers needed. Therefore, it is very attractive, in terms of of quality and economy, to the implementation of location systems of this nature.
Ei desarrollo y aplicación de sistemas basados en microprocesadores en ingeniería eléctrica (ÍEDs) marca ia aparición de ias primeras técnicas de localización automática de fallos [1 , 2j. Desde entonces se han desarrollado numerosos métodos de localización automática de fallos que se clasifican en cuatro categorías: The development and application of microprocessor-based systems in electrical engineering (IEDs) marks the appearance of the first automatic fault location techniques [1, 2j. Since then numerous methods of automatic fault location have been developed that fall into four categories:
■■ Métodos basados en ondas viajeras ("traveiiing waves"). Este tipo de métodos analizan las señales de alta frecuencia (>500kHz)( en corrientes o tensiones, producidas por ios impulsos generados ai desencadenarse ei fallo [3] Estos impulsos viajan a velocidades elevadas a través de las líneas eléctrica La detección de ia llegada del Impulso a dos puntos distantes permite estimar la posición del fallo. Estas técnicas no precisan de un conocimiento completo de las características de las lineas, sin embargo, las altas velocidades de las ondas ocasionan grandes errores en la localización de la falta. ■■ Methods based on traveling waves ("traveiiing waves"). These types of methods analyze the high frequency signals (> 500kHz) ( in currents or voltages, produced by the impulses generated if the fault is triggered [3] These impulses travel at high speeds through the electric lines. The detection of the arrival of the Impulse to two distant points allows to estimate the position of the fault.These techniques do not require a complete knowledge of the characteristics of the lines, however, high wave speeds cause great errors in the location of the fault.
- Métodos que usan componentes de relativa alta frecuencia de tensiones o corrientes. Para estimar la posición del fallo, estos métodos utilizan las medidas obtenidas con frecuencias relativamente altas ( 10KHz), que se analizan utilizando técnicas basadas en el análisis en el dominio de la frecuencia. - Methods that use relatively high frequency components of voltages or currents. To estimate the position of the fault, these methods use the measurements obtained with relatively high frequencies (10KHz), which are analyzed using techniques based on frequency domain analysis.
- Métodos de impedancia. Estes métodos usan las componentes fundamentales (tasares) de tensiones e intensidades en puntos terminales de la l nea. Son ios más usados en ia localización de faifas en redes de distribución y consisten en calcular las impedancias de las lineas, tal y como se ven desde ios terminales de las mismas, antes y durante la falta Una buena descripción de los diferentes métodos se encuentra en |5] y sus extensiones a distintos casos de falta en [6], - Impedance methods. These methods use the fundamental components (rates) of tensions and intensities at terminal points of the line. They are the most used in the location of faifas in distribution networks and consist in calculating the impedances of the lines, as seen from the terminals of the same, before and during the lack. A good description of the different methods is found in | 5] and its extensions to different cases of failure in [6],
- Métodos basados en ia detección puntual üe sobrecogiente. Estos métodos se basan en el uso de Indicadores de Circuito de Falta (FCi), como se explica por ejemplo en la patente US7G23891 -B 1 . Estos elementos son capaces de detectar, de forma local, eventos de sobrecogiente, roemorizinoolos durante un tiempo o hasta que el dispositivo sea reseíeado. En base a esta información, en sistemas con distribución radia!, es posible determinar el tramo de línea en el que se origino ia falta. Sin embargo, en sistemas con generación distribuida donde el finjo de potencia no es unidireccional, estos sistemas no son capaces de realizar la localización. En estos casos es necesario utilizar FCis direccionales {como se indica por ejemplo en la patente US79691 55-B2) los cuales, empleando una ¡medida de la fase de ia tensión, son capaces de determinar ia dirección del flujo de potencia originado por la taita. Siguiendo estas direcciones es posible determinar el tramo bajo falta, incluso en estas redes con generación distribuida. La Información generada por este tipo de dispositivos es habitualmente visual (piloto luminoso o elemento móvil) que permiten al operario conocer, mediante una Inspección directa , el estado del dispositivo. Existen en ei mercado sistema con comunicación inalámbrica que permiten acceder a la información de forma remota. Estos sistemas están basados en radioenlaces de corta distancia, o en comunicaciones GSM o GPRS. - Methods based on the timely detection of an overpowering. These methods are based on the use of Missing Circuit Indicators (FCi), as explained for example in US7G23891 -B 1. These elements are able to detect, locally, overheating events, roemorizinoolos for a while or until the device is checked. Based on this information, in systems with radio distribution !, it is possible to determine the section of line in which the fault originated. However, in systems with distributed generation where the power is not unidirectional, these systems are not able to perform the location. In these cases it is necessary to use directional FCis {as indicated for example in US79691 55-B2) which, using a measure of the voltage phase, are able to determine the direction of the power flow caused by the taita . Following these directions it is possible to determine the section under fault, even in these networks with distributed generation. The information generated by this type of devices is usually visual (light pilot or mobile element) that allow the operator to know, by means of a Direct Inspection, the status of the device. There is a system in the market with wireless communication that allows access to information remotely. These systems are based on short distance radio links, or GSM or GPRS communications.
Hasta la fecha existen numerosos documentos de patente relativos a sistemas de localización de faltas en lineas eléctricas: To date there are numerous patent documents related to fault location systems in power lines:
-■ VVO2007032697-A1 presenta un método para localizar faltas dividiendo en secciones las líneas de un sistema de transmisión o distribución y asumiendo una hipotética localización en al menos una de estas secciones, partiendo de las medidas de las corrientes, en las condiciones de fallo y también en pre-faílo, en todas las estaciones terminales del sistema, y además, de ia medida de la fase del voltaje de linea, en ias condiciones de fallo y pre-falio, en una de las estaciones terminales del sistema. - ■ VVO2007032697-A1 presents a method to locate faults by dividing the lines of a transmission or distribution system into sections and assuming a hypothetical location in at least one of these sections, based on the measurements of the currents, in the fault conditions and also in pre-failo, in all seasons terminals of the system, and also, of the measurement of the phase of the line voltage, in the conditions of failure and pre-failure, in one of the terminal stations of the system.
- AU2008200131 -A1 describe un sistema de localización del punto de fallo, utilizando varias estaciones esclavas que recogen datos de la situación pre-fallo de la línea de distribución y de una estación maestra, donde se recibe y procesa toda esta información, deduciéndose un único punto de fallo, a partir da un conjunto mayor de posibilidades compatibles con las mediciones. - AU2008200131 -A1 describes a system for locating the point of failure, using several slave stations that collect data on the pre-failure situation of the distribution line and a master station, where all this information is received and processed, deducting a single point of failure, from a greater set of possibilities compatible with the measurements.
- WO2013G9 G28-A1 plantea un despliegue de un sistema de sensores para el registro de parámetros eléctricos, en redes de baja tensión Estos elementos de medida utilizan un sistema de GPS para su sincronización e irán conectados en los extremos de las líneas de distribución (uno por línea) y se comunicarán con la estación base a través de una conexión de banda ancha. - WO2013G9 G28-A1 proposes a deployment of a sensor system for recording electrical parameters, in low voltage networks These measuring elements use a GPS system for synchronization and will be connected at the ends of the distribution lines (one per line) and will communicate with the base station through a broadband connection.
- US201302Q59GG-A1 plantea un sistema de gestión de redes de distribución eléctrica, basado en un despliegue de sensores en redes de distribución eléctrica aéreas, registrando información de naturaleza eléctrica y mecánica Cada uno de estos sensores, se comunica directamente con una estación receptora, que registra y procesa la información de los nodos, tratando de determinar ias características de ¡a instalación, facilitando las opresiones de mantenimiento. - US201302Q59GG-A1 proposes an electrical distribution network management system, based on a deployment of sensors in aerial electrical distribution networks, recording information of an electrical and mechanical nature Each of these sensors communicates directly with a receiving station, which registers and processes the information of the nodes, trying to determine the characteristics of the installation, facilitating maintenance oppressions.
En la presente Invención se plantea el uso de un sistema distribuido no Intrusivo basado en redes de sensores inalámbricos (WSN) como alternativa para realizar la localización de faltas en redes eléctricas de distribución subterráneas. Una red de sensores inalámbricos está formada por una serie de pequeños dispositivos de bajo consumo (nodos), con capacidad de comunicación inalámbrica entre ellos y que colaboran para analizar un fenómeno en comú In the present invention, the use of a non-intrusive distributed system based on wireless sensor networks (WSN) is proposed as an alternative to locate faults in underground distribution electrical networks. A network of wireless sensors is made up of a series of small, low-power devices (nodes), capable of wireless communication between them and collaborating to analyze a common phenomenon.
Las redes de sensores poseen muchas aplicaciones [7], siendo una de las principales la monitorizacién ubicua y pervasiva de un entorne. La aplicación de ia tecnología de redes de sensores inalámbricos en el campo de las redes de distribución eléctricas es una alternativa emergente, con numerosas aportaciones en los últimos años, tanto de carácter general [8, 9], corno de aplicación en aspectos específicos, como: vigilancia de lineas aéreas (10), monitorizacién de sistemas de generación distribuida (1 11, o gestión de sistemas de carga de vehículos eléctricos híbridos, etc. Sin embargo, en ningún caso se ha aplicado las redes de sensores inalámbricas a la íocaiizacién de faltas en lineas eléctricas subterráneas, lo cual constituye una de las novedades de la presente invención . Sensor networks have many applications [7], one of the main ones being ubiquitous and pervasive monitoring of an environment. The application of wireless sensor network technology in the field of electrical distribution networks is an emerging alternative, with numerous contributions in recent years, both of a general nature [8, 9], as applicable in specific aspects, such as : surveillance of overhead lines (10), monitoring of distributed generation systems (11, or management of charging systems of hybrid electric vehicles, etc.) However, in no case has the networks been applied from wireless sensors to the iocaiization of faults in underground power lines, which constitutes one of the novelties of the present invention.
Precisamente, es este hecho uno de ios puntos donde se plantea una importante innovación con respecto a ios dispositivos de localización de faita actuales. Hasta ahora, existen solo dos variantes para estos sistemas de localización: los que utilizan un procesado local y aislado (basado exclusivamente en información local) y los que utilizan un procesado centralizado (en los que toda la información se concentra y procesa en un Único nodo). La presente invención, por el contrario, se basa en un procesado colaborativo entre nodos, que dotan al sistema de ia capacidad de detectar, localizar y clasificar las taitas en sistemas con generación distribuida , basándose únicamente en ia información de corriente, no requiriendo una medida de ia fase de la tensión (al contrario de los FCIs direccionales que sí la necesitan), medida que es inaccesible en cables apantallados (habituales en las íineas de distribución subterráneas) . Este hecho pone de manifiesto la capacidad del sistema colaborativo de la presente invención, gracias a ia cua! se puede localizar una falta debida a un tallo en el aislamiento interno (en la que el retorno de la corriente de taita se realiza por la malla), y que resuelven ios sistemas actuales tipo FCI. Precisely, this is one of the points where there is an important innovation with respect to the current faita location devices. So far, there are only two variants for these location systems: those that use local and isolated processing (based exclusively on local information) and those that use centralized processing (in which all information is concentrated and processed in a single node ). The present invention, on the other hand, is based on collaborative processing between nodes, which gives the system the ability to detect, locate and classify taitas in systems with distributed generation, based solely on current information, not requiring a measure of the voltage phase (unlike the directional FCIs that do need it), as it is inaccessible in shielded cables (common in underground distribution lines). This fact shows the capacity of the collaborative system of the present invention, thanks to the qua! a fault due to a stem can be found in the internal insulation (in which the return of the taita current is carried out through the mesh), and which solve the current FCI type systems.
Referencias bibliográficas Bibliographic references
[11 A. Girgis, C. Fallón, y D Luhkeman , "A fauit iocation technique for rural distribuíicn feeders." industry Applications, IEEE Transactlons on, voi. 29, 1993, págs, 1 1 70-1 175,  [11 A. Girgis, C. Fallón, and D Luhkeman, "A fauit iocation technique for rural distribution feeders." industry Applications, IEEE Transactlons on, voi. 29, 1993, pp. 1 1 70-1 175,
Í2 i T. Takagi, Y Yamakcshi, M. Yamaura, R. Kondow, y T. atsushima, "Development of a New Type Fauit Locator Using the One-Terminal Voitage and Current Data," I EEE Transacíions on Power Apparatus and Systems, vol. PAS-101 , 1982, págs. 2892-2898, Í2 i T. Takagi, Y Yamakcshi, M. Yamaura, R. Kondow, and T. atsushima, "Development of a New Type Fauit Locator Using the One-Terminal Voitage and Current Data," I EEE Transactions on Power Apparatus and Systems, vol. PAS-101, 1982, p. 2892-2898,
Í3] Wenjin Dai, Mm' Fang, y Lizhen Cui , Traveling Wave Fauit Location System", Inteliigent Control and Automation, 2006. CíCA 2006, págs. 7449-7452 Í3] Wenjin Dai, Mm ' Fang, and Lizhen Cui, Traveling Wave Fauit Location System ", Inteliigent Control and Automation, 2006. CíCA 2006, pp. 7449-7452
[4] E. Rosoxliovvskl, J . izyko ski B. Kasztenny, y M M. Saha, "A new distancie reiaying a!gorithm based on complex differentia! equafion for symmetricai components," Electric Power Systems Research, voi. 40, Mar. 199 ?, págs . 1 75-180 [4] E. Rosoxliovvskl, J. izyko ski B. Kasztenny, and M M. Saha, "A new distance reiaying a! gorithm based on complex differentia! equafion for symmetricai components," Electric Power Systems Research, voi. 40, Mar. 199?, P. 1 75-180
[5] J. Mora-Florez. J. Melendez, y G Carriüo-Caicedo, "Comparison oí impedance based fauit location ethods for povver distribsjtíon systems," Electric Power Systems Research, vol. 78, Abr. 2008. págs. 657-666. [8] Salim, . Resener, A Fiiomena, K. Rezende Caino de Oíiveira, y A. Bretas, "Extended Faiilt-Location Formu!ation for Power Distríbution Systems," Power Deüvery, iEEE[5] J. Mora-Florez. J. Melendez, and G Carriüo-Caicedo, "Comparison heard impedance based fauit location ethods for povver distribsjtíon systems," Electric Power Systems Research, vol. 78, Apr 2008. pp. 657-666. [8] Salim,. Resener, A Fiiomena, K. Rezende Caino de Oíiveira, and A. Bretas, "Extended Faiilt-Location Formation for Power Distribution Systems," Power Deüvery, iEEE
Transacíions on: voL 24, 2009, págs. 508-516. Transactions on : voL 24, 2009, p. 508-516.
[7] Akyildiz, i.F , Weilian Su; Sankarasubramaniam. Y.; Cayirci, E. in "A survey on sensor networks," Communications Magazlne, IEEE, vol 40, no.8, pp.102-1 14, 2002 [7] Akyildiz, i.F, Weilian Su; Sankarasubramaniam. Y.; Cayirci, E. in "A survey on sensor networks," Communications Magazlne, IEEE, vol 40, no.8, pp.102-1 14, 2002
[8] V.C.Gungor B.Lu y G.P.Hancke, Opportunifies and C allenges of Wireiess Sensor Networks in Smart Grid," IEEE Trans. ind. Electron., voi.57, n.10, 2010. [8] V.C. Gungor B.Lu and G.P. Hancke, Opportunifies and C allenges of Wireiess Sensor Networks in Smart Grid, "IEEE Trans. Ind. Electron., Voi. 57, n.10, 2010.
[9] M.Eroí-Kantarci y H.T.Mouftah, "Wireless multimedia sensor and actor networks for the next generation power grid." Ad Hoc Networks, vol.9, n.4, 201 1 . [9] M.Eroí-Kantarci and H.T. Mouftah, "Wireless multimedia sensor and actor networks for the next generation power grid." Ad Hoc Networks, vol.9, n.4, 201 1.
[ 0] Y.Yang, D. Diván, R.G.Hariey y T G.Habetíer, "Design and implementation of power ¡ine sensornet for cverhead transmíssion iines," IEEE PES Genera! Meeting, 2009. [0] Y. Yang, D. Diván, R.G. Hariey and T G. Habbeter, "Design and implementation of power ine sensornet for cverhead transmíssion iines," IEEE PES Genera! Meeting, 2009.
[1 1] i.S.AI-Anbagi, H.T. ouftah y .Eroi-Kantarci, "Design of a deiay-sensiíive WSN for wind generation moniíoring in the smart grid," 24th Canadian Conference on Eléctrica! and Computer Engineeríng(CCECE), 201 1. [1 1] i.S.AI-Anbagi, H.T. ouftah and .Eroi-Kantarci, "Design of a deiay-sensitive WSN for wind generation moniíoring in the smart grid," 24th Canadian Conference on Electric! and Computer Engineeríng (CCECE), 201 1.
[12] Y. .Hong y A.Scaglione, *A scalabie synchronization protocol for iarge scale sensor networks and its applications," !EEE J. Sel. Areas Commun,, vol.23, n.5, pp.1085-1099, 2005. [12] Y. Hong and A.Scaglione, * A scalabie synchronization protocol for iarge scale sensor networks and its applications, "! EEE J. Sel. Areas Commun ,, vol.23, n.5, pp. 1085-1099 , 2005.
[13] A.Marco, R. Casas, J.L. Sevillano, V.Coarasa, J.LFalco y .S.Obaidat, "Muiti-Hop Synchronszation at the Application Layer of Wireiess and Sateliite Networks," IEEE Global Telecommunications Conference, 2008. [13] A.Marco, R. Casas, J.L. Sevillano, V. Caoarasa, J.LFalco and .S.Obaidat, "Muiti-Hop Synchronszation at the Application Layer of Wireiess and Sateliite Networks," IEEE Global Telecommunications Conference, 2008.
[14] D F. Larios, J.M. ora-Merchan, E. Personal, J.Barbancho y C.León, "Implementing a Distributed WSN Based on IPv6 for Ambient onitoring," Int. J. Distrib. Sens. Networks,[14] D F. Larios, J.M. ora-Merchan, E. Personal, J.Barbancho and C. Leon, "Implementing a Distributed WSN Based on IPv6 for Ambient onitoring," Int. J. Distrib. Sens. Networks,
2013. 2013
La presente invención se refiere a un sistema y un método para la localización de faltas en lineas subterráneas de distribución eléctricas de media tensión. En concreto, se presenta un sistema diseñado como una red de sensores inalámbricos con müiíipíes sensores de corriente no intrusivos, que permita la deteccidn, clasificación y localización de las taitas. The present invention relates to a system and method for locating faults in medium voltage electrical distribution underground lines. Specifically, a system designed as a network of wireless sensors with multiple non-intrusive current sensors, which allows the detection, classification and location of the taitas.
Eí sistema inalámbrico distribuido para la clasificación y localización de faltas en una red de distribución eléctrica subterránea comprende una red de sensores inaíámbricos distribuidos en una red de distribución eléctrica subterránea La red de sensores inalámbricos está formada por una pluralidad de dispositivos sensores que constituyen ios nodos sensores de la red. Cada dispositivo sensor está acopiado magnéticamente a un conductor de la red de distribución eléctrica subterránea a monitorizar, estando los dispositivos sensores de la red distribuidos de forma que todos los tramos de conductores entre bifurcaciones tienen acopiados ai menos un dispositivo sensor The distributed wireless system for the classification and location of faults in an underground electrical distribution network comprises a network of wireless sensors distributed in an underground electrical distribution network The wireless sensor network is formed by a plurality of sensor devices that constitute the sensor nodes of the network. Each sensor device is magnetically collected to a conductor of the underground electrical distribution network to be monitored, the sensor devices of the network being distributed so that all sections of conductors between branches have collected at least one sensor device
Cada dispositivo sensor dispone de un modulo de comunicación inalámbrico para la comunicación con otros dispositivos sensores de la red ubicados dentro de su alcance, medios de procesamiento de datos y medios de medición de ia corriente que circula par eí conductor al que está asociado Each sensor device has a wireless communication module for communication with other network sensing devices located within its reach, data processing means and current measurement means that circulates for the conductor to which it is associated.
Los dispositivos sensores están sincronizados entre si' y configurados para, una vez detectado un evento de falta, identificar el tipo de falía originada y ei punto de ia red de distribución eléctrica subterránea donde se ha producido la falta mediante el intercambio de mensajes, entre los distintos dispositivos sensores, con Información de ías medidas de corriente sincronizadas y mediante el análisis de la Información fasorial de dichas medidas de corriente sincronizadas, teniendo en cuenta ia topología de la red. The sensing devices are synchronized 'and configured to, once detected fault event, identify the type of originated Falia and ei point of the network of underground power distribution where the fault has occurred through the exchange of messages between different sensor devices, with information on the synchronized current measurements and through the analysis of the phasor information of said synchronized current measurements, taking into account the network topology.
Para realizar ia localización de la falta ios dispositivos sensores están preferentemente configurados para; To perform the location of the fault, the sensor devices are preferably configured for;
- determinar ei segmento de l ínea en el que se encuentra la falta mediante la comparación de las corrientes de entrada y de salida de los distintos segmentos que componen la red de distribución eléctrica subterránea,  - determine the line segment in which the fault is found by comparing the input and output currents of the different segments that make up the underground electricity distribution network,
·■ clasificar ei tipo de falta en el segmento afectado, determinando la linea o líneas del segmento sometidas a falta y el tipo de fallo de aislamiento producido, y en particular si el fallo se produce por una derivación a tierra o por una pérdida de aislamiento en el interior del cable,  · ■ classify the type of fault in the affected segment, determining the line or lines of the segment subject to the fault and the type of insulation fault produced, and in particular if the fault is caused by a grounding or a loss of insulation inside the cable,
- estimar ia localización de ia falta dentro del segmento en el que se ha producido la falta teniendo en cuenta la clasificación de la misma. Los dispositivos sensores están preferentemente configurados para realizar ia Sincronización conjunta empleando ia detección de paso por cero de las medidas de corriente de ios nodos sensores, y teniendo en cuenta la situación de ios nodos sensores dentro de la red de distribución eléctrica subterránea a moniíorizar y que el sumatorío fasonai de las corrientes en todos los nodos es Igual a cero. - estimate the location of the fault within the segment in which the fault occurred taking into account its classification. The sensor devices are preferably configured to perform the joint synchronization using the zero-pass detection of the current measurements of the sensor nodes, and taking into account the situation of the sensor nodes within the underground electrical distribution network to be monitored and that the fasonai sum of currents in all nodes is equal to zero.
En una realización preferida los dispositivos sensores disponen de una bobina de alimentación que rodea ai conductor y a través de la cual recibe ia energía de alimentación. In a preferred embodiment the sensor devices have a power coil that surrounds the conductor and through which it receives the power supply.
Los medios de medición de ia corriente de los dispositivos sensores comprenden preferiblemente ai menos una bobina de Rogowski. The current measurement means of the sensor devices preferably comprise at least one Rogowski coil.
Los dispositivos sensores pueden estar ubicados en arquetas de la red de distribución eiécírica subterránea, de forma tai que permiten moniíorizar todo el flujo de potencia de la red de distribución eléctrica subterránea The sensing devices can be located in the underground air distribution network, so that they can monitor the entire power flow of the underground electrical distribution network
El sistema puede comprender adicionalmente una unidad de control y una pasarela con capacidad de comunicación inalámbrica configurada para recoger información de la red de sensores inalámbricos y transmitírsela a la unidad de control The system may additionally comprise a control unit and a gateway with wireless communication capability configured to collect information from the wireless sensor network and transmit it to the control unit
Otro aspecto de ia presente invención se refiere a un procedimiento de clasificación y localización de faltas en una red de distribución eiécírica subterránea. El procedimiento comprende: Another aspect of the present invention relates to a method of classifying and locating faults in an underground air distribution network. The procedure includes:
- establecer una red de sensores inalámbricos en una red de distribución eléctrica subterránea, dicha red de sensores inalámbricos estando formada por una pluralidad de dispositivos sensores sincronizados entre si y que constituyen los nodos sensores de la red; donde cada dispositivo sensor está asociado a un conductor de ia red de distribución eléctrica subterránea a moniíorizar, estando ios dispositivos sensores de la red distribuidos de forma que todos los tramos de conductores entre bifurcaciones tienen asociados al menos un dispositivo sensor;  - establishing a wireless sensor network in an underground electrical distribution network, said wireless sensor network being formed by a plurality of sensor devices synchronized with each other and constituting the sensor nodes of the network; where each sensor device is associated with a conductor of the underground electrical distribution network to be monitored, the sensor devices of the network being distributed so that all the sections of conductors between branches have at least one sensor device associated;
■· medir, por parte de cada dispositivo sensor, la corriente que circula por el conductor al que está asociado;  ■ · measure, by each sensor device, the current flowing through the conductor to which it is associated;
- ante la detección de un evento de falta, Identificar el tipo de falta originada y la localización de la falta mediante ei intercambio de mensajes, entre los distintos dispositivos sensores, con información de las medidas de corriente sincronizadas y mediante el análisis de la información fasonai de dichas medidas de corriente Sincronizadas, teniendo en cuenta la topología de la red - before the detection of a fault event, Identify the type of fault originated and the location of the fault by means of the exchange of messages, between the different sensor devices, with information of the synchronized current measurements and by the analysis of the fasonai information of these synchronized current measurements, taking into account network topology
Para lograr la detección y localización de faltas, ademas de la medida en sí de la corriente que circula por ias líneas, es necesario que la red de sensores provea de dos servicios básicos: un método de formación y encaminamiento de los mensajes, y un mecanismo de sincronización de tiempo que permita compartir un reloj global entre todos los dispositivos. Ambos son problemas clásicos de ias redes de sensores, para lo que se han propuesto múltiples soluciones [12, 13, 14], pero aún hoy en día no es una linea de investigación cerrada, puesto que no existen algoritmos óptimos para todas ias aplicaciones. To achieve the detection and location of faults, in addition to the measurement itself of the current flowing through the lines, it is necessary that the sensor network provide two basic services: a method of formation and routing of messages, and a mechanism of time synchronization that allows to share a global clock between all the devices. Both are classic problems of sensor networks, for which multiple solutions have been proposed [12, 13, 14], but even today it is not a closed line of research, since there are no optimal algorithms for all applications.
Con el fin de sincronizar ios nodos, la presente invención incluye un método de sincronización global de tiempo que usa el propio sistema distribuido de medidas de la corriente de la red de sensores. Gracias a estas medidas distribuidas y mediante un método colaboratívo, se puede estimar y calibrar un reloj global para la red de sensores que da soporte, entre otras cosas, a la implementac¡6n de métodos de encaminamiento de la información que minimizan el consumo de energía eléctrica. In order to synchronize the nodes, the present invention includes a method of global time synchronization using the distributed system of current measurements of the sensor network. Thanks to these distributed measures and through a collaborative method, a global clock can be estimated and calibrated for the sensor network that supports, among other things, the implementation of information routing methods that minimize energy consumption electric
El novedoso sistema de localización de faltas en lineas de distribución eléctricas subterráneas está basado por tanto en el análisis colaboratívo de los flujos netos de corrientes adquiridos mediante el empleo de una red de sensores no intrusivos que se comunican de forma inalámbrica, formando una red de sensores inalámbrica (WS ) La ventaja de este planteamiento con red de sensores, es que éste no requiere ningún tipo Información de modulo y/o fase de la tensión, parámetros no accesibles sin perforación en los cables apantallados presentes habiíuaimente en las líneas subterráneas de distribución eléctrica. Ei sistema únicamente requiere las medidas de corriente adquiridas directamente por los nodos, los cuales ai Intercambiar información, son capaces de detectar, clasificar y localizar ias faltas, tanto en sistemas de distribución tradicionales (con flujos unidireccionales de corriente), como en sistemas con generación distribuida, donde el fiujo de potencia puede cambiar de sentido. Ésta es otra ventaja e innovación del presente método y sistema con respecto a sus predecesores The new system of location of faults in underground electrical distribution lines is therefore based on the collaborative analysis of the net flows of currents acquired through the use of a network of non-intrusive sensors that communicate wirelessly, forming a network of sensors Wireless (WS) The advantage of this approach with a sensor network is that it does not require any type of module information and / or voltage phase, parameters not accessible without perforation in the shielded cables presently present in the underground power distribution lines . The system only requires the current measurements acquired directly by the nodes, which ai Exchange information, are able to detect, classify and locate the faults, both in traditional distribution systems (with unidirectional current flows), and in systems with generation distributed, where the power flow can change direction. This is another advantage and innovation of the present method and system with respect to its predecessors
Como ventaja adicional, no se requiere otro sistema para la extracción de la Información de la red , es decir, el sistema aprovecha su propia estructura de comunicación inalámbrica, para Informar al centro de control (bajo demanda) de los distintos parámetros de la red . No obstante, el uso de esta tecnología fia obligado a adaptar distintos aspectos del encaminamiento y la sincronización de las comunicaciones, a las características del problema a resolver. En la presente invención se definen técnicas basadas en ei uso de información implícita a ia propia red eléctrica a monitorlzar para la obtención de las tablas de rutas y de la sincronización de tiempo, lo que resulta un enfoque novedoso en comparación con los sistemas existentes en ia literatura, que fundamentalmente emplean tan solo información obtenida a partir del intercambio de mensajes. As an additional advantage, no other system is required to extract the information from the network, that is, the system takes advantage of its own wireless communication structure, to inform the control center (on demand) of the different parameters of the network. However, the use of this technology is bound to adapt different aspects of the routing and synchronization of communications, to the characteristics of the problem to solve. In the present invention, techniques based on the use of implicit information to the own electricity network to be monitored for obtaining route tables and time synchronization are defined, which results in a novel approach compared to existing systems in ia Literature, which primarily employs only information obtained from the exchange of messages.
Ei método de ía presente invención permite, por tanto, la monitorización de una red eléctrica subterránea de media tensión mediante e! empleo de una red de sensores inalámbricos que con un procedimiento no intrusivo permiten la medida de ias corrientes que circulan por la red a monitorízar. Usando dichas medidas de corriente y el intercambio de mensajes, la red es capaz de monitorizar el estado de las líneas, asi como de clasificar y localizar los posibles fallos que se puedan producir en ias mismas The method of the present invention therefore allows the monitoring of a medium voltage underground electrical network by means of e! Use of a network of wireless sensors that with a non-intrusive procedure allow the measurement of the currents that circulate through the network to be monitored. Using these measures of current and the exchange of messages, the network is able to monitor the state of the lines, as well as to classify and locate the possible failures that may occur in them.
El sistema está compuesto por un despliegue de nodos sensores, distribuidos de ta! forma que se tiene que garantizar que todos ios trames de cables entre bifurcaciones tengan acopiados al menos un medidor de corriente. La estructura de comunicaciones se forma automáticamente mediante el intercambio de mensajes, a partir del conocimiento previo de la estructura de la red eléctrica. The system consists of a deployment of sensor nodes, distributed from ta! In this way, it is necessary to ensure that all cable frames between branches have at least one current meter collected. The communications structure is automatically formed by exchanging messages, based on prior knowledge of the structure of the electricity grid.
Eí método de sincronización de ios nodos sensores aprovecha el conocimiento previo de la topología de la red eléctrica y de la situación de los nodos sensores para sincroni ar, con alta precisión, un reloj globaí común entre todos ios nodos de la red de monitorización Esta sincronización de tiempo es necesaria para poder detectar y localizar las posibles faltas o defectos que se puedan producir sobre la red eléctrica subterránea monitorizada. Para realizar la sincronización, el sistema utiliza ei conocimiento de que ei sumatorio fasoriai de las corrientes en todos los nodos es igual a cero. A partir de ello y suponiendo, en una primera aproximación, que el desfase de tiempo en la recepción de los mensajes es despreciable entre todos los nodos de la bifurcación, se establece un modelo matemático que utiliza ios pasos por cero de la señal de la corriente para calibrar, con alta precisión, los relojes de cada uno de los nodos. Ei método completo de sincronización se descube posteriormente de forma detallada. The method of synchronization of the sensor nodes takes advantage of the previous knowledge of the topology of the electrical network and the situation of the sensor nodes to synchronize, with high precision, a common globaí clock among all the nodes of the monitoring network This synchronization of time is necessary to be able to detect and locate possible faults or defects that may occur on the monitored underground power grid. To perform the synchronization, the system uses the knowledge that the sum of fasoriai currents in all nodes is equal to zero. From this and assuming, in a first approximation, that the time lag in the reception of the messages is negligible among all the nodes of the fork, a mathematical model is established that uses the zero steps of the current signal to calibrate, with high precision, the clocks of each of the nodes. The complete synchronization method is subsequently uncovered in detail.
El método para la clasificación y localización de faltas en lineas de distribución eléctricas subterráneas permite efectuar la localización de la falta una vez ésta ha sido detectada (mediante ei relé de protección, ubicado en la cabecera de ia línea), basándose en el análisis de la información fasoriai de corriente registradas por los distintos nodos sensores y conocida ía topología de la red de distribución, incluida la ubicación de cada nodo dentro de la misma. El método de localización basado en esta información se estructura en tres fases: determinación del tramo de linea entre dos centros de trasformación en el que se encuentra la falta, clasificación del tipo de falta y, finalmente, Sa estimación del punto concreto de ese tramo, en el que se ha originó la falta . El conocimiento de esta posición permite realizar el aislamiento de la falta y el restablecimiento del suministro eléctrico de forma más rápida y precisa, mejorándose considerablemente ia continuidad del suministro. The method for the classification and location of faults in underground electrical distribution lines allows the fault to be located once it has been detected (by means of the protection relay, located at the head of the line), based on the analysis of the fasoriai current information recorded by the different sensor nodes and known topology of the distribution network, including the location of each node within it. The location method based on this information is structured in three phases: determination of the line section between two transformation centers where the fault is found, classification of the type of fault and, finally, the estimation of the specific point of that section, in which the fault originated. The knowledge of this position allows the isolation of the fault and the restoration of the electricity supply to be carried out more quickly and accurately, considerably improving the continuity of the supply.
^íg g.dgsc ipgion de los d i; bujgs ^ íg g . dgsc ipgion of the di ; spark plugs
A continuación se pasa a describir de manera muy breve una sene de dibujos que ayudan a comprender mejor la invención y que se relacionan expresamente con una realización de dicha Invención que se presenta como un ejemplo no limitativo de ésta.  Next, a series of drawings that help to better understand the invention and that expressly relate to an embodiment of said invention which is presented as a non-limiting example thereof is described very briefly.
La Figura 1 representa la estructura general de una red de sensores inalámbrica. Figure 1 represents the general structure of a wireless sensor network.
La Figura 2 muestra ía conexión de un nodo sensor al conductor a monitorizar. Figure 2 shows the connection of a sensor node to the conductor to be monitored.
La Figura 3 muestra ía estructura interna de un nodo sensor. Figure 3 shows the internal structure of a sensor node.
La Figura 4 muestra la estructura de una red de sensores para la monitorización de ía red eléctrica subterránea, donde cada arqueta puede tener una o varios nodos sensores. Figure 4 shows the structure of a sensor network for monitoring the underground electrical network, where each box can have one or more sensor nodes.
Las Figuras 5A, 5B y 5C representan un modelo de ia red de distribución subterránea simple sobre la que se ha realizado un despliegue de nodos en las distintas arquetas. La Figura 5C es una continuación de ía Figura 58 y ésta a su vez es una continuación de ia Figura 5A. Figures 5A, 5B and 5C represent a model of the simple underground distribution network on which a deployment of nodes in the different boxes has been made. Figure 5C is a continuation of Figure 58 and this in turn is a continuation of Figure 5A.
Descripción cietaiiada de ia invención Blind description of the invention
El método y sistema de ia presente invención se basan en el despliegue de una red de sensores Inalámbricas que permite la detección, clasificación y localización de anomalías en lineas subterráneas de distribución eléctricas.  The method and system of the present invention are based on the deployment of a wireless sensor network that allows the detection, classification and location of anomalies in underground electrical distribution lines.
La Figura 1 muestra una red de sensores inalámbricos 2 distribuidos en una red de distnbución eléctrica subterránea 1 y formada por una pluralidad de dispositivos sensores 3 (o nodos sensores) de bajo consumo, con capacidad de comunicación inalámbrica entre ellos y que colaboran para analizar un fenómeno en común. La red de sensores inalámbricos 2 se comunica con un centro de control 4, formado por una pasarela 5 con capacidad inalámbrica (en comunicación con los dispositivos sensores 3) y conectada a una unidad de contra! 6 (e.g. un ordenador). Figure 1 shows a network of wireless sensors 2 distributed in an underground electrical distribution network 1 and formed by a plurality of low consumption sensor devices 3 (or sensor nodes), with wireless communication capability between them and collaborating to analyze a common phenomenon. The wireless sensor network 2 communicates with a control center 4, formed by a gateway 5 with wireless capability (in communication with sensor devices 3) and connected to a counter unit! 6 (eg a computer).
Cada dispositivo sensor 3 de la red, llamado también nodo sensor, está diseñado para operar de forma autónoma adquiriendo su energía directamente de la ¡mea, a partir de una conexión no intrusiva con esta, ya que el dispositivo tan solo hay que acopiarlo alrededor del conductor de la red de distribución, sin necesidad de perforar o seccionar ei mismo, según se muestra en la Figura 2, que representa la forma de conexión de un dispositivo sensor 3 al conductor 7 a moniton ar. Each sensor device 3 of the network, also called a sensor node, is designed to operate autonomously by acquiring its energy directly from the mea, from a non-intrusive connection with it, since the device only has to be collected around the distribution network conductor, without the need for drilling or sectioning itself, as shown in Figure 2, which represents the way of connecting a sensor device 3 to the conductor 7 moniton ar.
La Figura 3 muestra ia estructura interna de ios dispositivos sensores 3. Cada uno de estos nodos est formado por un módulo de comunicación inalámbrico (Le. un transceptor de radio 30} que permite la comunicación dentro de la propia canalización subterránea con otros dispositivos sensores 3, medios de procesamiento de datos (por ejemplo, un microconlroiador 31 ) que procesa la información, una fuente de alimentación 32 y un subsistema de entrada-salida 33, encargado de la monltorlzación del entorno a través de los distintos sistemas de medida que lo componen, entre ellos un módulo de medida de la corriente 34 que circula por ei conductor 7 de la red de distribución , y un interfaz de E/S para otros sensores 35 útiles para la empresa distribuidora (como podrían ser sensor de temperatura, sensor de humedad, sensor de Intensidad lumínica, sensor de vibraciones, sensor sonoro, etc.), que aportarían más información extra del entorno o de las condiciones de trabajo de la instalación. Asi pues, ei dispositivo sensor 3 de la invención tiene la capacidad de integrar sensores adicionales para ia monitorizacién de la instalación, los cuales permiten utilizar ia infraestructura de comunicaciones para suministrar información adicional a ia empresa propietaria de la instalación. Los dispositivos sensores 3 están diseñados para, aparte de ser económicos, permitir un rápido despliegue de la red Fundamentalmente la red de dispositivos ejecuta ios siguientes métodos: Figure 3 shows the internal structure of the sensor devices 3. Each of these nodes is formed by a wireless communication module (Le. A radio transceiver 30} that allows communication within the underground pipeline itself with other sensor devices 3 , data processing means (for example, a microcontroller 31) that processes the information, a power supply 32 and an input-output subsystem 33, responsible for the monltorlzación of the environment through the different measurement systems that compose it , among them a current measurement module 34 that circulates through the conductor 7 of the distribution network, and an I / O interface for other sensors 35 useful for the distribution company (such as temperature sensor, humidity sensor , light intensity sensor, vibration sensor, sound sensor, etc.), which would provide more information about the environment or working conditions of the in Thus, the sensor device 3 of the invention has the ability to integrate additional sensors for the monitoring of the installation, which allow the use of the communications infrastructure to provide additional information to the company that owns the installation. The sensor devices 3 are designed to, apart from being economical, allow rapid network deployment. Fundamentally the device network executes the following methods:
- Método para la calibración deí reloj global del sistema mediante un algoritmo híbrido basado en comunicaciones inalámbricas y estimaciones fasonales de las corrientes que circulan por ios conductores de la red eléctrica subterránea a moniíorizar. - Method for the calibration of the global system clock by means of a hybrid algorithm based on wireless communications and fasonal estimates of the currents that circulate through the conductors of the underground electrical network to be monitored.
- Método colaborativo para la clasificación de faltas en líneas eléctricas basado en el intercambio de mensajes con ia información de los flujos netos de carga entre los distintos nodos que forman la red de distribución eléctrica - Método coíaborativo para ia localización de la falta en líneas eléctricas basado en el intercambio de mensajes con la información can las medidas sincronizadas de corriente de los nodos, y en la clasificación previa de la falta. Esta localización permite reducir drásticamente e! número de maniobras y ei tiempo de interrupción del servicio en ía red, facilitando las tareas de mantenimiento (los operarios conocen exactamente donde deben reaíizar las reparaciones). - Collaborative method for the classification of faults in power lines based on the exchange of messages with the information of the net charge flows between the different nodes that form the electricity distribution network - Co-operative method for the location of the fault in power lines based on the exchange of messages with the information with the synchronized current measurements of the nodes, and in the previous classification of the fault. This location allows to drastically reduce e! number of maneuvers and the interruption time of the network service, facilitating maintenance tasks (operators know exactly where the repairs should take place).
A continuación se describe detalladamente los distintos dispositivos que forman parte de la invención, y la funcionalidad de dichos dispositivos que permite realizar ei análisis de las faifas en las líneas de distribución subterráneas, asi como ei correcto funcionamiento de las comunicaciones entre los dispositivos. The different devices that are part of the invention are described in detail below, and the functionality of said devices that allows the analysis of the faifaes in the underground distribution lines, as well as the proper functioning of the communications between the devices.
La presente invención plantea un sistema cuyo desarrollo se despliega sobre una red de sensores inalámbricos. La red está formada por una serie de dispositivos, llamados nodos, que se encargan de interactuar entre ellos, de manera que mediante su interacción permitan la moniforízacion de su entorno En ia presente invención se distinguen los siguientes componentes: The present invention raises a system whose development is deployed over a network of wireless sensors. The network is formed by a series of devices, called nodes, which are responsible for interacting with each other, so that through their interaction they allow the monitoring of their environment. In the present invention the following components are distinguished:
- Unidad de control 8: Es un elemento, generalmente situado en el centro de control 4, con el que interactúa el usuano y le permite recuperar ia información de ios nodos sensores referente al estado de la red de distribución eléctrica subterránea bajo análisis, Indicándole, en caso de que se produzca una averia, el tramo en el que se ha producido y su localización dentro de! mismo, facilitándole asi a los operarlos sus tareas de aislamiento y reparación de la falta. Además, se encarga de almacenar los históricos correspondientes de los registros de faifas detectadas. - Control unit 8: It is an element, generally located in the control center 4, with which the user interacts and allows him to retrieve the information of the sensor nodes regarding the state of the underground electrical distribution network under analysis, indicating, in the event of a breakdown, the section in which it occurred and its location within! same, making it easier for them to operate their tasks of isolation and repair of the fault. In addition, it is responsible for storing the corresponding historical records of detected faifas.
- Pasarela S: Este elemento es un nodo que por un lado permite ia comunicación con la unidad de control 6 mediante un puerto estándar y por el otro integra un transceptor de radio compatible con el utilizado en el resto de dispositivos que componen la red. Este dispositivo se encarga de redirigir las consultas de ios operarios a través de ia red de sensores Inalámbricos 2. Gracias a este dispositivo la unidad de control 6 pueden recolectar la información del estado de funcionamiento de ia red subterránea de distribución eléctrica 1 , asi como del estado interno (batería restante, índice de errores, etc.. ) de cada uno de los dispositivos sensores 3. Además, la pasarela 5 también se encarga de realizar las gestiones oportunas para asegurar que se mantienen actualizadas las tablas de rutas de todos los nodos de la red, de forma que se garantice el acceso mediante una retransmisión adecuada empleando nodos intermedios a cualquier elemento de la red. - Gateway S: This element is a node that on the one hand allows communication with the control unit 6 through a standard port and on the other it integrates a radio transceiver compatible with that used in the other devices that make up the network. This device is responsible for redirecting the inquiries of the operators through the wireless sensor network 2. Thanks to this device, the control unit 6 can collect the information on the operating status of the underground electrical distribution network 1, as well as the internal status (remaining battery, error rate, etc.) of each of the sensor devices 3. In addition, the gateway 5 is also responsible for making the necessary steps to ensure that the route tables of all the routes are kept updated network nodes, so that access is guaranteed through adequate retransmission using intermediate nodes to any element of the network.
~ Dispositivos sensores 3 o nodos: Se entiende por nodos sensores, o simplemente nodos, a ¡a serie de dispositivos sensores 3 de bajo consumo y bajo coste que permiten interacíuar entre eilos mediante el uso de comunicaciones inalámbricas y que permiten rnonitorizar una parte localizada del problema a resolver, de forma que mediante su interacción se puede encontrar ía solución global del problema. Los nodos propuestos para la presente invención constan de les siguientes elementos o subsistemas (ver Figura 3): o Subsistema de comunicaciones Inalámbricas: Estará compuesto por un transceptor de radio 30 de bajo consumo. La frecuencia de la señal portadora se elegirá en función de la topología de la red, buscando una minimización de las pérdidas de trasmisión. Puesto que las canalizaciones que interconectan as arquetas están rodeadas de un plano de masa se puede asumir que para ciertas frecuencias dicha canalización actuará como guía-ondas, permitiendo un gran alcance con bajas pérdidas. Estas frecuencias, junto con una modulación apropiada, será la elegida para ias comunicaciones entre todos los elementos que componen la red o Subsistema de alimentación: Los dispositivos sensores 3 reciben la energía para su correcto funcionamiento a través de una bobina de alimentaci n 38 (Figure 2.) que rodea el conductor 7, mediante la cual se puede alimentar junto con una electrónica adecuada, todos los circuitos electrónicos del sensor. Incluido ei transceptor de radio, sin la necesidad de corlar o perforar el aislamiento del cable ai que está asociado, Gracias a esto se puede conseguir un despliegue muy rápido y no intrusivo, que no dañe las características de la red de distribución a rnonitorizar. ~ Sensor devices 3 or nodes: It is understood by sensor nodes, or simply nodes, a series of low-cost and low-cost sensor devices 3 that allow interaction between wires through the use of wireless communications and that allow a localized part of the problem to solve, so that through its interaction you can find the global solution of the problem. The nodes proposed for the present invention consist of the following elements or subsystems (see Figure 3): o Wireless communications subsystem: It will consist of a low consumption radio transceiver 30. The frequency of the carrier signal will be chosen based on the network topology, seeking a minimization of transmission losses. Since the pipes that interconnect the boxes are surrounded by a plane of mass, it can be assumed that for certain frequencies this channel will act as a waveguide, allowing a large range with low losses. These frequencies, together with an appropriate modulation, will be the one chosen for the communications between all the elements that make up the network or Power Subsystem: The sensor devices 3 receive the energy for their correct operation through a supply coil 38 (Figure 2.) surrounding the conductor 7, by means of which all the electronic circuits of the sensor can be fed together with suitable electronics . Including the radio transceiver, without the need to run or drill the insulation of the cable to which it is associated, Thanks to this, a very fast and non-intrusive deployment can be achieved, which does not damage the characteristics of the distribution network to be monitored.
Además del sistema de recolección energética, si sistema de alimentación consta de un sistema de almacenamiento energético de respaldo, tai como una batería o un condensador de alta capacidad que permitirán a estos dispositivos seguir funcionando tras la aparición de una falta en la red de distribución, situación en la cual ya no hay flujo de energía per ei conductor y, por tante, no se podría alimentar el nodo a través de la bobina de alimentación 36. o Subsistema de E/S 33: Permite la montorización del entorno a través de los distintos sistemas de medida que lo componen. En este caso la magnitud más Importante es ia corriente que atraviesa el conductor 7 de la red de distribución, medida a través de un sensor de medición de corriente, preferentemente una o varias bobinas de Rogowski 37 (Figura 2), cuyo comportamiento está definido por:
Figure imgf000016_0001
In addition to the energy collection system, if the power system consists of a backup energy storage system, such as a battery or a high capacity capacitor that will allow these devices to continue operating after the appearance of a fault in the distribution network, situation in which there is no longer a per-conductor energy flow and, therefore, the node could not be fed through the supply coil 36. o I / O Subsystem 33: Allows the monitoring of the environment through the different measurement systems that compose it. In this case the most important magnitude is The current through conductor 7 of the distribution network, measured through a current measurement sensor, preferably one or several Rogowski coils 37 (Figure 2), whose behavior is defined by:
Figure imgf000016_0001
Donde n es el número de espiras, A el área de ¡a sección del torolde formado por la bobina y ο, permeabilidad de vacio (4··π· 10"? (V-s)/(A m)) Where n is the number of turns, A the area of the section of the torch formed by the coil and ο, vacuum permeability (4 ·· π · 10 "? (Vs) / (A m))
Asi pues, cada bobina permite ia estimación de ia corriente que circula por un conductor. En función de las características de la instalación, se dota a los nodos de hasta un máximo de una bobina por conductor, típicamente tres en las instalaciones trifásicas convencionales. No obstante, para aquellas instalaciones cuya to ología lo requiera, también se puede desarrollar ia presente invención considerando nodos con una sola bobina, de forma que se instalen varios por arqueta, consiguiéndose con esto una mayor redundancia en las comunicaciones y, por tanto, una mayor fiabilidad de las mismas. o Subsistema de procesado: Impiemeníado preferentemente mediante un microcontrolador 31 , se encarga de la gestión de las comunicaciones y del procesado de ia información necesaria para la realización de los distintos métodos o procedimientos posteriormente descritos Además, se encarga de las agregaciones de datos necesarias para minimizar el uso del canal de comunicaciones inalámbrico, aumentando con ello ia fiabilidad de! sistema. Thus, each coil allows the estimation of the current flowing through a conductor. Depending on the characteristics of the installation, nodes are provided with up to a maximum of one coil per conductor, typically three in conventional three-phase installations. However, for those installations whose onology requires it, the present invention can also be developed considering nodes with a single coil, so that several are installed per cassette, thereby achieving greater redundancy in communications and, therefore, a greater reliability of them. o Processing subsystem: Pre-assigned preferably by means of a microcontroller 31, it is responsible for the management of communications and the processing of the information necessary for the realization of the different methods or procedures described below. In addition, it is responsible for the aggregations of data necessary to minimize the use of the wireless communications channel, thereby increasing the reliability of! system.
Para obtener un correcto funcionamiento del sistema, el despliegue de la red de sensores se realiza dentro de las arquetas de las líneas de distribución subterránea a monitorizar, cumpliendo preferentemente con ias siguientes premisas: In order to obtain a correct functioning of the system, the deployment of the sensor network is carried out within the boxes of the underground distribution lines to be monitored, preferably complying with the following premises:
- Tanto los elementos de alimentación como los sensores se colocan arrollados alrededor de los conductores 7 a monitorizar (Figura 2), no requiriéndose ninguna acción sobre el mismo (ej.- perforación o corte de su aislante). - Both the power elements and the sensors are wrapped around the conductors 7 to be monitored (Figure 2), with no action required on it (eg, perforation or cutting of its insulator).
- Se coloca un sensor de medición de corriente por cada una de las lineas que atraviesan la arqueta 8. Asi, por ejemplo, en un sistema trifásico es necesario ia colocación de tres sensores de corriente En función de i tipo de nodos utilizados, esto puede requerir de ia instalación de uno o más nodos por arqueta. - A current measurement sensor is placed for each of the lines that cross the box 8. Thus, for example, in a three-phase system it is necessary to place of three current sensors Depending on the type of nodes used, this may require the installation of one or more nodes per cabinet.
- Se colocan dispositivos sensores 3 en todas aquellas arquetas 8 (ver Figura 4, que representa una estructura de una red de sensores) de la red de distribución eléctrica subterránea 1 a monitorizar que cumplan con las siguientes premisas: - Sensor devices 3 are placed in all those boxes 8 (see Figure 4, which represents a structure of a sensor network) of the underground electrical distribution network 1 to be monitored that meet the following premises:
« Cuando la separación entre la arqueta 8 con sensores anterior y siguiente a ia arqueta 8 actual supere la distancia máxima de cobertura del sistema de comunicación Inalámbrica, " When the separation between the box 8 with sensors before and after the current box 8 exceeds the maximum coverage distance of the Wireless communication system,
Cuando se produzca una bifurcación de conductores. En este caso, hay que colocar dispositivos sensores 3 en ia salida de cada bifurcación aunque las condiciones de cobertura no lo requieran. Por ejemplo, en el caso de que una linea trifásica se separe en dos ramas son necesarios seis elementos sensores, tres por cada rama , situando uno en cada una de las fases de la linea trifásica. When a fork of drivers occurs. In this case, sensor devices 3 must be placed at the exit of each fork although the coverage conditions do not require it. For example, in the case that a three-phase line separates into two branches, six sensor elements are necessary, three for each branch, placing one in each of the phases of the three-phase line.
Para realizar la monitorización de una red de distribución eléctrica subterránea de media tensión es necesario conocer de antemano ia situación de los nodos y la topología de ¡a red eléctrica a monitorizar. Partiendo de esa información, ios dispositivos que componen la invención impiementan los siguientes métodos para monitorizar la red eléctrica: In order to monitor a medium voltage underground electrical distribution network, it is necessary to know in advance the situation of the nodes and the topology of the electrical network to be monitored. Based on this information, the devices that make up the invention impose the following methods to monitor the power grid:
- Método para la formación de la red y sus mías. Ei algoritmo para formación de la red se basa en un algoritmo de inundación, e: cuai comenzará en el dispositivo puente de la pasarela 5, generando una serle de baüzas que se retransmitirán a todos ios nodos con la finalidad de obtener ei número de saltos mínimos para la comunicación entre todos los nodos. A este proceso se le denomina descubrimiento de la red inalámbrica, ejecutándose el siguiente procedimiento: - Method for the formation of the network and its mine. The algorithm for network formation is based on a flood algorithm, e: what will start on the bridge device of the gateway 5, generating a series of tricks that will be relayed to all the nodes in order to obtain the number of minimum jumps for communication between all nodes. This process is called wireless network discovery, executing the following procedure:
• Un nodo determinado, ya sea por petición del sistema de Información o porque lleva un tiempo elevado sin intercambiar información con otros nodos, envía un mensaje en redifusión que será recibido por una serie de nodos, informando de su nivel de batería. • A given node, either at the request of the Information system or because it has been a long time without exchanging information with other nodes, sends a message in redcast that will be received by a series of nodes, informing of its battery level.
• Una serie de nodos reciben este mensaje. A estos nodos se les denominan nodos vecinos del emiso Con esta información ios nodos actualizan su tabla de rutas locales, con las que determinan ei numero de saltos que hay entre ei nodo que ha originado el mensaje y el dispositiva puente o pasarela 5. • A series of nodes receive this message. These nodes are called neighboring nodes of the issuance. With this information, the nodes update their table of local routes, with which they determine the number of jumps between the node that originated the message and the operative bridge or gateway 5.
• A partir de esta información y suponiendo conocida la topología física de la red eléctrica a monitorizar, se calcula el mapa giobal de rutas a utilizar por ia red mediante ei empleo de un algoritmo de árbol recubridor de peso mínimo diseñado para redes de sensores inalámbricos. El peso dei árbol recubridor tiene en cuenta diversos parámetros, tales como la topología de la red eléctrica a monitorizar, el nivel de batería de los nodos o la distancia física entre nodos sensores para determinar las rutas óptimas de comunicación. • Based on this information and assuming the physical topology of the electrical network to be monitored, the giobal map of routes to be used over the network is calculated by using a minimum weight overlay tree algorithm designed for wireless sensor networks. The weight of the covering tree takes into account various parameters, such as the topology of the electrical network to be monitored, the battery level of the nodes or the physical distance between sensor nodes to determine the optimal communication paths.
Cíclicamente, en función de los cambios internos que se produzcan en los nodos, el sistema de información se encarga de actualizar dichas rutas en caso de que nc haya comunicaciones suficientes en la red para mantener actualizadas las tablas de rutas, maximizando ia funcionalidad de ia red y la duración giobal de batería Cyclically, depending on the internal changes that occur in the nodes, the information system is responsible for updating these routes in case there are not enough communications in the network to keep the route tables updated, maximizing the functionality of the network and the giobal battery life
- Método para ia sincronización de tiempo; Para correlacionar ia información asociada a distintos puntos de medida recogidos por distintos nodos es necesario una sincronización de tiempo entre éstos. Para ello se emplea un método que combina ía detección de pasos por cero de la medida de corriente, junto con el envió de baiizas y ei conocimiento previo de la situación de ios nodos sensores dentro de ia red de distribución eléctrica a monitorizar. El método ¡mplementado es ei siguiente: - Method for time synchronization; To correlate the information associated with different measurement points collected by different nodes, a time synchronization between them is necessary. For this purpose, a method is used that combines the detection of zero steps of the current measurement, together with the sending of beacons and the prior knowledge of the situation of the sensor nodes within the electrical distribution network to be monitored. The method complemented is as follows:
« Los nodos están continuamente midiendo ia corriente del cable o cables a los que están asociados. A partir de la forma de ia onda medida, cada nodo calcula a partir de un reloj global interno una marca de tiempo (íimestamp) en eí que se produce el cruce por cero de pendiente positiva de la onda. Es decir, ios nodos están continuamente midiendo la corriente y procesándola de forma que siempre tienen en memoria la magnitud y fase de ía corriente, referidas a su reloj interno. « The nodes are continuously measuring the current of the cable or cables to which they are associated. From the shape of the measured wave, each node calculates from a global internal clock a time stamp (timestamp) in which the zero crossing of the positive slope of the wave occurs. That is, the nodes are continuously measuring the current and processing it so that they always have in memory the magnitude and phase of the current, referred to their internal clock.
• Si se produce una petición de sincronización del sistema de información, o sí ha pasado un tiempo mayor dei tiempo asignado para ía sincronización, un nodo envía un mensaje de sincronización a ios nodos hijos {aquellos jerárquicamente inferiores en ia arquitectura de la red de distribución eléctrica) y considera corno tiempo de sincronización su ultimo cruce por el cero de pendiente positiva detectado. • Debido a ios desfases y al funcionamiento de ios transceptores de radio, el tiempo de emisión es desconocido, pero si se puede asumir, debido a ¡a velocidad de transmisión de las comunicaciones via radio, que todos los nodos hijos van a recibir ei mensaje en el mismo instante de tiempo. • If a request for synchronization of the information system occurs, or if more time has elapsed than the time allocated for synchronization, a node sends a synchronization message to the child nodes {those hierarchically inferior in the distribution network architecture electrical) and considers as last synchronization time its last crossing through the zero of positive slope detected. • Due to the lags and the operation of the radio transceivers, the broadcast time is unknown, but it can be assumed, due to the speed of transmission of the communications via radio, that all the child nodes will receive the message In the same instant of time.
Cada uno de los nodos hijos considera en este punto el tiempo de recepción como origen de tiempo de sincronización, y envían al nodo padre (aquel jerárquicamente superior en la arquitectura de ia red de distribución eléctrica, y el cual ha originado ei proceso de sincronización) un mensaje con el módulo de la corriente y el desfase de tiempo entre su ultimo cruce por cero de pendiente positiva y eí tiempo de recepción del mensaje de sincronización. Each of the child nodes considers at this point the reception time as the origin of synchronization time, and they send to the parent node (the hierarchically superior one in the architecture of the electricity distribution network, and which has originated the synchronization process ) a message with the current module and the time lag between its last zero crossing of positive slope and the reception time of the synchronization message.
4 Ei nodo padre, tras recibir la Información de todos sus nodos hijos, agrega fasofiaimente las magnitudes de corriente de todos estos y determina la fase resultante de ia agregación. Con esta Información, el error introducido debido al tiempo desconocido de recepción del mensaje se estima a partir del desfase de tiempo existente entre la fase agregada y la fase considerada como origen de tiempo. 4 The parent node, after receiving the information from all of its child nodes, adds the current magnitudes of all these fascinatingly and determines the phase resulting from the aggregation. With this Information, the error introduced due to the unknown time of receipt of the message is estimated from the time lag between the aggregate phase and the phase considered as the origin of time.
• Una vez medida esa fase, el nodo padre envía un mensaje en redifusión a ios nodos hilos informando del tiempo global en el que se originó la recepción del mensaje. • Once that phase is measured, the parent node sends a message in redcast to the nodes informing of the overall time in which the reception of the message originated.
• Cada uno de los nodos hijos usa esa información para calibrar su reloj global interno. • Each of the child nodes uses that information to calibrate their internal global clock.
Con este algoritmo, se puede asegurar una sincronización de tiempo de alta precisión, aprovechando que ia arquitectura de la red de distribución eléctrica es conocida y que la diferencia de tiempos existente en la recepción por parte de los nodos hijos, de un mensaje difundido por el nodo padre, es despreciable. With this algorithm, high-precision time synchronization can be ensured, taking advantage of the fact that the architecture of the electricity distribution network is known and that the time difference in the reception by the child nodes of a message spread by the parent node is negligible.
- Método para la clasificación y localización de taitas en lineas de distribución eléctricas subterráneas: Una vez originado un evento de faifa, se analiza mediante el análisis de la Información fasorlal registrada por los distintos nodos y conocida la topología de la red se identifica qué tipo falta se ha originado y se estima en qué punto de ia red se ha producido ésta. A modo de ejemplo, la Figura 5 (la cual debido a su extensión se ha subdividido en Figura 5A - que incluye la subestación y el primer y segundo segmento-, Fsgura SO -que incluye un segmento intermedio f- y Figura SC -que incluye el último segmento z-) representa una red de distribución eléctrica subterránea 1 simple, sin bifurcaciones, en la cual se ha realizado el despliegue de ia red de sensores en las distintas arquetas 8. La red de distribución eléctrica subterránea 1 mostrada en las Figuras 5A, 58 y 5C comprende una subestación 9, una piuraiidad de segmentos 1 G (un segmento es ei tramo de linea eléctrica que separa dos centros de trasformación 1 1 ) con sus respectivos centros de transformación 1 1. En ei segmento f se localiza una faita. La localización se lleva a cabo de forma colaborativa por todos ios nodos de ia ed, mientras que la clasificación ia realizan los nodos que están justo delante de los centros de transformación. El procedimiento impíementado, se divide en las Siguientes fases: - Method for the classification and location of taitas in underground electrical distribution lines: Once a faifa event has been originated, it is analyzed through the analysis of the fasorlal information recorded by the different nodes and the network topology known, which type is missing. it has originated and it is estimated at what point of the network this has been produced. As an example, Figure 5 (which due to its extension has been subdivided into Figure 5A - which includes the substation and the first and second segments-, Fsgura SO - which includes an intermediate segment f - and Figure SC - which includes the last segment z-) represents a simple underground electrical distribution network 1, without bifurcations, in which the deployment of the sensor network has been carried out in the different boxes 8. The underground electrical distribution network 1 shown in Figures 5A, 58 and 5C comprises a substation 9, a piuraiity of segments 1 G (a segment is the section of the power line that separates two transformation centers 1 1) with their respective transformation centers 1 1. In the segment f a faita is located. The location is carried out collaboratively by all the nodes of the ed, while the classification is carried out by the nodes that are right in front of the transformation centers. The unimmented procedure is divided into the following phases:
• Determinación del segmento en ei que se ha originado ia faita, segmento f. Esta primera etapa consiste en comparar las corrientes de entrada del segmento f con las corrientes de salida del segmento f. La corriente de entrada del segmento f se calcula a partir de los datos de corrientes medidas por los dispositivos sensores 3 del segmento inmediatamente anterior al centro de transformación f-1, segmento f-1, y al consumo propio de! centro de trasformación f-1 Las corrientes de salida del segmento f se calcula a partir de ios valores de entrada de corriente de cada uno de los centros de trasformación que cuelgan de ese tramo de línea, incluido ei propio centro de trasformación f, Adicionalmen e otra vía para calcular las corrientes de salida del segmento f seria mediante los consumos registrados por los nodos del segmento siguiente f+1 , sumándole la corriente que se deriva por ei centro de trasformación f. De esta forma, si ia diferencia entre esta corriente de entrada y salida al segmento f supera un umbral se considera la detección de la faita en el • Determination of the segment in which the faita originated, segment f. This first stage consists in comparing the input currents of segment f with the output currents of segment f. The input current of segment f is calculated from the current data measured by the sensor devices 3 of the segment immediately before the transformation center f-1, segment f-1, and the own consumption of! Transformation center f-1 The output currents of segment f are calculated from the current input values of each of the transformation centers that hang from that line section, including the own transformation center f, Additionally Another way to calculate the output currents of segment f would be through the consumption recorded by the nodes of the next segment f + 1, adding the current that is derived by the transformation center f. Thus, if the difference between this input and output current to the segment f exceeds a threshold, the detection of the faita in the
Figure imgf000020_0001
Donde i E es ia corriente que entra al segmento f,
Figure imgf000020_0001
Where i E is the current entering segment f,
( ¾'.V i{f + !i + son dos formas diferentes de calcular ia corriente
Figure imgf000021_0001
(¾'.V i {f +! I + are two different ways of calculating the current
Figure imgf000021_0001
que sale del segmento f; donde x es ia linea concreta que se está analizando, ISEN Χ<Τ· 15 es la corriente medida por cualquiera de ios nodos sensores del segmento (f-1 ) de ía linea x, i SE es ia corriente medida por cualquiera de los nodos sensores del segmento (f+1 ) para la linea x, iCr «MJ es ía corriente medida en ei centro de transformación (f-1 ) para ia línea x, y finalmente ¡ toma todos ios valores desde f hasta z, para agregar en el sumatorio todas las corrientes derivadas por los centros de trasíormación que cuelgan dei segmento f. Este análisis se realiza para cada una de las fases (A, B y C) de forma independiente, para conocer la existencia de un fallo. s Una vez determinado el segmento 10 bajo falta (segmento f en la Figura 58) se puede, a partir de los datos de entrada y salida del segmento, clasificar ei tipo de falta en funcidn de las lineas (fases A, B, C) afectadas y el tipo de fallo que se ha producido en el aislamiento. Este análisis se divide en dos partes - leaving the segment f; where x is the concrete line being analyzed, I S EN Χ <Τ · 15 is the current measured by any of the sensor nodes of the segment (f-1) of the line x, i SE is the current measured by any of sensor nodes segment (f + 1) for the line x, i C r 'MJ is current IA measured in ei transformer (f-1) for the line x, and finally take that ail values from f to z , to add in the summation all the currents derived by the trasiormation centers that hang from segment f. This analysis is performed for each of the phases (A, B and C) independently, to know the existence of a fault. s Once the segment 10 under fault is determined (segment f in Figure 58), it is possible to classify the type of fault based on the lines (phases A, B, C) from the input and output data of the segment. affected and the type of fault that has occurred in the isolation. This analysis is divided into two parts -
* Determinación de las lineas con falta: este análisis de sobrecorrieníe permite determinar que la linea x está sometida a falta. A partir de ia evaluación de (3) sobre las distintas líneas, podemos determinar tipologías simples (una única linea afectada), dobles (dos lineas afectadas) o triples (las tres líneas afectadas) de la falta * Determination of missing lines: this overcurrent analysis allows to determine that line x is subject to missing. From the evaluation of (3) on the different lines, we can determine simple typologies (a single affected line), double (two affected lines) or triple typologies (the three affected lines) of the fault
[4,,,,,, ,,, -iÍW J > umbral [4 ,,,,,, ,,, -i ÍW J> threshold
Falta sobr  Missing on
o (3)  or (3)
linea x  line x
¡ ?, - 1{Ί Λ!^ > umbral ? , - 1 {Ί Λ! ^> threshold
<· Determinación del tipo de fallo de aislamiento: En esta fase se distingue si el fallo se produce por una derivación a tierra, originada en el mismo punto de la falta, o por ei contrario se debe a una pérdida de aislamiento en el interior del cable y retornando la corriente a través de la malla. Basándonos en ia Figura 5B, representa ía corriente que circularía por el conductor del cable de la linea x, en el tramos dei segmento f anterior al punto de falta. >-? representa ia corriente que circularía por la malla del cable de ía línea x, en ei tramos del segmento f anterior al punto de falta, v representa la corriente de falta en la línea x (nula si el fallo es de aislamiento interno), e !¾.:¾ representa la corriente que se deriva desde el conductor de la línea x a su malla. Análogamente. a e í'Sxf representan las corrientes que circularían por ei conductor y por ia mafia del cable de ia línea x, en el tramos del segmento f posterior al punto de falta. Este análisis se puede hacer a través del análisis cclaborativo de los sensores del segmento afectado, SI el retorno de la corriente es a través de ia malla ; todos estos sensores han de medir aproximadamente lo mismo (ecuación 4). <· Determination of the type of insulation fault: In this phase it is distinguished whether the fault is caused by a grounding, originating at the same point of the fault, or on the contrary due to a loss of insulation inside the cable and returning the current through the mesh. Based on Figure 5B, it represents the current that would circulate through the conductor of the line x cable, in the segments of segment f before the missing point. > -? represents the current that would circulate through the wire mesh of the line x, in the segments of the segment f before the point of failure, v represents the fault current in the line x (null if the fault is internally insulated), e! ¾. : ¾ represents the current that is derived from the conductor of the line x to its mesh. Analogously. a and í ' Sxf represent the currents that would circulate through the conductor and through the cable mafia of line x, in the segments of segment f after the point of failure. This analysis can be done through the cclaborative analysis of the sensors of the affected segment, IF the return of the current is through the mesh ; All these sensors must measure approximately the same (equation 4).
Figure imgf000022_0001
Figure imgf000022_0001
En ia ecuación (4) Ism f ≠ representa cualquiera de las corrientes medidas por los dispositivos sensores 3 ubicados en las arquetas del segmento anteriores al punto de falta de la linea x, e Ι^, ^ representa cualquiera de las corrientes medidas por ios dispositivos sensores 3 ubicados en las arquetas del segmento f; posteriores ai punto de falta de la línea x. Por tante, si se cumple esta condici n definida en (4) para todos los sensores del segmento ís se determina que la falta es por un fallo en el aislamiento interno, en caso contrario, se determina que la falta se debe por una derivación directa a tierra en el punto de falta. In ia equation (4) I sm f ≠ represents any of the currents measured by the sensor devices 3 located in the segments of the segment prior to the point of lack of the line x, e Ι ^, ^ represents any of the measured currents by ios sensor devices 3 located in manholes segment f;. subsequent ai fault point of the line x tant, if this condition is met n defined in (4) for all sensors í s segment is determined that lack it is for a fault in the internal insulation, otherwise, it is determined that the fault is due to a direct grounding at the point of failure.
» Una vez determinado el segmento bajo faifa y determinado ei tipo de ésta, el siguiente paso es estimar el punto en el cual se encuentra ia falta dentro del segmento. Es este respecto se distinguen dos variantes importantes: »Once the segment under faifa has been determined and its type determined, the next step is to estimate the point at which the fault is found within the segment. In this respect, two important variants are distinguished:
« Fallo de aislamiento con conexión a tierra en el punto de falta (caso negativo de la condición definida en ia ecuación 4): En esta circunstancia ia determinación del tramo bajo falta se reduce a Ir evaluando la medida de corriente de cada nodo, en cada arqueta del segmento f, con la medida registrada por el nodo siguiente. Para una línea x, cuando exista una diferencia entre estas dos corrientes superior a un umbral (ecuación 5), se puede determinar claramente que la falta se encuentra entre el subsegnrtenío definido entre esos nodos j e i+1 «Insulation fault with grounding at the point of failure (negative case of the condition defined in equation 4): In this circumstance, the determination of the section under fault is reduced to Go evaluating the current measurement of each node, in each arc of segment f, with the measurement recorded by the next node. For an x line, when there is a difference between these two currents greater than a threshold (equation 5), it can clearly determine that the fault is between the defined sub-division between those nodes je i + 1
[ Falta detectada en el subsegmento[Missing detected in subsegment
.S¾V ÍÍ.¡ ;- > umbralí (5) .S¾V ÍÍ.¡; -> threshold í (5)
i definido entre las arquetas i e i-H  i defined between the boxes i and i-H
« Fallo de aislamiento s¡n conexión a tierra en el punto de taita (retomo de corriente a través de la malla, caso afirmativo de la condición definida en ia ecuaciórs 4): En esta circunstancia los sensores del segmento no detectan ia corriente ius* (corriente que se deriva desde el conductor de ia linea x a su malla) originada por la falta (ecuación 6) , debido a que eí flujo neto de corriente es cero. Para esta alternativa, se plantea el uso de un método basatío en el cálculo de la resistencia de ía malla anterior (p-Rs«) y posterior ((1 -p} ' Rsh) al punto de falta (ecuación 7), donde RS representa la resistencia total de ia malla en el tramo del segmento í, e Γ&«· representan las comentes que circularía por la malla dei cable de ia linea x en los tramo del segmento f anterior (isx») y posterior (i ¾<) al punto de falta, respectivamente, 'fí representa la tensión (referida a masa) que aparece en ia maíía en el punto de falta, en la iínea x. Finalmente, para determinar ia posición normalizada "p" de la falta dentro del segmenta / (ecuación 8). « Insulation fault without grounding at the taita point (current return through the mesh, affirmative case of the condition defined in equations 4): In this circumstance the segment sensors do not detect the current ius * (current that is derived from the conductor of the line x to its mesh) caused by the fault (equation 6), because the net current flow is zero. For this alternative, the use of a basal method is proposed in the calculation of the resistance of the anterior (pR s «) and posterior ((1 -p} 'Rsh) mesh to the point of failure (equation 7), where R S represents the total resistance of the mesh in the segment of segment í, and Γ & «· represent the comments that would circulate through the mesh of the cable of line x in the segments of segment f anterior (is x ») and posterior (i ¾ < ) to the point of failure, respectively, 'f t represents the voltage (referred to ground) on ia maiia in the fault point in the Iine x. Finally, to determine ia normalized position "p" of the fault within the segment / (equation 8).
Figure imgf000023_0001
Figure imgf000023_0001
*'"p -S!' ? - 0 P ) R., Í'.. * '"p - S!' - 0 P) R, Í '...
Figure imgf000023_0002
Figure imgf000023_0002
Este planeamiento no solo es válido para topologías simples (por ejemplo, la de la Figura 5), además es extensibie a lineas de distribución que presenten bifurcaciones. En estas topologías más complejas tan solo serla necesario añadir ai planteamiento descrito las ecuaciones derivadas de estos nudos eléctricos This planning is not only valid for simple topologies (for example, that of Figure 5), it is also extended to distribution lines that have bifurcations. In these more complex topologies, it will only be necessary add to the described approach the equations derived from these electrical knots
Gracias ai empieo de todos estos métodos o funcionalidades, ia red de monitorizacíon puede determinar de una manera sencilla el estado de funcionamiento de la red eléctrica subterránea. Thanks to the start of all these methods or functionalities, the monitoring network can easily determine the operating status of the underground power grid.

Claims

REIVINDICACIONES
1 Sistema inalámbrico distribuido para la clasificación y localización de faltas en una red de distribución eléctrica subterránea . caracterizado por que comprende una red de sensores Inalámbricos (2) distribuidos en una red de distribución eléctrica subterránea (1 ), dicha red de sensores inalámbricos (2) estando formada por una pluralidad de dispositivos sensores (3) que constituyen les nodos sensores de ia red; donde cada dispositivo sensor (3) está acoplado a un conductor (7) de la red de distribución eléctrica subterránea (1 ) a monitorizar, estando los dispositivos sensores (3) de la red distribuidos de forma que todos ¡os tramos de conductores entre bifurcaciones tienen conectados ai menos un dispositivo sensor (3), cada dispositivo sensor (3) disponiendo de: 1 Distributed wireless system for the classification and location of faults in an underground electrical distribution network. characterized in that it comprises a wireless sensor network (2) distributed in an underground electrical distribution network (1), said wireless sensor network (2) being formed by a plurality of sensor devices (3) that constitute the sensor nodes of ia net; where each sensor device (3) is coupled to a conductor (7) of the underground electrical distribution network (1) to be monitored, the sensor devices (3) of the network being distributed so that all sections of conductors between branches they have connected to at least one sensor device (3), each sensor device (3) having:
un módulo de comunicación Inalámbrico {30} para la comunicación con otros dispositivos sensores (3) de la red ubicados dentro de su alcance; a Wireless communication module {30} for communication with other sensor devices (3) of the network located within its scope;
- medios de procesamiento de datos (31 );  - data processing means (31);
« medios de medición de la corriente (34) que circula per el conductor (?) ai que está acoplado; « Means for measuring the current (34) circulating through the conductor (?) To which it is coupled;
estando los dispositivos sensores (3) sincronizados entre si y configurados para, una vez detectado un evento de falta, identificar el tipo de falta originada y el punto de la red de distribución eléctrica subterránea (1 ) donde se ha producido la falta mediante el intercambio de mensajes, entre los distintos dispositivos sensores (3), con Información de las medidas de corriente sincronizadas y mediante ei análisis de la información fasoriaf de dichas medidas de corriente sincronizadas, teniendo en cuenta la topolog ía de la red. the sensor devices (3) being synchronized with each other and configured to, once a fault event is detected, identify the type of fault originated and the point of the underground electrical distribution network (1) where the fault occurred through the exchange of messages, between the different sensor devices (3), with information on the synchronized current measurements and through the analysis of the fasoriaf information of said synchronized current measurements, taking into account the network topology.
2. Sistema según la reivindicación 1 , caracterizado por que para realizar la localización de la taita los dispositivos sensores (3) están configurados para: 2. System according to claim 1, characterized in that the sensor devices (3) are configured to:
- determinar el segmento ( 1 0) de línea en el que se encuentra la falta mediante la comparación de las corrientes de entrada y de salida de ios distintos segmentos que componen ia red de distribución eléctrica subterránea ( 1 ),  - determine the line segment (1 0) in which the fault is found by comparing the input and output currents of the different segments that make up the underground electrical distribution network (1),
- clasificar el tipo de falta en el segmento afectado, determinando la linea o líneas del segmento (10) sometidas a falta y el tipo de fallo de aislamiento producido, y en particular sí el fallo se produce por una derivación a tierra o por una pérdida de aislamiento el interior del cable;  - classify the type of fault in the affected segment, determining the line or lines of the segment (10) subject to the fault and the type of insulation failure produced, and in particular if the fault is caused by a grounding or a loss insulation inside the cable;
- estimar la localización de ia falta dentro del segmento ( 1 0) en ei que se ha producido ia falta teniendo en cuenta ia clasificación de la misma . - estimate the location of the fault within the segment (1 0) in which the fault has occurred taking into account its classification.
3. Sistema según cualquiera de las reivindicaciones anteriores, caracterizado por que los dispositivos sensores (3) están configurados para realizar ia sincronización conjunta empleando la detección de paso por cero de las medidas de corriente de los nodos sensores, y teniendo en cuenta ía situación de ios nodos sensores dentro de la red de distribución eléctrica subterránea {1 } a moniiorízar y que el surnatono fasoriai de las corrientes en todos los nodos es igual a cero, 3. System according to any of the preceding claims, characterized in that the sensor devices (3) are configured to perform the joint synchronization using the zero-pass detection of the current measurements of the sensor nodes, and taking into account the situation of ios sensor nodes within the underground electricity distribution network {1} to moniiorízar and that the surnatono fasoriai of the currents in all nodes is equal to zero,
4. Sistema según cualquiera de las reivindicaciones anteriores, caracterizado por que los dispositivos sensores (3) disponen de una bobina de alimentación (38) que rodea al conductor (7) y a través de la cual recibe la energía de alimentación , System according to any of the preceding claims, characterized in that the sensor devices (3) have a supply coil (38) that surrounds the conductor (7) and through which it receives the power supply,
5. Sistema según cualquiera de las reivindicaciones anteriores: caracterizado por que ios medios de medición de ía corriente (34) de ios dispositivos sensores (3) comprenden ai menos una bobina de Rogowski (37). System according to any of the preceding claims : characterized in that the current measurement means (34) of the sensor devices (3) comprise at least one Rogowski coil (37).
6 Sistema según cualquiera de ias reivindicaciones anteriores, caracterizado por que ios dispositivos sensores {3} están ubicados en arquetas (8) de la red de distribución eléctrica subterránea (1 ), de forma tai que permiten monitorizar todo el flujo de potencia de ía red de distribución eléctrica subterránea (1 ), 6 System according to any of the preceding claims, characterized in that the sensor devices {3} are located in boxes (8) of the underground electrical distribution network (1), in such a way that they allow monitoring the entire power flow of the network underground electrical distribution (1),
7. Sistema según cualquiera de las reivindicaciones anteriores, caracterizado por que comprende adicionaimente una unidad de control (6) y una pasarela (5) con capacidad de comunicación inalámbrica configurada para recoger información de la red de sensores inalámbricos (2) y transmitírsela a la unidad de control (6). System according to any of the preceding claims, characterized in that it additionally comprises a control unit (6) and a gateway (5) with wireless communication capability configured to collect information from the wireless sensor network (2) and transmit it to the control unit (6).
S. Procedimiento de clasificación y localización de faltas en una red de distribución eléctrica subterránea, caracterizado por que comprende: S. Procedure for classifying and locating faults in an underground electrical distribution network, characterized in that it comprises:
■ establecer una red de sensores inalámbricos (2) en una red de distribución eléctrica subterránea (1), dicha red de sensores inalámbricos {2) estando formada por una pluralidad de dispositivos sensores (3) sincronizados entre sí y que constituyen ios nodos sensores de la red; donde cada dispositivo sensor (3) está acoplado a un conductor (7) de ia red de distribución eiéctrlca subterránea ( 1 ) a noniíorizar, estando los dispositivos sensores (3) de la red distribuidos de forma que todos los tramos de conductores entre bifurcaciones tienen asociados al menos un dispositivo sensor (3);  ■ establishing a wireless sensor network (2) in an underground electrical distribution network (1), said wireless sensor network {2) being formed by a plurality of sensor devices (3) synchronized with each other and constituting the sensor nodes of the net; where each sensor device (3) is coupled to a conductor (7) of the underground electrical distribution network (1) to be non-linearized, the sensor devices (3) of the network being distributed so that all sections of conductors between branches have associated at least one sensor device (3);
- medir, por parte de cada dispositivo sensor (3), la corriente que circula por el conductor (7) ai que está asociado; - ante la detección de un evento de falta, identificar ei tipo de falta originada y la localización de la faifa mediante ei Intercambio de mensajes, entre los distintos dispositivos sensores (3) , con información de las medidas de corriente sincronizadas y mediante ei análisis de la información fasoriai de dichas medidas de corriente sincronizadas, teniendo en cuenta la topolog ía de la red. - measure, by each sensor device (3), the current flowing through the conductor (7) to which it is associated; - before the detection of a fault event, identify the type of fault originated and the location of the faifa by means of the Exchange of messages, between the different sensor devices (3), with information of the synchronized current measurements and through the analysis of the fasoriai information of said synchronized current measurements, taking into account the network topology.
9. Procedimiento según la reivindicación 8, caracterizado por que la localización de ia falta comprende: 9. Method according to claim 8, characterized in that the location of the fault comprises:
- determinar el segmento (10) de línea en el que se encuentra la faifa mediante la comparación de las corrientes de entrada y de salida de los distintos segmentes que componen ia red de distribución eléctrica subterránea (1 ),  - determine the segment (10) of the line in which the fafa is located by comparing the input and output currents of the different segments that make up the underground electrical distribution network (1),
- clasificar el tipo de falta en el segmento afectado, determinando la línea o líneas del segmento ( Q) sometidas a taita y el tipo de failo de aislamiento producido, y en particular si el fallo se produce por una derivación a tier a o por una pérdida de aislamiento en el interior del cable,  - classify the type of fault in the affected segment, determining the line or lines of the segment (Q) submitted to taita and the type of insulation failo produced, and in particular if the failure is caused by a branch derivation or by a loss insulation inside the cable,
- estimar la localización de la falta dentro del segmento (10) en el que se ha producido la taita teniendo en cuenta la clasificación de la mism  - estimate the location of the fault within the segment (10) in which the taita occurred taking into account the classification of the same
10. Procedimiento según cualquiera de las reivindicaciones 8 a 9, caracterizado por que los dispositivos sensores realizan la sincronización conjunta empleando la detección de paso por cero de las medidas de corriente de ios nodos sensores, teniendo en cuenta a situación de ios nodos sensores dentro de la red de distribución eiéctrica subterránea (1 ) a monitorizar y que el sumatorio fasoriai de las corrientes en iodos ios nodos es igual a cero. Method according to any one of claims 8 to 9, characterized in that the sensor devices perform the joint synchronization using the zero-pass detection of the current measurements of the sensor nodes, taking into account the situation of the sensor nodes within the underground eelectric distribution network (1) to be monitored and that the fasoria sum of the currents in iodes and nodes is equal to zero.
1 1 . Procedimienfo según cualquiera de las reivindicaciones 8 a 10, caracterizado por que los dispositivos sensores (3) se disponen en arquetas (8) de la red de distribución eléctrica subterránea (1 ), de forma tal que permiten monltorizar todo el flujo de potencia de la retí de distribución eléctrica subterránea (1 ). eleven . Method according to any one of claims 8 to 10, characterized in that the sensor devices (3) are arranged in boxes (8) of the underground electrical distribution network (1), in such a way that they allow to monitor all the power flow of the I retired underground electrical distribution (1).
PCT/ES2016/000005 2015-01-16 2016-01-14 Distributed wireless system and method for the classification and localisation of failures in an underground electrical distribution network WO2016113447A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201500072A ES2577881B2 (en) 2015-01-16 2015-01-16 Distributed wireless system and procedure for the classification and location of faults in an underground electrical distribution network
ESP201500072 2015-01-16

Publications (1)

Publication Number Publication Date
WO2016113447A1 true WO2016113447A1 (en) 2016-07-21

Family

ID=56375086

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2016/000005 WO2016113447A1 (en) 2015-01-16 2016-01-14 Distributed wireless system and method for the classification and localisation of failures in an underground electrical distribution network

Country Status (2)

Country Link
ES (1) ES2577881B2 (en)
WO (1) WO2016113447A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108988496A (en) * 2018-08-01 2018-12-11 南方电网科学研究院有限责任公司 A kind of diagnostic method, device and the equipment of secondary system of intelligent substation failure

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3118186B1 (en) * 2020-12-17 2022-12-30 Electricite De France Method for maintaining an electricity distribution network

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007109555A2 (en) * 2006-03-16 2007-09-27 Power Monitors, Inc. Underground monitoring system and method
WO2007137205A2 (en) * 2006-05-19 2007-11-29 Schweitzer Engineering Laboratories, Inc. System and method for communicating power system information through a radio frequency device
US20090027061A1 (en) * 2007-07-25 2009-01-29 Power Monitors, Inc. Method and apparatus for an electrical conductor monitoring system
US20090115426A1 (en) * 2007-11-02 2009-05-07 Cooper Technologies Company Faulted circuit indicator apparatus with transmission line state display and method of use thereof
EP2518521A2 (en) * 2011-04-29 2012-10-31 General Electric Company System and device for detecting defects in underground cables

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007109555A2 (en) * 2006-03-16 2007-09-27 Power Monitors, Inc. Underground monitoring system and method
WO2007137205A2 (en) * 2006-05-19 2007-11-29 Schweitzer Engineering Laboratories, Inc. System and method for communicating power system information through a radio frequency device
US20090027061A1 (en) * 2007-07-25 2009-01-29 Power Monitors, Inc. Method and apparatus for an electrical conductor monitoring system
US20090115426A1 (en) * 2007-11-02 2009-05-07 Cooper Technologies Company Faulted circuit indicator apparatus with transmission line state display and method of use thereof
EP2518521A2 (en) * 2011-04-29 2012-10-31 General Electric Company System and device for detecting defects in underground cables

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108988496A (en) * 2018-08-01 2018-12-11 南方电网科学研究院有限责任公司 A kind of diagnostic method, device and the equipment of secondary system of intelligent substation failure
CN108988496B (en) * 2018-08-01 2021-04-23 南方电网科学研究院有限责任公司 Intelligent substation secondary system fault diagnosis method, device and equipment

Also Published As

Publication number Publication date
ES2577881A1 (en) 2016-07-19
ES2577881B2 (en) 2016-11-03

Similar Documents

Publication Publication Date Title
US9413519B2 (en) Wireless transmission synchronization using a power line signal
US10330812B1 (en) Identifying schematic and topological properties of an electrical grid through analysis of directional relationships of electrical currents
CN105021950B (en) Feeder line fault localization method, apparatus and system
US11183879B1 (en) Method and system for building an electrical grid topology and identifying faults in an electrical grid
CN106019083A (en) Unmanned plane electric power line patrol comprehensive geography information system
US10075232B1 (en) Detecting fiber optic breaks using autonomous vehicles
CN105554776B (en) The method and apparatus that identification border base station crosses covering
Lampe et al. Power grid topology inference using power line communications
CN102494787A (en) Method and device for dynamically monitoring temperature of power cable connectors
Appasani et al. Optimal placement of synchrophasor sensors for risk hedging in a smart grid
CN104535895A (en) Cable-and-overhead-line hybrid line fault section method based on synchronous sampling technology
US20210070332A1 (en) Enhanced transit location systems and methods
BR102021016700A2 (en) Method and device for determining a fault location in an electrical power distribution network
WO2016113447A1 (en) Distributed wireless system and method for the classification and localisation of failures in an underground electrical distribution network
CN111512168B (en) System and method for analyzing fault data of a power transmission network
CN117461329A (en) Autonomous geographic location determination using mesh networks
KR101257071B1 (en) Position tracking apparatus and method for a low power wpan/wban device
WO2017002020A1 (en) System and method for detecting a fault in an overhead power line
Chen et al. Wide area travelling wave fault location in the transmission network
CN108072813A (en) Topology automatically generates and reconstructing method in a kind of transmission line travelling wave ranging networking project
CN103441480B (en) A kind of Novel traveling-wave protection method of wide-area power grid
KR102252399B1 (en) Apparatus and method for electric power distribution line monitoring
Enchev et al. Selecting type of communication for wireless sensor network on board of a vessel
JP2015211317A (en) Factor identification method of wireless sensor network failure, factor identification device and factor identification program
Das et al. Sensor localization and obstacle boundary detection algorithm in WSN

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16737107

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16737107

Country of ref document: EP

Kind code of ref document: A1