WO2016112565A1 - 应用于多层多小区模式下的数据发送方法、装置及系统 - Google Patents

应用于多层多小区模式下的数据发送方法、装置及系统 Download PDF

Info

Publication number
WO2016112565A1
WO2016112565A1 PCT/CN2015/071760 CN2015071760W WO2016112565A1 WO 2016112565 A1 WO2016112565 A1 WO 2016112565A1 CN 2015071760 W CN2015071760 W CN 2015071760W WO 2016112565 A1 WO2016112565 A1 WO 2016112565A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
time
frequency resource
data
cell
Prior art date
Application number
PCT/CN2015/071760
Other languages
English (en)
French (fr)
Inventor
龙航
席雨
张玉艳
姚楠
邵斌
张颖凯
Original Assignee
北京邮电大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京邮电大学 filed Critical 北京邮电大学
Publication of WO2016112565A1 publication Critical patent/WO2016112565A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a data transmission method, apparatus, and system for application in a multi-layer multi-cell mode.
  • FIG. 1 it is a schematic diagram of frequency bands used by each of a macro base station and a micro base station in a multi-layer multi-cell heterogeneous network in a TDD mode.
  • the abscissa axis represents a time slot
  • the ordinate axis represents a frequency resource occupied by the uplink and downlink in data transmission.
  • the drawback of this mode is that the available spectrum width is narrow for both the macro base station and the micro base station.
  • a co-channel TDD (Co-channel TDD) mode is proposed.
  • the macro base station layer and the micro base station layer can use the same frequency resource in both uplink and downlink frequency resource scheduling.
  • the abscissa axis represents a time slot
  • the ordinate axis represents a frequency resource occupied by the uplink and the downlink at the time of data transmission.
  • the above-mentioned co-channel TDD still has a defect: the macro base station and the micro base station use the same frequency resource in the uplink (or downlink) frequency resource scheduling, so the same transmission direction (including the uplink) between the layers is caused.
  • the signals transmitted in the links of the downlink and the downlink have a large mutual interference.
  • the embodiment of the present application provides a data transmission method applied in a multi-layer multi-cell mode, which is used to solve interference between signals transmitted in links in the same transmission direction (including uplink and downlink) between layers in the prior art. Bigger problem.
  • the embodiment of the present application further provides a data sending apparatus applied to a multi-layer multi-cell mode, where The problem that signals transmitted in links of the same transmission direction (including uplink and downlink) between layers in the prior art interfere with each other is solved.
  • the embodiment of the present application further provides a data transmission system applied in a multi-layer multi-cell mode, which is used to solve signals transmitted in links in the same transmission direction (including uplink and downlink) between layers in the prior art. A problem with greater interference.
  • a data transmission method applied in a multi-layer multi-cell mode comprising:
  • the first base station sends the downlink data by using the first time-frequency resource when the second base station receives the uplink data that is sent by using the first time-frequency resource;
  • the first base station sends the uplink data by using the second time-frequency resource when the second base station sends the downlink data by using the second time-frequency resource;
  • the first base station and the second base station are respectively base stations of different layers in the multi-layer multi-cell mode.
  • a data transmitting apparatus applied in a multi-layer multi-cell mode comprising:
  • a first sending unit configured to: when the second base station receives the uplink data that is sent by using the first time-frequency resource, send the downlink data by using the first time-frequency resource;
  • a second sending unit configured to send uplink data by using the second time-frequency resource when the second base station sends the downlink data by using the second time-frequency resource
  • the device and the second base station are respectively base stations of different layers in the multi-layer multi-cell mode.
  • a data transmission system applied to a multi-layer multi-cell mode comprising a first base station and a second base station, wherein
  • the first base station is configured to: when the second base station receives the uplink data that is sent by using the first time-frequency resource, send the downlink data by using the first time-frequency resource;
  • the second base station is configured to: when the second base station sends the downlink data by using the second time-frequency resource, send the uplink data by using the second time-frequency resource;
  • the first base station and the second base station are respectively base stations of different layers in the multi-layer multi-cell mode.
  • the chain of the same transmission direction (including the uplink and downlink) between the layers in the prior art can be avoided. Signals transmitted in the road interfere with each other.
  • 1 is a schematic diagram of interference in a TDD mode in the prior art
  • FIG. 2 is a schematic diagram of a spectrum of interference in a co-channel TDD mode in the prior art
  • FIG. 3 is a flowchart of a method for transmitting data in a multi-layer multi-cell mode according to Embodiment 1 of the present application;
  • FIG. 4 is a schematic diagram of a coexistence scenario of a macro cell and a micro cell according to Embodiment 1 of the present application;
  • FIG. 5 is a schematic diagram of a spectrum of an interference coordination method according to Embodiment 1 of the present application.
  • FIG. 6 is a CDF curve of a user terminal signal to interference and noise ratio of a TDD/reverse time division duplex interference coordination scheme according to Embodiment 1 of the present application;
  • FIG. 9 is a structural diagram of a data transmitting apparatus applied to a multi-layer multi-cell mode according to Embodiment 2 of the present application.
  • the first embodiment of the present application provides a multi-cell multi-cell mode.
  • the method of sending data In order to facilitate the understanding of the solution, the first base station is set as a macro base station, and the second base station is set as a micro base station.
  • the specific implementation flowchart of the method is as shown in FIG. 3, and mainly includes the following steps:
  • Step 31 When the second base station receives the uplink data that is sent by using the first time-frequency resource, the first base station sends the downlink data by using the first time-frequency resource.
  • the first base station may send the downlink data by using the first time-frequency resource in the first time slot; wherein, in the first time slot, the second base station receives the uplink data that is sent by using the first time-frequency resource.
  • the first base station may send the downlink data by using the first time-frequency resource in the first frequency dimension that is divided; wherein, in the first frequency dimension, the second base station may receive the uplink data that is sent by using the first time-frequency resource.
  • Step 32 When the second base station sends the downlink data by using the second time-frequency resource, the first base station sends the uplink data by using the second time-frequency resource.
  • the first base station may receive uplink data sent by using the second time-frequency resource in the second time slot; wherein, in the second time slot, the second base station sends the downlink data by using the second time-frequency resource.
  • the first base station may receive the uplink sent by using the second time-frequency resource in the divided second frequency dimension. Data; wherein, in the second frequency dimension, the second base station may send the downlink data by using the second time-frequency resource.
  • the first base station and the second base station may be base stations of different layers in the multi-layer multi-cell mode, respectively.
  • the first base station and the second base station that interfere with each other in data transmission perform tasks with different data transmission directions by using the same time-frequency resources. Therefore, it is possible to avoid the problem that signals transmitted in links of the same transmission direction (including uplink and downlink) between the layers in the prior art interfere with each other.
  • the macro base station BS may The first time slot slot1 utilizes time-frequency resources in the time slot to receive data transmitted by the user terminal MUEi. Further, since the macro base station or the micro base station can only perform the task of transmitting data or receiving data in the same time slot. Therefore, when the transmitted data is transmitted from the micro base station SCAi to the user terminal SUEi, the micro base station SCAi can transmit the data to be transmitted to the user terminal by using the time-frequency resource in the time slot in the first time slot.
  • the sharing of the time-frequency resources by the macro base station BS and the micro base station SCAi in the first time slot slot1 is as shown on the left side of the broken line in FIG.
  • the micro base station SCAi may use the time-frequency resource in the time slot to receive the user terminal SUEi in the second time slot.
  • the data transferred.
  • the macro base station or the micro base station can only perform the task of transmitting data or receiving data in the same time slot. Therefore, when the transmitted data is transmitted from the macro base station BS to the user terminal MUEi, the macro base station BS can transmit the data to be transmitted to the user terminal MUEi using the time-frequency resources in the time slot in the first time slot.
  • the sharing of the time-frequency resources by the macro base station BS and the micro base station SCAi in the second time slot slot1 is as shown on the right side of the dotted line in FIG.
  • the antennas in the macro base station or the micro base station may also be set in a smart antenna technology manner, wherein the smart antenna technology may Such as 3D Multiple-Input Multiple-Output (System), Massive Multiple Input Multiple Output (Massive MIMO), etc.
  • the smart antenna technology may Such as 3D Multiple-Input Multiple-Output (System), Massive Multiple Input Multiple Output (Massive MIMO), etc.
  • the first base station may further transmit data with the user terminal at the cell edge location of the first base station by using a specific time-frequency resource.
  • the specific time-frequency resource is: the first base station selects and allocates the time-frequency resource to the user terminal in the time-frequency resource shared by the first base station and the second base station; further, the time-frequency resource selected by the first base station is satisfied. : orthogonal to the time-frequency resource used by the user terminal at the edge location of the neighboring cell of the cell.
  • the reverse time division duplex interference coordination scheme ie, the scheme proposed in Embodiment 1, hereinafter referred to as the reverse time division duplex interference coordination scheme
  • the user terminal input signal dry-noise ratio and the original time-division double The overall solution is improved compared to the overall situation.
  • the user in the cell covered by the macro base station or the micro base station is no longer interfered by other base stations, and is only affected by the transmission of other layer user terminals. Since the transmission power of the user terminal is much smaller than the transmission power of the base stations of each layer, and the receiving sensitivity of the user terminal is also low, the interference is effectively weakened.
  • the macro base station and the micro base station can perform interference coordination again, that is, the macro base station and the micro base station respectively allocate different time-frequency resources to the corresponding user terminals with the most serious interference.
  • the base station can determine, by measuring the pilot signal of the user terminal, that the user terminal is located at an edge location of the coverage cell, and the base station can allocate the neighboring cell with the coverage cell when the time-frequency resource is allocated. Orthogonal time-frequency resources of edge user terminals.
  • the simulation result is performed on the reverse time division duplex interference coordination scheme, as shown in FIG. 6.
  • the solid line represents the user terminal in the interference coordination mode mode by using the reverse time division duplex interference coordination scheme proposed in the present application.
  • the signal to interference and noise ratio the dotted line indicates the traditional time division duplex (TDD) mode user terminal signal to interference and noise ratio.
  • TDD time division duplex
  • FIG. 7-8 respectively represent the average effective throughput of the user terminal in the multi-layer multi-cell reverse time division duplexing scheme and the average effective throughput performance of the user terminal at the cell edge. It can be seen from the simulation results that the throughput of the user terminal at the cell edge is slightly reduced due to the occurrence of extreme interference, but the overall performance of the system is greatly improved by the inversion of the duplex mode. The average effective throughput of user terminal data transmission has increased by about 10%.
  • the reverse time division duplexing scheme is an effective interference coordination technology, which can effectively improve the overall system performance of the multi-layer multi-cell network to a certain extent.
  • execution bodies of the steps of the method provided in Embodiment 1 may all be the same device, or the method may also be performed by different devices.
  • the execution entity of step 11 may be device 1
  • the execution body of step 12 may be device 2.
  • Embodiment 2 provides a data transmitting apparatus applied in a multi-layer multi-cell mode, which is used to solve the mutual interference of signals transmitted in links in the same transmission direction (including uplink and downlink) between layers in the prior art. Big problem.
  • a schematic diagram of a specific structure of the device is shown in FIG. 9 and includes a first transmitting unit 91 and a second transmitting unit 92. The specific description of these two functional units is as follows:
  • the first sending unit 91 is configured to: when the second base station receives the uplink data that is sent by using the first time-frequency resource, send the downlink data by using the first time-frequency resource;
  • the second sending unit 92 is configured to: when the second base station sends the downlink data by using the second time-frequency resource, send the uplink data by using the second time-frequency resource;
  • the data transmitting apparatus and the second base station applied in the multi-layer multi-cell mode are base stations of different layers in the multi-layer multi-cell mode, respectively.
  • the data transmitting apparatus and the second base station applied in the multi-layer multi-cell mode operate in a co-channel TDD mode; or the data transmitting apparatus and the second base station applied in the multi-layer multi-cell mode operate in Co-channel FDD mode.
  • the data transmitting apparatus in the cell mode may further include: an allocating unit.
  • An allocating unit configured to use a specific time-frequency resource to transmit data with a user terminal in a cell edge location of a data transmitting apparatus applied in a multi-layer multi-cell mode; wherein the specific time-frequency resource may be: applied to a multi-layer multi-cell
  • the data transmitting apparatus in the mode selects and allocates time-frequency resources allocated to the user terminal in the time-frequency resources shared by the data transmitting apparatus and the second base station in the multi-layer multi-cell mode;
  • the time-frequency resource selected by the data sending apparatus in the multi-layer multi-cell mode satisfies: orthogonal to the time-frequency resource used by the user terminal at the edge position of the neighboring cell of the cell.
  • the first sending unit 91 may be configured to: when the second base station receives the first time-frequency resource, transmit the downlink data by using an antenna configured based on the smart antenna technology; and the second sending unit 92 may be used to: And: when the second base station sends the downlink data by using the second time-frequency resource, the uplink data that is sent by using the second time-frequency resource is received by the antenna.
  • Embodiment 3 provides a data transmission system applied in a multi-layer multi-cell mode, which is used to solve the mutual interference of signals transmitted in links in the same transmission direction (including uplink and downlink) between layers in the prior art. Big problem.
  • the system includes a first base station and a second base station. The details are as follows:
  • the first base station may be configured to: when the second base station receives the uplink data that is sent by using the first time-frequency resource, send the downlink data by using the first time-frequency resource;
  • the second base station may be configured to send the uplink data by using the second time-frequency resource when the second base station sends the downlink data by using the second time-frequency resource;
  • the first base station and the second base station are respectively base stations of different layers in the multi-layer multi-cell mode.
  • the first base station and the second base station operate in a co-channel TDD mode; or The first base station and the second base station operate in a co-channel FDD mode.
  • the first base station and the second base station that interfere with each other in data transmission perform tasks with different data transmission directions by using the same time-frequency resources. Therefore, it is possible to avoid the problem that signals transmitted in links of the same transmission direction (including uplink and downlink) between the layers in the prior art interfere with each other.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.
  • the computing device includes one or more processors (CPUs), input/output Outbound interface, network interface, and memory.
  • processors CPUs
  • input/output Outbound interface network interface
  • memory volatile and non-volatile memory
  • the memory may include non-persistent memory, random access memory (RAM), and/or non-volatile memory in a computer readable medium, such as read only memory (ROM) or flash memory.
  • RAM random access memory
  • ROM read only memory
  • Memory is an example of a computer readable medium.
  • Computer readable media includes both permanent and non-persistent, removable and non-removable media.
  • Information storage can be implemented by any method or technology.
  • the information can be computer readable instructions, data structures, modules of programs, or other data.
  • Examples of computer storage media include, but are not limited to, phase change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), read only memory. (ROM), electrically erasable programmable read only memory (EEPROM), flash memory or other memory technology, compact disk read only memory (CD-ROM), digital versatile disk (DVD) or other optical storage, Magnetic tape cartridges, magnetic tape storage or other magnetic storage devices or any other non-transportable media can be used to store information that can be accessed by a computing device.
  • computer readable media does not include temporary storage of computer readable media, such as modulated data signals and carrier waves.
  • embodiments of the present application can be provided as a method, system, or computer program product.
  • the present application can take the form of an entirely hardware embodiment, an entirely software embodiment or an embodiment in combination of software and hardware.
  • the application can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种应用于多层多小区模式下的数据发送方法,用以解决现有技术中各层之间的相同传输方向(包括上行和下行)的链路中传输的信号相互干扰较大的问题。具体包括:第一基站在第二基站接收利用第一时频资源发送的上行数据时,利用第一时频资源发送下行数据;第一基站在第二基站利用第二时频资源发送下行数据时,利用第二时频资源发送上行数据;其中,第一基站与第二基站分别为多层多小区模式下不同层的基站。本申请还公开一种应用于多层多小区模式下的数据发送装置及系统。

Description

应用于多层多小区模式下的数据发送方法、装置及系统 技术领域
本申请涉及通信技术领域,尤其涉及一种应用于多层多小区模式下的数据发送方法、装置及系统。
背景技术
在多层多小区异构网络中,可以利用的时频资源是有限的,一般情况下,在TDD模式下,宏基站与微基站工作于互相不重叠的频谱上。如图1所示,为TDD模式下的多层多小区异构网络中宏基站与微基站各自使用的频段示意图。其中,横坐标轴表示时隙,纵坐标轴表示上行链路和下行链路在数据传输时所占用的频率资源。该模式的缺陷在于,无论是对宏基站还是微基站而言,可用频谱宽度较窄。
为了增大宏基站和微基站的可用频谱宽度,又提出了共信道TDD(Co-channel TDD)模式。该模式下,宏基站层与微基站层在上行链路和下行链路频率资源调度时均可使用相同的频率资源。具体而言,如图2所示,横坐标轴表示时隙,纵坐标轴表示上行链路和下行链路在数据传输时所占用的频率资源。
然而,上述共信道TDD仍然存在缺陷:宏基站与微基站在上行链路(或下行链路)的频率资源调度时使用相同的频率资源,所以会导致各层之间的相同传输方向(包括上行和下行)的链路中传输的信号相互干扰较大。
发明内容
本申请实施例提供一种应用于多层多小区模式下的数据发送方法,用以解决现有技术中各层之间的相同传输方向(包括上行和下行)的链路中传输的信号相互干扰较大的问题。
本申请实施例还提供一种应用于多层多小区模式下的数据发送装置,用以 解决现有技术中各层之间的相同传输方向(包括上行和下行)的链路中传输的信号相互干扰较大的问题。
本申请实施例还提供一种应用于多层多小区模式下的数据发送系统,用以解决现有技术中各层之间的相同传输方向(包括上行和下行)的链路中传输的信号相互干扰较大的问题。
本申请实施例采用下述技术方案:
一种应用于多层多小区模式下的数据发送方法,包括:
第一基站在第二基站接收利用第一时频资源发送的上行数据时,利用第一时频资源发送下行数据;
第一基站在第二基站利用第二时频资源发送下行数据时,利用第二时频资源发送上行数据;
其中,第一基站与第二基站分别为多层多小区模式下不同层的基站。
一种应用于多层多小区模式下的数据发送装置,包括:
第一发送单元,用于在第二基站接收利用第一时频资源发送的上行数据时,利用第一时频资源发送下行数据;
第二发送单元,用于在第二基站利用第二时频资源发送下行数据时,利用第二时频资源发送上行数据;
其中,所述装置与第二基站分别为多层多小区模式下不同层的基站。
一种应用于多层多小区模式下的数据发送系统,所述系统包括第一基站和第二基站,其中,
第一基站,用于在第二基站接收利用第一时频资源发送的上行数据时,利用第一时频资源发送下行数据;
第二基站,用于在第二基站利用第二时频资源发送下行数据时,利用第二时频资源发送上行数据;
其中,第一基站与第二基站分别为多层多小区模式下不同层的基站。
本申请实施例采用的上述至少一个技术方案能够达到以下有益效果:
由于是将相互干扰的第一基站的上行链路和第二基站的下行链路双工模式反转,因此可以避免现有技术中各层之间的相同传输方向(包括上行和下行)的链路中传输的信号相互干扰较大的问题。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1为现有技术中的TDD模式下的干扰示意图;
图2为现有技术中的共信道TDD模式下的干扰的频谱示意图;
图3为本申请实施例1提供的一种应用于多层多小区模式下的数据发送方法流程图;
图4为本申请实施例1提供的宏小区和微小区共存场景示意图;
图5为本申请实施例1提供的干扰协调方法的频谱示意图;
图6为本申请实施例1提供的TDD/反转时分双工干扰协调方案用户终端信干噪比CDF曲线;
图7为本申请实施例1提供的TDD/反转时分双工干扰协调方案用户终端平均吞吐量CDF曲线;
图8为本申请实施例1提供的TDD/反转时分双工干扰协调方案用户终端在小区边缘吞吐量CDF曲线;
图9为本申请实施例2提供的一种应用于多层多小区模式下的数据发送装置结构图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请具体实施例及相应的附图对本申请技术方案进行清楚、完整地描述。显然,所描述的 实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
以下结合附图,详细说明本申请各实施例提供的技术方案。
实施例1
为了解决现有技术中各层之间的相同传输方向(包括上行和下行)的链路中传输的信号相互干扰较大的问题,本申请实施例1提供一种应用于多层多小区模式下的数据发送方法。为了便于理解本方案,以下可将第一基站设为宏基站,第二基站设为微基站;该方法的具体实现流程图如图3所示,主要包括下述步骤:
步骤31、第一基站在第二基站接收利用第一时频资源发送的上行数据时,利用第一时频资源发送下行数据;
具体而言,当第一基站和第二基站工作在共信道TDD模式时:
第一基站可以在第一时隙利用第一时频资源发送下行数据;其中,在该第一时隙中,第二基站接收利用第一时频资源发送的上行数据。
当第一基站和第二基站工作在共信道FDD模式时:
第一基站在划分的第一频率维度可以利用第一时频资源发送下行数据;其中,在第一频率维度中,第二基站可以接收利用第一时频资源发送的上行数据。
步骤32、第一基站在第二基站利用第二时频资源发送下行数据时,利用第二时频资源发送上行数据。
具体而言,当第一基站和第二基站工作在共信道TDD模式时:
第一基站可以在第二时隙接收利用第二时频资源发送的上行数据;其中,在第二时隙中,第二基站利用第二时频资源发送下行数据。
当第一基站和第二基站工作在共信道FDD模式时:
第一基站在划分的第二频率维度可以接收利用第二时频资源发送的上行 数据;其中,在第二频率维度中,第二基站可以利用第二时频资源发送下行数据。
在一种实施方式中,第一基站与第二基站可分别为多层多小区模式下不同层的基站。
采用实施例1提供的上述方法,由于是基于反向双工模式,使在数据传输中相互干扰的第一基站和第二基站利用相同时频资源分别执行数据传输方向不同的任务。因此可以避免现有技术中各层之间的相同传输方向(包括上行和下行)的链路中传输的信号相互干扰较大的问题。
以下针对上述步骤31-步骤32以TDD模式为例进一步说明:
如图4所示,在宏基站所覆盖小区和微基站所覆盖小区共存场景中,在第一时隙slot1中,当传输的数据是从用户终端MUEi传输到宏基站BS时,宏基站BS可以在第一时隙slot1利用该时隙下的时频资源来接收用户终端MUEi传输的数据。进一步地,由于在同一时隙中宏基站或微基站只能进行发送数据或接收数据的任务。因此,当传输的数据是从微基站SCAi传输到用户终端SUEi时,微基站SCAi可以在第一时隙利用该时隙下的时频资源向用户终端发送要传输的数据。宏基站BS和微基站SCAi在第一时隙slot1对于时频资源的共享情况如图5中虚线左侧所示。
接下来,在第二时隙中,在当传输的数据是从用户终端SUEi传输到微基站SCAi时,微基站SCAi可以在第二时隙利用该时隙下的时频资源来接收用户终端SUEi传输的数据。进一步地,由于在同一时隙中宏基站或微基站只能进行发送数据或接收数据的任务。因此,当传输的数据是从宏基站BS传输到用户终端MUEi时,宏基站BS可以在第一时隙利用该时隙下的时频资源向用户终端MUEi发送要传输的数据。宏基站BS和微基站SCAi在第二时隙slot1对于时频资源的共享情况如图5中虚线右侧所示。
在一种实施方式中,为了进一步避免多层基站之间的干扰,还可以将宏基站或微基站中的天线以智能天线技术方式进行设置,其中,智能天线技术可以 是如3D多输入多输出系统(3D Multiple-Input Multiple-Output)、大规模多输入多输出系统(Massive MIMO)等。
在一种实施方式中,为了解决在基站覆盖区中处于边缘区域用户终端干扰较大的问题。在实施例1中还可以包括:第一基站利用特定时频资源,与处于第一基站的小区边缘位置的用户终端传输数据。其中,特定时频资源为:第一基站在第一基站与第二基站共享的时频资源中选取并分配给所述用户终端的时频资源;进一步地,第一基站选取的时频资源满足:与处于小区的邻小区的边缘位置的用户终端使用的时频资源正交。
具体而言,比如,在反转时分双工干扰协调方案(即实施例1中所提出的方案,以下简称反转时分双工干扰协调方案)中,用户终端输入信干噪比与原时分双工方案相比整体上有所提升,这是由于宏基站或微基站所覆盖小区内用户终不再受到其它层基站的干扰,只受到其它层用户终端传输的影响。由于用户终端的发射功率远小于各层基站的发射功率,而且用户终端的接收灵敏度也较低,故干扰得到了有效的削弱。但由于处于覆盖小区边缘用户终端的信道质量不高,且一部分用户终端相互之间距离极为接近,或者这部分用户终端中又刚好有个别用户终端处于切换状态,那么此时就会导致用户终端的通信质量下降较快。对于这部分用户终端,宏基站和微基站间可以再进行干扰协调,也就是宏基站和微基站将所对应的干扰最严重的用户终端分别分配不同的时频资源。进一步而言,基站可以通过对用户终端导频信号的测量,来确定出该用户终端处于覆盖小区的边缘位置,进而基站在分配时频资源的时候就能够分配与所处于覆盖小区的相邻小区边缘用户终端的正交时频资源。
进一步地,对上述反转时分双工干扰协调方案进行仿真结果,如图6所示:实线(RTDD)表示利用本申请所提出的反转时分双工干扰协调方案干扰协调模式方式的用户终端信干噪比,虚线表示为传统时分双工(Time Division Duplexing,TDD)模式用户终端信干噪比。显然,反转时分双工干扰协调模式的用户终端信干噪比小于TDD模式。
请参照图7-图8,它们分别代表多层多小区反转时分双工方案下用户终端平均有效吞吐量,以及处于小区边缘的用户终端平均有效吞吐量性能情况。由仿真结果可知,由于极端干扰情况的出现,转时分双工干扰协调方案下处于小区边缘用户终端的吞吐量略有降低,但系统整体性能通过双工方式的反转获得了较大的提升,用户终端数据传输平均有效吞吐量提升了10%左右。说明反转时分双工方案是一种有效的干扰协调技术,可以在一定程度上有效提升多层多小区网络的整体系统性能。
需要说明的是,实施例1所提供方法的各步骤的执行主体均可以是同一设备,或者,该方法也由不同设备作为执行主体。比如,步骤11执行主体可以为设备1,步骤12的执行主体可以为设备2。
实施例2
实施例2提供一种应用于多层多小区模式下的数据发送装置,用以解决现有技术中各层之间的相同传输方向(包括上行和下行)的链路中传输的信号相互干扰较大的问题。该装置的具体结构示意图如图9所示,包括第一发送单元91和第二发送单元92。这两个功能单元的具体介绍如下:
第一发送单元91,用于在第二基站接收利用第一时频资源发送的上行数据时,利用第一时频资源发送下行数据;
第二发送单元92,用于在第二基站利用第二时频资源发送下行数据时,利用第二时频资源发送上行数据;
其中,应用于多层多小区模式下的数据发送装置与第二基站分别为多层多小区模式下不同层的基站。
在一种实施方式中,应用于多层多小区模式下的数据发送装置和第二基站工作在共信道TDD模式下;或应用于多层多小区模式下的数据发送装置和第二基站工作在共信道FDD模式下。
在一种实施方式中,为了进一步避免多层基站之间的干扰,应用于多层多 小区模式下的数据发送装置,还可以包括:分配单元。
分配单元,用于利用特定时频资源,与处于应用于多层多小区模式下的数据发送装置的小区边缘位置的用户终端传输数据;其中,特定时频资源可以为:应用于多层多小区模式下的数据发送装置在应用于多层多小区模式下的数据发送装置与第二基站共享的时频资源中选取并分配给用户终端的时频资源;
其中,应用于多层多小区模式下的数据发送装置选取的时频资源满足:与处于该小区的邻小区的边缘位置的用户终端使用的时频资源正交。
在一种实施方式中,第一发送单元91可以用于:在第二基站接收利用第一时频资源时,通过基于智能天线技术配置的天线,发送下行数据;第二发送单元92可以用于:在第二基站利用第二时频资源发送下行数据时,通过所述天线接收利用第二时频资源发送的上行数据。
采用实施例2提供的装置,由于是基于反向双工模式,使在数据传输中相互干扰的各基站之间利用相同时频资源分别执行数据传输方向不同的任务。因此可以避免现有技术中各层之间的相同传输方向(包括上行和下行)的链路中传输的信号相互干扰较大的问题。
实施例3
实施例3提供一种应用于多层多小区模式下的数据发送系统,用以解决现有技术中各层之间的相同传输方向(包括上行和下行)的链路中传输的信号相互干扰较大的问题。该系统包括第一基站和第二基站。具体介绍如下:
第一基站,可以用于在第二基站接收利用第一时频资源发送的上行数据时,利用第一时频资源发送下行数据;
第二基站,可以用于在第二基站利用第二时频资源发送下行数据时,利用第二时频资源发送上行数据;
其中,第一基站与第二基站分别为多层多小区模式下不同层的基站。
在一种实施方式中,第一基站和第二基站工作在共信道TDD模式下;或 第一基站和第二基站工作在共信道FDD模式下。
采用实施例3所提供的系统,由于是基于反向双工模式,使在数据传输中相互干扰的第一基站和第二基站利用相同时频资源分别执行数据传输方向不同的任务。因此可以避免现有技术中各层之间的相同传输方向(包括上行和下行)的链路中传输的信号相互干扰较大的问题。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
在一个典型的配置中,计算设备包括一个或多个处理器(CPU)、输入/输 出接口、网络接口和内存。
内存可能包括计算机可读介质中的非永久性存储器,随机存取存储器(RAM)和/或非易失性内存等形式,如只读存储器(ROM)或闪存(flash RAM)。内存是计算机可读介质的示例。
计算机可读介质包括永久性和非永久性、可移动和非可移动媒体可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机的存储介质的例子包括,但不限于相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁带磁磁盘存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。按照本文中的界定,计算机可读介质不包括暂存电脑可读媒体(transitory media),如调制的数据信号和载波。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、商品或者设备中还存在另外的相同要素。
本领域技术人员应明白,本申请的实施例可提供为方法、系统或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
以上所述仅为本申请的实施例而已,并不用于限制本申请。对于本领域技 术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (10)

  1. 一种应用于多层多小区模式下的数据发送方法,其特征在于,包括:
    第一基站在第二基站接收利用第一时频资源发送的上行数据时,利用第一时频资源发送下行数据;
    第一基站在第二基站利用第二时频资源发送下行数据时,利用第二时频资源发送上行数据;
    其中,第一基站与第二基站分别为多层多小区模式下不同层的基站。
  2. 如权利要求1所述的方法,其特征在于:
    第一基站和第二基站工作在共信道TDD模式下;或
    第一基站和第二基站工作在共信道FDD模式下。
  3. 如权利要求2所述的方法,其特征在于,所述方法还包括:
    第一基站利用特定时频资源,与处于第一基站的小区边缘位置的用户终端传输数据;
    所述特定时频资源为:第一基站在第一基站与第二基站共享的时频资源中选取并分配给所述用户终端的时频资源;
    其中,第一基站选取的所述时频资源满足:与处于所述小区的邻小区的边缘位置的用户终端使用的时频资源正交。
  4. 如权利要求2所述的方法,其特征在于,第一基站在第二基站接收利用第一时频资源发送的上行数据时,利用第一时频资源发送下行数据,包括:
    第一基站在第二基站接收利用第一时频资源发送的上行数据时,通过基于智能天线技术配置的天线,发送下行数据;
    第一基站在第二基站利用第二时频资源发送下行数据时,利用第二时频资源发送上行数据,包括:
    第一基站在第二基站利用第二时频资源发送下行数据时,通过所述天线接收利用第二时频资源发送的上行数据。
  5. 一种应用于多层多小区模式下的数据发送装置,其特征在于,包括:
    第一发送单元,用于在第二基站接收利用第一时频资源发送的上行数据时,利用第一时频资源发送下行数据;
    第二发送单元,用于在第二基站利用第二时频资源发送下行数据时,利用第二时频资源发送上行数据;
    其中,所述装置与第二基站分别为多层多小区模式下不同层的基站。
  6. 如权利要求1所述的装置,其特征在于:
    所述装置和第二基站工作在共信道TDD模式下;或
    所述装置和第二基站工作在共信道FDD模式下。
  7. 如权利要求6所述的装置,其特征在于,所述装置还包括:
    分配单元,用于利用特定时频资源,与处于所述装置的小区边缘位置的用户终端传输数据;
    所述特定时频资源为:在所述装置与第二基站共享的时频资源中选取并分配给所述用户终端的时频资源;
    其中,所述装置选取的所述时频资源满足:与处于所述小区的邻小区的边缘位置的用户终端使用的时频资源正交。
  8. 如权利要求6所述的装置,其特征在于,所述第一发送单元用于:
    在第二基站接收利用第一时频资源发送的上行数据时,通过基于智能天线技术配置的天线,发送下行数据;
    所述第二发送单元用于:
    在第二基站利用第二时频资源发送下行数据时,通过所述天线接收利用第二时频资源发送的上行数据。
  9. 一种应用于多层多小区模式下的数据发送系统,所述系统包括第一基站和第二基站,其特征在于:
    所述第一基站,用于在第二基站接收利用第一时频资源发送的上行数据时,利用第一时频资源发送下行数据;
    所述第二基站,用于在第二基站利用第二时频资源发送下行数据时,利用第二时频资源发送上行数据;
    其中,第一基站与第二基站分别为多层多小区模式下不同层的基站。
  10. 如权利要求9所述的系统,其特征在于:
    第一基站和第二基站工作在共信道TDD模式下;或
    第一基站和第二基站工作在共信道FDD模式下。
PCT/CN2015/071760 2015-01-12 2015-01-28 应用于多层多小区模式下的数据发送方法、装置及系统 WO2016112565A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510015189.6 2015-01-12
CN201510015189.6A CN104602246A (zh) 2015-01-12 2015-01-12 应用于多层多小区模式下的数据发送方法、装置及系统

Publications (1)

Publication Number Publication Date
WO2016112565A1 true WO2016112565A1 (zh) 2016-07-21

Family

ID=53127660

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/071760 WO2016112565A1 (zh) 2015-01-12 2015-01-28 应用于多层多小区模式下的数据发送方法、装置及系统

Country Status (2)

Country Link
CN (1) CN104602246A (zh)
WO (1) WO2016112565A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107404344B (zh) * 2016-05-20 2021-10-19 上海诺基亚贝尔股份有限公司 通信方法、网络设备和终端设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103379550A (zh) * 2012-04-28 2013-10-30 中国电信股份有限公司 信息传送方法和系统
CN104105123A (zh) * 2013-04-02 2014-10-15 中兴通讯股份有限公司 一种宏基站与低功率基站协同通信的方法及系统
CN104144485A (zh) * 2014-07-17 2014-11-12 北京邮电大学 上下行分离的双连接场景中用户设备上行功率控制方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103379550A (zh) * 2012-04-28 2013-10-30 中国电信股份有限公司 信息传送方法和系统
CN104105123A (zh) * 2013-04-02 2014-10-15 中兴通讯股份有限公司 一种宏基站与低功率基站协同通信的方法及系统
CN104144485A (zh) * 2014-07-17 2014-11-12 北京邮电大学 上下行分离的双连接场景中用户设备上行功率控制方法

Also Published As

Publication number Publication date
CN104602246A (zh) 2015-05-06

Similar Documents

Publication Publication Date Title
US10863530B2 (en) Method and apparatus for adjusting timing in wireless communication system
TWI571154B (zh) A method, system and device for data transmission
US20180152949A1 (en) Interference cancellation method, user equipment, and base station
US10932237B2 (en) PUCCH resource allocation
JP7142069B2 (ja) データ伝送のための制御リソースの使用
KR102369320B1 (ko) 시분할 복신 기반의 무선 통신 시스템에서 셀 간 간섭을 제어하기 위한 장치 및 방법
WO2016082261A1 (zh) 一种应用于免许可频段多系统共存的方法及装置
US11576177B2 (en) Method and terminal device for determining priorities of multiple BWPS
US11856566B2 (en) Method and apparatus for transmitting reference signal in wireless communication system
JP2023027171A (ja) 第1の端末及び方法
US11751031B2 (en) Wirelessly utilizable memory
EP3130170A1 (en) Method and apparatus for coordinating resources between different networks
US20160113020A1 (en) Additional assistance information for common reference signal interference
JP2014508462A (ja) マルチセル協調送信/受信用の上りチャネルリソースを割り当てる方法及び設備
TWI676380B (zh) 傳輸信號的方法及設備
US11659582B2 (en) Method and apparatus for 5G migration in frequency interference combination band
US9538550B2 (en) Cooperative uplink reception suitable for non-ideal backhaul
WO2016112565A1 (zh) 应用于多层多小区模式下的数据发送方法、装置及系统
WO2024011419A1 (en) Wireless communication devices and wireless communication methods for interference management in sbfd operation
CN103229552A (zh) 信号发送方法和基站设备
WO2018095342A1 (zh) 一种分配波束的方法及装置
WO2022012322A1 (zh) 一种信道状态信息反馈方法及装置
US20230062005A1 (en) Method and device for transmitting control information
CN113271669B (zh) 一种控制信息传输方法及装置
WO2022067649A1 (zh) 一种dci传输方法、装置、芯片及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15877483

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 05/12/2017)

122 Ep: pct application non-entry in european phase

Ref document number: 15877483

Country of ref document: EP

Kind code of ref document: A1