WO2016111601A1 - Apparatus for generating electrical energy - Google Patents

Apparatus for generating electrical energy Download PDF

Info

Publication number
WO2016111601A1
WO2016111601A1 PCT/KR2016/000235 KR2016000235W WO2016111601A1 WO 2016111601 A1 WO2016111601 A1 WO 2016111601A1 KR 2016000235 W KR2016000235 W KR 2016000235W WO 2016111601 A1 WO2016111601 A1 WO 2016111601A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric
elastic body
displacement
force
generating device
Prior art date
Application number
PCT/KR2016/000235
Other languages
French (fr)
Korean (ko)
Inventor
이상구
권명주
Original Assignee
(주)아이블포토닉스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150003159A external-priority patent/KR101659283B1/en
Priority claimed from KR1020150101215A external-priority patent/KR101712817B1/en
Application filed by (주)아이블포토닉스 filed Critical (주)아이블포토닉스
Publication of WO2016111601A1 publication Critical patent/WO2016111601A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/18Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing electrical output from mechanical input, e.g. generators

Definitions

  • the present invention relates to an electrical energy generating apparatus, and more particularly, to an electrical energy generating apparatus which can obtain more electrical energy by pressing a piezoelectric body.
  • Methods of generating electricity using mechanical movement include (1) coil / magnet-based electromagnetic induction generation, (2) electrostatic generation using variable capacitors, and (3) piezoelectric generation.
  • the method of (1) is very widely used as in the case of general motors or turbines, but it is difficult to make the size / weight of the system small, and the method of (2) is a cycle of charge / mechanical deformation / discharge / mechanical deformation (ie, reversal). It is complex because the design must be made with the circuit to go through.
  • (3) In the case of power generation using piezoelectric material, mechanical force is applied to the piezoelectric material to induce deformation of size, and the structure of the piezoelectric material is very simple and miniaturized by generating electricity. There is an advantage in that there is an active research on this.
  • the piezoelectric material is a material that generates electricity when the size is changed by an external force.
  • the size deformation of a material must occur largely, quickly and frequently to generate a large amount of electricity.
  • a piezoelectric power generator of a cantilever structure has been mainly used in an environment having high frequency mechanical vibration.
  • the piezoelectric generator of the cantilever structure can be operated efficiently by generating a large and fast displacement only when the surrounding mechanical vibration is similar to the inherent resonance frequency of the cantilever, and when the frequency is not matched, it generates a large electricity. There is difficulty.
  • the piezoelectric generator of a general cantilever structure cannot generate a large amount of electricity.
  • the present invention has been made to solve the above problems, it is an object of the present invention to provide a device that can generate more electrical energy by pressing the piezoelectric body.
  • Another object of the present invention is to provide an electric energy generating device for vibrating a piezoelectric body using a spring.
  • Another object of the present invention is to provide an electric energy generating device capable of obtaining the required electric energy by simply pressing the user without using a battery.
  • Piezoelectric bodies having at least two surfaces
  • An elastic body positioned on at least one surface of the surface of the piezoelectric body and transmitting a displacement to the piezoelectric body
  • the other surface corresponding to the surface on which the elastic body is located is provided with an electric energy generating device having a means for accommodating the displacement of the piezoelectric body.
  • the elastic body is changed in the form of vibration repeating the increase and decrease the force applied to the elastic body when the deformation is pressed in one direction by the application of an external force, so that the displacement vibrating on the piezoelectric body Electrical energy generating device is provided.
  • the piezoelectric material includes a piezoelectric material layer having a first electrode provided on a first surface and a second electrode provided on an opposing second surface.
  • the piezoelectric body may be provided on one or both surfaces of the substrate.
  • the elastic body includes N unit elastic bodies (where N is two or more), and the number of vibrations may be N times or less.
  • the substrate may serve to support the piezoelectric material, but may have a material and a structure that do not substantially limit the piezoelectric displacement due to the displacement transmitted from the elastic body.
  • the other surface of the surface of the piezoelectric body corresponding to the surface where the elastic body is located is provided with a space that can accommodate the displacement of the piezoelectric body
  • It may be provided with a protrusion that can cause the twisting movement of the piezoelectric body selectively between the space or the piezoelectric body and the elastic body.
  • the piezoelectric body may be made of a piezoelectric single crystal or a piezoelectric material.
  • the piezoelectric body may have a piezoelectric characteristic of d33, d15 or d31 mode.
  • the piezoelectric body may be formed of a piezoelectric material layer having a first electrode provided on a first surface and a second electrode provided on an opposing second surface.
  • the substrate may serve as the elastic body without a separate elastic body, and the substrate may have a structure for transferring the cantilevered displacement generated by the pressing means to the piezoelectric body.
  • a plurality of unit generators may have a structure in a series or parallel structure.
  • the unit elastic body is a snap dome having an upper surface and a lower surface
  • the snap dome may be stacked so that the upper surface is in contact with each other, the lower surface is in contact with the lower surface.
  • the present invention even if a mechanical force is directly applied to the piezoelectric body, a problem of the prior art in which a small amount of electric energy or no electric energy can be obtained due to the low frequency is solved by the present invention. That is, when a force is applied in the form of a person pushing a button, the rate of rise of the voltage is so low that the electric energy generated from the piezoelectric body is consumed as a leakage current, and the magnitude of displacement of the piezoelectric body is solved. The problem is limited and the increase in voltage is simply limited in one direction.
  • the electric energy can be obtained by adopting a new structure using a piezoelectric body and a spring so that the user can generate a sufficient electric energy only by pressing a button mechanically.
  • the piezoelectric element can be vibrated with a larger displacement by adopting a structure that transmits the force to the piezoelectric element for a short time.
  • the current due to the vibration of the piezoelectric body can be obtained as an alternating current component, and can generate much larger electrical energy than the electrical energy of the piezoelectric body due to simple pressurization.
  • 1 and 2 are graphs schematically showing the relationship between the displacement of the elastic body and the force applied to the elastic body.
  • 3 to 5 are schematic exploded perspective views of an electric energy generating device according to various embodiments of the present disclosure.
  • FIG. 6 is a schematic cross-sectional view of an electrical energy generating device according to another embodiment of the present invention.
  • FIG. 7A and 7B schematically illustrate a state in which an electric energy generating device is mounted on an experimental device in order to measure a voltage of electric energy generated in the electric energy generating device.
  • FIG. 8 is a graph of voltage over time showing test results of the electric energy generating device shown in FIGS. 7A and 7B.
  • 9A and 9B are photographs showing a state and an experimental process of applying the apparatus according to the present invention to a mobile phone home button.
  • FIG. 10 shows the results of experiments using the apparatus of FIGS. 9A and 9B.
  • FIG. 11 is a photograph showing an example of a snap dome.
  • FIG. 12 schematically illustrates the snap dome cross-sectional shape in which deformation occurs when a pressing force is applied.
  • 13 is a cross-sectional view schematically showing the shape of the snap dome stack.
  • 16 schematically illustrates a method for measuring power generation of a snap dome stack according to an embodiment of the present invention.
  • Figure 17 shows the actual manufacturing process of the snap dome stack according to an embodiment of the present invention.
  • 18A and 18B show an operation test process of a piezoelectric generator manufactured according to one embodiment of the present invention.
  • 19 shows the results of a push experiment according to the number of snap domes of a snap dome stack according to an embodiment of the present invention.
  • 20 is a graph showing the energy generation form of a piezoelectric generator according to an embodiment of the present invention.
  • the present invention has the advantage that a sufficient electrical energy can be obtained by adopting a new structure that can generate a lot more electrical energy than the existing by converting the force of the low frequency applied to the piezoelectric material to a high frequency, such a feature May be used to power sensor nodes in wireless sensor networks or the Internet of Things (IoT), which have recently gained increasing interest.
  • IoT Internet of Things
  • it is applied to a shoe or insole that generates electricity while walking, and may be used immediately after being temporarily stored in a battery or as a power source for driving a smart shoe or a smart insole. In this case, it is possible to replace the existing battery or to replace the power supply of wired and wireless charging method.
  • the military boots walking is expected to be able to recharge or directly supply the electrical energy required by the soldiers.
  • It can be used to power sensor nodes in wireless sensor networks or the Internet of Things (IoT), which have recently gained increasing interest.
  • IoT Internet of Things
  • it is applied to a shoe or insole that generates electricity while walking, and may be used immediately after being temporarily stored in a battery or as a power source for driving a smart shoe or a smart insole.
  • it is possible to replace the existing battery or to replace the power supply of wired and wireless charging method.
  • the military boots walking is expected to be able to recharge or directly supply the electrical energy needed by the soldiers.
  • the external force provided by the user is accumulated in an elastic body such as a spring, and the electrical force is produced by releasing the accumulated force for a relatively short time to vibrate the piezoelectric body.
  • the electric energy generating device includes a piezoelectric body having at least two surfaces;
  • An elastic body positioned on at least one surface of the surface of the piezoelectric body and transmitting a displacement to the piezoelectric body
  • the elastic body is an electrical energy generating device that when the deformation is pressed in one direction by the application of an external force, the force applied to the elastic body is changed in the form of a vibration repeating the increase and decrease, so that the displacement vibrating on the piezoelectric body to occur. Is provided.
  • the elastic body preferably comprises N unit elastic bodies (where N is two or more), and the number of vibrations may be N times or less.
  • the unit elastic bodies may be stacked such that displacement of each unit elastic body sequentially causes displacement of other unit elastic bodies.
  • the elastic body is like a spring, for example a buckling spring, in which the relationship of force to displacement is nonlinear. After the elastic body accumulates the applied external force as a displacement, the elastic body can transfer the accumulated external force to the piezoelectric body for a short time when the specific displacement is exceeded.
  • the piezoelectric element vibrates by displacement for a short time when the external force is applied and when the external force is removed, respectively, and the vibration of the piezoelectric element is sufficient to generate electrical energy.
  • depth x When the displacement of the unit when pressing the elastic body by the pressing means that depth x is 0 and the initial depth of the snap-may be called the depth of time lead to buckling (snap-through-bucking) x 1 - through.
  • the maximum displacement of the unit elastic body, that is, the depth when it touches the floor, may be referred to as x 3 .
  • x 2 and x 3 is defined as the depth having a power and the power of the same size in x 1 in sayi x 2 ', and increasing the pressing force applied to the pressing means, measuring the depth of the depth x 1 as in the second When it reaches, it will be pressed down to depth x 2 'without increasing the force.
  • snap-through-buckling means that in the general mechanical force (F) -strain curve, the deformation increases with the external force.
  • Force indicates that there is a decreasing interval.
  • F the mechanical force
  • Force indicates that there is a decreasing interval.
  • the elastic body having such elastic properties examples include, but are not limited to, a buckling spring, a snap-through buckle spring, a disk spring, a dome spring, and the like.
  • the substrate itself may serve as an elastic body.
  • the substrate may serve as the elastic body without a separate elastic body, and the substrate may have a structure for transferring the cantilevered displacement generated by the pressing means to the piezoelectric body.
  • Snapdom is generally used as an ultra-thin push switch (see http://www.inovan.de/, http://www.snaptron.com/), one example of which is shown in FIG.
  • the edges touch the floor but the middle part is slightly floating, so if you press the middle part, before the center part touches the floor, the pressing force of the center is suddenly transmitted to the edge and it turns off completely. Snap-through-buckling.
  • An electric energy generating device comprises: a piezoelectric body having at least two surfaces; An elastic body positioned on at least one surface of the surface of the piezoelectric body and transmitting a displacement to the piezoelectric body; And means for accommodating displacement of the piezoelectric body on the other surface corresponding to the surface on which the elastic body is located.
  • Displacement of the elastic body transferred to the piezoelectric body may be generated by pressing means for transmitting a force to the elastic body.
  • 3 to 5 are schematic exploded perspective views of an electric energy generating apparatus having a piezoelectric body according to various embodiments of the present disclosure. Since this is only an example of the present invention, the present invention is not limited to this structure, and various modifications are possible within the scope of the present invention.
  • FIGS. 3 to 5 illustrate a case where a disc spring is used as an elastic body, but is not limited thereto, and the elastic body according to the present invention may be used without limitation as long as the elastic body according to the present invention has the elasticity as described above with reference to FIGS. 1 and 2. Can be.
  • the electric energy generating device is provided on a substrate 10, a first electrode 12a disposed on the substrate 10 and provided on a first surface, and on an opposing second surface.
  • a piezoelectric body 11 having a second electrode 12b formed therein, pressing means 15 disposed on the piezoelectric body 11 so as to pressurize the piezoelectric body 11, the piezoelectric body 11 and the pressing It is provided with a spring 13 arranged between the means 15.
  • the other side of the substrate on which the piezoelectric body is located is provided with means (16, 17, 18) for receiving the displacement of the piezoelectric body transmitted by the displacement of the spring.
  • Figure 3 is an elastic sheet 16 such as rubber or foam foam
  • Figure 4 is a ring-shaped structure 17 can provide a space
  • Figure 5 is a piezoelectric or Two or more columnar structures 18 are shown to form a space by separating the substrate on which the piezoelectric body is formed from other structures at predetermined intervals.
  • various modifications may be possible.
  • the piezoelectric body 11 is supported on the first surface of the substrate 10. As shown, the piezoelectric body may be formed only on one surface of the substrate, but the present invention is not limited thereto, and the piezoelectric body may be formed on both surfaces of the substrate.
  • the substrate 10 preferably serves to support the piezoelectric material, but has a material and a structure that do not substantially limit the piezoelectric displacement due to the displacement transmitted from the elastic body.
  • a material such as a copper plate or an aluminum plate that is thin and stirs is preferable.
  • the insulating layer 10a, 10b may be formed on the first surface and the opposite second surface of the substrate 10, respectively.
  • the piezoelectric body 11 may be made of a piezoelectric single crystal or a piezoelectric material.
  • it may be made of a piezoelectric single crystal or piezoceramic, or a piezoelectric polymer containing or not containing lead.
  • Piezoelectric single crystals have a structure in which fine particles having a predetermined structure are regularly arranged.
  • the piezoelectric body may have a piezoelectric characteristic of d33, d15, or d31 mode.
  • the piezoelectric single crystal may be a solid solution single crystal of magnesium niobate (PMN), which is a relaxor, and lead titanate (PT), which is a piezoelectric body.
  • PMN magnesium niobate
  • PT lead titanate
  • the piezoelectric distortion is three times or more, compared with the conventional piezoelectric material, the electromechanical coupling coefficient is large, and excellent piezoelectric properties are exhibited.
  • piezoelectric ceramics such as lead zirconate titanate (PZT) ceramics, which are examples of known piezoelectric materials, can be used.
  • the first electrode 12a is formed on the first surface of the piezoelectric element 11, and the second electrode 12b is formed on the opposing second surface.
  • the electrodes 12a and 12b are connected to terminals of a circuit board (not shown) through wires not shown.
  • the disk spring 13 exemplified as an elastic body has a shape of a part or a dome as a whole, the bottom part is opened and the top part is formed with an opening. In other examples not shown in the figures, the opening may be closed.
  • the elastic body is not limited to the shape as shown in FIGS. 3 to 5, and may be used without limitation as long as it has elasticity as described above with reference to FIGS. 1 and 2.
  • the relationship between the displacement of the elastic body and the force can cause the piezoelectric body disposed adjacent to the elastic body to vibrate.
  • the displacement of the elastic body can produce the displacement of the piezoelectric body.
  • the magnitude of the force at the moment of removing the force at the end of the inversion region is smaller than the magnitude of the maximum force in the proportional region. Therefore, assuming that the elastic body is pressed, the force is in the opposite direction in the proportional region to push it, so that the piezoelectric element disposed under the elastic body can generate a force to move in the form of free vibration.
  • the spring constant uses an elastic body in which k may have a negative (-) region.
  • the piezoelectric material includes a piezoelectric material layer having a first electrode provided on a first surface and a second electrode provided on an opposing second surface.
  • Displacement of the elastic body transferred to the piezoelectric body may be generated by pressing means for transmitting a force to the elastic body.
  • a button is arranged as the pressing means 15 capable of pressing the spring 13 on top of the spring 13.
  • the button can have any shape that allows the user to press the spring 13.
  • a protrusion can be formed which can be inserted into an opening formed in the upper portion of the spring 13.
  • An insulating layer 14 is formed on the bottom surface of the button to provide electrical insulation between the spring 13 and the button.
  • the user can deform the spring 13 by pressing the pressing means 15 such as a button.
  • the pressing means 15 such as a button.
  • the spring 13 is restored to its original state through the relationship of displacement and force as described with reference to FIGS. 1 and 2, which pressurizes and restores the spring 13.
  • the piezoelectric body 11 is vibrated in the process. The vibration of the piezoelectric body 11 generates electrical energy, and the generated electrical energy can be supplied through a wire connected to the electrodes 12a and 12b.
  • 3 to 5 illustrate an example in which an elastic body is positioned between the pressing means and the piezoelectric body, but is not limited thereto.
  • the piezoelectric body may be designed to be positioned between the pressing means and the elastic body. In any case, if the displacement of the elastic body is transferred to the piezoelectric body so that the piezoelectric body can have a displacement, that is, it can vibrate, the electric energy generating device according to the present invention can be implemented.
  • the substrate may serve as the elastic body without a separate elastic body, and the substrate may have a structure for transferring the cantilevered displacement generated by the pressing means to the piezoelectric body.
  • FIG. 6 is a schematic cross-sectional view of an apparatus for transmitting cantilevered displacement to a piezoelectric body.
  • the protrusions 26 are formed on the pillars 24 of the button 15, and the piezoelectric body 21 is formed on one surface or both surfaces of the substrate 23.
  • the substrate 23 may be a circular substrate having an opening formed in the center thereof, or may have a structure in which a plurality of rectangular substrates in the form of a spring board are symmetrically disposed about the pillar of the button.
  • the protrusion 26 presses the inner end of the substrate 23 downward and presses the button 25 further to lower the protrusion 26 to raise the substrate 23.
  • the piezoelectric body 21 formed on the substrate 23 vibrates while being bounced in the direction. In this case, the substrate 23 simultaneously serves as an elastic body.
  • the electric energy generating device according to the present invention as a unit generator, it is possible to have a structure in which a plurality of unit generators are assembled in series or parallel structure.
  • FIG. 7A and 7B schematically illustrate a state in which an electric energy generating device is mounted on an experimental device for measuring a voltage of electric energy generated in the electric energy generating device.
  • FIG. 7A is an electrical energy generator having an elastic body according to the present invention
  • FIG. 7B is an electrical energy generator without an elastic body.
  • the metal plate 30 is supported by the support 40, and the piezoelectric element 31, the elastic body 33, and the pressing means 35 are disposed on the metal plate 30.
  • the metal plate 30 is in contact with the support 40 through the insulating layers 30a and 30b, and the electrode 32a is formed on the upper surface of the piezoelectric body 31.
  • An insulating layer is disposed between the pressing means 35 and the elastic body 33.
  • the piezoelectric body 31 was configured as a rectangular parallelepiped having a dimension of approximately 1 cm x 0.5 cm x 0.1 mm as a whole, and the diameter of the bottom face of the spring 33 was approximately 0.6 cm. Referring to FIG. 7B, it is the same as the electric energy generating device shown in FIG. 7A, except that the elastic body 33 is not provided. That is, the metal plate 31 is supported by the support 40, and the piezoelectric element 31 and the pressing means 35 are disposed on the metal plate 31.
  • FIG. 8 is a graph of voltage over time showing experimental results of the electric energy generating apparatus shown in FIGS. 7A and 7B.
  • the voltage generated in the electric energy generating device with the elastic body 33 is indicated at the top of FIG. 8, while the voltage generated in the electric energy generating device without the elastic body 33 is shown in the lower part of FIG. 8. It is.
  • the elastic member 33 when the elastic member 33 is provided, a voltage having an absolute value of at least 3 volts is generated as the pressing means 35 is pressed, and the voltage is applied when a force for pressing the spring is applied. And one time in the form of free vibration once the pressing force is removed. In contrast, in the absence of the elastic body 33, the magnitude of the absolute value of the voltage is less than 0.5 volts.
  • the wavy shape of about 0.2-0.3 volts at 60 Hz is a signal coming out as background noise due to the microscopic vibration naturally occurring when the power is applied to the experimental device, and has no relation to the signal coming out from the pressing device.
  • FIG. 10 is a result of measuring voltage generation by repeatedly pressing the home button in the experimental apparatus of FIGS. 9A and 9B, and it can be seen that a voltage of about 8V is consistently generated even after 100 times and 1000 times.
  • Examples of the elastic body having elastic properties according to the present invention include, but are not limited to, a buckling spring, a snap-through-buckling spring, a disk spring, a dome spring, and the like.
  • a snap dome can be used as the elastic body.
  • Snapdom is generally used as an ultra-thin push switch (see http://www.inovan.de/, http://www.snaptron.com/), one example of which is shown in FIG.
  • the edges touch the floor but the middle part is slightly floating, so if you press the middle part, before the center part touches the floor, the pressing force of the center is suddenly transmitted to the edge and it turns off completely. Snap-through-buckling.
  • FIG. 12 is a schematic representation of the shape of the snapdom cross section in which deformation occurs when a pressing force is applied. If you measure strain while increasing the force, you can see that the strain suddenly jumps at the same force when you go to the area where snap-through-buckling occurs.
  • the unit elastic bodies are stacked such that displacement of each unit elastic body sequentially causes displacement of adjacent unit elastic bodies.
  • FIG. 13 shows a stack of snapdom stacks stacked upside down in the opposite direction.
  • the first snap dome is first placed, the second snap dome is inverted in the opposite direction to the first snap dome, stacked on the first snap dome, and the third snap dome is inverted in the opposite direction to the second snap dome, ie, the first snap dome. Stacked on the second snap dome in the same direction as the dome.
  • adjacent snapdoms may be repeatedly stacked in an opposite direction to form a stack of N snapdoms. This places the top of one snap dome and the top of the other slab in contact with each other and the opposite side, i.e., the bottom, with the bottom of the next (other) snap dome, as shown in FIG. And are repeatedly arranged to face each other in opposite directions.
  • more electrical energy can be generated by providing protrusions that can cause twisting of the piezoelectric body selectively between the space or the piezoelectric body and the elastic body.
  • the piezoelectric body may be made of a piezoelectric single crystal or a piezoelectric material.
  • it may be made of a piezoelectric single crystal or piezoceramic, or a piezoelectric polymer containing or not containing lead.
  • Piezoelectric single crystals have a structure in which fine particles having a predetermined structure are regularly arranged.
  • the piezoelectric body may have a piezoelectric characteristic of d33, d15, or d31 mode.
  • the piezoelectric single crystal may be a solid solution single crystal of magnesium niobate (PMN), which is a relaxor, and lead titanate (PT), which is a piezoelectric body.
  • PMN magnesium niobate
  • PT lead titanate
  • the piezoelectric distortion is three times or more, compared with the conventional piezoelectric material, the electromechanical coupling coefficient is large, and excellent piezoelectric properties are exhibited.
  • piezoelectric ceramics such as lead zirconate titanate (PZT) ceramics, which are examples of known piezoelectric materials, can be used.
  • the snap dome stack acts like a spring, initially pushing the outer push switch, and pressing the push switch with an external force causes the snap dome stack to contract. When the pressing force is removed again, it is returned to the original state by the elastic restoring force of each snap dome.
  • FIG. 16 shows a method for measuring power generation when snap-through-buckling of the snap dome stack shown in FIG. 15 is actually applied.
  • Power generated in the piezoelectric body may be stored in the capacitor via a rectifier circuit or directly connected to a rechargeable battery instead of the capacitor.
  • Figure 17 shows the actual fabrication process for actually testing the performance of the snap dome stack.
  • A, B, C, D is a frame manufacturing drawing for installing a snap dome stack
  • A is the upper frame
  • B is the pressing portion
  • C is the bottom frame
  • D represents the bottom frame.
  • the upper frame (A) is to hold the movement path of the pressing portion when the pressing portion presses the snap dome stack and secures a space in which the pressing portion moves.
  • Pressing portion (B) is a pressing portion by pressing the snap dome stack is in contact with the upper portion. When pressed, it moves down and directly pushes the snap dome stack.
  • the lower frame C has an inner space according to the shape of the snapdom stack so that it can be stably pressed when the snapdom stack is pressed.
  • the bottom frame D is a position where the piezoelectric material to which the piezoelectric material is attached is located, and has a little space at the bottom so that the piezoelectric material can be lowered slightly when pressed.
  • E is actually a snap dome stack frame.
  • F shows the shape when the snapdom stack removed from E is assembled.
  • G represents the piezoelectric body mounted under the snapdom stack.
  • H shows the snap dome stack mounted inside the frame.
  • 18A and 18B correspond to the operation test of the piezoelectric generator manufactured as in FIG. 17 before and after pressing of FIG. 15, respectively.
  • 19 schematically shows the results of a push experiment according to the number of snap domes of a snap dome stack. Pressed at 2 mm / s and stopped at 1500 gram-force, changing the number of snapdoms to 1, 3, 5, 7, and 9 shows the depth of force-force change graph for each structure.
  • 20 is a graph showing the energy generation form of the piezoelectric generator according to one embodiment of the present invention (number of snap domes).
  • the wires electrically connected to both sides of the piezoelectric generator are connected to the capacitor through the bridge diode rectifier circuit, and the voltage applied to the capacitor is measured and calculated as stored energy.
  • the force of the low frequency applied to the piezoelectric body can generate much more electric energy than before.
  • the electrical energy generating device can be applied in various ways. For example, it may be used as a non-powered remote controller, a non-powered keyboard, a non-powered door lock, or a personal keypad.
  • a non-powered remote controller even if a separate battery is not provided, electric energy is generated only by a user pressing a button on the remote controller, and an infrared signal may be generated using the electric energy.
  • the user may generate electrical energy only by typing on the keyboard, and transmit the keyboard signal to the computer body using the electrical energy.
  • a sufficient electrical energy can be obtained by adopting a new structure that can generate a lot more electrical energy than the existing by converting a low frequency force applied to the piezoelectric material to a high frequency. It can be used to power sensor nodes in a wireless sensor network or Internet of Things (IoT) of growing interest. Alternatively, it is applied to a shoe or insole that generates electricity while walking, and may be used immediately after being temporarily stored in a battery or as a power source for driving a smart shoe or a smart insole.
  • IoT Internet of Things

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

According to the present invention, provided is an apparatus for generating electrical energy, comprising: a piezoelectric body having at least two surfaces; and an elastic body which is located on at least one surface of the surfaces of the piezoelectric body and delivers displacement to the piezoelectric body, wherein if external force is applied to the elastic body and the elastic body is pressed in one direction and deformed, the force of the elastic body which presses the piezoelectric body is converted into vibrations in which the pressing force repeatedly increases and decreases, and then vibration displacement is transmitted to the piezoelectric body. The apparatus according to the present invention converts the force of a low vibration frequency applied to the piezoelectric body into a high vibration frequency through a simple principle, thereby generating far more electrical energy than existing apparatuses.

Description

전기 에너지 발생 장치Electrical energy generator
본 발명은 전기 에너지 발생 장치에 관한 것으로서, 보다 상세하게는 압전체를 눌러서 보다 많은 전기 에너지를 얻을 수 있는 전기 에너지 발생 장치에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrical energy generating apparatus, and more particularly, to an electrical energy generating apparatus which can obtain more electrical energy by pressing a piezoelectric body.
전기 에너지의 획득은 다양한 방식으로 이루어질 수 있다. 기존의 전기 생산 방식으로는 통상적인 화력 발전 및 원자력 발전을 예로 들 수 있으며, 신 재생에너지 분야의 전기 생산 방식으로는 풍력, 수력, 조력, 지열, 태양열 및 태양광을 이용한 발전을 예로 들 수 있다. 이러한 유형의 발전은 대부분 대규모로 이루어지며, 전력망(electrical grid)을 통해서 전기가 공급됨으로써 일상 생활에서 전기를 사용할 수 있다.Acquisition of electrical energy can be accomplished in a variety of ways. Existing electricity production methods include conventional thermal power generation and nuclear power generation. For example, electricity generation methods in the renewable energy field include wind, hydro, tidal, geothermal, solar, and solar power generation. . This type of power generation is largely on a large scale and can be used in everyday life by being supplied through an electrical grid.
한편, 일상 생활에서 사용되는 다양한 전자 기기들 중 일부는 배터리를 통해서 전기 에너지를 이용할 수 있도록 구성된다. 그러나 배터리 생산에 필요한 물질은 인체에 유해하므로 배터리 생산 및 폐기 과정에서 많은 문제점을 야기하며, 배터리의 사용 중에도 배터리의 방전 이후에 배터리를 충전하거나 배터리를 교체하는 작업은 상대적으로 매우 번거롭다는 문제점이 있다. On the other hand, some of the various electronic devices used in everyday life is configured to use the electrical energy through the battery. However, the materials required for battery production are harmful to the human body, which causes many problems in the production and disposal of the battery, and even while the battery is in use, recharging or replacing the battery after the battery is discharged is relatively cumbersome. have.
위와 같은 종래 기술의 문제점을 고려하여, 에너지 하베스팅(energy harvesting)은 최근 매우 중요한 기술 분야로 인식되어 활발한 연구가 진행되고 있다. 특히, 모바일(mobile) 환경에서의 전자 기기 사용이 일상 생활에서 중요한 부분을 차지하는 추세에 따라서, 기계적 에너지를 수확하여 전기 에너지로 변환/저장하는 기술은 보다 효율적인 에너지 변환을 가능하게 하는 소자/재료/구조 등을 필요로 하고 있다. 특히 배터리 부피에 따른 전자 기기 구조의 제약을 극복하고, 또한 방전된 배터리의 충전 문제 및 폐기될 배터리의 교체 문제를 다른 방식으로 해결하여야 할 필요성이 존재한다. In consideration of the above problems of the prior art, energy harvesting has recently been recognized as a very important technical field, and active research is being conducted. In particular, according to the trend that the use of electronic devices in a mobile environment is an important part of daily life, the technology of harvesting mechanical energy and converting / storing it into electrical energy is a device / material / It needs a structure. In particular, there is a need to overcome the limitations of the electronic device structure according to the battery volume, and also to solve the problem of charging the discharged battery and the replacement of the battery to be discarded in another way.
기계적인 움직임을 이용하여 전기를 만들어내는 방법으로는 (1) 코일/자석 기반 전자기유도 발전, (2) 가변축전기 이용 정전기 발전, 그리고 (3) 압전 발전이 있다. (1)의 방법은 일반 모터나 터빈의 경우처럼 매우 폭넓게 사용되지만 시스템의 크기/무게를 작게 만들기 어렵고, (2)의 방법은 충전/기계적변형/방전/기계적변형(즉 원상회복) 순서의 사이클을 거치도록 회로와 함께 설계가 이루어져야 해서 복잡하다. 그에 비하여 (3) 압전(piezoelectric) 물질을 이용한 발전의 경우 기계적인 힘이 압전물질에 적용되어 크기의 변형을 유도하고, 그러한 압전물질의 변형이 전기를 만들어내는 방식으로 그 구조가 매우 간단하고 소형화에 유리하다는 장점이 있어 이에 대한 연구가 활발하게 진행되고 있다. Methods of generating electricity using mechanical movement include (1) coil / magnet-based electromagnetic induction generation, (2) electrostatic generation using variable capacitors, and (3) piezoelectric generation. The method of (1) is very widely used as in the case of general motors or turbines, but it is difficult to make the size / weight of the system small, and the method of (2) is a cycle of charge / mechanical deformation / discharge / mechanical deformation (ie, reversal). It is complex because the design must be made with the circuit to go through. (3) In the case of power generation using piezoelectric material, mechanical force is applied to the piezoelectric material to induce deformation of size, and the structure of the piezoelectric material is very simple and miniaturized by generating electricity. There is an advantage in that there is an active research on this.
구체적으로, 압전 물질은 외부 힘에 의해서 크기가 변형될 때 전기가 생성되는 물질이다. 특히 압전현상(piezoelectricity)의 특성 상 물질의 크기 변형이 크게, 빠르게, 그리고 빈번하게 일어나야 많은 양의 전기를 만들어낼 수 있다. 이러한 이유로 일반적으로 높은 진동수의 기계적인 진동이 있는 환경에서 캔티레버(cantilever) 구조의 압전발전기(piezoelectric power generator)가 주로 사용되어 왔다.Specifically, the piezoelectric material is a material that generates electricity when the size is changed by an external force. In particular, due to the nature of piezoelectricity, the size deformation of a material must occur largely, quickly and frequently to generate a large amount of electricity. For this reason, a piezoelectric power generator of a cantilever structure has been mainly used in an environment having high frequency mechanical vibration.
그러나 캔티레버 구조의 압전발전기의 경우 주변 기계적 진동이 캔티레버의 고유 공명 진동수(resonance frequency)와 비슷한 경우에만 크고 빠른 변위를 발생시켜 효율적으로 작동될 수 있고, 진동수가 잘 맞지 않는 경우는 큰 전기를 만들어내는데 어려움이 있다. 또한, 작용하는 힘이 크기는 충분하지만 낮은 진동수로 나타나는 경우, 예를 들면 사람의 보행 또는 일회성 버튼 누름의 경우, 일반적인 캔티레버 구조의 압전발전기로는 많은 양의 전기를 만들어낼 수 없다는 문제점이 있다.However, in the case of the piezoelectric generator of the cantilever structure, it can be operated efficiently by generating a large and fast displacement only when the surrounding mechanical vibration is similar to the inherent resonance frequency of the cantilever, and when the frequency is not matched, it generates a large electricity. There is difficulty. In addition, when the force acting is large enough but appears at a low frequency, for example, when a person walks or pushes a button, the piezoelectric generator of a general cantilever structure cannot generate a large amount of electricity.
본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로서, 본 발명의 목적은 압전체를 눌러서 보다 많은 전기 에너지를 발생할 수 있는 장치를 제공하는 것이다. The present invention has been made to solve the above problems, it is an object of the present invention to provide a device that can generate more electrical energy by pressing the piezoelectric body.
본 발명의 다른 목적은 스프링을 이용하여 압전체를 진동시키는 전기 에너지 발생 장치를 제공하는 것이다.Another object of the present invention is to provide an electric energy generating device for vibrating a piezoelectric body using a spring.
본 발명의 다른 목적은 배터리를 이용하지 않으면서 사용자가 단순히 누르는 동작만으로 필요한 전기 에너지를 얻을 수 있는 전기 에너지 발생 장치를 제공하는 것이다.Another object of the present invention is to provide an electric energy generating device capable of obtaining the required electric energy by simply pressing the user without using a battery.
본 발명에 따르면, According to the invention,
적어도 2 이상의 표면을 갖는 압전체;Piezoelectric bodies having at least two surfaces;
상기 압전체의 표면 중 적어도 한쪽 면에 위치하며 압전체에 변위를 전달하는 탄성체; 및 An elastic body positioned on at least one surface of the surface of the piezoelectric body and transmitting a displacement to the piezoelectric body; And
상기 탄성체가 위치하는 면에 대응되는 다른 표면에는 압전체의 변위를 수용할 수 있는 수단이 구비된 전기 에너지 발생 장치가 제공된다. The other surface corresponding to the surface on which the elastic body is located is provided with an electric energy generating device having a means for accommodating the displacement of the piezoelectric body.
일 구현예에 따르면, 상기 탄성체는 외부 힘이 인가되어 한 방향으로 눌리는 변형이 일어날 때, 탄성체에 걸리는 힘이 증가 및 감소를 반복하는 진동의 형태로 변하여, 상기 압전체에 진동하는 변위가 일어나도록 하는 것인 전기 에너지 발생 장치가 제공된다.According to one embodiment, the elastic body is changed in the form of vibration repeating the increase and decrease the force applied to the elastic body when the deformation is pressed in one direction by the application of an external force, so that the displacement vibrating on the piezoelectric body Electrical energy generating device is provided.
일 구현예에 따르면, 상기 탄성체에 힘을 전달하기 위한 가압수단을 더 구비하며, According to one embodiment, further comprising a pressing means for transmitting a force to the elastic body,
상기 압전체는 제 1 표면에 구비된 제 1 전극 및 대향하는 제 2 표면에 구비된 제 2 전극을 가지는 압전물질층으로 이루어져 있고, The piezoelectric material includes a piezoelectric material layer having a first electrode provided on a first surface and a second electrode provided on an opposing second surface.
상기 압전체는 기판의 일면 또는 양면에 구비된 것일 수 있다. The piezoelectric body may be provided on one or both surfaces of the substrate.
상기 탄성체는 N개의 단위 탄성체를 포함하는 것이 바람직하며(단 N은 2 이상), 상기 진동 회수는 N 회 또는 그 이하일 수 있다.Preferably, the elastic body includes N unit elastic bodies (where N is two or more), and the number of vibrations may be N times or less.
또한, 상기 단위 탄성체는 가압수단에 의해 인가되는 힘(F)에 의한 단위 탄성체의 변위를 x 라고 할 때 k= F/x 로 정의되는 순간 스프링 상수 k와 관련하여, In addition, the unit elastic body is in relation to the instantaneous spring constant k defined by k = F / x when x is the displacement of the unit elastic body by the force (F) applied by the pressing means,
변위 x1, x2 및 x3 가 x1 < x2 < x3 일 때 When displacements x 1 , x 2 and x 3 are x 1 <x 2 <x 3
변위 0 < x < x1 일 때 순간 스프링 상수 k1, Instantaneous spring constant k 1 , when displacement 0 <x <x 1
변위 x1 < x < x2 일 때 순간 스프링 상수 k2, 및When the displacement x 1 <x <x 2 time the spring constant k 2, and
변위 x2 < x < x3 일 때 순간 스프링 상수 k3When the displacement x 2 <x <x 3 the instantaneous spring constant k 3 is
k1>0, k2 ≤0, k3>0 인 조건을 만족하는 탄성 특성을 갖는 것일 수 있다.It may have an elastic characteristic that satisfies the condition k 1 > 0, k 2 ≤ 0, k 3 > 0.
일 구현예에 따르면, 상기 기판은 상기 압전체를 지지하는 역할을 하되, 상기 탄성체로부터 전달되는 변위에 의한 압전체의 변위를 실질적으로 제한하지 않는 재질 및 구조를 갖는 것일 수 있다. According to an embodiment, the substrate may serve to support the piezoelectric material, but may have a material and a structure that do not substantially limit the piezoelectric displacement due to the displacement transmitted from the elastic body.
또한, 상기 압전체의 표면 중 탄성체가 위치하는 면에 대응되는 다른 표면에는 압전체의 변위를 수용할 수 있는 공간이 구비되어 있고, In addition, the other surface of the surface of the piezoelectric body corresponding to the surface where the elastic body is located is provided with a space that can accommodate the displacement of the piezoelectric body,
상기 공간 또는 상기 압전체와 탄성체 사이에 선택적으로 상기 압전체의 뒤틀림운동을 야기할 수 있는 돌출부를 구비하도록 할 수 있다.It may be provided with a protrusion that can cause the twisting movement of the piezoelectric body selectively between the space or the piezoelectric body and the elastic body.
일 구현예에 따르면, 상기 압전체는 압전단결정 또는 압전물질로 이루어질 수 있다. According to one embodiment, the piezoelectric body may be made of a piezoelectric single crystal or a piezoelectric material.
일 구현예에 따르면, 상기 압전체는 d33, d15 또는 d31 모드의 압전 특성을 갖는 것일 수 있다. According to one embodiment, the piezoelectric body may have a piezoelectric characteristic of d33, d15 or d31 mode.
또한, 상기 탄성체에 힘을 전달하기 위한 가압수단을 더 구비하며, In addition, further comprising a pressing means for transmitting a force to the elastic body,
상기 압전체는 제 1 표면에 구비된 제 1 전극 및 대향하는 제 2 표면에 구비된 제 2 전극을 가지는 압전물질층으로 이루어져 있는 것일 수 있다. The piezoelectric body may be formed of a piezoelectric material layer having a first electrode provided on a first surface and a second electrode provided on an opposing second surface.
다른 구현예에 따르면, 별도의 탄성체 없이 상기 기판이 상기 탄성체의 역할을 수행하고, 상기 기판은 상기 가압수단에 의해 생성되는 캔틸레버식 변위를 압전체에 전달하는 구조를 갖는 것일 수 있다. According to another embodiment, the substrate may serve as the elastic body without a separate elastic body, and the substrate may have a structure for transferring the cantilevered displacement generated by the pressing means to the piezoelectric body.
다른 구현예에 따르면, 전술한 전기 에너지 발생 장치를 단위 발전체로 하여, 복수개의 단위 발전체가 직렬 또는 병렬 구조로 집합된 구조를 가질 수 있다. According to another embodiment, using the above-described electric energy generating device as a unit generator, a plurality of unit generators may have a structure in a series or parallel structure.
바람직한 구현예에 따르면, 상기 단위 탄성체가 상면과 하면을 갖는 스냅돔이며, 상기 스냅돔들은 상면은 상면끼리, 하면은 하면끼리 접하도록 적층된 것일 수 있다.According to a preferred embodiment, the unit elastic body is a snap dome having an upper surface and a lower surface, the snap dome may be stacked so that the upper surface is in contact with each other, the lower surface is in contact with the lower surface.
본 발명에 따르면, 압전체에 직접적으로 기계적인 힘을 가하더라도 낮은 진동수 때문에 적은 양의 전기 에너지를 얻거나 또는 전기에너지를 얻을 수 없는 종래 기술의 문제점이 본 발명에 의해 해결된다. 즉, 사람이 버튼을 누르는 동작과 같은 형태로 힘이 인가될 때, 전압의 상승 속도가 너무 낮아서 압전체로부터 발생된 전기 에너지가 누설 전류 등으로 모두 소모되는 문제점이 해결되며, 압전체의 변위의 크기가 제한되고 전압의 증가가 단순하게 일 방향으로 제한되는 문제점이 해결된다.According to the present invention, even if a mechanical force is directly applied to the piezoelectric body, a problem of the prior art in which a small amount of electric energy or no electric energy can be obtained due to the low frequency is solved by the present invention. That is, when a force is applied in the form of a person pushing a button, the rate of rise of the voltage is so low that the electric energy generated from the piezoelectric body is consumed as a leakage current, and the magnitude of displacement of the piezoelectric body is solved. The problem is limited and the increase in voltage is simply limited in one direction.
본 발명에서는 사용자가 기계적으로 버튼을 누르는 동작만으로 충분한 전기 에너지를 발생시킬 수 있도록 압전체 및 스프링을 이용하는 새로운 구조를 채용함으로써 전기 에너지를 얻을 수 있는 장점이 있다. 또한 본 발명에서는 인가되는 힘을 비선형의 힘-변위 특성을 가지는 스프링에 저장한 후에, 압전체에 짧은 시간동안 힘을 전달하는 구조를 채용함으로써, 압전체가 더 큰 변위로 진동하게 할 수 있다. 또한 압전체의 진동으로 인한 전류는 교류 성분으로써 얻어질 수 있으며, 단순한 가압으로 인한 압전체의 전기 에너지 보다 훨씬 더 큰 전기 에너지를 발생시킬 수 있다.In the present invention, there is an advantage that the electric energy can be obtained by adopting a new structure using a piezoelectric body and a spring so that the user can generate a sufficient electric energy only by pressing a button mechanically. Further, in the present invention, after the applied force is stored in a spring having a non-linear force-displacement characteristic, the piezoelectric element can be vibrated with a larger displacement by adopting a structure that transmits the force to the piezoelectric element for a short time. Also, the current due to the vibration of the piezoelectric body can be obtained as an alternating current component, and can generate much larger electrical energy than the electrical energy of the piezoelectric body due to simple pressurization.
도 1 및 도 2 는 탄성체의 변위와 상기 탄성체에 인가되는 힘의 관계를 개략적으로 나타내는 그래프이다. 1 and 2 are graphs schematically showing the relationship between the displacement of the elastic body and the force applied to the elastic body.
도 3 내지 도 5 는 본 발명의 다양한 실시예에 따른 전기 에너지 발생 장치에 대한 개략적인 분해 사시도이다.3 to 5 are schematic exploded perspective views of an electric energy generating device according to various embodiments of the present disclosure.
도 6 은 본 발명의 다른 구현예에 다른 전기 에너지 발생 장치의 개략적인 단면도이다. 6 is a schematic cross-sectional view of an electrical energy generating device according to another embodiment of the present invention.
도 7a 및 도 7b 는 전기 에너지 발생 장치에서 발생되는 전기 에너지의 전압을 측정하기 위하여 전기 에너지 발생 장치를 실험 장치에 거치된 상태를 개략적으로 도시한 것이다.7A and 7B schematically illustrate a state in which an electric energy generating device is mounted on an experimental device in order to measure a voltage of electric energy generated in the electric energy generating device.
도 8 은 도 7a 및 도 7b 에 도시된 전기 에너지 발생 장치의 시험 결과를 나타내는 시간에 따른 전압의 그래프이다. FIG. 8 is a graph of voltage over time showing test results of the electric energy generating device shown in FIGS. 7A and 7B.
도 9a 및 9b 는 본 발명에 따른 장치를 핸드폰 홈버튼에 적용한 모습과 실험과정을 보여주는 사진이다.9A and 9B are photographs showing a state and an experimental process of applying the apparatus according to the present invention to a mobile phone home button.
도 10 은 도 9a 및 9b 의 장치를 이용하여 실험한 결과를 나타낸다.FIG. 10 shows the results of experiments using the apparatus of FIGS. 9A and 9B.
도 11 은 스냅 돔의 일례를 보여주는 사진이다. 11 is a photograph showing an example of a snap dome.
도 12 는 누름 힘이 인가되었을 때 변형이 일어나는 스냅 돔 단면 모양을 개략적으로 도시한다. 12 schematically illustrates the snap dome cross-sectional shape in which deformation occurs when a pressing force is applied.
도 13 은 스냅 돔 스택의 형상을 개략적으로 도시한 단면도이다. 13 is a cross-sectional view schematically showing the shape of the snap dome stack.
도 14 는 스냅돔 스택을 눌러주었을 때 나타나는 힘-변형 그래프이다. 14 is a force-strain graph when the snap dome stack is pressed.
도 15 는 본 발명의 일 구현예에 따른 전기 에너지 발생장치의 구성을 개략적으로 도시한다. 15 schematically illustrates a configuration of an electric energy generating device according to an embodiment of the present invention.
도 16 은 본 발명의 일 구현예에 따른 스냅돔 스택의 전력 생산 측정 방법을 개략적으로 도시한다. 16 schematically illustrates a method for measuring power generation of a snap dome stack according to an embodiment of the present invention.
도 17 은 본 발명의 일 구현예에 따른 스냅돔 스택의 실제 제작 과정을 도시한다. Figure 17 shows the actual manufacturing process of the snap dome stack according to an embodiment of the present invention.
도 18a 및 18b 는 본 발명의 일 구현예에 따라 제작된 압전 발전기의 동작시험과정을 보여준다. 18A and 18B show an operation test process of a piezoelectric generator manufactured according to one embodiment of the present invention.
도 19 는 본 발명의 일 구현예에 따른 스냅 돔 스택의 스냅 돔 개수에 따른 누름 실험 결과를 보여준다.19 shows the results of a push experiment according to the number of snap domes of a snap dome stack according to an embodiment of the present invention.
도 20 은 본 발명의 일 구현예에 따른 압전 발전기의 생성 에너지 형태를 나타내는 그래프이다.20 is a graph showing the energy generation form of a piezoelectric generator according to an embodiment of the present invention.
이하, 본 발명을 첨부된 도면에 도시된 본 발명의 실시예를 참조하여 보다 상세하게 설명하기로 한다. 그러나 이는 본 발명을 특정 실시 형태로 한정하려는 것이 아니며, 본 발명의 기술사상 및 범위에 포함되는 변형물, 균등물 또는 대체물을 모두 포함하는 것으로 이해되어야 한다.Hereinafter, with reference to the embodiments of the present invention shown in the accompanying drawings will be described in more detail. However, this is not intended to limit the present invention to specific embodiments, it should be understood to include all modifications, equivalents, or substitutes included in the spirit and scope of the present invention.
압전물질의 특성상 고주파(보통 100 Hz 이상) 에서만 기계적 에너지의 전기적 에너지 변환 효율이 높고 저주파( 보통 1 Hz 수준 또는 그 이하) 에서는 그 효율이 급격히 떨어진다. 우리의 일상생활 중에는 낮은 진동수의 큰 힘이 다양하게 존재하기 때문에 이를 이용한 에너지하베스팅 (energy harvesting) 기술 개발은 매우 중요하다. 즉 낮은 진동수의 힘을 높은 진동수로 변환시켜 압전 물질에 압력이 걸리도록 하는 기술은 압전발전기 개발에 있어서 가장 핵심적인 부분이라 할 수 있다.Due to the nature of piezoelectric materials, the efficiency of converting mechanical energy into electrical energy is high only at high frequencies (usually above 100 Hz), and rapidly at low frequencies (usually below 1 Hz). The development of energy harvesting technology is very important because of the large number of low frequency vibrations in our daily lives. In other words, the technology of applying pressure to the piezoelectric material by converting a low frequency force into a high frequency is the most essential part in the development of the piezoelectric generator.
발명에서는 이러한 문제, 즉 저주파 힘에 대한 압전발전기의 효율 저하 문제를 해결하기 위하여, 스냅돔과 같이 스냅쓰루버클링(snap-through-buckling)이 일어나는 요소(단위 탄성체)들을 반복적으로 쌓아서 누름에 의한 변형이 일어나는 동안 힘이 반복적으로 진동하는 형태를 가지도록 한 것을 특징으로 한다.In the present invention, in order to solve the problem of lowering the efficiency of piezoelectric generators against low frequency forces, it is necessary to repeatedly stack and press elements (unit elastic bodies) in which snap-through-buckling occurs, such as a snap dome. It is characterized by the fact that the force repeatedly vibrates during deformation.
또한, 본 발명에서는 압전체에 가해지는 낮은 진동수의 힘을 높은 진동수로 변환시킴으로써 기존보다 훨씬 더 많은 전기 에너지를 발생시킬 수 있도록 하는 새로운 구조를 채용함으로써 충분한 전기 에너지를 얻을 수 있는 장점이 있으며, 이러한 특징은 최근 관심이 높아진 무선센서네트워크 (wireless sensor network) 또는 사물인터넷 (IoT; Internet of Things)의 센서 노드에 전력을 공급하는데 사용될 수 있다. 또는 걸어다니면서 전기를 만들어내는 신발 또는 깔창(insole) 등에 적용되어 스마트신발 또는 스마트깔창 등을 구동하는 전력원으로 바로, 또는 밧데리에 임시로 저장된 후 사용될 수 있다. 이 경우 기존 밧데리 교체 또는 유무선 충전 방식의 전력 공급을 모두 대체할 수 있다. 또한 군화에 적용되는 경우에는 보행만으로도 군인들이 필요로 하는 전기에너지를 충전 또는 직접 공급 할 수 있을 것으로 기대된다.In addition, the present invention has the advantage that a sufficient electrical energy can be obtained by adopting a new structure that can generate a lot more electrical energy than the existing by converting the force of the low frequency applied to the piezoelectric material to a high frequency, such a feature May be used to power sensor nodes in wireless sensor networks or the Internet of Things (IoT), which have recently gained increasing interest. Alternatively, it is applied to a shoe or insole that generates electricity while walking, and may be used immediately after being temporarily stored in a battery or as a power source for driving a smart shoe or a smart insole. In this case, it is possible to replace the existing battery or to replace the power supply of wired and wireless charging method. In addition, if applied to the military boots walking is expected to be able to recharge or directly supply the electrical energy required by the soldiers.
이는 최근 관심이 높아진 무선센서네트워크 (wireless sensor network) 또는 사물인터넷 (IoT; Internet of Things)의 센서 노드에 전력을 공급하는데 사용될 수 있다. 또는 걸어다니면서 전기를 만들어내는 신발 또는 깔창(insole) 등에 적용되어 스마트신발 또는 스마트깔창 등을 구동하는 전력원으로 바로, 또는 밧데리에 임시로 저장된 후 사용될 수 있다. 이 경우 기존 밧데리 교체 또는 유무선 충전 방식의 전력 공급을 모두 대체할 수 있다. 또한 군화에 적용되는 경우에는 보행만으로도 군인들이 필요로 하는 전기에너지를 충전 또는 직접 공급할 수 있을 것으로 기대된다.It can be used to power sensor nodes in wireless sensor networks or the Internet of Things (IoT), which have recently gained increasing interest. Alternatively, it is applied to a shoe or insole that generates electricity while walking, and may be used immediately after being temporarily stored in a battery or as a power source for driving a smart shoe or a smart insole. In this case, it is possible to replace the existing battery or to replace the power supply of wired and wireless charging method. In addition, if applied to the military boots walking is expected to be able to recharge or directly supply the electrical energy needed by the soldiers.
본 발명에서는 사용자가 제공하는 외력을 스프링과 같은 탄성체에 축적하고, 상대적으로 짧은 시간 동안 축적된 힘을 방출하여 압전체를 진동시킴으로써 전기 에너지를 생산한다. In the present invention, the external force provided by the user is accumulated in an elastic body such as a spring, and the electrical force is produced by releasing the accumulated force for a relatively short time to vibrate the piezoelectric body.
구체적으로 본 발명에 따른 전기 에너지 발생 장치는 적어도 2 이상의 표면을 갖는 압전체; 및Specifically, the electric energy generating device according to the present invention includes a piezoelectric body having at least two surfaces; And
상기 압전체의 표면 중 적어도 한쪽 면에 위치하며 압전체에 변위를 전달하는 탄성체를 구비하고, An elastic body positioned on at least one surface of the surface of the piezoelectric body and transmitting a displacement to the piezoelectric body,
상기 탄성체는 외부 힘이 인가되어 한 방향으로 눌리는 변형이 일어날 때, 탄성체에 걸리는 힘이 증가 및 감소를 반복하는 진동의 형태로 변하여, 상기 압전체에 진동하는 변위가 일어나도록 하는 것인 전기 에너지 발생 장치가 제공된다.The elastic body is an electrical energy generating device that when the deformation is pressed in one direction by the application of an external force, the force applied to the elastic body is changed in the form of a vibration repeating the increase and decrease, so that the displacement vibrating on the piezoelectric body to occur. Is provided.
이때, 상기 탄성체는 N개의 단위 탄성체를 포함하는 것이 바람직하며(단 N은 2 이상), 상기 진동 회수는 N 회 또는 그 이하일 수 있다. In this case, the elastic body preferably comprises N unit elastic bodies (where N is two or more), and the number of vibrations may be N times or less.
또한, 상기 단위 탄성체는 각 단위 탄성체의 변위가 다른 단위 탄성체의 변위를 순차적으로 유발하도록 적층되어 있을 수 있다. The unit elastic bodies may be stacked such that displacement of each unit elastic body sequentially causes displacement of other unit elastic bodies.
상기 탄성체는 변위에 대한 힘의 관계가 비선형적으로 이루어지는 스프링, 예를 들어 버클링 스프링과 같은 것이다. 탄성체는 인가된 외력을 변위로 축적시킨 후에, 특정 변위를 넘어가게 되면 축적된 외력을 짧은 시간 동안 압전체에 전달할 수 있다. 압전체는 외력이 인가되었을 때 및, 상기 외력이 제거되었을 때 각각 짧은 시간 동안 변위를 일으켜서 진동하게 되며, 그러한 압전체의 진동은 전기 에너지를 발생시키기에 충분한 정도로 이루어진다.The elastic body is like a spring, for example a buckling spring, in which the relationship of force to displacement is nonlinear. After the elastic body accumulates the applied external force as a displacement, the elastic body can transfer the accumulated external force to the piezoelectric body for a short time when the specific displacement is exceeded. The piezoelectric element vibrates by displacement for a short time when the external force is applied and when the external force is removed, respectively, and the vibration of the piezoelectric element is sufficient to generate electrical energy.
본 발명에 있어서, 상기 탄성체 또는 단위 탄성체는 가압수단에 의해 인가되는 힘(F)에 의한 탄성체의 변위를 x 라고 할 때 k= △F/△x 로 정의되는 순간 스프링 상수 k와 관련하여 다음과 같은 특성을 갖는다. In the present invention, when the elastic body or unit elastic body is x, the displacement of the elastic body due to the force (F) applied by the pressing means in relation to the instantaneous spring constant k defined by k = ΔF / Δx Have the same characteristics.
변위 x1, x2 및 x3 가 x1 < x2 < x3 일 때 When displacements x 1 , x 2 and x 3 are x 1 <x 2 <x 3
변위 0 < x < x1 일 때 순간 스프링 상수 k1, Instantaneous spring constant k 1 , when displacement 0 <x <x 1
변위 x1 < x < x2 일 때 순간 스프링 상수 k2, 및When the displacement x 1 <x <x 2 time the spring constant k 2, and
변위 x2 < x < x3 일 때 순간 스프링 상수 k3When the displacement x 2 <x <x 3 the instantaneous spring constant k 3 is
k1>0, k2≤0, k3>0 인 조건을 만족한다. The conditions k 1 > 0, k 2 ≤ 0, and k 3 > 0 are satisfied.
도 1 및 도 2는 상기와 같은 탄성 특성을 도식화 하여 설명한 것이다. 1 and 2 illustrate the elastic properties as described above.
단위 탄성체를 가압수단으로 눌렀을 때의 변위를 깊이 x라고 하면 초기 깊이는 0 이고 스냅-스루-버클링(snap-through-bucking)이 일어날 때의 깊이를 x1이라고 할 수 있다. 단위 탄성체의 최대 변위, 즉 바닥에 닿을 때의 깊이를 x3라고 할 수 있다.When the displacement of the unit when pressing the elastic body by the pressing means that depth x is 0 and the initial depth of the snap-may be called the depth of time lead to buckling (snap-through-bucking) x 1 - through. The maximum displacement of the unit elastic body, that is, the depth when it touches the floor, may be referred to as x 3 .
즉 도 1에서와 같이 가압수단으로 눌렀을 때 처음에는 깊이가 깊어지기 위해 힘이 증가해야 하지만 일정 깊이(x1)에 도달하면 힘이 증가하지 않아도 저절로 깊이가 깊어지다가(x1와 x2 사이) 다시 힘이 증가해야 깊이가 깊어지는 영역(x2와 x3 사이)이 나타난다. 이때 x2 와 x3 사이에서 x1 에서의 힘과 동일한 크기의 힘을 가지는 깊이를 x2' 이라고 정의하고, 가압수단에 걸리는 누르는 힘을 증가시키면서 깊이를 측정하면 도 2에서와 같이 깊이 x1 에 도달하는 순간 힘이 증가하지 않아도 깊이 x2' 까지 눌러지게 된다. In other words, when pressed by the pressurizing means as shown in Figure 1, the force should initially increase to deepen the depth, but when reaching a certain depth (x 1 ), the depth will naturally increase even if the force does not increase (between x 1 and x 2 ) Again, increasing force results in a deeper area (between x 2 and x 3 ). Wherein x 2 and x 3 is defined as the depth having a power and the power of the same size in x 1 in sayi x 2 ', and increasing the pressing force applied to the pressing means, measuring the depth of the depth x 1 as in the second When it reaches, it will be pressed down to depth x 2 'without increasing the force.
이때, 스냅쓰루버클링(snap-through-buckling)이란, 일반적인 기계적인 힘(F)-변형(strain) 곡선에서 외부 힘에 따라서 변형이 증가하는 중간에, 특정 시스템의 경우 순간적으로 변형은 증가하지만 힘은 감소하는 구간이 존재하는 것을 나타낸다. 예를 들어, TV 리모컨이나 전화기 키패드, 컴퓨터 키보드, 마우스 등에서 버튼을 누를 때 일정이상 힘이 가해져야 갑자기 눌리는 현상이 여기에 해당한다. 물리적으로는 힘(F)을 Y축, 변형(strain)을 X축으로 놓고 그래프로 나타낼 때 dF/d(strain) < 0 인 상태가 존재하는 구간을 나타내는 것이다.In this case, snap-through-buckling means that in the general mechanical force (F) -strain curve, the deformation increases with the external force. Force indicates that there is a decreasing interval. For example, when a button is pressed on a TV remote control, a telephone keypad, a computer keyboard, or a mouse, a sudden press is applied when a certain amount of force is applied. Physically, when F is plotted on the Y-axis and strain on the X-axis, it represents a section where dF / d (strain) <0 exists.
상기와 같은 탄성 특성을 갖는 탄성체로는 버클링 스프링, 스냅-스루-버클링 스프링, 디스크 스프링, 돔 스프링 등을 예로 들 수 있으나 이에 한정되는 것은 아니다. 경우에 따라서는 기판 자체가 탄성체의 역할을 수행할 수 있다. 별도의 탄성체 없이 상기 기판이 상기 탄성체의 역할을 수행하고, 상기 기판은 상기 가압수단에 의해 생성되는 캔틸레버식 변위를 압전체에 전달하는 구조를 갖는 것일 수 있다. Examples of the elastic body having such elastic properties include, but are not limited to, a buckling spring, a snap-through buckle spring, a disk spring, a dome spring, and the like. In some cases, the substrate itself may serve as an elastic body. The substrate may serve as the elastic body without a separate elastic body, and the substrate may have a structure for transferring the cantilevered displacement generated by the pressing means to the piezoelectric body.
바람직한 구현예에 따르면 상기 탄성체로서 스냅 돔을 사용할 수 있다. 스냅돔은 일반적으로 초박형 누름 스위치로 많이 사용되며(http://www.inovan.de/, http://www.snaptron.com/ 참조) 그 중 일례가 도 2에 도시된 바와 같다. 보통 가장자리는 바닥에 닿아 있지만 가운데 부분은 살짝 떠있는 형태이므로, 가운데 부분을 눌러주면, 가운데 부분이 바닥에 닿기 전에, 가운데 눌리는 힘이 갑자기 가장자리 쪽으로 순간적으로 전달이 되면서 푹 꺼지는 현상이 나타나는데 이 현상이 스냅쓰루버클링(snap-through-buckling) 이다. According to a preferred embodiment it is possible to use a snap dome as the elastic body. Snapdom is generally used as an ultra-thin push switch (see http://www.inovan.de/, http://www.snaptron.com/), one example of which is shown in FIG. Usually the edges touch the floor but the middle part is slightly floating, so if you press the middle part, before the center part touches the floor, the pressing force of the center is suddenly transmitted to the edge and it turns off completely. Snap-through-buckling.
이하, 본 발명을 첨부된 도면에 도시된 일 실시예를 참고로 보다 상세하게 설명하기로 한다. Hereinafter, with reference to an embodiment shown in the accompanying drawings the present invention will be described in more detail.
본 발명에 따른 전기 에너지 발생 장치는, 적어도 2 이상의 표면을 갖는 압전체; 상기 압전체의 표면 중 적어도 한쪽 면에 위치하며 압전체에 변위를 전달하는 탄성체; 및 상기 탄성체가 위치하는 면에 대응되는 다른 표면에는 압전체의 변위를 수용할 수 있는 수단이 구비된다. An electric energy generating device according to the present invention comprises: a piezoelectric body having at least two surfaces; An elastic body positioned on at least one surface of the surface of the piezoelectric body and transmitting a displacement to the piezoelectric body; And means for accommodating displacement of the piezoelectric body on the other surface corresponding to the surface on which the elastic body is located.
상기 압전체에 전달되는 탄성체의 변위는 탄성체에 힘을 전달하기 위한 가압수단에 의해 생성될 수 있다.Displacement of the elastic body transferred to the piezoelectric body may be generated by pressing means for transmitting a force to the elastic body.
도 3 내지 도 5는 본 발명의 다양한 실시예에 따른 압전체를 구비한 전기 에너지 발생 장치의 개략적인 분해 사시도이다. 이는 본 발명의 예시일 뿐이므로 본 발명이 이러한 구조에 한정되는 것은 아니며 본 발명의 범위 내에서 다양한 변형이 가능함은 물론이다.3 to 5 are schematic exploded perspective views of an electric energy generating apparatus having a piezoelectric body according to various embodiments of the present disclosure. Since this is only an example of the present invention, the present invention is not limited to this structure, and various modifications are possible within the scope of the present invention.
구체적으로 도 3 내지 도 5는 탄성체로서 디스크 스프링을 사용한 경우를 예시하나, 이에 한정되지 않으며, 본 발명에 따른 탄성체는 도 1 및 도 2 와 관련하여 앞서 설명한 것과 같은 탄성을 갖는 재질이라면 제한없이 사용할 수 있다.Specifically, FIGS. 3 to 5 illustrate a case where a disc spring is used as an elastic body, but is not limited thereto, and the elastic body according to the present invention may be used without limitation as long as the elastic body according to the present invention has the elasticity as described above with reference to FIGS. 1 and 2. Can be.
도 3 내지 도 5를 참조하면, 전기 에너지 발생 장치는 기판(10)과, 상기 기판(10)의 상부에 배치되고 제 1 표면에 구비된 제 1 전극(12a) 및 대향하는 제 2 표면에 구비된 제 2 전극(12b)을 가지는 압전체(11)와, 상기 압전체(11)를 가압할 수 있도록 상기 압전체(11)의 상부에 배치된 가압 수단(15)과, 상기 압전체(11)와 상기 가압 수단(15) 사이에 배치된 스프링(13)을 구비한다. 그리고 압전체가 위치하는 기판의 다른 면에는 스프링의 변위에 의해 전달되는 압전체의 변위를 수용하기 위한 수단(16,17,18)이 구비되어 있다. 3 to 5, the electric energy generating device is provided on a substrate 10, a first electrode 12a disposed on the substrate 10 and provided on a first surface, and on an opposing second surface. A piezoelectric body 11 having a second electrode 12b formed therein, pressing means 15 disposed on the piezoelectric body 11 so as to pressurize the piezoelectric body 11, the piezoelectric body 11 and the pressing It is provided with a spring 13 arranged between the means 15. The other side of the substrate on which the piezoelectric body is located is provided with means (16, 17, 18) for receiving the displacement of the piezoelectric body transmitted by the displacement of the spring.
상기 탄성체가 전달하는 변위를 수용할 수 있는 수단으로서 도 3은 고무나 발포폼과 같은 탄성재질시트(16), 도 4는 공간을 제공할 수 있는 링 형상 구조물(17), 도 5는 압전체 또는 압전체가 형성된 기판을 다른 구조물로부터 소정 간격으로 이격시켜 공간을 형성할 수 있도록 하는 2개 이상의 기둥구조물(18)을 도시한다. 이외에도 다양한 변형이 가능할 수 있다. As a means for accommodating the displacement transmitted by the elastic body, Figure 3 is an elastic sheet 16 such as rubber or foam foam, Figure 4 is a ring-shaped structure 17 can provide a space, Figure 5 is a piezoelectric or Two or more columnar structures 18 are shown to form a space by separating the substrate on which the piezoelectric body is formed from other structures at predetermined intervals. In addition, various modifications may be possible.
압전체(11)는 기판(10)의 제 1 표면상에 지지되어 있다. 도시된 것처럼 압전체가 기판의 일면에만 형성될 수도 있지만, 이에 한정되지 않으며 압전체를 기판의 양면에 형성하는 것도 가능하다. The piezoelectric body 11 is supported on the first surface of the substrate 10. As shown, the piezoelectric body may be formed only on one surface of the substrate, but the present invention is not limited thereto, and the piezoelectric body may be formed on both surfaces of the substrate.
상기 기판(10)은 상기 압전체를 지지하는 역할을 하되, 상기 탄성체로부터 전달되는 변위에 의한 압전체의 변위를 실질적으로 제한하지 않는 재질 및 구조를 갖는 것이 바람직하다. 예를 들면, 동판, 알루미늄판과 같이 두께가 얇아서 휘정거릴 수 있는 재질이 바람직하다. The substrate 10 preferably serves to support the piezoelectric material, but has a material and a structure that do not substantially limit the piezoelectric displacement due to the displacement transmitted from the elastic body. For example, a material such as a copper plate or an aluminum plate that is thin and stirs is preferable.
바람직한 실시예에 따르면, 기판(10)에는 제 1 표면 및 대향하는 제 2 표면에 각각 절연층(10a, 10b)이 형성될 수 있다.According to a preferred embodiment, the insulating layer 10a, 10b may be formed on the first surface and the opposite second surface of the substrate 10, respectively.
압전체(11)는 압전단결정 또는 압전 물질로 이루어질 수 있다. 예를 들어 납을 함유하거나 함유하지 않는 압전단결정 또는 압전세라믹, 또는 압전폴리머 등으로 이루어질 수 있다. 압전 단결정은 일정한 구조를 가지는 미세한 입자가 규칙적으로 배열된 구조를 가진다. The piezoelectric body 11 may be made of a piezoelectric single crystal or a piezoelectric material. For example, it may be made of a piezoelectric single crystal or piezoceramic, or a piezoelectric polymer containing or not containing lead. Piezoelectric single crystals have a structure in which fine particles having a predetermined structure are regularly arranged.
상기 압전체는 d33, d15 또는 d31 모드의 압전 특성을 갖는 것일 수 있다. The piezoelectric body may have a piezoelectric characteristic of d33, d15, or d31 mode.
구체적으로 예를 들면, 압전 단결정은 릴랙서(relaxor)인 마그네슘 니오브산연(PMN)과 압전체인 티탄산연(PT)의 고용체 단결정일 수 있다. 가속도 센서에서 단결정을 압전 재료로 사용할 경우에, 통상적인 압전 재료와 비교하여, 압전 왜(歪)가 3배 이상으로 나타나고, 전기 기계 결합 계수도 크며, 또한 뛰어난 압전 특성을 나타낸다. 대안으로서, 공지된 압전 재료의 일 예인 압전 세라믹, 예를 들어 PZT(lead zirconate titanate) 세라믹을 이용할 수 있다.Specifically, for example, the piezoelectric single crystal may be a solid solution single crystal of magnesium niobate (PMN), which is a relaxor, and lead titanate (PT), which is a piezoelectric body. When the single crystal is used as the piezoelectric material in the acceleration sensor, the piezoelectric distortion is three times or more, compared with the conventional piezoelectric material, the electromechanical coupling coefficient is large, and excellent piezoelectric properties are exhibited. As an alternative, piezoelectric ceramics, such as lead zirconate titanate (PZT) ceramics, which are examples of known piezoelectric materials, can be used.
압전체(11)의 제 1 표면에는 제 1 전극(12a)이 형성되고 대향하는 제 2 표면에는 제 2 전극(12b)이 형성된다. 상기 전극(12a,12b)은 도시되지 않은 배선을 통해 회로 기판(미도시)의 단자에 연결된다. 압전체(11)가 이후에 설명되는 바와 같이 진동하게 되면 전기 에너지가 발생되고, 압전체(11)로부터 발생된 전기 에너지는 배선을 통해 회로 기판상의 전자 장치로 공급될 수 있다. The first electrode 12a is formed on the first surface of the piezoelectric element 11, and the second electrode 12b is formed on the opposing second surface. The electrodes 12a and 12b are connected to terminals of a circuit board (not shown) through wires not shown. When the piezoelectric body 11 vibrates as described later, electrical energy is generated, and the electrical energy generated from the piezoelectric body 11 can be supplied to an electronic device on a circuit board through wiring.
탄성체로서 예시된 디스크 스프링(13)은 전체적으로 구(救)의 일부 또는 돔(dome)의 형상을 가지고, 저부가 개방되고 최상부에는 개구가 형성되어 있다. 도면에 도시되지 않은 다른 예에서 상기 개구는 폐쇄될 수 있다. 탄성체는 도 3 내지 도 5에 도시된 것과 같은 형상에 국한되지 않으며, 앞서 도 1 및 도 2에 대하여 설명한 바와 같은 탄성을 갖는 것이라면 제한 없이 사용할 수 있다.The disk spring 13 exemplified as an elastic body has a shape of a part or a dome as a whole, the bottom part is opened and the top part is formed with an opening. In other examples not shown in the figures, the opening may be closed. The elastic body is not limited to the shape as shown in FIGS. 3 to 5, and may be used without limitation as long as it has elasticity as described above with reference to FIGS. 1 and 2.
탄성체의 변위와 힘의 관계는 탄성체에 인접하여 배치된 압전체를 진동시킬 수 있다. 환언하면, 탄성체의 변위가 압전체의 변위를 생성시킬 수 있다.  The relationship between the displacement of the elastic body and the force can cause the piezoelectric body disposed adjacent to the elastic body to vibrate. In other words, the displacement of the elastic body can produce the displacement of the piezoelectric body.
스냅-스루-버클링이 발생하는 깊이(x1)에 진입할 정도로 탄성체를 누른 이후에 힘을 제거하면, 역으로 스프링 상수가 음수인 반전 영역(x1-x2)과 스프링 상수가 양수인 비례 영역(x2-x3)을 통과하여야만 원위치로 복원될 수 있다. 이때, 도 1 에 도시된 바와 같이 반전 영역의 끝에서 힘을 제거하는 순간의 힘의 크기는, 비례 영역에서의 최대 힘의 크기보다 작다. 따라서 탄성체를 누르는 경우를 가정하면 비례 영역에서는 힘이 반대 방향이 되어 밀어내는 양상이 되며, 따라서 탄성체하부에 배치된 압전체가 자유 진동의 형태로 운동하게 하는 힘을 발생시킬 수 있다. When the force is removed after pressing the elastic enough to enter the depth (x 1 ) where snap-through-buckling occurs, the inverse region (x 1 -x 2 ), where the spring constant is negative and the spring constant is positive Only after passing through the region (x 2 -x 3 ) can it be restored to its original position. At this time, as shown in FIG. 1, the magnitude of the force at the moment of removing the force at the end of the inversion region is smaller than the magnitude of the maximum force in the proportional region. Therefore, assuming that the elastic body is pressed, the force is in the opposite direction in the proportional region to push it, so that the piezoelectric element disposed under the elastic body can generate a force to move in the form of free vibration.
따라서 본원 발명에서는 스프링 상수가 k가 음(-)의 영역을 가질 수 있는 탄성체를 이용하게 된다.Therefore, in the present invention, the spring constant uses an elastic body in which k may have a negative (-) region.
또한, 상기 탄성체에 힘을 전달하기 위한 가압수단을 더 구비하며, In addition, further comprising a pressing means for transmitting a force to the elastic body,
상기 압전체는 제 1 표면에 구비된 제 1 전극 및 대향하는 제 2 표면에 구비된 제 2 전극을 가지는 압전물질층으로 이루어져 있고, The piezoelectric material includes a piezoelectric material layer having a first electrode provided on a first surface and a second electrode provided on an opposing second surface.
상기 압전체에 전달되는 탄성체의 변위는 탄성체에 힘을 전달하기 위한 가압수단에 의해 생성될 수 있다. Displacement of the elastic body transferred to the piezoelectric body may be generated by pressing means for transmitting a force to the elastic body.
다시 도 3 내지 도 5를 참조하면, 스프링(13)의 상부에 스프링(13)을 누를 수 있는 가압 수단(15)으로서 버튼이 배치된다. 상기 버튼은 사용자가 스프링(13)을 누를 수 있게 하는 그 어떤 형상이라도 가질 수 있다. 버튼과 같은 가압 수단(15)의 저부에는 스프링(13)의 상부에 형성된 개구에 삽입될 수 있는 돌출부가 형성될 수 있다. 버튼의 저부 표면에는 절연층(14)이 형성됨으로써 스프링(13)과 버튼 사이에 전기적인 절연이 이루어진다.Referring again to FIGS. 3 to 5, a button is arranged as the pressing means 15 capable of pressing the spring 13 on top of the spring 13. The button can have any shape that allows the user to press the spring 13. At the bottom of the pressing means 15, such as a button, a protrusion can be formed which can be inserted into an opening formed in the upper portion of the spring 13. An insulating layer 14 is formed on the bottom surface of the button to provide electrical insulation between the spring 13 and the button.
도 3 내지 도 5 에 도시된 바와 같이 구성된 전기 에너지 발생 장치에서, 사용자는 버튼과 같은 가압 수단(15)을 누름으로써 스프링(13)을 변형시킬 수 있다. 스프링(13)을 누르는 힘을 제거하면, 스프링(13)은 도 1 및 도 2 를 참조로 설명된 바와 같은 변위와 힘의 관계를 통해 원래 상태로 복원하게 되는데, 스프링(13)의 가압 및 복원 과정에서 압전체(11)를 진동시킨다. 압전체(11)의 진동은 전기 에너지를 발생시키며, 그렇게 발생된 전기 에너지는 전극(12a,12b)에 연결된 배선을 통해 공급될 수 있다. In the electric energy generating device configured as shown in FIGS. 3 to 5, the user can deform the spring 13 by pressing the pressing means 15 such as a button. When the force for pressing the spring 13 is removed, the spring 13 is restored to its original state through the relationship of displacement and force as described with reference to FIGS. 1 and 2, which pressurizes and restores the spring 13. The piezoelectric body 11 is vibrated in the process. The vibration of the piezoelectric body 11 generates electrical energy, and the generated electrical energy can be supplied through a wire connected to the electrodes 12a and 12b.
도 3 내지 도 5에서는 가압수단과 압전체 사이에 탄성체가 위치하는 경우를 도시하였으나, 이에 한정되지 않으며 가압수단과 탄성체 사이에 압전체가 위치하도록 설계 하는 것도 가능하다. 어느 경우든지 탄성체의 변위가 압전체에 전달되어 압전체가 변위를 가질 수만 있다면, 즉 진동할 수 있다면 본 발명에 따른 전기 에너지 발생 장치를 구현 할 수 있다.3 to 5 illustrate an example in which an elastic body is positioned between the pressing means and the piezoelectric body, but is not limited thereto. The piezoelectric body may be designed to be positioned between the pressing means and the elastic body. In any case, if the displacement of the elastic body is transferred to the piezoelectric body so that the piezoelectric body can have a displacement, that is, it can vibrate, the electric energy generating device according to the present invention can be implemented.
도 6에 도시된 구현예에 따르면, 별도의 탄성체 없이 상기 기판이 상기 탄성체의 역할을 수행하고, 상기 기판은 상기 가압수단에 의해 생성되는 캔틸레버식 변위를 압전체에 전달하는 구조를 갖는 것일 수 있다. According to the embodiment illustrated in FIG. 6, the substrate may serve as the elastic body without a separate elastic body, and the substrate may have a structure for transferring the cantilevered displacement generated by the pressing means to the piezoelectric body.
구체적으로, 도 6은 캔틸레버식 변위를 압전체에 전달하는 장치에 대한 개략적인 단면도이다. 버튼(15)의 기둥(24)에 돌출부(26)가 형성되어 있고, 기판(23)의 일면 또는 양면에 압전체(21)가 형성되어 있다. 기판(23)은 중심에 개구가 형성된 원형 기판일 수도 있고, 스프링 보드 형태의 복수개의 사각형 기판이 버튼의 기둥을 중심으로 대칭되도록 배치된 구조일 수 도 있다. Specifically, FIG. 6 is a schematic cross-sectional view of an apparatus for transmitting cantilevered displacement to a piezoelectric body. The protrusions 26 are formed on the pillars 24 of the button 15, and the piezoelectric body 21 is formed on one surface or both surfaces of the substrate 23. The substrate 23 may be a circular substrate having an opening formed in the center thereof, or may have a structure in which a plurality of rectangular substrates in the form of a spring board are symmetrically disposed about the pillar of the button.
도 6에 도시된 구조에서는 버튼(25)을 누르면 돌출부(26)가 기판(23)의 내측 단부를 아래 방향으로 누르고 버튼(25)을 더 누르면 돌출부(26) 더 내려가면서 기판(23)을 상방향으로 튕기게 되면서 기판(23) 상에 형성된 압전체(21)가 진동 하도록 하는 것이다. 이 경우는 기판(23)이 탄성체의 역할을 동시에 수행한다.In the structure shown in FIG. 6, when the button 25 is pressed, the protrusion 26 presses the inner end of the substrate 23 downward and presses the button 25 further to lower the protrusion 26 to raise the substrate 23. The piezoelectric body 21 formed on the substrate 23 vibrates while being bounced in the direction. In this case, the substrate 23 simultaneously serves as an elastic body.
돌출부(26)가 캔틸레버 기판(23) 에 접촉하기 전에는 바닥 스프링(27)의 스프링 상수(즉 k4) 만 적용되다가, 돌출부(26)가 기판(23)에 접촉하면 스프링 상수가 커지게 되고(즉 k5), 계속 그 상태로 있다가 기판(23)이 많이 휘어져서 튕겨지는 경우 다시 처음의 스프링 상수(k4)로 돌아간다. 즉 튕기는 순간 전후로 보면 스프링 상수가 큰 k5 (돌출부에 의한 캔틸레버 기판 스프링 영향과 바닥 스프링 영향의 합)에서 작은 k4 로의 전이가 일어나게 되고 이 때 가압수단을 누르는 중 푹 꺼지는 현상이 나타난다.Before the projection 26 contacts the cantilever substrate 23 only the spring constant of the bottom spring 27 (ie k 4 ) is applied, and when the projection 26 contacts the substrate 23, the spring constant becomes large ( In other words, k 5 ), the substrate 23 is still bent and bounced back to the initial spring constant k 4 . In other words, when the spring bounces back and forth, a transition from k 5 (a sum of the cantilever substrate spring effect and the bottom spring effect caused by the protrusion) to a small k 4 occurs, and at this time, the pressurizing means is completely turned off.
한편, 또 다른 구현예에 따르면, 본 발명에 따른 전기 에너지 발생 장치를 단위 발전체로 하여, 복수개의 단위 발전체가 직렬 또는 병렬 구조로 집합된 구조를 가지도록 할 수 있다. On the other hand, according to another embodiment, by using the electric energy generating device according to the present invention as a unit generator, it is possible to have a structure in which a plurality of unit generators are assembled in series or parallel structure.
도 7a 및 도 7b 는 전기 에너지 발생 장치에서 발생되는 전기 에너지의 전압을 측정하기 위한 실험 장치에 전기 에너지 발생 장치가 거치된 상태를 개략적으로 도시한 것이다. 도 7a 는 본 발명에 따라서 탄성체를 구비한 전기 에너지 발생 장치인 반면에, 도 7b 는 탄성체가 없는 전기 에너지 발생 장치이다.7A and 7B schematically illustrate a state in which an electric energy generating device is mounted on an experimental device for measuring a voltage of electric energy generated in the electric energy generating device. FIG. 7A is an electrical energy generator having an elastic body according to the present invention, while FIG. 7B is an electrical energy generator without an elastic body.
도 7a 를 참조하면, 지지대(40)에 의해 금속판(30)이 지지되고, 상기 금속 판(30) 위에 압전체(31), 탄성체 (33) 및 가압 수단(35)이 배치되어 있다. 금속판(30)은 절연층(30a,30b)을 통해 지지대(40)에 접촉하고, 압전체(31)의 상부 표면에는 전극(32a)이 형성되어 있다. 가압 수단(35)과 탄성체 (33) 사이에는 절연층이 배치된다. Referring to FIG. 7A, the metal plate 30 is supported by the support 40, and the piezoelectric element 31, the elastic body 33, and the pressing means 35 are disposed on the metal plate 30. The metal plate 30 is in contact with the support 40 through the insulating layers 30a and 30b, and the electrode 32a is formed on the upper surface of the piezoelectric body 31. An insulating layer is disposed between the pressing means 35 and the elastic body 33.
압전체(31)는 전체적으로 대략 1 cm x 0.5 cm x 0.1 mm 의 치수를 가지는 직육면체로서 구성되고, 스프링(33)의 저면의 직경은 대략 0.6 cm 이었다. 도 7b 를 참조하면, 탄성체(33)가 구비되지 않은 점을 제외하고, 도 7a 에 도시된 전기 에너지 발생 장치와 동일하다. 즉, 금속판(31)이 지지대(40)에 지지되고, 상기 금속판(31)의 상부에 압전체(31) 및 가압 수단(35)이 배치된다. The piezoelectric body 31 was configured as a rectangular parallelepiped having a dimension of approximately 1 cm x 0.5 cm x 0.1 mm as a whole, and the diameter of the bottom face of the spring 33 was approximately 0.6 cm. Referring to FIG. 7B, it is the same as the electric energy generating device shown in FIG. 7A, except that the elastic body 33 is not provided. That is, the metal plate 31 is supported by the support 40, and the piezoelectric element 31 and the pressing means 35 are disposed on the metal plate 31.
도 8은 도 7a 및 도 7b 에 도시된 전기 에너지 발생 장치의 실험 결과를 나타내는 시간에 따른 전압의 그래프이다. FIG. 8 is a graph of voltage over time showing experimental results of the electric energy generating apparatus shown in FIGS. 7A and 7B.
도면을 참조하면, 탄성체 (33)를 가진 전기 에너지 발생 장치에서 발생된 전압은 도 8 의 상부에서 표시된 반면에, 탄성체 (33)가 없는 전기 에너지 발생 장치에서 발생된 전압은 도 8 의 하부에 표시되어 있다. Referring to the drawings, the voltage generated in the electric energy generating device with the elastic body 33 is indicated at the top of FIG. 8, while the voltage generated in the electric energy generating device without the elastic body 33 is shown in the lower part of FIG. 8. It is.
도 8 에서 알 수 있는 바와 같이, 탄성체 (33)를 구비하는 경우에는 가압 수단(35)을 누름에 따라서 절대값이 최대 3 볼트 이상인 전압이 발생하며, 상기 전압은 스프링을 누르는 힘이 인가되는 경우 및 누르는 힘을 제거하는 경우에 한번씩 자유 진동의 형태로 발생한다는 점을 이해할 수 있다. 이에 반해, 탄성체 (33)가 없는 경우에는 전압의 절대값의 크기가 0.5 볼트 미만으로 미미하다. 도 8 에서 60Hz 정도로 약 0.2-0.3 볼트 크기의 물결 모양은 실험 장치에 전원 인가시 자연적으로 발생하는 미세한 진동에 의해 백그라운드 노이즈로 나오는 신호이며 가압장치를 눌러서 나오는 신호와는 무관하다. As can be seen in FIG. 8, when the elastic member 33 is provided, a voltage having an absolute value of at least 3 volts is generated as the pressing means 35 is pressed, and the voltage is applied when a force for pressing the spring is applied. And one time in the form of free vibration once the pressing force is removed. In contrast, in the absence of the elastic body 33, the magnitude of the absolute value of the voltage is less than 0.5 volts. In FIG. 8, the wavy shape of about 0.2-0.3 volts at 60 Hz is a signal coming out as background noise due to the microscopic vibration naturally occurring when the power is applied to the experimental device, and has no relation to the signal coming out from the pressing device.
도 9a 및 9b는 본 발명에 따른 전기 에너지 발생 장치를 핸드폰 홈버튼에 장착하여 실험한 과정 및 결과를 보여준다. 도 10은 도 9a 및 9b의 실험 장치에서 홈버튼을 반복적으로 눌러서 전압 발생을 측정한 결과인데, 100회 반복 및 1000회 반복에도 약 8V 의 전압이 일정하게 발생하는 것을 확인할 수 있다. Figures 9a and 9b shows the process and results of the experiment by mounting the electric energy generating device according to the present invention to the mobile phone home button. FIG. 10 is a result of measuring voltage generation by repeatedly pressing the home button in the experimental apparatus of FIGS. 9A and 9B, and it can be seen that a voltage of about 8V is consistently generated even after 100 times and 1000 times.
본 발명에 따른 탄성 특성을 갖는 탄성체로는 버클링 스프링, 스냅-스루-버클링 스프링, 디스크 스프링, 돔 스프링 등을 예로 들 수 있으나 이에 한정되는 것은 아니다. Examples of the elastic body having elastic properties according to the present invention include, but are not limited to, a buckling spring, a snap-through-buckling spring, a disk spring, a dome spring, and the like.
바람직한 구현예에 따르면, 상기 탄성체로서 스냅 돔을 사용할 수 있다. 스냅돔은 일반적으로 초박형 누름 스위치로 많이 사용되며(http://www.inovan.de/, http://www.snaptron.com/ 참조) 그 중 일례가 도 11에 도시된 바와 같다. 보통 가장자리는 바닥에 닿아 있지만 가운데 부분은 살짝 떠있는 형태이므로, 가운데 부분을 눌러주면, 가운데 부분이 바닥에 닿기 전에, 가운데 눌리는 힘이 갑자기 가장자리 쪽으로 순간적으로 전달이 되면서 푹 꺼지는 현상이 나타나는데 이 현상이 스냅쓰루버클링(snap-through-buckling) 이다. According to a preferred embodiment, a snap dome can be used as the elastic body. Snapdom is generally used as an ultra-thin push switch (see http://www.inovan.de/, http://www.snaptron.com/), one example of which is shown in FIG. Usually the edges touch the floor but the middle part is slightly floating, so if you press the middle part, before the center part touches the floor, the pressing force of the center is suddenly transmitted to the edge and it turns off completely. Snap-through-buckling.
도 12는 누름 힘이 인가되었을 때 변형이 일어나는 스냅돔 단면 모양을 도식적으로 표시한 것이다. 힘을 증가시키면서 변형을 측정하는 경우 스냅쓰루버클링(snap-through-buckling) 현상이 일어나는 영역으로 가면 동일한 힘에서 변형이 갑자기 점프하듯이 변하는 것을 볼 수 있다.12 is a schematic representation of the shape of the snapdom cross section in which deformation occurs when a pressing force is applied. If you measure strain while increasing the force, you can see that the strain suddenly jumps at the same force when you go to the area where snap-through-buckling occurs.
본 발명에 따른 전기 에너지 발생 장치에 있어서, 상기 단위 탄성체들은 각 단위 탄성체의 변위가 인접한 단위 탄성체의 변위를 순차적으로 유발하도록 적층되어 있는 것이 바람직하다. In the electric energy generating device according to the present invention, it is preferable that the unit elastic bodies are stacked such that displacement of each unit elastic body sequentially causes displacement of adjacent unit elastic bodies.
도 13 은 이러한 스냅돔을 서로 반대방향으로 뒤집어 가면서 쌓아올린 스냅돔 스택을 나타낸다. 이때 우선 제1 스냅돔을 놓고, 제2 스냅돔을 제1 스냅돔과 반대 방향으로 뒤집어서 제1 스냅돔 위에 쌓고, 다시 제3 스냅돔을 제2 스냅돔과 반대 방향으로 뒤집어, 즉 제1 스냅돔과 같은 방향으로, 제2 스냅돔 위에 쌓아올린다. 이와 같이 인접한 스냅돔들을 반복적으로 반대방향으로 뒤집어서 쌓아올려 N개의 스냅돔이 적층된스냅돔 스택을 만들 수 있다. 이렇게 하면 도 13에 도시된 바와 같이, 한 스냅돔의 윗면과 다른 스랩돔의 윗면이 서로 닿도록, 그리고 그 반대면, 즉 아래면은 그 다음 (또 다른) 스냅돔의 아래면과 닿도록 배치되어 서로 반대방향으로 마주보도록 반복적으로 배치된다.FIG. 13 shows a stack of snapdom stacks stacked upside down in the opposite direction. At this time, the first snap dome is first placed, the second snap dome is inverted in the opposite direction to the first snap dome, stacked on the first snap dome, and the third snap dome is inverted in the opposite direction to the second snap dome, ie, the first snap dome. Stacked on the second snap dome in the same direction as the dome. As such, adjacent snapdoms may be repeatedly stacked in an opposite direction to form a stack of N snapdoms. This places the top of one snap dome and the top of the other slab in contact with each other and the opposite side, i.e., the bottom, with the bottom of the next (other) snap dome, as shown in FIG. And are repeatedly arranged to face each other in opposite directions.
도 14는 스냅돔 스택을 눌러주었을 때 나타나는 힘-변형 그래프를 나타냄. 힘이 증가하면서 초기에는 스냅돔 스택의 스냅돔들이 전체적으로 변형되는데, 이때 어느 순간 하나의 스냅돔이 스냅쓰루버클링(snap-through-buckling)을 일으키게 되면 나머지 스냅돔들도 연쇄적으로 스냅쓰루버클링(snap-through-buckling)을 일으키게 된다. 즉 계속 눌러주면서도 추가적인 힘이 더 들어가지 않고 진동의 형태로 힘이 변하게 된다. 도 14에서도 나타낸 것처럼 변형은 계속 일어나지만 힘은 진동의 형태로 감소/증가를 반복하는데, 스냅돔 스택에 사용된 스냅돔 개수가 N 개인 경우 힘-변형 그래프에서 나타나는 진동회수는 최대 N 회 일 수 있다.14 shows the force-strain graph that appears when the snap dome stack is pressed. As the force increases, the snapdoms in the snapdom stack are initially deformed as a whole, at which point one snapdom causes snap-through-buckling and the rest of the snapdomes are in series. It will cause a snap-through-buckling. In other words, the force is changed in the form of vibration without pressing the additional force while continuing to press. As shown in Fig. 14, the deformation continues, but the force repeats decreasing / increasing in the form of vibration. When the number of snapdoms used in the snapdom stack is N, the number of vibrations shown in the force-strain graph is up to N times. have.
도 15은 스냅돔 스택을 이용한 본 발명의 일 구현예에 따른 전기 에너지 발생장치의 구성을 개략적으로 도시한다. 이는 본 발명의 예시일 뿐이므로 본 발명이 이러한 구조에 한정되는 것은 아니며 본 발명의 범위 내에서 다양한 변형이 가능함은 물론이다. 15 schematically illustrates a configuration of an electric energy generating device according to an embodiment of the present invention using a snap dome stack. Since this is only an example of the present invention, the present invention is not limited to this structure, and various modifications are possible within the scope of the present invention.
도 15에 도시된 바와 같이, 상기 압전체의 표면 중 탄성체가 위치하는 면에 대응되는 다른 표면에는 압전체의 변위를 수용할 수 있는 공간이 구비되어 있는 것이 바람직하다.As shown in FIG. 15, it is preferable that another surface of the surface of the piezoelectric body corresponding to the surface on which the elastic body is located is provided with a space for accommodating the displacement of the piezoelectric body.
또한 도시하지는 않았지만 상기 공간 또는 상기 압전체와 탄성체 사이에 선택적으로 상기 압전체의 뒤틀림운동을 야기할 수 있는 돌출부를 구비함으로써 더 많은 전기 에너지를 발생시킬 수 있다. Also, although not shown, more electrical energy can be generated by providing protrusions that can cause twisting of the piezoelectric body selectively between the space or the piezoelectric body and the elastic body.
본 발명에 있어서, 압전체는 압전단결정 또는 압전 물질로 이루어질 수 있다. 예를 들어 납을 함유하거나 함유하지 않는 압전단결정 또는 압전세라믹, 또는 압전폴리머 등으로 이루어질 수 있다. 압전 단결정은 일정한 구조를 가지는 미세한 입자가 규칙적으로 배열된 구조를 가진다.In the present invention, the piezoelectric body may be made of a piezoelectric single crystal or a piezoelectric material. For example, it may be made of a piezoelectric single crystal or piezoceramic, or a piezoelectric polymer containing or not containing lead. Piezoelectric single crystals have a structure in which fine particles having a predetermined structure are regularly arranged.
상기 압전체는 d33, d15 또는 d31 모드의 압전 특성을 갖는 것일 수 있다.The piezoelectric body may have a piezoelectric characteristic of d33, d15, or d31 mode.
구체적으로 예를 들면, 압전 단결정은 릴랙서(relaxor)인 마그네슘 니오브산연(PMN)과 압전체인 티탄산연(PT)의 고용체 단결정일 수 있다. 가속도 센서에서 단결정을 압전 재료로 사용할 경우에, 통상적인 압전 재료와 비교하여, 압전 왜(歪)가 3배 이상으로 나타나고, 전기 기계 결합 계수도 크며, 또한 뛰어난 압전 특성을 나타낸다. 대안으로서, 공지된 압전 재료의 일 예인 압전 세라믹, 예를 들어 PZT(lead zirconate titanate) 세라믹을 이용할 수 있다.Specifically, for example, the piezoelectric single crystal may be a solid solution single crystal of magnesium niobate (PMN), which is a relaxor, and lead titanate (PT), which is a piezoelectric body. When the single crystal is used as the piezoelectric material in the acceleration sensor, the piezoelectric distortion is three times or more, compared with the conventional piezoelectric material, the electromechanical coupling coefficient is large, and excellent piezoelectric properties are exhibited. As an alternative, piezoelectric ceramics, such as lead zirconate titanate (PZT) ceramics, which are examples of known piezoelectric materials, can be used.
도 15에 도시된 바와 같이, 스냅돔 스택이 스프링과 같이 작용하여 처음에는 바깥쪽 누름 스위치를 밀어내다가, 외부 힘으로 누름 스위치를 누르면 스냅돔 스택이 수축하고. 그리고 다시 누름 힘을 제거하면 각 스냅돔의 탄성 복원력에 의해서 처음의 상태로 돌아간다.As shown in FIG. 15, the snap dome stack acts like a spring, initially pushing the outer push switch, and pressing the push switch with an external force causes the snap dome stack to contract. When the pressing force is removed again, it is returned to the original state by the elastic restoring force of each snap dome.
도 16은 도 15에 도시된 스냅돔 스택의 스냅쓰루버클링(snap-through-buckling)이 실제로 적용되었을 때의 전력 생산 측정 방법을 나타낸다. 압전체에서 생성된 전력은 정류회로를 거쳐서 축전기에 저장되거나 축전기 대신 재충전가능 밧데리에 바로 연결될 수도 있다. FIG. 16 shows a method for measuring power generation when snap-through-buckling of the snap dome stack shown in FIG. 15 is actually applied. Power generated in the piezoelectric body may be stored in the capacitor via a rectifier circuit or directly connected to a rechargeable battery instead of the capacitor.
도 17은 실제로 스냅돔 스택의 성능 테스트를 위하여 실제로 제작한 과정을 보여준다. A, B, C, D는 스냅돔 스택을 설치하기 위한 틀 제작 도면으로, A는 상부틀, B는 누름부, C는 하부틀, D는 바닥틀을 나타낸다. 상부틀(A)는 누름부가 스냅돔 스택을 눌러줄 때 누름부의 이동경로를 잡아주고 누름부가 움직이는 공간을 확보한다. 누름부(B)는 힘을 가하여 눌러주는 부분으로 스냅돔 스택이 윗부분과 맞닿아 있다. 눌렀을 때 아래로 움직이면서 스냅돔 스택을 직접적으로 눌러주는 역할을 한다. 하부틀(C)는 스냄돔 스택이 눌릴 때 안정적으로 눌려질 수 있도록 스냄돔 스택 모양에 따른 내부 공간을 가진다. 바닥틀(D)는 압전 물질이 부착된 압전체가 위치하는 자리이며, 하부에 약간의 공간을 가지고 있어서 눌렀을 때 압전체가 아래로 약간 내려갈 수 있도록 되어 있다. E는 실제로 제작한 스냅돔 스택 틀이다. F는 E에서 제적한 스냅돔 스택을 조립했을 때의 모양을 나타낸다. G는 스냅돔 스택 아래 장착되는 압전체 모양을 나타냄. H는 스냅돔 스택을 틀 안에 장착한 모양을 나타낸다.Figure 17 shows the actual fabrication process for actually testing the performance of the snap dome stack. A, B, C, D is a frame manufacturing drawing for installing a snap dome stack, A is the upper frame, B is the pressing portion, C is the bottom frame, D represents the bottom frame. The upper frame (A) is to hold the movement path of the pressing portion when the pressing portion presses the snap dome stack and secures a space in which the pressing portion moves. Pressing portion (B) is a pressing portion by pressing the snap dome stack is in contact with the upper portion. When pressed, it moves down and directly pushes the snap dome stack. The lower frame C has an inner space according to the shape of the snapdom stack so that it can be stably pressed when the snapdom stack is pressed. The bottom frame D is a position where the piezoelectric material to which the piezoelectric material is attached is located, and has a little space at the bottom so that the piezoelectric material can be lowered slightly when pressed. E is actually a snap dome stack frame. F shows the shape when the snapdom stack removed from E is assembled. G represents the piezoelectric body mounted under the snapdom stack. H shows the snap dome stack mounted inside the frame.
도 18a 및 18b는 도 17과 같이 제작된 압전 발전기의 동작시험으로 각각 도 15의 누르기전과 누른 후에 상응한다. 18A and 18B correspond to the operation test of the piezoelectric generator manufactured as in FIG. 17 before and after pressing of FIG. 15, respectively.
도 19는 스냅 돔 스택의 스냅 돔 개수에 따른 누름 실험 결과를 개략적으로 도시한다. 2mm/s 속도로 누르고 1500 gram-force에서 멈추었으며, 스냅돔 개수를 1, 3, 5, 7, 9개로 바꾸어 가면서 각 구조에 대한 누름깊이-힘 세기 변화 그래프를 나타낸다. 19 schematically shows the results of a push experiment according to the number of snap domes of a snap dome stack. Pressed at 2 mm / s and stopped at 1500 gram-force, changing the number of snapdoms to 1, 3, 5, 7, and 9 shows the depth of force-force change graph for each structure.
도 20은 본 발명의 일 구현예(스냅돔 개수 12개)에 따른 압전 발전기의 생성 에너지 형태를 나타내는 그래프이다. 압전발전기 내 압전체 양면에 전기적으로 연결된 선이 브릿지 다이오드 정류회로를 지나서 축전기까지 연결한 후 축전기에 걸리는 전압을 측정하여 저장된 에너지로 계산한 것이다.20 is a graph showing the energy generation form of the piezoelectric generator according to one embodiment of the present invention (number of snap domes). The wires electrically connected to both sides of the piezoelectric generator are connected to the capacitor through the bridge diode rectifier circuit, and the voltage applied to the capacitor is measured and calculated as stored energy.
이상 살펴본 바와 같이, 본 발명에서는 압전체에 가해지는 낮은 진동수의 힘을 간단한 원리를 통해 높은 진동수를 변환시킴으로써 기존보다 훨씬 더 많은 전기 에너지를 발생시킬 수 있다.As described above, in the present invention, by converting a high frequency through a simple principle, the force of the low frequency applied to the piezoelectric body can generate much more electric energy than before.
본 발명에 따른 전기 에너지 발생 장치는 다양한 방식으로 적용될 수 있다. 예를 들어, 무전원 리모콘, 무전원 키보드, 무전원 도어락(door lock), 퍼스널 키패드(personal keypad)로 이용될 수 있다. 전기 에너지 발생 장치를 무전원 리모콘에 적용할 경우, 별도의 배터리를 구비하지 않더라도, 리모콘에서 사용자가 버튼을 누르는 동작만으로 전기 에너지가 발생하고, 상기 전기 에너지를 이용하여 적외선 신호를 발생시킬 수 있다. 또한 컴퓨터와 유선으로 연결되지 않은 무선 키보드에서도 사용자는 키보드상의 타이핑 작용만으로 전기 에너지를 발생시키고, 상기 전기 에너지를 이용하여 키보드 신호를 컴퓨터 본체로 송신할 수 있다.The electrical energy generating device according to the present invention can be applied in various ways. For example, it may be used as a non-powered remote controller, a non-powered keyboard, a non-powered door lock, or a personal keypad. When the electric energy generating device is applied to a non-powered remote controller, even if a separate battery is not provided, electric energy is generated only by a user pressing a button on the remote controller, and an infrared signal may be generated using the electric energy. In addition, even in a wireless keyboard that is not wired to the computer, the user may generate electrical energy only by typing on the keyboard, and transmit the keyboard signal to the computer body using the electrical energy.
본 발명에서는 압전체에 가해지는 낮은 진동수의 힘을 높은 진동수로 변환시킴으로써 기존보다 훨씬 더 많은 전기 에너지를 발생시킬 수 있도록 하는 새로운 구조를 채용함으로써 충분한 전기 에너지를 얻을 수 있는 장점이 있으며, 이러한 특징은 최근 관심이 높아진 무선센서네트워크 (wireless sensor network) 또는 사물인터넷 (IoT; Internet of Things)의 센서 노드에 전력을 공급하는데 사용될 수 있다. 또는 걸어다니면서 전기를 만들어내는 신발 또는 깔창(insole) 등에 적용되어 스마트신발 또는 스마트깔창 등을 구동하는 전력원으로 바로, 또는 밧데리에 임시로 저장된 후 사용될 수 있다.In the present invention, there is an advantage that a sufficient electrical energy can be obtained by adopting a new structure that can generate a lot more electrical energy than the existing by converting a low frequency force applied to the piezoelectric material to a high frequency. It can be used to power sensor nodes in a wireless sensor network or Internet of Things (IoT) of growing interest. Alternatively, it is applied to a shoe or insole that generates electricity while walking, and may be used immediately after being temporarily stored in a battery or as a power source for driving a smart shoe or a smart insole.

Claims (15)

  1. 적어도 2 이상의 표면을 갖는 압전체;Piezoelectric bodies having at least two surfaces;
    상기 압전체의 표면 중 적어도 한쪽 면에 위치하며 압전체에 변위를 전달하는 탄성체; 및 An elastic body positioned on at least one surface of the surface of the piezoelectric body and transmitting a displacement to the piezoelectric body; And
    상기 탄성체가 위치하는 면에 대응되는 다른 표면에는 압전체의 변위를 수용할 수 있는 수단이 구비된 전기 에너지 발생 장치.And an other surface corresponding to the surface on which the elastic body is located is provided with means for accommodating displacement of the piezoelectric body.
  2. 제1항에 있어서, The method of claim 1,
    상기 탄성체는 외부 힘이 인가되어 한 방향으로 눌리는 변형이 일어날 때, 탄성체에 걸리는 힘이 증가 및 감소를 반복하는 진동의 형태로 변하여, 상기 압전체에 진동하는 변위가 일어나도록 하는 것인 전기 에너지 발생 장치.The elastic body is an electrical energy generating device that when the deformation is pressed in one direction by the application of an external force, the force applied to the elastic body is changed in the form of a vibration repeating the increase and decrease, so that the displacement vibrating on the piezoelectric body to occur. .
  3. 제1항에 있어서, The method of claim 1,
    상기 탄성체에 힘을 전달하기 위한 가압수단을 더 구비하며, Further provided with a pressing means for transmitting a force to the elastic body,
    상기 압전체는 제 1 표면에 구비된 제 1 전극 및 대향하는 제 2 표면에 구비된 제 2 전극을 가지는 압전물질층으로 이루어져 있고, The piezoelectric material includes a piezoelectric material layer having a first electrode provided on a first surface and a second electrode provided on an opposing second surface.
    상기 압전체는 기판의 일면 또는 양면에 구비된 것인 전기 에너지 발생 장치. The piezoelectric body is an electrical energy generating device that is provided on one side or both sides of the substrate.
  4. 제1항에 있어서, The method of claim 1,
    상기 탄성체는 N개의 단위 탄성체를 포함하며(단 N은 2 이상), 상기 진동 회수는 N 회 또는 그 이하인 것인 전기 에너지 발생장치.The elastic body includes N unit elastic bodies (wherein N is 2 or more), and the number of vibrations is an electric energy generating device N times or less.
  5. 제4항에 있어서, The method of claim 4, wherein
    상기 단위 탄성체는 각 단위 탄성체의 변위가 다른 단위 탄성체의 변위를 유발하도록 적층되어 있는 것인 전기 에너지 발생 장치.The unit elastic body is an electrical energy generating device is laminated so that the displacement of each unit elastic body causes the displacement of the other unit elastic body.
  6. 제4항에 있어서, The method of claim 4, wherein
    상기 단위 탄성체는 가압수단에 의해 인가되는 힘(F)에 의한 단위 탄성체의 변위를 x 라고 할 때 k= ΔF/Δx 로 정의되는 순간 스프링 상수 k와 관련하여, The unit elastic body is related to the instantaneous spring constant k defined by k = ΔF / Δx when x is a displacement of the unit elastic body due to the force F applied by the pressing means.
    변위 x1, x2 및 x3 가 x1 < x2 < x3 일 때 When displacements x 1 , x 2 and x 3 are x 1 <x 2 <x 3
    변위 0 < x < x1 일 때 순간 스프링 상수 k1, Instantaneous spring constant k 1 , when displacement 0 <x <x 1
    변위 x1 < x < x2 일 때 순간 스프링 상수 k2, 및When the displacement x 1 <x <x 2 time the spring constant k 2, and
    변위 x2 < x < x3 일 때 순간 스프링 상수 k3When the displacement x 2 <x <x 3 the instantaneous spring constant k 3 is
    k1>0, k2 ≤0, k3>0 인 조건을 만족하는 탄성 특성을 갖는 것인 전기 에너지 발생 장치.An electric energy generating device having elastic properties satisfying the conditions of k 1 > 0, k 2 ≤ 0, k 3 > 0.
  7. 제3항에 있어서,The method of claim 3,
    상기 기판은 상기 압전체를 지지하는 역할을 하되, 상기 탄성체로부터 전달되는 변위에 의한 압전체의 변위를 실질적으로 제한하지 않는 재질 및 구조를 갖는 것인 전기 에너지 발생 장치. The substrate serves to support the piezoelectric material, but has a material and structure that does not substantially limit the displacement of the piezoelectric due to the displacement transmitted from the elastic body.
  8. 제1항에 있어서, The method of claim 1,
    상기 압전체의 표면 중 탄성체가 위치하는 면에 대응되는 다른 표면에는 압전체의 변위를 수용할 수 있는 공간이 구비되어 있는 것인 전기 에너지 발생 장치.The other surface of the surface of the piezoelectric body corresponding to the surface on which the elastic body is located is provided with a space for accommodating the displacement of the piezoelectric device.
  9. 제8항에 있어서, The method of claim 8,
    상기 공간 또는 상기 압전체와 탄성체 사이에 선택적으로 상기 압전체의 뒤틀림운동을 야기할 수 있는 돌출부를 구비하는 것인 전기 에너지 발생 장치. And a protrusion capable of causing a warping movement of the piezoelectric body selectively between the space or between the piezoelectric body and the elastic body.
  10. 제1항에 있어서,The method of claim 1,
    상기 압전체는 압전단결정 또는 압전물질로 이루어진 것인 전기 에너지 발생 장치.The piezoelectric material is an electric energy generating device comprising a piezoelectric single crystal or a piezoelectric material.
  11. 제1항에 있어서,The method of claim 1,
    상기 압전체는 d33, d15 또는 d31 모드의 압전 특성을 갖는 것인 전기 에너지 발생 장치. And the piezoelectric member has a piezoelectric characteristic of d33, d15 or d31 mode.
  12. 제3항에 있어서,The method of claim 3,
    별도의 탄성체 없이 상기 기판이 상기 탄성체의 역할을 수행하고, The substrate serves as the elastic body without a separate elastic body,
    상기 기판은 상기 가압수단에 의해 생성되는 캔틸레버식 변위를 압전체에 전달하는 구조를 갖는 것인 전기 에너지 발생 장치. And said substrate has a structure for transferring a cantilevered displacement generated by said pressing means to a piezoelectric body.
  13. 제1항에 있어서, The method of claim 1,
    상기 탄성체에 힘을 전달하기 위한 가압수단을 더 구비하며, Further provided with a pressing means for transmitting a force to the elastic body,
    상기 압전체는 제 1 표면에 구비된 제 1 전극 및 대향하는 제 2 표면에 구비된 제 2 전극을 가지는 압전물질층으로 이루어져 있는 것인 전기 에너지 발생 장치.And the piezoelectric body comprises a piezoelectric material layer having a first electrode provided on a first surface and a second electrode provided on an opposing second surface.
  14. 제1항에 있어서,The method of claim 1,
    상기 탄성체가 스냅돔인 전기 에너지 발생 장치.Electrical energy generating device wherein the elastic body is a snap dome.
  15. 제1항 내지 제14항 중 어느 한 항의 전기 에너지 발생 장치를 단위 발전체로 하여, 복수개의 단위 발전체가 직렬 또는 병렬 구조로 집합된 구조인 것인 전기 에너지 발생 장치.An electric energy generating device comprising a plurality of unit power generating bodies assembled in a series or parallel structure using the electric energy generating device of any one of claims 1 to 14 as a unit power generating body.
PCT/KR2016/000235 2015-01-09 2016-01-11 Apparatus for generating electrical energy WO2016111601A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020150003159A KR101659283B1 (en) 2015-01-09 2015-01-09 Electric Energy Generating Device
KR10-2015-0003159 2015-01-09
KR10-2015-0101215 2015-07-16
KR1020150101215A KR101712817B1 (en) 2015-07-16 2015-07-16 Electric Energy Generating Device

Publications (1)

Publication Number Publication Date
WO2016111601A1 true WO2016111601A1 (en) 2016-07-14

Family

ID=56356212

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/000235 WO2016111601A1 (en) 2015-01-09 2016-01-11 Apparatus for generating electrical energy

Country Status (1)

Country Link
WO (1) WO2016111601A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150256107A1 (en) * 2012-09-25 2015-09-10 Sang-Cheol Bae Piezoelectric element for power generation and power generation device using same
CN112181178A (en) * 2020-10-04 2021-01-05 长春工业大学 Wireless mouse device with self-energy supply system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4761582A (en) * 1987-03-19 1988-08-02 Motorola, Inc. Dual mode transducer
JP2010154746A (en) * 2010-03-26 2010-07-08 Kohei Hayamizu Generator
KR20110110444A (en) * 2010-04-01 2011-10-07 (주)대륙아이티에스 Generating apparatus with piezoeletric element
US20110278989A1 (en) * 2008-11-28 2011-11-17 East Japan Railway Company Power Generation Member, Power Generation Device Using Same and Power Generation System.
KR20140001060A (en) * 2012-06-27 2014-01-06 주식회사 에이엠씨에너지 Piezoelectric harvesting system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4761582A (en) * 1987-03-19 1988-08-02 Motorola, Inc. Dual mode transducer
US20110278989A1 (en) * 2008-11-28 2011-11-17 East Japan Railway Company Power Generation Member, Power Generation Device Using Same and Power Generation System.
JP2010154746A (en) * 2010-03-26 2010-07-08 Kohei Hayamizu Generator
KR20110110444A (en) * 2010-04-01 2011-10-07 (주)대륙아이티에스 Generating apparatus with piezoeletric element
KR20140001060A (en) * 2012-06-27 2014-01-06 주식회사 에이엠씨에너지 Piezoelectric harvesting system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150256107A1 (en) * 2012-09-25 2015-09-10 Sang-Cheol Bae Piezoelectric element for power generation and power generation device using same
US9882512B2 (en) * 2012-09-25 2018-01-30 Sang-Cheol Bae Piezoelectric element for power generation and power generation device using same
CN112181178A (en) * 2020-10-04 2021-01-05 长春工业大学 Wireless mouse device with self-energy supply system
CN112181178B (en) * 2020-10-04 2022-06-17 长春工业大学 Wireless mouse device with self-energy supply system

Similar Documents

Publication Publication Date Title
JP5411871B2 (en) Electret electrode, actuator using the same, vibration power generator, vibration power generation device, and communication device equipped with the vibration power generation device
US9287804B2 (en) Power generation apparatus
US9595659B2 (en) Piezoelectric vibration device for mobile terminal
US8803401B2 (en) Vibration power generator, vibration power generating device, and electronic device and communication device that have the vibration power generating device installed
JP4871642B2 (en) Electrostatic induction type conversion element
US9978928B2 (en) Rolled and compliant dielectric elastomer actuators
WO2011052973A2 (en) Piezoelectric vibration device having structure including self-amplification function of vibration and electric/electronic device using same as vibrating means
US8674582B2 (en) Vibration power generator, vibration power generating device and communication device having vibration power generating device mounted thereon
KR101220247B1 (en) Piezo power generator for emergency power feeding
KR20120098725A (en) Flexure assemblies and fixtures for haptic feedback
WO2014010821A1 (en) Piezoelectric generator for supplying power to portable terminal
JP7099774B2 (en) Friction power generation device with a diamond-shaped structure with a built-in U-shaped support
US8031890B2 (en) Electroacoustic transducer
KR101104229B1 (en) Electric power supplying equipment for mobile terminal
WO2016111601A1 (en) Apparatus for generating electrical energy
WO2013137547A1 (en) Module for providing haptic feedback, device for providing haptic emotional feedback using same, portable terminal having same, device for indicating direction having same, and method for providing haptic emotional feedback having same
JP6657376B2 (en) Vibration presentation device
WO2014093741A1 (en) Electroactive polymer actuated surface with flexible sealing membrane
JP2018023214A (en) Vibration power generator
Kalyanaraman et al. Power harvesting system in mobile phones and laptops using piezoelectric charge generation
KR20160030655A (en) device for harvesting energy, manufacturing method, and wireless apparatus including the same
KR101610738B1 (en) Device for generating hybrid energy
JP2013118784A (en) Power generator and manufacturing method of the same
KR101659283B1 (en) Electric Energy Generating Device
JP6539797B1 (en) Power generator for portable terminal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16735222

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16735222

Country of ref document: EP

Kind code of ref document: A1