WO2016111316A1 - Polarizing plate protective film, production method therefor, polarizing plate, and liquid crystal display device - Google Patents

Polarizing plate protective film, production method therefor, polarizing plate, and liquid crystal display device Download PDF

Info

Publication number
WO2016111316A1
WO2016111316A1 PCT/JP2016/050251 JP2016050251W WO2016111316A1 WO 2016111316 A1 WO2016111316 A1 WO 2016111316A1 JP 2016050251 W JP2016050251 W JP 2016050251W WO 2016111316 A1 WO2016111316 A1 WO 2016111316A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarizing plate
protective film
plate protective
carbon atoms
film
Prior art date
Application number
PCT/JP2016/050251
Other languages
French (fr)
Japanese (ja)
Inventor
洋介 水谷
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2016568738A priority Critical patent/JPWO2016111316A1/en
Priority to KR1020177017768A priority patent/KR20170088974A/en
Publication of WO2016111316A1 publication Critical patent/WO2016111316A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • G02B5/3041Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
    • G02B5/305Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks including organic materials, e.g. polymeric layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B23/00Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose
    • B32B23/04Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose comprising such cellulosic plastic substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B23/08Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose comprising such cellulosic plastic substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B23/00Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose
    • B32B23/20Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose comprising esters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/02Synthetic macromolecular particles
    • B32B2264/0214Particles made of materials belonging to B32B27/00
    • B32B2264/0278Polyester particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/42Polarizing, birefringent, filtering

Definitions

  • the present invention relates to a polarizing plate protective film, a manufacturing method thereof, a polarizing plate and a liquid crystal display device.
  • Liquid crystal display devices are widely used as displays for large liquid crystal televisions, notebook computers, mobile phones and the like.
  • Such a liquid crystal display device includes a liquid crystal cell and a pair of polarizing plates sandwiching the liquid crystal cell.
  • the polarizing plate on the viewing side is required to have high scratch resistance in order to prevent the surface from being scratched. Therefore, increasing the surface hardness of the polarizing plate protective film used for the polarizing plate on the viewing side has been studied.
  • Patent Document 1 As a method for increasing the surface hardness of a polarizing plate protective film, a method of laminating a hard coat layer on a substrate film is known (for example, Patent Document 1). Moreover, as a method for increasing the surface hardness of the base film itself, a film containing a cellulose ester and a hindered amine compound is known (for example, Patent Document 2).
  • Patent Document 3 a film containing a cellulose ester and a high molecular weight plasticizer
  • Patent Document 4 a film containing a cellulose ester and a polyester diol having OH groups at both ends
  • Patent Document 5 A cellulose ester film (Patent Document 5) produced under the stretching conditions is also known.
  • JP2013-127058A JP 2010-228314 A Patent No. 5028251 Patent No. 5422165 International Publication No. 2012/073692
  • the polarizing plate protective films of Patent Documents 3 and 5 contain a polyester-based additive end-capped with an aromatic monocarboxylic acid, a certain degree of hardness is easily obtained, but they are easily fragile.
  • a polarizing plate including such a polarizing plate protective film is punched into a predetermined size, there is a problem in that cracks and flaking tend to occur on the cut surface of the polarizing plate.
  • the polarizing plate protective film of Patent Document 4 contains a non-end-sealed polyester-based additive, so that the water resistance tends to decrease. Therefore, for example, when water paste is used at the time of preparing the polarizing plate, it is difficult to remove moisture from the protective film, and there is a possibility that the polarizer is deteriorated by moisture.
  • the present invention has been made in view of such circumstances. Even when the film is thinned, the polarizing plate protection has high surface hardness and can suppress the deterioration of the punching processability and the polarizer deterioration during the production of the polarizing plate.
  • the object is to provide a film.
  • a polarizing plate protective film including a base film and an active energy ray cured product layer, wherein the base film includes a cellulose ester and a polyester-based additive represented by the following formula (1). And the base film has a film thickness of 15 to 50 ⁇ m and a storage elastic modulus in the in-plane slow axis direction at 30 ° C. of 5.0 to 7.0 GPa.
  • Formula (1) B- (GA) n-GB (In the formula (1), B is a group derived from a hydroxyl group-containing monocarboxylic acid containing a ring structure; G is an alkylene diol having 2 to 12 carbon atoms, or a cycloalkylene having 6 to 12 carbon atoms.
  • A is an alkylene dicarboxylic acid having 4 to 12 carbon atoms;
  • n represents an integer of 0 or more
  • a base film obtained by stretching the film at a temperature of 140 to 180 ° C. at a magnification of 5 to 30%, and after applying the active energy ray cured product composition on the base film, drying and curing are performed. And a step of obtaining a cured active energy ray layer, and a method for producing a polarizing plate protective film.
  • B is a group derived from a hydroxyl group-containing monocarboxylic acid containing a ring structure
  • G is an alkylene diol having 2 to 12 carbon atoms, or a cycloalkylene having 6 to 12 carbon atoms.
  • A is an alkylene dicarboxylic acid having 4 to 12 carbon atoms;
  • n represents an integer of 0 or more ) [7]
  • a polarizing plate comprising a polarizer and the polarizing plate protective film according to any one of [1] to [5], wherein a base film of the polarizing plate protective film is in contact with the polarizer.
  • the polarizing plate protective film of the first polarizing plate is the polarizing plate protective film according to any one of [1] to [5], and
  • the substrate film of the polarizing plate protective film of the first polarizing plate is in contact with the first polarizer, or the protective film of the second polarizing plate is any one of [1] to [5]
  • the base film of the polarizing plate protective film of the second polarizing plate is in contact with the second polarizer A liquid crystal display device.
  • a polarizing plate protective film that has a high surface hardness even when it is thinned, and that can suppress the deterioration of punching processability and polarizer deterioration during the production of the polarizing plate.
  • a cellulose ester film containing a polyester-based additive end-capped with a “monocarboxylic acid having a ring structure but not containing a hydroxyl group” such as an aromatic monocarboxylic acid has a high elastic modulus, It tends to be brittle.
  • the inventors of the present invention have a high elastic modulus, a cellulose ester film containing a polyester-based additive end-capped with a “monocarboxylic acid having a ring structure and containing a hydroxyl group”, and I found it difficult to become brittle. Although this cause is not necessarily clear, it is estimated as follows. In the polyester-based additive end-capped with “monocarboxylic acid having a ring structure and containing a hydroxyl group”, the hydroxy groups are likely to interact with each other. As a result, it is considered that the polyester-based additive is easily oriented by stretching and the elastic modulus is likely to increase.
  • the cellulose ester film which has a high storage elastic modulus and favorable toughness can be obtained by further optimizing content and extending
  • a hard coat film having a high surface hardness and a good polarizing plate punching property can be obtained.
  • a polyester-based additive end-capped with a “monocarboxylic acid containing a hydroxyl group” usually has poorer water resistance than a polyester-based additive end-capped with a “monocarboxylic acid not containing a hydroxyl group”.
  • the monocarboxylic acid containing a hydroxyl group has a ring structure (which can impart hydrophobicity), the water resistance of the polyester-based additive can be ensured.
  • the present invention has been made based on these findings.
  • Polarizing plate protective film The polarizing plate protective film has a base film and an active energy ray cured product layer.
  • Base film contains a cellulose ester and a polyester-based additive.
  • the cellulose ester is a compound obtained by esterifying cellulose and a carboxylic acid having 2 to 22 carbon atoms; preferably an aliphatic carboxylic acid having 6 or less carbon atoms.
  • the acyl group contained in the cellulose ester may be linear or branched or may form a ring.
  • the acyl group may be further substituted with another substituent.
  • the birefringence is lowered when the number of carbon atoms of the acyl group is large, and therefore the number of carbon atoms of the acyl group is preferably 2 to 6.
  • the cellulose ester may contain two or more types of acyl groups having different carbon atoms; preferably an acyl group having 2 and 3 carbon atoms, or an acyl group having 2 and 4 carbon atoms.
  • cellulose esters examples include cellulose acetate, cellulose acetate butyrate, cellulose acetate propionate, cellulose acetate butyrate, cellulose acetate propionate butyrate, cellulose acetate phthalate, and the like.
  • cellulose esters that simultaneously satisfy the following formulas (1) and (2) are preferable.
  • X is the substitution degree of the acetyl group
  • Y is the substitution degree of the propionyl group or butyryl group.
  • Triacetyl cellulose and cellulose acetate propionate are preferably used.
  • the cellulose acetate propionate may preferably satisfy 1.0 ⁇ X ⁇ 2.5, 0.1 ⁇ Y ⁇ 1.5 and 2.0 ⁇ X + Y ⁇ 3.0.
  • the method for measuring the substitution degree of the acyl group can be measured according to ASTM-D817-96.
  • the substitution degree of the acyl group By setting the substitution degree of the acyl group to a certain level or more, the number of hydroxyl groups remaining in the pyranose ring constituting the cellulose skeleton can be reduced, and the occurrence of unnecessary birefringence and the influence of humidity can be suppressed.
  • the weight average molecular weight (Mw) of the cellulose ester is preferably 80,000 to 300,000, more preferably 100,000 to 280000, and further preferably 230000 to 280000.
  • the ratio Mw / Mn of the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the cellulose ester is preferably 1.4 to 3.0, more preferably 1.7 to 2.2.
  • the weight average molecular weight of a cellulose ester can be measured using commercially available gel permeation chromatography (GPC).
  • the measurement conditions can be as follows. (Measurement condition) Solvent: Methylene chloride Column: Shodex K806, K805, K803G (Used by connecting three products manufactured by Showa Denko KK) Column temperature: 25 ° C Sample concentration: 0.1% by mass Detector: RI Model 504 (manufactured by GL Sciences) Pump: L6000 (manufactured by Hitachi, Ltd.) Flow rate: 1.0ml / min
  • the calcium content of the cellulose ester is preferably 50 ppm or less, more preferably 10 to 50 ppm. When the calcium content of the cellulose ester is below a certain level, an increase in the haze of the substrate film over time can be effectively suppressed.
  • the calcium content of the cellulose ester can be adjusted by the selection of the raw material of the cellulose ester and the production conditions.
  • the cellulose used as the raw material for the cellulose ester can be wood pulp (conifer pulp, hardwood pulp), cotton linter, or the like.
  • the calcium content of the cellulose ester can be adjusted by the type of cellulose and the combination of a plurality of celluloses.
  • pulp having a low calcium content specifically, a pulp having a calcium content of 20 ppm or less, preferably 10 ppm or less, more preferably 5 ppm or less is used.
  • Such raw pulp can be obtained by the method described in paragraphs 0062 to 0088 of JP2012-48214A.
  • the polyester-based additive is obtained by subjecting a diol and a dicarboxylic acid to a dehydration condensation reaction; a hydroxyl group (derived from a diol) at the molecular end of the resulting reaction product is converted into a carboxyl group of a hydroxyl group-containing monocarboxylic acid having a ring structure. And a compound obtained by a dehydration condensation reaction.
  • the polyester-based additive is preferably a compound represented by the following formula (1).
  • Formula (1) B- (GA) n-GB
  • B in the formula (1) is a group derived from a hydroxyl group-containing monocarboxylic acid having a ring structure.
  • the ring structure refers to a structure having an aliphatic hydrocarbon ring, an aliphatic hetero ring, an aromatic hydrocarbon ring or an aromatic hetero ring, preferably a structure having an aliphatic hydrocarbon ring or an aromatic hydrocarbon ring.
  • the hydroxyl group-containing monocarboxylic acid having a ring structure may be an alicyclic monocarboxylic acid having 5 to 20 carbon atoms, an aromatic monocarboxylic acid having 7 to 20 carbon atoms, and a mixture thereof.
  • the alicyclic monocarboxylic acid having 5 to 20 carbon atoms is preferably an alicyclic monocarboxylic acid having 6 to 15 carbon atoms.
  • Examples of alicyclic monocarboxylic acids include 4-hydroxycyclohexylacetic acid, 3-hydroxycyclohexylacetic acid, 2-hydroxycyclohexylacetic acid, 4-hydroxycyclohexylpropionic acid, 4-hydroxycyclohexylbutyric acid, 4-hydroxycyclohexylglycolic acid, 4 -Hydroxy-o-methylcyclohexylacetic acid, 4-hydroxy-m-methylcyclohexylacetic acid, 4-hydroxy-p-methylcyclohexylacetic acid, 5-hydroxy-m-methylcyclohexylacetic acid, 6-hydroxy-o-methylcyclohexylacetic acid, 2 2,4-dihydroxycyclohexyl acetic acid, 2,5-dihydroxycyclohexyl acetic acid, 2- (hydroxymethyl) cyclo
  • aromatic monocarboxylic acid having 5 to 20 carbon atoms is preferably an aromatic monocarboxylic acid having 6 to 15 carbon atoms.
  • aromatic monocarboxylic acids include 4-hydroxybenzoic acid, 3-hydroxybenzoic acid, 2-hydroxybenzoic acid, 4-hydroxy-o-toluic acid, 3-hydroxy-p-toluic acid, 5-hydroxy- m-toluic acid, 6-hydroxy-o-toluic acid, 2,4-dihydroxybenzoic acid, 2,5-dihydroxybenzoic acid, 2- (hydroxymethyl) benzoic acid, 3- (hydroxymethyl) benzoic acid, 4- (Hydroxymethyl) benzoic acid, 2- (1-hydroxy-1-methylethyl) benzoic acid, 3- (1-hydroxy-1-methylethyl) benzoic acid, 4- (1-hydroxy-1-methylethyl) benzoic acid Acid etc. are included.
  • a hydroxyl group-containing monocarboxylic acid containing an aromatic hydrocarbon ring (an aromatic containing a hydroxyl group) from the point of imparting sufficient hydrophobicity to the polarizing plate protective film and easily suppressing deterioration of the polarizer due to moisture.
  • Monocarboxylic acids are preferred.
  • G in formula (1) is an alkylene diol having 2 to 12 carbon atoms, a cycloalkylene diol having 6 to 12 carbon atoms, an oxyalkylene diol having 4 to 12 carbon atoms and an arylene diol having 6 to 12 carbon atoms.
  • alkylene diols having 2 to 12 carbon atoms examples include ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,2-butanediol, 1,3-butanediol, 1,2-propane.
  • Diol 2-methyl 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 2,2-dimethyl-1,3-propanediol (neopentyl glycol), 2,2-diethyl- 1,3-propanediol (3,3-dimethylolpentane), 2-n-butyl-2-ethyl-1,3-propanediol (3,3-dimethylolheptane), 3-methyl-1,5-pentane Diol 1,6-hexanediol, 2,2,4-trimethyl 1,3-pentanediol, 2-ethyl 1,3-hexanediol, - methyl 1,8-octanediol, 1,9-nonanediol, 1,10-decanediol, include 1,12-octadecanediol like.
  • cycloalkylene diols having 6 to 12 carbon atoms examples include hydrogenated bisphenol A (2,2-bis (4-hydroxycyclohexyl) propane), hydrogenated bisphenol B (2,2-bis (4-hydroxycyclohexyl) Butane and the like are included.
  • Examples of the oxyalkylene diol having 4 to 12 carbon atoms include diethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, tripropylene glycol and the like.
  • arylene diols having 6 to 12 carbon atoms examples include bisphenol A and bisphenol B.
  • Diol is used as one kind or a mixture of two or more kinds.
  • alkylene glycols having 2 to 12 carbon atoms are preferable in terms of excellent compatibility with cellulose esters.
  • a in the formula (1) is at least one selected from the group consisting of alkylene dicarboxylic acids having 4 to 12 carbon atoms, cycloalkylene dicarboxylic acids having 6 to 16 carbon atoms, and arylenedicarboxylic acids having 8 to 16 carbon atoms. Is a group derived from
  • alkylene dicarboxylic acid having 4 to 12 carbon atoms examples include succinic acid, maleic acid, fumaric acid, glutaric acid, adipic acid, azelaic acid, sebacic acid, dodecanedicarboxylic acid and the like.
  • cycloalkylene dicarboxylic acids having 6 to 16 carbon atoms include 1,2-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, 1,5-decahydronaphthalenedicarboxylic acid, 1,4-decahydronaphthalenedicarboxylic acid and the like are included.
  • arylene dicarboxylic acids having 8 to 16 carbon atoms include phthalic acid, terephthalic acid, isophthalic acid, 1,5-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid and the like.
  • Dicarboxylic acid is used as one kind or a mixture of two or more kinds.
  • the dicarboxylic acid is preferably a mixture of alkylene dicarboxylic acid and arylene dicarboxylic acid.
  • N in the formula (1) is an integer of 0 or more, and can be set so that the number average molecular weight falls within the range described later.
  • G in the formula (1) contains a group derived from a cycloalkylene diol having 6 to 12 carbon atoms; or A in the formula (1) is carbon. It preferably contains a group derived from a cycloalkylene dicarboxylic acid having 6 to 12 atoms or an arylenedicarboxylic acid having 8 to 16 carbon atoms. Since the polyester-based additive containing these groups has a rigid structure, it is easy to increase the storage elastic modulus of the base film.
  • the number average molecular weight of the polyester-based additive is preferably 300 to 30,000, more preferably 300 or more and less than 700, and more preferably 300 to 600. If the number average molecular weight is above a certain level, bleeding out is likely to be suppressed. When the number average molecular weight is not more than a certain value, the compatibility with the cellulose ester is not impaired and it is easy to suppress an increase in haze, and it is easy to be oriented by stretching and to increase the storage elastic modulus.
  • the number average molecular weight of the polyester-based additive can be measured by gel permeation chromatography. Specifically, using a gel permeation chromatography (GPC) measuring device (“HLC-8330” manufactured by Tosoh Corporation), the number average molecular weight (Mn) of the ester compound in terms of standard polystyrene is measured under the following measurement conditions. Can be measured. (Measurement condition) Column: “TSK gel SuperHZM-M" x 2 and "TSK gel SuperHZ-2000" x 2 Guard column: "TSK SuperH-H” Developing solvent: Tetrahydrofuran Flow rate: 0.35 ml / min
  • the number average molecular weight of the polyester-based additive can be adjusted by the reaction time of condensation or polycondensation.
  • the acid value of the polyester-based additive is preferably 0.5 mgKOH / g or less, more preferably 0.3 mgKOH / g or less.
  • the hydroxyl value of the polyester-based additive is preferably 25 mgKOH / g or less, more preferably 15 mgKOH / g or less.
  • the synthesis of the polyester-based additive is carried out by a conventional method of hot-melt condensation by esterification reaction or transesterification reaction of dicarboxylic acid, diol, and end-capping monocarboxylic acid; or dicarboxylic acid and end-capping monocarboxylic acid It can be performed by any of the interfacial condensation methods of acid chloride and diol.
  • the charging ratio of the diol and the dicarboxylic acid is adjusted so that the molecular terminal is a diol.
  • the content of the polyester-based additive in the base film is preferably 5 to 20 parts by mass, more preferably 8 to 15 parts by mass with respect to 100 parts by mass of the cellulose ester.
  • the content of the polyester-based additive is a certain level or more, the storage elastic modulus of the base film can be sufficiently increased without increasing brittleness. If the content of the polyester-based additive is below a certain level, there is no possibility of causing bleed-out or increased internal haze.
  • the base film may further contain an acrylic copolymer as necessary in order to adjust the retardation value.
  • the acrylic copolymer is an acrylic polymer having a weight average molecular weight of 500 to 30,000; preferably an ethylenically unsaturated monomer having no aromatic ring and no hydrophilic group in the molecule and an aromatic ring in the molecule.
  • a polymer having a weight average molecular weight of 5,000 to 30,000 obtained by copolymerization with an ethylenically unsaturated monomer having a hydrophilic group; more preferably an ethylenically unsaturated group having no aromatic ring and no hydrophilic group in the molecule.
  • a polymer having a weight average molecular weight of 5,000 to 30,000 obtained by copolymerization of a saturated monomer and an ethylenically unsaturated monomer having no hydrophilic ring in the molecule and having a hydrophilic group, and ethylenic having no aromatic ring It may be a mixture with a polymer having a weight average molecular weight of 500 or more and 3000 or less obtained by polymerizing an unsaturated monomer.
  • the base film may further contain an ultraviolet absorber as necessary in order to improve the weather resistance.
  • the ultraviolet absorber may preferably have a transmittance at a wavelength of 370 nm of 10% or less, more preferably 5% or less, and even more preferably 2% or less.
  • ultraviolet absorbers examples include oxybenzophenone compounds, benzotriazole compounds, salicylic acid ester compounds, benzophenone compounds, cyanoacrylate compounds, triazine compounds, nickel complex compounds, inorganic powders, and the like.
  • benzotriazole ultraviolet absorbers, benzophenone ultraviolet absorbers, and triazine ultraviolet absorbers are preferable, and benzotriazole ultraviolet absorbers and benzophenone ultraviolet absorbers are more preferable.
  • the content of the UV absorber is preferably 0.5 to 10% by mass with respect to the base film when the thickness of the base film is 30 to 200 ⁇ m, although it depends on the type and use conditions of the UV absorber. 0.6 to 4% by mass is more preferable.
  • the base film can further contain fine particles (matting agent) in order to impart slipperiness or the like to the surface.
  • the fine particles may be composed of an inorganic compound or a resin.
  • inorganic compounds include silicon dioxide, titanium dioxide, aluminum oxide, zirconium oxide, calcium carbonate, talc, clay, calcined kaolin, calcined calcium silicate, hydrated calcium silicate, aluminum silicate, magnesium silicate, calcium phosphate, etc. Is mentioned.
  • silicone resin examples include silicone resin, fluororesin and acrylic resin.
  • silicone resins are preferable, and those having a three-dimensional network structure are particularly preferable.
  • Tospearl 103, 105, 108, 120, 145, 3120 and 240 manufactures a brand name for silicone resin.
  • fine particles of silicon dioxide are preferable in that the turbidity of the film can be lowered.
  • the fine particles of silicon dioxide include Aerosil R972, R972V, R974, R812, 200, 200V, 300, R202, OX50, TT600 (manufactured by Nippon Aerosil Co., Ltd.) and friction while keeping the film haze low. Aerosil 200V and Aerosil R972V are preferred because the effect of lowering the coefficient is great.
  • the average primary particle diameter of the fine particles is preferably 5 to 400 nm, more preferably 10 to 300 nm.
  • the fine particles may be mainly contained as secondary aggregates having a particle size of 0.05 to 0.3 ⁇ m, and may be contained as primary particles without being aggregated if the particles have an average particle size of 100 to 400 nm.
  • the fine particles are preferably added so that the dynamic friction coefficient of the base film surface is 0.2 to 1.0.
  • the content of the fine particles can be 0.01 to 1% by mass, preferably 0.05 to 0.5% by mass with respect to the base film.
  • the base film can be produced by any method, but it is preferably produced by a solution casting method from the viewpoint of easy film formation even with a resin having a relatively large molecular weight.
  • the base film is 1) a step of preparing a dope solution by dissolving the above-described components in a solvent, 2) a step of casting the dope solution on an endless metal support, and 3) casting. The dope is dried and then peeled off to obtain a film-like material. 4) The film-like material is dried and stretched.
  • the film-like material is preferably stretched while being dried in order to increase the storage elastic modulus of the base film. Stretching can be performed in the width direction, the film forming direction, or both.
  • the stretching ratio in the maximum stretching direction is preferably 5 to 30%, more preferably 12 to 28%.
  • the stretching temperature can be 120 to 180 ° C, preferably 140 to 180 ° C, more preferably 145 to 165 ° C.
  • the residual solvent of the film-like material at the start of stretching is preferably less than 5% by mass, more preferably 4% by mass or less, and even more preferably 2% by mass or less, from the viewpoint of suppressing an increase in haze.
  • the method of stretching the film-like material is not particularly limited, and a method of stretching a difference in peripheral speed between a plurality of rolls and using the difference in the peripheral speed of the roll between them in the MD direction; It may be a method of fixing with a clip or a pin and extending the gap between the clip or the pin in the TD direction.
  • the stretching in the TD direction is preferably performed by a tenter, and may be a pin tenter or a clip tenter.
  • the other steps may be the same as known solution casting methods; for example, paragraphs 0109 to 0140 of JP2012-48214A.
  • the storage elastic modulus of the base film in the in-plane slow axis direction at 30 ° C. is preferably 5.0 to 7.0 GPa, more preferably 5.5 to 7.0 GPa.
  • the storage elastic modulus can be measured by the following method.
  • the base film is cut into a size of 5 mm wide ⁇ length (length in the in-plane slow axis direction) 50 mm, and used as a sample.
  • the sample is conditioned for 24 hours at 23 ° C. and 55% RH.
  • the obtained sample is pulled in the length direction while raising the temperature under the following conditions in an environment of 23 ° C. and 55% RH to obtain a temperature-storage modulus curve. From the obtained curve, the value of the storage elastic modulus at 30 ° C. is read, and is set as “the storage elastic modulus in the in-plane slow axis direction at 30 ° C.”.
  • Measuring device RSA III manufactured by TI Instruments Sample size: width 5mm, length 50mm Gap: 20mm Measurement conditions: Tensile mode Measurement temperature: 25-210 ° C Temperature rising condition: 5 ° C / min Frequency: 1Hz
  • the in-plane slow axis of the substrate film is an axis in the direction in which the in-plane refractive index is maximum.
  • the in-plane slow axis is usually the maximum stretching direction, and can be, for example, the TD direction (width direction) in the roll body of the long base film.
  • the angle ⁇ 1 (orientation angle) between the in-plane slow axis and the film width direction can be ⁇ 1 ° or less, preferably ⁇ 0.5 ° or less.
  • the in-plane slow axis direction and the angle ⁇ 1 formed by the film width direction or longitudinal direction (preferably the width direction) are measured using an automatic birefringence meter KOBRA-21ADH or KOBRA-WR (Oji Scientific Instruments). It can be performed at a wavelength of 590 nm.
  • the storage elastic modulus of the base film can be adjusted by the content of the polyester-based additive and the stretching conditions.
  • the content of the polyester-based additive is 5 parts by mass or more with respect to 100 parts by mass of the cellulose ester; and the stretching temperature is 140 ° C. or more, and the stretching ratio is 5%.
  • the storage elastic modulus can be increased by making the polyester-based additive “a structure containing an aromatic ring or an aliphatic ring” or by making the molecular weight below a certain level.
  • the elongation at break of the base film can be preferably 10 to 80%, more preferably 20 to 50%.
  • the internal haze of the base film measured by a method according to JIS K-7136 may be less than 1%, preferably 0.1% or less, more preferably 0.05% or less.
  • the internal haze can be adjusted by the molecular weight and content of the polyester-based additive.
  • the molecular weight and content of the polyester-based additive are kept below a certain level, or the hydroxyl group-containing monocarboxylic acid that is end-capped has an aromatic hydrocarbon ring that has high affinity with the cellulose ester. Is preferably introduced.
  • the base film can be preferably 10 to 80 ⁇ m, more preferably 10 to 60 ⁇ m, and even more preferably 15 to 50 ⁇ m. As described above, since the base film has a sufficient storage elastic modulus even when the thickness is as thin as 50 ⁇ m or less, the hardness of the polarizing plate protective film can be increased to a certain level or more.
  • the active energy ray cured product layer may be preferably a hard coat layer or an antiglare layer.
  • the active energy ray cured product layer may be a cured product of a coating film composed of a coating solution for an active energy ray cured product layer containing a curable compound, a photopolymerization initiator, and a solvent.
  • the curable compound contained in the coating solution for the active energy ray-curable layer is a compound that is cured by irradiation with active energy rays, preferably a compound having an ethylenically unsaturated double bond, and more preferably an acrylate compound. sell.
  • the acrylate compound is preferably a polyfunctional acrylate having two or more acryloyloxy groups and / or methacryloyloxy groups in the molecule.
  • the polyfunctional acrylate is preferably one or more selected from the group consisting of pentaerythritol polyfunctional acrylate, dipentaerythritol polyfunctional acrylate, pentaerythritol polyfunctional methacrylate, and dipentaerythritol polyfunctional methacrylate.
  • Photopolymerization initiator examples include acetophenone, benzophenone, hydroxybenzophenone, Michler's ketone, ⁇ -amyloxime ester, thioxanthone, and derivatives thereof.
  • the content ratio of the photopolymerization initiator may be 0.01 to 20 parts by mass with respect to 100 parts by mass of the curable compound.
  • Examples of the solvent contained in the coating solution for the active energy ray cured layer include: Ketones such as methyl ethyl ketone, acetone, cyclohexanone, methyl isobutyl ketone; Esters such as methyl acetate, ethyl acetate, butyl acetate, propyl acetate, propylene glycol monomethyl ether acetate; Alcohols such as ethanol, methanol, butanol, n-propyl alcohol, isopropyl alcohol, diacetone alcohol; Hydrocarbons such as toluene, xylene, benzene, cyclohexane; Examples include glycol ethers such as propylene glycol monomethyl ether, propylene glycol monopropyl ether, and ethylene glycol monopropyl ether.
  • esters, glycol ethers, and alcohols are preferable, and propylene glycol mono (alkyl group having 1 to 4 carbon atoms) alkyl ether or propylene glycol mono (alkyl group having 1 to 4 carbon atoms) alkyl ether ester is preferable. More preferably, it is contained in an amount of at least 5% by mass, more preferably 5-80% by mass.
  • the coating solution for the active energy ray-cured layer may further contain a leveling agent for enhancing the coatability, fine particles for adjusting the hardness and refractive index of the active energy ray-cured product layer, if necessary.
  • Leveling agent examples include a fluorine-siloxane graft compound.
  • the fluorine-siloxane graft compound is a copolymer obtained by grafting polysiloxane and / or organopolysiloxane containing siloxane and / or organosiloxane alone to at least a fluorine-based resin.
  • Examples of commercially available fluorine-siloxane graft compounds include ZX-022H, ZX-007C, ZX-049, and ZX-047-D manufactured by Fuji Kasei Kogyo Co., Ltd.
  • the active energy ray cured layer coating solution contains fine particles as necessary. It may further include.
  • the fine particles may be organic fine particles or inorganic fine particles.
  • organic fine particles particles made of methyl methacrylate-divinylbenzene copolymer resin, polysiloxane resin, polystyrene resin, melamine resin, benzoguanamine resin, and composites of these resins are preferably used.
  • the inorganic fine particles include those similar to the fine particles added as a matting agent to the above-described base film, and are preferably silicon dioxide (silica) fine particles.
  • the silica fine particles may be reactive silica fine particles described in paragraphs 0230 to 0258 of International Publication No. 2011/158626 from the viewpoint of improving dispersibility.
  • the active energy ray-cured layer coating solution may contain metal oxide fine particles from the viewpoint of making it easier to adjust the refractive index of the cured product.
  • the metal oxide fine particles preferably have a refractive index measured at a wavelength of 550 nm of 1.80 to 2.60, more preferably 1.85 to 2.50.
  • Examples of such metal oxide fine particles include zirconium oxide, antimony oxide, tin oxide, zinc oxide, indium-tin oxide (ITO), antimony-doped tin oxide (ATO), and zinc antimonate. May be zinc antimonate particles.
  • the average primary particle diameter of the metal oxide fine particles is preferably 10 nm to 200 nm, more preferably 10 to 150 nm.
  • the average particle diameter of the metal oxide fine particles can be measured from an electron micrograph taken with a scanning electron microscope (SEM) or the like.
  • the refractive index of the hard coat layer measured at 23 ° C. and a wavelength of 550 nm may be 1.4 to 2.2.
  • the refractive index of the hard coat layer can be adjusted by the amount of the metal oxide fine particles added.
  • the thickness of the active energy ray cured product layer is preferably 3 to 30 ⁇ m, more preferably 5 to 15 ⁇ m, from the viewpoint of obtaining sufficient hardness. Since the above-mentioned base film has high hardness, high hardness is easily obtained even if the thickness of the active energy ray cured product layer is reduced to, for example, 15 ⁇ m or less.
  • the polarizing plate protective film of the present invention may further have functional layers such as an antistatic layer, a backcoat layer, a slippery layer, an adhesive layer, a barrier layer, and an antireflection layer as necessary.
  • the polarizing plate protective film of the present invention includes 1) a step of preparing the above-mentioned base film, and 2) after applying a coating solution for an active energy ray cured product layer on the base film. , Drying and curing to obtain an active energy ray cured product layer.
  • the step of preparing the base film of 1) above is the above described 1-2. It can be the same as the manufacturing method of a base film.
  • the application of the coating solution for the active energy ray cured layer in the above 2) can be performed by any means such as a dipping method, a die coater method, a wire bar method, and a spray method.
  • Curing of the coating film of the coating solution for active energy ray cured layer of 2) can be performed by irradiating active energy rays.
  • the light source that irradiates active energy rays include a low-pressure mercury lamp, a medium-pressure mercury lamp, a high-pressure mercury lamp, an ultrahigh-pressure mercury lamp, a carbon arc lamp, a metal halide lamp, and a xenon lamp.
  • Irradiation light amount is sufficient if 20 ⁇ 10000mJ / cm 2 degrees, and preferably 50 ⁇ 2000mJ / cm 2.
  • the irradiation time is preferably 0.5 seconds to 5 minutes, and more preferably 3 seconds to 2 minutes from the viewpoint of work efficiency.
  • the polarizing plate protective film can have a high hardness.
  • the hardness of the polarizing plate protective film is a pencil hardness of 2.8H or more, preferably 3H or more, more preferably 3.5H or more, and further preferably 4H or more.
  • the surface of the liquid crystal display device can be hardly damaged during use.
  • Pencil hardness can be measured by a pencil height evaluation method based on JIS K5400. Specifically, the polarizing plate protective film is conditioned for 24 hours at 23 ° C. and 55% RH. Then, the operation of scratching the surface of the cured active energy ray layer with a test pencil having each hardness specified in JIS S 6006 using a 1 kg weight is repeated five times. Then, the maximum value of the hardness at which one scratch or less is obtained. The larger the maximum value, the higher the hardness.
  • the retardation R 0 in the in-plane direction measured under the conditions of a measurement wavelength of 590 nm and 23 ° C. and 55% RH of the polarizing plate protective film is, for example, 0 to 10 nm; and the retardation Rth in the thickness direction is, for example, ⁇ 5 to It can be 20 nm.
  • a polarizing plate protective film having a retardation value within the above range is suitable as a protective film (F1, F4) for a liquid crystal display device described later.
  • Retardation R0 and Rth are defined by the following equations, respectively.
  • Formula (I): R 0 (nx ⁇ ny) ⁇ d (nm)
  • Formula (II): Rth ⁇ (nx + ny) / 2 ⁇ nz ⁇ ⁇ d (nm)
  • nx represents the refractive index in the slow axis direction x where the refractive index is maximum in the in-plane direction of the film
  • ny represents the refractive index in the direction y perpendicular to the slow axis direction x in the in-plane direction of the film
  • nz represents the refractive index in the thickness direction z of the film
  • d (nm) represents the thickness of the film)
  • the retardations R0 and Rth can be determined by the following method, for example. 1) Condition the polarizing plate protective film at 23 ° C. and 55% RH. The average refractive index of the polarizing plate protective film after humidity adjustment is measured with an Abbe refractometer or the like. A polarizing plate protective film after 2) humidity, measuring the R 0 when the light is incident in parallel to the measurement wavelength 590nm to normal of the film surface, KOBRA21DH, in Oji Scientific Corporation.
  • the slow axis in the plane of the polarizing plate protective film is set as the tilt axis (rotation axis), and the measurement wavelength is 590 nm from the angle (incident angle ( ⁇ )) with respect to the normal to the surface of the film.
  • the retardation value R ( ⁇ ) when light is incident is measured.
  • the retardation value R ( ⁇ ) can be measured at 6 points every 10 °, with ⁇ ranging from 0 ° to 50 °.
  • the in-plane slow axis is an axis having the maximum refractive index in the film plane, and can be confirmed by KOBRA21ADH.
  • nx, ny, and nz are calculated by KOBRA21ADH from the measured R 0 and R ( ⁇ ) and the above-described average refractive index and film thickness, and Rth at a measurement wavelength of 590 nm is calculated.
  • the measurement of retardation can be performed under conditions of 23 ° C. and 55% RH.
  • Polarizing plate contains a polarizer and the above-mentioned polarizing plate protective film.
  • the polarizing plate protective film is disposed so that the base film is in contact with the polarizer.
  • Polarizer A polarizer is an element that passes only light having a polarization plane in a certain direction, and a typical polarizer known at present is a polyvinyl alcohol polarizing film.
  • the polyvinyl alcohol polarizing film includes those obtained by dyeing iodine on a polyvinyl alcohol film and those obtained by dyeing a dichroic dye.
  • the polyvinyl alcohol polarizing film may be a film (preferably a film further subjected to durability treatment with a boron compound) dyed with iodine or a dichroic dye after uniaxially stretching the polyvinyl alcohol film; A film obtained by dying an alcohol film with iodine or a dichroic dye and then uniaxially stretching (preferably a film further subjected to a durability treatment with a boron compound) may be used.
  • the absorption axis of the polarizer is parallel to the stretching direction of the film.
  • the ethylene unit content described in JP-A-2003-248123, JP-A-2003-342322, etc. is 1 to 4 mol%
  • the degree of polymerization is 2000 to 4000
  • the degree of saponification is 99.0 to 99.99 mol%.
  • Ethylene-modified polyvinyl alcohol or the like is used.
  • an ethylene-modified polyvinyl alcohol film having a hot water cutting temperature of 66 to 73 ° C. is preferably used.
  • the thickness of the polarizer is preferably 5 to 30 ⁇ m, and more preferably 10 to 20 ⁇ m in order to reduce the thickness of the polarizing plate.
  • the other polarizing plate protective film may be arrange
  • Examples of other polarizing plate protective films include a commercially available cellulose acylate film (for example, Konica Minoltack® KC8UX, KC4UX, KC5UX, KC8UY, KC4UY, KC12UR, KC8UCR-3, KC8UCR-4, KC8UCR-5, KC4FR-1 , KC8UY-HA, KC8UX-RHA, KC8UE, KC4UE, KC4HR-1, KC4KR-1, KC4UA, KC6UA or higher, manufactured by Konica Minolta Opto Co., Ltd.).
  • a commercially available cellulose acylate film for example, Konica Minoltack® KC8UX, KC4UX, KC5UX, KC8UY, KC4UY, KC12UR, KC8UCR-3, KC8UCR-4, KC8UCR-5, KC4FR-1 , KC
  • the retardation of other polarizing plate protective films depends on the type of liquid crystal cell to be combined.
  • the in-plane retardation Ro (590) measured at a wavelength of 590 nm at 23 ° C. and RH 55% is 20 to 100 nm.
  • the retardation Rt (590) in the thickness direction is preferably 70 to 300 nm.
  • a protective film having a retardation in the above range is suitable as a retardation film (protective films (F2, F3) described later) such as a VA liquid crystal cell.
  • Each retardation value can be measured by the same method as described above.
  • the thickness of the other polarizing plate protective film is not particularly limited, but is preferably 10 to 250 ⁇ m, more preferably 10 to 100 ⁇ m, and particularly preferably 30 to 60 ⁇ m.
  • the polarizing plate of the present invention can be obtained through a step of bonding the polarizer and the polarizing plate protective film of the present invention through an adhesive; and a step of cutting the bonded laminate into a predetermined size. it can.
  • the adhesive used for pasting may be a completely saponified polyvinyl alcohol aqueous solution (water glue) or an active energy ray-curable adhesive.
  • the polarizing plate protective film of the present invention can have appropriate toughness. Therefore, in the step of cutting the polarizing plate into a predetermined size, it is possible to suppress the occurrence of cracks and crushing on the cut surface, and the workability of the polarizing plate can be improved. Moreover, since the polarizing plate protective film of this invention has high surface hardness, the polarizing plate obtained can also have high surface hardness.
  • the polarizing plate protective film of the present invention contains a terminal-capped polyester-based additive, it can have water resistance. Therefore, the polarizing plate protective film of the present invention can suppress deterioration of the polarizer due to moisture.
  • the liquid crystal display device of the present invention includes a liquid crystal cell and a pair of polarizing plates that sandwich the liquid crystal cell.
  • FIG. 1 is a schematic diagram showing an example of a basic configuration of a liquid crystal display device.
  • the liquid crystal display device 10 of the present invention includes a liquid crystal cell 30, a first polarizing plate 50 and a second polarizing plate 70 that sandwich the liquid crystal cell 30, and a backlight 90.
  • the display mode of the liquid crystal cell 30 may be various display modes such as STN, TN, OCB, HAN, VA (MVA, PVA), and IPS.
  • the VA (MVA, PVA) mode is used. It is preferable that
  • the first polarizing plate 50 includes a first polarizer 51, a polarizing plate protective film 53 (F1) disposed on the surface of the first polarizer 51 opposite to the liquid crystal cell, and a first polarizer.
  • the second polarizing plate 70 includes a second polarizer 71, a polarizing plate protective film 73 (F3) disposed on the liquid crystal cell side surface of the second polarizer 71, and a liquid crystal of the second polarizer 71. And a polarizing plate protective film 75 (F4) disposed on the surface opposite to the cell.
  • One of the polarizing plate protective films 55 (F2) and 73 (F3) may be omitted as necessary.
  • the polarizing plate protective film 53 (F1) and 75 (F4); preferably the polarizing plate protective film 53 (F1) may be the polarizing plate protective film of the present invention.
  • the polarizing plate protective film 53 (F1) includes a base film 53A and an active energy ray cured product layer 53B, and the base film 53A is in contact with the first polarizer 51.
  • the liquid crystal display device in which the polarizing plate protective film 53 (F1) is the polarizing plate protective film of the present invention has high scratch resistance on the surface, so that the display screen can be hardly damaged.
  • the polarizing plate protective film of the present invention is preferably used not only as a polarizing plate protective film for a liquid crystal display device but also as a protective film for an image display device provided with a touch panel, an image display device such as an organic EL display or a plasma display, and the like. be able to.
  • the weight average molecular weight (Mw) was 260,000 as a result of measurement by the method described above.
  • the obtained triacetyl cellulose sample (3.0 g) was placed in a crucible and carbonized on an electric heater, and then placed in an electric furnace and ashed at 800 ⁇ 10 ° C. for about 2 hours. This was covered and allowed to cool, then 25 ml of 0.07% hydrochloric acid solution was added and dissolved by heating on a hot plate. After allowing to cool, the solution was transferred to a 200 ml Nalgel flask. The crucible was washed with distilled water, the liquid was also transferred to a Nalgel flask, and distilled water was poured up to the marked line. Using this as a test solution, the absorbance was measured using an atomic absorption photometer to determine the amount of Ca in the sample. As a result, the calcium content was 25 ppm.
  • Polyester compounds T2 to T5 were obtained in the same manner except that the types or molecular weights of the diol, dicarboxylic acid, and end-capping monocarboxylic acid were changed as shown in Table 1.
  • Comparative polyester compounds H1 to H8 were obtained in the same manner except that the types or molecular weights of the diol, dicarboxylic acid, and end-capping monocarboxylic acid were changed as shown in Table 1.
  • the number average molecular weight of the obtained polyester compound was measured by the following method. These results are shown in Table 1.
  • Example 1 Production of Polarizing Plate Protective Film ⁇ Example 1> (1) Production of base film (Preparation of silicon dioxide diluted dispersion) Aerosil R812 (manufactured by Nippon Aerosil Co., Ltd.) 10 parts by mass and ethanol 90 parts by mass were stirred and mixed with a dissolver for 30 minutes, and then dispersed with Manton Gorin to obtain a silicon dioxide dispersion. 88 parts by mass of methylene chloride was added to the obtained silicon dioxide dispersion while stirring, and the mixture was stirred and mixed with a dissolver for 30 minutes to obtain a silicon dioxide dispersion dilution. The obtained solution was filtered with a fine particle dispersion dilution filter (Advantech Toyo Co., Ltd. polypropylene wind cartridge filter TCW-PPS-1N).
  • a fine particle dispersion dilution filter Advancedtech Toyo Co., Ltd. polypropylene wind cartridge filter TCW-PPS-1N).
  • the obtained dope solution was uniformly cast on a stainless steel band support at a temperature of 35 ° C. and a width of 2 m using a belt casting apparatus.
  • the cast film was peeled off from the stainless steel band support after the solvent was evaporated until the amount of the residual solvent reached 100% by mass.
  • the film-like material obtained by peeling was conveyed while being dried at 50 ° C., and then slitted.
  • the obtained film was stretched with a tenter in the TD direction (direction perpendicular to the film transport direction) at a temperature of 160 ° C. at a magnification of 20%, and then dried at 160 ° C.
  • the residual solvent amount of the film-like material when stretching with a tenter was 4.5%.
  • the obtained film-like material was dried for 15 minutes while being transported in a drying apparatus at 120 ° C. by a number of rolls, slitted, and knurled with a width of 15 mm and a height of 10 ⁇ m at both ends of the film.
  • a base film having a thickness of 40 ⁇ m was obtained.
  • the draw ratio in the MD direction calculated from the rotational speed of the stainless steel band support and the operating speed of the tenter was 1.05.
  • the storage elastic modulus and internal haze of the obtained base film were measured by the following methods.
  • the internal haze was measured under conditions of 23 ° C. and 55% RH.
  • the glass used for the measurement was MICRO SLIDE GLASS S9213 MATSUNAMI; the glycerin used for the measurement was Kanto Chemical's deer special grade (purity> 99.0%) and a refractive index of 1.47.
  • NDH2000 manufactured by Nippon Denshoku Industries Co., Ltd. was used as a measuring device.
  • the measured haze value was evaluated according to the following criteria. A: Less than 0.04 B: 0.04 or more and less than 0.08 C: 0.08 or more and less than 0.12 D: 0.12 or more
  • the obtained coating liquid for hard coat layer was applied on the prepared base film with a die coater so that the thickness after curing was 7 ⁇ m.
  • the coating layer was cured by irradiating with ultraviolet rays under the conditions of illuminance of 300 mW / cm 2 and irradiation amount of 0.3 J / cm 2 in a nitrogen atmosphere.
  • the base film having the cured coating layer was heat-treated at 130 ° C. for 5 minutes while being transported at a transport tension of 300 N / m to obtain a hard coat film.
  • the surface hardness of the hard coat layer of the obtained hard coat film was measured by a pencil height evaluation method based on JIS K5400. Specifically, the hard coat film was conditioned at 23 ° C. and 55% RH for 24 hours. Thereafter, the operation of scratching the surface of the hard coat layer with a pencil of each hardness using a 1 kg weight was repeated five times, and the maximum value of the hardness at which one scratch or less was obtained. The larger the maximum value, the higher the hardness.
  • the obtained polarizer was subjected to alkali saponification treatment under the following conditions.
  • Saponification step 2.5 M NaOH 50 ° C. 90 seconds
  • Water washing step Water 30 ° C. 45 seconds
  • Neutralization step 10 parts by mass HCl 30 ° C. 45 seconds
  • Water washing step water 30 ° C. 45 seconds
  • the prepared polarizing plate protective films were bonded to both surfaces of the prepared polarizer through a completely saponified polyvinyl alcohol aqueous solution.
  • the laminated laminate was dried to obtain a long polarizing plate. The bonding was performed so that the transmission axis of the polarizer and the in-plane slow axis of the polarizing plate protective film were parallel, and the base film of the polarizing plate protective film was in contact with the polarizer.
  • ⁇ T is less than 1% ⁇ : ⁇ T is 1% or more and less than 5% ⁇ : ⁇ T is 5% or more and less than 10% ⁇ : ⁇ T is 10% or more and less than 15% XX: ⁇ T is 15% or more
  • Examples 2 to 5 Comparative Examples 1 to 8> A base film was produced in the same manner as in Example 1 except that the type of the polyester-based additive was changed as shown in Table 2. Moreover, the polarizing plate protective film and the polarizing plate were produced like Example 1, and the same evaluation was performed.
  • Example 9 A base film was produced in the same manner as in Example 1 except that the thickness of the base film was changed as shown in Table 3. Moreover, the polarizing plate protective film and the polarizing plate were produced like Example 1, and the same evaluation was performed.
  • Examples 9 to 12 A base film was produced in the same manner as in Example 1 except that the addition amount of the polyester-based additive was changed as shown in Table 4. Moreover, the polarizing plate protective film and the polarizing plate were produced like Example 1, and the same evaluation was performed.
  • Example 13 and Comparative Example 10 A base film of Example 13 was produced in the same manner as in Example 1 except that the stretching conditions were changed as shown in Table 5; Comparative Example 4 was changed except that the stretching conditions were changed as shown in Table 5 Similarly, a base film of Comparative Example 10 was produced. And the polarizing plate protective film and the polarizing plate were produced like Example 1, and the same evaluation was performed.
  • Example 1 to 5 and Comparative Examples 1 to 8 are shown in Table 2
  • the evaluation results of Examples 6 to 8 and Comparative Example 9 are shown in Table 3
  • the evaluation results of Examples 9 to 12 are shown in Table 4.
  • Table 5 shows the evaluation results of Example 13 and Comparative Example 10.
  • Examples 1 to 5 have higher surface hardness of the polarizing plate protective film and better punchability of the polarizing plate than Comparative Examples 1 to 8. This is because the base film of Examples 1 to 5 contains a polyester-based additive end-capped with an OH group-containing monocarboxylic acid having a ring structure, so that the storage elastic modulus of the base film is high, and This is considered to be because of having good toughness.
  • the polarizing plate of Example 1 has less polarizer deterioration than the polarizing plates of Comparative Examples 1, 6 and 7. This is considered to be because the hydrophobicity of the base film was enhanced by sealing the molecular ends of the polyester-based additive; particularly by sealing with a monocarboxylic acid containing an aromatic ring having high hydrophobicity.
  • the base film of Example 1 has a higher storage elastic modulus and lower internal haze than the base film of Example 5.
  • the reason why the internal haze of the base film of Example 1 is low is considered to be because the polyester-based additive has a lower molecular weight than the polyester-based plasticizer of Example 5, and is therefore highly compatible with the cellulose ester.
  • the reason why the storage elastic modulus of Example 1 is high is considered to be that since the compatibility of the polyester plasticizer with the cellulose ester is high, the ordering property is high and the film is easily oriented by stretching.
  • the film thickness of the substrate film is 15 ⁇ m or more, the surface hardness of the polarizing plate protective film can be increased and the punching property of the polarizing plate can be improved. It is shown that it is advantageous from a viewpoint of thin film formation that the film thickness of a base film is 50 micrometers or less.
  • Example 5 As shown in Table 5, it can be seen that the base films of Example 1 and Comparative Example 4 stretched at high temperatures have lower internal haze than the base films of Example 13 and Comparative Example 10 stretched at low temperatures. This is considered to be because an excessive stretching stress can be suppressed by stretching at a high temperature.
  • a polarizing plate protective film that has a high surface hardness even when it is thinned, and that can suppress a decrease in punching processability and polarizer deterioration during the production of a polarizing plate.
  • Liquid crystal display device 30 Liquid crystal cell 50 1st polarizing plate 51 1st polarizer 53 Protective film (F1) 55 Protective film (F2) 70 Second polarizing plate 71 Second polarizer 73 Protective film (F3) 75 Protective film (F4) 90 backlight

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Laminated Bodies (AREA)

Abstract

The purpose of the present invention is to provide a polarizing plate protective film that, even if made thinner, has high surface hardness and is capable of having suppressed reduction in punching workability and suppressed polarizer deterioration, during polarizing plate production. This polarizing plate protective film includes a substrate film and an active energy ray cured product layer. The substrate film includes a cellulose ester and a polyester-based additive indicated by formula (1). The substrate film has a film thickness of 15-50 µm and a storage elastic modulus in an in-plane phase delay axis direction at 30°C of 5.0-7.0 GPa. Formula (1): B - (G - A) n - G - B (in the formula (1), B indicates a group induced from a hydroxyl group-containing monocarboxylic acid including a ring structure.)

Description

偏光板保護フィルムとその製造方法、偏光板及び液晶表示装置Polarizing plate protective film and manufacturing method thereof, polarizing plate and liquid crystal display device
 本発明は、偏光板保護フィルムとその製造方法、偏光板及び液晶表示装置に関する。 The present invention relates to a polarizing plate protective film, a manufacturing method thereof, a polarizing plate and a liquid crystal display device.
 液晶表示装置(LCD)は、大型液晶テレビ、ノートパソコン及び携帯電話等のディスプレイとして幅広く用いられている。このような液晶表示装置は、液晶セルと、それを挟持する一対の偏光板とを含む。 Liquid crystal display devices (LCDs) are widely used as displays for large liquid crystal televisions, notebook computers, mobile phones and the like. Such a liquid crystal display device includes a liquid crystal cell and a pair of polarizing plates sandwiching the liquid crystal cell.
 液晶表示装置を構成する一対の偏光板のうち特に視認側の偏光板は、表面の傷付きを防止するため、高い耐擦傷性を有することが求められる。そのため、視認側の偏光板に用いられる偏光板保護フィルムの表面硬度を高めることが検討されている。 Of the pair of polarizing plates constituting the liquid crystal display device, particularly the polarizing plate on the viewing side is required to have high scratch resistance in order to prevent the surface from being scratched. Therefore, increasing the surface hardness of the polarizing plate protective film used for the polarizing plate on the viewing side has been studied.
 偏光板保護フィルムの表面硬度を高める方法として、基材フィルム上にハードコート層を積層する方法が知られている(例えば特許文献1)。また、基材フィルム自体の表面硬度を高める方法として、セルロースエステルと、ヒンダードアミン系化合物とを含むフィルムが知られている(例えば特許文献2)。 As a method for increasing the surface hardness of a polarizing plate protective film, a method of laminating a hard coat layer on a substrate film is known (for example, Patent Document 1). Moreover, as a method for increasing the surface hardness of the base film itself, a film containing a cellulose ester and a hindered amine compound is known (for example, Patent Document 2).
 その他の偏光板保護フィルムとして、セルロースエステルと、高分子量可塑剤とを含むフィルム(特許文献3);セルロースエステルと、両末端がOH基のポリエステルジオールとを含むフィルム(特許文献4);及び特定の延伸条件で製造されたセルロースエステルフィルム(特許文献5)等も知られている。 As another polarizing plate protective film, a film containing a cellulose ester and a high molecular weight plasticizer (Patent Document 3); a film containing a cellulose ester and a polyester diol having OH groups at both ends (Patent Document 4); A cellulose ester film (Patent Document 5) produced under the stretching conditions is also known.
特開2013-127058号JP2013-127058A 特開2010-228314号JP 2010-228314 A 特許第5028251号Patent No. 5028251 特許第5422165号Patent No. 5422165 国際公開第2012/073692号International Publication No. 2012/073692
 しかしながら、特許文献1や2の基材フィルムは、十分な硬度(又は弾性率)を有するものではなかった。そのため、基材フィルムを薄膜化した際に、偏光板保護フィルムの十分な表面硬度が得られないという問題があった。 However, the base films of Patent Documents 1 and 2 do not have sufficient hardness (or elastic modulus). Therefore, there has been a problem that when the substrate film is thinned, sufficient surface hardness of the polarizing plate protective film cannot be obtained.
 一方、特許文献3及び5の偏光板保護フィルムは、芳香族モノカルボン酸で末端封止されたポリエステル系添加剤を含むことから、一定以上の硬度が得られやすいが、脆くなりやすい。そのような偏光板保護フィルムを含む偏光板を所定のサイズに打ち抜き加工すると、偏光板の切断面にひび割れやささくれが生じやすいという問題があった。 On the other hand, since the polarizing plate protective films of Patent Documents 3 and 5 contain a polyester-based additive end-capped with an aromatic monocarboxylic acid, a certain degree of hardness is easily obtained, but they are easily fragile. When a polarizing plate including such a polarizing plate protective film is punched into a predetermined size, there is a problem in that cracks and flaking tend to occur on the cut surface of the polarizing plate.
 特許文献4の偏光板保護フィルムは、末端未封止のポリエステル系添加剤を含むことから、耐水性が低下しやすい。そのため、例えば偏光板作製時に水糊を用いた際に、保護フィルムから水分が抜けにくく、水分による偏光子劣化が生じる虞があった。 The polarizing plate protective film of Patent Document 4 contains a non-end-sealed polyester-based additive, so that the water resistance tends to decrease. Therefore, for example, when water paste is used at the time of preparing the polarizing plate, it is difficult to remove moisture from the protective film, and there is a possibility that the polarizer is deteriorated by moisture.
 このように、薄膜化しても、偏光板作製時の打ち抜き加工性の低下や偏光子劣化を生じることなく、表面硬度の高い偏光板を得ることが望まれている。本発明はこのような事情に鑑みてなされたものであり、薄膜化しても、高い表面硬度を有し、かつ偏光板製造時の打ち抜き加工性の低下や偏光子劣化を抑制しうる偏光板保護フィルムを提供することを目的とする。 As described above, it is desired to obtain a polarizing plate having a high surface hardness without causing a decrease in punching processability or polarizer deterioration during the production of the polarizing plate even if the film thickness is reduced. The present invention has been made in view of such circumstances. Even when the film is thinned, the polarizing plate protection has high surface hardness and can suppress the deterioration of the punching processability and the polarizer deterioration during the production of the polarizing plate. The object is to provide a film.
 [1] 基材フィルムと、活性エネルギー線硬化物層とを含む偏光板保護フィルムであって、前記基材フィルムは、セルロースエステルと、下記式(1)で表されるポリエステル系添加剤とを含み、前記基材フィルムは、膜厚が15~50μmであり、かつ30℃における面内遅相軸方向の貯蔵弾性率が5.0~7.0GPaである、偏光板保護フィルム。
 式(1):B-(G-A)n-G-B
(式(1)中、Bは、環構造を含むヒドロキシル基含有モノカルボン酸から誘導される基であり;Gは、炭素原子数2~12のアルキレンジオール、炭素原子数6~12のシクロアルキレンジオール、炭素原子数4~12のオキシアルキレンジオール及び炭素原子数6~12のアリーレンジオールからなる群より選ばれる少なくとも一種から誘導される基であり;Aは、炭素原子数4~12のアルキレンジカルボン酸、炭素原子数6~16のシクロアルキレンジカルボン酸、及び炭素原子数8~16のアリーレンジカルボン酸からなる群より選ばれる少なくとも一種から誘導される基であり;nは、0以上の整数を表す)
 [2] 前記式(1)のBは、芳香族炭化水素環を含むヒドロキシル基含有モノカルボン酸から誘導される基である、[1]に記載の偏光板保護フィルム。
 [3] 前記ポリエステル系添加剤の数平均分子量は300以上700未満である、[1]又は[2]に記載の偏光板保護フィルム。
 [4] 前記基材フィルムにおける前記ポリエステル系添加剤の含有量が、前記セルロースエステル100質量部に対して5~20質量部である、[1]~[3]のいずれかに記載の偏光板保護フィルム。
 [5] 前記活性エネルギー線硬化物層は、ハードコート層又はアンチグレア層である、[1]~[4]のいずれかに記載の偏光板保護フィルム。
 [6] [1]~[5]のいずれかに記載の偏光板保護フィルムの製造方法であって、セルロースエステルと、下記式(1)で表されるポリエステル系添加剤とを含む膜状物を140~180℃の温度で5~30%の倍率で延伸して基材フィルムを得る工程と、前記基材フィルム上に活性エネルギー線硬化物層用組成物を塗布した後、乾燥及び硬化させて、活性エネルギー線硬化物層を得る工程とを含む、偏光板保護フィルムの製造方法。
 式(1):B-(G-A)n-G-B
(式(1)中、Bは、環構造を含むヒドロキシル基含有モノカルボン酸から誘導される基であり;Gは、炭素原子数2~12のアルキレンジオール、炭素原子数6~12のシクロアルキレンジオール、炭素原子数4~12のオキシアルキレンジオール及び炭素原子数6~12のアリーレンジオールからなる群より選ばれる少なくとも一種から誘導される基であり;Aは、炭素原子数4~12のアルキレンジカルボン酸、炭素原子数6~16のシクロアルキレンジカルボン酸、及び炭素原子数8~16のアリーレンジカルボン酸からなる群より選ばれる少なくとも一種から誘導される基であり;nは、0以上の整数を表す)
 [7] 偏光子と、[1]~[5]のいずれかに記載の偏光板保護フィルムとを含み、前記偏光板保護フィルムの基材フィルムが前記偏光子と接している、偏光板。
 [8] 液晶セルと、前記液晶セルを挟持する第一の偏光板と第二の偏光板とを有し、前記第一の偏光板は、第一の偏光子と、前記第一の偏光子の液晶セルとは反対側の面に配置された偏光板保護フィルムとを有し、前記第二の偏光板は、第二の偏光子と、前記第二の偏光子の液晶セルとは反対側の面に配置された偏光板保護フィルムとを有し、前記第一の偏光板の偏光板保護フィルムが、[1]~[5]のいずれかに記載の偏光板保護フィルムであり、かつ前記第一の偏光板の偏光板保護フィルムの基材フィルムが前記第一の偏光子と接しているか、又は前記第二の偏光板の保護フィルムが、[1]~[5]のいずれかに記載の偏光板保護フィルムであり、かつ第二の偏光板の偏光板保護フィルムの基材フィルムが前記第二の偏光子と接している、液晶表示装置。
[1] A polarizing plate protective film including a base film and an active energy ray cured product layer, wherein the base film includes a cellulose ester and a polyester-based additive represented by the following formula (1). And the base film has a film thickness of 15 to 50 μm and a storage elastic modulus in the in-plane slow axis direction at 30 ° C. of 5.0 to 7.0 GPa.
Formula (1): B- (GA) n-GB
(In the formula (1), B is a group derived from a hydroxyl group-containing monocarboxylic acid containing a ring structure; G is an alkylene diol having 2 to 12 carbon atoms, or a cycloalkylene having 6 to 12 carbon atoms. A group derived from at least one selected from the group consisting of a diol, an oxyalkylene diol having 4 to 12 carbon atoms, and an arylene diol having 6 to 12 carbon atoms; A is an alkylene dicarboxylic acid having 4 to 12 carbon atoms; A group derived from at least one selected from the group consisting of acids, cycloalkylene dicarboxylic acids having 6 to 16 carbon atoms, and arylenedicarboxylic acids having 8 to 16 carbon atoms; n represents an integer of 0 or more )
[2] The polarizing plate protective film according to [1], wherein B in the formula (1) is a group derived from a hydroxyl group-containing monocarboxylic acid containing an aromatic hydrocarbon ring.
[3] The polarizing plate protective film according to [1] or [2], wherein the polyester-based additive has a number average molecular weight of 300 or more and less than 700.
[4] The polarizing plate according to any one of [1] to [3], wherein the content of the polyester-based additive in the base film is 5 to 20 parts by mass with respect to 100 parts by mass of the cellulose ester. Protective film.
[5] The polarizing plate protective film according to any one of [1] to [4], wherein the active energy ray cured product layer is a hard coat layer or an antiglare layer.
[6] A method for producing a polarizing plate protective film according to any one of [1] to [5], comprising a cellulose ester and a polyester-based additive represented by the following formula (1) A base film obtained by stretching the film at a temperature of 140 to 180 ° C. at a magnification of 5 to 30%, and after applying the active energy ray cured product composition on the base film, drying and curing are performed. And a step of obtaining a cured active energy ray layer, and a method for producing a polarizing plate protective film.
Formula (1): B- (GA) n-GB
(In the formula (1), B is a group derived from a hydroxyl group-containing monocarboxylic acid containing a ring structure; G is an alkylene diol having 2 to 12 carbon atoms, or a cycloalkylene having 6 to 12 carbon atoms. A group derived from at least one selected from the group consisting of a diol, an oxyalkylene diol having 4 to 12 carbon atoms, and an arylene diol having 6 to 12 carbon atoms; A is an alkylene dicarboxylic acid having 4 to 12 carbon atoms; A group derived from at least one selected from the group consisting of acids, cycloalkylene dicarboxylic acids having 6 to 16 carbon atoms, and arylenedicarboxylic acids having 8 to 16 carbon atoms; n represents an integer of 0 or more )
[7] A polarizing plate comprising a polarizer and the polarizing plate protective film according to any one of [1] to [5], wherein a base film of the polarizing plate protective film is in contact with the polarizer.
[8] A liquid crystal cell, and a first polarizing plate and a second polarizing plate sandwiching the liquid crystal cell, wherein the first polarizing plate includes a first polarizer and the first polarizer. A polarizing plate protective film disposed on a surface opposite to the liquid crystal cell, and the second polarizing plate includes a second polarizer and a side opposite to the liquid crystal cell of the second polarizer. The polarizing plate protective film of the first polarizing plate is the polarizing plate protective film according to any one of [1] to [5], and The substrate film of the polarizing plate protective film of the first polarizing plate is in contact with the first polarizer, or the protective film of the second polarizing plate is any one of [1] to [5] And the base film of the polarizing plate protective film of the second polarizing plate is in contact with the second polarizer A liquid crystal display device.
 本発明によれば、薄膜化しても、高い表面硬度を有し、かつ偏光板製造時の打ち抜き加工性の低下や偏光子劣化を抑制しうる偏光板保護フィルムを提供することができる。 According to the present invention, it is possible to provide a polarizing plate protective film that has a high surface hardness even when it is thinned, and that can suppress the deterioration of punching processability and polarizer deterioration during the production of the polarizing plate.
本発明の液晶表示装置の基本的な構成を示す一例である。It is an example which shows the fundamental structure of the liquid crystal display device of this invention.
 前述の通り、芳香族モノカルボン酸等の「環構造を有するが、ヒドロキシル基を含まないモノカルボン酸」で末端封止したポリエステル系添加剤を含むセルロースエステルフィルムは、高い弾性率を有するものの、脆くなりやすい。 As described above, a cellulose ester film containing a polyester-based additive end-capped with a “monocarboxylic acid having a ring structure but not containing a hydroxyl group” such as an aromatic monocarboxylic acid has a high elastic modulus, It tends to be brittle.
 これに対して本発明者らは、「環構造を有し、かつヒドロキシル基を含むモノカルボン酸」で末端封止したポリエステル系添加剤を含むセルロースエステルフィルムは、高い弾性率を有し、かつ脆くなりにくいことを見出した。この原因は必ずしも明らかではないが、以下のように推測される。「環構造を有し、かつヒドロキシル基を含むモノカルボン酸」で末端封止したポリエステル系添加剤は、ヒドロキシ基同士が相互作用しやすい。その結果、延伸によりポリエステル系添加剤が配向しやすく、弾性率が高まりやすいと考えられる。また、環構造を有することで、ヒドロキシル基の相互作用が安定して生じやすく、弾性率がより効果的に高まりやすいと考えられる。さらに、ヒドロキシル基同士の相互作用により、環構造を有するにも係わらず靱性も付与されやすく、脆くなりにくいと考えられる。 On the other hand, the inventors of the present invention have a high elastic modulus, a cellulose ester film containing a polyester-based additive end-capped with a “monocarboxylic acid having a ring structure and containing a hydroxyl group”, and I found it difficult to become brittle. Although this cause is not necessarily clear, it is estimated as follows. In the polyester-based additive end-capped with “monocarboxylic acid having a ring structure and containing a hydroxyl group”, the hydroxy groups are likely to interact with each other. As a result, it is considered that the polyester-based additive is easily oriented by stretching and the elastic modulus is likely to increase. Moreover, it is thought that by having a ring structure, the interaction of hydroxyl groups tends to occur stably, and the elastic modulus tends to increase more effectively. Furthermore, it is considered that due to the interaction between hydroxyl groups, toughness is easily imparted despite having a ring structure, and it is difficult to become brittle.
 そして、上記ポリエステル系添加剤の含有量や延伸条件をさらに適正化することで、高い貯蔵弾性率と良好な靱性を有するセルロースエステルフィルムを得ることができる。そのようなフィルムを基材フィルムとすることで、高い表面硬度と、良好な偏光板の打ち抜き加工性とを有するハードコートフィルムを得ることができる。 And the cellulose ester film which has a high storage elastic modulus and favorable toughness can be obtained by further optimizing content and extending | stretching conditions of the said polyester type additive. By using such a film as a base film, a hard coat film having a high surface hardness and a good polarizing plate punching property can be obtained.
 一方で、「ヒドロキシル基を含むモノカルボン酸」で末端封止したポリエステル系添加剤は、通常、「ヒドロキシル基を含まないモノカルボン酸」で末端封止したポリエステル系添加剤よりも耐水性が劣る傾向がある。本発明では、ヒドロキシル基を含むモノカルボン酸が(疎水性を付与しうる)環構造を有することから、ポリエステル系添加剤の耐水性を確保することができる。本発明は、これらの知見に基づいてなされたものである。 On the other hand, a polyester-based additive end-capped with a “monocarboxylic acid containing a hydroxyl group” usually has poorer water resistance than a polyester-based additive end-capped with a “monocarboxylic acid not containing a hydroxyl group”. Tend. In the present invention, since the monocarboxylic acid containing a hydroxyl group has a ring structure (which can impart hydrophobicity), the water resistance of the polyester-based additive can be ensured. The present invention has been made based on these findings.
 1.偏光板保護フィルム
 偏光板保護フィルムは、基材フィルムと、活性エネルギー線硬化物層とを有する。
1. Polarizing plate protective film The polarizing plate protective film has a base film and an active energy ray cured product layer.
 1-1.基材フィルム
 基材フィルムは、セルロースエステルと、ポリエステル系添加剤とを含む。
1-1. Base film The base film contains a cellulose ester and a polyester-based additive.
 <セルロースエステル>
 セルロースエステルは、セルロースと、炭素原子数2~22のカルボン酸;好ましくは炭素原子数6以下の脂肪族カルボン酸とをエステル化反応させて得られる化合物である。
<Cellulose ester>
The cellulose ester is a compound obtained by esterifying cellulose and a carboxylic acid having 2 to 22 carbon atoms; preferably an aliphatic carboxylic acid having 6 or less carbon atoms.
 セルロースエステルに含まれるアシル基は、直鎖であっても分岐してもよく、環を形成してもよい。アシル基は、別の置換基が更に置換していてもよい。アシル基の総置換度が同じである場合、アシル基の炭素原子数が多いと複屈折性が低下することから、アシル基の炭素原子数は2~6であることが好ましい。セルロースエステルは、炭素原子数の異なる二種類以上のアシル基;好ましくは炭素原子数が2と3のアシル基、或いは炭素原子数が2と4のアシル基を含みうる。 The acyl group contained in the cellulose ester may be linear or branched or may form a ring. The acyl group may be further substituted with another substituent. When the total substitution degree of the acyl group is the same, the birefringence is lowered when the number of carbon atoms of the acyl group is large, and therefore the number of carbon atoms of the acyl group is preferably 2 to 6. The cellulose ester may contain two or more types of acyl groups having different carbon atoms; preferably an acyl group having 2 and 3 carbon atoms, or an acyl group having 2 and 4 carbon atoms.
 セルロースエステルの例には、セルロースアセテート、セルロースアセテートブチレート、セルロースアセテートプロピオネート、セルロースアセテートブチレート、セルロースアセテートプロピオネートブチレート、セルロースアセテートフタレート等が含まれる。 Examples of cellulose esters include cellulose acetate, cellulose acetate butyrate, cellulose acetate propionate, cellulose acetate butyrate, cellulose acetate propionate butyrate, cellulose acetate phthalate, and the like.
 これらの中でも、下記式(1)及び(2)を同時に満足するセルロースエステルが好ましい。式中、Xはアセチル基の置換度、Yはプロピオニル基又はブチリル基の置換度である。
 式(1) 2.0≦X+Y≦3.0
 式(2) 0≦Y≦1.5
Among these, cellulose esters that simultaneously satisfy the following formulas (1) and (2) are preferable. In the formula, X is the substitution degree of the acetyl group, and Y is the substitution degree of the propionyl group or butyryl group.
Formula (1) 2.0 <= X + Y <= 3.0
Formula (2) 0 ≦ Y ≦ 1.5
 特にトリアセチルセルロース、セルロースアセテートプロピオネートが好ましく用いられる。トリアセチルセルロースは、好ましくはY=0かつ2.5≦X+Y≦2.98、より好ましくはY=0かつ2.7≦X+Y≦2.95でありうる。セルロースアセテートプロピオネートは、好ましくは1.0≦X≦2.5、0.1≦Y≦1.5かつ2.0≦X+Y≦3.0でありうる。アシル基の置換度の測定方法はASTM-D817-96に準じて測定することができる。 In particular, triacetyl cellulose and cellulose acetate propionate are preferably used. Triacetyl cellulose may preferably have Y = 0 and 2.5 ≦ X + Y ≦ 2.98, more preferably Y = 0 and 2.7 ≦ X + Y ≦ 2.95. The cellulose acetate propionate may preferably satisfy 1.0 ≦ X ≦ 2.5, 0.1 ≦ Y ≦ 1.5 and 2.0 ≦ X + Y ≦ 3.0. The method for measuring the substitution degree of the acyl group can be measured according to ASTM-D817-96.
 アシル基の置換度を一定以上とすることで、セルロース骨格を構成するピラノース環に残存する水酸基を少なくし、不要な複屈折を生じたり、湿度の影響を受けたりするのを抑制できる。 By setting the substitution degree of the acyl group to a certain level or more, the number of hydroxyl groups remaining in the pyranose ring constituting the cellulose skeleton can be reduced, and the occurrence of unnecessary birefringence and the influence of humidity can be suppressed.
 セルロースエステルの重量平均分子量(Mw)は、好ましくは80000~300000であり、より好ましくは100000~280000であり、更に好ましくは230000~280000である。セルロースエステルの重量平均分子量(Mw)と数平均分子量(Mn)の比Mw/Mnの値は、好ましくは1.4~3.0であり、より好ましくは1.7~2.2である。 The weight average molecular weight (Mw) of the cellulose ester is preferably 80,000 to 300,000, more preferably 100,000 to 280000, and further preferably 230000 to 280000. The ratio Mw / Mn of the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the cellulose ester is preferably 1.4 to 3.0, more preferably 1.7 to 2.2.
 セルロースエステルの重量平均分子量は、市販のゲルパーミエーションクロマトグラフィー(GPC)を用いて測定することができる。測定条件は以下の通りとしうる。
 (測定条件)
 溶媒: メチレンクロライド
 カラム: Shodex K806、K805、K803G(昭和電工(株)製を3本接続して使用する)
 カラム温度:25℃
 試料濃度: 0.1質量%
 検出器: RI Model 504(GLサイエンス社製)
 ポンプ: L6000(日立製作所(株)製)
 流量: 1.0ml/min
 校正曲線: 標準ポリスチレンSTK standard ポリスチレン(東ソー(株)製)Mw=1000000~500の13サンプルによる校正曲線を使用する。13サンプルは、ほぼ等間隔に用いる。
The weight average molecular weight of a cellulose ester can be measured using commercially available gel permeation chromatography (GPC). The measurement conditions can be as follows.
(Measurement condition)
Solvent: Methylene chloride Column: Shodex K806, K805, K803G (Used by connecting three products manufactured by Showa Denko KK)
Column temperature: 25 ° C
Sample concentration: 0.1% by mass
Detector: RI Model 504 (manufactured by GL Sciences)
Pump: L6000 (manufactured by Hitachi, Ltd.)
Flow rate: 1.0ml / min
Calibration curve: Standard polystyrene STK standard polystyrene (manufactured by Tosoh Co., Ltd.) Mw = 1000000-500 13 calibration curves are used. Thirteen samples are used at approximately equal intervals.
 セルロースエステルのカルシウム含有量は、好ましくは50ppm以下、より好ましくは10~50ppmでありうる。セルロースエステルのカルシウム含有量が一定以下であると、基材フィルムの経時のヘイズ上昇を効果的に抑制しうる。セルロースエステルのカルシウム含有量は、セルロースエステルの原料の選択や製造条件によって調整されうる。 The calcium content of the cellulose ester is preferably 50 ppm or less, more preferably 10 to 50 ppm. When the calcium content of the cellulose ester is below a certain level, an increase in the haze of the substrate film over time can be effectively suppressed. The calcium content of the cellulose ester can be adjusted by the selection of the raw material of the cellulose ester and the production conditions.
 セルロースエステルの原料となるセルロースは、木材パルプ(針葉樹パルプ、広葉樹パルプ)や綿花リンター等でありうる。セルロースの種類や複数のセルロースの組み合わせにより、セルロースエステルのカルシウム含有量を調整しうる。原料パルプとして、カルシウム含量の少ないパルプ;具体的には、カルシウム含量が20ppm以下、好ましくは10ppm以下、より好ましくは5ppm以下のパルプを用いる。そのような原料パルプは、特開2012-48214号公報の段落0062~0088に記載の方法で得ることができる。 The cellulose used as the raw material for the cellulose ester can be wood pulp (conifer pulp, hardwood pulp), cotton linter, or the like. The calcium content of the cellulose ester can be adjusted by the type of cellulose and the combination of a plurality of celluloses. As the raw material pulp, pulp having a low calcium content; specifically, a pulp having a calcium content of 20 ppm or less, preferably 10 ppm or less, more preferably 5 ppm or less is used. Such raw pulp can be obtained by the method described in paragraphs 0062 to 0088 of JP2012-48214A.
 <ポリエステル系添加剤>
 ポリエステル系添加剤は、ジオールとジカルボン酸とを脱水縮合反応させた後;得られる反応生成物の分子末端の(ジオール由来の)ヒドロキシル基を、環構造を有するヒドロキシル基含有モノカルボン酸のカルボキシル基と脱水縮合反応させて得られる化合物である。
<Polyester additive>
The polyester-based additive is obtained by subjecting a diol and a dicarboxylic acid to a dehydration condensation reaction; a hydroxyl group (derived from a diol) at the molecular end of the resulting reaction product is converted into a carboxyl group of a hydroxyl group-containing monocarboxylic acid having a ring structure. And a compound obtained by a dehydration condensation reaction.
 ポリエステル系添加剤は、下記式(1)で表される化合物であることが好ましい。
 式(1):B-(G-A)n-G-B
The polyester-based additive is preferably a compound represented by the following formula (1).
Formula (1): B- (GA) n-GB
 式(1)のBは、環構造を有するヒドロキシル基含有モノカルボン酸から誘導される基である。環構造とは、脂肪族炭化水素環、脂肪族ヘテロ環、芳香族炭化水素環又は芳香族ヘテロ環を有する構造をいい、好ましくは脂肪族炭化水素環又は芳香族炭化水素環を有する構造をいう。環構造を有するヒドロキシル基含有モノカルボン酸は、炭素原子数5~20の脂環式モノカルボン酸、炭素原子数7~20の芳香族モノカルボン酸及びそれらの混合物でありうる。 B in the formula (1) is a group derived from a hydroxyl group-containing monocarboxylic acid having a ring structure. The ring structure refers to a structure having an aliphatic hydrocarbon ring, an aliphatic hetero ring, an aromatic hydrocarbon ring or an aromatic hetero ring, preferably a structure having an aliphatic hydrocarbon ring or an aromatic hydrocarbon ring. . The hydroxyl group-containing monocarboxylic acid having a ring structure may be an alicyclic monocarboxylic acid having 5 to 20 carbon atoms, an aromatic monocarboxylic acid having 7 to 20 carbon atoms, and a mixture thereof.
 炭素原子数5~20の脂環式モノカルボン酸は、好ましくは炭素原子数6~15の脂環式モノカルボン酸でありうる。脂環式モノカルボン酸の例には、4-ヒドロキシシクロヘキシル酢酸、3-ヒドロキシシクロヘキシル酢酸、2-ヒドロキシシクロヘキシル酢酸、4-ヒドロキシシクロヘキシルプロピオン酸、4-ヒドロキシシクロヘキシル酪酸、4-ヒドロキシシクロヘキシルグリコール酸、4-ヒドロキシ-o-メチルシクロヘキシル酢酸、4-ヒドロキシ-m-メチルシクロヘキシル酢酸、4-ヒドロキシ-p-メチルシクロヘキシル酢酸、5-ヒドロキシ-m-メチルシクロヘキシル酢酸、6-ヒドロキシ-o-メチルシクロヘキシル酢酸、2,4-ジヒドロキシシクロヘキシル酢酸、2,5-ジヒドロキシシクロヘキシル酢酸、2-(ヒドロキシメチル) シクロヘキシル酢酸、3-(ヒドロキシメチル) シクロヘキシル酢酸、4-(ヒドロキシメチル) シクロヘキシル酢酸、2-(1-ヒドロキシ-1-メチルエチル) シクロヘキシル酢酸、3-(1-ヒドロキシ-1-メチルエチル) シクロヘキシル酢酸、4-(1-ヒドロキシ-1-メチルエチル) シクロヘキシル酢酸等が含まれる。 The alicyclic monocarboxylic acid having 5 to 20 carbon atoms is preferably an alicyclic monocarboxylic acid having 6 to 15 carbon atoms. Examples of alicyclic monocarboxylic acids include 4-hydroxycyclohexylacetic acid, 3-hydroxycyclohexylacetic acid, 2-hydroxycyclohexylacetic acid, 4-hydroxycyclohexylpropionic acid, 4-hydroxycyclohexylbutyric acid, 4-hydroxycyclohexylglycolic acid, 4 -Hydroxy-o-methylcyclohexylacetic acid, 4-hydroxy-m-methylcyclohexylacetic acid, 4-hydroxy-p-methylcyclohexylacetic acid, 5-hydroxy-m-methylcyclohexylacetic acid, 6-hydroxy-o-methylcyclohexylacetic acid, 2 2,4-dihydroxycyclohexyl acetic acid, 2,5-dihydroxycyclohexyl acetic acid, 2- (hydroxymethyl) cyclohexyl acetic acid, 3- (hydroxymethyl) cyclohexyl acetic acid, 4- (hydroxymethyl) cyclohexyl acetic acid, 2- (1-hydroxy-1 -Me Ruechiru) cyclohexyl acetate, 3- (1-hydroxy-1-methylethyl) cyclohexyl acetate, 4- (1-hydroxy-1-methylethyl) cyclohexyl acetate and the like.
 炭素原子数5~20の芳香族モノカルボン酸は、好ましくは炭素原子数6~15の芳香族モノカルボン酸でありうる。芳香族モノカルボン酸の例には、4-ヒドロキシ安息香酸、3-ヒドロキシ安息香酸、2-ヒドロキシ安息香酸、4-ヒドロキシ-o-トルイル酸、3-ヒドロキシ-p-トルイル酸、5-ヒドロキシ-m-トルイル酸、6-ヒドロキシ-o-トルイル酸、2,4-ジヒドロキシ安息香酸、2,5-ジヒドロキシ安息香酸、2-(ヒドロキシメチル)安息香酸、3-(ヒドロキシメチル)安息香酸、4-(ヒドロキシメチル)安息香酸、2-(1-ヒドロキシ-1-メチルエチル)安息香酸、3-(1-ヒドロキシ-1-メチルエチル)安息香酸、4-(1-ヒドロキシ-1-メチルエチル)安息香酸等が含まれる。 The aromatic monocarboxylic acid having 5 to 20 carbon atoms is preferably an aromatic monocarboxylic acid having 6 to 15 carbon atoms. Examples of aromatic monocarboxylic acids include 4-hydroxybenzoic acid, 3-hydroxybenzoic acid, 2-hydroxybenzoic acid, 4-hydroxy-o-toluic acid, 3-hydroxy-p-toluic acid, 5-hydroxy- m-toluic acid, 6-hydroxy-o-toluic acid, 2,4-dihydroxybenzoic acid, 2,5-dihydroxybenzoic acid, 2- (hydroxymethyl) benzoic acid, 3- (hydroxymethyl) benzoic acid, 4- (Hydroxymethyl) benzoic acid, 2- (1-hydroxy-1-methylethyl) benzoic acid, 3- (1-hydroxy-1-methylethyl) benzoic acid, 4- (1-hydroxy-1-methylethyl) benzoic acid Acid etc. are included.
 これらの中でも、偏光板保護フィルムに十分な疎水性を付与し、偏光子の水分による劣化を抑制しやすい点から、芳香族炭化水素環を含むヒドロキシル基含有モノカルボン酸(ヒドロキシル基を含む芳香族モノカルボン酸)が好ましい。 Among these, a hydroxyl group-containing monocarboxylic acid containing an aromatic hydrocarbon ring (an aromatic containing a hydroxyl group) from the point of imparting sufficient hydrophobicity to the polarizing plate protective film and easily suppressing deterioration of the polarizer due to moisture. Monocarboxylic acids) are preferred.
 式(1)のGは、炭素原子数2~12のアルキレンジオール、炭素原子数6~12のシクロアルキレンジオール、炭素原子数4~12のオキシアルキレンジオール及び炭素原子数6~12のアリーレンジオールからなる群より選ばれる少なくとも一種から誘導される基である。 G in formula (1) is an alkylene diol having 2 to 12 carbon atoms, a cycloalkylene diol having 6 to 12 carbon atoms, an oxyalkylene diol having 4 to 12 carbon atoms and an arylene diol having 6 to 12 carbon atoms. A group derived from at least one selected from the group consisting of:
 炭素原子数2~12のアルキレンジオールの例には、エチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、1,2-ブタンジオール、1,3-ブタンジオール、1,2-プロパンジオール、2-メチル1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、2,2-ジメチル-1,3-プロパンジオール(ネオペンチルグリコール)、2,2-ジエチル-1,3-プロパンジオール(3,3-ジメチロールペンタン)、2-n-ブチル-2-エチル-1,3プロパンジオール(3,3-ジメチロールヘプタン)、3-メチル-1,5-ペンタンジオール1,6-ヘキサンジオール、2,2,4-トリメチル1,3-ペンタンジオール、2-エチル1,3-ヘキサンジオール、2-メチル1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、1,12-オクタデカンジオール等が含まれる。 Examples of alkylene diols having 2 to 12 carbon atoms include ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,2-butanediol, 1,3-butanediol, 1,2-propane. Diol, 2-methyl 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 2,2-dimethyl-1,3-propanediol (neopentyl glycol), 2,2-diethyl- 1,3-propanediol (3,3-dimethylolpentane), 2-n-butyl-2-ethyl-1,3-propanediol (3,3-dimethylolheptane), 3-methyl-1,5-pentane Diol 1,6-hexanediol, 2,2,4-trimethyl 1,3-pentanediol, 2-ethyl 1,3-hexanediol, - methyl 1,8-octanediol, 1,9-nonanediol, 1,10-decanediol, include 1,12-octadecanediol like.
 炭素原子数6~12のシクロアルキレンジオールの例には、水素化ビスフェノールA(2,2-ビス(4-ヒドロキシシクロヘキシル)プロパン)、水素化ビスフェノールB(2,2-ビス(4-ヒドロキシシクロヘキシル)ブタン等が含まれる。 Examples of cycloalkylene diols having 6 to 12 carbon atoms include hydrogenated bisphenol A (2,2-bis (4-hydroxycyclohexyl) propane), hydrogenated bisphenol B (2,2-bis (4-hydroxycyclohexyl) Butane and the like are included.
 炭素原子数4~12のオキシアルキレンジオールの例には、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ジプロピレングリコール、トリプロピレングリコール等が含まれる。 Examples of the oxyalkylene diol having 4 to 12 carbon atoms include diethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, tripropylene glycol and the like.
 炭素原子数6~12のアリーレンジオールの例には、ビスフェノールA、ビスフェノールB等が含まれる。 Examples of arylene diols having 6 to 12 carbon atoms include bisphenol A and bisphenol B.
 ジオールは、1種または2種以上の混合物として使用される。中でも、セルロースエステルとの相溶性に優れる点で、炭素原子数2~12のアルキレングリコールが好ましい。 Diol is used as one kind or a mixture of two or more kinds. Among these, alkylene glycols having 2 to 12 carbon atoms are preferable in terms of excellent compatibility with cellulose esters.
 式(1)のAは、炭素原子数4~12のアルキレンジカルボン酸、炭素原子数6~16のシクロアルキレンジカルボン酸、及び炭素原子数8~16のアリーレンジカルボン酸からなる群より選ばれる少なくとも一種から誘導される基である。 A in the formula (1) is at least one selected from the group consisting of alkylene dicarboxylic acids having 4 to 12 carbon atoms, cycloalkylene dicarboxylic acids having 6 to 16 carbon atoms, and arylenedicarboxylic acids having 8 to 16 carbon atoms. Is a group derived from
 炭素原子数4~12のアルキレンジカルボン酸の例には、コハク酸、マレイン酸、フマール酸、グルタール酸、アジピン酸、アゼライン酸、セバシン酸、ドデカンジカルボン酸等が含まれる。 Examples of the alkylene dicarboxylic acid having 4 to 12 carbon atoms include succinic acid, maleic acid, fumaric acid, glutaric acid, adipic acid, azelaic acid, sebacic acid, dodecanedicarboxylic acid and the like.
 炭素原子数6~16のシクロアルキレンジカルボン酸の例には、1,2-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジカルボン酸、1,5-デカヒドロナフタレンジカルボン酸、1,4-デカヒドロナフタレンジカルボン酸等が含まれる。 Examples of cycloalkylene dicarboxylic acids having 6 to 16 carbon atoms include 1,2-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, 1,5-decahydronaphthalenedicarboxylic acid, 1,4-decahydronaphthalenedicarboxylic acid and the like are included.
 炭素原子数8~16のアリーレンジカルボン酸の例には、フタル酸、テレフタル酸、イソフタル酸、1,5-ナフタレンジカルボン酸、1,4-ナフタレンジカルボン酸等が含まれる。 Examples of arylene dicarboxylic acids having 8 to 16 carbon atoms include phthalic acid, terephthalic acid, isophthalic acid, 1,5-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid and the like.
 ジカルボン酸は、1種または2種以上の混合物として使用される。ジカルボン酸は、アルキレンジカルボン酸とアリーレンジカルボン酸の混合物であることが好ましい。アルキレンジカルボン酸とアリーレンジカルボン酸の含有割合は、アルキレンジカルボン酸:アリーレンジカルボン酸=40:60~99:1であることが好ましく、50:50~90:10であることがより好ましい。 Dicarboxylic acid is used as one kind or a mixture of two or more kinds. The dicarboxylic acid is preferably a mixture of alkylene dicarboxylic acid and arylene dicarboxylic acid. The content ratio of alkylene dicarboxylic acid and arylene dicarboxylic acid is preferably alkylene dicarboxylic acid: arylene dicarboxylic acid = 40: 60 to 99: 1, and more preferably 50:50 to 90:10.
 式(1)のnは、0以上の整数であり、数平均分子量が後述する範囲となるように設定されうる。 N in the formula (1) is an integer of 0 or more, and can be set so that the number average molecular weight falls within the range described later.
 基材フィルムの貯蔵弾性率を高めやすくする点では、式(1)のGが、炭素原子数6~12のシクロアルキレンジオールから誘導される基を含むか;或いは式(1)のAが炭素原子数6~12のシクロアルキレンジカルボン酸又は炭素原子数8~16のアリーレンジカルボン酸から誘導される基を含むことが好ましい。これらの基を含むポリエステル系添加剤は、剛直な構造を有するので、基材フィルムの貯蔵弾性率を高めやすい。 In terms of facilitating increasing the storage elastic modulus of the base film, G in the formula (1) contains a group derived from a cycloalkylene diol having 6 to 12 carbon atoms; or A in the formula (1) is carbon. It preferably contains a group derived from a cycloalkylene dicarboxylic acid having 6 to 12 atoms or an arylenedicarboxylic acid having 8 to 16 carbon atoms. Since the polyester-based additive containing these groups has a rigid structure, it is easy to increase the storage elastic modulus of the base film.
 ポリエステル系添加剤の数平均分子量は、好ましくは300~30000、より好ましくは300以上700未満であり、より好ましくは300~600である。数平均分子量が一定以上であると、ブリードアウトを抑制しやすい。数平均分子量が一定以下であると、セルロースエステルとの相溶性を損ないにくくヘイズ上昇を抑制しやすいだけでなく、延伸により配向しやすく貯蔵弾性率を高めやすい。 The number average molecular weight of the polyester-based additive is preferably 300 to 30,000, more preferably 300 or more and less than 700, and more preferably 300 to 600. If the number average molecular weight is above a certain level, bleeding out is likely to be suppressed. When the number average molecular weight is not more than a certain value, the compatibility with the cellulose ester is not impaired and it is easy to suppress an increase in haze, and it is easy to be oriented by stretching and to increase the storage elastic modulus.
 ポリエステル系添加剤の数平均分子量は、ゲルパーミエーションクロマトグラフィーにより測定されうる。具体的には、ゲルパーミエーションクロマトグラフィー(GPC)測定装置(東ソー株式会社製「HLC-8330」)を用いて、下記の測定条件で、エステル化合物の標準ポリスチレン換算の数平均分子量(Mn)を測定することができる。
 (測定条件)
 カラム:「TSK gel SuperHZM-M」×2本及び「TSK gel SuperHZ-2000」×2本
 ガードカラム:「TSK SuperH-H」
 展開溶媒:テトラヒドロフラン
 流速:0.35ml/分
The number average molecular weight of the polyester-based additive can be measured by gel permeation chromatography. Specifically, using a gel permeation chromatography (GPC) measuring device (“HLC-8330” manufactured by Tosoh Corporation), the number average molecular weight (Mn) of the ester compound in terms of standard polystyrene is measured under the following measurement conditions. Can be measured.
(Measurement condition)
Column: "TSK gel SuperHZM-M" x 2 and "TSK gel SuperHZ-2000" x 2 Guard column: "TSK SuperH-H"
Developing solvent: Tetrahydrofuran Flow rate: 0.35 ml / min
 ポリエステル系添加剤の数平均分子量は、縮合または重縮合の反応時間によって調整することができる。 The number average molecular weight of the polyester-based additive can be adjusted by the reaction time of condensation or polycondensation.
 ポリエステル系添加剤の酸価は、好ましくは0.5mgKOH/g以下、より好ましくは0.3mgKOH/g以下である。ポリエステル系添加剤の水酸基価は、好ましくは25mgKOH/g以下、より好ましくは15mgKOH/g以下である。 The acid value of the polyester-based additive is preferably 0.5 mgKOH / g or less, more preferably 0.3 mgKOH / g or less. The hydroxyl value of the polyester-based additive is preferably 25 mgKOH / g or less, more preferably 15 mgKOH / g or less.
 ポリエステル系添加剤の合成は、常法によりジカルボン酸、ジオール、及び末端封止用モノカルボン酸のエステル化反応又はエステル交換反応による熱溶融縮合法;或いはジカルボン酸及び末端封止用モノカルボン酸の酸クロライドとジオールとの界面縮合法のいずれかの方法で行うことができる。ジオールとジカルボン酸の仕込み比は、分子末端がジオールとなるように調整される。 The synthesis of the polyester-based additive is carried out by a conventional method of hot-melt condensation by esterification reaction or transesterification reaction of dicarboxylic acid, diol, and end-capping monocarboxylic acid; or dicarboxylic acid and end-capping monocarboxylic acid It can be performed by any of the interfacial condensation methods of acid chloride and diol. The charging ratio of the diol and the dicarboxylic acid is adjusted so that the molecular terminal is a diol.
 基材フィルム中のポリエステル系添加剤の含有量は、セルロースエステル100質量部に対して好ましくは5~20質量部、より好ましくは8~15質量部としうる。ポリエステル系添加剤の含有量が一定以上であると、脆性を高めることなく、基材フィルムの貯蔵弾性率を十分に高めやすい。ポリエステル系添加剤の含有量が一定以下であると、ブリードアウトや内部ヘイズの増大を生じる虞がない。 The content of the polyester-based additive in the base film is preferably 5 to 20 parts by mass, more preferably 8 to 15 parts by mass with respect to 100 parts by mass of the cellulose ester. When the content of the polyester-based additive is a certain level or more, the storage elastic modulus of the base film can be sufficiently increased without increasing brittleness. If the content of the polyester-based additive is below a certain level, there is no possibility of causing bleed-out or increased internal haze.
 <アクリル系共重合体>
 基材フィルムは、レタデ-ション値を調整するため等から、必要に応じてアクリル系共重合体をさらに含みうる。
<Acrylic copolymer>
The base film may further contain an acrylic copolymer as necessary in order to adjust the retardation value.
 アクリル系共重合体は、重量平均分子量が500以上30000以下であるアクリルポリマーであり;好ましくは分子内に芳香環と親水性基を有しないエチレン性不飽和モノマーと分子内に芳香環を有さず親水性基を有するエチレン性不飽和モノマーとを共重合して得られた重量平均分子量5000以上30000以下のポリマーであり;より好ましくは分子内に芳香環と親水性基を有しないエチレン性不飽和モノマーと分子内に芳香環を有さず親水性基を有するエチレン性不飽和モノマーとを共重合して得られた重量平均分子量5000以上30000以下のポリマーと、芳香環を有さないエチレン性不飽和モノマーを重合して得られた重量平均分子量500以上3000以下のポリマーとの混合物でありうる。 The acrylic copolymer is an acrylic polymer having a weight average molecular weight of 500 to 30,000; preferably an ethylenically unsaturated monomer having no aromatic ring and no hydrophilic group in the molecule and an aromatic ring in the molecule. A polymer having a weight average molecular weight of 5,000 to 30,000 obtained by copolymerization with an ethylenically unsaturated monomer having a hydrophilic group; more preferably an ethylenically unsaturated group having no aromatic ring and no hydrophilic group in the molecule. A polymer having a weight average molecular weight of 5,000 to 30,000 obtained by copolymerization of a saturated monomer and an ethylenically unsaturated monomer having no hydrophilic ring in the molecule and having a hydrophilic group, and ethylenic having no aromatic ring It may be a mixture with a polymer having a weight average molecular weight of 500 or more and 3000 or less obtained by polymerizing an unsaturated monomer.
 <紫外線吸収剤>
 基材フィルムは、耐候性を向上させるために、必要に応じて紫外線吸収剤をさらに含みうる。紫外線吸収剤は、好ましくは波長370nmでの透過率が10%以下、より好ましくは5%以下、更に好ましくは2%以下となるものでありうる。
<Ultraviolet absorber>
The base film may further contain an ultraviolet absorber as necessary in order to improve the weather resistance. The ultraviolet absorber may preferably have a transmittance at a wavelength of 370 nm of 10% or less, more preferably 5% or less, and even more preferably 2% or less.
 紫外線吸収剤の例には、オキシベンゾフェノン系化合物、ベンゾトリアゾール系化合物、サリチル酸エステル系化合物、ベンゾフェノン系化合物、シアノアクリレート系化合物、トリアジン系化合物、ニッケル錯塩系化合物、無機粉体等が挙げられる。中でも、ベンゾトリアゾール系紫外線吸収剤、ベンゾフェノン系紫外線吸収剤、トリアジン系紫外線吸収剤が好ましく、ベンゾトリアゾール系紫外線吸収剤、ベンゾフェノン系紫外線吸収剤がより好ましい。 Examples of ultraviolet absorbers include oxybenzophenone compounds, benzotriazole compounds, salicylic acid ester compounds, benzophenone compounds, cyanoacrylate compounds, triazine compounds, nickel complex compounds, inorganic powders, and the like. Among these, benzotriazole ultraviolet absorbers, benzophenone ultraviolet absorbers, and triazine ultraviolet absorbers are preferable, and benzotriazole ultraviolet absorbers and benzophenone ultraviolet absorbers are more preferable.
 紫外線吸収剤の含有量は、紫外線吸収剤の種類や使用条件等にもよるが、基材フィルムの膜厚が30~200μmの場合、基材フィルムに対して0.5~10質量%が好ましく、0.6~4質量%が更に好ましい。 The content of the UV absorber is preferably 0.5 to 10% by mass with respect to the base film when the thickness of the base film is 30 to 200 μm, although it depends on the type and use conditions of the UV absorber. 0.6 to 4% by mass is more preferable.
 <微粒子(マット剤)>
 基材フィルムは、表面に滑り性等を付与するために、微粒子(マット剤)をさらに含みうる。微粒子は、無機化合物で構成されてもよいし、樹脂で構成されてもよい。
<Fine particles (matting agent)>
The base film can further contain fine particles (matting agent) in order to impart slipperiness or the like to the surface. The fine particles may be composed of an inorganic compound or a resin.
 無機化合物の例には、二酸化珪素、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、タルク、クレイ、焼成カオリン、焼成ケイ酸カルシウム、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウム及びリン酸カルシウム等が挙げられる。 Examples of inorganic compounds include silicon dioxide, titanium dioxide, aluminum oxide, zirconium oxide, calcium carbonate, talc, clay, calcined kaolin, calcined calcium silicate, hydrated calcium silicate, aluminum silicate, magnesium silicate, calcium phosphate, etc. Is mentioned.
 樹脂の例には、シリコーン樹脂、フッ素樹脂及びアクリル樹脂が含まれる。中でもシリコーン樹脂が好ましく、特に三次元の網状構造を有するものが好ましく、例えば、トスパール103、同105、同108、同120、同145、同3120及び同240(以上東芝シリコーン(株)製)の商品名で市販されているものが挙げられる。 Examples of the resin include silicone resin, fluororesin and acrylic resin. Among them, silicone resins are preferable, and those having a three-dimensional network structure are particularly preferable. For example, Tospearl 103, 105, 108, 120, 145, 3120 and 240 (manufactured by Toshiba Silicone Co., Ltd.) What is marketed with a brand name is mentioned.
 これらの中でも、フィルムの濁度を低くしうる点で、二酸化珪素の微粒子が好ましい。二酸化珪素の微粒子の例には、アエロジルR972、R972V、R974、R812、200、200V、300、R202、OX50、TT600(以上日本アエロジル(株)製)が挙げられ、フィルムのヘイズを低く保ちながら摩擦係数を下げる効果が大きいことから、好ましくはアエロジル200V、アエロジルR972Vである。 Among these, fine particles of silicon dioxide are preferable in that the turbidity of the film can be lowered. Examples of the fine particles of silicon dioxide include Aerosil R972, R972V, R974, R812, 200, 200V, 300, R202, OX50, TT600 (manufactured by Nippon Aerosil Co., Ltd.) and friction while keeping the film haze low. Aerosil 200V and Aerosil R972V are preferred because the effect of lowering the coefficient is great.
 微粒子の一次粒子の平均粒径は、好ましくは5~400nm、より好ましくは10~300nmである。微粒子は、主に粒径0.05~0.3μmの2次凝集体として含有されてもよく、平均粒径100~400nmの粒子であれば凝集せずに一次粒子として含有されてもよい。 The average primary particle diameter of the fine particles is preferably 5 to 400 nm, more preferably 10 to 300 nm. The fine particles may be mainly contained as secondary aggregates having a particle size of 0.05 to 0.3 μm, and may be contained as primary particles without being aggregated if the particles have an average particle size of 100 to 400 nm.
 微粒子は、基材フィルム表面の動摩擦係数が0.2~1.0となるように添加されることが好ましい。具体的には、微粒子の含有量は、基材フィルムに対して0.01~1質量%、好ましくは0.05~0.5質量%としうる。 The fine particles are preferably added so that the dynamic friction coefficient of the base film surface is 0.2 to 1.0. Specifically, the content of the fine particles can be 0.01 to 1% by mass, preferably 0.05 to 0.5% by mass with respect to the base film.
 1-2.基材フィルムの製造方法
 基材フィルムは、任意の方法で製造されうるが、比較的分子量の大きな樹脂でも製膜しやすい等の点から、溶液流延法で製造されることが好ましい。具体的には、基材フィルムは、1)前述の各成分を溶剤に溶解させてドープ液を調製する工程、2)ドープ液を無端の金属支持体上に流延する工程、3)流延したドープを乾燥した後、剥離して膜状物を得る工程、4)膜状物を乾燥及び延伸する工程を経て製造されうる。
1-2. Production method of base film The base film can be produced by any method, but it is preferably produced by a solution casting method from the viewpoint of easy film formation even with a resin having a relatively large molecular weight. Specifically, the base film is 1) a step of preparing a dope solution by dissolving the above-described components in a solvent, 2) a step of casting the dope solution on an endless metal support, and 3) casting. The dope is dried and then peeled off to obtain a film-like material. 4) The film-like material is dried and stretched.
 上記4)の工程では、基材フィルムの貯蔵弾性率を高めるため等から、膜状物を乾燥させながら延伸することが好ましい。延伸は、幅方向又は製膜方向、或いはそれらの両方に行うことができる。 In the step 4), the film-like material is preferably stretched while being dried in order to increase the storage elastic modulus of the base film. Stretching can be performed in the width direction, the film forming direction, or both.
 最大延伸方向(延伸倍率が最大となる方向)の延伸倍率は、好ましくは5~30%、より好ましくは12~28%としうる。例えば、互いに直交する2軸方向に延伸する場合、搬送方向(MD方向)に0~15%、幅方向(TD方向)に5~30%としうる。延伸倍率(%)は、下記式で定義される。
 延伸倍率(%)={(延伸後のフィルムの(延伸方向)長さ-延伸前のフィルムの(延伸方向)長さ)/延伸前のフィルムの(延伸方向)長さ)}×100
The stretching ratio in the maximum stretching direction (the direction in which the stretching ratio becomes maximum) is preferably 5 to 30%, more preferably 12 to 28%. For example, when stretching in biaxial directions perpendicular to each other, it can be 0 to 15% in the transport direction (MD direction) and 5 to 30% in the width direction (TD direction). The draw ratio (%) is defined by the following formula.
Stretch ratio (%) = {((Stretch direction) length of stretched film− (Stretch direction) length of stretched film) / (Stretch direction) length of stretched film)} × 100
 延伸温度は、120~180℃、好ましくは140~180℃、より好ましくは145~165℃としうる。上記温度と倍率で延伸を行うことで、フィルムに十分な延伸応力を付与できるので、得られるフィルムの貯蔵弾性率を効果的に高めうる。 The stretching temperature can be 120 to 180 ° C, preferably 140 to 180 ° C, more preferably 145 to 165 ° C. By stretching at the above temperature and magnification, sufficient stretching stress can be applied to the film, so that the storage elastic modulus of the resulting film can be effectively increased.
 延伸開始時の膜状物の残留溶媒は、ヘイズの上昇を抑制する観点から、好ましくは5質量%未満、より好ましくは4質量%以下、さらに好ましくは2質量%以下としうる。延伸開始時の残留溶媒を5質量%未満に保持するには、流延したドープを金属支持体から剥離し、搬送する過程において前記乾燥工程を設け溶媒を蒸発させることが好ましい。 The residual solvent of the film-like material at the start of stretching is preferably less than 5% by mass, more preferably 4% by mass or less, and even more preferably 2% by mass or less, from the viewpoint of suppressing an increase in haze. In order to keep the residual solvent at the start of stretching at less than 5% by mass, it is preferable to provide the drying step in the process of peeling the cast dope from the metal support and transporting it to evaporate the solvent.
 膜状物を延伸する方法は、特に限定されず、複数のロールに周速差をつけ、その間でロール周速差を利用してMD方向に延伸する方法や;テンターにより膜状物の両端をクリップやピンで固定し、クリップやピンの間隔をTD方向に広げて延伸する方法等であってよい。中でも、TD方向の延伸は、テンターによって行うことが好ましく、ピンテンターでもクリップテンターでもよい。 The method of stretching the film-like material is not particularly limited, and a method of stretching a difference in peripheral speed between a plurality of rolls and using the difference in the peripheral speed of the roll between them in the MD direction; It may be a method of fixing with a clip or a pin and extending the gap between the clip or the pin in the TD direction. Among them, the stretching in the TD direction is preferably performed by a tenter, and may be a pin tenter or a clip tenter.
 その他の工程については、公知の溶液流延法;例えば特開2012-48214号の段落0109~0140と同様としうる。 The other steps may be the same as known solution casting methods; for example, paragraphs 0109 to 0140 of JP2012-48214A.
 <基材フィルムの物性>
 (貯蔵弾性率)
 基材フィルムの、30℃における面内遅相軸方向の貯蔵弾性率は、5.0~7.0GPaであることが好ましく、5.5~7.0GPaであることがより好ましい。
<Physical properties of base film>
(Storage modulus)
The storage elastic modulus of the base film in the in-plane slow axis direction at 30 ° C. is preferably 5.0 to 7.0 GPa, more preferably 5.5 to 7.0 GPa.
 貯蔵弾性率は、以下の方法で測定されうる。基材フィルムを幅5mm×長さ(面内遅相軸方向の長さ)50mmの大きさに切り取り、試料とする。この試料を、23℃55%RH下で24時間調湿する。得られた試料を、23℃55%RHの環境下にて、下記条件で昇温させながら長さ方向に引っ張り、温度-貯蔵弾性率の曲線を得る。得られた曲線から、30℃での貯蔵弾性率の値を読み取り、「30℃での面内遅相軸方向の貯蔵弾性率」とする。
 測定装置:ティーエイインスツルメント社製 RSAIII
 試料サイズ:幅5mm、長さ50mm
 ギャップ:20mm
 測定条件:引張モード
 測定温度:25~210℃
 昇温条件:5℃/min
 周波数:1Hz
The storage elastic modulus can be measured by the following method. The base film is cut into a size of 5 mm wide × length (length in the in-plane slow axis direction) 50 mm, and used as a sample. The sample is conditioned for 24 hours at 23 ° C. and 55% RH. The obtained sample is pulled in the length direction while raising the temperature under the following conditions in an environment of 23 ° C. and 55% RH to obtain a temperature-storage modulus curve. From the obtained curve, the value of the storage elastic modulus at 30 ° C. is read, and is set as “the storage elastic modulus in the in-plane slow axis direction at 30 ° C.”.
Measuring device: RSA III manufactured by TI Instruments
Sample size: width 5mm, length 50mm
Gap: 20mm
Measurement conditions: Tensile mode Measurement temperature: 25-210 ° C
Temperature rising condition: 5 ° C / min
Frequency: 1Hz
 基材フィルムの面内遅相軸は、面内の屈折率が最大となる方向の軸である。面内遅相軸は、通常、最大延伸方向であり、例えば長尺状の基材フィルムのロール体におけるTD方向(幅方向)でありうる。面内遅相軸のフィルム幅方向とのなす角度θ1(配向角)は、±1°以下、好ましくは±0.5°以下としうる。面内遅相軸方向、及びそれとフィルム幅方向又は長手方向(好ましくは幅方向)とのなす角度θ1の測定は、自動複屈折計KOBRA-21ADHもしくはKOBRA-WR(王子計測機器)を用いて、波長590nmにて行うことができる。 The in-plane slow axis of the substrate film is an axis in the direction in which the in-plane refractive index is maximum. The in-plane slow axis is usually the maximum stretching direction, and can be, for example, the TD direction (width direction) in the roll body of the long base film. The angle θ1 (orientation angle) between the in-plane slow axis and the film width direction can be ± 1 ° or less, preferably ± 0.5 ° or less. The in-plane slow axis direction and the angle θ1 formed by the film width direction or longitudinal direction (preferably the width direction) are measured using an automatic birefringence meter KOBRA-21ADH or KOBRA-WR (Oji Scientific Instruments). It can be performed at a wavelength of 590 nm.
 基材フィルムの貯蔵弾性率は、前述のポリエステル系添加剤の含有量と延伸条件によって調整されうる。基材フィルムの貯蔵弾性率を高めるためには、前述のポリエステル系添加剤の含有量をセルロースエステル100質量部に対して5質量部以上とし;かつ延伸温度を140℃以上、延伸倍率を5%以上とすることが好ましい。その他、ポリエステル系添加剤を「芳香族環や脂肪族環を含む構造」としたり、分子量を一定以下としたりすることで、貯蔵弾性率を高めることもできる。 The storage elastic modulus of the base film can be adjusted by the content of the polyester-based additive and the stretching conditions. In order to increase the storage elastic modulus of the base film, the content of the polyester-based additive is 5 parts by mass or more with respect to 100 parts by mass of the cellulose ester; and the stretching temperature is 140 ° C. or more, and the stretching ratio is 5%. The above is preferable. In addition, the storage elastic modulus can be increased by making the polyester-based additive “a structure containing an aromatic ring or an aliphatic ring” or by making the molecular weight below a certain level.
 (破断伸度)
 基材フィルムの破断伸度は、好ましくは10~80%、より好ましくは20~50%でありうる。
(Elongation at break)
The elongation at break of the base film can be preferably 10 to 80%, more preferably 20 to 50%.
 (内部ヘイズ)
 基材フィルムの、JIS K-7136に準拠した方法で測定される内部ヘイズは、1%未満、好ましくは0.1%以下、より好ましくは0.05%以下でありうる。
(Internal haze)
The internal haze of the base film measured by a method according to JIS K-7136 may be less than 1%, preferably 0.1% or less, more preferably 0.05% or less.
 内部ヘイズは、ポリエステル系添加剤の分子量や含有量によって調整されうる。内部ヘイズを低くするためには、例えばポリエステル系添加剤の分子量や含有量を一定以下としたり、末端封止するヒドロキシル基含有モノカルボン酸に、セルロースエステルとの親和性が高い芳香族炭化水素環を導入したりすることが好ましい。 The internal haze can be adjusted by the molecular weight and content of the polyester-based additive. In order to reduce the internal haze, for example, the molecular weight and content of the polyester-based additive are kept below a certain level, or the hydroxyl group-containing monocarboxylic acid that is end-capped has an aromatic hydrocarbon ring that has high affinity with the cellulose ester. Is preferably introduced.
 (厚み)
 基材フィルムは、好ましくは10~80μm、より好ましくは10~60μm、さらに好ましくは15~50μmでありうる。前述の通り、基材フィルムは、厚みが50μm以下と薄くても、十分な貯蔵弾性率を有するので、偏光板保護フィルムの硬度を一定以上に高めうる。
(Thickness)
The base film can be preferably 10 to 80 μm, more preferably 10 to 60 μm, and even more preferably 15 to 50 μm. As described above, since the base film has a sufficient storage elastic modulus even when the thickness is as thin as 50 μm or less, the hardness of the polarizing plate protective film can be increased to a certain level or more.
 1-3.活性エネルギー線硬化物層
 活性エネルギー線硬化物層は、好ましくはハードコート層又はアンチグレア層でありうる。活性エネルギー線硬化物層を基材フィルム上に設けることで、フィルム全体の表面硬度を高めることができる。
1-3. Active energy ray cured product layer The active energy ray cured product layer may be preferably a hard coat layer or an antiglare layer. By providing the active energy ray cured product layer on the base film, the surface hardness of the entire film can be increased.
 活性エネルギー線硬化物層は、硬化性化合物と、光重合開始剤と、溶剤とを含む活性エネルギー線硬化物層用塗布液からなる塗膜の硬化物でありうる。 The active energy ray cured product layer may be a cured product of a coating film composed of a coating solution for an active energy ray cured product layer containing a curable compound, a photopolymerization initiator, and a solvent.
 <硬化性化合物>
 活性エネルギー線硬化層用塗布液に含まれる硬化性化合物は、活性エネルギー線の照射により硬化する化合物であり、好ましくはエチレン性不飽和二重結合を有する化合物であり、より好ましくはアクリレート化合物でありうる。
<Curable compound>
The curable compound contained in the coating solution for the active energy ray-curable layer is a compound that is cured by irradiation with active energy rays, preferably a compound having an ethylenically unsaturated double bond, and more preferably an acrylate compound. sell.
 アクリレート化合物は、好ましくは分子中に2個以上のアクリロイルオキシ基及び/またはメタクロイルオキシ基を有する多官能アクリレートである。多官能アクリレートは、ペンタエリスリトール多官能アクリレート、ジペンタエリスリトール多官能アクリレート、ペンタエリスリトール多官能メタクリレート、及びジペンタエリスリトール多官能メタクリレートよりなる群から選ばれる一以上であることが好ましい。 The acrylate compound is preferably a polyfunctional acrylate having two or more acryloyloxy groups and / or methacryloyloxy groups in the molecule. The polyfunctional acrylate is preferably one or more selected from the group consisting of pentaerythritol polyfunctional acrylate, dipentaerythritol polyfunctional acrylate, pentaerythritol polyfunctional methacrylate, and dipentaerythritol polyfunctional methacrylate.
 <光重合開始剤>
 活性エネルギー線硬化層用塗布液に含まれる光重合開始剤の例には、アセトフェノン、ベンゾフェノン、ヒドロキシベンゾフェノン、ミヒラーケトン、α-アミロキシムエステル、チオキサントン等及びこれらの誘導体が含まれる。光重合開始剤の含有割合は、硬化性化合物100質量部に対して0.01~20質量部としうる。
<Photopolymerization initiator>
Examples of the photopolymerization initiator contained in the coating solution for the active energy ray curable layer include acetophenone, benzophenone, hydroxybenzophenone, Michler's ketone, α-amyloxime ester, thioxanthone, and derivatives thereof. The content ratio of the photopolymerization initiator may be 0.01 to 20 parts by mass with respect to 100 parts by mass of the curable compound.
 <溶剤>
 活性エネルギー線硬化層用塗布液に含まれる溶剤の例には、
 メチルエチルケトン、アセトン、シクロヘキサノン、メチルイソブチルケトン等のケトン類;
 酢酸メチル、酢酸エチル、酢酸ブチル、酢酸プロピル、プロピレングリコールモノメチルエーテルアセテート等のエステル類;
 エタノール、メタノール、ブタノ―ル、n-プロピルアルコール、イソプロピルアルコール、ジアセトンアルコール等のアルコール類;
 トルエン、キシレン、ベンゼン、シクロヘキサン等の炭化水素類;
 プロピレングリコールモノメチルエーテル、プロピレングリコールモノプロピルエーテル、エチレングリコールモノプロピルエーテル等のグリコールエーテル類等が含まれる。中でも、エステル類、グリコールエーテル類、アルコール類が好ましく、プロピレングリコールモノ(炭素原子数1~4のアルキル基)アルキルエーテル又はプロピレングリコールモノ(炭素原子数1~4のアルキル基)アルキルエーテルエステルを5質量%以上、より好ましくは5~80質量%以上含有することがより好ましい。
<Solvent>
Examples of the solvent contained in the coating solution for the active energy ray cured layer include:
Ketones such as methyl ethyl ketone, acetone, cyclohexanone, methyl isobutyl ketone;
Esters such as methyl acetate, ethyl acetate, butyl acetate, propyl acetate, propylene glycol monomethyl ether acetate;
Alcohols such as ethanol, methanol, butanol, n-propyl alcohol, isopropyl alcohol, diacetone alcohol;
Hydrocarbons such as toluene, xylene, benzene, cyclohexane;
Examples include glycol ethers such as propylene glycol monomethyl ether, propylene glycol monopropyl ether, and ethylene glycol monopropyl ether. Of these, esters, glycol ethers, and alcohols are preferable, and propylene glycol mono (alkyl group having 1 to 4 carbon atoms) alkyl ether or propylene glycol mono (alkyl group having 1 to 4 carbon atoms) alkyl ether ester is preferable. More preferably, it is contained in an amount of at least 5% by mass, more preferably 5-80% by mass.
 活性エネルギー線硬化層用塗布液は、必要に応じて塗布性を高めるためのレベリング剤や、活性エネルギー線硬化物層の硬度や屈折率を調整するための微粒子等をさらに含んでもよい。 The coating solution for the active energy ray-cured layer may further contain a leveling agent for enhancing the coatability, fine particles for adjusting the hardness and refractive index of the active energy ray-cured product layer, if necessary.
 <レベリング剤>
 レベリング剤の好ましい例には、フッ素-シロキサングラフト化合物が含まれる。フッ素-シロキサングラフト化合物は、少なくともフッ素系樹脂に、シロキサン及び/又はオルガノシロキサン単体を含むポリシロキサン及び/又はオルガノポリシロキサンをグラフト化させて得られる共重合体である。フッ素-シロキサングラフト化合物の市販品の例には、富士化成工業株式会社製のZX-022H、ZX-007C、ZX-049、ZX-047-D等が挙げられる。
<Leveling agent>
Preferred examples of the leveling agent include a fluorine-siloxane graft compound. The fluorine-siloxane graft compound is a copolymer obtained by grafting polysiloxane and / or organopolysiloxane containing siloxane and / or organosiloxane alone to at least a fluorine-based resin. Examples of commercially available fluorine-siloxane graft compounds include ZX-022H, ZX-007C, ZX-049, and ZX-047-D manufactured by Fuji Kasei Kogyo Co., Ltd.
 <微粒子>
 活性エネルギー線硬化層用塗布液は、硬化物の硬度や屈折率を調整したり、表面に凸凹を付与して防眩機能(アンチグレア機能)を付与したりする観点から、必要に応じて微粒子をさらに含みうる。微粒子は、有機微粒子であっても無機微粒子であってもよい。
<Fine particles>
From the viewpoint of adjusting the hardness and refractive index of the cured product and imparting unevenness to the surface to provide an antiglare function (antiglare function), the active energy ray cured layer coating solution contains fine particles as necessary. It may further include. The fine particles may be organic fine particles or inorganic fine particles.
 有機微粒子は、メタクリル酸メチル-ジビニルベンゼン共重合体樹脂、ポリシロキサン樹脂、ポリスチレン樹脂、メラミン樹脂、ベンゾグアナミン樹脂及びこれらの樹脂の複合体からなる粒子が好ましく用いられる。 As the organic fine particles, particles made of methyl methacrylate-divinylbenzene copolymer resin, polysiloxane resin, polystyrene resin, melamine resin, benzoguanamine resin, and composites of these resins are preferably used.
 無機微粒子は、前述の基材フィルムにマット剤として添加される微粒子と同様のものが挙げられ、好ましくは二酸化珪素(シリカ)の微粒子である。シリカの微粒子は、分散性を高める観点から、国際公開第2011/158626号公報の段落0230~0258の反応性シリカ微粒子であってもよい。 Examples of the inorganic fine particles include those similar to the fine particles added as a matting agent to the above-described base film, and are preferably silicon dioxide (silica) fine particles. The silica fine particles may be reactive silica fine particles described in paragraphs 0230 to 0258 of International Publication No. 2011/158626 from the viewpoint of improving dispersibility.
 活性エネルギー線硬化層用塗布液は、硬化物の屈折率をより調整しやすくする観点等から、金属酸化物微粒子を含んでもよい。金属酸化物微粒子は、波長550nmで測定される屈折率が1.80~2.60であるものが好ましく、1.85~2.50であるものがより好ましい。そのような金属酸化物微粒子の例には、酸化ジルコニウム、酸化アンチモン、酸化錫、酸化亜鉛、酸化インジウム-スズ(ITO)、アンチモンドープ酸化スズ(ATO)、及びアンチモン酸亜鉛等が挙げられ、好ましくはアンチモン酸亜鉛粒子でありうる。 The active energy ray-cured layer coating solution may contain metal oxide fine particles from the viewpoint of making it easier to adjust the refractive index of the cured product. The metal oxide fine particles preferably have a refractive index measured at a wavelength of 550 nm of 1.80 to 2.60, more preferably 1.85 to 2.50. Examples of such metal oxide fine particles include zirconium oxide, antimony oxide, tin oxide, zinc oxide, indium-tin oxide (ITO), antimony-doped tin oxide (ATO), and zinc antimonate. May be zinc antimonate particles.
 金属酸化物微粒子の一次粒子の平均粒子径は、好ましくは10nm~200nmであり、より好ましくは10~150nmである。金属酸化物微粒子の平均粒子径は、走査電子顕微鏡(SEM)等による電子顕微鏡写真から計測することができる。 The average primary particle diameter of the metal oxide fine particles is preferably 10 nm to 200 nm, more preferably 10 to 150 nm. The average particle diameter of the metal oxide fine particles can be measured from an electron micrograph taken with a scanning electron microscope (SEM) or the like.
 例えばハードコート層の23℃、波長550nmで測定される屈折率は1.4~2.2でありうる。ハードコート層の屈折率は、金属酸化物微粒子の添加量等によって調整されうる。 For example, the refractive index of the hard coat layer measured at 23 ° C. and a wavelength of 550 nm may be 1.4 to 2.2. The refractive index of the hard coat layer can be adjusted by the amount of the metal oxide fine particles added.
 活性エネルギー線硬化物層の厚みは、十分な硬度を得る観点から、好ましくは3~30μm、より好ましくは5~15μmである。前述の基材フィルムの硬度が高いことから、活性エネルギー線硬化物層の厚みを例えば15μm以下と薄くしても、高い硬度が得られやすい。 The thickness of the active energy ray cured product layer is preferably 3 to 30 μm, more preferably 5 to 15 μm, from the viewpoint of obtaining sufficient hardness. Since the above-mentioned base film has high hardness, high hardness is easily obtained even if the thickness of the active energy ray cured product layer is reduced to, for example, 15 μm or less.
 本発明の偏光板保護フィルムは、必要に応じて帯電防止層、バックコート層、易滑性層、接着層、バリアー層、反射防止層等の機能性層をさらに有してもよい。 The polarizing plate protective film of the present invention may further have functional layers such as an antistatic layer, a backcoat layer, a slippery layer, an adhesive layer, a barrier layer, and an antireflection layer as necessary.
 1-4.偏光板保護フィルムの製造方法
 本発明の偏光板保護フィルムは、1)前述の基材フィルムを準備する工程と、2)当該基材フィルム上に活性エネルギー線硬化物層用塗布液を塗布した後、乾燥及び硬化させて活性エネルギー線硬化物層を得る工程とを経て製造されうる。
1-4. Manufacturing method of polarizing plate protective film The polarizing plate protective film of the present invention includes 1) a step of preparing the above-mentioned base film, and 2) after applying a coating solution for an active energy ray cured product layer on the base film. , Drying and curing to obtain an active energy ray cured product layer.
 上記1)の基材フィルムを準備する工程は、前述の1-2.基材フィルムの製造方法と同様としうる。 The step of preparing the base film of 1) above is the above described 1-2. It can be the same as the manufacturing method of a base film.
 上記2)の活性エネルギー線硬化層用塗布液の塗布は、例えばディッピング法、ダイコータ法、ワイヤーバー法、スプレー法等の任意の手段にて行うことができる。 The application of the coating solution for the active energy ray cured layer in the above 2) can be performed by any means such as a dipping method, a die coater method, a wire bar method, and a spray method.
 上記2)の活性エネルギー線硬化層用塗布液の塗膜の硬化は、活性エネルギー線を照射して行うことができる。活性エネルギー線(好ましくは紫外線)を照射する光源の例には、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、カーボンアーク灯、メタルハライドランプ、キセノンランプ等が挙げられる。照射光量は20~10000mJ/cm程度あればよく、好ましくは50~2000mJ/cmである。照射時間は、好ましくは0.5秒~5分、作業効率等の観点からより好ましくは3秒~2分としうる。 Curing of the coating film of the coating solution for active energy ray cured layer of 2) can be performed by irradiating active energy rays. Examples of the light source that irradiates active energy rays (preferably ultraviolet rays) include a low-pressure mercury lamp, a medium-pressure mercury lamp, a high-pressure mercury lamp, an ultrahigh-pressure mercury lamp, a carbon arc lamp, a metal halide lamp, and a xenon lamp. Irradiation light amount is sufficient if 20 ~ 10000mJ / cm 2 degrees, and preferably 50 ~ 2000mJ / cm 2. The irradiation time is preferably 0.5 seconds to 5 minutes, and more preferably 3 seconds to 2 minutes from the viewpoint of work efficiency.
 1-5.偏光板保護フィルムの物性
 (硬度)
 偏光板保護フィルムは、高い硬度を有しうる。具体的には、偏光板保護フィルムの硬度は、鉛筆硬度が2.8H以上、好ましくは3H以上、より好ましくは3.5H以上、さらに好ましくは4H以上である。それにより、例えば使用時に液晶表示装置の表面に傷を付きにくくしうる。
1-5. Physical properties (hardness) of protective film for polarizing plate
The polarizing plate protective film can have a high hardness. Specifically, the hardness of the polarizing plate protective film is a pencil hardness of 2.8H or more, preferably 3H or more, more preferably 3.5H or more, and further preferably 4H or more. Thereby, for example, the surface of the liquid crystal display device can be hardly damaged during use.
 鉛筆硬度は、JIS K5400に準拠した鉛筆高度評価法にて測定することができる。具体的には、偏光板保護フィルムを23℃55%RH下で24時間調湿する。その後、活性エネルギー線硬化物層の表面を1kgの重りを用いて、JIS S 6006で規定される各硬度の試験用鉛筆で引っ掻く操作を5回繰り返す。そして、傷が1本以下となる硬度の最大値を求める。最大値の値が大きいほど、硬度が高いことを示す。 Pencil hardness can be measured by a pencil height evaluation method based on JIS K5400. Specifically, the polarizing plate protective film is conditioned for 24 hours at 23 ° C. and 55% RH. Then, the operation of scratching the surface of the cured active energy ray layer with a test pencil having each hardness specified in JIS S 6006 using a 1 kg weight is repeated five times. Then, the maximum value of the hardness at which one scratch or less is obtained. The larger the maximum value, the higher the hardness.
 (レターデーション)
 偏光板保護フィルムの、測定波長590nm、23℃55%RHの条件下で測定される面内方向のレターデーションRは、例えば0~10nmとし;厚み方向のレターデーションRthは、例えば-5~20nmとしうる。レターデーション値が上記範囲内である偏光板保護フィルムは、後述する液晶表示装置の保護フィルム(F1、F4)として好適である。
(Retardation)
The retardation R 0 in the in-plane direction measured under the conditions of a measurement wavelength of 590 nm and 23 ° C. and 55% RH of the polarizing plate protective film is, for example, 0 to 10 nm; and the retardation Rth in the thickness direction is, for example, −5 to It can be 20 nm. A polarizing plate protective film having a retardation value within the above range is suitable as a protective film (F1, F4) for a liquid crystal display device described later.
 レターデーションRおよびRthは、それぞれ以下の式で定義される。
 式(I):R=(nx-ny)×d(nm)
 式(II):Rth={(nx+ny)/2-nz}×d(nm)
 (式(I)および(II)において、
 nxは、フィルムの面内方向において屈折率が最大になる遅相軸方向xにおける屈折率を表し;
 nyは、フィルムの面内方向において前記遅相軸方向xと直交する方向yにおける屈折率を表し;
 nzは、フィルムの厚み方向zにおける屈折率を表し;
 d(nm)は、フィルムの厚みを表す)
Retardation R0 and Rth are defined by the following equations, respectively.
Formula (I): R 0 = (nx−ny) × d (nm)
Formula (II): Rth = {(nx + ny) / 2−nz} × d (nm)
(In formulas (I) and (II),
nx represents the refractive index in the slow axis direction x where the refractive index is maximum in the in-plane direction of the film;
ny represents the refractive index in the direction y perpendicular to the slow axis direction x in the in-plane direction of the film;
nz represents the refractive index in the thickness direction z of the film;
d (nm) represents the thickness of the film)
 レターデーションRおよびRthは、例えば以下の方法によって求めることができる。
 1)偏光板保護フィルムを、23℃55%RHで調湿する。調湿後の偏光板保護フィルムの平均屈折率をアッベ屈折計などで測定する。
 2)調湿後の偏光板保護フィルムに、当該フィルム表面の法線に平行に測定波長590nmの光を入射させたときのRを、KOBRA21DH、王子計測(株)にて測定する。
 3)KOBRA21ADHにより、偏光板保護フィルムの面内の遅相軸を傾斜軸(回転軸)として、当該フィルムの表面の法線に対してθの角度(入射角(θ))から測定波長590nmの光を入射させたときのリターデーション値R(θ)を測定する。リターデーション値R(θ)の測定は、θが0°~50°の範囲で、10°毎に6点行うことができる。面内遅相軸とは、フィルム面内のうち屈折率が最大となる軸をいい、KOBRA21ADHにより確認することができる。
 4)測定されたRおよびR(θ)と、前述の平均屈折率と膜厚とから、KOBRA21ADHにより、nx、nyおよびnzを算出して、測定波長590nmでのRthを算出する。リターデーションの測定は、23℃55%RH条件下で行うことができる。
The retardations R0 and Rth can be determined by the following method, for example.
1) Condition the polarizing plate protective film at 23 ° C. and 55% RH. The average refractive index of the polarizing plate protective film after humidity adjustment is measured with an Abbe refractometer or the like.
A polarizing plate protective film after 2) humidity, measuring the R 0 when the light is incident in parallel to the measurement wavelength 590nm to normal of the film surface, KOBRA21DH, in Oji Scientific Corporation.
3) With KOBRA21ADH, the slow axis in the plane of the polarizing plate protective film is set as the tilt axis (rotation axis), and the measurement wavelength is 590 nm from the angle (incident angle (θ)) with respect to the normal to the surface of the film. The retardation value R (θ) when light is incident is measured. The retardation value R (θ) can be measured at 6 points every 10 °, with θ ranging from 0 ° to 50 °. The in-plane slow axis is an axis having the maximum refractive index in the film plane, and can be confirmed by KOBRA21ADH.
4) nx, ny, and nz are calculated by KOBRA21ADH from the measured R 0 and R (θ) and the above-described average refractive index and film thickness, and Rth at a measurement wavelength of 590 nm is calculated. The measurement of retardation can be performed under conditions of 23 ° C. and 55% RH.
 2.偏光板
 本発明の偏光板は、偏光子と、前述の偏光板保護フィルムとを含む。偏光板保護フィルムは、その基材フィルムが偏光子と接するように配置される。
2. Polarizing plate The polarizing plate of this invention contains a polarizer and the above-mentioned polarizing plate protective film. The polarizing plate protective film is disposed so that the base film is in contact with the polarizer.
 2-1.偏光子
 偏光子は、一定方向の偏波面の光だけを通す素子であり、現在知られている代表的な偏光子は、ポリビニルアルコール系偏光フィルムである。ポリビニルアルコール系偏光フィルムには、ポリビニルアルコール系フィルムにヨウ素を染色させたものと、二色性染料を染色させたものとがある。
2-1. Polarizer A polarizer is an element that passes only light having a polarization plane in a certain direction, and a typical polarizer known at present is a polyvinyl alcohol polarizing film. The polyvinyl alcohol polarizing film includes those obtained by dyeing iodine on a polyvinyl alcohol film and those obtained by dyeing a dichroic dye.
 ポリビニルアルコール系偏光フィルムは、ポリビニルアルコール系フィルムを一軸延伸した後、ヨウ素または二色性染料で染色したフィルム(好ましくはさらにホウ素化合物で耐久性処理を施したフィルム)であってもよいし;ポリビニルアルコール系フィルムをヨウ素または二色性染料で染色した後、一軸延伸したフィルム(好ましくは、さらにホウ素化合物で耐久性処理を施したフィルム)であってもよい。偏光子の吸収軸は、フィルムの延伸方向と平行である。 The polyvinyl alcohol polarizing film may be a film (preferably a film further subjected to durability treatment with a boron compound) dyed with iodine or a dichroic dye after uniaxially stretching the polyvinyl alcohol film; A film obtained by dying an alcohol film with iodine or a dichroic dye and then uniaxially stretching (preferably a film further subjected to a durability treatment with a boron compound) may be used. The absorption axis of the polarizer is parallel to the stretching direction of the film.
 例えば、特開2003-248123号公報、特開2003-342322号公報等に記載のエチレン単位の含有量1~4モル%、重合度2000~4000、けん化度99.0~99.99モル%のエチレン変性ポリビニルアルコール等が用いられる。中でも、熱水切断温度が66~73℃であるエチレン変性ポリビニルアルコールフィルムが好ましく用いられる。 For example, the ethylene unit content described in JP-A-2003-248123, JP-A-2003-342322, etc. is 1 to 4 mol%, the degree of polymerization is 2000 to 4000, and the degree of saponification is 99.0 to 99.99 mol%. Ethylene-modified polyvinyl alcohol or the like is used. Among these, an ethylene-modified polyvinyl alcohol film having a hot water cutting temperature of 66 to 73 ° C. is preferably used.
 偏光子の厚みは、5~30μmであることが好ましく、偏光板を薄型化するためなどから、10~20μmであることがより好ましい。 The thickness of the polarizer is preferably 5 to 30 μm, and more preferably 10 to 20 μm in order to reduce the thickness of the polarizing plate.
 2-2.他の偏光板保護フィルム
 偏光子の他方の面には、必要に応じて前述の偏光板保護フィルムや基材フィルムが配置されてもよいし;他の偏光板保護フィルムが配置されてもよい。
2-2. Other polarizing plate protective film The other polarizing plate protective film may be arrange | positioned on the other surface of a polarizer as needed, and the above-mentioned polarizing plate protective film and base film may be arrange | positioned as needed.
 他の偏光板保護フィルムの例には、市販のセルロースアシレートフィルム(例えば、コニカミノルタタック KC8UX、KC4UX、KC5UX、KC8UY、KC4UY、KC12UR、KC8UCR-3、KC8UCR-4、KC8UCR-5、KC4FR-1、KC8UY-HA、KC8UX-RHA、KC8UE、KC4UE、KC4HR-1、KC4KR-1、KC4UA、KC6UA以上コニカミノルタオプト(株)製)等が含まれる。 Examples of other polarizing plate protective films include a commercially available cellulose acylate film (for example, Konica Minoltack® KC8UX, KC4UX, KC5UX, KC8UY, KC4UY, KC12UR, KC8UCR-3, KC8UCR-4, KC8UCR-5, KC4FR-1 , KC8UY-HA, KC8UX-RHA, KC8UE, KC4UE, KC4HR-1, KC4KR-1, KC4UA, KC6UA or higher, manufactured by Konica Minolta Opto Co., Ltd.).
 他の偏光板保護フィルムのレターデーションは、組み合わされる液晶セルの種類にもよるが、例えば23℃RH55%下、波長590nmで測定される面内方向のレターデーションRo(590)は20~100nmであることが好ましく、厚さ方向のレターデーションRt(590)は70~300nmであることが好ましい。レターデーションが上記範囲である保護フィルムは、例えばVA型液晶セル等の位相差フィルム(後述する保護フィルム(F2、F3))として適している。各レターデーション値は、前述と同様の方法で測定されうる。 The retardation of other polarizing plate protective films depends on the type of liquid crystal cell to be combined. For example, the in-plane retardation Ro (590) measured at a wavelength of 590 nm at 23 ° C. and RH 55% is 20 to 100 nm. The retardation Rt (590) in the thickness direction is preferably 70 to 300 nm. A protective film having a retardation in the above range is suitable as a retardation film (protective films (F2, F3) described later) such as a VA liquid crystal cell. Each retardation value can be measured by the same method as described above.
 他の偏光板保護フィルムの厚みは、特に限定はないが、10~250μmであることが好ましく、10~100μmであることがより好ましく、30~60μmであることが特に好ましい。 The thickness of the other polarizing plate protective film is not particularly limited, but is preferably 10 to 250 μm, more preferably 10 to 100 μm, and particularly preferably 30 to 60 μm.
 本発明の偏光板は、偏光子と本発明の偏光板保護フィルムとを接着剤を介して貼り合わる工程と;貼り合わせた積層物を所定の大きさに裁断する工程とを経て得ることができる。 The polarizing plate of the present invention can be obtained through a step of bonding the polarizer and the polarizing plate protective film of the present invention through an adhesive; and a step of cutting the bonded laminate into a predetermined size. it can.
 貼り合わせに用いられる接着剤は、完全ケン化型ポリビニルアルコール水溶液(水糊)であってもよいし、活性エネルギー線硬化性接着剤を用いて行ってもよい。 The adhesive used for pasting may be a completely saponified polyvinyl alcohol aqueous solution (water glue) or an active energy ray-curable adhesive.
 本発明の偏光板保護フィルムは、前述の通り、適度な靱性を有しうる。そのため、偏光板を所定の大きさに裁断する工程において、ひび割れや切断面にささくれが生じるのを抑制でき、偏光板の加工性を高めることができる。また、本発明の偏光板保護フィルムは高い表面硬度を有するので、得られる偏光板も高い表面硬度を有しうる。 As described above, the polarizing plate protective film of the present invention can have appropriate toughness. Therefore, in the step of cutting the polarizing plate into a predetermined size, it is possible to suppress the occurrence of cracks and crushing on the cut surface, and the workability of the polarizing plate can be improved. Moreover, since the polarizing plate protective film of this invention has high surface hardness, the polarizing plate obtained can also have high surface hardness.
 また、本発明の偏光板保護フィルムは、末端封止されたポリエステル系添加剤を含むため、耐水性を有しうる。従って、本発明の偏光板保護フィルムは、偏光子の水分による劣化を抑制できる。 Moreover, since the polarizing plate protective film of the present invention contains a terminal-capped polyester-based additive, it can have water resistance. Therefore, the polarizing plate protective film of the present invention can suppress deterioration of the polarizer due to moisture.
 3.液晶表示装置
 本発明の液晶表示装置は、液晶セルと、それを挟持する一対の偏光板とを含む。
3. Liquid Crystal Display Device The liquid crystal display device of the present invention includes a liquid crystal cell and a pair of polarizing plates that sandwich the liquid crystal cell.
 図1は、液晶表示装置の基本的な構成の一例を示す模式図である。図1に示されるように、本発明の液晶表示装置10は、液晶セル30と、それを挟持する第一の偏光板50および第二の偏光板70と、バックライト90とを含む。 FIG. 1 is a schematic diagram showing an example of a basic configuration of a liquid crystal display device. As shown in FIG. 1, the liquid crystal display device 10 of the present invention includes a liquid crystal cell 30, a first polarizing plate 50 and a second polarizing plate 70 that sandwich the liquid crystal cell 30, and a backlight 90.
 液晶セル30の表示モードは、例えばSTN、TN、OCB、HAN、VA(MVA、PVA)、IPS等の種々の表示モードであってよく、高いコントラストを得るためにはVA(MVA、PVA)モードであることが好ましい。 The display mode of the liquid crystal cell 30 may be various display modes such as STN, TN, OCB, HAN, VA (MVA, PVA), and IPS. For obtaining high contrast, the VA (MVA, PVA) mode is used. It is preferable that
 第一の偏光板50は、第一の偏光子51と、第一の偏光子51の液晶セルとは反対側の面に配置された偏光板保護フィルム53(F1)と、第一の偏光子51の液晶セル側の面に配置された偏光板保護フィルム55(F2)とを含む。 The first polarizing plate 50 includes a first polarizer 51, a polarizing plate protective film 53 (F1) disposed on the surface of the first polarizer 51 opposite to the liquid crystal cell, and a first polarizer. The polarizing plate protective film 55 (F2) arrange | positioned at the surface at the side of 51 liquid crystal cell.
 第二の偏光板70は、第二の偏光子71と、第二の偏光子71の液晶セル側の面に配置された偏光板保護フィルム73(F3)と、第二の偏光子71の液晶セルとは反対側の面に配置された偏光板保護フィルム75(F4)とを含む。偏光板保護フィルム55(F2)と73(F3)の一方は、必要に応じて省略されうる。 The second polarizing plate 70 includes a second polarizer 71, a polarizing plate protective film 73 (F3) disposed on the liquid crystal cell side surface of the second polarizer 71, and a liquid crystal of the second polarizer 71. And a polarizing plate protective film 75 (F4) disposed on the surface opposite to the cell. One of the polarizing plate protective films 55 (F2) and 73 (F3) may be omitted as necessary.
 そして、偏光板保護フィルム53(F1)と75(F4)の少なくとも一方;好ましくは偏光板保護フィルム53(F1)が、本発明の偏光板保護フィルムでありうる。偏光板保護フィルム53(F1)は、基材フィルム53Aと、活性エネルギー線硬化物層53Bとを有し、かつ基材フィルム53Aが第一の偏光子51と接している。偏光板保護フィルム53(F1)が本発明の偏光板保護フィルムである液晶表示装置は、表面の耐擦傷性が高いので、表示画面に傷を付きにくくしうる。 And at least one of the polarizing plate protective film 53 (F1) and 75 (F4); preferably the polarizing plate protective film 53 (F1) may be the polarizing plate protective film of the present invention. The polarizing plate protective film 53 (F1) includes a base film 53A and an active energy ray cured product layer 53B, and the base film 53A is in contact with the first polarizer 51. The liquid crystal display device in which the polarizing plate protective film 53 (F1) is the polarizing plate protective film of the present invention has high scratch resistance on the surface, so that the display screen can be hardly damaged.
 本発明の偏光板保護フィルムは、液晶表示装置の偏光板保護フィルムとしてだけでなく、タッチパネルを備えた画像表示装置や、有機ELディスプレイやプラズマディスプレイ等の画像表示装置等の保護フィルムとしても好ましく用いることができる。 The polarizing plate protective film of the present invention is preferably used not only as a polarizing plate protective film for a liquid crystal display device but also as a protective film for an image display device provided with a touch panel, an image display device such as an organic EL display or a plasma display, and the like. be able to.
 以下において、実施例を参照して本発明を説明する。実施例によって、本発明の範囲は限定して解釈されない。 Hereinafter, the present invention will be described with reference to examples. By way of example, the scope of the invention is not construed as limiting.
 1.材料
 (1)セルロースエステル
 <セルロースエステル1の合成>
 原料パルプ(αセルロース93%以上、含水率8.5%、パルプ中のカルシウム含有量25ppm:日本製紙(株)製)に酢酸50質量部を加え、1時間活性化処理を行った。得られた含酢酸パルプを反応器に入れ、更に無水酢酸500質量部及び硫酸12質量部を投入し、室温から徐々に40℃まで温度を上昇させた。そして、40℃に保温しながら1時間保温し、エステル化反応を進行させた。
1. Materials (1) Cellulose ester <Synthesis of cellulose ester 1>
50 parts by mass of acetic acid was added to raw pulp (α cellulose 93% or more, water content 8.5%, calcium content in pulp 25 ppm: manufactured by Nippon Paper Industries Co., Ltd.), and an activation treatment was performed for 1 hour. The obtained acetic acid-containing pulp was put into a reactor, and further 500 parts by mass of acetic anhydride and 12 parts by mass of sulfuric acid were added, and the temperature was gradually raised from room temperature to 40 ° C. And it heat-retained for 1 hour, keeping at 40 degreeC, and esterification reaction was advanced.
 次いで、30%酢酸水溶液250部を加えて中和し(1次中和工程);硫酸を中和するために、30質量%の酢酸マグネシウム水溶液15質量部を加えて中和し(反応停止工程);残った無水カルボン酸類を加水分解するために、80質量%の酢酸水溶液を150質量部入れ、60℃に保持して1時間撹拌させた(熟成工程)。 Next, 250 parts of 30% acetic acid aqueous solution was added to neutralize (primary neutralization step); to neutralize sulfuric acid, 15 parts by mass of 30% by weight magnesium acetate aqueous solution was added to neutralize (reaction stopping step) ); In order to hydrolyze the remaining carboxylic anhydrides, 150 parts by mass of an 80% by mass aqueous acetic acid solution was added, and the mixture was kept at 60 ° C. and stirred for 1 hour (aging process).
 次いで、硫酸を中和するため、30質量%の酢酸マグネシウム水溶液を15質量部加えた(熟成反応停止工程)。熟成反応停止後のドープに、親水性基を有する平均粒径30μmの親水性シリカ粒子を投入し、5分間撹拌した後、ガラスフィルターで酢酸ドープを濾過した(濾過工程)。 Next, in order to neutralize the sulfuric acid, 15 parts by mass of a 30% by mass magnesium acetate aqueous solution was added (aging reaction stopping step). Hydrophilic silica particles having a hydrophilic group and an average particle size of 30 μm were added to the dope after termination of the ripening reaction and stirred for 5 minutes, and then the acetic acid dope was filtered with a glass filter (filtration step).
 その後、析出したセルロースアシレートを濾別し、50℃の温水で5回洗浄し、残っている酢酸水溶液を溶出させた後、70℃で3時間乾燥させ、アセチル基置換度2.89、総アシル基置換度2.89のトリアセチルセルロースを得た。重量平均分子量(Mw)は、前述の方法で測定した結果、26万であった。 Thereafter, the precipitated cellulose acylate was filtered off, washed 5 times with warm water at 50 ° C., and the remaining acetic acid aqueous solution was eluted, followed by drying at 70 ° C. for 3 hours. A triacetyl cellulose having an acyl group substitution degree of 2.89 was obtained. The weight average molecular weight (Mw) was 260,000 as a result of measurement by the method described above.
 (カルシウム量の測定)
 得られたトリアセチルセルロース試料3.0gをルツボに採り、電熱器上で炭化した後、電気炉に入れて800±10℃で約2時間灰化させた。これに蓋をして放冷後、0.07%塩酸溶液25mlを添加し、ホットプレート上で加温溶解した。これを放冷した後、200mlナルゲルフラスコに溶液を移した。蒸留水でルツボを洗浄し、その液もナルゲルフラスコに移し、蒸留水を標線まで注いだ。これを検液として、原子吸光光度計を用いて吸光度を測定し、試料中のCa量を求めた。その結果、カルシウム量は25ppmであった。
(Measurement of calcium content)
The obtained triacetyl cellulose sample (3.0 g) was placed in a crucible and carbonized on an electric heater, and then placed in an electric furnace and ashed at 800 ± 10 ° C. for about 2 hours. This was covered and allowed to cool, then 25 ml of 0.07% hydrochloric acid solution was added and dissolved by heating on a hot plate. After allowing to cool, the solution was transferred to a 200 ml Nalgel flask. The crucible was washed with distilled water, the liquid was also transferred to a Nalgel flask, and distilled water was poured up to the marked line. Using this as a test solution, the absorbance was measured using an atomic absorption photometer to determine the amount of Ca in the sample. As a result, the calcium content was 25 ppm.
 (2)ポリエステル系添加剤
 <ポリエステル化合物T1の合成>
 エチレングリコール341部、テレフタル酸とコハク酸を5:5のモル比で410部、4-ヒドロキシ安息香酸610部、及びエステル化触媒としてテトライソプロピルチタネート0.35部を、温度計、攪拌機及び緩急冷却管を備えた2Lの四つ口フラスコに仕込み、窒素気流中で攪拌下、還流凝縮器を付して過剰量の1価アルコールを還流させながら、酸価が2以下になるまで230℃で加熱を続けて、生成する水を連続的に除去した。次いで、200℃で4×10Pa以下の減圧下にて、未反応のエチレングリコールを留去してポリエステル化合物T1を得た。
(2) Polyester-based additive <Synthesis of polyester compound T1>
341 parts of ethylene glycol, 410 parts of terephthalic acid and succinic acid in a molar ratio of 5: 5, 610 parts of 4-hydroxybenzoic acid, and 0.35 part of tetraisopropyl titanate as an esterification catalyst are thermometer, stirrer and slow cooling Charge to a 2L four-necked flask equipped with a tube and heat at 230 ° C until the acid value becomes 2 or less while refluxing excess monohydric alcohol with a reflux condenser while stirring in a nitrogen stream. The water produced was continuously removed. Next, unreacted ethylene glycol was distilled off at 200 ° C. under reduced pressure of 4 × 10 2 Pa or less to obtain a polyester compound T1.
 <ポリエステル化合物T2~T5の合成>
 ジオール、ジカルボン酸、及び末端封止用モノカルボン酸の種類又は分子量を表1に示されるように変更した以外は同様にしてポリエステル化合物T2~T5を得た。
<Synthesis of polyester compounds T2 to T5>
Polyester compounds T2 to T5 were obtained in the same manner except that the types or molecular weights of the diol, dicarboxylic acid, and end-capping monocarboxylic acid were changed as shown in Table 1.
 <比較用ポリエステル化合物H1~H8の合成>
 ジオール、ジカルボン酸、及び末端封止用モノカルボン酸の種類又は分子量を表1に示されるように変更した以外は同様にして比較用ポリエステル化合物H1~H8を得た。
<Synthesis of Comparative Polyester Compounds H1 to H8>
Comparative polyester compounds H1 to H8 were obtained in the same manner except that the types or molecular weights of the diol, dicarboxylic acid, and end-capping monocarboxylic acid were changed as shown in Table 1.
 得られたポリエステル化合物の数平均分子量を、以下の方法で測定した。これらの結果を表1に示す。 The number average molecular weight of the obtained polyester compound was measured by the following method. These results are shown in Table 1.
 (数平均分子量(Mn)の測定)
 ゲルパーミエーションクロマトグラフィー(GPC)測定装置(東ソー株式会社製「HLC-8330」)を用いて、下記条件で、ポリエステル化合物の標準ポリスチレン換算の数平均分子量(Mn)を測定した。
 カラム:「TSK gel SuperHZM-M」×2本及び「TSK gel SuperHZ-2000」×2本
 ガードカラム:「TSK SuperH-H」
 展開溶媒:テトラヒドロフラン
 流速:0.35ml/分
Figure JPOXMLDOC01-appb-T000001
(Measurement of number average molecular weight (Mn))
Using a gel permeation chromatography (GPC) measuring device (“HLC-8330” manufactured by Tosoh Corporation), the number average molecular weight (Mn) of the polyester compound in terms of standard polystyrene was measured under the following conditions.
Column: "TSK gel SuperHZM-M" x 2 and "TSK gel SuperHZ-2000" x 2 Guard column: "TSK SuperH-H"
Developing solvent: Tetrahydrofuran Flow rate: 0.35 ml / min
Figure JPOXMLDOC01-appb-T000001
 2.偏光板保護フィルムの製造
 <実施例1>
 (1)基材フィルムの作製
 (二酸化珪素希釈分散液の調製)
 アエロジルR812(日本アエロジル(株)製)10質量部と、エタノール90質量部とを、ディゾルバーで30分間撹拌混合した後、マントンゴーリンで分散させて、二酸化珪素分散液を得た。
 得られた二酸化珪素分散液に88質量部のメチレンクロライドを撹拌しながら投入し、ディゾルバーで30分間撹拌混合し、二酸化珪素分散希釈液を得た。得られた溶液を、微粒子分散希釈液濾過器(アドバンテック東洋(株)ポリプロピレンワインドカートリッジフィルターTCW-PPS-1N)にて濾過した。
2. Production of Polarizing Plate Protective Film <Example 1>
(1) Production of base film (Preparation of silicon dioxide diluted dispersion)
Aerosil R812 (manufactured by Nippon Aerosil Co., Ltd.) 10 parts by mass and ethanol 90 parts by mass were stirred and mixed with a dissolver for 30 minutes, and then dispersed with Manton Gorin to obtain a silicon dioxide dispersion.
88 parts by mass of methylene chloride was added to the obtained silicon dioxide dispersion while stirring, and the mixture was stirred and mixed with a dissolver for 30 minutes to obtain a silicon dioxide dispersion dilution. The obtained solution was filtered with a fine particle dispersion dilution filter (Advantech Toyo Co., Ltd. polypropylene wind cartridge filter TCW-PPS-1N).
 (主ドープ液の調製)
 下記成分を密閉容器に投入した後、加熱及び撹拌しながら、完全に溶解させた後、得られた溶液を濾過して主ドープ液を得た。
 トリアセチルセルロース(アセチル基置換度2.89、Mw=190000):100質量部
 チヌビン928(BASFジャパン(株)製):3質量部
 ポリエステル系添加剤T1:10質量部
 メチレンクロライド:700質量部
 エタノール:40質量部
 得られた主ドープ液に、上記調製した二酸化珪素分散希釈液を4質量部撹拌しながら加えて、30分間さらに撹拌してドープ液を得た。
(Preparation of main dope solution)
The following components were charged into a sealed container, and then completely dissolved while being heated and stirred. Then, the obtained solution was filtered to obtain a main dope solution.
Triacetyl cellulose (acetyl group substitution degree 2.89, Mw = 19000): 100 parts by mass Tinuvin 928 (BASF Japan Ltd.): 3 parts by mass Polyester-based additive T1: 10 parts by mass Methylene chloride: 700 parts by mass Ethanol : 40 parts by mass To the obtained main dope solution, 4 parts by mass of the prepared silicon dioxide dispersion dilution was added while stirring, and further stirred for 30 minutes to obtain a dope solution.
 (製膜)
 得られたドープ液を、ベルト流延装置を用いて、温度35℃、2m幅でステンレスバンド支持体上に均一に流延した。ステンレスバンド支持体上で、流延膜を、その残留溶剤量が100質量%になるまで溶剤を蒸発させた後、ステンレスバンド支持体上から剥離した。剥離して得られた膜状物を、50℃で乾燥しながら搬送させた後、スリットした。
 得られた膜状物を、テンターでTD方向(フィルムの搬送方向と直交する方向)に160℃の温度で20%の倍率で延伸した後、160℃で乾燥させた。テンターで延伸を始めたときの膜状物の残留溶剤量は4.5%であった。
 次いで、得られた膜状物を120℃の乾燥装置内を多数のロールで搬送させながら15分間乾燥させた後、スリットし、フィルム両端に幅15mm、高さ10μmのナーリング加工を施して、膜厚40μmの基材フィルムを得た。ステンレスバンド支持体の回転速度とテンターの運転速度から算出されるMD方向の延伸倍率は1.05倍であった。
(Film formation)
The obtained dope solution was uniformly cast on a stainless steel band support at a temperature of 35 ° C. and a width of 2 m using a belt casting apparatus. On the stainless steel band support, the cast film was peeled off from the stainless steel band support after the solvent was evaporated until the amount of the residual solvent reached 100% by mass. The film-like material obtained by peeling was conveyed while being dried at 50 ° C., and then slitted.
The obtained film was stretched with a tenter in the TD direction (direction perpendicular to the film transport direction) at a temperature of 160 ° C. at a magnification of 20%, and then dried at 160 ° C. The residual solvent amount of the film-like material when stretching with a tenter was 4.5%.
Next, the obtained film-like material was dried for 15 minutes while being transported in a drying apparatus at 120 ° C. by a number of rolls, slitted, and knurled with a width of 15 mm and a height of 10 μm at both ends of the film. A base film having a thickness of 40 μm was obtained. The draw ratio in the MD direction calculated from the rotational speed of the stainless steel band support and the operating speed of the tenter was 1.05.
 得られた基材フィルムの貯蔵弾性率と内部ヘイズを、以下の方法で測定した。 The storage elastic modulus and internal haze of the obtained base film were measured by the following methods.
 [貯蔵弾性率]
 基材フィルムを幅5mm×長さ(面内遅相軸方向の長さ)50mmの大きさに切り取って試料とした。この試料を、23℃55%RH下で24時間調湿した。この試料を、23℃55%RHの環境下にて、下記条件で昇温させながら長さ方向に引っ張り、温度-貯蔵弾性率の曲線を得た。得られた曲線から、30℃での貯蔵弾性率の値を読み取り、「30℃での面内遅相軸方向の貯蔵弾性率」とした。
 測定装置:ティーエイインスツルメント社製 RSAIII
 ギャップ:20mm
 測定条件:引張モード
 測定温度:25~210℃
 昇温条件:5℃/min
 周波数:1Hz
[Storage modulus]
The base film was cut into a size of 5 mm wide × 50 mm long (length in the in-plane slow axis direction) to prepare a sample. This sample was conditioned at 23 ° C. and 55% RH for 24 hours. This sample was pulled in the length direction while raising the temperature under the following conditions in an environment of 23 ° C. and 55% RH to obtain a temperature-storage modulus curve. From the obtained curve, the value of the storage elastic modulus at 30 ° C. was read out and taken as “the storage elastic modulus in the in-plane slow axis direction at 30 ° C.”.
Measuring device: RSA III manufactured by TI Instruments
Gap: 20mm
Measurement conditions: Tensile mode Measurement temperature: 25-210 ° C
Temperature rising condition: 5 ° C / min
Frequency: 1Hz
 [内部ヘイズ]
 内部ヘイズは、JIS K-7136に準拠して、以下の方法で測定した。
 1)洗浄したスライドガラスの上に、グリセリンを一滴(0.05ml)滴下した。このとき、液滴に気泡が入らないように注意した。次いで、滴下したグリセリンの上に、カバーガラスを載せた。カバーガラスは押さえなくてもグリセリンは広がった。得られたブランク測定用のサンプル(カバーガラス/グリセリン/スライドガラス)を、ヘイズメーターにセットして、ヘイズ1(ブランクヘイズ)を測定した。
 2)前記1)と同様にして、洗浄したスライドガラスの上にグリセリンを滴下した。そして、23℃55%RH下で5時間以上調湿した基材フィルムを、滴下したグリセリンの上に気泡が入らないように載せた。さらに、基材フィルム上に0.05mlのグリセリンを滴下した後、カバーガラスをさらに載せた。得られた測定用のサンプル(カバーガラス/グリセリン/基材フィルム/グリセリン/スライドガラス)を、前述のヘイズメーターにセットして、ヘイズ2を測定した。
 3)前記1)で得られたヘイズ1と、前記2)で得られたヘイズ2を、下記式に当てはめて、基材フィルムのヘイズを算出した。
 基材フィルムの内部ヘイズ(%)=ヘイズ2(%)-ヘイズ1(%)
[Internal haze]
The internal haze was measured by the following method according to JIS K-7136.
1) One drop (0.05 ml) of glycerin was dropped on the washed slide glass. At this time, care was taken to prevent bubbles from entering the droplets. Next, a cover glass was placed on the dropped glycerin. The glycerin spreads without holding the cover glass. The obtained blank measurement sample (cover glass / glycerin / slide glass) was set on a haze meter, and haze 1 (blank haze) was measured.
2) In the same manner as in 1) above, glycerin was dropped on the washed slide glass. Then, the base film conditioned at 23 ° C. and 55% RH for 5 hours or more was placed on the dropped glycerin so that no bubbles would enter. Further, 0.05 ml of glycerin was dropped on the substrate film, and then a cover glass was further placed. The obtained sample for measurement (cover glass / glycerin / base film / glycerin / slide glass) was set on the aforementioned haze meter, and haze 2 was measured.
3) The haze 1 of the base film was calculated by applying the haze 1 obtained in 1) and the haze 2 obtained in 2) to the following formula.
Internal haze of substrate film (%) = Haze 2 (%) − Haze 1 (%)
 内部ヘイズの測定は、いずれも23℃55%RHの条件下にて行った。測定に用いたガラスは、MICRO SLIDE GLASS S9213 MATSUNAMIとし;測定に用いたグリセリンは、関東化学製 鹿特級(純度>99.0%)、屈折率1.47とした。測定装置は、日本電色工業社製NDH2000を用いた。 The internal haze was measured under conditions of 23 ° C. and 55% RH. The glass used for the measurement was MICRO SLIDE GLASS S9213 MATSUNAMI; the glycerin used for the measurement was Kanto Chemical's deer special grade (purity> 99.0%) and a refractive index of 1.47. As a measuring device, NDH2000 manufactured by Nippon Denshoku Industries Co., Ltd. was used.
 測定されたヘイズ値を、以下の基準で評価した。
 A:0.04未満
 B:0.04以上0.08未満
 C:0.08以上0.12未満
 D:0.12以上
The measured haze value was evaluated according to the following criteria.
A: Less than 0.04 B: 0.04 or more and less than 0.08 C: 0.08 or more and less than 0.12 D: 0.12 or more
 (2)ハードコートフィルム(偏光板保護フィルム)の作製
 下記成分を混合して、ハードコート層用塗布液を得た。
 ペンタエリスリトールトリアクリレート:20質量部
 ペンタエリスリトールテトラアクリレート:50質量部
 ジペンタエリスリトールヘキサアクリレート:30質量部
 ジペンタエリスリトールペンタアクリレート:30質量部
 イルガキュア184(チバ・ジャパン社製):5質量部
 フッ素-シロキサングラフトポリマーI(35質量%):5質量部
 シーホスターKEP-50(紛体のシリカ粒子、平均粒子径0.47~0.61μm、日本触媒社製):24.3質量部
 プロピレングリコールモノメチルエーテル:20質量部
 酢酸メチル:40質量部
 メチルエチルケトン:60質量部
 なお、フッ素-シロキサングラフトポリマーIは、国際公開第2011/158626号の段落0299~0302に記載の方法で合成したものを用いた。
(2) Preparation of hard coat film (polarizing plate protective film) The following components were mixed to obtain a hard coat layer coating solution.
Pentaerythritol triacrylate: 20 parts by mass Pentaerythritol tetraacrylate: 50 parts by mass Dipentaerythritol hexaacrylate: 30 parts by mass Dipentaerythritol pentaacrylate: 30 parts by mass Irgacure 184 (manufactured by Ciba Japan): 5 parts by mass Fluoro-siloxane Graft polymer I (35% by mass): 5 parts by mass Sea Hoster KEP-50 (powdered silica particles, average particle size 0.47 to 0.61 μm, manufactured by Nippon Shokubai Co., Ltd.): 24.3 parts by mass Propylene glycol monomethyl ether: 20 Part by mass Methyl acetate: 40 parts by mass Methyl ethyl ketone: 60 parts by mass The fluorine-siloxane graft polymer I was synthesized by the method described in paragraphs 0299 to 0302 of International Publication No. 2011/158626.
 得られたハードコート層用塗布液を、上記作製した基材フィルム上に硬化後の厚みが7μmとなるようにダイコータで塗布した。得られた塗布層を70℃で乾燥させた後、窒素雰囲気下で照度300mW/cm、照射量0.3J/cmの条件で紫外線を照射して、塗布層を硬化させた。硬化させた塗布層を有する基材フィルムを130℃で5分間、搬送張力300N/mで搬送しながら加熱処理して、ハードコートフィルムを得た。 The obtained coating liquid for hard coat layer was applied on the prepared base film with a die coater so that the thickness after curing was 7 μm. After drying the obtained coating layer at 70 ° C., the coating layer was cured by irradiating with ultraviolet rays under the conditions of illuminance of 300 mW / cm 2 and irradiation amount of 0.3 J / cm 2 in a nitrogen atmosphere. The base film having the cured coating layer was heat-treated at 130 ° C. for 5 minutes while being transported at a transport tension of 300 N / m to obtain a hard coat film.
 [表面硬度]
 得られたハードコートフィルムのハードコート層の表面硬度を、JIS K5400に準拠した鉛筆高度評価法にて測定した。具体的には、ハードコートフィルムを23℃55%RH下で24時間調湿した。その後、ハードコート層の表面を1kgの重りを用いて各硬度の鉛筆で引っ掻く操作を5回繰り返し、傷が1本以下となる硬度の最大値を求めた。最大値の値が大きいほど、硬度が高いことを示す。
[surface hardness]
The surface hardness of the hard coat layer of the obtained hard coat film was measured by a pencil height evaluation method based on JIS K5400. Specifically, the hard coat film was conditioned at 23 ° C. and 55% RH for 24 hours. Thereafter, the operation of scratching the surface of the hard coat layer with a pencil of each hardness using a 1 kg weight was repeated five times, and the maximum value of the hardness at which one scratch or less was obtained. The larger the maximum value, the higher the hardness.
 (3)偏光板の作製
 厚さ120μmのポリビニルアルコールフィルムを沃素1質量部、ホウ酸4質量部を含む水溶液100質量部に浸漬し、50℃で、搬送方向の延伸倍率6倍に延伸して、厚み20μmの偏光子を得た。
(3) Production of Polarizing Plate A polyvinyl alcohol film having a thickness of 120 μm was immersed in 100 parts by mass of an aqueous solution containing 1 part by mass of iodine and 4 parts by mass of boric acid, and stretched at 50 ° C. to a stretching ratio of 6 times in the transport direction. A polarizer having a thickness of 20 μm was obtained.
 上記得られた偏光子を、以下の条件でアルカリ鹸化処理した。
 ケン化工程:2.5M-NaOH 50℃ 90秒
 水洗工程:水 30℃ 45秒
 中和工程:10質量部HCl 30℃ 45秒
 水洗工程:水 30℃ 45秒
The obtained polarizer was subjected to alkali saponification treatment under the following conditions.
Saponification step: 2.5 M NaOH 50 ° C. 90 seconds Water washing step: Water 30 ° C. 45 seconds Neutralization step: 10 parts by mass HCl 30 ° C. 45 seconds Water washing step: water 30 ° C. 45 seconds
 ケン化処理後、水洗、中和、水洗の順に行い、次いで80℃で乾燥させた。その後、上記作製した偏光子の両方の面に、完全鹸化型ポリビニルアルコール水溶液を介して上記作製した偏光板保護フィルムをそれぞれ貼り合わせた。貼り合わせた積層物を乾燥させて、長尺状の偏光板とした。貼り合わせは、偏光子の透過軸と偏光板保護フィルムの面内遅相軸とが平行になるように、かつ偏光板保護フィルムの基材フィルムが偏光子と接するように行った。 After the saponification treatment, washing with water, neutralization and washing with water were carried out in this order, followed by drying at 80 ° C. Thereafter, the prepared polarizing plate protective films were bonded to both surfaces of the prepared polarizer through a completely saponified polyvinyl alcohol aqueous solution. The laminated laminate was dried to obtain a long polarizing plate. The bonding was performed so that the transmission axis of the polarizer and the in-plane slow axis of the polarizing plate protective film were parallel, and the base film of the polarizing plate protective film was in contact with the polarizer.
 [偏光板の打ち抜き加工性]
 得られた偏光板試料を、576×324mmサイズに10cm角のトムソン刃(40°)を用いて、50kNの圧縮力で裁断(打ち抜き加工)し、偏光板を得た。
 打ち抜き加工後の偏光板の端部(切断面)について、10倍ルーペを用いて端部(切断面)の状態を観察し、以下の基準でヒビ割れ・ささくれの評価を行った。
 ◎:ヒビ割れ・ささくれの発生が全く無いレベル
 ○:ヒビ割れ・ささくれの発生がごく僅かに見られるが実用上問題ないレベル
 △:ヒビ割れ・ささくれの発生が僅かに見られるレベル
 ×:ヒビ割れ・ささくれの発生が見られるレベル
[Punching workability of polarizing plate]
The obtained polarizing plate sample was cut (punched) with a compression force of 50 kN using a 10 cm square Thomson blade (40 °) in a size of 576 × 324 mm to obtain a polarizing plate.
About the edge part (cut surface) of the polarizing plate after a punching process, the state of the edge part (cut surface) was observed using the 10 times loupe, and the crack and the crack were evaluated on the following references | standards.
◎: Level at which no cracking / crushing occurs ○: Cracking / crushing is slightly observed but there is no practical problem △: Cracking / crushing is slightly observed ×: Cracking・ Level where occurrence of sasare is seen
 [偏光子劣化]
 得られた偏光板の透過率T0を、JIS K 7136に準拠して、日本電色工業社製NDH2000を用いて測定した。次いで、この偏光板を80℃90%RHで120時間処理した後、前述と同様の方法で透過率Tdを測定した。得られた値を下記式に当てはめて、透過率の差ΔTを求めた。
 透過率の差ΔT(%)=Td(処理後の透過率)-T0(処理前の透過率)
 そして、偏光子劣化を、以下の基準で評価した。
 ◎:ΔTが1%未満
 〇:ΔTが1%以上5%未満
 △:ΔTが5%以上10%未満
 ×:ΔTが10%以上15%未満
 ××:ΔTが15%以上
[Polarizer degradation]
The transmittance T0 of the obtained polarizing plate was measured using NDH2000 manufactured by Nippon Denshoku Industries Co., Ltd. in accordance with JIS K7136. Next, after this polarizing plate was treated at 80 ° C. and 90% RH for 120 hours, the transmittance Td was measured by the same method as described above. The obtained value was applied to the following formula to determine the transmittance difference ΔT.
Transmittance difference ΔT (%) = Td (transmittance after processing) −T0 (transmittance before processing)
Then, polarizer deterioration was evaluated according to the following criteria.
◎: ΔT is less than 1% ○: ΔT is 1% or more and less than 5% △: ΔT is 5% or more and less than 10% ×: ΔT is 10% or more and less than 15% XX: ΔT is 15% or more
 <実施例2~5、比較例1~8>
 ポリエステル系添加剤の種類を表2に示されるように変更した以外は実施例1と同様にして基材フィルムを作製した。また、実施例1と同様にして偏光板保護フィルム及び偏光板を作製し、同様の評価を行った。
<Examples 2 to 5, Comparative Examples 1 to 8>
A base film was produced in the same manner as in Example 1 except that the type of the polyester-based additive was changed as shown in Table 2. Moreover, the polarizing plate protective film and the polarizing plate were produced like Example 1, and the same evaluation was performed.
 <実施例6~8、比較例9>
 基材フィルムの膜厚を表3に示されるように変更した以外は実施例1と同様にして基材フィルムを作製した。また、実施例1と同様にして偏光板保護フィルム及び偏光板を作製し、同様の評価を行った。
<Examples 6 to 8, Comparative Example 9>
A base film was produced in the same manner as in Example 1 except that the thickness of the base film was changed as shown in Table 3. Moreover, the polarizing plate protective film and the polarizing plate were produced like Example 1, and the same evaluation was performed.
 <実施例9~12>
 ポリエステル系添加剤の添加量を表4に示されるように変更した以外は実施例1と同様にして基材フィルムを作製した。また、実施例1と同様にして偏光板保護フィルム及び偏光板を作製し、同様の評価を行った。
<Examples 9 to 12>
A base film was produced in the same manner as in Example 1 except that the addition amount of the polyester-based additive was changed as shown in Table 4. Moreover, the polarizing plate protective film and the polarizing plate were produced like Example 1, and the same evaluation was performed.
 <実施例13及び比較例10>
 延伸条件を表5に示されるように変更した以外は実施例1と同様にして実施例13の基材フィルムを作製し;延伸条件を表5に示されるように変更した以外は比較例4と同様にして比較例10の基材フィルムを作製した。そして、実施例1と同様にして偏光板保護フィルム及び偏光板を作製し、同様の評価を行った。
<Example 13 and Comparative Example 10>
A base film of Example 13 was produced in the same manner as in Example 1 except that the stretching conditions were changed as shown in Table 5; Comparative Example 4 was changed except that the stretching conditions were changed as shown in Table 5 Similarly, a base film of Comparative Example 10 was produced. And the polarizing plate protective film and the polarizing plate were produced like Example 1, and the same evaluation was performed.
 実施例1~5及び比較例1~8の評価結果を表2に示し;実施例6~8及び比較例9の評価結果を表3に示し;実施例9~12の評価結果を表4に示し;実施例13及び比較例10の評価結果を表5に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
The evaluation results of Examples 1 to 5 and Comparative Examples 1 to 8 are shown in Table 2, the evaluation results of Examples 6 to 8 and Comparative Example 9 are shown in Table 3, and the evaluation results of Examples 9 to 12 are shown in Table 4. Table 5 shows the evaluation results of Example 13 and Comparative Example 10.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 表2に示されるように、実施例1~5は、比較例1~8よりも偏光板保護フィルムの表面硬度が高く、かつ偏光板の打ち抜き性も良好であることがわかる。これは、実施例1~5の基材フィルムが、環構造を有するOH基含有モノカルボン酸で末端封止されたポリエステル系添加剤を含むことから、基材フィルムの貯蔵弾性率が高く、かつ良好な靱性を有するためであると考えられる。 As shown in Table 2, it can be seen that Examples 1 to 5 have higher surface hardness of the polarizing plate protective film and better punchability of the polarizing plate than Comparative Examples 1 to 8. This is because the base film of Examples 1 to 5 contains a polyester-based additive end-capped with an OH group-containing monocarboxylic acid having a ring structure, so that the storage elastic modulus of the base film is high, and This is considered to be because of having good toughness.
 また、実施例1の偏光板は、比較例1、6及び7の偏光板よりも、偏光子劣化が少ないことがわかる。これは、ポリエステル系添加剤の分子末端を封止すること;特に疎水性の高い芳香族環を含むモノカルボン酸で封止することで、基材フィルムの疎水性が高められたためと考えられる。 Further, it can be seen that the polarizing plate of Example 1 has less polarizer deterioration than the polarizing plates of Comparative Examples 1, 6 and 7. This is considered to be because the hydrophobicity of the base film was enhanced by sealing the molecular ends of the polyester-based additive; particularly by sealing with a monocarboxylic acid containing an aromatic ring having high hydrophobicity.
 また、実施例1の基材フィルムは、実施例5の基材フィルムよりも、貯蔵弾性率が高く、かつ内部ヘイズが低いことがわかる。実施例1の基材フィルムの内部ヘイズが低いのは、ポリエステル系添加剤が実施例5のポリエステル系可塑剤よりも低分子量であることから、セルロースエステルに対する相溶性が高いためであると考えられる。実施例1の貯蔵弾性率が高いのは、ポリエステル系可塑剤のセルロースエステルに対する相溶性が高いことから、秩序性が高く、延伸により配向しやすいためであると考えられる。 Moreover, it turns out that the base film of Example 1 has a higher storage elastic modulus and lower internal haze than the base film of Example 5. The reason why the internal haze of the base film of Example 1 is low is considered to be because the polyester-based additive has a lower molecular weight than the polyester-based plasticizer of Example 5, and is therefore highly compatible with the cellulose ester. . The reason why the storage elastic modulus of Example 1 is high is considered to be that since the compatibility of the polyester plasticizer with the cellulose ester is high, the ordering property is high and the film is easily oriented by stretching.
 表3に示されるように、基材フィルムの膜厚が15μm以上であると、偏光板保護フィルムの表面硬度を高め、かつ偏光板の打ち抜き性を良好にできることがわかる。基材フィルムの膜厚が50μm以下であると、薄膜化の観点から有利であることが示される。 As shown in Table 3, it can be seen that when the film thickness of the substrate film is 15 μm or more, the surface hardness of the polarizing plate protective film can be increased and the punching property of the polarizing plate can be improved. It is shown that it is advantageous from a viewpoint of thin film formation that the film thickness of a base film is 50 micrometers or less.
 表4に示されるように、ポリエステル系添加剤の含有量がセルロースエステル100質量部に対して20質量部以下であると、内部ヘイズを過剰に高めることなく、基材フィルムの貯蔵弾性率を高められることが示される。5質量部以上であると、偏光子劣化を抑制できることが示される。これは、基材フィルムの透湿度が低減されるためであると考えられる(実施例9~12参照)。 As shown in Table 4, when the content of the polyester-based additive is 20 parts by mass or less with respect to 100 parts by mass of the cellulose ester, the storage elastic modulus of the base film is increased without excessively increasing the internal haze. It is shown that It is shown that a polarizer deterioration can be suppressed as it is 5 mass parts or more. This is considered to be because the moisture permeability of the base film is reduced (see Examples 9 to 12).
 表5に示されるように、高温で延伸した実施例1や比較例4の基材フィルムは、低温で延伸した実施例13や比較例10の基材フィルムよりも内部ヘイズが低いことがわかる。これは、高温で延伸することで、過剰な延伸応力がかかるのを抑制できるからであると考えられる。 As shown in Table 5, it can be seen that the base films of Example 1 and Comparative Example 4 stretched at high temperatures have lower internal haze than the base films of Example 13 and Comparative Example 10 stretched at low temperatures. This is considered to be because an excessive stretching stress can be suppressed by stretching at a high temperature.
 本出願は、2015年1月9日出願の特願2015-003496に基づく優先権を主張する。当該出願明細書および図面に記載された内容は、すべて本願明細書に援用される。 This application claims priority based on Japanese Patent Application No. 2015-003496 filed on Jan. 9, 2015. The contents described in the application specification and the drawings are all incorporated herein.
 本発明によれば、薄膜化しても、高い表面硬度を有し、かつ偏光板製造時の打ち抜き加工性の低下や偏光子劣化などを抑制しうる偏光板保護フィルムを提供できる。 According to the present invention, it is possible to provide a polarizing plate protective film that has a high surface hardness even when it is thinned, and that can suppress a decrease in punching processability and polarizer deterioration during the production of a polarizing plate.
 10 液晶表示装置
 30 液晶セル
 50 第一の偏光板
 51 第一の偏光子
 53 保護フィルム(F1)
 55 保護フィルム(F2)
 70 第二の偏光板
 71 第二の偏光子
 73 保護フィルム(F3)
 75 保護フィルム(F4)
 90 バックライト
DESCRIPTION OF SYMBOLS 10 Liquid crystal display device 30 Liquid crystal cell 50 1st polarizing plate 51 1st polarizer 53 Protective film (F1)
55 Protective film (F2)
70 Second polarizing plate 71 Second polarizer 73 Protective film (F3)
75 Protective film (F4)
90 backlight

Claims (8)

  1.  基材フィルムと、活性エネルギー線硬化物層とを含む偏光板保護フィルムであって、
     前記基材フィルムは、セルロースエステルと、下記式(1)で表されるポリエステル系添加剤とを含み、
     前記基材フィルムは、膜厚が15~50μmであり、かつ30℃における面内遅相軸方向の貯蔵弾性率が5.0~7.0GPaである、偏光板保護フィルム。
     式(1):B-(G-A)n-G-B
    (式(1)中、
     Bは、環構造を含むヒドロキシル基含有モノカルボン酸から誘導される基であり、
     Gは、炭素原子数2~12のアルキレンジオール、炭素原子数6~12のシクロアルキレンジオール、炭素原子数4~12のオキシアルキレンジオール及び炭素原子数6~12のアリーレンジオールからなる群より選ばれる少なくとも一種から誘導される基であり、
     Aは、炭素原子数4~12のアルキレンジカルボン酸、炭素原子数6~16のシクロアルキレンジカルボン酸、及び炭素原子数8~16のアリーレンジカルボン酸からなる群より選ばれる少なくとも一種から誘導される基であり、
     nは、0以上の整数を表す)
    A polarizing plate protective film comprising a base film and an active energy ray cured product layer,
    The base film includes a cellulose ester and a polyester-based additive represented by the following formula (1),
    The substrate film is a polarizing plate protective film having a film thickness of 15 to 50 μm and a storage elastic modulus in the in-plane slow axis direction at 30 ° C. of 5.0 to 7.0 GPa.
    Formula (1): B- (GA) n-GB
    (In the formula (1),
    B is a group derived from a hydroxyl group-containing monocarboxylic acid containing a ring structure;
    G is selected from the group consisting of alkylene diols having 2 to 12 carbon atoms, cycloalkylene diols having 6 to 12 carbon atoms, oxyalkylene diols having 4 to 12 carbon atoms, and arylene diols having 6 to 12 carbon atoms. A group derived from at least one species,
    A represents a group derived from at least one selected from the group consisting of alkylene dicarboxylic acids having 4 to 12 carbon atoms, cycloalkylene dicarboxylic acids having 6 to 16 carbon atoms, and arylenedicarboxylic acids having 8 to 16 carbon atoms. And
    n represents an integer of 0 or more)
  2.  前記式(1)のBは、芳香族炭化水素環を含むヒドロキシル基含有モノカルボン酸から誘導される基である、請求項1に記載の偏光板保護フィルム。 The polarizing plate protective film according to claim 1, wherein B in the formula (1) is a group derived from a hydroxyl group-containing monocarboxylic acid containing an aromatic hydrocarbon ring.
  3.  前記ポリエステル系添加剤の数平均分子量は300以上700未満である、請求項1に記載の偏光板保護フィルム。 The polarizing plate protective film according to claim 1, wherein the polyester-based additive has a number average molecular weight of 300 or more and less than 700.
  4.  前記基材フィルムにおける前記ポリエステル系添加剤の含有量が、前記セルロースエステル100質量部に対して5~20質量部である、請求項1に記載の偏光板保護フィルム。 2. The polarizing plate protective film according to claim 1, wherein the content of the polyester-based additive in the base film is 5 to 20 parts by mass with respect to 100 parts by mass of the cellulose ester.
  5.  前記活性エネルギー線硬化物層は、ハードコート層又はアンチグレア層である、請求項1に記載の偏光板保護フィルム。 The polarizing plate protective film according to claim 1, wherein the active energy ray cured product layer is a hard coat layer or an antiglare layer.
  6.  請求項1に記載の偏光板保護フィルムの製造方法であって、
     セルロースエステルと、下記式(1)で表されるポリエステル系添加剤とを含む膜状物を140~180℃の温度で5~30%の倍率で延伸して基材フィルムを得る工程と、
     前記基材フィルム上に活性エネルギー線硬化物層用組成物を塗布した後、乾燥及び硬化させて、活性エネルギー線硬化物層を得る工程とを含む、偏光板保護フィルムの製造方法。
     式(1):B-(G-A)n-G-B
    (式(1)中、
     Bは、環構造を含むヒドロキシル基含有モノカルボン酸から誘導される基であり、
     Gは、炭素原子数2~12のアルキレンジオール、炭素原子数6~12のシクロアルキレンジオール、炭素原子数4~12のオキシアルキレンジオール及び炭素原子数6~12のアリーレンジオールからなる群より選ばれる少なくとも一種から誘導される基であり、
     Aは、炭素原子数4~12のアルキレンジカルボン酸、炭素原子数6~16のシクロアルキレンジカルボン酸、及び炭素原子数8~16のアリーレンジカルボン酸からなる群より選ばれる少なくとも一種から誘導される基であり、
     nは、0以上の整数を表す)
    It is a manufacturing method of the polarizing plate protective film according to claim 1,
    Stretching a film-like material containing a cellulose ester and a polyester-based additive represented by the following formula (1) at a temperature of 140 to 180 ° C. at a magnification of 5 to 30% to obtain a base film;
    The manufacturing method of a polarizing plate protective film including the process of apply | coating the composition for active energy ray hardened | cured material layers on the said base film, and making it dry and harden | cure and obtaining an active energy ray hardened | cured material layer.
    Formula (1): B- (GA) n-GB
    (In the formula (1),
    B is a group derived from a hydroxyl group-containing monocarboxylic acid containing a ring structure;
    G is selected from the group consisting of alkylene diols having 2 to 12 carbon atoms, cycloalkylene diols having 6 to 12 carbon atoms, oxyalkylene diols having 4 to 12 carbon atoms, and arylene diols having 6 to 12 carbon atoms. A group derived from at least one species,
    A represents a group derived from at least one selected from the group consisting of alkylene dicarboxylic acids having 4 to 12 carbon atoms, cycloalkylene dicarboxylic acids having 6 to 16 carbon atoms, and arylenedicarboxylic acids having 8 to 16 carbon atoms. And
    n represents an integer of 0 or more)
  7.  偏光子と、請求項1に記載の偏光板保護フィルムとを含み、
     前記偏光板保護フィルムの基材フィルムが前記偏光子と接している、偏光板。
    Including a polarizer and the polarizing plate protective film according to claim 1,
    The polarizing plate with which the base film of the said polarizing plate protective film is in contact with the said polarizer.
  8.  液晶セルと、前記液晶セルを挟持する第一の偏光板と第二の偏光板とを有し、
     前記第一の偏光板は、第一の偏光子と、前記第一の偏光子の液晶セルとは反対側の面に配置された偏光板保護フィルムとを有し、
     前記第二の偏光板は、第二の偏光子と、前記第二の偏光子の液晶セルとは反対側の面に配置された偏光板保護フィルムとを有し、
     前記第一の偏光板の偏光板保護フィルムが、請求項1に記載の偏光板保護フィルムであり、かつ前記第一の偏光板の偏光板保護フィルムの基材フィルムが前記第一の偏光子と接しているか、又は
     前記第二の偏光板の偏光板保護フィルムが請求項1に記載の偏光板保護フィルムであり、かつ前記第二の偏光板の偏光板保護フィルムの基材フィルムが前記第二の偏光子と接している、液晶表示装置。
    A liquid crystal cell, and a first polarizing plate and a second polarizing plate sandwiching the liquid crystal cell,
    The first polarizing plate has a first polarizer and a polarizing plate protective film disposed on a surface opposite to the liquid crystal cell of the first polarizer,
    The second polarizing plate has a second polarizer and a polarizing plate protective film disposed on the surface opposite to the liquid crystal cell of the second polarizer,
    The polarizing plate protective film of the first polarizing plate is the polarizing plate protective film according to claim 1, and the base film of the polarizing plate protective film of the first polarizing plate is the first polarizer. The polarizing plate protective film of the second polarizing plate is the polarizing plate protective film according to claim 1, and the base film of the polarizing plate protective film of the second polarizing plate is the second polarizing plate. A liquid crystal display device in contact with the polarizer.
PCT/JP2016/050251 2015-01-09 2016-01-06 Polarizing plate protective film, production method therefor, polarizing plate, and liquid crystal display device WO2016111316A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016568738A JPWO2016111316A1 (en) 2015-01-09 2016-01-06 Polarizing plate protective film and manufacturing method thereof, polarizing plate and liquid crystal display device
KR1020177017768A KR20170088974A (en) 2015-01-09 2016-01-06 Polarizing plate protective film, production method therefor, polarizing plate, and liquid crystal display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015003496 2015-01-09
JP2015-003496 2015-01-09

Publications (1)

Publication Number Publication Date
WO2016111316A1 true WO2016111316A1 (en) 2016-07-14

Family

ID=56356002

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/050251 WO2016111316A1 (en) 2015-01-09 2016-01-06 Polarizing plate protective film, production method therefor, polarizing plate, and liquid crystal display device

Country Status (3)

Country Link
JP (1) JPWO2016111316A1 (en)
KR (1) KR20170088974A (en)
WO (1) WO2016111316A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016155948A (en) * 2015-02-25 2016-09-01 Dic株式会社 Modifier for cellulose ester resin, cellulose ester resin composition, optical film and liquid crystal display device
WO2017098831A1 (en) * 2015-12-11 2017-06-15 Dic株式会社 Modifier for cellulose ester resin, cellulose ester resin composition, optical film, and liquid crystal display device
JP2018053049A (en) * 2016-09-28 2018-04-05 株式会社Adeka Resin modifier and resin composition prepared therewith
KR101952364B1 (en) * 2017-10-27 2019-02-26 에스케이씨 주식회사 Polarizing plate protective film and liquid crystal display comprising the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101917963B1 (en) * 2017-11-24 2018-11-12 주식회사 엘지화학 Polarizing plate and image display apparatus comprising the same
KR102201548B1 (en) * 2018-01-10 2021-01-11 주식회사 엘지화학 Coating composition, polarizer protecting film, manufacturing method of polarizer protecting film, polarizing plate comprising same and liquid crystal display device comprising same
CN112088324B (en) * 2018-05-28 2022-07-19 杉金光电(苏州)有限公司 Polarizing plate, method for manufacturing the same, and image display device including the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008262161A (en) * 2007-01-23 2008-10-30 Fujifilm Corp Optical compensation film, method of manufacturing optical compensation film, polarizing plate and liquid crystal display device
JP2010271620A (en) * 2009-05-25 2010-12-02 Konica Minolta Opto Inc Polarizing plate protectingfilm
WO2012073692A1 (en) * 2010-11-29 2012-06-07 コニカミノルタオプト株式会社 Cellulose ester film, method for producing same, and polarizing plate using same
JP2013127058A (en) * 2011-11-14 2013-06-27 Fujifilm Corp Cellulose acylate film, polarizing plate protective film, polarizing plate, and liquid crystal display device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008262161A (en) * 2007-01-23 2008-10-30 Fujifilm Corp Optical compensation film, method of manufacturing optical compensation film, polarizing plate and liquid crystal display device
JP2010271620A (en) * 2009-05-25 2010-12-02 Konica Minolta Opto Inc Polarizing plate protectingfilm
WO2012073692A1 (en) * 2010-11-29 2012-06-07 コニカミノルタオプト株式会社 Cellulose ester film, method for producing same, and polarizing plate using same
JP2013127058A (en) * 2011-11-14 2013-06-27 Fujifilm Corp Cellulose acylate film, polarizing plate protective film, polarizing plate, and liquid crystal display device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016155948A (en) * 2015-02-25 2016-09-01 Dic株式会社 Modifier for cellulose ester resin, cellulose ester resin composition, optical film and liquid crystal display device
WO2017098831A1 (en) * 2015-12-11 2017-06-15 Dic株式会社 Modifier for cellulose ester resin, cellulose ester resin composition, optical film, and liquid crystal display device
JPWO2017098831A1 (en) * 2015-12-11 2018-09-27 Dic株式会社 Cellulose ester resin modifier, cellulose ester resin composition, optical film and liquid crystal display device
JP2018053049A (en) * 2016-09-28 2018-04-05 株式会社Adeka Resin modifier and resin composition prepared therewith
WO2018061773A1 (en) * 2016-09-28 2018-04-05 株式会社Adeka Modifier for resin, and resin composition using same
CN109642047A (en) * 2016-09-28 2019-04-16 株式会社Adeka Modifier for resin and the resin combination for using it
KR101952364B1 (en) * 2017-10-27 2019-02-26 에스케이씨 주식회사 Polarizing plate protective film and liquid crystal display comprising the same

Also Published As

Publication number Publication date
JPWO2016111316A1 (en) 2017-11-02
KR20170088974A (en) 2017-08-02

Similar Documents

Publication Publication Date Title
WO2016111316A1 (en) Polarizing plate protective film, production method therefor, polarizing plate, and liquid crystal display device
KR101216785B1 (en) Polarizing plate and liquid crystal display device manufactured using the same
KR101240049B1 (en) Cellulose Ester Film, Polarizer for In-Plane Switching Display Employing the Same, and In-Plane Switching Display
JP5315993B2 (en) Polarizing plate protective film, polarizing plate, liquid crystal display device
JP6015469B2 (en) Optical film roll, polarizing plate, and liquid crystal display device
JP5751249B2 (en) Hard coat film, method for producing the same, polarizing plate, and liquid crystal display device
KR20080039933A (en) Liquid crystal display
JP5479258B2 (en) Cellulose acylate film, production method thereof, polarizing plate and liquid crystal display device using the same
JP2012093723A (en) Optical film, polarizing plate, image display device and method for manufacturing optical film
JP2006342227A (en) Cellulose ester film, polarizing plate, and liquid crystal display device
WO2015133356A1 (en) Polarizing plate, method for producing polarizing plate, and liquid crystal display device
WO2011055624A1 (en) Polarizing plate and liquid crystal display device
JP2006292895A (en) Transparent film, and liquid crystal display element and liquid crystal display using the transparent film
JP2006292890A (en) Transparent film, and liquid crystal display element and liquid crystal display using the transparent film
WO2014068802A1 (en) Optical film, method for producing optical film, polarizing plate and liquid crystal display device
WO2015146890A1 (en) Optical film, method for producing same, polarizing plate and liquid crystal display device
JP6020563B2 (en) Polarizer
WO2016199509A1 (en) High-orientation film having different type of resin unevenly distributed on surface thereof, method for producing same, and polarizing plate, liquid crystal display device, decorative film and gas barrier film each manufactured using same
JP6048506B2 (en) Optical film
WO2014178178A1 (en) Polarizing plate and liquid crystal display device
JP5751054B2 (en) Optical film manufacturing method and polarizing plate
US20120207976A1 (en) Polarizing plate and liquid crystal display employing the same
WO2016178371A1 (en) Polarizing-plate protecting film, polarizing plate provided with same, liquid crystal display device, and method for manufacturing polarizing-plate protecting film
JP5531929B2 (en) Light scattering film, light scattering polarizing plate, and liquid crystal display device
JP2016093958A (en) Optical film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16735055

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016568738

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177017768

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16735055

Country of ref document: EP

Kind code of ref document: A1