WO2016111086A1 - Light emitting device, display device and lighting device - Google Patents

Light emitting device, display device and lighting device Download PDF

Info

Publication number
WO2016111086A1
WO2016111086A1 PCT/JP2015/081942 JP2015081942W WO2016111086A1 WO 2016111086 A1 WO2016111086 A1 WO 2016111086A1 JP 2015081942 W JP2015081942 W JP 2015081942W WO 2016111086 A1 WO2016111086 A1 WO 2016111086A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
wavelength
emitting device
wavelength conversion
optical axis
Prior art date
Application number
PCT/JP2015/081942
Other languages
French (fr)
Japanese (ja)
Inventor
大川 真吾
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Publication of WO2016111086A1 publication Critical patent/WO2016111086A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/04Simple or compound lenses with non-spherical faces with continuous faces that are rotationally symmetrical but deviate from a true sphere, e.g. so called "aspheric" lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof

Definitions

  • the present disclosure relates to a light emitting device, and a display device and a lighting device including the light emitting device.
  • Patent Document 1 discloses a so-called direct-type backlight that forms white light by a combination of a plurality of blue LEDs arranged on a substrate and a wavelength conversion sheet covering the whole.
  • Patent Document 2 discloses a surface light source that forms white light in which a blue LED, a reflector, a diffusion sheet, and a phosphor layer that performs wavelength conversion are sequentially laminated.
  • Patent Document 1 it is considered that yellow tends to be stronger in the vicinity of the blue LED than directly above.
  • the structure is complicated and there exists a possibility that the difference in the brightness
  • a light emitting device used as a surface light source it is strongly desired to efficiently emit light with less luminance unevenness and color deviation in the surface.
  • a light emitting device capable of emitting light having higher uniformity in a plane, and a display device and an illumination device including the light emitting device.
  • a light-emitting device includes a plurality of light sources that are arranged on a substrate and emits first wavelength light, a light diffusion member that covers the plurality of light sources, and a light source and a light diffusion member in the thickness direction. And a plurality of wavelength conversion members that are arranged in a region corresponding to the plurality of light sources in the plane and convert the first wavelength light from the light sources into the second wavelength light, and the plurality of light sources And a plurality of light beam control members that are respectively disposed between the plurality of wavelength conversion members and control the traveling direction of the first wavelength light.
  • a display device and a lighting device as an embodiment of the present disclosure include the light emitting device.
  • the plurality of wavelength conversion members are disposed between the light source and the light diffusion member in the thickness direction, and each of the plurality of light sources in the plane. It is placed in the corresponding area.
  • the wavelength conversion to the second wavelength light is appropriately performed while reducing the intensity of the first wavelength light that is directly incident on the light diffusing member from the light source.
  • the amount of wavelength conversion member used is reduced as compared with the case where a single sheet-like wavelength conversion member is provided over the entire surface.
  • a light beam control member for controlling the traveling direction of the first wavelength light is provided between the light source and the wavelength conversion member. Thereby, the intensity of the first wavelength light directly incident on the light diffusion member from the light source is further reduced, and the intensity distribution of the first wavelength light incident on the wavelength conversion member is further flattened.
  • the light emitting device as an embodiment of the present disclosure, it is possible to emit light having higher uniformity in the plane while suppressing deterioration of the wavelength conversion member. That is, light with less luminance unevenness and color deviation can be efficiently emitted in the plane. For this reason, according to the display device using this light emitting device, display performance excellent in color reproducibility and the like can be exhibited. Moreover, according to the illuminating device using this light-emitting device, more homogeneous illumination can be performed on the object. In addition, the effect of this indication is not limited to this, Any effect described below may be sufficient.
  • FIG. 3A It is a perspective view showing the example of whole composition of a light emitting device concerning a 1st embodiment in this indication. It is a perspective view showing the structure of the principal part of the light-emitting device shown in FIG. It is another perspective view showing the structure of the principal part of the light-emitting device shown in FIG. It is sectional drawing showing the structure of the principal part of the light-emitting device shown in FIG. It is sectional drawing showing the 1st modification of the light beam control member shown to FIG. 3A. It is an expanded sectional view showing the detail of the light beam control member shown in FIG. 3A. It is explanatory drawing for demonstrating the method to prescribe
  • FIG. 6 is an exploded perspective view showing the main body shown in FIG. 5.
  • FIG. 6B is a perspective view illustrating the panel module illustrated in FIG. 6A in an exploded manner. It is a perspective view showing the external appearance of the electronic book (application example 1) carrying the display apparatus of this indication. It is a perspective view showing the external appearance of the other electronic book (application example 1) carrying the display apparatus of this indication.
  • FIG. 1 It is a perspective view showing the external appearance of the smart phone (application example 2) carrying the display apparatus of this indication. It is a perspective view showing the external appearance from the front of the digital camera (application example 3) carrying the display apparatus of this indication. It is a perspective view showing the appearance from the back of a digital camera (application example 3) carrying a display device of this indication. It is a perspective view showing the external appearance of the notebook type personal computer (application example 4) carrying the display apparatus of this indication. It is a perspective view showing the external appearance of the video camera (application example 5) carrying the display apparatus of this indication.
  • FIG. 1 It is a perspective view showing the external appearance of the smart phone (application example 2) carrying the display apparatus of this indication. It is a perspective view showing the external appearance from the front of the digital camera (application example 3) carrying the display apparatus of this indication. It is a perspective view showing the appearance from the back of a digital camera (application example 3) carrying a display device of this indication. It is a perspective view showing the external appearance of the notebook type personal computer
  • FIG. 7 is a front view, a left side view, a right side view, a top view, and a bottom view showing an external appearance of a cellular phone (Application Example 6) in which the display device of the present disclosure is mounted in a closed state. It is the front view and side view showing the external appearance of the open state of the mobile telephone (application example 6) carrying the display apparatus of this indication. It is a perspective view showing the external appearance of the 1st illuminating device (application example 7) provided with the light-emitting device of this indication. It is a perspective view showing the external appearance of the 2nd illuminating device (application example 8) provided with the light-emitting device of this indication.
  • FIG. 10 is a plan view illustrating a planar shape of a portion immediately above a wavelength conversion unit and a planar shape of a light reflecting member in Experimental Example 2.
  • it is a top view showing the plane shape of the portion right above a wavelength conversion part, and the plane shape of a light reflection member.
  • It is sectional drawing showing the shape and dimension of a light beam control member in example 1 of an experiment.
  • FIG. 1 It is sectional drawing showing the shape and dimension of a light beam control member in example 2 of an experiment. It is sectional drawing showing the optical path of the 1st wavelength light which goes to the wavelength conversion part from the light source in Experimental example 1.
  • FIG. It is sectional drawing showing the optical path of the 1st wavelength light which goes to the wavelength conversion part from the light source in Experimental example 2.
  • FIG. It is sectional drawing showing the optical path of the 1st wavelength light which goes to a wavelength conversion part from a light source in a reference example. It is a characteristic view showing the illuminance distribution of the 1st wavelength light which goes to a wavelength conversion part from the light source in Experimental example 1.
  • FIG. 1 It is a characteristic view showing the illuminance distribution of the 1st wavelength light which goes to a wavelength conversion part from the light source in Experimental example 2.
  • FIG. It is a characteristic view showing the illumination intensity distribution of the 1st wavelength light which goes to a wavelength conversion part from a light source in a reference example. It is a characteristic view which compares and represents the luminance distribution of the 1st wavelength light which goes to the wavelength conversion part from a light source in Experimental example 1, 2 and a reference example. It is sectional drawing showing the shape and dimension of a light beam control member in example 3 of an experiment. It is sectional drawing showing the optical path of the 1st wavelength light which goes to the wavelength conversion part from the light source in Experimental example 3.
  • FIG. 6 is a characteristic diagram showing the relationship between the incident angle and the exit angle for the light beam control member used in each sample of Experimental Examples 1 to 3 and Reference Example. It is sectional drawing showing the shape and dimension of the 3rd modification of a light beam control member. It is sectional drawing showing the optical path of the 1st wavelength light which goes to the wavelength conversion part from the light source in the light-emitting device using the light beam control member as a 3rd modification. It is a top view showing the semi-transmissive member as a light beam control member. It is sectional drawing showing the semi-transmissive member shown to FIG. 24A.
  • First Embodiment A light emitting device having a plurality of light beam control members at positions corresponding to respective light sources.
  • Second embodiment display device; liquid crystal display device
  • Third embodiment display device; liquid crystal display device
  • Application example of display device 4.
  • FIG. 1 illustrates an overall configuration of a light emitting device 1 as a first embodiment of the present disclosure.
  • 2A and 2B are perspective views illustrating an enlarged main part of the light emitting device 1.
  • FIG. 3A is an enlarged cross-sectional view illustrating a main part of the light emitting device 1.
  • the light emitting device 1 is used, for example, as a backlight that illuminates a transmissive liquid crystal panel from behind, or as a lighting device in a room or the like.
  • the light emitting device 1 includes, for example, a plurality of light sources 10 (see FIG. 3A), a wavelength conversion unit 20, an optical sheet 30, and a lens unit 70.
  • the wavelength conversion unit 20 corresponds to a specific example of the “wavelength conversion member” of the present disclosure
  • the optical sheet 30 corresponds to a specific example of the “light diffusion member” of the present disclosure
  • the lens unit 70 corresponds to the present disclosure. This corresponds to a specific example of “light beam control member”.
  • the light emitting device 1 may further include, for example, a reflective substrate 40, a stud 50 (see FIG. 3A), a light reflecting member 60, and the like.
  • the plurality of light sources 10 are arranged on the reflective substrate 40, for example, in a matrix.
  • the optical sheet 30 is placed on the tops of the plurality of studs 50 erected on the surface 40 ⁇ / b> S of the reflective substrate 40. Thereby, the optical sheet 30 is disposed facing the reflective substrate 40 so as to cover the plurality of light sources 10 in common.
  • the front surface 40S and the back surface 30S of the optical sheet 30 are held at a constant distance L4 by a plurality of studs 50 (see FIG. 3A).
  • the wavelength conversion unit 20 is disposed between the light source 10 and the optical sheet 30 in the Z direction.
  • the wavelength conversion unit 20 is arranged so as to occupy regions corresponding to the plurality of light sources 10 in the XY plane.
  • the lens unit 70 is disposed between the light source 10 and the wavelength conversion unit 20 in the Z direction.
  • the lens unit 70 includes a lens unit 71 arranged so as to occupy regions corresponding to the plurality of light sources 10 in the XY plane. Therefore, the light source 10, the wavelength conversion unit 20, and the lens unit 71 are arranged so as to overlap each other in the Z direction.
  • the distance direction connecting the optical sheet 30 and the reflective substrate 40 is the Z direction (front-rear direction), the left-right direction on the main surface (widest surface) of the optical sheet 30 and the reflective substrate 40 is the X direction, and the vertical direction. Is the Y direction.
  • the light source 10 is a point light source, and specifically includes an LED (Light Emitting Diode). As illustrated in FIG. 3A, the light source 10 faces the back surface 20S2 of the wavelength conversion unit 20, for example.
  • LED Light Emitting Diode
  • the wavelength conversion unit 20 is disposed between the light source 10 and the optical sheet 30, and improves the color development characteristics, for example, by converting the wavelength of the light from the light source 10 to emit converted light.
  • the wavelength conversion unit 20 includes an upper portion 21 that covers a region (directly above region) corresponding to each of the light sources 10 and a peripheral region thereof, and a connecting portion 22 that connects the immediately upper portions 21 adjacent to each other in the X direction, for example. , Extending in the X direction as a whole.
  • a plurality of wavelength converters 20 are arranged in the Y direction.
  • the connecting portion 22 is inserted and held in a slit 54 between a pedestal 52 and a presser 53 provided in the middle part of the column portion 51 of the stud 50 (see FIG.
  • the wavelength conversion unit 20 is further fixed by the connection portion 22 being gripped by the clip portion 74 of the lens unit 70.
  • the distance L1 between the back surface 20S2 of the wavelength converter 20 and the light source 10 is kept constant (see FIG. 3). Note that it is not necessary to hold all of the plurality of connecting portions 22 by the slits 54 and the clip portions 74, and it is sufficient if some of the connecting portions 22 are held.
  • the distance L1 between the light source 10 and the wavelength conversion unit 20 is preferably shorter than the distance L3 between the optical sheet 30 and the wavelength conversion unit 20. This is because a more uniform luminance distribution can be obtained as compared with the case where the distance L1 is equal to or greater than the distance L3. That is, when the wavelength conversion unit 20 approaches the optical sheet 30, the contour of the wavelength conversion unit 20 is projected onto the optical sheet 30, and the contour of the wavelength conversion unit 20 may be visually recognized from the outside.
  • the wavelength conversion unit 20 is provided as an integrated body in which the upper part 21 and the connection part 22 are made of the same material.
  • the connecting portion 22 may be formed of a material different from the portion 21 directly above, for example, a resin that does not perform wavelength conversion.
  • the width W22 of the connecting portion 22 is preferably narrower than the width W21 of the immediately upper portion 21 (see FIG. 2A). This is because the amount of material used is reduced, which is advantageous in terms of cost reduction and weight reduction.
  • the wavelength conversion unit 20 includes a phosphor (fluorescent substance) such as a fluorescent pigment or a fluorescent dye, or a light emitter having a wavelength conversion function such as a quantum dot.
  • the wavelength conversion unit 20 may be one in which a resin containing such a fluorescent material or a light emitter is processed into a sheet shape, or may be printed in a predetermined region on another transparent substrate. Or the thing of the layer of the fluorescent material and the light-emitting body enclosed between two transparent films may be sufficient.
  • the wavelength conversion unit 20 is excited by light having a first wavelength (hereinafter referred to as first wavelength light) from the light source 10 incident from the back surface 20S2, and performs wavelength conversion based on a principle such as fluorescence emission. What is the first wavelength?
  • Light having a different second wavelength (hereinafter, second wavelength light) is emitted from the surface 20S1.
  • the first wavelength light from the light source 10 passes through the lens unit 71 and then enters the back surface 20S2 of the wavelength conversion unit 20.
  • the first wavelength and the second wavelength are not particularly limited.
  • the first wavelength light is blue light (for example, a wavelength of about 440 to 460 nm)
  • the second wavelength light is red light.
  • a wavelength of 620 nm to 750 nm or green light (for example, a wavelength of 495 nm to 570 nm) may be used. That is, the light source 10 is a blue light source. In this case, the wavelength conversion unit 20 converts the wavelength of blue light into red light or green light.
  • the wavelength conversion unit 20 preferably includes quantum dots.
  • Quantum dots are particles having a major axis of about 1 nm to 100 nm and have discrete energy levels. Since the energy state of the quantum dot depends on its size, the emission wavelength can be freely selected by changing the size. The light emitted from the quantum dots has a narrow spectral width. The color gamut is expanded by combining such steep peak light. Therefore, it is possible to easily expand the color gamut by using quantum dots as the wavelength conversion substance. Furthermore, the quantum dot has high responsiveness, and the light from the light source 10 can be used efficiently. In addition, quantum dots are highly stable.
  • the quantum dot is, for example, a compound of a group 12 element and a group 16 element, a compound of a group 13 element and a group 16 element, or a compound of a group 14 element and a group 16 element, such as CdSe, CdTe, ZnS, CdS. , PdS, PbSe or CdHgTe.
  • the center point of the portion 21 immediately above the wavelength conversion unit 20 and the center point of the lens unit 71 are both coincident with the optical axis CL of the light source 10 (see FIG. 3A).
  • the lens unit 70 includes the lens unit 71 located immediately above the wavelength conversion unit 20 as described above.
  • the lens portion 71 is provided, for example, separated from the surface 40S.
  • the lens unit 71 may be directly fixed to the surface 40S.
  • the lens part 71 with the light source 10 may be integrally provided on the base 72 on a flat plate like the lens unit 70A as a 1st modification shown in FIG. 3B, for example.
  • the lens unit 71 is made of, for example, an acrylic resin such as polymethylmethacrylate (PMMA), a transparent resin such as a polycarbonate (PC), a cycloolefin polymer (COP), or an epoxy resin. Can do.
  • the back surface 20S2 of the wavelength conversion unit 20 and the exit surface 71S2 of the lens unit 71 may be separated from each other with a distance L6 (see FIG. 3A). This is because if the wavelength conversion unit 20 and the lens unit 71 are in contact with each other, heat generated in the light source 10 is not sufficiently released to the outside, and overheating in the light source 10 and its vicinity may occur.
  • the distance L6 may be, for example, one third or more of the distance between the back surface 20S2 and the front surface 40S. This is because the light emitted from the light source 10 is emitted to the outside without being scattered between the wavelength conversion unit 20 and the lens unit 71, so that the light emission efficiency is improved.
  • the lens unit 71 reduces the luminous intensity of the component near the optical axis toward the vicinity of the optical axis CL of the wavelength conversion unit 20 out of the wavelength light of the first wavelength light from the light source 10, so that the optical axis CL of the wavelength conversion unit 20
  • the luminous intensity of the peripheral component toward the peripheral part surrounding the vicinity is improved.
  • the intensity distribution of the first wavelength light that passes through the lens unit 71 and enters the wavelength conversion unit 20 is further flattened.
  • the lens unit 71 is a lens having a negative refractive power in the optical axis vicinity region R71 and a positive refractive power in the peripheral region R72 surrounding the optical axis vicinity region, for example. is there.
  • the exit surface 71S2 of the lens unit 71 is an aspherical surface having a concave shape in the optical axis vicinity region R71 and a convex shape in the peripheral region R72.
  • the exit surface 71S2 of the lens unit 71 has, for example, a concave shape in which the negative refractive power decreases as the distance from the optical axis CL increases in the optical axis vicinity region R71, and as the distance from the optical axis CL increases in the peripheral region R72. It may have a convex shape that increases the positive refractive power.
  • the incident surface 71S1 of the lens unit 71 has, for example, a concave shape toward the light source 10 in the optical axis vicinity region R71. Alternatively, the incident surface 71S1 may be a flat surface.
  • the lens unit 71 satisfies all of the following conditional expressions (1) to (3) at the inflection point FP that is the boundary between the optical axis vicinity region R71 and the peripheral region R72.
  • ⁇ 1 is an angle formed by a line connecting the light emission center point P1 of the light source 10 from which the first wavelength light LL1 is emitted and the incident point P2 at which the first wavelength light LL is incident on the lens unit 71 with respect to the optical axis CL
  • ⁇ 2 is an angle formed by the traveling direction of the emission light LL2 emitted from the emission surface 71S2 of the lens unit 71 with respect to the optical axis CL (hereinafter referred to as an emission angle) (see FIG. 3C). ).
  • the lens unit 71 may further satisfy the following conditional expression (4).
  • R1 is a radius obtained as an intermediate value between the circumscribed circle radius rr1 and the inscribed circle radius rr2 in the portion 21 immediately above the wavelength conversion unit 20 (see FIG. 3D).
  • L1 is the distance between the light source 10 and the wavelength converter 20 in the Z direction.
  • the lens unit 70 may further include a connecting portion 73 that connects two or more lens portions 71 (FIGS. 2A, 2B, and 3A).
  • the lens portion 71 and the connecting portion 73 may be an integrated body made of the same material. In that case, the number of parts can be reduced.
  • the connecting portion 73 is fixed to the reflective substrate 40 by screws 75, for example.
  • the connecting portion 22 and the connecting portion 73 both have, for example, portions that extend in the X-axis direction and overlap each other in the thickness direction (Z-axis direction).
  • the connecting portion 73 may be provided with a clip portion 74 that holds the connecting portion 22.
  • a columnar spacer 76 may stand on the connection portion 73 between the connection portion 22 and the connection portion 73.
  • the spacer 76 may constitute an integral part with the connecting portion 73.
  • the reflective substrate 40 is a plate-like or sheet-like member provided to face the back surface 20S2 of the wavelength conversion unit 20.
  • the reflective substrate 40 is emitted from the light source 10 and reaches the wavelength conversion unit 20 through the lens unit 70 and then returns from the light reflecting member 60, or is emitted from the light source 10 and reaches the optical sheet 30 and then reaches the optical sheet 30.
  • the light returned from 30 is returned toward the wavelength conversion unit 20 or the optical sheet 30.
  • the reflective substrate 40 has functions such as reflection, diffusion, and scattering, for example, so that the light from the light source 10 can be efficiently used and the front luminance can be increased.
  • the reflective substrate 40 is made of, for example, foamed PET (polyethylene terephthalate), a silver deposited film, a multilayer reflective film, or white PET.
  • the surface of the reflective substrate 40 is preferably subjected to a treatment such as silver vapor deposition, aluminum vapor deposition, or multilayer film reflection.
  • the reflective substrate 40 may be integrally formed by a technique such as hot press molding using a thermoplastic resin, or melt extrusion molding, or, for example, PET It may be formed by applying an energy ray (for example, ultraviolet ray) curable resin on a substrate made of, for example, and then transferring the shape to the energy ray curable resin.
  • the thermoplastic resin include polycarbonate resins, acrylic resins such as PMMA (polymethyl methacrylate resin), polyester resins such as polyethylene terephthalate, and amorphous copolymers such as MS (copolymer of methyl methacrylate and styrene). Examples thereof include a polymerized polyester resin, a polystyrene resin, and a polyvinyl chloride resin.
  • the substrate may be glass.
  • each wall portion 41 may be further provided so as to stand on the outer edge of the reflective substrate 40 and surround the plurality of light sources 10 and the wavelength conversion unit 20 from four directions.
  • the inner surface of the wall portion 41 has a reflection function, and an auxiliary wavelength conversion portion 42 is provided in a part thereof.
  • the wavelength converter 42 is a band-shaped member made of, for example, the same material as the wavelength converter 20 and formed on the inner surface of the wall 41 and extending in the X direction and the Y direction.
  • the wavelength conversion unit 42 has a wavelength conversion function similar to the wavelength conversion unit 20, and supplements the function of the main wavelength conversion unit 20.
  • the optical sheet 30 is provided so as to face the surface 20S1 of the wavelength conversion unit 20, and includes, for example, a diffusion plate, a diffusion sheet, a lens film, a polarization separation sheet, and the like. 1 and 3A, only one of the plurality of optical sheets 30 is shown. By providing such an optical sheet 30, it is possible to raise the light emitted obliquely from the light source 10 or the wavelength conversion unit 20 in the front direction, and to further increase the front luminance.
  • the light emitting device 1 further includes a light reflecting member 60 that reflects the light transmitted through the portion 21 immediately above the wavelength conversion unit 20.
  • the light reflecting member 60 is disposed in a region corresponding to each of the plurality of light sources 10 in the XY plane. In the present embodiment, the case where the light reflecting member 60 is disposed so as to be in contact with the surface 20S1 is illustrated. However, if the light reflecting member 60 is disposed between the immediately upper portion 21 and the optical sheet 30, the surface 20S1 is illustrated. And may be separated from each other. Furthermore, the center point of the light reflecting member 60 may coincide with the optical axis CL of the light source 10 in the XY plane (see FIG. 3A).
  • the light source 10 is a point light source, the light emitted from the light source 10 spreads in all directions of 360 ° from the light emission center of the light source 10, and finally passes through the optical sheet 30 and is observed as light emission.
  • the portion 21 directly above the plurality of wavelength conversion units 20 is disposed between the light source 10 and the optical sheet 30 in the Z direction and the plurality of light sources 10 in the XY plane. Each was arranged in a corresponding area.
  • the wavelength conversion to the light of the second wavelength is performed while reducing the intensity of the light of the first wavelength (for example, blue light) that is directly incident on the optical sheet 30 from the light source 10.
  • the intensity of the light of the first wavelength for example, blue light
  • the amount of the constituent material used can be reduced as compared with the case where one sheet-like wavelength conversion member is provided over the entire surface. Therefore, according to the light emitting device 1, it is possible to efficiently emit light with less luminance unevenness and color deviation in the XY plane while reducing the weight.
  • the lens unit 71 is further provided between the light source 10 and the portion 21 directly above the wavelength conversion unit 20 corresponding thereto. Thereby, most of the light having the first wavelength emitted from the light source 10 can be incident on the portion 21 immediately above. Therefore, the intensity of the first wavelength light that is emitted from the light source 10 and directly incident on the optical sheet 30 can be further reduced, and the wavelength from the first wavelength light to the second wavelength light is further reduced. Conversion can be performed more efficiently. Moreover, when the lens unit 71 has an appropriate shape, the intensity distribution of the first wavelength light incident on the portion 21 immediately above the wavelength conversion unit 20 is further flattened.
  • the lens portion 71 by using the lens portion 71, the illuminance peak value of the first wavelength light incident on the directly upper portion 21 and the temperature peak value of the heated directly upper portion 21 can be greatly reduced. Long life can be expected.
  • the intensity distribution of the first wavelength light incident on the immediately upper portion 21 is further flattened, it is possible to more efficiently emit light with less luminance unevenness and color deviation in the XY plane.
  • the exit surface 71S2 of the lens unit 71 has a concave shape in which the negative refractive power decreases as the distance from the optical axis CL increases in the optical axis vicinity region R71, and increases as the distance from the optical axis CL increases in the peripheral region R72.
  • the first wavelength light having an extremely flattened intensity distribution can be incident on the portion 21 immediately above the wavelength conversion unit 20.
  • the light reflecting member 60 is provided on the portion 21 immediately above the wavelength conversion unit 20, the flatness of the emission intensity from the optical sheet 30 is improved. This is because the light transmitted from the light source 10 directly through the upper portion 21 is not incident on the optical sheet 30 as it is, but is reflected by the light reflecting member 60, reflected again by the reflective substrate 40, and then guided to the optical sheet 30. It is.
  • the light emitting device 1 light having higher uniformity in the plane can be emitted. That is, light with less luminance unevenness and color deviation can be efficiently emitted in the plane. For this reason, if this light-emitting device 1 is used for a display apparatus, the display performance excellent in color reproducibility etc. can be exhibited. Moreover, if this light-emitting device 1 is used for an illuminating device, more homogeneous illumination can be performed on an object.
  • the connecting portion 73 in the lens unit 70 is fixed to the reflective substrate 40 with the screw 75.
  • the fixing means is not limited to the screw 75.
  • the projection 77 is provided in the connecting portion 73 and the projection 77 is provided in the surface 40S of the reflective substrate 40. You may make it insert and fix to 40H.
  • the protrusion 77 may be provided with a claw 77 ⁇ / b> A so as to be locked to the locking portion 40 ⁇ / b> HK inside the hole 40 ⁇ / b> H provided in the reflective substrate 40.
  • the wall portion 71, the connecting portion 73, the clip portion 74, the protrusion 77, and the like may be integrated.
  • the connecting portion 73 may be curved so that the lower surface 73LS is concave. By curving in this way, it is possible to prevent the wall portion 71 provided at the end portion of the connecting portion 73 from separating from the surface 40S when the protruding portion 77 is inserted and fixed in the hole 40H.
  • FIG. 5 illustrates an appearance of the display device 101 according to the second embodiment of the present technology.
  • the display device 101 includes the light emitting device 1 and is used as, for example, a thin television device, and has a configuration in which a flat main body 102 for image display is supported by a stand 103.
  • the display device 101 is used as a stationary type with the stand 103 attached to the main body 102 and placed on a horizontal surface such as a floor, a shelf, or a stand, but the stand 103 is removed from the main body 102. It can also be used as a wall-hanging type.
  • FIG. 6A is an exploded view of the main body 102 shown in FIG.
  • the main body 102 has, for example, a front exterior member (bezel) 111, a panel module 112, and a rear exterior member (rear cover) 113 in this order from the front side (viewer side).
  • the front exterior member 111 is a frame-shaped member that covers the peripheral edge of the front surface of the panel module 112, and a pair of speakers 114 are disposed below the front exterior member 111.
  • the panel module 112 is fixed to the front exterior member 111, and a power supply board 115 and a signal board 116 are mounted on the rear surface thereof, and a mounting bracket 117 is fixed.
  • the mounting bracket 117 is for mounting a wall-mounted bracket, mounting a board, etc., and mounting the stand 103.
  • the rear exterior member 113 covers the back and side surfaces of the panel module 112.
  • FIG. 6B is an exploded view of the panel module 112 shown in FIG. 6A.
  • the panel module 112 includes, for example, from the front side (viewer side), a front housing (top chassis) 121, a liquid crystal panel 122, a frame-shaped member (middle chassis) 80, an optical sheet 30, a wavelength conversion unit 20, and a reflective substrate. 40, a rear case (back chassis) 124 and a timing controller board 127 are provided in this order.
  • the front housing 121 is a frame-shaped metal part that covers the front peripheral edge of the liquid crystal panel 122.
  • the liquid crystal panel 122 includes, for example, a liquid crystal cell 122A, a source substrate 122B, and a flexible substrate 122C such as a COF (Chip On On Film) that connects them.
  • the frame-shaped member 123 is a frame-shaped resin component that holds the liquid crystal panel 122 and the optical sheet 50.
  • the rear housing 124 is a metal part made of iron (Fe) or the like that houses the liquid crystal panel 122, the intermediate housing 123, and the light emitting device 1.
  • the timing controller board 127 is also mounted on the back surface of the rear housing 124.
  • the light from the light emitting device 1 is selectively transmitted through the liquid crystal panel 122, thereby displaying an image.
  • the display quality of the display device 101 is improved.
  • the display device 101 includes the light emitting device 1 according to the first embodiment.
  • the display device 101 is replaced with the light emitting device 1 in the second embodiment. You may provide the light-emitting device 2 which concerns on a form.
  • the display device 101 As described above to an electronic device will be described.
  • the electronic device include a television device, a digital camera, a notebook personal computer, a mobile terminal device such as a mobile phone, or a video camera.
  • the display device can be applied to electronic devices in various fields that display a video signal input from the outside or a video signal generated inside as an image or video.
  • FIG. 7A shows the appearance of an electronic book to which the display device 101 of the above embodiment is applied.
  • FIG. 7B shows the appearance of another electronic book to which the display device 101 of the above embodiment is applied.
  • Each of these electronic books has, for example, a display unit 210 and a non-display unit 220, and the display unit 210 is configured by the display device 101 of the above embodiment.
  • FIG. 8 illustrates an appearance of a smartphone to which the display device 101 of the above embodiment is applied.
  • This smartphone has, for example, a display unit 230 and a non-display unit 240, and the display unit 230 is configured by the display device 101 of the above embodiment.
  • FIG. 9A and 9B show the appearance of a digital camera to which the display device 101 of the above embodiment is applied.
  • FIG. 9A shows an appearance of the digital camera viewed from the front (object side)
  • FIG. 9B shows an appearance of the digital camera viewed from the rear (image side).
  • the digital camera includes, for example, a flash light emitting unit 410, a display unit 420, a menu switch 430, and a shutter button 440, and the display unit 420 is configured by the display device 101 of the above embodiment.
  • FIG. 10 illustrates an appearance of a notebook personal computer to which the display device 101 according to the above embodiment is applied.
  • the notebook personal computer has, for example, a main body 510, a keyboard 520 for inputting characters and the like, and a display unit 530 for displaying an image.
  • the display unit 530 is provided by the display device 101 of the above embodiment. It is configured.
  • FIG. 11 shows the appearance of a video camera to which the display device 101 of the above embodiment is applied.
  • This video camera includes, for example, a main body 610, a subject photographing lens 620 provided on the front side surface of the main body 610, a start / stop switch 630 at the time of photographing, and a display 640.
  • this display part 640 is comprised by the display apparatus 101 of the said embodiment.
  • FIG. 12A and 12B show the appearance of a mobile phone to which the display device 101 of the above embodiment is applied.
  • the mobile phone is obtained by connecting an upper housing 710 and a lower housing 720 with a connecting portion (hinge portion) 730, and includes a display 740, a sub-display 750, a picture light 760, and a camera 770.
  • the display 740 or the sub-display 750 is configured by the display device 101 of the above embodiment.
  • ⁇ Application example of lighting device> 13 and 14 show the appearance of a tabletop lighting device to which the light-emitting devices 1 and 2 according to the above-described embodiments are applied.
  • This illuminating device is, for example, one in which an illuminating unit 843 is attached to a support column 842 provided on a base 841, and the illuminating unit 843 includes the light emitting devices 1 and 2 according to the first and second embodiments. It is comprised by either of 2.
  • the illumination unit 843 can have an arbitrary shape such as a cylindrical shape shown in FIG. 13 or a curved shape shown in FIG. 14 by making the optical sheet 30 or the reflective substrate 40 into a curved shape.
  • FIG. 15 shows the appearance of an indoor lighting device to which the light emitting devices 1 and 2 of the above embodiment are applied.
  • This illuminating device has the illumination part 844 comprised by either the light-emitting devices 1 and 2 which concern on the said embodiment, for example.
  • the illumination units 844 are arranged at an appropriate number and interval on the ceiling 850A of the building. Note that the lighting unit 844 can be installed not only in the ceiling 850A but also in an arbitrary place such as a wall 850B or a floor (not shown) depending on the application.
  • illumination is performed by light from the light emitting device 1.
  • the illumination quality is improved.
  • Example 1 A sample of the light emitting device 1 according to the first embodiment was manufactured.
  • the planar shape of the portion 21 directly above the wavelength converter 20 and the light reflecting member 60 is a circle as shown in FIG. 16A, for example.
  • the width of the immediately upper portion 21 was 24.0 mm
  • the width of the light reflecting member 60 was 18.4 mm.
  • the lens portion 71A having the cross-sectional shape shown in FIG. 17A was used.
  • the lens portion 71A was manufactured using PMMA.
  • the maximum outer diameter was 9.06 mm
  • the maximum outer diameter of the incident surface 71S1 was 7.18 mm.
  • the distance from the surface 40S to the inflection point FP of the exit surface 71S2 is 2.97 mm
  • the distance from the surface 40S to the position of the exit surface 71S2 on the optical axis CL is 2.4 mm
  • the surface 40S to the optical axis CL The distance to the position of the incident surface 71S1 was 1.6 mm, and the minimum distance between the lens portion 71A and the surface 40S was 0.5 mm.
  • the distance L4 between the portion 21 directly above the wavelength conversion unit 20 and the surface 40S was set to 5.0 mm.
  • FIG. 18A all the first wavelength light from the light source 10 is incident on the overlapping region between the upper portion 21 and the light reflecting member 60.
  • 18A is a cross-sectional view in the direction of the arrow along the line II shown in FIG. 16A.
  • Example 2 Similar to Experimental Example 1, a sample of the light emitting device 1 according to the first embodiment was manufactured. However, as shown in FIG. 16B, the width of the directly upper portion 21 was 30.6 mm, and the width of the light reflecting member 60 was 21.0 mm. Moreover, the lens part 71B which has the cross-sectional shape shown to FIG. 17B was used. The lens portion 71B was manufactured using PMMA. As shown in FIG. 17B, in the lens portion 71B, the maximum outer diameter was 9.08 mm, and the maximum outer diameter of the incident surface 71S1 was 7.18 mm.
  • the distance from the surface 40S to the inflection point FP of the exit surface 71S2 is 2.87 mm
  • the distance from the surface 40S to the position of the exit surface 71S2 on the optical axis CL is 2.4 mm
  • the distance from the surface 40S to the optical axis CL was 2.87 mm
  • the distance to the position of the incident surface 71S1 was 1.6 mm
  • the minimum distance between the lens portion 71B and the surface 40S was 0.5 mm.
  • the distance L4 between the portion 21 directly above the wavelength conversion unit 20 and the surface 40S was set to 7.0 mm.
  • FIG. 18B most of the first wavelength light from the light source 10 was incident on the portion 21 immediately above. However, a part of the ambient light is incident on a region outside the region overlapping with the light reflecting member 60 in the upper portion 21.
  • 18B is a cross-sectional view in the direction of the arrow along the line II-II shown in FIG. 16B.
  • 19A to 19C the horizontal axis represents a position (arbitrary unit) centered on the center position (optical axis position) of the light source 10 in the X-axis direction
  • the vertical axis represents the center position (light) of the light source 10 in the X-axis direction. This represents the position (arbitrary unit) centered on the axis position.
  • FIG. 20 is a comparison of the illuminance distribution according to the position in the X-axis direction for Experimental Examples 1 and 2 and the Reference Example, where the illuminance at the center position of the light source 10 in the Reference Example is 1.
  • the first wavelength light that has been flattened from the vicinity of the optical axis of the directly upper portion 21 to the periphery is supplied to the directly upper portion 21. It was confirmed that the light can be incident on.
  • Example 3 Similar to Experimental Example 1, a sample of the light emitting device 1 according to the first embodiment was manufactured. However, the lens portion 71C having the cross-sectional shape shown in FIG. 21A was used. As shown in FIG. 21A, in the lens portion 71C, the maximum outer diameter was 6.54 mm, and the maximum outer diameter of the incident surface 71S1 was 3.7 mm. The distance from the surface 40S to the inflection point FP of the exit surface 71S2 is 2.81 mm, the distance from the surface 40S to the position of the exit surface 71S2 on the optical axis CL is 2.4 mm, and the distance from the surface 40S to the optical axis CL.
  • the distance to the position of the incident surface 71S1 was 1.6 mm, and the minimum distance between the lens portion 71C and the surface 40S was 0.52 mm. Furthermore, the distance L4 between the portion 21 directly above the wavelength conversion unit 20 and the surface 40S was 5 mm. In the sample of Experimental Example 3, as shown in FIG. 21B, all of the first wavelength light from the light source 10 is incident on the overlapping region between the upper portion 21 and the light reflecting member 60.
  • each of the lens portions 71A to 71C used in Experimental Examples 1 to 3 has an inflection point FP that satisfies all the conditional expressions (1) to (3). It was. That is, it was found that the incident angle ⁇ 1 and the emission angle ⁇ 2 are equal to each other at a value larger than 45 °. Specifically, as the incident angle ⁇ 1 increases from 0, the emission angle ⁇ 2 increases while maintaining the relationship ( ⁇ 2> ⁇ 1).
  • the lens portions 71A to 71C used in Experimental Examples 1 to 3 all satisfied the above-described conditional expression (4). From these results, by using the lens portion 71 having a shape that satisfies all of the conditional expressions (1) to (4), the first wavelength that has been flattened further from the vicinity of the optical axis of the immediately above portion 21 to the periphery. It was confirmed that light can be incident on the upper portion 21.
  • the illuminance peak value at the position where is placed was measured with a spectral illuminometer.
  • the temperature peak value (° C.) of the portion 21 directly irradiated with the first wavelength light in the same sample was measured using a thermocouple thermometer.
  • Table 1 the illuminance peak value is a numerical value normalized based on the numerical value in the reference example.
  • the numerical value of the difference (degreeC) is shown on the basis of the numerical value in a reference example.
  • the illuminance peak value could be reduced as compared with the reference example having no lens portion 71.
  • the temperature peak value (° C.) could be lowered by using the lens unit 71 in Experimental Examples 1 and 2. From these results, by using the lens unit 71, both the illuminance peak value of the first wavelength light irradiated on the immediately upper portion 21 and the temperature peak value of the immediately above portion 21 heated thereby are greatly reduced. As a result, it was confirmed that the life of the directly upper portion 21 can be expected.
  • FIG. 23A shows a cross section of a lens portion 71D as a third modification.
  • FIG. 23B shows an optical path when this lens unit 71D is used.
  • the lens unit 71 is exemplified as the light beam control member, but the present technology is not limited to this.
  • the semi-transmissive member 80 shown in FIGS. 24A and 24B may be used as the light beam control member.
  • the semi-transmissive member 80 includes a disc 81 provided with a plurality of through holes 81K and a support portion 82 that stands on the reflective substrate 40 and supports the disc 81.
  • the circular plate 81 is a white light-shielding portion having a high reflectance, and the first wavelength light from the light source 10 is transmitted through the through hole 81K.
  • the through hole 81K has a smaller diameter as it approaches the light emitting point (center position) of the light source 10.
  • the illuminance of the first wavelength light that passes through the vicinity of the center of the disk 81 is low, and the illuminance of the first wavelength light that is transmitted increases toward the periphery of the disk 81.
  • the support portion 82 can cut the first wavelength light incident on the wavelength conversion member without passing through the semi-transmissive member 80.
  • the disc 81 may be formed of a transparent material in the semi-transmissive member 80, and a light-shielding portion made of a high reflectance material may be formed by printing or the like instead of the through hole 81K.
  • the light source 10 may be configured by a semiconductor laser or the like.
  • planar shape of the portion 21 directly above the wavelength conversion unit 20 and the light reflecting member 60 is circular, but the present technology is not limited to this, and is, for example, a polygon such as a quadrangle, hexagon, or octagon, or an ellipse. It may be a shape. In that case, the planar shapes of all the directly upper portions 21 and the light reflecting members 60 may be the same shape, or may be some different shapes.
  • the configuration of the light emitting device 1 and the display device 101 has been specifically described in the above embodiment, but it is not necessary to include all the components, and other components are not included. You may have.
  • this technique can take the following structures.
  • the light beam control member is Of the first wavelength light, the luminous intensity of the component near the optical axis toward the vicinity of the optical axis of the wavelength conversion member is decreased, and the luminous intensity of the peripheral component toward the peripheral part surrounding the vicinity of the optical axis of the wavelength conversion member is improved.
  • the light-emitting device according to (1) or (2) is Of the first wavelength light, the luminous intensity of the component near the optical axis toward the vicinity of the optical axis of the wavelength conversion member is decreased, and the luminous intensity of the peripheral component toward the peripheral part surrounding the vicinity of the optical axis of the wavelength conversion member is improved.
  • the light beam control member is a lens having a negative refractive power in a region near the optical axis and a positive refractive power in a peripheral region surrounding the region near the optical axis. Any one of (1) to (3) The light-emitting device as described in one. (5) The lens includes an exit surface including an aspheric surface having a concave shape toward the wavelength conversion member in the region near the optical axis and having a convex shape toward the wavelength conversion member in the peripheral region. The light-emitting device of description.
  • the lens is In the vicinity of the optical axis, a concave shape in which the negative refractive power decreases as the distance from the optical axis decreases, and in the peripheral area includes an exit surface having a convex shape in which the positive refractive power increases as the distance from the optical axis increases.
  • the lens satisfies all of the following conditional expressions (1) to (3) at an inflection point that is a boundary between the optical axis vicinity region and the peripheral region: Any one of the above (4) to (7)
  • ⁇ 1 An angle formed by a line connecting a light emission center point at which the first wavelength light is emitted from the light source and an incident point at which the first wavelength light is incident on the lens with respect to the optical axis
  • ⁇ 2 emitted from the exit surface of the lens The angle formed by the traveling direction of the emitted light with respect to the optical axis.
  • a liquid crystal panel, and a light emitting device on the back side of the liquid crystal panel The light emitting device A plurality of light sources arranged on the substrate and emitting a first wavelength light; A light diffusing member covering the plurality of light sources; It is arranged between the light source and the light diffusing member in the thickness direction, and is arranged in a region corresponding to each of the plurality of light sources in a plane, and the first wavelength light from the light source is converted to a second wavelength.
  • a plurality of wavelength conversion members that convert light;
  • a display device comprising: a plurality of light beam control members disposed between the plurality of light sources and the plurality of wavelength conversion members, respectively, for controlling a traveling direction of the first wavelength light.
  • the light emitting device A plurality of light sources arranged on the substrate and emitting a first wavelength light; A light diffusing member covering the plurality of light sources; It is arranged between the light source and the light diffusing member in the thickness direction, and is arranged in a region corresponding to each of the plurality of light sources in a plane, and the first wavelength light from the light source is converted to a second wavelength.
  • a plurality of wavelength conversion members that convert light;
  • An illumination device comprising: a plurality of light beam control members that are disposed between the plurality of light sources and the plurality of wavelength conversion members, respectively, and control a traveling direction of the first wavelength light.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Planar Illumination Modules (AREA)
  • Liquid Crystal (AREA)

Abstract

This light emitting device comprises: a plurality of light sources which are arranged on a substrate and emit first-wavelength light; a light diffusion member which covers the plurality of light sources; a plurality of wavelength conversion members which are arranged between the light sources and the light diffusion member in the thickness direction, while being arranged in regions respectively corresponding to the plurality of light sources in a plane, and which convert the first-wavelength light from the light sources into second-wavelength light; and a plurality of light beam control members which are respectively arranged between the plurality of light sources and the plurality of wavelength conversion members, and which control the direction of travel of the first-wavelength light.

Description

発光装置、表示装置および照明装置LIGHT EMITTING DEVICE, DISPLAY DEVICE, AND LIGHTING DEVICE
 本開示は、発光装置、ならびにこれを備えた表示装置および照明装置に関する。 The present disclosure relates to a light emitting device, and a display device and a lighting device including the light emitting device.
 液晶表示装置のバックライトまたは照明装置などに、青色LED(Light Emitting Diode)を用いた発光装置が採用されている。例えば特許文献1には、いわゆる直下方式のバックライトであって、基板上に配置された複数の青色LEDと、その全体を覆う波長変換シートとの組み合わせにより白色光を形成するものが開示されている。また、特許文献2には、青色LEDと反射板と拡散シートと波長変換を行う蛍光体層とを順に積層した、白色光を形成する面光源が開示されている。 A light emitting device using a blue LED (Light Emitting Diode) is adopted as a backlight or a lighting device of a liquid crystal display device. For example, Patent Document 1 discloses a so-called direct-type backlight that forms white light by a combination of a plurality of blue LEDs arranged on a substrate and a wavelength conversion sheet covering the whole. Yes. Patent Document 2 discloses a surface light source that forms white light in which a blue LED, a reflector, a diffusion sheet, and a phosphor layer that performs wavelength conversion are sequentially laminated.
特開2012-155999号公報JP 2012-155999 A 国際公開第2010/150516号公報International Publication No. 2010/150516
 しかしながら、上記特許文献1では、青色LEDの直上よりもその周辺において黄色が強くなる傾向にあると考えられる。また、上記特許文献2ではその構成が複雑であるうえ、青色LEDの直上の領域とその周辺の領域との輝度の差が粒むらとして認識されるおそれがある。面光源として用いられる発光装置では、一般に、面内において輝度むらや色の偏りの少ない光を効率よく発することが強く望まれる。 However, in Patent Document 1, it is considered that yellow tends to be stronger in the vicinity of the blue LED than directly above. Moreover, in the said patent document 2, the structure is complicated and there exists a possibility that the difference in the brightness | luminance of the area | region right above a blue LED and the area | region of the periphery may be recognized as a particle irregularity. Generally, in a light emitting device used as a surface light source, it is strongly desired to efficiently emit light with less luminance unevenness and color deviation in the surface.
 したがって、面内においてより高い均一性を有する光を発することの可能な発光装置、これを備えた表示装置および照明装置を提供することが望ましい。 Therefore, it is desirable to provide a light emitting device capable of emitting light having higher uniformity in a plane, and a display device and an illumination device including the light emitting device.
 本開示の一実施形態としての発光装置は、基板上に配置され、第1の波長光を発する複数の光源と、これら複数の光源を覆う光拡散部材と、厚さ方向において光源と光拡散部材との間に配置されると共に面内において複数の光源と各々対応する領域に配置され、光源からの第1の波長光を第2の波長光に変換する複数の波長変換部材と、複数の光源と複数の波長変換部材との間に各々配置され、第1の波長光の進行方向を制御する複数の光線制御部材とを有する。また、本開示の一実施形態としての表示装置および照明装置は、上記発光装置を備えたものである。 A light-emitting device according to an embodiment of the present disclosure includes a plurality of light sources that are arranged on a substrate and emits first wavelength light, a light diffusion member that covers the plurality of light sources, and a light source and a light diffusion member in the thickness direction. And a plurality of wavelength conversion members that are arranged in a region corresponding to the plurality of light sources in the plane and convert the first wavelength light from the light sources into the second wavelength light, and the plurality of light sources And a plurality of light beam control members that are respectively disposed between the plurality of wavelength conversion members and control the traveling direction of the first wavelength light. In addition, a display device and a lighting device as an embodiment of the present disclosure include the light emitting device.
 本開示の一実施形態としての発光装置、表示装置および照明装置では、複数の波長変換部材が、厚さ方向において光源と光拡散部材との間に配置されると共に面内において複数の光源と各々対応する領域に配置されている。こうすることにより、光源から光拡散部材へ直接入射する第1の波長光の強度を低減しつつ、第2の波長光への波長変換が適切に行われる。また、全面に亘る一枚のシート状の波長変換部材を設置する場合と比べて、波長変換部材の使用量が削減される。さらに、光源と波長変換部材との間に、第1の波長光の進行方向を制御する光線制御部材を有するようにした。これにより、光源から光拡散部材へ直接入射する第1の波長光の強度がよりいっそう低減されるうえ、波長変換部材へ入射する第1の波長光の強度分布がより平坦化される。 In the light emitting device, the display device, and the lighting device according to the embodiment of the present disclosure, the plurality of wavelength conversion members are disposed between the light source and the light diffusion member in the thickness direction, and each of the plurality of light sources in the plane. It is placed in the corresponding area. By doing so, the wavelength conversion to the second wavelength light is appropriately performed while reducing the intensity of the first wavelength light that is directly incident on the light diffusing member from the light source. In addition, the amount of wavelength conversion member used is reduced as compared with the case where a single sheet-like wavelength conversion member is provided over the entire surface. Further, a light beam control member for controlling the traveling direction of the first wavelength light is provided between the light source and the wavelength conversion member. Thereby, the intensity of the first wavelength light directly incident on the light diffusion member from the light source is further reduced, and the intensity distribution of the first wavelength light incident on the wavelength conversion member is further flattened.
 本開示の一実施形態としての発光装置によれば、波長変換部材の劣化を抑制しつつ、面内においてより高い均一性を有する光を発することができる。すなわち、面内において輝度むらや色の偏りの少ない光を効率よく発することができる。このため、この発光装置を用いた表示装置によれば、色再現性等に優れた表示性能を発揮することができる。また、この発光装置を用いた照明装置によれば、対象物に対し、より均質な照明を行うことができる。なお、本開示の効果はこれに限定されるものではなく、以下に記載のいずれの効果であってもよい。 According to the light emitting device as an embodiment of the present disclosure, it is possible to emit light having higher uniformity in the plane while suppressing deterioration of the wavelength conversion member. That is, light with less luminance unevenness and color deviation can be efficiently emitted in the plane. For this reason, according to the display device using this light emitting device, display performance excellent in color reproducibility and the like can be exhibited. Moreover, according to the illuminating device using this light-emitting device, more homogeneous illumination can be performed on the object. In addition, the effect of this indication is not limited to this, Any effect described below may be sufficient.
本開示における第1の実施の形態に係る発光装置の全体構成例を表す斜視図である。It is a perspective view showing the example of whole composition of a light emitting device concerning a 1st embodiment in this indication. 図1に示した発光装置の要部の構成を表す斜視図である。It is a perspective view showing the structure of the principal part of the light-emitting device shown in FIG. 図1に示した発光装置の要部の構成を表す他の斜視図である。It is another perspective view showing the structure of the principal part of the light-emitting device shown in FIG. 図1に示した発光装置の要部の構成を表す断面図である。It is sectional drawing showing the structure of the principal part of the light-emitting device shown in FIG. 図3Aに示した光線制御部材の第1の変形例を表す断面図である。It is sectional drawing showing the 1st modification of the light beam control member shown to FIG. 3A. 図3Aに示した光線制御部材の詳細を表す拡大断面図である。It is an expanded sectional view showing the detail of the light beam control member shown in FIG. 3A. 図1に示した発光装置における波長変換部材の半径を規定する方法を説明するための説明図である。It is explanatory drawing for demonstrating the method to prescribe | regulate the radius of the wavelength conversion member in the light-emitting device shown in FIG. 図3Aに示した光線制御部材の第2の変形例を表す斜視図である。It is a perspective view showing the 2nd modification of the light beam control member shown in Drawing 3A. 図3Aに示した光線制御部材の第2の変形例を表す断面図である。It is sectional drawing showing the 2nd modification of the light beam control member shown to FIG. 3A. 本開示の第2の実施の形態に係る表示装置の外観を表す斜視図である。14 is a perspective view illustrating an appearance of a display device according to a second embodiment of the present disclosure. FIG. 図5に示した本体部を分解して表す斜視図である。FIG. 6 is an exploded perspective view showing the main body shown in FIG. 5. 図6Aに示したパネルモジュールを分解して表す斜視図である。FIG. 6B is a perspective view illustrating the panel module illustrated in FIG. 6A in an exploded manner. 本開示の表示装置を搭載した電子ブック(適用例1)の外観を表す斜視図である。It is a perspective view showing the external appearance of the electronic book (application example 1) carrying the display apparatus of this indication. 本開示の表示装置を搭載した他の電子ブック(適用例1)の外観を表す斜視図である。It is a perspective view showing the external appearance of the other electronic book (application example 1) carrying the display apparatus of this indication. 本開示の表示装置を搭載したスマートフォン(適用例2)の外観を表す斜視図である。It is a perspective view showing the external appearance of the smart phone (application example 2) carrying the display apparatus of this indication. 本開示の表示装置を搭載したデジタルカメラ(適用例3)の前方からの外観を表す斜視図である。It is a perspective view showing the external appearance from the front of the digital camera (application example 3) carrying the display apparatus of this indication. 本開示の表示装置を搭載したデジタルカメラ(適用例3)の後方からの外観を表す斜視図である。It is a perspective view showing the appearance from the back of a digital camera (application example 3) carrying a display device of this indication. 本開示の表示装置を搭載したノート型パーソナルコンピュータ(適用例4)の外観を表す斜視図である。It is a perspective view showing the external appearance of the notebook type personal computer (application example 4) carrying the display apparatus of this indication. 本開示の表示装置を搭載したビデオカメラ(適用例5)の外観を表す斜視図である。It is a perspective view showing the external appearance of the video camera (application example 5) carrying the display apparatus of this indication. 本開示の表示装置を搭載した携帯電話機(適用例6)の閉じた状態の外観を表す正面図、左側面図、右側面図、上面図および下面図である。FIG. 7 is a front view, a left side view, a right side view, a top view, and a bottom view showing an external appearance of a cellular phone (Application Example 6) in which the display device of the present disclosure is mounted in a closed state. 本開示の表示装置を搭載した携帯電話機(適用例6)の開いた状態の外観を表す正面図および側面図である。It is the front view and side view showing the external appearance of the open state of the mobile telephone (application example 6) carrying the display apparatus of this indication. 本開示の発光装置を備えた第1の照明装置(適用例7)の外観を表す斜視図である。It is a perspective view showing the external appearance of the 1st illuminating device (application example 7) provided with the light-emitting device of this indication. 本開示の発光装置を備えた第2の照明装置(適用例8)の外観を表す斜視図である。It is a perspective view showing the external appearance of the 2nd illuminating device (application example 8) provided with the light-emitting device of this indication. 本開示の発光装置を備えた第3の照明装置(適用例9)の外観を表す斜視図である。It is a perspective view showing the external appearance of the 3rd illuminating device (application example 9) provided with the light-emitting device of this indication. 実験例1における、波長変換部の直上部分の平面形状および光反射部材の平面形状を表す平面図である。It is a top view showing the plane shape of the part right above a wavelength conversion part and the plane shape of a light reflection member in example 1 of an experiment. 実験例2における、波長変換部の直上部分の平面形状および光反射部材の平面形状を表す平面図である。FIG. 10 is a plan view illustrating a planar shape of a portion immediately above a wavelength conversion unit and a planar shape of a light reflecting member in Experimental Example 2. 参考例における、波長変換部の直上部分の平面形状および光反射部材の平面形状を表す平面図である。In a reference example, it is a top view showing the plane shape of the portion right above a wavelength conversion part, and the plane shape of a light reflection member. 実験例1における、光線制御部材の形状および寸法を表す断面図である。It is sectional drawing showing the shape and dimension of a light beam control member in example 1 of an experiment. 実験例2における、光線制御部材の形状および寸法を表す断面図である。It is sectional drawing showing the shape and dimension of a light beam control member in example 2 of an experiment. 実験例1における、光源から波長変換部へ向かう第1の波長光の光路を表す断面図である。It is sectional drawing showing the optical path of the 1st wavelength light which goes to the wavelength conversion part from the light source in Experimental example 1. FIG. 実験例2における、光源から波長変換部へ向かう第1の波長光の光路を表す断面図である。It is sectional drawing showing the optical path of the 1st wavelength light which goes to the wavelength conversion part from the light source in Experimental example 2. FIG. 参考例における、光源から波長変換部へ向かう第1の波長光の光路を表す断面図である。It is sectional drawing showing the optical path of the 1st wavelength light which goes to a wavelength conversion part from a light source in a reference example. 実験例1における、光源から波長変換部へ向かう第1の波長光の照度分布を表す特性図である。It is a characteristic view showing the illuminance distribution of the 1st wavelength light which goes to a wavelength conversion part from the light source in Experimental example 1. FIG. 実験例2における、光源から波長変換部へ向かう第1の波長光の照度分布を表す特性図である。It is a characteristic view showing the illuminance distribution of the 1st wavelength light which goes to a wavelength conversion part from the light source in Experimental example 2. FIG. 参考例における、光源から波長変換部へ向かう第1の波長光の照度分布を表す特性図である。It is a characteristic view showing the illumination intensity distribution of the 1st wavelength light which goes to a wavelength conversion part from a light source in a reference example. 実験例1,2および参考例における、光源から波長変換部へ向かう第1の波長光の輝度分布を比較して表す特性図である。It is a characteristic view which compares and represents the luminance distribution of the 1st wavelength light which goes to the wavelength conversion part from a light source in Experimental example 1, 2 and a reference example. 実験例3における、光線制御部材の形状および寸法を表す断面図である。It is sectional drawing showing the shape and dimension of a light beam control member in example 3 of an experiment. 実験例3における、光源から波長変換部へ向かう第1の波長光の光路を表す断面図である。It is sectional drawing showing the optical path of the 1st wavelength light which goes to the wavelength conversion part from the light source in Experimental example 3. FIG. 実験例1~3および参考例の各サンプルに用いた光線制御部材について、入射角度と射出角度との関係を表す特性図である。FIG. 6 is a characteristic diagram showing the relationship between the incident angle and the exit angle for the light beam control member used in each sample of Experimental Examples 1 to 3 and Reference Example. 光線制御部材の第3の変形例の形状および寸法を表す断面図である。It is sectional drawing showing the shape and dimension of the 3rd modification of a light beam control member. 第3の変形例としての光線制御部材を用いた発光装置における、光源から波長変換部へ向かう第1の波長光の光路を表す断面図である。It is sectional drawing showing the optical path of the 1st wavelength light which goes to the wavelength conversion part from the light source in the light-emitting device using the light beam control member as a 3rd modification. 光線制御部材としての半透過部材を表す平面図である。It is a top view showing the semi-transmissive member as a light beam control member. 図24Aに示した半透過部材を表す断面図である。It is sectional drawing showing the semi-transmissive member shown to FIG. 24A.
 以下、本開示の実施の形態について図面を参照して詳細に説明する。なお、説明は以下の順序で行う。
1.第1の実施の形態
各光源と対応した位置に光線制御部材を複数有する発光装置。
2.第2の実施の形態(表示装置;液晶表示装置)
3.表示装置の適用例
4.照明装置の適用例
5.実験例
Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. The description will be given in the following order.
1. First Embodiment A light emitting device having a plurality of light beam control members at positions corresponding to respective light sources.
2. Second embodiment (display device; liquid crystal display device)
3. 3. Application example of display device 4. Application example of lighting device Experimental example
<第1の実施の形態>
[発光装置1の構成]
 図1は、本開示の第1の実施の形態としての発光装置1の全体構成を表したものである。図2Aおよび図2Bは発光装置1の要部を拡大して表す斜視図である。さらに、図3Aは、発光装置1の要部を拡大して表す断面図である。発光装置1は、例えば、透過型の液晶パネルを背後から照明するバックライトとして、あるいは室内等において照明装置として用いられるものである。発光装置1は、例えば、複数の光源10(図3A参照)、波長変換部20、光学シート30およびレンズユニット70を有する。なお、波長変換部20は本開示の「波長変換部材」の一具体例に対応し、光学シート30は本開示の「光拡散部材」の一具体例に対応し、レンズユニット70は本開示の「光線制御部材」の一具体例に対応する。発光装置1は、例えば、反射基板40、スタッド50(図3A参照)および光反射部材60などをさらに有していてもよい。
<First Embodiment>
[Configuration of Light Emitting Device 1]
FIG. 1 illustrates an overall configuration of a light emitting device 1 as a first embodiment of the present disclosure. 2A and 2B are perspective views illustrating an enlarged main part of the light emitting device 1. Further, FIG. 3A is an enlarged cross-sectional view illustrating a main part of the light emitting device 1. The light emitting device 1 is used, for example, as a backlight that illuminates a transmissive liquid crystal panel from behind, or as a lighting device in a room or the like. The light emitting device 1 includes, for example, a plurality of light sources 10 (see FIG. 3A), a wavelength conversion unit 20, an optical sheet 30, and a lens unit 70. The wavelength conversion unit 20 corresponds to a specific example of the “wavelength conversion member” of the present disclosure, the optical sheet 30 corresponds to a specific example of the “light diffusion member” of the present disclosure, and the lens unit 70 corresponds to the present disclosure. This corresponds to a specific example of “light beam control member”. The light emitting device 1 may further include, for example, a reflective substrate 40, a stud 50 (see FIG. 3A), a light reflecting member 60, and the like.
 複数の光源10は、反射基板40の上に、例えばマトリクス状に配列されている。光学シート30は、例えば図3Aに示したように反射基板40の表面40Sに立設する複数のスタッド50の頭頂部の上に載置されている。これにより、光学シート30は、複数の光源10を共通に覆うように、反射基板40と対向して配置されている。表面40Sと光学シート30の裏面30Sとは、複数のスタッド50により、一定の距離L4で保持されている(図3A参照)。波長変換部20は、Z方向において光源10と光学シート30との間に配置されている。波長変換部20は、XY面内において複数の光源10と各々対応する領域を占めるように配置されている。レンズユニット70は、Z方向において光源10と波長変換部20との間に配置されている。レンズユニット70は、XY面内において複数の光源10と各々対応する領域を占めるように配置されたレンズ部71を有している。したがって、光源10、波長変換部20およびレンズ部71は、Z方向において互いに重なり合うように配置されている。 The plurality of light sources 10 are arranged on the reflective substrate 40, for example, in a matrix. For example, as shown in FIG. 3A, the optical sheet 30 is placed on the tops of the plurality of studs 50 erected on the surface 40 </ b> S of the reflective substrate 40. Thereby, the optical sheet 30 is disposed facing the reflective substrate 40 so as to cover the plurality of light sources 10 in common. The front surface 40S and the back surface 30S of the optical sheet 30 are held at a constant distance L4 by a plurality of studs 50 (see FIG. 3A). The wavelength conversion unit 20 is disposed between the light source 10 and the optical sheet 30 in the Z direction. The wavelength conversion unit 20 is arranged so as to occupy regions corresponding to the plurality of light sources 10 in the XY plane. The lens unit 70 is disposed between the light source 10 and the wavelength conversion unit 20 in the Z direction. The lens unit 70 includes a lens unit 71 arranged so as to occupy regions corresponding to the plurality of light sources 10 in the XY plane. Therefore, the light source 10, the wavelength conversion unit 20, and the lens unit 71 are arranged so as to overlap each other in the Z direction.
 本明細書では、光学シート30と反射基板40とを結ぶ距離方向をZ方向(前後方向)とし、光学シート30および反射基板40の主面(最も広い面)における左右方向をX方向、上下方向をY方向とする。 In this specification, the distance direction connecting the optical sheet 30 and the reflective substrate 40 is the Z direction (front-rear direction), the left-right direction on the main surface (widest surface) of the optical sheet 30 and the reflective substrate 40 is the X direction, and the vertical direction. Is the Y direction.
 光源10は点光源であり、具体的にはLED(Light Emitting Diode;発光ダイオード)により構成されている。光源10は、図3Aに示したように、例えば波長変換部20の裏面20S2と対向している。 The light source 10 is a point light source, and specifically includes an LED (Light Emitting Diode). As illustrated in FIG. 3A, the light source 10 faces the back surface 20S2 of the wavelength conversion unit 20, for example.
 波長変換部20は、光源10と光学シート30との間に配置され、光源10からの光を波長変換して変換光を発することで例えば発色特性を改善するものである。波長変換部20は、光源10の各々と対応する領域(直上領域)およびその周辺の領域を覆う直上部分21と、例えばX方向に隣り合う直上部分21同士を繋ぐ連結部分22とを含んでおり、全体としてX方向に延在している。この波長変換部20はY方向に複数配列されている。連結部分22は、例えばスタッド50の柱部51の中腹部に設けられた台座52と押さえ53との間のスリット54に挿入されて保持されている(図3A参照)。波長変換部20は、さらに、レンズユニット70のクリップ部分74によって連結部分22が把持されることで固定されている。このような構造により、波長変換部20の裏面20S2と光源10との距離L1が一定に保持されている(図3参照)。なお、複数存在する連結部分22の全てをスリット54やクリップ部分74によって保持する必要はなく、一部の連結部分22が保持されていれば足りる。 The wavelength conversion unit 20 is disposed between the light source 10 and the optical sheet 30, and improves the color development characteristics, for example, by converting the wavelength of the light from the light source 10 to emit converted light. The wavelength conversion unit 20 includes an upper portion 21 that covers a region (directly above region) corresponding to each of the light sources 10 and a peripheral region thereof, and a connecting portion 22 that connects the immediately upper portions 21 adjacent to each other in the X direction, for example. , Extending in the X direction as a whole. A plurality of wavelength converters 20 are arranged in the Y direction. For example, the connecting portion 22 is inserted and held in a slit 54 between a pedestal 52 and a presser 53 provided in the middle part of the column portion 51 of the stud 50 (see FIG. 3A). The wavelength conversion unit 20 is further fixed by the connection portion 22 being gripped by the clip portion 74 of the lens unit 70. With such a structure, the distance L1 between the back surface 20S2 of the wavelength converter 20 and the light source 10 is kept constant (see FIG. 3). Note that it is not necessary to hold all of the plurality of connecting portions 22 by the slits 54 and the clip portions 74, and it is sufficient if some of the connecting portions 22 are held.
 Z方向において、光源10と波長変換部20との距離L1は、光学シート30と波長変換部20との距離L3よりも短いことが望ましい。距離L1が距離L3と同等以上である場合と比べて、より一様な輝度分布が得られるからである。すなわち、波長変換部20が光学シート30に近づくと、波長変換部20の輪郭が光学シート30に投影されてしまい、外部から波長変換部20の輪郭が視認されるおそれがあるからである。 In the Z direction, the distance L1 between the light source 10 and the wavelength conversion unit 20 is preferably shorter than the distance L3 between the optical sheet 30 and the wavelength conversion unit 20. This is because a more uniform luminance distribution can be obtained as compared with the case where the distance L1 is equal to or greater than the distance L3. That is, when the wavelength conversion unit 20 approaches the optical sheet 30, the contour of the wavelength conversion unit 20 is projected onto the optical sheet 30, and the contour of the wavelength conversion unit 20 may be visually recognized from the outside.
 なお、本実施の形態では、波長変換部20が、直上部分21と連結部分22とが同じ材料からなる一体物として設けられている例を説明する。但し、連結部分22が、直上部分21と異なる材料、例えば波長変換を行わない樹脂により形成されていてもよい。ここで、連結部分22の幅W22は直上部分21の幅W21よりも狭いことが望ましい(図2A参照)。材料の使用量が削減され、コスト削減および軽量化の点で有利だからである。 In the present embodiment, an example will be described in which the wavelength conversion unit 20 is provided as an integrated body in which the upper part 21 and the connection part 22 are made of the same material. However, the connecting portion 22 may be formed of a material different from the portion 21 directly above, for example, a resin that does not perform wavelength conversion. Here, the width W22 of the connecting portion 22 is preferably narrower than the width W21 of the immediately upper portion 21 (see FIG. 2A). This is because the amount of material used is reduced, which is advantageous in terms of cost reduction and weight reduction.
 波長変換部20は、蛍光顔料や蛍光染料などの蛍光体(蛍光物質)、または量子ドットなどの、波長変換作用を有する発光体を含んでいる。波長変換部20は、そのような蛍光物質や発光体を含む樹脂がシート状に加工されたものでもよいし、他の透明基板上の所定領域にプリントされたものであってもよい。あるいは、2枚の透明フィルムの間に蛍光物質や発光体の層が封入されたものであってもよい。 The wavelength conversion unit 20 includes a phosphor (fluorescent substance) such as a fluorescent pigment or a fluorescent dye, or a light emitter having a wavelength conversion function such as a quantum dot. The wavelength conversion unit 20 may be one in which a resin containing such a fluorescent material or a light emitter is processed into a sheet shape, or may be printed in a predetermined region on another transparent substrate. Or the thing of the layer of the fluorescent material and the light-emitting body enclosed between two transparent films may be sufficient.
 波長変換部20は、裏面20S2から入射する光源10からの第1の波長の光(以下、第1波長光)によって励起され、蛍光発光等の原理により波長変換を行い、第1の波長とは異なる第2の波長の光(以下、第2波長光)を表面20S1から発する。ここで、光源10からの第1波長光は、レンズ部71を透過したのち波長変換部20の裏面20S2に入射する。なお、第1の波長および第2の波長は特に限定されないが、例えば表示装置用途の場合には、第1波長光は青色光(例えば、波長440~460nm程度)、第2波長光は赤色光(例えば、波長620nm~750nm)または緑色光(例えば、波長495nm~570nm)であるとよい。すなわち、光源10は、青色光源であり、その場合、波長変換部20は、青色光を赤色光または緑色光に波長変換する。 The wavelength conversion unit 20 is excited by light having a first wavelength (hereinafter referred to as first wavelength light) from the light source 10 incident from the back surface 20S2, and performs wavelength conversion based on a principle such as fluorescence emission. What is the first wavelength? Light having a different second wavelength (hereinafter, second wavelength light) is emitted from the surface 20S1. Here, the first wavelength light from the light source 10 passes through the lens unit 71 and then enters the back surface 20S2 of the wavelength conversion unit 20. The first wavelength and the second wavelength are not particularly limited. For example, in the case of a display device, the first wavelength light is blue light (for example, a wavelength of about 440 to 460 nm), and the second wavelength light is red light. (For example, a wavelength of 620 nm to 750 nm) or green light (for example, a wavelength of 495 nm to 570 nm) may be used. That is, the light source 10 is a blue light source. In this case, the wavelength conversion unit 20 converts the wavelength of blue light into red light or green light.
 波長変換部20は量子ドットを含むことが好ましい。量子ドットは、長径1nm~100nm程度の粒子であり、離散的なエネルギー準位を有している。量子ドットのエネルギー状態はその大きさに依存するので、サイズを変えることにより自由に発光波長を選択することが可能となる。また、量子ドットの発光光はスペクトル幅が狭い。このような急峻なピークの光を組み合わせることにより色域が拡大する。従って、波長変換物質として量子ドットを用いることにより、容易に色域を拡大することが可能となる。さらに、量子ドットは応答性が高く、光源10の光を効率良く利用することが可能となる。加えて、量子ドットは安定性も高い。量子ドットは、例えば、12族元素と16族元素との化合物、13族元素と16族元素との化合物あるいは14族元素と16族元素との化合物であり、例えば、CdSe,CdTe,ZnS,CdS,PdS,PbSeまたはCdHgTe等である。 The wavelength conversion unit 20 preferably includes quantum dots. Quantum dots are particles having a major axis of about 1 nm to 100 nm and have discrete energy levels. Since the energy state of the quantum dot depends on its size, the emission wavelength can be freely selected by changing the size. The light emitted from the quantum dots has a narrow spectral width. The color gamut is expanded by combining such steep peak light. Therefore, it is possible to easily expand the color gamut by using quantum dots as the wavelength conversion substance. Furthermore, the quantum dot has high responsiveness, and the light from the light source 10 can be used efficiently. In addition, quantum dots are highly stable. The quantum dot is, for example, a compound of a group 12 element and a group 16 element, a compound of a group 13 element and a group 16 element, or a compound of a group 14 element and a group 16 element, such as CdSe, CdTe, ZnS, CdS. , PdS, PbSe or CdHgTe.
 XY面内において、波長変換部20の直上部分21の中心点およびレンズ部71の中心点は、いずれも光源10の光軸CLと一致している(図3A参照)。 In the XY plane, the center point of the portion 21 immediately above the wavelength conversion unit 20 and the center point of the lens unit 71 are both coincident with the optical axis CL of the light source 10 (see FIG. 3A).
 レンズユニット70は、上述したように、波長変換部20の直上に位置するレンズ部71を含んでいる。レンズ部71は、例えば表面40Sと離間して設けられている。但し、レンズ部71は表面40Sに直接固定されていてもよい。あるいは、例えば図3Bに示した第1の変形例としてのレンズユニット70Aのように、平板上の基部72の上に光源10と共にレンズ部71が一体に設けられていてもよい。レンズ部71は、ガラスのほか、例えばポリメタクリル酸メチル樹脂(PMMA:Polymethyl methacrylate)などのアクリル樹脂、ポリカーボネート(PC:polycarbonate)、シクロオレフィンポリマー(COP)またはエポキシ樹脂などの透明樹脂により構成することができる。 The lens unit 70 includes the lens unit 71 located immediately above the wavelength conversion unit 20 as described above. The lens portion 71 is provided, for example, separated from the surface 40S. However, the lens unit 71 may be directly fixed to the surface 40S. Or the lens part 71 with the light source 10 may be integrally provided on the base 72 on a flat plate like the lens unit 70A as a 1st modification shown in FIG. 3B, for example. In addition to glass, the lens unit 71 is made of, for example, an acrylic resin such as polymethylmethacrylate (PMMA), a transparent resin such as a polycarbonate (PC), a cycloolefin polymer (COP), or an epoxy resin. Can do.
 波長変換部20の裏面20S2とレンズ部71の射出面71S2とは、距離L6を隔てて互いに離間しているとよい(図3A参照)。波長変換部20とレンズ部71とが接していると、光源10において発生した熱が外部へ十分に放出されず、光源10およびその近傍における過熱が生じるおそれがあるからである。距離L6は、例えば裏面20S2と表面40Sとの距離の3分の1以上であるとよい。光源10で発せられた光が波長変換部20とレンズ部71との間において籠ることなく外部へ放出されるので、発光効率が向上するからである。 The back surface 20S2 of the wavelength conversion unit 20 and the exit surface 71S2 of the lens unit 71 may be separated from each other with a distance L6 (see FIG. 3A). This is because if the wavelength conversion unit 20 and the lens unit 71 are in contact with each other, heat generated in the light source 10 is not sufficiently released to the outside, and overheating in the light source 10 and its vicinity may occur. The distance L6 may be, for example, one third or more of the distance between the back surface 20S2 and the front surface 40S. This is because the light emitted from the light source 10 is emitted to the outside without being scattered between the wavelength conversion unit 20 and the lens unit 71, so that the light emission efficiency is improved.
 レンズ部71は、光源10からの第1波長光の波長光のうち、波長変換部20の光軸CLの近傍へ向かう光軸近傍成分の光度を低下させ、波長変換部20の光軸CLの近傍を取り囲む周辺部分へ向かう周辺成分の光度を向上させるものである。これにより、レンズ部71を透過して波長変換部20に入射する第1波長光の強度分布がより平坦化される。 The lens unit 71 reduces the luminous intensity of the component near the optical axis toward the vicinity of the optical axis CL of the wavelength conversion unit 20 out of the wavelength light of the first wavelength light from the light source 10, so that the optical axis CL of the wavelength conversion unit 20 The luminous intensity of the peripheral component toward the peripheral part surrounding the vicinity is improved. As a result, the intensity distribution of the first wavelength light that passes through the lens unit 71 and enters the wavelength conversion unit 20 is further flattened.
 具体的には図3Cに示したように、レンズ部71は、例えば光軸近傍領域R71において負の屈折力を有し、光軸近傍領域を取り巻く周辺領域R72において正の屈折力を有するレンズである。レンズ部71の射出面71S2は、光軸近傍領域R71において凹形状を有すると共に周辺領域R72において凸形状を有する非球面からなる。より詳細には、レンズ部71の射出面71S2は、例えば光軸近傍領域R71において光軸CLから遠ざかるに従い負の屈折力が弱くなる凹形状を有し、周辺領域R72において光軸CLから遠ざかるに従い正の屈折力が強くなる凸形状を有するものであってもよい。一方、レンズ部71の入射面71S1は、光軸近傍領域R71において光源10に向けて例えば凹形状を有する。あるいは、入射面71S1は、平面であってもよい。 Specifically, as shown in FIG. 3C, the lens unit 71 is a lens having a negative refractive power in the optical axis vicinity region R71 and a positive refractive power in the peripheral region R72 surrounding the optical axis vicinity region, for example. is there. The exit surface 71S2 of the lens unit 71 is an aspherical surface having a concave shape in the optical axis vicinity region R71 and a convex shape in the peripheral region R72. More specifically, the exit surface 71S2 of the lens unit 71 has, for example, a concave shape in which the negative refractive power decreases as the distance from the optical axis CL increases in the optical axis vicinity region R71, and as the distance from the optical axis CL increases in the peripheral region R72. It may have a convex shape that increases the positive refractive power. On the other hand, the incident surface 71S1 of the lens unit 71 has, for example, a concave shape toward the light source 10 in the optical axis vicinity region R71. Alternatively, the incident surface 71S1 may be a flat surface.
 さらに、レンズ部71は、光軸近傍領域R71と周辺領域R72との境界である変曲点FPにおいて、下記条件式(1)から(3)を全て満たすことが望ましい。 Furthermore, it is desirable that the lens unit 71 satisfies all of the following conditional expressions (1) to (3) at the inflection point FP that is the boundary between the optical axis vicinity region R71 and the peripheral region R72.
θ1>45° ……(1)
θ2>45° ……(2)
θ1=θ2° ……(3)
但し、θ1は第1波長光LL1が発せられる光源10の発光中心点P1と、レンズ部71における第1波長光LLが入射する入射点P2とを結ぶ線が光軸CLに対してなす角度(以下入射角度という。)であり、θ2はレンズ部71の射出面71S2から射出される射出光LL2の進行方向が光軸CLに対してなす角度(以下射出角度という。)である(図3C参照)。
θ1> 45 ° (1)
θ2> 45 ° (2)
θ1 = θ2 ° (3)
However, θ1 is an angle formed by a line connecting the light emission center point P1 of the light source 10 from which the first wavelength light LL1 is emitted and the incident point P2 at which the first wavelength light LL is incident on the lens unit 71 with respect to the optical axis CL ( Θ2 is an angle formed by the traveling direction of the emission light LL2 emitted from the emission surface 71S2 of the lens unit 71 with respect to the optical axis CL (hereinafter referred to as an emission angle) (see FIG. 3C). ).
 レンズ部71は、さらに下記条件式(4)を満たすとよい。 The lens unit 71 may further satisfy the following conditional expression (4).
θ2≦tan-1(R1/L1) ……(4)
但し、R1は波長変換部20の直上部分21における、外接円半径rr1と内接円半径rr2との中間値として求められる半径である(図3D参照)。また、L1は光源10と波長変換部20とのZ方向の距離である。
θ2 ≦ tan −1 (R1 / L1) (4)
Here, R1 is a radius obtained as an intermediate value between the circumscribed circle radius rr1 and the inscribed circle radius rr2 in the portion 21 immediately above the wavelength conversion unit 20 (see FIG. 3D). L1 is the distance between the light source 10 and the wavelength converter 20 in the Z direction.
 レンズユニット70は、2以上のレンズ部71を繋ぐ連結部分73をさらに有するようにしてもよい(図2A,2B,3A)。レンズ部71と連結部分73とは、同じ材料からなる一体物であってもよい。その場合、部品点数が削減できる。連結部分73は、例えばねじ75によって反射基板40に固定されている。連結部分22と連結部分73とは、いずれも例えばX軸方向に延在し、厚さ方向(Z軸方向)において互いに重なり合う部分を有する。連結部分73には、連結部分22を把持するクリップ部分74が設けられていてもよい。また、連結部分22と連結部分73との間には、例えば円柱状のスペーサ76が連結部分73の上に立設していてもよい。連結部分22と連結部分73とが面内においてより均質化された間隔で維持されるので、直上部分21と光源10との距離L1および直上部分21と壁部分71の頂面71Tとの距離L6がそれぞれ面内において均質に保持されるからである。スペーサ76は、連結部分73と一体物を構成していてもよい。 The lens unit 70 may further include a connecting portion 73 that connects two or more lens portions 71 (FIGS. 2A, 2B, and 3A). The lens portion 71 and the connecting portion 73 may be an integrated body made of the same material. In that case, the number of parts can be reduced. The connecting portion 73 is fixed to the reflective substrate 40 by screws 75, for example. The connecting portion 22 and the connecting portion 73 both have, for example, portions that extend in the X-axis direction and overlap each other in the thickness direction (Z-axis direction). The connecting portion 73 may be provided with a clip portion 74 that holds the connecting portion 22. In addition, for example, a columnar spacer 76 may stand on the connection portion 73 between the connection portion 22 and the connection portion 73. Since the connecting portion 22 and the connecting portion 73 are maintained at a more uniform interval in the plane, the distance L1 between the upper portion 21 and the light source 10 and the distance L6 between the upper portion 21 and the top surface 71T of the wall portion 71. This is because each is kept homogeneous in the plane. The spacer 76 may constitute an integral part with the connecting portion 73.
 反射基板40は、波長変換部20の裏面20S2と対向して設けられた板状またはシート状部材である。反射基板40は、光源10から射出してレンズユニット70を経て波長変換部20へ到達したのち光反射部材60から戻ってきた光、あるいは光源10から射出して光学シート30へ到達したのち光学シート30から戻ってきた光を、波長変換部20または光学シート30へ向けて戻すものである。反射基板40は、例えば、反射、拡散、散乱などの機能を有しており、これにより光源10からの光を効率的に利用し、正面輝度を高めることが可能となっている。 The reflective substrate 40 is a plate-like or sheet-like member provided to face the back surface 20S2 of the wavelength conversion unit 20. The reflective substrate 40 is emitted from the light source 10 and reaches the wavelength conversion unit 20 through the lens unit 70 and then returns from the light reflecting member 60, or is emitted from the light source 10 and reaches the optical sheet 30 and then reaches the optical sheet 30. The light returned from 30 is returned toward the wavelength conversion unit 20 or the optical sheet 30. The reflective substrate 40 has functions such as reflection, diffusion, and scattering, for example, so that the light from the light source 10 can be efficiently used and the front luminance can be increased.
 反射基板40は、例えば、発泡PET(ポリエチレンテレフタレート),銀蒸着フィルム,多層膜反射フィルム,または白色PETにより構成されている。反射基板40に正反射(鏡面反射)の機能を持たせる場合には、反射基板40の表面は、銀蒸着,アルミニウム蒸着,または多層膜反射などの処理がなされたものであることが好ましい。反射基板40に微細形状を付与する場合は、反射基板40は、熱可塑性樹脂を用いた熱プレス成型,または溶融押し出し成型などの手法で一体的に形成されていてもよいし、また、例えばPETなどからなる基材上にエネルギー線(たとえば紫外線)硬化樹脂を塗布したのち、そのエネルギー線硬化樹脂に形状を転写して形成されていてもよい。ここで、熱可塑性樹脂としては、例えば、ポリカーボネート樹脂、PMMA(ポリメチルメタクリレート樹脂)などのアクリル樹脂、ポリエチレンテレフタレートなどのポリエステル樹脂、MS(メチルメタクリレートとスチレンの共重合体)などの非晶性共重合ポリエステル樹脂、ポリスチレン樹脂およびポリ塩化ビニル樹脂などが挙げられる。また、エネルギー線(たとえば紫外線)硬化樹脂に形状を転写する場合は、基材はガラスであってもよい。 The reflective substrate 40 is made of, for example, foamed PET (polyethylene terephthalate), a silver deposited film, a multilayer reflective film, or white PET. When the reflective substrate 40 has a regular reflection (specular reflection) function, the surface of the reflective substrate 40 is preferably subjected to a treatment such as silver vapor deposition, aluminum vapor deposition, or multilayer film reflection. When a fine shape is imparted to the reflective substrate 40, the reflective substrate 40 may be integrally formed by a technique such as hot press molding using a thermoplastic resin, or melt extrusion molding, or, for example, PET It may be formed by applying an energy ray (for example, ultraviolet ray) curable resin on a substrate made of, for example, and then transferring the shape to the energy ray curable resin. Here, examples of the thermoplastic resin include polycarbonate resins, acrylic resins such as PMMA (polymethyl methacrylate resin), polyester resins such as polyethylene terephthalate, and amorphous copolymers such as MS (copolymer of methyl methacrylate and styrene). Examples thereof include a polymerized polyester resin, a polystyrene resin, and a polyvinyl chloride resin. Further, when the shape is transferred to an energy ray (for example, ultraviolet ray) curable resin, the substrate may be glass.
 発光装置1では、例えば反射基板40の外縁に立設し、複数の光源10および波長変換部20を四方から取り囲む4つの壁部41がさらに設けられていてもよい。壁部41の内面は反射機能を有しており、その一部に補助の波長変換部42が設けられている。波長変換部42は、例えば波長変換部20と同様の材料からなり、壁部41の内面に形成された、X方向およびY方向に延在する帯状の部材である。波長変換部42は、波長変換部20と同様に波長変換機能を有しており、主たる波長変換部20の機能を補っている。 In the light emitting device 1, for example, four wall portions 41 may be further provided so as to stand on the outer edge of the reflective substrate 40 and surround the plurality of light sources 10 and the wavelength conversion unit 20 from four directions. The inner surface of the wall portion 41 has a reflection function, and an auxiliary wavelength conversion portion 42 is provided in a part thereof. The wavelength converter 42 is a band-shaped member made of, for example, the same material as the wavelength converter 20 and formed on the inner surface of the wall 41 and extending in the X direction and the Y direction. The wavelength conversion unit 42 has a wavelength conversion function similar to the wavelength conversion unit 20, and supplements the function of the main wavelength conversion unit 20.
 光学シート30は、波長変換部20の表面20S1と対向して設けられ、例えば、拡散板,拡散シート,レンズフィルム,偏光分離シートなどを含んでいる。図1および図3Aでは、これら複数枚の光学シート30のうちの一枚のみを記載している。このような光学シート30を設けることにより、光源10や波長変換部20から斜め方向に出射した光を正面方向に立ち上げることが可能となり、正面輝度をさらに高めることが可能となる。 The optical sheet 30 is provided so as to face the surface 20S1 of the wavelength conversion unit 20, and includes, for example, a diffusion plate, a diffusion sheet, a lens film, a polarization separation sheet, and the like. 1 and 3A, only one of the plurality of optical sheets 30 is shown. By providing such an optical sheet 30, it is possible to raise the light emitted obliquely from the light source 10 or the wavelength conversion unit 20 in the front direction, and to further increase the front luminance.
 発光装置1は、波長変換部20の直上部分21を透過した光を反射する光反射部材60をさらに有する。光反射部材60は、XY平面において複数の光源10と各々対応する領域に配置されている。本実施の形態では、光反射部材60は表面20S1と接するように配置された場合を例示するが、光反射部材60は直上部分21と光学シート30との間に配置されていれば、表面20S1と離間していてもよい。さらに、XY面内において、光反射部材60の中心点が光源10の光軸CLと一致しているとよい(図3A参照)。 The light emitting device 1 further includes a light reflecting member 60 that reflects the light transmitted through the portion 21 immediately above the wavelength conversion unit 20. The light reflecting member 60 is disposed in a region corresponding to each of the plurality of light sources 10 in the XY plane. In the present embodiment, the case where the light reflecting member 60 is disposed so as to be in contact with the surface 20S1 is illustrated. However, if the light reflecting member 60 is disposed between the immediately upper portion 21 and the optical sheet 30, the surface 20S1 is illustrated. And may be separated from each other. Furthermore, the center point of the light reflecting member 60 may coincide with the optical axis CL of the light source 10 in the XY plane (see FIG. 3A).
[発光装置1の作用および効果]
 光源10は点光源であるので、光源10から発せられた光は光源10の発光中心から360°全方向に広がっていき、最終的には光学シート30を通過して発光として観測される。ここで、本実施の形態の発光装置1では、複数の波長変換部20における直上部分21を、Z方向において光源10と光学シート30との間に配置すると共にXY面内において複数の光源10と各々対応する領域に配置するようにした。これにより、光源10から光学シート30へ直接入射する第1の波長の光(例えば青色光)の強度を低減しつつ、第2の波長の光(例えば緑色光または赤色光)への波長変換を適切に行うことができる。また、全面に亘る一枚のシート状の波長変換部材を設置する場合と比べて、その構成材料の使用量が削減することができる。したがって、発光装置1によれば、軽量化を図りつつ、XY面内において輝度むらや色の偏りの少ない光を効率よく発することができる。
[Operation and Effect of Light-Emitting Device 1]
Since the light source 10 is a point light source, the light emitted from the light source 10 spreads in all directions of 360 ° from the light emission center of the light source 10, and finally passes through the optical sheet 30 and is observed as light emission. Here, in the light emitting device 1 of the present embodiment, the portion 21 directly above the plurality of wavelength conversion units 20 is disposed between the light source 10 and the optical sheet 30 in the Z direction and the plurality of light sources 10 in the XY plane. Each was arranged in a corresponding area. Thereby, the wavelength conversion to the light of the second wavelength (for example, green light or red light) is performed while reducing the intensity of the light of the first wavelength (for example, blue light) that is directly incident on the optical sheet 30 from the light source 10. Can be done appropriately. In addition, the amount of the constituent material used can be reduced as compared with the case where one sheet-like wavelength conversion member is provided over the entire surface. Therefore, according to the light emitting device 1, it is possible to efficiently emit light with less luminance unevenness and color deviation in the XY plane while reducing the weight.
 発光装置1では、さらに光源10と、これに対応する波長変換部20の直上部分21との間に、レンズ部71をそれぞれ設けるようにした。これにより、光源10から発せられた第1の波長の光の大部分を直上部分21へ入射させることができる。したがって、光源10から発せられたのち、光学シート30へ直接入射する第1の波長の光の強度をよりいっそう低減することができ、第1の波長の光から第2の波長の光への波長変換をよりいっそう効率的に行うことができる。また、レンズ部71が適切な形状を有することにより、波長変換部20の直上部分21へ入射する第1の波長光の強度分布がより平坦化される。したがって、レンズ部71を用いることで、直上部分21へ入射する第1の波長光の照度ピーク値や、加熱される直上部分21の温度ピーク値を大幅に低減でき、その結果、直上部分21の長寿命化が期待できる。また、直上部分21へ入射する第1の波長光の強度分布がより平坦化されることで、XY面内において輝度むらや色の偏りの少ない光をよりいっそう効率よく発することもできる。発光装置1では、例えばレンズ部71の射出面71S2が光軸近傍領域R71において光軸CLから遠ざかるに従い負の屈折力が弱くなる凹形状を有し、周辺領域R72において光軸CLから遠ざかるに従い正の屈折力が強くなる凸形状を有するようにした場合に、極めて平坦化された強度分布を有する第1の波長光を波長変換部20の直上部分21へ入射することができる。 In the light emitting device 1, the lens unit 71 is further provided between the light source 10 and the portion 21 directly above the wavelength conversion unit 20 corresponding thereto. Thereby, most of the light having the first wavelength emitted from the light source 10 can be incident on the portion 21 immediately above. Therefore, the intensity of the first wavelength light that is emitted from the light source 10 and directly incident on the optical sheet 30 can be further reduced, and the wavelength from the first wavelength light to the second wavelength light is further reduced. Conversion can be performed more efficiently. Moreover, when the lens unit 71 has an appropriate shape, the intensity distribution of the first wavelength light incident on the portion 21 immediately above the wavelength conversion unit 20 is further flattened. Therefore, by using the lens portion 71, the illuminance peak value of the first wavelength light incident on the directly upper portion 21 and the temperature peak value of the heated directly upper portion 21 can be greatly reduced. Long life can be expected. In addition, since the intensity distribution of the first wavelength light incident on the immediately upper portion 21 is further flattened, it is possible to more efficiently emit light with less luminance unevenness and color deviation in the XY plane. In the light emitting device 1, for example, the exit surface 71S2 of the lens unit 71 has a concave shape in which the negative refractive power decreases as the distance from the optical axis CL increases in the optical axis vicinity region R71, and increases as the distance from the optical axis CL increases in the peripheral region R72. In the case of having a convex shape that increases the refractive power of the first wavelength light, the first wavelength light having an extremely flattened intensity distribution can be incident on the portion 21 immediately above the wavelength conversion unit 20.
 また、波長変換部20の直上部分21の上に光反射部材60を設けるようにしたので、光学シート30からの発光強度の平坦性が向上する。これは、光源10から直上部分21を透過した光をそのまま光学シート30へ入射させるのではなく、光反射部材60により反射し、反射基板40により再度反射したのち光学シート30へ導くことができるからである。 Further, since the light reflecting member 60 is provided on the portion 21 immediately above the wavelength conversion unit 20, the flatness of the emission intensity from the optical sheet 30 is improved. This is because the light transmitted from the light source 10 directly through the upper portion 21 is not incident on the optical sheet 30 as it is, but is reflected by the light reflecting member 60, reflected again by the reflective substrate 40, and then guided to the optical sheet 30. It is.
 このように発光装置1によれば、面内においてより高い均一性を有する光を発することができる。すなわち、面内において輝度むらや色の偏りの少ない光を効率よく発することができる。このため、この発光装置1を表示装置に用いれば、色再現性等に優れた表示性能を発揮することができる。また、この発光装置1を照明装置に用いれば、対象物に対し、より均質な照明を行うことができる。 Thus, according to the light emitting device 1, light having higher uniformity in the plane can be emitted. That is, light with less luminance unevenness and color deviation can be efficiently emitted in the plane. For this reason, if this light-emitting device 1 is used for a display apparatus, the display performance excellent in color reproducibility etc. can be exhibited. Moreover, if this light-emitting device 1 is used for an illuminating device, more homogeneous illumination can be performed on an object.
<第1の実施の形態の変形例>
 上記第1の実施の形態では、レンズユニット70における連結部分73をねじ75によって反射基板40に固定するようにしたが、固定手段はねじ75に限定されるものではない。例えば図4Aの斜視図および図4Bの断面図に示した第2の変形例のように、突起部77を連結部分73に設けると共に、その突起部77を反射基板40の表面40Sに設けた穴40Hに挿入して固定するようにしてもよい。その場合、突起部77に爪部77Aを設け、反射基板40に設けた穴40Hの内部の係止部40HKに係止するようにしてもよい。また、この場合、壁部分71、連結部分73、クリップ部分74および突起部77などを一体化してもよい。さらに図11Lに示したように、連結部分73を、その下面73LSが凹面となるように湾曲させてもよい。このように湾曲させることで、突起部77を穴40Hに挿入して固定した際、連結部分73の端部に設けられた壁部分71が表面40Sから離れてしまうことを防止できる。
<Modification of the first embodiment>
In the first embodiment, the connecting portion 73 in the lens unit 70 is fixed to the reflective substrate 40 with the screw 75. However, the fixing means is not limited to the screw 75. For example, as in the second modification shown in the perspective view of FIG. 4A and the cross-sectional view of FIG. 4B, the projection 77 is provided in the connecting portion 73 and the projection 77 is provided in the surface 40S of the reflective substrate 40. You may make it insert and fix to 40H. In that case, the protrusion 77 may be provided with a claw 77 </ b> A so as to be locked to the locking portion 40 </ b> HK inside the hole 40 </ b> H provided in the reflective substrate 40. In this case, the wall portion 71, the connecting portion 73, the clip portion 74, the protrusion 77, and the like may be integrated. Further, as shown in FIG. 11L, the connecting portion 73 may be curved so that the lower surface 73LS is concave. By curving in this way, it is possible to prevent the wall portion 71 provided at the end portion of the connecting portion 73 from separating from the surface 40S when the protruding portion 77 is inserted and fixed in the hole 40H.
<第2の実施の形態>
 図5は、本技術の第2の実施の形態に係る表示装置101の外観を表したものである。この表示装置101は、発光装置1を備え、例えば薄型テレビジョン装置として用いられるものであり、画像表示のための平板状の本体部102をスタンド103により支持した構成を有している。なお、表示装置101は、スタンド103を本体部102に取付けた状態で、床,棚または台などの水平面に載置して据置型として用いられるが、スタンド103を本体部102から取り外した状態で壁掛型として用いることも可能である。
<Second Embodiment>
FIG. 5 illustrates an appearance of the display device 101 according to the second embodiment of the present technology. The display device 101 includes the light emitting device 1 and is used as, for example, a thin television device, and has a configuration in which a flat main body 102 for image display is supported by a stand 103. The display device 101 is used as a stationary type with the stand 103 attached to the main body 102 and placed on a horizontal surface such as a floor, a shelf, or a stand, but the stand 103 is removed from the main body 102. It can also be used as a wall-hanging type.
 図6Aは、図5に示した本体部102を分解して表したものである。本体部102は、例えば、前面側(視聴者側)から、前部外装部材(ベゼル)111,パネルモジュール112および後部外装部材(リアカバー)113をこの順に有している。前部外装部材111は、パネルモジュール112の前面周縁部を覆う額縁状の部材であり、下方には一対のスピーカー114が配置されている。パネルモジュール112は前部外装部材111に固定され、その背面には電源基板115および信号基板116が実装されると共に取付金具117が固定されている。取付金具117は、壁掛けブラケットの取付、基板等の取付およびスタンド103の取付のためのものである。後部外装部材113は、パネルモジュール112の背面および側面を被覆している。 FIG. 6A is an exploded view of the main body 102 shown in FIG. The main body 102 has, for example, a front exterior member (bezel) 111, a panel module 112, and a rear exterior member (rear cover) 113 in this order from the front side (viewer side). The front exterior member 111 is a frame-shaped member that covers the peripheral edge of the front surface of the panel module 112, and a pair of speakers 114 are disposed below the front exterior member 111. The panel module 112 is fixed to the front exterior member 111, and a power supply board 115 and a signal board 116 are mounted on the rear surface thereof, and a mounting bracket 117 is fixed. The mounting bracket 117 is for mounting a wall-mounted bracket, mounting a board, etc., and mounting the stand 103. The rear exterior member 113 covers the back and side surfaces of the panel module 112.
 図6Bは、図6Aに示したパネルモジュール112を分解して表したものである。パネルモジュール112は、例えば、前面側(視聴者側)から、前部筐体(トップシャーシ)121,液晶パネル122,枠状部材(ミドルシャーシ)80,光学シート30,波長変換部20,反射基板40,後部筐体(バックシャーシ)124およびタイミングコントローラ基板127をこの順に有している。 FIG. 6B is an exploded view of the panel module 112 shown in FIG. 6A. The panel module 112 includes, for example, from the front side (viewer side), a front housing (top chassis) 121, a liquid crystal panel 122, a frame-shaped member (middle chassis) 80, an optical sheet 30, a wavelength conversion unit 20, and a reflective substrate. 40, a rear case (back chassis) 124 and a timing controller board 127 are provided in this order.
 前部筐体121は、液晶パネル122の前面周縁部を覆う枠状の金属部品である。液晶パネル122は、例えば、液晶セル122Aと、ソース基板122Bと、これらを接続するCOF(Chip On Film)などの可撓性基板122Cとを有している。枠状部材123は、液晶パネル122および光学シート50を保持する枠状の樹脂部品である。後部筐体124は、液晶パネル122,中間筐体123および発光装置1を収容する、鉄(Fe)等よりなる金属部品である。タイミングコントローラ基板127もまた、後部筐体124の背面に実装されている。 The front housing 121 is a frame-shaped metal part that covers the front peripheral edge of the liquid crystal panel 122. The liquid crystal panel 122 includes, for example, a liquid crystal cell 122A, a source substrate 122B, and a flexible substrate 122C such as a COF (Chip On On Film) that connects them. The frame-shaped member 123 is a frame-shaped resin component that holds the liquid crystal panel 122 and the optical sheet 50. The rear housing 124 is a metal part made of iron (Fe) or the like that houses the liquid crystal panel 122, the intermediate housing 123, and the light emitting device 1. The timing controller board 127 is also mounted on the back surface of the rear housing 124.
 この表示装置101では、発光装置1からの光が液晶パネル122により選択的に透過されることにより、画像表示が行われる。ここでは、第1の実施の形態で説明したように、面内の色の均一性が向上した発光装置1を備えているので、表示装置101の表示品質が向上する。 In the display device 101, the light from the light emitting device 1 is selectively transmitted through the liquid crystal panel 122, thereby displaying an image. Here, as described in the first embodiment, since the light emitting device 1 with improved in-plane color uniformity is provided, the display quality of the display device 101 is improved.
 なお、上記実施の形態では、表示装置101が第1の実施の形態に係る発光装置1を備えている場合について説明したが、表示装置101は、発光装置1に代えて、第2の実施の形態に係る発光装置2を備えていてもよい。 In the above embodiment, the case where the display device 101 includes the light emitting device 1 according to the first embodiment has been described. However, the display device 101 is replaced with the light emitting device 1 in the second embodiment. You may provide the light-emitting device 2 which concerns on a form.
<表示装置の適用例>
 以下、上記のような表示装置101の電子機器への適用例について説明する。電子機器としては、例えばテレビジョン装置,デジタルカメラ,ノート型パーソナルコンピュータ、携帯電話等の携帯端末装置あるいはビデオカメラ等が挙げられる。言い換えると、上記表示装置は、外部から入力された映像信号あるいは内部で生成した映像信号を、画像あるいは映像として表示するあらゆる分野の電子機器に適用することが可能である。
<Application example of display device>
Hereinafter, application examples of the display device 101 as described above to an electronic device will be described. Examples of the electronic device include a television device, a digital camera, a notebook personal computer, a mobile terminal device such as a mobile phone, or a video camera. In other words, the display device can be applied to electronic devices in various fields that display a video signal input from the outside or a video signal generated inside as an image or video.
[適用例1]
 図7Aは、上記実施の形態の表示装置101が適用される電子ブックの外観を表したものである。図7Bは、上記実施の形態の表示装置101が適用される他の電子ブックの外観を表したものである。これらの電子ブックは、いずれも、例えば表示部210および非表示部220を有しており、この表示部210が上記実施の形態の表示装置101により構成されている。
[Application Example 1]
FIG. 7A shows the appearance of an electronic book to which the display device 101 of the above embodiment is applied. FIG. 7B shows the appearance of another electronic book to which the display device 101 of the above embodiment is applied. Each of these electronic books has, for example, a display unit 210 and a non-display unit 220, and the display unit 210 is configured by the display device 101 of the above embodiment.
[適用例2]
 図8は、上記実施の形態の表示装置101が適用されるスマートフォンの外観を表したものである。このスマートフォンは、例えば、表示部230および非表示部240を有しており、この表示部230が上記実施の形態の表示装置101により構成されている。
[Application Example 2]
FIG. 8 illustrates an appearance of a smartphone to which the display device 101 of the above embodiment is applied. This smartphone has, for example, a display unit 230 and a non-display unit 240, and the display unit 230 is configured by the display device 101 of the above embodiment.
[適用例3]
 図9Aおよび図9Bは、上記実施の形態の表示装置101が適用されるデジタルカメラの外観を表したものである。図9Aは、そのデジタルカメラをその前方(物体側)から眺めた外観を表し、図9Bは、そのデジタルカメラをその後方(像側)から眺めた外観を表す。このデジタルカメラは、例えば、フラッシュ用の発光部410、表示部420、メニュースイッチ430およびシャッターボタン440を有しており、この表示部420が上記実施の形態の表示装置101により構成されている。
[Application Example 3]
9A and 9B show the appearance of a digital camera to which the display device 101 of the above embodiment is applied. FIG. 9A shows an appearance of the digital camera viewed from the front (object side), and FIG. 9B shows an appearance of the digital camera viewed from the rear (image side). The digital camera includes, for example, a flash light emitting unit 410, a display unit 420, a menu switch 430, and a shutter button 440, and the display unit 420 is configured by the display device 101 of the above embodiment.
[適用例4]
 図10は、上記実施の形態の表示装置101が適用されるノート型パーソナルコンピュータの外観を表したものである。このノート型パーソナルコンピュータは、例えば、本体510,文字等の入力操作のためのキーボード520および画像を表示する表示部530を有しており、この表示部530が上記実施の形態の表示装置101により構成されている。
[Application Example 4]
FIG. 10 illustrates an appearance of a notebook personal computer to which the display device 101 according to the above embodiment is applied. The notebook personal computer has, for example, a main body 510, a keyboard 520 for inputting characters and the like, and a display unit 530 for displaying an image. The display unit 530 is provided by the display device 101 of the above embodiment. It is configured.
[適用例5]
 図11は、上記実施の形態の表示装置101が適用されるビデオカメラの外観を表したものである。このビデオカメラは、例えば、本体部610,この本体部610の前方側面に設けられた被写体撮影用のレンズ620,撮影時のスタート/ストップスイッチ630および表示部640を有している。そして、この表示部640が上記実施の形態の表示装置101により構成されている。
[Application Example 5]
FIG. 11 shows the appearance of a video camera to which the display device 101 of the above embodiment is applied. This video camera includes, for example, a main body 610, a subject photographing lens 620 provided on the front side surface of the main body 610, a start / stop switch 630 at the time of photographing, and a display 640. And this display part 640 is comprised by the display apparatus 101 of the said embodiment.
[適用例6]
 図12Aおよび図12Bは、上記実施の形態の表示装置101が適用される携帯電話機の外観を表したものである。この携帯電話機は、例えば、上側筐体710と下側筐体720とを連結部(ヒンジ部)730で連結したものであり、ディスプレイ740,サブディスプレイ750,ピクチャーライト760およびカメラ770を有している。そして、これらのうちのディスプレイ740またはサブディスプレイ750が、上記実施の形態の表示装置101により構成されている。
[Application Example 6]
12A and 12B show the appearance of a mobile phone to which the display device 101 of the above embodiment is applied. For example, the mobile phone is obtained by connecting an upper housing 710 and a lower housing 720 with a connecting portion (hinge portion) 730, and includes a display 740, a sub-display 750, a picture light 760, and a camera 770. Yes. Of these, the display 740 or the sub-display 750 is configured by the display device 101 of the above embodiment.
<照明装置の適用例>
 図13および図14は、上記実施の形態の発光装置1,2が適用される卓上用の照明装置の外観を表したものである。この照明装置は、例えば、基台841に設けられた支柱842に、照明部843を取り付けたものであり、この照明部843は、上記第1および第2の実施の形態に係る発光装置1,2のいずれかにより構成されている。照明部843は、光学シート30や反射基板40を湾曲形状とすることにより、図13に示した筒状、または図14に示した曲面状など、任意の形状とすることが可能である。
<Application example of lighting device>
13 and 14 show the appearance of a tabletop lighting device to which the light-emitting devices 1 and 2 according to the above-described embodiments are applied. This illuminating device is, for example, one in which an illuminating unit 843 is attached to a support column 842 provided on a base 841, and the illuminating unit 843 includes the light emitting devices 1 and 2 according to the first and second embodiments. It is comprised by either of 2. The illumination unit 843 can have an arbitrary shape such as a cylindrical shape shown in FIG. 13 or a curved shape shown in FIG. 14 by making the optical sheet 30 or the reflective substrate 40 into a curved shape.
 図15は、上記実施の形態の発光装置1,2が適用される室内用の照明装置の外観を表したものである。この照明装置は、例えば、上記実施の形態に係る発光装置1,2のいずれかにより構成された照明部844を有している。照明部844は、建造物の天井850Aに適宜の個数および間隔で配置されている。なお、照明部844は、用途に応じて、天井850Aに限らず、壁850Bまたは床(図示せず)など任意の場所に設置することが可能である。 FIG. 15 shows the appearance of an indoor lighting device to which the light emitting devices 1 and 2 of the above embodiment are applied. This illuminating device has the illumination part 844 comprised by either the light-emitting devices 1 and 2 which concern on the said embodiment, for example. The illumination units 844 are arranged at an appropriate number and interval on the ceiling 850A of the building. Note that the lighting unit 844 can be installed not only in the ceiling 850A but also in an arbitrary place such as a wall 850B or a floor (not shown) depending on the application.
 これらの照明装置では、発光装置1からの光により、照明が行われる。ここでは、第1の実施の形態で説明したように、面内の色の均一性が向上した発光装置1,2を備えているので、照明品質が向上する。 In these illumination devices, illumination is performed by light from the light emitting device 1. Here, as described in the first embodiment, since the light emitting devices 1 and 2 having improved in-plane color uniformity are provided, the illumination quality is improved.
<実験例>
(実験例1)
 上記第1の実施の形態に係る発光装置1のサンプルを作製した。但し、波長変換部20の直上部分21および光反射部材60の平面形状は、例えば図16Aに示したような円形とした。図16Aに示したように、直上部分21の幅は24.0mmとし、光反射部材60の幅は18.4mmとした。また、図17Aに示した断面形状を有するレンズ部71Aを用いた。レンズ部71AはPMMAを用いて作製した。図17Aに示したように、レンズ部71Aにおいて、最大外径は9.06mm、入射面71S1の最大外径は7.18mmとした。また、表面40Sから射出面71S2の変曲点FPまでの距離は2.97mm、表面40Sから光軸CL上の射出面71S2の位置までの距離は2.4mm、表面40Sから光軸CL上の入射面71S1の位置までの距離は1.6mm、レンズ部71Aと表面40Sとの最小間隔は0.5mmとした。さらに、波長変換部20の直上部分21と表面40Sとの距離L4は5.0mmとした。実験例1のサンプルでは、図18Aに示したように、光源10からの第1の波長光が全て直上部分21と光反射部材60との重なり合う領域に入射するようにした。なお、図18Aは、図16Aに示したI-I線に沿った矢視方向の断面図である。
<Experimental example>
(Experimental example 1)
A sample of the light emitting device 1 according to the first embodiment was manufactured. However, the planar shape of the portion 21 directly above the wavelength converter 20 and the light reflecting member 60 is a circle as shown in FIG. 16A, for example. As shown in FIG. 16A, the width of the immediately upper portion 21 was 24.0 mm, and the width of the light reflecting member 60 was 18.4 mm. Further, the lens portion 71A having the cross-sectional shape shown in FIG. 17A was used. The lens portion 71A was manufactured using PMMA. As shown in FIG. 17A, in the lens portion 71A, the maximum outer diameter was 9.06 mm, and the maximum outer diameter of the incident surface 71S1 was 7.18 mm. The distance from the surface 40S to the inflection point FP of the exit surface 71S2 is 2.97 mm, the distance from the surface 40S to the position of the exit surface 71S2 on the optical axis CL is 2.4 mm, and the surface 40S to the optical axis CL The distance to the position of the incident surface 71S1 was 1.6 mm, and the minimum distance between the lens portion 71A and the surface 40S was 0.5 mm. Furthermore, the distance L4 between the portion 21 directly above the wavelength conversion unit 20 and the surface 40S was set to 5.0 mm. In the sample of Experimental Example 1, as shown in FIG. 18A, all the first wavelength light from the light source 10 is incident on the overlapping region between the upper portion 21 and the light reflecting member 60. 18A is a cross-sectional view in the direction of the arrow along the line II shown in FIG. 16A.
(実験例2)
 実験例1と同様に、上記第1の実施の形態に係る発光装置1のサンプルを作製した。但し、図16Bに示したように、直上部分21の幅は30.6mmとし、光反射部材60の幅は21.0mmとした。また、図17Bに示した断面形状を有するレンズ部71Bを用いた。レンズ部71BはPMMAを用いて作製した。図17Bに示したように、レンズ部71Bにおいて、最大外径は9.08mm、入射面71S1の最大外径は7.18mmとした。また、表面40Sから射出面71S2の変曲点FPまでの距離は2.87mm、表面40Sから光軸CL上の射出面71S2の位置までの距離は2.4mm、表面40Sから光軸CL上の入射面71S1の位置までの距離は1.6mm、レンズ部71Bと表面40Sとの最小間隔は0.5mmとした。さらに、波長変換部20の直上部分21と表面40Sとの距離L4は7.0mmとした。実験例1のサンプルでは、図18Bに示したように、光源10からの第1の波長光の大部分が直上部分21に入射するようにした。但し、一部の周辺光が、直上部分21のうち光反射部材60と重複する領域の外側の領域へ入射するようにした。なお、図18Bは、図16Bに示したII-II線に沿った矢視方向の断面図である。
(Experimental example 2)
Similar to Experimental Example 1, a sample of the light emitting device 1 according to the first embodiment was manufactured. However, as shown in FIG. 16B, the width of the directly upper portion 21 was 30.6 mm, and the width of the light reflecting member 60 was 21.0 mm. Moreover, the lens part 71B which has the cross-sectional shape shown to FIG. 17B was used. The lens portion 71B was manufactured using PMMA. As shown in FIG. 17B, in the lens portion 71B, the maximum outer diameter was 9.08 mm, and the maximum outer diameter of the incident surface 71S1 was 7.18 mm. The distance from the surface 40S to the inflection point FP of the exit surface 71S2 is 2.87 mm, the distance from the surface 40S to the position of the exit surface 71S2 on the optical axis CL is 2.4 mm, and the distance from the surface 40S to the optical axis CL. The distance to the position of the incident surface 71S1 was 1.6 mm, and the minimum distance between the lens portion 71B and the surface 40S was 0.5 mm. Furthermore, the distance L4 between the portion 21 directly above the wavelength conversion unit 20 and the surface 40S was set to 7.0 mm. In the sample of Experimental Example 1, as shown in FIG. 18B, most of the first wavelength light from the light source 10 was incident on the portion 21 immediately above. However, a part of the ambient light is incident on a region outside the region overlapping with the light reflecting member 60 in the upper portion 21. 18B is a cross-sectional view in the direction of the arrow along the line II-II shown in FIG. 16B.
(参考例)
 レンズユニット70(レンズ部71)を設けなかったことを除き、他は実験例1と同様の構成の発光装置1のサンプルを作製した(図16C参照)。この参考例では、図18Cに示したように、光源10からの第1の波長光の大部分が直上部分21に入射するものの、一部の周辺光が、直上部分21から外側へ外れるようにした。なお、図18Cは、図16Cに示したIII-III線に沿った矢視方向の断面図である。
(Reference example)
Except that the lens unit 70 (lens portion 71) was not provided, a sample of the light emitting device 1 having the same configuration as that of Experimental Example 1 was manufactured (see FIG. 16C). In this reference example, as shown in FIG. 18C, most of the first wavelength light from the light source 10 is incident on the directly upper portion 21, but a part of the ambient light deviates from the directly upper portion 21 to the outside. did. 18C is a cross-sectional view in the direction of the arrow along the line III-III shown in FIG. 16C.
 上記実験例1,2および参考例の各サンプルについて、1灯のみ点灯させた任意の光源10の直上の領域において観察される照度分布をそれぞれ測定した。その結果を図19A~19C,図20にそれぞれに示す。図19A~19Cでは、横軸がX軸方向における光源10の中心位置(光軸の位置)を中心とする位置(任意単位)を表し、縦軸がX軸方向における光源10の中心位置(光軸の位置)を中心とする位置(任意単位)を表す。また、図20は、参考例における光源10の中心位置における照度を1としたときの、X軸方向における位置に応じた照度分布を実験例1,2および参考例について比較したものである。 The illuminance distribution observed in an area immediately above an arbitrary light source 10 in which only one lamp was turned on was measured for each of the samples of the experimental examples 1 and 2 and the reference example. The results are shown in FIGS. 19A to 19C and FIG. 20, respectively. 19A to 19C, the horizontal axis represents a position (arbitrary unit) centered on the center position (optical axis position) of the light source 10 in the X-axis direction, and the vertical axis represents the center position (light) of the light source 10 in the X-axis direction. This represents the position (arbitrary unit) centered on the axis position. FIG. 20 is a comparison of the illuminance distribution according to the position in the X-axis direction for Experimental Examples 1 and 2 and the Reference Example, where the illuminance at the center position of the light source 10 in the Reference Example is 1.
 図19A~19C,図20に示した結果から、本開示における発光装置1によれば、直上部分21の光軸近傍から周辺に至るまで、より平坦化された第1の波長光を直上部分21に入射できることが確認できた。 From the results shown in FIGS. 19A to 19C and FIG. 20, according to the light emitting device 1 of the present disclosure, the first wavelength light that has been flattened from the vicinity of the optical axis of the directly upper portion 21 to the periphery is supplied to the directly upper portion 21. It was confirmed that the light can be incident on.
(実験例3)
 実験例1と同様に、上記第1の実施の形態に係る発光装置1のサンプルを作製した。但し、図21Aに示した断面形状を有するレンズ部71Cを用いた。図21Aに示したように、レンズ部71Cにおいて、最大外径は6.54mm、入射面71S1の最大外径は3.7mmとした。また、表面40Sから射出面71S2の変曲点FPまでの距離は2.81mm、表面40Sから光軸CL上の射出面71S2の位置までの距離は2.4mm、表面40Sから光軸CL上の入射面71S1の位置までの距離は1.6mm、レンズ部71Cと表面40Sとの最小間隔は0.52mmとした。さらに、波長変換部20の直上部分21と表面40Sとの距離L4は5mmとした。実験例3のサンプルでは、図21Bに示したように、光源10からの第1の波長光の全てが直上部分21と光反射部材60との重複領域に入射するようにした。この実験例3についても、実験例1,2と同様にして、1灯のみ点灯させた任意の光源10の直上の領域において観察される照度分布を測定したところ、直上部分21の光軸近傍から周辺に至るまで、より平坦化された第1の波長光を直上部分21に入射できることが確認できた。
(Experimental example 3)
Similar to Experimental Example 1, a sample of the light emitting device 1 according to the first embodiment was manufactured. However, the lens portion 71C having the cross-sectional shape shown in FIG. 21A was used. As shown in FIG. 21A, in the lens portion 71C, the maximum outer diameter was 6.54 mm, and the maximum outer diameter of the incident surface 71S1 was 3.7 mm. The distance from the surface 40S to the inflection point FP of the exit surface 71S2 is 2.81 mm, the distance from the surface 40S to the position of the exit surface 71S2 on the optical axis CL is 2.4 mm, and the distance from the surface 40S to the optical axis CL. The distance to the position of the incident surface 71S1 was 1.6 mm, and the minimum distance between the lens portion 71C and the surface 40S was 0.52 mm. Furthermore, the distance L4 between the portion 21 directly above the wavelength conversion unit 20 and the surface 40S was 5 mm. In the sample of Experimental Example 3, as shown in FIG. 21B, all of the first wavelength light from the light source 10 is incident on the overlapping region between the upper portion 21 and the light reflecting member 60. Also in this experimental example 3, when the illuminance distribution observed in the region immediately above the arbitrary light source 10 in which only one lamp was turned on was measured in the same manner as in the experimental examples 1 and 2, from the vicinity of the optical axis of the directly above portion 21 It has been confirmed that the flattened first wavelength light can be incident on the upper portion 21 up to the periphery.
 さらに、上記実験例1~3の各サンプルに用いたレンズ部71A~71Cについて、入射角度θ1と射出角度θ2との関係を調査した。その結果を図22に示す。図22に示したように、実験例1~3で使用したレンズ部71A~71Cは、いずれも、上述の条件式(1)~(3)を全て満たす変曲点FPを有することが確認できた。すなわち、入射角度θ1および射出角度θ2は45°よりも大きな値において互いに同値となることがわかった。具体的には、入射角度θ1が0から増大するにしたがい、射出角度θ2は(θ2>θ1)の関係を維持しつつ増大する。したがって、レンズ部71A~71Cの光軸近傍領域R71に入射する角度が小さい領域ではレンズ部71A~71Cの光学的作用(屈折力)により第1の波長光は発散することがわかった。さらに、θ1=θ2となる変曲点FPを経たのち、入射角度θ1がさらに大きくなると射出角度θ2は(θ2<θ1)の関係を維持しつつ減少する。したがって、レンズ部71A~71Cの周辺領域R72に入射する角度が小さい領域ではレンズ部71A~71Cの光学的作用(屈折力)により第1の波長光は収束することがわかった。さらに、実験例1~3で使用したレンズ部71A~71Cは、図22に示したように、いずれも上述の条件式(4)を満たしていた。これらの結果から、条件式(1)~(4)を全て満たす形状を有するレンズ部71を用いることにより、直上部分21の光軸近傍から周辺に至るまで、より平坦化された第1の波長光を直上部分21に入射できることが確認できた。 Furthermore, the relationship between the incident angle θ1 and the emission angle θ2 was investigated for the lens portions 71A to 71C used in the samples of the above experimental examples 1 to 3. The result is shown in FIG. As shown in FIG. 22, it can be confirmed that each of the lens portions 71A to 71C used in Experimental Examples 1 to 3 has an inflection point FP that satisfies all the conditional expressions (1) to (3). It was. That is, it was found that the incident angle θ1 and the emission angle θ2 are equal to each other at a value larger than 45 °. Specifically, as the incident angle θ1 increases from 0, the emission angle θ2 increases while maintaining the relationship (θ2> θ1). Accordingly, it was found that the first wavelength light diverges due to the optical action (refractive power) of the lens portions 71A to 71C in the region where the angle incident on the optical axis vicinity region R71 of the lens portions 71A to 71C is small. Further, after passing through the inflection point FP where θ1 = θ2, when the incident angle θ1 further increases, the emission angle θ2 decreases while maintaining the relationship (θ2 <θ1). Therefore, it was found that the first wavelength light converges due to the optical action (refractive power) of the lens portions 71A to 71C in a region where the angle incident on the peripheral region R72 of the lens portions 71A to 71C is small. Furthermore, as shown in FIG. 22, the lens portions 71A to 71C used in Experimental Examples 1 to 3 all satisfied the above-described conditional expression (4). From these results, by using the lens portion 71 having a shape that satisfies all of the conditional expressions (1) to (4), the first wavelength that has been flattened further from the vicinity of the optical axis of the immediately above portion 21 to the periphery. It was confirmed that light can be incident on the upper portion 21.
 さらに、上記実験例1,2および参考例の各サンプルにおける、光源10から発せられた(実験例1,2では、そののちさらにレンズ部71を透過した)第1の波長光について、直上部分21が配置される位置での照度ピーク値を分光照度計により測定した。また、同じサンプルにおいて第1の波長光を照射された直上部分21の温度ピーク値(℃)を、熱電対温度計を用いて測定した。それらの結果を表1にまとめて示す。なお表1では、照度ピーク値は、参考例での数値を基準として規格化した数値を示す。また表1では、温度ピーク値については、参考例での数値を基準として、その差分(℃)の数値を示す。 Further, the first wavelength portion 21 of the first wavelength light emitted from the light source 10 in each of the samples of the experimental examples 1 and 2 and the reference example (in the experimental examples 1 and 2 and further transmitted through the lens unit 71 after that). The illuminance peak value at the position where is placed was measured with a spectral illuminometer. Moreover, the temperature peak value (° C.) of the portion 21 directly irradiated with the first wavelength light in the same sample was measured using a thermocouple thermometer. The results are summarized in Table 1. In Table 1, the illuminance peak value is a numerical value normalized based on the numerical value in the reference example. Moreover, in Table 1, about the temperature peak value, the numerical value of the difference (degreeC) is shown on the basis of the numerical value in a reference example.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示したように、実験例1,2では、レンズ部71を有しない参考例よりも照度ピーク値を低減できた。また温度ピーク値(℃)についても、実験例1,2ではレンズ部71を用いたことにより低下させることができた。これらの結果から、レンズ部71を用いることで、直上部分21に照射される第1の波長光の照度ピーク値、および、それにより加熱される直上部分21の温度ピーク値をいずれも大幅に低減でき、その結果、直上部分21の長寿命化が期待できることが確認できた。 As shown in Table 1, in the experimental examples 1 and 2, the illuminance peak value could be reduced as compared with the reference example having no lens portion 71. Also, the temperature peak value (° C.) could be lowered by using the lens unit 71 in Experimental Examples 1 and 2. From these results, by using the lens unit 71, both the illuminance peak value of the first wavelength light irradiated on the immediately upper portion 21 and the temperature peak value of the immediately above portion 21 heated thereby are greatly reduced. As a result, it was confirmed that the life of the directly upper portion 21 can be expected.
 以上、実施の形態、変形例および実験例を挙げて本開示を説明したが、本開示は上記実施の形態等に限定されるものではなく、種々の変形が可能である。例えば、上記実施の形態等において説明した各部材の材料および厚みなどは限定されるものではなく、他の材料および厚みとしてもよい。また、レンズ部の形状は、上述した実験例のものに限定されるものではなく、例えば図23Aに示したものも好適に用いられる。図23Aは第3の変形例としてのレンズ部71Dの断面を表したものである。このレンズ部71Dを用いた場合の光路を図23Bに示す。 Although the present disclosure has been described with the embodiment, the modification, and the experimental example, the present disclosure is not limited to the above-described embodiment and the like, and various modifications can be made. For example, the material and thickness of each member described in the above embodiment and the like are not limited, and other materials and thicknesses may be used. Further, the shape of the lens portion is not limited to that of the experimental example described above, and for example, the shape shown in FIG. 23A is also preferably used. FIG. 23A shows a cross section of a lens portion 71D as a third modification. FIG. 23B shows an optical path when this lens unit 71D is used.
 また、上記実施の形態等では、光線制御部材としてレンズ部71を例示して説明したが、本技術はこれに限定されるものではない。例えば、図24A,24Bに示した半透過部材80を光線制御部材として用いてもよい。半透過部材80は、複数の貫通孔81Kが設けられた円板81と、反射基板40に立設して円板81を支持する支持部82とを有するものである。円板81は高反射率を有する白色の遮光部であり、光源10からの第1の波長光は貫通孔81Kを透過するようになっている。貫通孔81Kは、光源10の発光点(中心位置)に近づくほど小さな径を有している。このため、円板81の中心付近を透過する第1の波長光の照度は低く、円板81の周辺に向かうほど透過する第1の波長光の照度は高くなるように構成されている。なお、支持部82により、半透過部材80を透過することなく波長変換部材へ入射する第1の波長光をカットすることができる。あるいは、半透過部材80において透明材料により円板81を形成すると共に、貫通孔81Kの代わりに高反射率材料からなる遮光部を印刷等によってパターン形成するようにしてもよい。 In the above-described embodiment and the like, the lens unit 71 is exemplified as the light beam control member, but the present technology is not limited to this. For example, the semi-transmissive member 80 shown in FIGS. 24A and 24B may be used as the light beam control member. The semi-transmissive member 80 includes a disc 81 provided with a plurality of through holes 81K and a support portion 82 that stands on the reflective substrate 40 and supports the disc 81. The circular plate 81 is a white light-shielding portion having a high reflectance, and the first wavelength light from the light source 10 is transmitted through the through hole 81K. The through hole 81K has a smaller diameter as it approaches the light emitting point (center position) of the light source 10. For this reason, the illuminance of the first wavelength light that passes through the vicinity of the center of the disk 81 is low, and the illuminance of the first wavelength light that is transmitted increases toward the periphery of the disk 81. The support portion 82 can cut the first wavelength light incident on the wavelength conversion member without passing through the semi-transmissive member 80. Alternatively, the disc 81 may be formed of a transparent material in the semi-transmissive member 80, and a light-shielding portion made of a high reflectance material may be formed by printing or the like instead of the through hole 81K.
 また、例えば、上記実施の形態では、光源10がLEDである場合について説明したが、光源10は半導体レーザ等により構成されていてもよい。 For example, although the case where the light source 10 is an LED has been described in the above embodiment, the light source 10 may be configured by a semiconductor laser or the like.
 また、波長変換部20の直上部分21や光反射部材60の平面形状を円形としたが、本技術ではこれに限定されるものではなく、例えば四角形、六角形または八角形などの多角形や楕円形としてもよい。その場合、全ての直上部分21および光反射部材60の平面形状が同一形状であってもよいし、いくつか異なる形状であってもよい。 In addition, the planar shape of the portion 21 directly above the wavelength conversion unit 20 and the light reflecting member 60 is circular, but the present technology is not limited to this, and is, for example, a polygon such as a quadrangle, hexagon, or octagon, or an ellipse. It may be a shape. In that case, the planar shapes of all the directly upper portions 21 and the light reflecting members 60 may be the same shape, or may be some different shapes.
 さらに、例えば、上記実施の形態において発光装置1、表示装置101(テレビジョン装置)の構成を具体的に挙げて説明したが、全ての構成要素を備える必要はなく、また、他の構成要素を備えていてもよい。 Furthermore, for example, the configuration of the light emitting device 1 and the display device 101 (television device) has been specifically described in the above embodiment, but it is not necessary to include all the components, and other components are not included. You may have.
 なお、本明細書中に記載された効果はあくまで例示であってその記載に限定されるものではなく、他の効果があってもよい。また、本技術は以下のような構成を取り得るものである。
(1)
 基板上に配置され、第1の波長光を発する複数の光源と、
 前記複数の光源を覆う光拡散部材と、
 厚さ方向において前記光源と前記光拡散部材との間に配置されると共に面内において前記複数の光源と各々対応する領域に配置され、前記光源からの前記第1の波長光を第2の波長光に変換する複数の波長変換部材と、
 前記複数の光源と前記複数の波長変換部材との間に各々配置され、前記第1の波長光の進行方向を制御する複数の光線制御部材と
 を有する発光装置。
(2)
 前記波長変換部材と前記光拡散部材との間に配置されると共に面内において前記複数の光源と各々対応する領域に配置され、前記波長変換部材を透過した光を反射する光反射部材をさらに有する
 上記(1)に記載の発光装置。
(3)
 前記光線制御部材は、
 前記第1の波長光のうち、前記波長変換部材の光軸近傍へ向かう光軸近傍成分の光度を低下させ、前記波長変換部材の前記光軸近傍を取り囲む周辺部分へ向かう周辺成分の光度を向上させる
 上記(1)または(2)に記載の発光装置。
(4)
 前記光線制御部材は、光軸近傍領域において負の屈折力を有し、前記光軸近傍領域を取り巻く周辺領域において正の屈折力を有するレンズである
 上記(1)から(3)のいずれか1つに記載の発光装置。
(5)
 前記レンズは、前記光軸近傍領域において前記波長変換部材に向けて凹形状を有すると共に前記周辺領域において前記波長変換部材に向けて凸形状を有する非球面からなる射出面を含む
 上記(4)に記載の発光装置。
(6)
 前記レンズは、
前記光軸近傍領域において光軸から遠ざかるに従い負の屈折力が弱くなる凹形状を有し、前記周辺領域において光軸から遠ざかるに従い正の屈折力が強くなる凸形状を有する射出面を含む
 上記(4)または(5)に記載の発光装置。
(7)
 前記レンズは、前記光軸近傍領域において前記光源に向けて凹形状を有する入射面を含む
 上記(4)から(6)のいずれか1つに記載の発光装置。
(8)
 前記レンズは、前記光軸近傍領域と前記周辺領域との境界である変曲点において、下記条件式(1)から(3)を全て満たす
 上記(4)から(7)のいずれか1つに記載の発光装置。
θ1>45° ……(1)
θ2>45° ……(2)
θ1=θ2° ……(3)
但し、
θ1:光源における第1の波長光が発せられる発光中心点とレンズにおける第1の波長光が入射する入射点とを結ぶ線が光軸に対してなす角度
θ2:レンズの射出面から射出される射出光の進行方向が光軸に対してなす角度
とする。
(9)
 前記レンズは、下記条件式(4)を満たす
 上記(8)に記載の発光装置。
θ2≦tan-1(R1/L1) ……(4)
但し、
R1:波長変換部材における、外接円半径と内接円半径との中間値
L1:光源と波長変換部材との厚さ方向の距離
とする。
(10)
 2以上の前記光線制御部材を繋ぐ第1の連結部材をさらに有する
上記(1)から(9)のいずれか1つに記載の発光装置。
(11)
 2以上の前記波長変換部材を繋ぐ第2の連結部材をさらに有し、
 前記第1の連結部材には、前記第2の連結部材を把持するクリップ部分が設けられている
 上記(10)に記載の発光装置。
(12)
 前記光線制御部材と前記光源とが一体化されている
 上記(1)から(11)のいずれか1つに記載の発光装置。
(13)
 前記波長変換部材と前記光線制御部材とが互いに離間している
 上記(1)から(12)のいずれか1つに記載の発光装置。
(14)
 前記波長変換部材は量子ドットを含む
 上記(1)から(13)のいずれか1つに記載の発光装置。
(15)
 液晶パネルと、前記液晶パネルの背面側の発光装置とを備え、
 前記発光装置は、
 基板上に配置され、第1の波長光を発する複数の光源と、
 前記複数の光源を覆う光拡散部材と、
 厚さ方向において前記光源と前記光拡散部材との間に配置されると共に面内において前記複数の光源と各々対応する領域に配置され、前記光源からの前記第1の波長光を第2の波長光に変換する複数の波長変換部材と、
 前記複数の光源と前記複数の波長変換部材との間に各々配置され、前記第1の波長光の進行方向を制御する複数の光線制御部材と
 を有する
 表示装置。
(16)
 発光装置を備え、
 前記発光装置は、
 基板上に配置され、第1の波長光を発する複数の光源と、
 前記複数の光源を覆う光拡散部材と、
 厚さ方向において前記光源と前記光拡散部材との間に配置されると共に面内において前記複数の光源と各々対応する領域に配置され、前記光源からの前記第1の波長光を第2の波長光に変換する複数の波長変換部材と、
 前記複数の光源と前記複数の波長変換部材との間に各々配置され、前記第1の波長光の進行方向を制御する複数の光線制御部材と
 を有する
 照明装置。
In addition, the effect described in this specification is an illustration to the last, and is not limited to the description, There may exist another effect. Moreover, this technique can take the following structures.
(1)
A plurality of light sources arranged on the substrate and emitting a first wavelength light;
A light diffusing member covering the plurality of light sources;
It is arranged between the light source and the light diffusing member in the thickness direction, and is arranged in a region corresponding to each of the plurality of light sources in a plane, and the first wavelength light from the light source is converted to a second wavelength. A plurality of wavelength conversion members that convert light;
And a plurality of light beam control members disposed between the plurality of light sources and the plurality of wavelength conversion members, respectively, for controlling a traveling direction of the first wavelength light.
(2)
A light reflecting member that is disposed between the wavelength converting member and the light diffusing member and is disposed in a region corresponding to each of the plurality of light sources in a plane, and reflects light transmitted through the wavelength converting member; The light emitting device according to (1) above.
(3)
The light beam control member is
Of the first wavelength light, the luminous intensity of the component near the optical axis toward the vicinity of the optical axis of the wavelength conversion member is decreased, and the luminous intensity of the peripheral component toward the peripheral part surrounding the vicinity of the optical axis of the wavelength conversion member is improved. The light-emitting device according to (1) or (2).
(4)
The light beam control member is a lens having a negative refractive power in a region near the optical axis and a positive refractive power in a peripheral region surrounding the region near the optical axis. Any one of (1) to (3) The light-emitting device as described in one.
(5)
The lens includes an exit surface including an aspheric surface having a concave shape toward the wavelength conversion member in the region near the optical axis and having a convex shape toward the wavelength conversion member in the peripheral region. The light-emitting device of description.
(6)
The lens is
In the vicinity of the optical axis, a concave shape in which the negative refractive power decreases as the distance from the optical axis decreases, and in the peripheral area includes an exit surface having a convex shape in which the positive refractive power increases as the distance from the optical axis increases. The light emitting device according to 4) or (5).
(7)
The light emitting device according to any one of (4) to (6), wherein the lens includes an incident surface having a concave shape toward the light source in a region near the optical axis.
(8)
The lens satisfies all of the following conditional expressions (1) to (3) at an inflection point that is a boundary between the optical axis vicinity region and the peripheral region: Any one of the above (4) to (7) The light-emitting device of description.
θ1> 45 ° (1)
θ2> 45 ° (2)
θ1 = θ2 ° (3)
However,
θ1: An angle formed by a line connecting a light emission center point at which the first wavelength light is emitted from the light source and an incident point at which the first wavelength light is incident on the lens with respect to the optical axis θ2: emitted from the exit surface of the lens The angle formed by the traveling direction of the emitted light with respect to the optical axis.
(9)
The light emitting device according to (8), wherein the lens satisfies the following conditional expression (4).
θ2 ≦ tan −1 (R1 / L1) (4)
However,
R1: An intermediate value L1: between the circumscribed circle radius and the inscribed circle radius in the wavelength conversion member, and the distance in the thickness direction between the light source and the wavelength conversion member.
(10)
The light emitting device according to any one of (1) to (9), further including a first connecting member that connects the two or more light beam control members.
(11)
A second connecting member that connects the two or more wavelength conversion members;
The light emitting device according to (10), wherein the first connecting member is provided with a clip portion that holds the second connecting member.
(12)
The light emitting device according to any one of (1) to (11), wherein the light beam control member and the light source are integrated.
(13)
The light emitting device according to any one of (1) to (12), wherein the wavelength conversion member and the light beam control member are separated from each other.
(14)
The light emitting device according to any one of (1) to (13), wherein the wavelength conversion member includes quantum dots.
(15)
A liquid crystal panel, and a light emitting device on the back side of the liquid crystal panel,
The light emitting device
A plurality of light sources arranged on the substrate and emitting a first wavelength light;
A light diffusing member covering the plurality of light sources;
It is arranged between the light source and the light diffusing member in the thickness direction, and is arranged in a region corresponding to each of the plurality of light sources in a plane, and the first wavelength light from the light source is converted to a second wavelength. A plurality of wavelength conversion members that convert light;
A display device comprising: a plurality of light beam control members disposed between the plurality of light sources and the plurality of wavelength conversion members, respectively, for controlling a traveling direction of the first wavelength light.
(16)
With a light emitting device,
The light emitting device
A plurality of light sources arranged on the substrate and emitting a first wavelength light;
A light diffusing member covering the plurality of light sources;
It is arranged between the light source and the light diffusing member in the thickness direction, and is arranged in a region corresponding to each of the plurality of light sources in a plane, and the first wavelength light from the light source is converted to a second wavelength. A plurality of wavelength conversion members that convert light;
An illumination device, comprising: a plurality of light beam control members that are disposed between the plurality of light sources and the plurality of wavelength conversion members, respectively, and control a traveling direction of the first wavelength light.
 本出願は、日本国特許庁において2015年1月6日に出願された日本特許出願番号2015-759号を基礎として優先権を主張するものであり、この出願のすべての内容を参照によって本出願に援用する。 This application claims priority on the basis of Japanese Patent Application No. 2015-759 filed on January 6, 2015 at the Japan Patent Office. The entire contents of this application are hereby incorporated by reference. Incorporated into.
 当業者であれば、設計上の要件や他の要因に応じて、種々の修正、コンビネーション、サブコンビネーション、および変更を想到し得るが、それらは添付の請求の範囲やその均等物の範囲に含まれるものであることが理解される。 Those skilled in the art will envision various modifications, combinations, subcombinations, and changes, depending on design requirements and other factors, which are within the scope of the appended claims and their equivalents. It is understood that

Claims (16)

  1.  基板上に配置され、第1の波長光を発する複数の光源と、
     前記複数の光源を覆う光拡散部材と、
     厚さ方向において前記光源と前記光拡散部材との間に配置されると共に面内において前記複数の光源と各々対応する領域に配置され、前記光源からの前記第1の波長光を第2の波長光に変換する複数の波長変換部材と、
     前記複数の光源と前記複数の波長変換部材との間に各々配置され、前記第1の波長光の進行方向を制御する複数の光線制御部材と
     を有する発光装置。
    A plurality of light sources arranged on the substrate and emitting a first wavelength light;
    A light diffusing member covering the plurality of light sources;
    It is arranged between the light source and the light diffusing member in the thickness direction, and is arranged in a region corresponding to each of the plurality of light sources in a plane, and the first wavelength light from the light source is converted to a second wavelength. A plurality of wavelength conversion members that convert light;
    And a plurality of light beam control members disposed between the plurality of light sources and the plurality of wavelength conversion members, respectively, for controlling a traveling direction of the first wavelength light.
  2.  前記波長変換部材と前記光拡散部材との間に配置されると共に面内において前記複数の光源と各々対応する領域に配置され、前記波長変換部材を透過した光を反射する光反射部材をさらに有する
     請求項1記載の発光装置。
    A light reflecting member that is disposed between the wavelength converting member and the light diffusing member and is disposed in a region corresponding to each of the plurality of light sources in a plane, and reflects light transmitted through the wavelength converting member; The light emitting device according to claim 1.
  3.  前記光線制御部材は、
     前記第1の波長光のうち、前記波長変換部材の光軸近傍へ向かう光軸近傍成分の光度を低下させ、前記波長変換部材の前記光軸近傍を取り囲む周辺部分へ向かう周辺成分の光度を向上させる
     請求項1記載の発光装置。
    The light beam control member is
    Of the first wavelength light, the luminous intensity of the component near the optical axis toward the vicinity of the optical axis of the wavelength conversion member is decreased, and the luminous intensity of the peripheral component toward the peripheral part surrounding the vicinity of the optical axis of the wavelength conversion member is improved. The light-emitting device according to claim 1.
  4.  前記光線制御部材は、光軸近傍領域において負の屈折力を有し、前記光軸近傍領域を取り巻く周辺領域において正の屈折力を有するレンズである
     請求項1記載の発光装置。
    The light-emitting device according to claim 1, wherein the light beam control member is a lens having a negative refractive power in a region near the optical axis and a positive refractive power in a peripheral region surrounding the region near the optical axis.
  5.  前記レンズは、前記光軸近傍領域において前記波長変換部材に向けて凹形状を有すると共に前記周辺領域において前記波長変換部材に向けて凸形状を有する非球面からなる射出面を含む
     請求項4記載の発光装置。
    5. The lens according to claim 4, wherein the lens includes an exit surface formed of an aspheric surface having a concave shape toward the wavelength conversion member in the region near the optical axis and a convex shape toward the wavelength conversion member in the peripheral region. Light emitting device.
  6.  前記レンズは、
     前記光軸近傍領域において光軸から遠ざかるに従い負の屈折力が弱くなる凹形状を有し、前記周辺領域において光軸から遠ざかるに従い正の屈折力が強くなる凸形状を有する射出面を含む
     請求項4記載の発光装置。
    The lens is
    An exit surface having a concave shape in which the negative refractive power decreases as the distance from the optical axis in the region near the optical axis decreases, and a convex shape in which the positive refractive power increases in the peripheral region as it moves away from the optical axis. 4. The light emitting device according to 4.
  7.  前記レンズは、前記光軸近傍領域において前記光源に向けて凹形状を有する入射面を含む
     請求項4記載の発光装置。
    The light emitting device according to claim 4, wherein the lens includes an incident surface having a concave shape toward the light source in a region near the optical axis.
  8.  前記レンズは、前記光軸近傍領域と前記周辺領域との境界である変曲点において、下記条件式(1)から(3)を全て満たす
     請求項4記載の発光装置。
    θ1>45° ……(1)
    θ2>45° ……(2)
    θ1=θ2° ……(3)
    但し、
    θ1:光源における第1の波長光が発せられる発光中心点とレンズにおける第1の波長光が入射する入射点とを結ぶ線が光軸に対してなす角度
    θ2:レンズの射出面から射出される射出光の進行方向が光軸に対してなす角度とする。
    The light-emitting device according to claim 4, wherein the lens satisfies all of the following conditional expressions (1) to (3) at an inflection point that is a boundary between the optical axis vicinity region and the peripheral region.
    θ1> 45 ° (1)
    θ2> 45 ° (2)
    θ1 = θ2 ° (3)
    However,
    θ1: An angle formed by a line connecting a light emission center point at which the first wavelength light is emitted from the light source and an incident point at which the first wavelength light is incident on the lens with respect to the optical axis θ2: emitted from the exit surface of the lens The angle formed by the traveling direction of the emitted light with respect to the optical axis.
  9.  前記レンズは、下記条件式(4)を満たす
     請求項8記載の発光装置。
    θ2≦tan-1(R1/L1) ……(4)
    但し、
    R1:波長変換部材における、外接円半径と内接円半径との中間値
    L1:光源と波長変換部材との厚さ方向の距離
    とする。
    The light-emitting device according to claim 8, wherein the lens satisfies the following conditional expression (4).
    θ2 ≦ tan −1 (R1 / L1) (4)
    However,
    R1: An intermediate value L1: between the circumscribed circle radius and the inscribed circle radius in the wavelength conversion member, and the distance in the thickness direction between the light source and the wavelength conversion member.
  10.  2以上の前記光線制御部材を繋ぐ第1の連結部材をさらに有する
     請求項1記載の発光装置。
    The light emitting device according to claim 1, further comprising a first connecting member that connects two or more of the light beam control members.
  11.  2以上の前記波長変換部材を繋ぐ第2の連結部材をさらに有し、
     前記第1の連結部材には、前記第2の連結部材を把持するクリップ部分が設けられている
     請求項10記載の発光装置。
    A second connecting member that connects the two or more wavelength conversion members;
    The light emitting device according to claim 10, wherein the first connecting member is provided with a clip portion that holds the second connecting member.
  12.  前記光線制御部材と前記光源とが一体化されている
     請求項1記載の発光装置。
    The light-emitting device according to claim 1, wherein the light beam control member and the light source are integrated.
  13.  前記波長変換部材と前記光線制御部材とが互いに離間している
     請求項1記載の発光装置。
    The light emitting device according to claim 1, wherein the wavelength conversion member and the light beam control member are separated from each other.
  14.  前記波長変換部材は量子ドットを含む
     請求項1記載の発光装置。
    The light emitting device according to claim 1, wherein the wavelength conversion member includes quantum dots.
  15.  液晶パネルと、前記液晶パネルの背面側の発光装置とを備え、
     前記発光装置は、
     基板上に配置され、第1の波長光を発する複数の光源と、
     前記複数の光源を覆う光拡散部材と、
     厚さ方向において前記光源と前記光拡散部材との間に配置されると共に面内において前記複数の光源と各々対応する領域に配置され、前記光源からの前記第1の波長光を第2の波長光に変換する複数の波長変換部材と、
     前記複数の光源と前記複数の波長変換部材との間に各々配置され、前記第1の波長光の進行方向を制御する複数の光線制御部材と
     を有する
     表示装置。
    A liquid crystal panel, and a light emitting device on the back side of the liquid crystal panel,
    The light emitting device
    A plurality of light sources arranged on the substrate and emitting a first wavelength light;
    A light diffusing member covering the plurality of light sources;
    It is arranged between the light source and the light diffusing member in the thickness direction, and is arranged in a region corresponding to each of the plurality of light sources in a plane, and the first wavelength light from the light source is converted to a second wavelength. A plurality of wavelength conversion members that convert light;
    A display device comprising: a plurality of light beam control members disposed between the plurality of light sources and the plurality of wavelength conversion members, respectively, for controlling a traveling direction of the first wavelength light.
  16.  発光装置を備え、
     前記発光装置は、
     基板上に配置され、第1の波長光を発する複数の光源と、
     前記複数の光源を覆う光拡散部材と、
     厚さ方向において前記光源と前記光拡散部材との間に配置されると共に面内において前記複数の光源と各々対応する領域に配置され、前記光源からの前記第1の波長光を第2の波長光に変換する複数の波長変換部材と、
     前記複数の光源と前記複数の波長変換部材との間に各々配置され、前記第1の波長光の進行方向を制御する複数の光線制御部材と
     を有する
     照明装置。
    With a light emitting device,
    The light emitting device
    A plurality of light sources arranged on the substrate and emitting a first wavelength light;
    A light diffusing member covering the plurality of light sources;
    It is arranged between the light source and the light diffusing member in the thickness direction, and is arranged in a region corresponding to each of the plurality of light sources in a plane, and the first wavelength light from the light source is converted to a second wavelength. A plurality of wavelength conversion members that convert light;
    An illumination device, comprising: a plurality of light beam control members that are disposed between the plurality of light sources and the plurality of wavelength conversion members, respectively, and control a traveling direction of the first wavelength light.
PCT/JP2015/081942 2015-01-06 2015-11-13 Light emitting device, display device and lighting device WO2016111086A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-000759 2015-01-06
JP2015000759 2015-01-06

Publications (1)

Publication Number Publication Date
WO2016111086A1 true WO2016111086A1 (en) 2016-07-14

Family

ID=56355788

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/081942 WO2016111086A1 (en) 2015-01-06 2015-11-13 Light emitting device, display device and lighting device

Country Status (1)

Country Link
WO (1) WO2016111086A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009158462A (en) * 2007-12-07 2009-07-16 Sony Corp Light source apparatus and display apparatus
JP2011009052A (en) * 2009-06-25 2011-01-13 Panasonic Corp Surface light source, and liquid crystal display device
WO2011007733A1 (en) * 2009-07-15 2011-01-20 シャープ株式会社 Light emitting device, luminous flux control member, and illuminating device provided with light emitting device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009158462A (en) * 2007-12-07 2009-07-16 Sony Corp Light source apparatus and display apparatus
JP2011009052A (en) * 2009-06-25 2011-01-13 Panasonic Corp Surface light source, and liquid crystal display device
WO2011007733A1 (en) * 2009-07-15 2011-01-20 シャープ株式会社 Light emitting device, luminous flux control member, and illuminating device provided with light emitting device

Similar Documents

Publication Publication Date Title
US11572986B2 (en) Light-emitting device, display device, and illumination device
JP6956229B2 (en) Light emitting device, display device and lighting device
CN107461653B (en) Light emitting unit, display, and lighting device
JP7466620B2 (en) Light-emitting device, display device and lighting device
JP2024020648A (en) light emitting device
JP2014225379A (en) Light emitting device, display device and illumination device
WO2016111086A1 (en) Light emitting device, display device and lighting device
CN108139042A (en) Light-emitting device, display device and lighting device
JP6708593B2 (en) Display device
JP6961754B2 (en) Display device and light emitting device
JP7257478B2 (en) Display device and light emitting device
JP2015146294A (en) Illumination device and display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15876959

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15876959

Country of ref document: EP

Kind code of ref document: A1