WO2016111043A1 - Endoscopic device - Google Patents

Endoscopic device Download PDF

Info

Publication number
WO2016111043A1
WO2016111043A1 PCT/JP2015/075084 JP2015075084W WO2016111043A1 WO 2016111043 A1 WO2016111043 A1 WO 2016111043A1 JP 2015075084 W JP2015075084 W JP 2015075084W WO 2016111043 A1 WO2016111043 A1 WO 2016111043A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
guide
fluorescence
image
light source
Prior art date
Application number
PCT/JP2015/075084
Other languages
French (fr)
Japanese (ja)
Inventor
圭 久保
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to JP2016526964A priority Critical patent/JP6062111B2/en
Publication of WO2016111043A1 publication Critical patent/WO2016111043A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/046Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances for infrared imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/043Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances for fluorescence imaging

Definitions

  • the present invention relates to an endoscope apparatus that performs fluorescence observation by irradiating excitation light.
  • Japanese Patent Application Laid-Open No. 2008-86680 as a first conventional example discloses an endoscope apparatus including an endoscope for performing treatment by PDT.
  • This endoscope apparatus has a configuration in which an imaging device for normal observation and an imaging device provided with a filter for cutting treatment light are provided. The state of PDT can be observed without generating halation due to the treatment light.
  • Japanese Patent Application Laid-Open No. 2012-65899 as a second conventional example also discloses an endoscope apparatus for performing treatment by PDT.
  • This endoscope apparatus is administered to the treatment target site for observing the treatment target site, and a treatment light irradiation means for irradiating the treatment light in the subject to treat the treatment target site in the subject.
  • An excitation light irradiating means for irradiating an excitation light that emits fluorescence from a chemical; an imaging means for photoelectrically converting incident light and storing a plurality of pixels that accumulate signal charges according to the amount of incident light;
  • the first imaging period which is one of the imaging periods in which the imaging unit captures one image
  • the therapeutic light irradiation period for irradiating the therapeutic light and the signal charge corresponding to the amount of fluorescence are accumulated.
  • Control means for controlling the treatment light irradiation means and the imaging means so that there is no overlap with the accumulation period.
  • the first conventional example is an endoscope apparatus that is used by switching between the PDD mode and the PDT mode, and has a defect that does not have a configuration for confirming the irradiation position of the treatment light while observing the fluorescent image. Further, the second conventional example also has a defect that does not include a configuration for confirming the irradiation position of the treatment light.
  • PIT Photoimmuno Therapy
  • the excitation light and the treatment light are images of the observation target imaged by the excitation light cut filter.
  • the present invention has been made in view of the above points, and provides an endoscope apparatus capable of generating an observation image capable of simultaneously observing the position of a lesion site by a fluorescence image and the irradiation position of treatment light (action light). The purpose is to do.
  • the endoscope apparatus accumulates in a lesion site, emits fluorescence when irradiated with light having an excitation wavelength, and applies to the tissue when irradiated with light having the excitation wavelength.
  • An excitation light source unit that irradiates a subject to which a fluorescent substance having a specific action is administered with excitation light having the excitation wavelength and generating the fluorescence; and a wavelength different from the excitation wavelength.
  • a reference light source unit that irradiates reference light for acquiring the form information of the subject, and the subject is irradiated with light from the excitation light source unit and the reference light source unit
  • a working light source unit that emits working light having the excitation wavelength converged so that the fluorescent substance administered to the subject performs the specific action on a predetermined region of the region; A wave different from the excitation wavelength for the predetermined region.
  • a light source unit for guide light that irradiates the guide light, an imaging unit that receives light from the subject and generates an imaging signal, and light of the excitation wavelength provided between the imaging unit and the subject.
  • An excitation light cut filter that cuts light, and the subject irradiated with light from the excitation light source unit, the reference light source unit, and the guide light source unit are generated by imaging by the imaging unit From the imaging signal, fluorescence information indicating the position of the fluorescence generated from the subject irradiated with the excitation light, shape information of the subject irradiated with the reference light, and guide light in the subject
  • An information generation unit that generates guide light information representing an irradiation position, and the fluorescence generation position and the guide light irradiation position are reflected in the form information of the subject generated in the information generation unit Observation image Having an image generator for forming, the.
  • FIG. 1 is a diagram showing an overall configuration of an endoscope apparatus according to a first embodiment of the present invention.
  • FIG. 2A is a diagram showing the wavelengths and intensities of excitation light and reference light generated by the excitation light source and reference light source, respectively.
  • FIG. 2B is a diagram showing the wavelengths and intensities of the treatment light and the guide light generated by the treatment light source and the guide light source, respectively.
  • FIG. 2C is a diagram showing transmission characteristics with respect to the wavelength of the excitation light cut filter.
  • FIG. 3 is a flowchart showing the operation content of the first embodiment.
  • FIG. 4 is a diagram illustrating timing for generating excitation light, reference light, guide light, and treatment light in the first embodiment.
  • FIG. 5A shows a fluorescent image.
  • FIG. 5A shows a fluorescent image.
  • FIG. 5B is a diagram showing a reference light image.
  • FIG. 5C is a diagram showing a superimposed image of a fluorescence image and a reference light image.
  • FIG. 6A is a diagram showing a guide light image.
  • FIG. 6B is a diagram showing a fluorescence image including a guide light image.
  • FIG. 6C is a diagram showing a reference light image including a guide light image.
  • FIG. 6D is a diagram showing a superimposed image (composite image) in which a fluorescence image, a reference light image, and a guide light image are assigned to different colors.
  • FIG. 7 is a diagram illustrating a configuration of a display control circuit that generates a fluorescence image and a reference light image by subtraction processing.
  • FIG. 7 is a diagram illustrating a configuration of a display control circuit that generates a fluorescence image and a reference light image by subtraction processing.
  • FIG. 8A is an operation explanatory diagram showing a fluorescence image and a guide light image in a state where the treatment position and the irradiation position of the guide light do not match.
  • FIG. 8B is an operation explanatory view showing the fluorescence image and the guide light image in a state where the treatment position and the irradiation position of the guide light coincide with each other.
  • FIG. 9 is a diagram illustrating an overall configuration of an endoscope apparatus according to a modified example of the first embodiment.
  • FIG. 10A is a diagram illustrating an example of a configuration of a color filter.
  • FIG. 10B is a diagram illustrating a schematic configuration of a pixel binning unit.
  • FIG. 11 is a diagram illustrating the wavelengths and intensities of the treatment light and the guide light generated by the treatment light source and the guide light source, respectively.
  • FIG. 12 is a flowchart showing a part of the processing contents of the modification.
  • an endoscope apparatus 1 As shown in FIG. 1, an endoscope apparatus 1 according to a first embodiment of the present invention includes an endoscope 2 that is inserted into a body cavity, and the endoscope 2 is detachably connected to transmit illumination light or the like.
  • the control device 3 that supplies the signal to the endoscope 2 and performs signal processing on the image pickup unit mounted on the endoscope 2 and the image signal generated by the control device 3 are input, whereby the image pickup unit picks up an image.
  • a monitor 4 as a display device that displays the image as an observation image.
  • the endoscope 2 includes an elongated insertion portion 6 to be inserted into a subject 5, an operation portion 7 provided at the rear end (base end) of the insertion portion 6, and a light guide extended from the operation portion 7.
  • a light source connector 8 a at the end of the light guide cable 8 and a signal connector 9 a at the end of the signal cable 9 are detachably connected to the control device 3.
  • a light guide 11 that transmits (or guides) illumination light is inserted into the insertion portion 6, and the rear end of the light guide 11 reaches the light source connector 8a. Illumination light is incident (supplied) from the light source unit (or light source unit) 12 in the control device 3 to the rear end of the light guide 11.
  • the incident illumination light is transmitted by the light guide 11, from the distal end surface arranged in the illumination window provided at the distal end portion of the insertion portion 6 to the observation site side such as the affected part in the subject 5 facing the distal end surface. Illumination light is spread and irradiated.
  • the light guide 11 transmits incident excitation light for fluorescence observation and reference light for acquiring morphological information of living tissue as illumination light (for acquiring a fluorescent image and a reference light image). To do.
  • An objective lens 13 is disposed in an observation window provided adjacent to the illumination window, and an optical image of fluorescence emitted from the side irradiated with the excitation light is used as an imaging device of a charge coupled device (abbreviated as CCD) 14.
  • CCD charge coupled device
  • an optical image of the reflected light reflected by the irradiated portion is formed on the imaging surface of the CCD 14.
  • a monochrome CCD 14 having no color filter is used as the image sensor.
  • an excitation light cut filter 15 for cutting the excitation light is disposed in the optical path between the objective lens 13 and the imaging surface of the CCD 14.
  • the endoscope 2 is provided with a treatment instrument insertion port 16 a near the rear end of the insertion portion 6, and the treatment instrument insertion port 16 a is connected to a treatment instrument channel 16 provided along the longitudinal direction of the insertion portion 6. Communicate.
  • an optical fiber 17 that guides treatment light by a laser beam for performing treatment is inserted into the treatment instrument channel 16 and extended to the outside of the treatment instrument insertion port 16a.
  • the rear end connector 17 a is detachably connected to the control device 3.
  • Treatment light generated in the light source unit 12 and guide light for allowing the irradiation position of the treatment light to be visually recognized are incident on the rear end of the optical fiber 17.
  • the treatment light and the guide light are transmitted through the optical fiber 17 and are emitted from the distal end surface of the optical fiber 17 protruding from the distal end opening of the treatment instrument channel 16 to the front side facing the distal end surface with a small beam diameter.
  • only guide light may be irradiated in a state where treatment light is not irradiated.
  • the excitation light and the treatment light are set in the same wavelength band.
  • the reflected light by the treatment light is cut by the excitation light cut filter 15, and the CCD 14 does not generate an image by this reflected light.
  • the wavelength band of the guide light is set to a wavelength band that transmits the excitation light cut filter 15, and the CCD 14 captures an image of the reflected light from the subject side by the guide light.
  • the CCD 14 is subjected to image processing by an image processing unit (or image processing unit) 21 in the control device 3, and the image processing unit 21 outputs the generated image signal to the monitor 4, and the monitor 4 captures an image captured by the CCD 14. indicate. Therefore, in the state in which the treatment light is irradiated, the irradiation position of the treatment light can be confirmed from the image by the guide light displayed on the monitor 4.
  • the input unit includes a light source control unit (or light source control unit) 22 that controls the light source unit 12 and a keyboard or a mouse that inputs instructions to the light source control unit 22 and the image processing unit 21.
  • the input unit 23 includes, for example, a data input unit 23a for inputting a treatment position, an automatic control mode (or automatic mode) Ma for automatically performing treatment light irradiation based on an imaging signal, and manually performing treatment light irradiation. It has a mode setting switch SW1 for selecting the manual mode Mm to be performed, and a treatment light switch SW2 for turning on / off the treatment light irradiation.
  • the light source unit 12 may include the light source control unit 22.
  • the treatment for treating the lesion site is performed by irradiation with therapeutic light.
  • a fluorescent material having an action of extinguishing a diseased tissue by irradiation with therapeutic light in the same wavelength band as the excitation light is employed as the fluorescent material.
  • the treatment light has a function of action light that acts to extinguish the diseased tissue by irradiating the treatment site with the treatment light where the fluorescent substance is accumulated.
  • the therapeutic light can be considered to form working light.
  • the light source unit 12 generates excitation light source 24a that generates excitation light in a predetermined wavelength band, reference light source 24b that generates reference light, treatment light source 24c that generates treatment light, and guide light. And a guide light source 24d.
  • the wavelength band and intensity characteristic Lex of the excitation light generated by the excitation light source 24a shows the wavelength band and intensity characteristic Lex of the excitation light generated by the excitation light source 24a, and the wavelength band and intensity characteristic Lre of the reference light generated by the reference light source 24b.
  • the wavelength band of the excitation light is set to 600 to 650 nm
  • the wavelength band of the reference light is set to, for example, 530 to 550 nm belonging to the green wavelength band.
  • the fluorescent material emits fluorescence in the wavelength band Lfl as shown in FIG. 2C by irradiating the subject 5 to which the fluorescent material is administered with excitation light.
  • FIG. 2B shows the wavelength band and intensity characteristics Ltr of the treatment light generated by the treatment light source 24c, and the wavelength band and intensity characteristics Lga of the guide light generated by the guide light source 24d.
  • the wavelength band of the treatment light is set to 600 to 650 nm that is the same as the wavelength band of the treatment light described above, and the wavelength band of the guide light is set to, for example, 530 to 550 nm belonging to the green wavelength band.
  • FIG. 2C shows the transmission characteristic Ft of the excitation light cut filter 15. As shown in FIG.
  • the excitation light cut filter 15 cuts, for example, 590 to 660 nm including the wavelength band of the excitation light and the wavelength band of the treatment light, and converts the green wavelength band and the fluorescence generated by the fluorescent substance.
  • the characteristic is set to transmit the wavelength band Lfl.
  • the excitation light cut filter 15 is set to have characteristics of transmitting an infrared region exceeding 400 to 590 nm and exceeding 660 to 800.
  • the CCD 14 has sensitivity not only in the visible band but also in the infrared wavelength band including the fluorescent wavelength band on the long wavelength side of the red wavelength band.
  • the excitation light generated by the excitation light source 24a is reflected by the mirror 25a disposed on the opposing optical path, and the reflected light from the mirror 25a is dichroic mirror disposed on the opposing optical path.
  • the excitation light is selectively reflected by the selective reflection / transmission characteristics corresponding to the wavelength by 25b, and is incident on the rear end face of the light guide 11 through the condenser lens 25c arranged on the optical path of the reflected light.
  • the reference light generated by the reference light source 24b is incident on the dichroic mirror 25b disposed on the opposite optical path, and the reference light is selectively transmitted by the dichroic mirror 25b and is disposed on the transmitted optical path.
  • the light source control unit 22 since a monochrome imaging device is used, the light source control unit 22, as will be described later, the excitation light source 24 a and the reference light source so as to generate the excitation light and the reference light in a surface sequential manner.
  • the light source 24b is controlled so that the observation light in the subject 5 is irradiated with excitation light and reference light in the surface order.
  • the therapeutic light generated by the therapeutic light source 24c is incident on the dichroic mirror 25d disposed on the opposite optical path, and the therapeutic light is selectively transmitted by the dichroic mirror 25d and is disposed on the transmitted optical path. It is incident on the rear end face of the optical fiber 17.
  • the guide light generated by the guide light source 24d is reflected by the mirror 25e disposed on the opposing optical path, and the reflected light from the mirror 25e is selectively transmitted by the dichroic mirror 25d disposed on the opposing optical path. And is incident on the rear end face of the optical fiber 17 disposed on the optical path of the reflected light.
  • the CCD 14 outputs an imaging signal obtained by photoelectric conversion by applying a CCD driving signal generated by the CCD driving circuit 31 in the image processing unit 21.
  • the imaging signal is input to the preprocessing circuit 32 in the image processing unit 21.
  • the preprocessing circuit 32 extracts a signal component in the image pickup signal by an internal correlated double sampling circuit (CDS circuit), and further outputs the image signal to the multiplexer 33 by A / D conversion or the like.
  • the preprocessing circuit 32 in the image processing unit 21 may be defined as performing preprocessing for converting the imaging signal output from the CCD 14 into an image signal in this way, but the signal processing for the imaging signal output from the CCD 14 is performed. It may be defined that the imaging signal is output to the multiplexer 33. Both are formal differences and are substantially the same. In the present specification, description will be made mainly along the former case.
  • the output terminal of the multiplexer 33 is connected to a memory unit 34 having three frame memories.
  • a fluorescence memory 34a, a reference light memory 34b, and a guide light memory 34c as three frame memories forming the memory unit 34 are connected to the multiplexer 33, and the multiplexer 33 switches the three frame memories in the surface order. As will be described later, in a state where the guide light is not irradiated, the multiplexer 33 switches between the two frame memories in the frame order.
  • the image signals stored in the three frame memories are input to the display control circuit 35.
  • the display control circuit 35 assigns the fluorescence image, the reference light image, and the guide light image to different colors and superimposes (synthesizes) the observation images.
  • the image signal of the superimposed image is generated and output to the monitor 4.
  • the monitor 4 displays in color the fluorescent image, the reference light image, and the guide light image that are assigned different colors.
  • the image processing unit 21 includes a fluorescence / guide light processing circuit 36 that performs processing on image signals of the fluorescence image in the fluorescence memory 34a and the guide light image in the guide light memory 34c. Determines whether or not the fluorescence region extraction circuit 36a that extracts the region of the fluorescence image (as the fluorescence region), and whether or not the extracted fluorescence region has a fluorescence luminance (or signal level) Lf that is equal to or greater than a set threshold value. And a determination circuit 36b.
  • the determination circuit 36b determines that the fluorescence luminance Lf is greater than or equal to the threshold, the determination circuit 36b sends a determination signal to the light source control unit 22, and the light source control unit 22 causes the guide light source 24d to continuously generate guide light. Control is performed so that the guide light is turned on (see FIG. 4).
  • the fluorescence / guide light processing circuit 36 performs a process of extracting (acquiring) the guide light irradiation position (guide light position) Pg from the image signal of the guide light.
  • a position determination is made as to whether or not the treatment position Pt or the treatment position Pt automatically set by image processing matches from the fluorescence image.
  • the treatment light source 24c is controlled to generate the treatment light.
  • the monitor 4 displays on the monitor 4 that the irradiation position Pg of the guide light and the treatment position Pt coincide with each other, and the endoscope apparatus. The operator as one user is notified by a display that it is in a state suitable for irradiating treatment light.
  • the image processing unit 21 includes a control circuit 37 that controls the CCD drive circuit 31, the preprocessing circuit 32, the multiplexer 33, the memory unit 34, and the like.
  • the control circuit 37 is connected to the light source control unit 22 and a signal line. It is connected so that a control operation linked to one control can be performed.
  • the control circuit 37 performs image processing for generating a fluorescence image and a reference light image.
  • the control circuit 37 switches the multiplexer 33 between the fluorescence memory 34a as the two frame memories in the memory unit 34 and the reference light memory 34b (a fluorescence image is stored in the fluorescence memory 34a, The reference light image is stored in the reference light memory 34b.
  • the position confirmation mode is performed in which the irradiation position of the optical fiber 17 is confirmed by irradiating the guide light.
  • a treatment observation mode for performing treatment by irradiating treatment light is entered.
  • the position confirmation mode in which the guide light is irradiated can be said to be an intermediate mode between the fluorescence observation mode and the treatment observation mode.
  • the light source control unit 22 sends a guide light irradiation (ON) signal to the control circuit 37, and the control circuit 37 guides in addition to the fluorescence image and the reference light image. Control is performed so as to perform processing for generating an optical image.
  • the control circuit 37 sequentially switches the multiplexer 33 between the fluorescence memory 34a as the three frame memories in the memory unit 34, the reference light memory 34b, and the guide light memory 34c (for fluorescence).
  • the memory 34a stores the fluorescent image
  • the reference light memory 34b stores the reference light image
  • the guide light memory 34c stores the guide light image.
  • the display control circuit 35 displays the fluorescent image in a state where the guide light image is mixed (or mixed).
  • the reference light image and the reference light image are subtracted from the guide light image acquired or generated in a non-mixed state to generate a non-mixed fluorescent image and a reference light image.
  • the guide position extraction circuit 36c extracts the irradiation position Pg of the guide light, sends the extracted position information to the determination circuit 36b, and the determination circuit 36b determines whether or not it matches the treatment position Pt. Determine whether. If the automatic mode Ma is selected, the light source control unit 22 causes the treatment light source 24c to generate the treatment light based on the coincidence determination result by the determination circuit 36b. Control.
  • the display control circuit 35 controls to display on the monitor 4 that the matching is performed based on the matching determination result by the determination circuit 36b, and the operator treats the treatment.
  • a treatment light is generated from the light source 24c to notify that it is in a state suitable for treatment. Since the display is performed even in the manual mode Mm, the surgeon can easily perform the timing of irradiating treatment light appropriately.
  • the determination circuit 36b determines whether the irradiation position Pg of the guide light by the guide position extraction circuit 36c exists in the vicinity of the treatment position Pt, and the treatment is performed. When it shifts outside the region set as the vicinity region R (see FIG.
  • the generation (irradiation) of the treatment light is stopped via the light source control unit 22.
  • the determination circuit 36b determines that the irradiation position Pg of the guide light does not exist in the vicinity of the treatment position Pt
  • the determination circuit 36b sends a determination signal of the determination result to the light source control unit 22, and the light source control unit 22 controls the treatment light source 24c to stop the generation (irradiation) of treatment light.
  • the fluorescence / guide light processing circuit 36 has a memory 36d for storing data such as a threshold value Vth used when the determination circuit 36b determines whether or not the fluorescent image (signal) has a high luminance region Rfh requiring treatment. Have.
  • the excitation light and the reference light are irradiated at different first and second timings (different frame periods in FIG. 4), and both lights are emitted at the third timing.
  • the light source control unit 22 controls to turn off and emit the guide light. Further, the light source control unit 22 performs control so that the guide light is continuously irradiated when the guide light is irradiated at the third timing.
  • the excitation light, the guide light, and the reference light are also generated even when the first or second timing is periodically reached after the third timing when the guide light is irradiated.
  • the guide light is irradiated at the same time. Further, in the state where the guide light is irradiated, at a timing suitable for irradiating the therapeutic light having the function of action light (automatically based on the result of image processing or manually by the operator)
  • the light source controller 22 controls the treatment light so as to be continuously emitted.
  • the CCD 14 is in the state where the excitation light, the reference light, the guide light is irradiated as described above, or in the state where the treatment light is further irradiated (the first The first imaging signal corresponding to the fluorescence emitted from the observation site side of the subject 5 and the guide light by the continuous irradiation of the guide light (by the excitation light irradiation at the timing) is output to the image processing unit 21. Further, the CCD 14 images the second imaging signal corresponding to the reference light emitted from the observation site side of the subject 5 and the guide light by the continuous irradiation of the guide light (by irradiation of the reference light at the second timing).
  • the data is output to the processing unit 21. Further, the CCD 14 outputs a third imaging signal corresponding to the guide light to the image processing unit 21 during the period in which only the guide light or the guide light and the treatment light are irradiated at the third timing.
  • the third imaging signal is an imaging signal including only guide light
  • the first imaging signal including guide light and fluorescence and the second imaging signal including guide light and reference light are input to the image processing unit 21.
  • the image processing unit 21 generates image signals of the fluorescence image, the reference light image, and the guide light image by subtraction image processing.
  • the endoscope apparatus 1 accumulates in a lesion site, emits fluorescence when irradiated with light having an excitation wavelength, and is specified for a living tissue when irradiated with light having the excitation wavelength.
  • An excitation light source 24a that forms an excitation light source unit that irradiates the subject 5 to which the fluorescent substance acting as described above is administered with the excitation light that has the excitation wavelength and generates the fluorescence;
  • a reference light source 24b that forms a reference light source unit that irradiates a reference light for irradiating the reference light for acquiring the morphological information of the subject 5, and a wavelength different from the excitation wavelength;
  • the fluorescent substance administered to the subject 5 converges to perform the specific action on a predetermined region among the regions irradiated with light from the excitation light source unit and the reference light source unit.
  • a treatment light source 24c that forms a light source for working light to be irradiated, and guide light for irradiating guide light having a wavelength different from the excitation wavelength to the predetermined region (irradiated with the working light)
  • a guide light source 24d that forms a light source unit, a CCD 14 that forms an imaging unit that receives light from the subject 5 and generates an imaging signal, and is provided between the imaging unit and the subject 5.
  • Imaging the subject 5 irradiated with light from the excitation light cut filter 15 that cuts off the light having the excitation wavelength, the excitation light source unit, the reference light source unit, and the guide light source unit Fluorescence information indicating the position of the fluorescence generated from the subject 5 irradiated with the excitation light from the imaging signal generated by imaging by the unit, and configuration information of the subject 5 irradiated with the reference light
  • An image processing unit 21 that forms an information generation unit that generates guide light information indicating the irradiation position Pg of the guide light, which is the irradiation position of the working light, and the form of the subject 5 generated by the information generation unit
  • a display control circuit 35 that forms an image generation unit that generates an observation image reflecting the fluorescence generation position and the guide light irradiation position with respect to information.
  • the image processing unit 21 forming the information generation unit generates fluorescence information indicating the fluorescence position and fluorescence / guide light processing that generates guide light information indicating the irradiation position Pg of the guide light on the subject 5.
  • a circuit 36 is included.
  • FIG. 3 shows a flowchart of a typical processing procedure of the present embodiment.
  • a fluorescent substance corresponding to a treatment method for PIT is administered to the subject 5 in advance. After the administration of the fluorescent substance, an observation site such as an affected part in the subject 5 is observed by the endoscope device 1 after a lapse of time to the extent that the fluorescent substance accumulates at the lesion site.
  • an observation site such as an affected part in the subject 5 is observed by the endoscope device 1 after a lapse of time to the extent that the fluorescent substance accumulates at the lesion site.
  • the light source unit 12 generates excitation light and reference light in the order of frames as shown in FIG. 4, and the excitation light and reference light are transmitted by the light guide 11. Excitation light and reference light are spread from the front end surface of the light and irradiated to the observation site side.
  • T represents one frame period.
  • excitation light is irradiated for one frame period T as a first timing, and from the fluorescent substance administered to the subject 5 by irradiation of the excitation light in the one frame period T.
  • the emitted fluorescent image is acquired (captured) by the CCD 14.
  • the illumination period Tr and reference light shorter than the one frame period T are irradiated.
  • the reference light may also be illuminated for one frame period T, and a reference light image with reference light equivalent to the case where the illumination period is substantially shortened may be captured by the electronic shutter by the CCD 14.
  • the CCD 14 (which forms the imaging unit) displays a fluorescent image emitted from the observation site side during excitation light irradiation and a reference light image reflected from the observation site side during reference light irradiation.
  • the fluorescent imaging signal and the reference light imaging signal that are sequentially imaged and output in the surface sequential order are output to the image processing unit 21, and the image processing unit 21 outputs the fluorescent imaging signal and the reference light imaging signal in the preprocessing circuit 32.
  • a process of converting into a fluorescence image signal and a reference light image signal is performed. That is, as shown in step S ⁇ b> 2 in FIG. 3, the image processing unit 21 (preprocessing circuit 32 thereof) generates a fluorescence image (signal) and a reference light image (signal).
  • the fluorescence image signal and the reference light image signal are stored in the fluorescence memory 34a and the reference light memory 34b, respectively.
  • the fluorescence memory 34a and the reference light memory 34b function as an R channel image memory and a B channel image memory when an image is displayed in color on the monitor 4.
  • 5A and 5B show a fluorescence image If and a reference light image Ir that are captured and generated by the CCD 14.
  • the fluorescence image signal and the reference light image signal stored in the fluorescence memory 34a and the reference light memory 34b are read out simultaneously, and the display control circuit 35 outputs the fluorescence image signal to the R channel of the monitor 4, and the reference light image.
  • An image signal of a superimposed image obtained by superimposing the fluorescence image and the reference light image is output to the monitor 4 so that the signal is output to the B channel of the monitor 4.
  • the monitor 4 displays a superimposed image in which the fluorescent image If and the reference light image Ir are assigned to different colors and superimposed (combined) as shown in FIG. 5C.
  • the fluorescent image If portion is displayed in red
  • the reference light image Ir portion is displayed in blue.
  • the operator sets the automatic mode Ma and the manual mode Mm by operating the mode selection switch SW1) of the input unit 23 as shown in step S4.
  • the surgeon manually designates the treatment position Pt from the data input unit 23 a of the input unit 23 with reference to the fluorescence image in the superimposed image displayed on the monitor 4.
  • the treatment position Pt may be automatically set (or detected) from the guide light image by image processing without performing manual designation.
  • the fluorescence / guide light processing circuit 36 uses the fluorescence / guide light to transmit the mode information set from the input unit 23 and the information on the manually designated treatment position Pt (this information is not input in the automatic mode Ma).
  • the data is stored in the memory 36d in the processing circuit 36.
  • the fluorescence region extraction circuit 36a in the fluorescence / guide light processing circuit 36 has a brightness level greater than 0 level (or a predetermined value set greater than 0) from the fluorescence image (signal) stored in the fluorescence memory 34a.
  • the region Rf of the fluorescence image that is equal to or greater than the threshold value is extracted.
  • the fluorescence region extraction circuit 36a sends the fluorescence image (signal) of the extracted region Rf of the fluorescence image to the determination circuit 36b.
  • the fluorescence region extraction circuit 36a has a function of extracting the region Rf of the fluorescence image, and a high brightness region in the fluorescence image that is equal to or greater than the threshold Vth from the region Rf of the extracted fluorescence image. It has the function of determining the presence or absence of Rfh and further setting the position of the luminance center of gravity of the high luminance region Rfh as the treatment position Pt. That is, in the present embodiment, the treatment position Pt can be designated manually or the treatment position Pt can be set by image processing.
  • the determination circuit 36b sets in advance whether or not the fluorescent image (signal) has a high luminance region Rfh (abbreviated as region Rfh above Vth in FIG. 3) that is equal to or higher than a threshold Vth that requires treatment. It is determined by comparing with the threshold value Vth.
  • the threshold value Vth is set in advance from the fluorescence luminance when the fluorescent substance is accumulated at the lesion site requiring treatment.
  • the threshold value Vth is stored in the memory 36d from the data input unit 23a, for example.
  • step S7 If the high brightness area Rfh equal to or higher than the threshold value Vth is not detected in step S7, the process returns to step S6. If the high brightness area Rfh equal to or higher than the threshold value Vth is detected, the process proceeds to step S8.
  • step S8 the determination circuit 36b sends the determination result to the light source control unit 22, and the light source control unit 22 controls the guide light source 24d to continuously generate the guide light.
  • FIG. 4 shows how the guide light source 24d continuously generates guide light after time tg.
  • the optical fiber 17 transmits guide light and emits the guide light from the distal end surface of the optical fiber 17 toward the observation site.
  • the optical fiber 17 continuously emits the guide light incident on the optical fiber 17 toward the observation site in a state where the light beam is converged without spreading from the tip surface (as shown in FIG. 1).
  • the determination signal is sent to the light source control unit 22 to control the light source.
  • the unit 22 may control the guide light source 24d to stop generating the guide light. In this case, the light source control unit 22 controls to stop the generation of the treatment light.
  • the light source control unit 22 When the guide light is continuously emitted as described above, the light source control unit 22 generates (irradiates) only the guide light from the state where the excitation light and the reference light are alternately generated as shown in FIG.
  • the light emission is controlled so as to generate a frame period that is an irradiation period corresponding to timing 3.
  • the guide light when the high brightness area Rfh equal to or higher than the threshold value Vth is detected, the guide light is emitted in step S8 even in the manual mode Mm.
  • the monitor 4 may display that the high-luminance region Rfh equal to or higher than the threshold value Vth has been detected, and the operator may be prompted to perform an operation of emitting guide light from the input unit 23.
  • the light source control unit 22 sends a signal generated by continuously generating guide light to the control circuit 37 of the image processing unit 21, and the control circuit 37 multiplexes the guide light image captured in a state where only the guide light is irradiated.
  • the light is stored in the guide light memory 34 c via the line 33.
  • FIG. 6A shows a guide light image Ig stored in the guide light memory 34c.
  • the guide light memory 34c has a function of an image memory that outputs to the G channel in the R, G, and B channels when the monitor 4 displays a color image. In the guide light image Ig shown in FIG.
  • a circle on the center side is a portion where therapeutic light is transmitted and irradiated from the tip of the optical fiber 17 (in the guide light image, for example, black (the signal level is 0)).
  • the circular ring outside the circle is a guide light portion, and is detected as a portion having a high green pixel value.
  • the center of the ring is the treatment light irradiation position.
  • the portion for transmitting the treatment light in FIG. 6A may be shared, and the guide light may be transmitted.
  • the image stored in the fluorescence memory 34a is an image If + Ig in which the fluorescence image If and the guide light image Ig are mixed as shown in FIG. 6B, and the reference light memory 34b.
  • the image stored in is an image Ir + Ig in which the reference light image Ir and the guide light image Ig are mixed as shown in FIG. 6C.
  • the display control circuit 35 performs a subtraction process as shown in FIG. 7 to generate the fluorescence image If, the reference light image Ir, and the guide light image Ig as different color signals, Different color signals are output to the R, B, and G channels of the monitor 4, respectively.
  • the subtraction processing circuit 35a in the display control circuit 35 is connected to the adjacent one from the fluorescence image If and the guide light image Ig acquired (simultaneously) in one frame period T stored in the fluorescence memory 34a.
  • a fluorescence image is extracted by performing a process of subtracting the guide light image Ig acquired in the frame period T and stored in the guide light memory 34 c, and is output to the R channel of the monitor 4.
  • the subtraction processing circuit 35b of the display control circuit 35 uses the adjacent one frame period T from the reference light image Ir and the guide light image Ig acquired (simultaneously) in the one frame period T stored in the reference light memory 34b.
  • the guide light image Ig acquired in step S1 and stored in the guide light memory 34c is subtracted to extract the reference light image Ir and output it to the B channel of the monitor 4.
  • the display control circuit 35 outputs the guide light image Ig stored in the guide light memory 34 c to the G channel of the monitor 4.
  • the subtraction process described above is performed in the imaging period ( Processing that considers the electronic shutter value) may be performed. That is, the subtraction processing circuit 35a is independently acquired in the fluorescence image If and the guide light image Ig (If + Ig input to the subtraction processing circuit 35a in FIG. 7) acquired simultaneously before the subtraction processing, and in the adjacent frame period. Further, a process of correcting the luminance value of the guide light image Ig may be performed.
  • the subtraction processing circuit 35a performs a process of correcting the luminance value of each pixel of the guide light image Ig in the adjacent frame period to 1 / ⁇ before the subtraction process. . Then, after performing the correction process, subtraction is performed.
  • the fluorescence image If can be extracted with higher accuracy than when the electronic shutter is used.
  • the subtraction processing circuit 35b receives the reference light image Ir and the guide light image Ig acquired simultaneously before the subtraction processing (input to the subtraction processing circuit 35b in FIG. 7).
  • Ir + Ig) and the luminance value of the guide light image Ig acquired independently in the adjacent frame period may be corrected based on the adjustment value of the luminance level (for example, the electronic shutter value by the CCD 14).
  • the monitor 4 displays a color image as an image If + Ir + Ig superimposed (synthesized) in a state where the three images are assigned to different colors. More specifically, the image If + Ir + Ig is an image If (R) + Ir (B) + Ig (G).
  • the operator can confirm the extent of the lesion from the fluorescence image If (R) (in other words, from the fluorescence image in which the fluorescent substance is generated at the lesion site), and the guide light image From this position, it is possible to confirm the position where the treatment light is irradiated, and it is easy to perform an operation of setting the position of the guide light image Ig (G) to the position of the lesion site in the fluorescence image.
  • the guide position extraction circuit 36c in the fluorescence / guide light processing circuit 36 extracts the center position of the guide light image from the guide light image stored in the guide light memory 34c as the guide light irradiation position Pg. And sent to the determination circuit 36b.
  • the determination circuit 36b determines whether or not the irradiation position Pg of the guide light matches the treatment position Pt.
  • 8A and 8B are explanatory diagrams of the determination operation by the determination circuit 36b.
  • the treatment position Pt and the irradiation position Pg of the guide light set manually or by image processing with respect to the fluorescence image If Is different.
  • FIG. 8A shows a state where the treatment position Pt (Xf, Yf) set from the fluorescence image If and the irradiation position Pg (Xg, Yg) of the guide light are different.
  • Pt (Xf, Yf) and Pg (Xg, Yg) represent two-dimensional positions on the XY coordinate system (X, Y) at the treatment position Pt and the irradiation position Pg in the fluorescence image If and the guide light image Ig. 8A and 8B indicate a dark image portion where the signal level (pixel value) is almost zero.
  • the surgeon moves the irradiation position Pg (Xg, Yg) of the guide light in the state of FIG. 8A to the treatment position Pt (Xf, Yf), and as shown in FIG. 8B, the treatment position Pt (Xf, Yf).
  • the determination circuit 36b determines that they match. If it is determined in step S11 that the treatment position Pt does not match the irradiation position Pg of the guide light, the process returns to step S10. On the other hand, if the determination result indicates that the treatment position Pt matches the guide light irradiation position Pg, the process proceeds to step S12.
  • the determination circuit 36b determines whether or not the automatic mode Ma is currently selected. If the determination result indicates that the automatic mode Ma is selected, in the next step S13, the determination circuit 36b sends a signal for causing the light source control unit 22 to generate treatment light.
  • the light source control unit 22 controls the therapeutic light source 24c to generate therapeutic light, and the therapeutic light source 24c continuously generates therapeutic light.
  • the therapeutic light generated by the therapeutic light source 24c is transmitted by the optical fiber 17 that transmits the guide light, and the therapeutic light is irradiated to the position where the guide light is irradiated.
  • the position where the guide light is irradiated and the position where the treatment light is irradiated are usually narrow spots. In other words, the treatment light is irradiated to the treatment position Pt in a converged state.
  • FIG. 4 shows a state where the treatment light source 24c continuously generates treatment light after the time tt.
  • the treatment light is light in the same wavelength band as the excitation light and is cut by the excitation light cut filter 15 and thus does not affect the imaging by the CCD 14.
  • the determination circuit 36b monitors the irradiation position Pg of the guide light extracted by the guide position extraction circuit 36c as shown in step S14.
  • the determination circuit 36b determines whether or not the irradiation position Pg of the guide light exists within the vicinity region R of the treatment position Pt.
  • the neighboring region R including the treatment position Pt is indicated by a dotted line in FIG. 8B.
  • This neighboring region R may be set manually by the operator from the input unit 23, or a range whose luminance level is slightly lower than the treatment position Pt is set as the neighboring region R by image processing (by the fluorescence region extracting circuit 36a). Alternatively, it may be set as a region close to the same point as the treatment position Pt (set as if the irradiation position Pg substantially coincides with the treatment position Pt).
  • the determination circuit 36b sends the determination signal to the light source control unit 22.
  • step S16 the light source control unit 22 controls the treatment light source 24c so that it does not generate treatment light. That is, the treatment light is turned off, and the process returns to step S10.
  • step S17 the control circuit 37 (or determination circuit 36b) determines whether or not a predetermined irradiation time ts has elapsed from the start of treatment light irradiation, and if the predetermined irradiation time has not elapsed. The process returns to step S14.
  • the light source control unit 22 turns off the treatment light in the next step S18 and ends the processing of FIG. .
  • the control circuit 37 (or the determination circuit 36b) measures the time so as to integrate the time during which the treatment light is actually irradiated from the start of the treatment light irradiation, and the measured time is set to a predetermined value set in advance. It is determined whether or not the irradiation time ts has been reached.
  • the determination circuit 36b in step S19 indicates that the treatment position Pt and the irradiation position Pg of the guide light match. Is sent to the display control circuit 35.
  • the display control circuit 35 generates character information for displaying that the treatment position Pt and the irradiation position Pg of the guide light coincide with each other and is suitable for irradiating treatment light, and displays the character information on the monitor 4.
  • the surgeon can grasp the timing of operating the treatment light switch SW2 by displaying that the state is suitable for irradiating treatment light.
  • the light source control unit 22 determines whether or not the treatment light irradiation operation has been performed by the treatment light switch SW2, and waits for the operation.
  • the light source control unit 22 applies the treatment light source 24c to the treatment light source 24c as in the case of step S13.
  • the treatment light is controlled to be generated, and the treatment light source 24c continuously generates the treatment light.
  • the therapeutic light generated by the therapeutic light source 24c is transmitted by the optical fiber 17 that transmits the guide light, and the therapeutic light is irradiated to the position where the guide light is irradiated.
  • the determination circuit 36b monitors the irradiation position Pg of the guide light extracted by the guide position extraction circuit 36c as in the case of step S14. Then, in the next step S23, the determination circuit 36b determines whether or not the irradiation position Pg of the guide light exists within the vicinity region R of the treatment position Pt as in the case of step S15.
  • step S23 when the determination result indicates that the irradiation position Pg of the guide light does not exist within the vicinity region R of the treatment position Pt, the determination circuit 36b sends the determination signal to the light source control unit 22 as in step S15. Send to.
  • step S24 the determination circuit 36b controls the light source control unit 22 so that the treatment light source 24c does not generate treatment light, as in step S16. The adult treatment light is turned off and the process returns to step S10.
  • step S25 if the determination result indicates that the irradiation position Pg of the guide light is within the vicinity region R of the treatment position Pt, the process proceeds to step S25 as in step S17.
  • step S25 for example, the control circuit 37 ( Alternatively, the determination circuit 36b) determines whether or not the predetermined irradiation time ts has elapsed from the start of treatment light irradiation, and when the predetermined irradiation time ts has not elapsed, the process returns to the process of step S22.
  • the display control circuit 35 uses the monitor 4 to indicate that the predetermined irradiation time ts has elapsed.
  • step S27 the light source control unit 22 waits for an operation to turn off the treatment light.
  • the surgeon operates the therapeutic light switch SW2 to turn off the therapeutic light when ending the treatment with reference to the display indicating that the predetermined irradiation time ts has elapsed.
  • the light source control unit 22 turns off the treatment light as shown in step S17 and ends the processing of FIG.
  • a fluorescence image representing the position of a lesion site due to fluorescence and a treatment position Pt as a treatment light irradiation position are simultaneously provided. Since an observation image that can be confirmed is generated, it is possible to easily perform treatment treatment by irradiation with therapeutic light.
  • the irradiation of the treatment light can be automatically stopped and the irradiation time of the treatment light irradiated to the lesion site can be accurately measured. Therefore, the treatment light irradiation time can be managed with high accuracy.
  • the operator since a guide light is automatically irradiated when a fluorescence brightness Lf equal to or higher than the threshold value Vth is detected in the fluorescence image, the operator can easily confirm the position of the lesion site.
  • the treatment light irradiation timing can be set without delay in order to set the treatment light irradiation state. Treatment can be performed in a short time and the burden on the operator can be reduced.
  • FIG. 10A shows an example of the color filter 41 provided on the imaging surface of the monochrome CCD 14.
  • the color filter 41 is, for example, an R, G, B stripe filter (simply abbreviated as R, G, B filter) 42R, which transmits R, G, B light on the pixels of the horizontal line on the imaging surface of the CCD 14. 42G and 42B are periodically arranged in the vertical direction.
  • the R filter 42R has a characteristic of transmitting fluorescence in the infrared wavelength band in addition to R.
  • excitation light, reference light (see FIG. 2A), and treatment light (see FIG. 2B) generate light having the same wavelength band as that of the first embodiment.
  • the guide light is set to a blue wavelength band characteristic Lga as shown in FIG. 11 (note that it has a narrower band characteristic than the wavelength band shown in FIG. 11 as shown in FIG. 2B). Is also good).
  • the characteristic Ltr of the wavelength band of the treatment light is also shown.
  • the fluorescent material generates fluorescence in the same infrared wavelength band as in the first embodiment
  • the excitation light cut filter 15 has the same transmission characteristics as in the first embodiment.
  • the fluorescence, reference light, and guide light are color-separated (optically) by R, G, B filters 42R, 42G, 42B, respectively, and each pixel 43 (see FIG. 10A).
  • the pixels 43 that image the light that has passed through the R, G, B filters 42R, 42G, and 42B respectively serve as fluorescence pixels, reference light pixels, and guide light pixels that are sensitive to fluorescence, reference light, and guide light. Has function.
  • the light source control unit 22 controls the light source unit 12 to generate excitation light, reference light, guide light, and treatment light as continuous light.
  • the intensity of the reference light is too high, as shown in FIG. 4, pulse emission is performed in the illumination period Tr smaller than the frame period T in each frame period T, or continuous emission is performed at a reduced emission intensity. You can do that.
  • the CCD 14 to which the CCD driving signal is applied by the CCD driving circuit 31 outputs a simultaneous color imaging signal for one frame, and the color imaging signal is a preprocessing circuit. 32 '.
  • the pre-processing circuit 32 in FIG. 1 performs pre-processing on the frame-sequential imaging signal.
  • the pre-processing circuit 32 ′ in this modification image is transmitted through the R, G, B filters 42R, 42G, 42B.
  • Pre-processing is performed on the R, G, and B imaging signals.
  • a pixel binning unit or pixel binning that performs pixel binning (pixel addition) as illustrated in FIG. 10B with respect to an imaging signal (R imaging signal) of a fluorescent pixel that has passed through the R filter 42R. Circuit) 45.
  • the shift register 46 in the CCD 14 normally outputs a pixel signal (imaging signal) for each pixel from the output terminal on the right end via the adder circuit 47, but the timing for outputting the pixel signal of R pixels for one line in the horizontal direction.
  • the CCD driving circuit 31 sends a control signal for pixel addition (pixel addition) to the addition circuit 47.
  • the addition circuit 47 to which the control signal (for pixel addition) is applied adds pixel signals for, for example, three pixels from the right end of the shift register 46 and outputs the addition signal from the output end of the CCD 14. In this case, an addition signal obtained by adding three pixels adjacent in the horizontal direction is output.
  • a signal indicating the number of pixels to be added in the case of pixel binning from the CCD drive circuit 31 is also sent to the addition circuit 47, and the addition circuit 47 adds the added signals for any plural pixels within the number of pixels that can be added. May be output.
  • the present invention is not limited to the configuration in which pixel binning is performed in the CCD 14 shown in FIG. 10B.
  • an addition signal obtained by adding a plurality of pixels adjacent in the horizontal direction in the R imaging signal is generated in the preprocessing circuit 32 ′.
  • the multiplexer 33 ′ is switched according to the arrangement of the R, G, and B filters in the color filter 41. Specifically, when the R image signal obtained by extracting the signal component from the R imaging signal of the fluorescent pixel that has passed through the R filter is output (timing) from the preprocessing circuit 32 ′, the multiplexer 33 ′ The memory 34a is selected, and the R image signal is stored in the fluorescence memory 34a. Similarly, when the G image signal obtained by extracting the signal component from the G imaging signal of the reference light pixel that has captured the reference light that has passed through the G filter is output from the preprocessing circuit 32 ′ (timing), the multiplexer 33 ′.
  • the multiplexer 33' Selects the guide light memory 34c, and the B image signal is stored in the guide light memory 34c.
  • the multiplexer 33 ′ uses the guide light memory at the timing of the B image signal even when the excitation light and the reference light are generated and the guide light is not generated. 34c is selected.
  • the display control circuit 35 ′ in this modification has character information display control corresponding to the fluorescence / guide light processing circuit 36 (FIG. 3). Steps S19 and S26) are performed. Other configurations are the same as those in the first embodiment. The operation of this modification is almost the same as that of the first embodiment shown in FIG. Only the different parts will be described below. As shown in FIG.
  • the light source unit 12 in the first step S ⁇ b> 31, the light source unit 12 generates excitation light and reference light as continuous light, and the excitation light and reference light are transmitted by the light guide 11 and from the front end surface of the light guide 11. Excitation light and reference light are spread and irradiated on the observation site side.
  • the fluorescence emitted from the observation site side is in the infrared band, so this fluorescence passes through the R filter 43R and is received by the R pixel. Further, the light reflected on the observation site side by the irradiation of the reference light passes through the G filter 43G and is received by the G pixel.
  • the R imaging signal is output from the CCD 14 as a fluorescence imaging signal, which is an addition signal obtained by adding a plurality of pixels by the pixel binning unit 45. That is, in step S32 subsequent to step S31, the pixel binning unit 45 performs pixel binning for adding a plurality of pixels to the fluorescent imaging pixel, and outputs the added R imaging signal.
  • the R image signal of the added R pixel and the G image signal of the G pixel are extracted as signal components in the pre-processing circuit 32 ′ to become an R image signal and a G image signal. That is, as shown in step S2 of FIG. 3, the image processing unit 21 ′ generates a fluorescence image (signal) and a reference light image (signal) in the preprocessing circuit 32 ′.
  • the R image signal and the G image signal are respectively stored in the fluorescence memory 34a and the reference light memory 34b via a multiplexer 33 'that is switched in accordance with the arrangement of the R, G, B filters 42R, 42G, 42B within one frame period. Is done. Since step S3 and subsequent steps are substantially the same as the steps after step S3 shown in FIG. 3, the description thereof is omitted. However, the processing after step S3 in FIG. 3 is processing when a monochrome imaging device is used, and in this modification, specific processing contents in each step by using the imaging device including the color filter 41 are used. There may be discrepancies.
  • the guide light is further irradiated in the first embodiment.
  • a period during which the guide light image is mixed with the fluorescence image has occurred.
  • the color filter 41 separates the images and images are captured in the three frame memories. Images, reference light images, and guide light images can be stored separately. Therefore, the fluorescence image, the reference light image, and the guide light image can be displayed in different colors on the monitor 4 without performing a subtraction process for separation in the display control circuit 35.
  • the R pixel signal that has passed through the R filter 42R is output as, for example, a plurality of pixels adjacent in the horizontal direction and an added sum signal, so that the signal level of the fluorescence with low signal intensity is greatly increased. Can be increased.
  • the same added signal is output in a plurality of added pixels, the resolution in the horizontal direction is lowered as compared with the case where the addition is not performed.
  • the same effect as that of the first embodiment is obtained.
  • this modification when fluorescence is imaged, a plurality of adjacent pixels that capture fluorescence are added, so that an observation image in which a fluorescent image with low signal intensity is easily visible can be generated. Can do.
  • embodiments configured by combining a part of the above-described modifications and embodiments also belong to the present invention.
  • the pixel addition described in the above modification may be applied to the first embodiment. In that case, pixel addition may be performed every frame period in which fluorescence is imaged. However, it is necessary to remove the image portion of the guide light in the frame where the irradiation of the excitation light (fluorescence imaging) and the irradiation of the guide light overlap.
  • the light source control unit 22 turns on / off the guide light irradiation so that the irradiation of the guide light is stopped (along with the reference light) and the image can be captured only by the fluorescence. May be controlled. Further, when the treatment light is irradiated together with the guide light, the treatment light may be turned off simultaneously when the irradiation of the guide light is turned off.
  • a region Rf having a fluorescence luminance equal to or higher than a threshold value exceeding 0 level is extracted from the fluorescence image, a high luminance region Rfh is determined from the region Rf, and the high luminance region Rfh is determined.
  • the treatment position Pt may be set at an arbitrary position within the region Rf. 3 and FIG. 12, the excitation light, reference light, guide light, and treatment light are not limited to ON / OFF, and excitation is performed at an arbitrary timing according to the judgment of the operator. It is also possible to turn on / off irradiation of light, reference light, guide light, and treatment light.
  • the light may be irradiated intermittently.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Endoscopes (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)

Abstract

This endoscopic device includes: a light source unit for excitation light, which emits excitation light to a subject to which a fluorescent substance having a specific action has been administered; a light source unit for reference light, which emits reference light; a light source unit for action light, which emits action light for causing a specific action; a light source unit for guide light, which emits guide light; an imaging unit which generates an imaging signal; an excitation light cut filter; an information generating unit which generates, from the imaging signal, fluorescence light information, etc., indicating the position of fluorescence light; and an image generating unit which generates an observation image reflecting the position where there is fluorescence light and the position where guide light is emitted.

Description

内視鏡装置Endoscope device
 本発明は、励起光を照射して蛍光観察を行う内視鏡装置に関する。 The present invention relates to an endoscope apparatus that performs fluorescence observation by irradiating excitation light.
 近年、医療分野等において内視鏡装置が広く用いられるようになっている。また、生体における腫瘍部位等の病変部位に集積し易い特性を持ち、且つ、励起光の照射により蛍光を発生する光感受性物質を用いて、光線力学的診断(Photodynamic Diagnosis:PDD)を行う方法が知られている。また、PDDによる診断を行った病変部位に対して、光線力学的治療(Photodynamic Therapy:PDT)を行う方法が知られている。 In recent years, endoscope apparatuses have been widely used in the medical field and the like. In addition, there is a method for performing photodynamic diagnosis (PDD) using a photosensitive substance that has a characteristic of being easily accumulated in a lesion site such as a tumor site in a living body and generates fluorescence upon irradiation with excitation light. Are known. A method of performing photodynamic therapy (PDT) on a lesion site diagnosed by PDD is also known.
 例えば、第1の従来例としての日本国特開2008-86680号公報においては、PDTによる治療を行う内視鏡を備えた内視鏡装置が開示されている。この内視鏡装置は、通常観察用の撮像素子と、治療光をカットするフィルタを設けた撮像素子とを設けた構成にしている。そして、PDTによる様子を治療光によるハレーションを発生することなく、観察できるようにしている。 
 また、第2の従来例としての日本国特開2012-65899号公報においても、PDTによる治療を行う内視鏡装置が開示されている。この内視鏡装置は、被検体内の治療対象部位を治療するために治療光を被検体内に照射する治療光照射手段と、治療対象部位を観察するために前記治療対象部位に投与された薬品から蛍光を発光させる励起光を照射する励起光照射手段と、入射光を光電変換し、入射光量に応じた信号電荷を蓄積する画素を複数有し、前記被検体内を撮像する撮像手段と、撮像手段が1枚の画像を撮像する撮像期間の1つである第1撮像期間内において、前記治療光を照射する治療光照射期間と、前記蛍光の光量に応じた前記信号電荷を蓄積する蓄積期間とが重複なく存在するように、前記治療光照射手段及び前記撮像手段を制御する制御手段と、を備える。
For example, Japanese Patent Application Laid-Open No. 2008-86680 as a first conventional example discloses an endoscope apparatus including an endoscope for performing treatment by PDT. This endoscope apparatus has a configuration in which an imaging device for normal observation and an imaging device provided with a filter for cutting treatment light are provided. The state of PDT can be observed without generating halation due to the treatment light.
Japanese Patent Application Laid-Open No. 2012-65899 as a second conventional example also discloses an endoscope apparatus for performing treatment by PDT. This endoscope apparatus is administered to the treatment target site for observing the treatment target site, and a treatment light irradiation means for irradiating the treatment light in the subject to treat the treatment target site in the subject. An excitation light irradiating means for irradiating an excitation light that emits fluorescence from a chemical; an imaging means for photoelectrically converting incident light and storing a plurality of pixels that accumulate signal charges according to the amount of incident light; In the first imaging period, which is one of the imaging periods in which the imaging unit captures one image, the therapeutic light irradiation period for irradiating the therapeutic light and the signal charge corresponding to the amount of fluorescence are accumulated. Control means for controlling the treatment light irradiation means and the imaging means so that there is no overlap with the accumulation period.
 第1の従来例は、PDDモードと、PDTモードとに切り替えて使用する内視鏡装置であり、蛍光画像を観察しつつ、治療光の照射位置を確認する構成を備えていない欠点がある。また、第2の従来例においても治療光の照射位置を確認する構成を備えていない欠点がある。 
 また、励起光と治療光とを同じ波長に設定して治療を行うPIT(Photoimmuno Therapy)と呼ばれる治療法がある。この治療法においては、薬剤(蛍光物質)の励起光と、光治療を行う治療光との波長が同じであるため、励起光カットフィルタにより、励起光と治療光とが観察対象を撮像する光から除去されるため、薬剤が集積する薬剤集積部位となり、蛍光の発生位置として蛍光画像から観察(特定)される病変部位の位置と、治療光の照射位置とを同時に観察することが困難であった。 
 本発明は上述した点に鑑みてなされたもので、蛍光画像による病変部位の位置と治療光(作用光)の照射位置とを同時に観察できる観察画像を生成することができる内視鏡装置を提供することを目的とする。
The first conventional example is an endoscope apparatus that is used by switching between the PDD mode and the PDT mode, and has a defect that does not have a configuration for confirming the irradiation position of the treatment light while observing the fluorescent image. Further, the second conventional example also has a defect that does not include a configuration for confirming the irradiation position of the treatment light.
In addition, there is a treatment method called PIT (Photoimmuno Therapy) in which treatment is performed by setting excitation light and treatment light to the same wavelength. In this treatment method, since the wavelength of the excitation light of the drug (fluorescent substance) and the treatment light for performing phototherapy are the same, the excitation light and the treatment light are images of the observation target imaged by the excitation light cut filter. Therefore, it is difficult to observe the position of the lesion site observed (specified) from the fluorescence image as the fluorescence generation position and the irradiation position of the treatment light at the same time. It was.
The present invention has been made in view of the above points, and provides an endoscope apparatus capable of generating an observation image capable of simultaneously observing the position of a lesion site by a fluorescence image and the irradiation position of treatment light (action light). The purpose is to do.
 本発明の一態様の内視鏡装置は、病変部位に集積し、かつ励起波長の光が照射されることで蛍光を発し、かつ前記励起波長の光が照射されることで生体組織に対して特定の作用をする蛍光物質が投与された被検体に対して、前記励起波長を有し前記蛍光を発生させるための励起光を照射する励起光用光源部と、前記励起波長とは異なる波長であり、前記被検体の形態情報を取得するための参照光を照射する参照光用光源部と、前記被検体に対して前記励起光用光源部及び参照光用光源部からの光が照射される領域のうちの所定の領域に対して、前記被検体に投与された前記蛍光物質が前記特定の作用をさせるために収束された前記励起波長を有する作用光を照射する作用光用光源部と、前記所定の領域に対して、前記励起波長とは異なる波長のガイド光を照射するガイド光用光源部と、前記被検体からの光を受けて撮像信号を生成する撮像部と、前記撮像部と前記被検体との間に設けられ、前記励起波長の光をカットする励起光カットフィルタと、前記励起光用光源部、前記参照光用光源部、及び前記ガイド光用光源部からの光が照射された前記被検体を前記撮像部による撮像により生成される前記撮像信号から、前記励起光が照射された前記被検体から発生する前記蛍光の位置を表す蛍光情報と、前記参照光が照射された前記被検体の形態情報と、前記被検体におけるガイド光の照射位置を表すガイド光情報とを生成する情報生成部と、前記情報生成部において生成された前記被検体の形態情報に対して前記蛍光の発生位置と前記ガイド光の照射位置とを反映させた観察画像を生成する画像生成部と、を有する。 The endoscope apparatus according to one embodiment of the present invention accumulates in a lesion site, emits fluorescence when irradiated with light having an excitation wavelength, and applies to the tissue when irradiated with light having the excitation wavelength. An excitation light source unit that irradiates a subject to which a fluorescent substance having a specific action is administered with excitation light having the excitation wavelength and generating the fluorescence; and a wavelength different from the excitation wavelength. There is a reference light source unit that irradiates reference light for acquiring the form information of the subject, and the subject is irradiated with light from the excitation light source unit and the reference light source unit A working light source unit that emits working light having the excitation wavelength converged so that the fluorescent substance administered to the subject performs the specific action on a predetermined region of the region; A wave different from the excitation wavelength for the predetermined region. A light source unit for guide light that irradiates the guide light, an imaging unit that receives light from the subject and generates an imaging signal, and light of the excitation wavelength provided between the imaging unit and the subject. An excitation light cut filter that cuts light, and the subject irradiated with light from the excitation light source unit, the reference light source unit, and the guide light source unit are generated by imaging by the imaging unit From the imaging signal, fluorescence information indicating the position of the fluorescence generated from the subject irradiated with the excitation light, shape information of the subject irradiated with the reference light, and guide light in the subject An information generation unit that generates guide light information representing an irradiation position, and the fluorescence generation position and the guide light irradiation position are reflected in the form information of the subject generated in the information generation unit Observation image Having an image generator for forming, the.
図1は本発明の第1の実施形態の内視鏡装置の全体構成を示す図。FIG. 1 is a diagram showing an overall configuration of an endoscope apparatus according to a first embodiment of the present invention. 図2Aは励起光用光源と参照光用光源がそれぞれ発生する励起光と参照光の波長及び強度を示す図。FIG. 2A is a diagram showing the wavelengths and intensities of excitation light and reference light generated by the excitation light source and reference light source, respectively. 図2Bは治療光用光源とガイド光用光源がそれぞれ発生する治療光とガイド光の波長及び強度を示す図。FIG. 2B is a diagram showing the wavelengths and intensities of the treatment light and the guide light generated by the treatment light source and the guide light source, respectively. 図2Cは励起光カットフィルタの波長に対する透過特性を示す図。FIG. 2C is a diagram showing transmission characteristics with respect to the wavelength of the excitation light cut filter. 図3は第1の実施形態の動作内容を示すフローチャート。FIG. 3 is a flowchart showing the operation content of the first embodiment. 図4は第1の実施形態における励起光、参照光、ガイド光、治療光を発生するタイミングを示す図。FIG. 4 is a diagram illustrating timing for generating excitation light, reference light, guide light, and treatment light in the first embodiment. 図5Aは蛍光画像を示す図。FIG. 5A shows a fluorescent image. 図5Bは参照光画像を示す図。FIG. 5B is a diagram showing a reference light image. 図5Cは蛍光画像と参照光画像の重畳画像を示す図。FIG. 5C is a diagram showing a superimposed image of a fluorescence image and a reference light image. 図6Aはガイド光画像を示す図。FIG. 6A is a diagram showing a guide light image. 図6Bはガイド光画像を含む蛍光画像を示す図。FIG. 6B is a diagram showing a fluorescence image including a guide light image. 図6Cはガイド光画像を含む参照光画像を示す図。FIG. 6C is a diagram showing a reference light image including a guide light image. 図6Dは蛍光画像と参照光画像とガイド光画像がそれぞれ異なる色に割り当てられた重畳画像(合成画像)を示す図。FIG. 6D is a diagram showing a superimposed image (composite image) in which a fluorescence image, a reference light image, and a guide light image are assigned to different colors. 図7は減算処理により蛍光画像、参照光画像を生成する表示制御回路の構成を示す図。FIG. 7 is a diagram illustrating a configuration of a display control circuit that generates a fluorescence image and a reference light image by subtraction processing. 図8Aは治療位置とガイド光の照射位置とが一致しない状態の蛍光画像とガイド光画像を示す動作説明図。FIG. 8A is an operation explanatory diagram showing a fluorescence image and a guide light image in a state where the treatment position and the irradiation position of the guide light do not match. 図8Bは治療位置とガイド光の照射位置とが一致する状態の蛍光画像とガイド光画像を示す動作説明図。FIG. 8B is an operation explanatory view showing the fluorescence image and the guide light image in a state where the treatment position and the irradiation position of the guide light coincide with each other. 図9は第1の実施形態の変形例の内視鏡装置の全体構成を示す図。FIG. 9 is a diagram illustrating an overall configuration of an endoscope apparatus according to a modified example of the first embodiment. 図10Aはカラーフィルタの構成の1例を示す図。FIG. 10A is a diagram illustrating an example of a configuration of a color filter. 図10Bはピクセルビニング部の概略の構成を示す図。FIG. 10B is a diagram illustrating a schematic configuration of a pixel binning unit. 図11は治療光用光源とガイド光用光源とがそれぞれ発生する治療光とガイド光の波長及び強度を示す図。FIG. 11 is a diagram illustrating the wavelengths and intensities of the treatment light and the guide light generated by the treatment light source and the guide light source, respectively. 図12は変形例の処理内容の一部を示すフローチャート。FIG. 12 is a flowchart showing a part of the processing contents of the modification.
 以下、図面を参照して本発明の実施形態を説明する。 
(第1の実施形態)
 図1に示すように本発明の第1の実施形態の内視鏡装置1は、体腔内に挿入される内視鏡2と、この内視鏡2が着脱自在に接続され、照明光等を内視鏡2側に供給すると共に、内視鏡2に搭載された撮像部に対する信号処理を行う制御装置3と、制御装置3により生成された画像信号が入力されることにより、撮像部により撮像された画像を観察画像として表示する表示装置としてのモニタ4とを有する。 
 内視鏡2は、被検体5内に挿入される細長の挿入部6と、挿入部6の後端(基端)に設けられた操作部7と、操作部7から延出されたライトガイドケーブル8と信号ケーブル9とを有し、ライトガイドケーブル8の端部の光源用コネクタ8aと信号ケーブル9の端部の信号用コネクタ9aとは制御装置3に着脱自在に接続される。 
 挿入部6内には照明光を伝送(又は導光)するライトガイド11が挿通され、このライトガイド11の後端は、光源用コネクタ8aに至る。ライトガイド11の後端には、制御装置3内の光源部(又は光源ユニット)12から照明光が入射(供給)される。入射された照明光はライトガイド11により伝送され、挿入部6の先端部に設けられた照明窓に配置された先端面から、先端面に対向する被検体5内の患部等の観察部位側に照明光が拡開して照射される。なお、ライトガイド11は、入射された蛍光観察用の励起光と、生体組織の形態情報を取得するための参照光とを(蛍光画像と、参照光画像を取得するための)照明光として伝送する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(First embodiment)
As shown in FIG. 1, an endoscope apparatus 1 according to a first embodiment of the present invention includes an endoscope 2 that is inserted into a body cavity, and the endoscope 2 is detachably connected to transmit illumination light or the like. The control device 3 that supplies the signal to the endoscope 2 and performs signal processing on the image pickup unit mounted on the endoscope 2 and the image signal generated by the control device 3 are input, whereby the image pickup unit picks up an image. And a monitor 4 as a display device that displays the image as an observation image.
The endoscope 2 includes an elongated insertion portion 6 to be inserted into a subject 5, an operation portion 7 provided at the rear end (base end) of the insertion portion 6, and a light guide extended from the operation portion 7. A light source connector 8 a at the end of the light guide cable 8 and a signal connector 9 a at the end of the signal cable 9 are detachably connected to the control device 3.
A light guide 11 that transmits (or guides) illumination light is inserted into the insertion portion 6, and the rear end of the light guide 11 reaches the light source connector 8a. Illumination light is incident (supplied) from the light source unit (or light source unit) 12 in the control device 3 to the rear end of the light guide 11. The incident illumination light is transmitted by the light guide 11, from the distal end surface arranged in the illumination window provided at the distal end portion of the insertion portion 6 to the observation site side such as the affected part in the subject 5 facing the distal end surface. Illumination light is spread and irradiated. The light guide 11 transmits incident excitation light for fluorescence observation and reference light for acquiring morphological information of living tissue as illumination light (for acquiring a fluorescent image and a reference light image). To do.
 照明窓に隣接して設けられた観察窓には対物レンズ13が配置され、励起光が照射された部位側から発せられる蛍光の光学像を撮像素子としての電荷結合素子(CCDと略記)14の撮像面に結像すると共に、参照光が照射された場合には、照射された部位で反射された反射光の光学像をCCD14の撮像面に結像する。なお、本実施形態においては、撮像素子としてカラーフィルタを有しない、モノクロのCCD14を用いている。 
 対物レンズ13とCCD14の撮像面との間の光路中には、励起光をカットする励起光カットフィルタ15が配置されている。このため、上記のように励起光と参照光とを観察部位に照射した場合、観察部位側で反射された励起光の光は励起光カットフィルタ15によりカットされる。 
 また、内視鏡2には、挿入部6の後端付近に処置具挿入口16aが設けられ、処置具挿入口16aは挿入部6の長手方向に沿って設けられた処置具用チャンネル16と連通している。本実施形態においては、処置具用チャンネル16内には治療を行うためのレーザ光による治療光を導光する光ファイバ17が挿通され、処置具挿入口16aの外部に延出された光ファイバ17の後端のコネクタ17aは、制御装置3に着脱自在に接続される。
An objective lens 13 is disposed in an observation window provided adjacent to the illumination window, and an optical image of fluorescence emitted from the side irradiated with the excitation light is used as an imaging device of a charge coupled device (abbreviated as CCD) 14. In addition to forming an image on the imaging surface, when the reference light is irradiated, an optical image of the reflected light reflected by the irradiated portion is formed on the imaging surface of the CCD 14. In the present embodiment, a monochrome CCD 14 having no color filter is used as the image sensor.
In the optical path between the objective lens 13 and the imaging surface of the CCD 14, an excitation light cut filter 15 for cutting the excitation light is disposed. Therefore, when the observation part is irradiated with the excitation light and the reference light as described above, the excitation light reflected on the observation part side is cut by the excitation light cut filter 15.
In addition, the endoscope 2 is provided with a treatment instrument insertion port 16 a near the rear end of the insertion portion 6, and the treatment instrument insertion port 16 a is connected to a treatment instrument channel 16 provided along the longitudinal direction of the insertion portion 6. Communicate. In the present embodiment, an optical fiber 17 that guides treatment light by a laser beam for performing treatment is inserted into the treatment instrument channel 16 and extended to the outside of the treatment instrument insertion port 16a. The rear end connector 17 a is detachably connected to the control device 3.
 この光ファイバ17の後端には、光源部12において発生した治療光と、治療光の照射位置を視認できるようにするためのガイド光とが入射される。治療光とガイド光は、この光ファイバ17により伝送され、処置具用チャンネル16の先端開口から突出される光ファイバ17の先端面から、該先端面に対向する前方側に小さなビーム径で出射される。 
 なお、本実施形態においては、後述するように治療光を照射(発生)する位置を確認するために、治療光を照射しない状態においてガイド光のみを照射する場合がある。 
 本実施形態においては、励起光と治療光とは同じ波長帯域に設定されており、従って 治療光による反射光は励起光カットフィルタ15によりカットされ、CCD14は、この反射光による像を生成しない。一方、ガイド光の波長帯域は、励起光カットフィルタ15を透過する波長帯域に設定されており、CCD14は、ガイド光による被検体側からの反射光の像を撮像する。CCD14は、制御装置3内の画像処理部(又は画像処理ユニット)21により画像処理され、画像処理部21は、生成した画像信号をモニタ4に出力し、モニタ4は、CCD14により撮像した画像を表示する。従って、治療光が照射された状態においては、モニタ4に表示されるガイド光による画像から治療光の照射位置を確認することができる。
Treatment light generated in the light source unit 12 and guide light for allowing the irradiation position of the treatment light to be visually recognized are incident on the rear end of the optical fiber 17. The treatment light and the guide light are transmitted through the optical fiber 17 and are emitted from the distal end surface of the optical fiber 17 protruding from the distal end opening of the treatment instrument channel 16 to the front side facing the distal end surface with a small beam diameter. The
In this embodiment, as will be described later, in order to confirm the position where treatment light is irradiated (generated), only guide light may be irradiated in a state where treatment light is not irradiated.
In the present embodiment, the excitation light and the treatment light are set in the same wavelength band. Therefore, the reflected light by the treatment light is cut by the excitation light cut filter 15, and the CCD 14 does not generate an image by this reflected light. On the other hand, the wavelength band of the guide light is set to a wavelength band that transmits the excitation light cut filter 15, and the CCD 14 captures an image of the reflected light from the subject side by the guide light. The CCD 14 is subjected to image processing by an image processing unit (or image processing unit) 21 in the control device 3, and the image processing unit 21 outputs the generated image signal to the monitor 4, and the monitor 4 captures an image captured by the CCD 14. indicate. Therefore, in the state in which the treatment light is irradiated, the irradiation position of the treatment light can be confirmed from the image by the guide light displayed on the monitor 4.
 また、本実施形態においては、光源部12を制御する光源制御部(又は光源制御ユニット)22と、該光源制御部22や画像処理部21に指示入力などを行うキーボード又はマウス等を備える入力部(又は入力ユニット)23とを備える。 
 入力部23は、例えば治療位置を入力するデータ入力部23aと、撮像信号に基づいて、治療光の照射を自動的に行う自動制御モード(又は自動モード)Maと、治療光の照射を手動により行う手動モードMmとを選択するモード設定スイッチSW1と、治療光の照射のON/OFFを行う治療光用スイッチSW2とを有する。なお、図1においては、光源部12と別体で光源制御部22を設けた例を示しているが、光源部12が光源制御部22を含む構成にしても良い。 
 本実施形態においては、被検体5に対して病変部位(又は病変部)に集積し易い特性を有し、所定の波長帯域の励起光が照射されると、蛍光を発する蛍光物質を投与した後において、病変部位を治療するための処置を治療光の照射により行う。
In the present embodiment, the input unit includes a light source control unit (or light source control unit) 22 that controls the light source unit 12 and a keyboard or a mouse that inputs instructions to the light source control unit 22 and the image processing unit 21. (Or input unit) 23.
The input unit 23 includes, for example, a data input unit 23a for inputting a treatment position, an automatic control mode (or automatic mode) Ma for automatically performing treatment light irradiation based on an imaging signal, and manually performing treatment light irradiation. It has a mode setting switch SW1 for selecting the manual mode Mm to be performed, and a treatment light switch SW2 for turning on / off the treatment light irradiation. Although FIG. 1 shows an example in which the light source control unit 22 is provided separately from the light source unit 12, the light source unit 12 may include the light source control unit 22.
In this embodiment, after administration of a fluorescent substance that emits fluorescence when irradiated with excitation light of a predetermined wavelength band, which has a characteristic that the subject 5 easily accumulates in a lesion site (or lesion site). , The treatment for treating the lesion site is performed by irradiation with therapeutic light.
 また、本実施形態においては、前述したPITによる治療法を行うため、上記蛍光物質として、励起光と同じ波長帯域の治療光の照射により、病変組織を消滅させる作用を有する蛍光物質を採用する。このため、治療光を蛍光物質が集積した病変部位に照射することにより、治療光は病変組織を消滅させるように作用する作用光の機能を持つ。換言すると、治療光は、作用光を形成すると見なすことができる。 
 光源部12は、所定の波長帯域の励起光を発生する励起光用光源24aと、参照光を発生する参照光用光源24bと、治療光を発生する治療光用光源24cと、ガイド光を発生するガイド光用光源24dと、を有する。 
 図2Aは、励起光用光源24aが発生する励起光の波長帯域及び強度の特性Lexと、参照光用光源24bが発生する参照光の波長帯域及び強度の特性Lreと、を示す。図2Aに示す例では、励起光の波長帯域は600~650nmに設定され、参照光の波長帯域は緑の波長帯域に属する例えば530~550nmに設定されている。そして、上記の蛍光物質が投与された状態の被検体5に対して、励起光を照射することにより、蛍光物質は、図2Cに示すような波長帯域Lflの蛍光を発する。
Further, in the present embodiment, in order to perform the above-described treatment method using PIT, a fluorescent material having an action of extinguishing a diseased tissue by irradiation with therapeutic light in the same wavelength band as the excitation light is employed as the fluorescent material. For this reason, the treatment light has a function of action light that acts to extinguish the diseased tissue by irradiating the treatment site with the treatment light where the fluorescent substance is accumulated. In other words, the therapeutic light can be considered to form working light.
The light source unit 12 generates excitation light source 24a that generates excitation light in a predetermined wavelength band, reference light source 24b that generates reference light, treatment light source 24c that generates treatment light, and guide light. And a guide light source 24d.
FIG. 2A shows the wavelength band and intensity characteristic Lex of the excitation light generated by the excitation light source 24a, and the wavelength band and intensity characteristic Lre of the reference light generated by the reference light source 24b. In the example shown in FIG. 2A, the wavelength band of the excitation light is set to 600 to 650 nm, and the wavelength band of the reference light is set to, for example, 530 to 550 nm belonging to the green wavelength band. Then, the fluorescent material emits fluorescence in the wavelength band Lfl as shown in FIG. 2C by irradiating the subject 5 to which the fluorescent material is administered with excitation light.
 図2Bは、治療光用光源24cが発生する治療光の波長帯域及び強度の特性Ltrと、ガイド光用光源24dが発生するガイド光の波長帯域及び強度の特性Lgaと、を示す。図2Bに示す例では、治療光の波長帯域は、上述した治療光の波長帯域と同じ600~650nmに設定され、ガイド光の波長帯域は、例えば緑の波長帯域に属する例えば530~550nmに設定されている。 
 図2Cは、励起光カットフィルタ15の透過特性Ftを示す。図2Cに示すように励起光カットフィルタ15は、励起光の波長帯域であると共に治療光の波長帯域を含む例えば590~660nmをカットし、緑の波長帯域と、上記蛍光物質が発生する蛍光の波長帯域Lflを透過する特性に設定されている。図2Cにおいては、励起光カットフィルタ15は、400~590nmと660~800を超える赤外域を透過する特性に設定されている。 
 なお、CCD14は可視帯域と共に赤の波長帯域の長波長側の上記蛍光の波長帯域を含む赤外の波長帯域においても感度を有する。
FIG. 2B shows the wavelength band and intensity characteristics Ltr of the treatment light generated by the treatment light source 24c, and the wavelength band and intensity characteristics Lga of the guide light generated by the guide light source 24d. In the example shown in FIG. 2B, the wavelength band of the treatment light is set to 600 to 650 nm that is the same as the wavelength band of the treatment light described above, and the wavelength band of the guide light is set to, for example, 530 to 550 nm belonging to the green wavelength band. Has been.
FIG. 2C shows the transmission characteristic Ft of the excitation light cut filter 15. As shown in FIG. 2C, the excitation light cut filter 15 cuts, for example, 590 to 660 nm including the wavelength band of the excitation light and the wavelength band of the treatment light, and converts the green wavelength band and the fluorescence generated by the fluorescent substance. The characteristic is set to transmit the wavelength band Lfl. In FIG. 2C, the excitation light cut filter 15 is set to have characteristics of transmitting an infrared region exceeding 400 to 590 nm and exceeding 660 to 800.
The CCD 14 has sensitivity not only in the visible band but also in the infrared wavelength band including the fluorescent wavelength band on the long wavelength side of the red wavelength band.
 図1に示すように励起光用光源24aが発生する励起光は、対向する光路上に配置されたミラー25aにより反射され、該ミラー25aによる反射光は、対向する光路上に配置されたダイクロイックミラー25bによる波長に応じた選択的な反射/透過特性により励起光が選択的に反射され、反射光の光路上に配置された集光レンズ25cを経てライトガイド11の後端面に入射される。 
 また、参照光用光源24bが発生する参照光は、対向する光路上に配置されたダイクロイックミラー25bに入射し、該ダイクロイックミラー25bにより参照光が選択的に透過し、透過した光路上に配置された集光レンズ25cを経てライトガイド11の後端面に入射される。なお、本実施形態においてはモノクロの撮像素子を用いるために、光源制御部22は、後述するように、励起光と参照光とを面順次で発生するように励起 光用光源24aと参照光用光源24bとを制御し、被検体5内の観察部位側には面順次で励起光と参照光とが照射される。 
 また、治療光用光源24cが発生した治療光は、対向する光路上に配置されたダイクロイックミラー25dに入射し、該ダイクロイックミラー25dにより治療光が選択的に透過し、透過した光路上に配置された光ファイバ17の後端面に入射される。
As shown in FIG. 1, the excitation light generated by the excitation light source 24a is reflected by the mirror 25a disposed on the opposing optical path, and the reflected light from the mirror 25a is dichroic mirror disposed on the opposing optical path. The excitation light is selectively reflected by the selective reflection / transmission characteristics corresponding to the wavelength by 25b, and is incident on the rear end face of the light guide 11 through the condenser lens 25c arranged on the optical path of the reflected light.
Further, the reference light generated by the reference light source 24b is incident on the dichroic mirror 25b disposed on the opposite optical path, and the reference light is selectively transmitted by the dichroic mirror 25b and is disposed on the transmitted optical path. Then, it enters the rear end surface of the light guide 11 through the condenser lens 25c. In this embodiment, since a monochrome imaging device is used, the light source control unit 22, as will be described later, the excitation light source 24 a and the reference light source so as to generate the excitation light and the reference light in a surface sequential manner. The light source 24b is controlled so that the observation light in the subject 5 is irradiated with excitation light and reference light in the surface order.
The therapeutic light generated by the therapeutic light source 24c is incident on the dichroic mirror 25d disposed on the opposite optical path, and the therapeutic light is selectively transmitted by the dichroic mirror 25d and is disposed on the transmitted optical path. It is incident on the rear end face of the optical fiber 17.
 また、ガイド光用光源24dが発生したガイド光は、対向する光路上に配置されたミラー25eにより反射され、該ミラー25eによる反射光は、対向する光路上に配置されたダイクロイックミラー25dにより選択的に反射され、反射光の光路上に配置された光ファイバ17の後端面に入射される。 
 一方、CCD14は、画像処理部21内のCCD駆動回路31が発生するCCD駆動信号の印加により、光電変換した撮像信号を出力する。撮像信号は、画像処理部21内の前処理回路32に入力される。前処理回路32は、内部の相関二重サンプリング回路(CDS回路)により、撮像信号における信号成分を抽出し、さらにA/D変換等してマルチプレクサ33に画像信号として出力する。画像処理部21における前処理回路32は、このようにCCD14から出力される撮像信号から画像信号に変換する前処理を行うと定義しても良いが、CCD14から出力される撮像信号に対する信号処理した撮像信号をマルチプレクサ33に出力すると定義しても良い。両者は、形式的な違いであり、実質的には同じ内容となる。本明細書においては、主に前者の場合に沿って説明する。 
 マルチプレクサ33の出力端は、3つのフレームメモリを備えたメモリ部34と接続されている。メモリ部34を形成する3つのフレームメモリとしての蛍光用メモリ34a、参照光用メモリ34b、ガイド光用メモリ34cがマルチプレクサ33に接続され、マルチプレクサ33は面順次で3つのフレームメモリを切り替える。なお、後述するようにガイド光が照射されない状態においては、マルチプレクサ33は面順次で2つのフレームメモリを切り替える。 
 3つのフレームメモリに格納された画像信号は、表示制御回路35に入力され、表示制御回路35は、蛍光画像、参照光画像、ガイド光画像をそれぞれ異なる色に割り当てて重畳(合成)した観察画像としての重畳画像の画像信号を生成し、モニタ4に出力する。モニタ4は、それぞれ異なる色が割り当てられた蛍光画像、参照光画像、ガイド光画像をカラー表示する。
The guide light generated by the guide light source 24d is reflected by the mirror 25e disposed on the opposing optical path, and the reflected light from the mirror 25e is selectively transmitted by the dichroic mirror 25d disposed on the opposing optical path. And is incident on the rear end face of the optical fiber 17 disposed on the optical path of the reflected light.
On the other hand, the CCD 14 outputs an imaging signal obtained by photoelectric conversion by applying a CCD driving signal generated by the CCD driving circuit 31 in the image processing unit 21. The imaging signal is input to the preprocessing circuit 32 in the image processing unit 21. The preprocessing circuit 32 extracts a signal component in the image pickup signal by an internal correlated double sampling circuit (CDS circuit), and further outputs the image signal to the multiplexer 33 by A / D conversion or the like. The preprocessing circuit 32 in the image processing unit 21 may be defined as performing preprocessing for converting the imaging signal output from the CCD 14 into an image signal in this way, but the signal processing for the imaging signal output from the CCD 14 is performed. It may be defined that the imaging signal is output to the multiplexer 33. Both are formal differences and are substantially the same. In the present specification, description will be made mainly along the former case.
The output terminal of the multiplexer 33 is connected to a memory unit 34 having three frame memories. A fluorescence memory 34a, a reference light memory 34b, and a guide light memory 34c as three frame memories forming the memory unit 34 are connected to the multiplexer 33, and the multiplexer 33 switches the three frame memories in the surface order. As will be described later, in a state where the guide light is not irradiated, the multiplexer 33 switches between the two frame memories in the frame order.
The image signals stored in the three frame memories are input to the display control circuit 35. The display control circuit 35 assigns the fluorescence image, the reference light image, and the guide light image to different colors and superimposes (synthesizes) the observation images. The image signal of the superimposed image is generated and output to the monitor 4. The monitor 4 displays in color the fluorescent image, the reference light image, and the guide light image that are assigned different colors.
 また、画像処理部21は、蛍光用メモリ34aの蛍光画像とガイド光用メモリ34cのガイド光画像との画像信号に対する処理行う蛍光/ガイド光処理回路36を有し、蛍光/ガイド光処理回路36は、蛍光画像の領域(としての蛍光領域)を抽出する蛍光領域抽出回路36aと、抽出された蛍光領域が設定された閾値以上の蛍光輝度(又は信号レベル)Lfを有するか否かを判定する判定回路36bとを有する。 
 判定回路36bは、閾値以上の蛍光輝度Lfを有すると判定した場合には、判定信号を光源制御部22に送り、光源制御部22は、ガイド光用光源24dがガイド光を連続的に発生する(ガイド光ONとなる)ように制御する(図4参照)。 
 また、ガイド光を発生した状態においては、蛍光/ガイド光処理回路36は、ガイド光の画像信号からガイド光の照射位置(ガイド光位置)Pgを抽出(取得)する処理を行うガイド位置抽出回路36cを有し、さらに判定回路36bは、抽出したガイド光の照射位置Pgとデータ入力部23aから手動で入力される(作用光として機能する)治療光の照射位置として設定される(設定位置としての)治療位置Pt又は蛍光画像から画像処理により自動的に設定される治療位置Ptとが一致するか否かの位置判定を行う。
The image processing unit 21 includes a fluorescence / guide light processing circuit 36 that performs processing on image signals of the fluorescence image in the fluorescence memory 34a and the guide light image in the guide light memory 34c. Determines whether or not the fluorescence region extraction circuit 36a that extracts the region of the fluorescence image (as the fluorescence region), and whether or not the extracted fluorescence region has a fluorescence luminance (or signal level) Lf that is equal to or greater than a set threshold value. And a determination circuit 36b.
If the determination circuit 36b determines that the fluorescence luminance Lf is greater than or equal to the threshold, the determination circuit 36b sends a determination signal to the light source control unit 22, and the light source control unit 22 causes the guide light source 24d to continuously generate guide light. Control is performed so that the guide light is turned on (see FIG. 4).
When the guide light is generated, the fluorescence / guide light processing circuit 36 performs a process of extracting (acquiring) the guide light irradiation position (guide light position) Pg from the image signal of the guide light. 36c, and the determination circuit 36b is set as the irradiation position Pg of the extracted guide light and the irradiation position of the treatment light manually input from the data input unit 23a (functioning as action light) (as the setting position) (B) A position determination is made as to whether or not the treatment position Pt or the treatment position Pt automatically set by image processing matches from the fluorescence image.
 また、判定回路36bは、ガイド光の照射位置Pgと治療位置Ptとが一致(Pg=Pt)した場合の一致判定信号を光源制御部22に送り、光源制御部22は、モード選択スイッチSW1により自動モードMaが選択(設定)されている場合には、治療光用光源24cが治療光を発生するように制御する。 
 一方、手動モードMmが選択されている場合には、表示制御回路35を介してモニタ4においてガイド光の照射位置Pgと治療位置Ptとが一致している旨の表示を行い、内視鏡装置1のユーザとしての術者に対して、治療光を照射するのに適した状態であることを表示により告知する。 
 また、画像処理部21は、CCD駆動回路31、前処理回路32,マルチプレクサ33、メモリ部34等の制御を行う制御回路37を有し、この制御回路37は、光源制御部22と信号線で接続され、一方の制御に連動した制御動作を行うことができるようにしている。
Further, the determination circuit 36b sends a coincidence determination signal when the irradiation position Pg of the guide light coincides with the treatment position Pt (Pg = Pt) to the light source control unit 22, and the light source control unit 22 is controlled by the mode selection switch SW1. When the automatic mode Ma is selected (set), the treatment light source 24c is controlled to generate the treatment light.
On the other hand, when the manual mode Mm is selected, the monitor 4 displays on the monitor 4 that the irradiation position Pg of the guide light and the treatment position Pt coincide with each other, and the endoscope apparatus. The operator as one user is notified by a display that it is in a state suitable for irradiating treatment light.
The image processing unit 21 includes a control circuit 37 that controls the CCD drive circuit 31, the preprocessing circuit 32, the multiplexer 33, the memory unit 34, and the like. The control circuit 37 is connected to the light source control unit 22 and a signal line. It is connected so that a control operation linked to one control can be performed.
 例えば、(後述するように)内視鏡装置1が動作状態になった初期状態においては、光源部12は、励起光と参照光とを交互に発生し、治療光やガイド光を発生しない蛍光観察モードで動作する。従ってこの蛍光観察モードで動作する状態においては、制御回路37は、蛍光画像と参照光画像を生成する画像処理を行う。 
 この場合には、制御回路37は、マルチプレクサ33をメモリ部34における2つのフレームメモリとしての蛍光用メモリ34aと、参照光用メモリ34b間で切り替える(蛍光用メモリ34aには蛍光画像を格納し、参照光用メモリ34bには参照光画像を格納する)ように制御する。 
 蛍光観察モードにおいて、病変部位に蛍光物質が集積し、閾値以上の蛍光輝度Lfが検出された場合には、ガイド光を照射して、光ファイバ17の照射位置の確認を行う位置確認モードとなり、この位置確認モードの後に治療光を照射して治療を行う治療観察モードに移る。換言すると、ガイド光を照射する位置確認モードは、蛍光観察モードと治療観察モードとの間の中間モードとも言える。
For example, in an initial state in which the endoscope apparatus 1 is in an operating state (as will be described later), the light source unit 12 generates excitation light and reference light alternately and does not generate treatment light or guide light. Operates in observation mode. Therefore, in a state of operating in this fluorescence observation mode, the control circuit 37 performs image processing for generating a fluorescence image and a reference light image.
In this case, the control circuit 37 switches the multiplexer 33 between the fluorescence memory 34a as the two frame memories in the memory unit 34 and the reference light memory 34b (a fluorescence image is stored in the fluorescence memory 34a, The reference light image is stored in the reference light memory 34b.
In the fluorescence observation mode, when the fluorescent substance is accumulated in the lesion site and the fluorescence luminance Lf is detected to be equal to or higher than the threshold value, the position confirmation mode is performed in which the irradiation position of the optical fiber 17 is confirmed by irradiating the guide light. After this position confirmation mode, a treatment observation mode for performing treatment by irradiating treatment light is entered. In other words, the position confirmation mode in which the guide light is irradiated can be said to be an intermediate mode between the fluorescence observation mode and the treatment observation mode.
 上記ガイド光を照射する位置確認モードになると、光源制御部22は、制御回路37にガイド光を照射(ON)の信号を送り、制御回路37は、蛍光画像と、参照光画像の他にガイド光画像を生成する処理を行うように制御する。 
 この位置確認モードにおいては、制御回路37は、マルチプレクサ33をメモリ部34における3つのフレームメモリとしての蛍光用メモリ34aと、参照光用メモリ34bとガイド光用メモリ34cと間で順次切り替える(蛍光用メモリ34aには蛍光画像、参照光用メモリ34bには参照光画像、ガイド光用メモリ34cにはガイド光画像をそれぞれ格納する)ように制御する。 
 後述するように、蛍光画像と参照光画像には、ガイド光の照射によるガイド光画像が混ざる状態となるため、例えば表示制御回路35は、ガイド光画像が混在(又は混合)した状態の蛍光画像と参照光画像とに対して、混在しない状態で取得又は生成されるガイド光画像を減算して混在しない蛍光画像と参照光画像を生成する。 
 また、この位置確認モードになると、ガイド位置抽出回路36cは、ガイド光の照射位置Pgを抽出し、抽出した位置情報を判定回路36bに送り、判定回路36bは、治療位置Ptと一致するか否かを判定する。そして、一致した場合には、自動モードMaが選択されている場合には、判定回路36bによる一致した判定結果に基づいて光源制御部22は、治療光用光源24cが治療光を発生するように制御する。
In the position confirmation mode in which the guide light is irradiated, the light source control unit 22 sends a guide light irradiation (ON) signal to the control circuit 37, and the control circuit 37 guides in addition to the fluorescence image and the reference light image. Control is performed so as to perform processing for generating an optical image.
In this position confirmation mode, the control circuit 37 sequentially switches the multiplexer 33 between the fluorescence memory 34a as the three frame memories in the memory unit 34, the reference light memory 34b, and the guide light memory 34c (for fluorescence). The memory 34a stores the fluorescent image, the reference light memory 34b stores the reference light image, and the guide light memory 34c stores the guide light image.
As will be described later, since the fluorescent light image and the reference light image are mixed with the guide light image by irradiation of the guide light, the display control circuit 35, for example, displays the fluorescent image in a state where the guide light image is mixed (or mixed). The reference light image and the reference light image are subtracted from the guide light image acquired or generated in a non-mixed state to generate a non-mixed fluorescent image and a reference light image.
In this position confirmation mode, the guide position extraction circuit 36c extracts the irradiation position Pg of the guide light, sends the extracted position information to the determination circuit 36b, and the determination circuit 36b determines whether or not it matches the treatment position Pt. Determine whether. If the automatic mode Ma is selected, the light source control unit 22 causes the treatment light source 24c to generate the treatment light based on the coincidence determination result by the determination circuit 36b. Control.
 一方、手動モードMmが選択されている場合には、判定回路36bによる一致した判定結果に基づいて表示制御回路35は、一致した旨の表示をモニタ4で行うように制御し、術者が治療光用光源24cから治療光を発生し治療を行うに適した状態であることを告知する。術者は、手動モードMmにおいても、このような表示が行われるため、治療光を照射するタイミングを適切に行うことが容易にできる。 
 また、治療光を照射する状態になった状態においても、判定回路36bは、ガイド位置抽出回路36cによるガイド光の照射位置Pgが治療位置Ptの近傍に存在しているか否かを判定し、治療位置Ptの近傍領域R(図8B参照)として設定された領域の外側にずれた場合には光源制御部22を介して治療光の発生(照射)を停止する。具体的には、判定回路36bは、ガイド光の照射位置Pgが治療位置Ptの近傍に存在していないと判定した場合には、判定結果の判定信号を光源制御部22に送り、光源制御部22は、治療光光源24cに対して治療光の発生(照射)を停止するように制御する。 
 また、蛍光/ガイド光処理回路36は、蛍光画像(信号)が治療を要する高輝度領域Rfhを有するか否かを判定回路36bが判定する場合に用いる閾値Vth等のデータを格納するメモリ36dを有する。 
 なお、本実施形態においては、図4において説明するように異なる第1及び第2のタイミング(図4では異なるフレーム期間)において励起光と参照光を照射し、また第3のタイミングにおいて両光を消灯し、ガイド光を照射するように光源制御部22が制御する。また、光源制御部22は、第3のタイミングにおいてガイド光を照射した場合には該ガイド光を連続的に照射するように制御する。
On the other hand, when the manual mode Mm is selected, the display control circuit 35 controls to display on the monitor 4 that the matching is performed based on the matching determination result by the determination circuit 36b, and the operator treats the treatment. A treatment light is generated from the light source 24c to notify that it is in a state suitable for treatment. Since the display is performed even in the manual mode Mm, the surgeon can easily perform the timing of irradiating treatment light appropriately.
Even in the state where the treatment light is irradiated, the determination circuit 36b determines whether the irradiation position Pg of the guide light by the guide position extraction circuit 36c exists in the vicinity of the treatment position Pt, and the treatment is performed. When it shifts outside the region set as the vicinity region R (see FIG. 8B) of the position Pt, the generation (irradiation) of the treatment light is stopped via the light source control unit 22. Specifically, when the determination circuit 36b determines that the irradiation position Pg of the guide light does not exist in the vicinity of the treatment position Pt, the determination circuit 36b sends a determination signal of the determination result to the light source control unit 22, and the light source control unit 22 controls the treatment light source 24c to stop the generation (irradiation) of treatment light.
Further, the fluorescence / guide light processing circuit 36 has a memory 36d for storing data such as a threshold value Vth used when the determination circuit 36b determines whether or not the fluorescent image (signal) has a high luminance region Rfh requiring treatment. Have.
In this embodiment, as described in FIG. 4, the excitation light and the reference light are irradiated at different first and second timings (different frame periods in FIG. 4), and both lights are emitted at the third timing. The light source control unit 22 controls to turn off and emit the guide light. Further, the light source control unit 22 performs control so that the guide light is continuously irradiated when the guide light is irradiated at the third timing.
 このように、ガイド光を連続的に照射するため、ガイド光を照射した第3のタイミング以降において周期的に第1又は第2のタイミングになった場合においても励起光とガイド光、参照光とガイド光とがそれぞれ同時に照射される状態になる。また、ガイド光が照射された状態においては、作用光の機能を持つ治療光を照射するに適したタイミングにおいては(画像処理の結果に基づいて自動的に、又は術者による手動の操作により)、治療光を連続的に照射するように光源制御部22が制御する。 
 また、モノクロのCCD14を用いた場合においては、該CCD14は、上記のように励起光、参照光、ガイド光が照射される状態、またはさらに治療光が照射された状態においては、(第1のタイミングにおける励起光の照射により)被検体5における観察部位側から発せられる蛍光と、ガイド光の連続照射によるガイド光とに対応した第1の撮像信号を画像処理部21に出力する。 
 また、CCD14は、(第2のタイミングにおける参照光の照射により)被検体5における観察部位側から発せられる参照光と、ガイド光の連続照射によるガイド光とに対応した第2の撮像信号を画像処理部21に出力する。また、CCD14は、第3のタイミングにおけるガイド光、又はガイド光と治療光のみが照射された期間においては、ガイド光とに対応した第3の撮像信号を画像処理部21に出力する。 
 第3の撮像信号は、ガイド光のみを含む撮像信号となり、ガイド光と蛍光とを含む第1の撮像信号、ガイド光と参照光とを含む第2の撮像信号は、画像処理部21に入力され、画像処理部21は、減算の画像処理により、蛍光画像、参照光画像、ガイド光画像の画像信号を生成する。
As described above, since the guide light is continuously irradiated, the excitation light, the guide light, and the reference light are also generated even when the first or second timing is periodically reached after the third timing when the guide light is irradiated. The guide light is irradiated at the same time. Further, in the state where the guide light is irradiated, at a timing suitable for irradiating the therapeutic light having the function of action light (automatically based on the result of image processing or manually by the operator) The light source controller 22 controls the treatment light so as to be continuously emitted.
In the case where a monochrome CCD 14 is used, the CCD 14 is in the state where the excitation light, the reference light, the guide light is irradiated as described above, or in the state where the treatment light is further irradiated (the first The first imaging signal corresponding to the fluorescence emitted from the observation site side of the subject 5 and the guide light by the continuous irradiation of the guide light (by the excitation light irradiation at the timing) is output to the image processing unit 21.
Further, the CCD 14 images the second imaging signal corresponding to the reference light emitted from the observation site side of the subject 5 and the guide light by the continuous irradiation of the guide light (by irradiation of the reference light at the second timing). The data is output to the processing unit 21. Further, the CCD 14 outputs a third imaging signal corresponding to the guide light to the image processing unit 21 during the period in which only the guide light or the guide light and the treatment light are irradiated at the third timing.
The third imaging signal is an imaging signal including only guide light, and the first imaging signal including guide light and fluorescence and the second imaging signal including guide light and reference light are input to the image processing unit 21. Then, the image processing unit 21 generates image signals of the fluorescence image, the reference light image, and the guide light image by subtraction image processing.
 本実施形態の内視鏡装置1は、病変部位に集積し、かつ励起波長の光が照射されることで蛍光を発し、かつ前記励起波長の光が照射されることで生体組織に対して特定の作用をする蛍光物質が投与された被検体5に対して、前記励起波長を有し前記蛍光を発生させるための励起光を照射する励起光用光源部を形成する励起光用光源24aと、前記励起波長とは異なる波長であり、前記被検体5の形態情報を取得するための参照光を照射する参照光用光源部を形成する参照光用光源24bと、前記被検体5に対して前記励起光用光源部及び参照光用光源部からの光が照射される領域のうちの所定の領域に対して、前記被検体5に投与された前記蛍光物質が前記特定の作用をさせるために収束された前記励起波長を有する作用光としての治療光を照射する作用光用光源部を形成する治療光用光源24cと、(前記作用光が照射される)前記所定の領域に対して、前記励起波長とは異なる波長のガイド光を照射するガイド光用光源部を形成するガイド光用光源24dと、前記被検体5からの光を受けて撮像信号を生成する撮像部を形成するCCD14と、前記撮像部と前記被検体5との間に設けられ、前記励起波長の光をカットする励起光カットフィルタ15と、前記励起光用光源部、前記参照光用光源部、及び前記ガイド光用光源部からの光が照射された前記被検体5を前記撮像部による撮像により生成される前記撮像信号から、前記励起光が照射された前記被検体5から発生する前記蛍光の位置を表す蛍光情報と、前記参照光が照射された前記被検体5の形態情報と、前記被検体5における前記作用光の照射位置となるガイド光の照射位置Pgを表すガイド光情報とを生成する情報生成部を形成する画像処理部21と、前記情報生成部において生成された前記被検体5の形態情報に対して前記蛍光の発生位置と前記ガイド光の照射位置とを反映させた観察画像を生成する画像生成部を形成する表示制御回路35と、を有することを特徴とする。 The endoscope apparatus 1 according to the present embodiment accumulates in a lesion site, emits fluorescence when irradiated with light having an excitation wavelength, and is specified for a living tissue when irradiated with light having the excitation wavelength. An excitation light source 24a that forms an excitation light source unit that irradiates the subject 5 to which the fluorescent substance acting as described above is administered with the excitation light that has the excitation wavelength and generates the fluorescence; A reference light source 24b that forms a reference light source unit that irradiates a reference light for irradiating the reference light for acquiring the morphological information of the subject 5, and a wavelength different from the excitation wavelength; The fluorescent substance administered to the subject 5 converges to perform the specific action on a predetermined region among the regions irradiated with light from the excitation light source unit and the reference light source unit. Treatment light as working light having the excited wavelength A treatment light source 24c that forms a light source for working light to be irradiated, and guide light for irradiating guide light having a wavelength different from the excitation wavelength to the predetermined region (irradiated with the working light) A guide light source 24d that forms a light source unit, a CCD 14 that forms an imaging unit that receives light from the subject 5 and generates an imaging signal, and is provided between the imaging unit and the subject 5. Imaging the subject 5 irradiated with light from the excitation light cut filter 15 that cuts off the light having the excitation wavelength, the excitation light source unit, the reference light source unit, and the guide light source unit Fluorescence information indicating the position of the fluorescence generated from the subject 5 irradiated with the excitation light from the imaging signal generated by imaging by the unit, and configuration information of the subject 5 irradiated with the reference light And the subject 5 An image processing unit 21 that forms an information generation unit that generates guide light information indicating the irradiation position Pg of the guide light, which is the irradiation position of the working light, and the form of the subject 5 generated by the information generation unit And a display control circuit 35 that forms an image generation unit that generates an observation image reflecting the fluorescence generation position and the guide light irradiation position with respect to information.
 なお、上記情報生成部を形成する画像処理部21は、前記蛍光の位置を表す蛍光情報と、前記被検体5におけるガイド光の照射位置Pgを表すガイド光情報とを生成する蛍光/ガイド光処理回路36を含む。 
 次に図3を参照して本実施形態の動作を説明する。図3は、本実施形態の代表的な処理手順のフローチャートを示す。本実施形態においては、予め、被検体5には、PITの治療法に対応した蛍光物質が投与される。蛍光物質が投与された後、蛍光物質が病変部位に集積する程度の時間経過後において、内視鏡装置1により、被検体5内の患部等の観察部位を観察する。 
 図3における最初のステップS1においては、光源部12は、図4に示すように励起光と参照光とを面順次で発生し、励起光と参照光はライトガイド11により伝送され、ライトガイド11の先端面から励起光と参照光とが拡開して観察部位側に照射される。 
 図4において、Tは1フレーム期間を示し、例えば励起光を第1のタイミングとなる1フレーム期間T照射し、その1フレーム期間Tの励起光の照射により被検体5に投与された蛍光物質から発せられる蛍光像をCCD14により取得(撮像)する。また、励起光が消灯(OFF)となる第2のタイミングにおける次の1フレーム期間Tにおいては、該1フレーム期間Tよりも短い照明期間Tr、参照光を照射する。このように1フレーム期間Tよりも短い照明期間Trのみ参照光を照射することにより、蛍光で撮像した場合の蛍光像の輝度レベルと参照光の照射により取得した参照光像の輝度レベルとを適度のレベルに揃えることができる。 
 なお、参照光も1フレーム期間T、照明し、CCD14による電子シャッタにより、実質的に照明期間を短くした場合と同等の参照光による参照光像を撮像するようにしても良い。
The image processing unit 21 forming the information generation unit generates fluorescence information indicating the fluorescence position and fluorescence / guide light processing that generates guide light information indicating the irradiation position Pg of the guide light on the subject 5. A circuit 36 is included.
Next, the operation of this embodiment will be described with reference to FIG. FIG. 3 shows a flowchart of a typical processing procedure of the present embodiment. In the present embodiment, a fluorescent substance corresponding to a treatment method for PIT is administered to the subject 5 in advance. After the administration of the fluorescent substance, an observation site such as an affected part in the subject 5 is observed by the endoscope device 1 after a lapse of time to the extent that the fluorescent substance accumulates at the lesion site.
In the first step S1 in FIG. 3, the light source unit 12 generates excitation light and reference light in the order of frames as shown in FIG. 4, and the excitation light and reference light are transmitted by the light guide 11. Excitation light and reference light are spread from the front end surface of the light and irradiated to the observation site side.
In FIG. 4, T represents one frame period. For example, excitation light is irradiated for one frame period T as a first timing, and from the fluorescent substance administered to the subject 5 by irradiation of the excitation light in the one frame period T. The emitted fluorescent image is acquired (captured) by the CCD 14. Further, in the next one frame period T at the second timing when the excitation light is turned off (OFF), the illumination period Tr and reference light shorter than the one frame period T are irradiated. In this way, by irradiating the reference light only for the illumination period Tr shorter than one frame period T, the luminance level of the fluorescent image in the case of imaging with fluorescence and the luminance level of the reference light image acquired by irradiation of the reference light are moderately adjusted. Can be aligned to any level.
Note that the reference light may also be illuminated for one frame period T, and a reference light image with reference light equivalent to the case where the illumination period is substantially shortened may be captured by the electronic shutter by the CCD 14.
 上記のように(撮像部を形成する)CCD14は、励起光の照射時において観察部位側から発せられる蛍光像と、参照光の照射時において観察部位側で反射された参照光像と、を面順次で撮像し、面順次で撮像した蛍光撮像信号と参照光撮像信号とを画像処理部21に出力し、画像処理部21は、前処理回路32において、蛍光撮像信号と参照光撮像信号とを蛍光画像信号と参照光画像信号に変換する処理を行う。つまり、図3におけるステップS2に示すように画像処理部21(の前処理回路32)は、蛍光画像(信号)と参照光画像(信号)を生成する。 
 蛍光画像信号と参照光画像信号は、それぞれ蛍光用メモリ34aと参照光用メモリ34bに格納される。なお、蛍光用メモリ34aと参照光用メモリ34bは、モニタ4に画像をカラー表示する場合のRチャンネル用画像メモリとBチャンネル用画像メモリとして機能する。但し、さらにガイド光が照射された場合には、2つの画像を混合した状態で格納する場合が発生する。 
 図5Aと図5Bは、CCD14により撮像され、生成された蛍光画像Ifと参照光画像Irを示す。
As described above, the CCD 14 (which forms the imaging unit) displays a fluorescent image emitted from the observation site side during excitation light irradiation and a reference light image reflected from the observation site side during reference light irradiation. The fluorescent imaging signal and the reference light imaging signal that are sequentially imaged and output in the surface sequential order are output to the image processing unit 21, and the image processing unit 21 outputs the fluorescent imaging signal and the reference light imaging signal in the preprocessing circuit 32. A process of converting into a fluorescence image signal and a reference light image signal is performed. That is, as shown in step S <b> 2 in FIG. 3, the image processing unit 21 (preprocessing circuit 32 thereof) generates a fluorescence image (signal) and a reference light image (signal).
The fluorescence image signal and the reference light image signal are stored in the fluorescence memory 34a and the reference light memory 34b, respectively. The fluorescence memory 34a and the reference light memory 34b function as an R channel image memory and a B channel image memory when an image is displayed in color on the monitor 4. However, when the guide light is further irradiated, there is a case where the two images are stored in a mixed state.
5A and 5B show a fluorescence image If and a reference light image Ir that are captured and generated by the CCD 14.
 蛍光用メモリ34aと参照光用メモリ34bに格納された蛍光画像信号と参照光画像信号とは同時に読み出され、表示制御回路35は蛍光画像信号をモニタ4のRチャンネルに出力し、参照光画像信号をモニタ4のBチャンネルに出力するように蛍光画像と参照光画像とを重畳した重畳画像の画像信号をモニタ4に出力する。 
 図3におけるステップS3に示すようにモニタ4は、図5Cに示すように蛍光画像Ifと参照光画像Irとをそれぞれ異なる色に割り当てて重畳(合成)した重畳画像を表示する。図5Cにおいて表示される重畳画像においては、蛍光画像If部分は赤色で、参照光画像Ir部分は青色で表示される。 
 また、術者は、ステップS4に示すように入力部23のモード選択スイッチSW1)の操作により、自動モードMaと手動モードMmとの設定を行う。 
 また、ステップS5に示すように術者は、モニタ4に表示される重畳画像における蛍光画像を参照して、入力部23のデータ入力部23aから治療位置Ptを手動により指定する。手動による指定を行わないで後述するように画像処理によりガイド光画像から治療位置Ptを自動で設定(又は検出)するようにしても良い。蛍光/ガイド光処理回路36は、入力部23から設定されたモードの情報と、手動により指定された治療位置Ptの情報(自動モードMa場合には、この情報は入力されない)を蛍光/ガイド光処理回路36内のメモリ36dに格納する。
The fluorescence image signal and the reference light image signal stored in the fluorescence memory 34a and the reference light memory 34b are read out simultaneously, and the display control circuit 35 outputs the fluorescence image signal to the R channel of the monitor 4, and the reference light image. An image signal of a superimposed image obtained by superimposing the fluorescence image and the reference light image is output to the monitor 4 so that the signal is output to the B channel of the monitor 4.
As shown in step S3 in FIG. 3, the monitor 4 displays a superimposed image in which the fluorescent image If and the reference light image Ir are assigned to different colors and superimposed (combined) as shown in FIG. 5C. In the superimposed image displayed in FIG. 5C, the fluorescent image If portion is displayed in red, and the reference light image Ir portion is displayed in blue.
Further, the operator sets the automatic mode Ma and the manual mode Mm by operating the mode selection switch SW1) of the input unit 23 as shown in step S4.
In addition, as shown in step S <b> 5, the surgeon manually designates the treatment position Pt from the data input unit 23 a of the input unit 23 with reference to the fluorescence image in the superimposed image displayed on the monitor 4. As described later, the treatment position Pt may be automatically set (or detected) from the guide light image by image processing without performing manual designation. The fluorescence / guide light processing circuit 36 uses the fluorescence / guide light to transmit the mode information set from the input unit 23 and the information on the manually designated treatment position Pt (this information is not input in the automatic mode Ma). The data is stored in the memory 36d in the processing circuit 36.
 次のステップS6において蛍光/ガイド光処理回路36内の蛍光領域抽出回路36aは、蛍光用メモリ34aに格納された蛍光画像(信号)から0レベルより大きい輝度レベル(又は0より大きく設定された所定の閾値以上)の蛍光画像の領域Rfを抽出する。蛍光領域抽出回路36aは、抽出した蛍光画像の領域Rfの蛍光画像(信号)を判定回路36bに送る。 
 蛍光領域抽出回路36aは、手動により治療位置Ptが指定されない場合には、蛍光画像の領域Rfを抽出する機能の他に、抽出した蛍光画像の領域Rfから閾値Vth以上の蛍光画像における高輝度領域Rfhの有無を判定し、さらに高輝度領域Rfhの輝度重心の位置等を治療位置Ptとして設定する機能を有する。つまり、本実施形態においては、手動により治療位置Ptを指定したり、画像処理により治療位置Ptを設定することもできる。 
 また、次のステップS7において判定回路36bは、蛍光画像(信号)が治療を要する閾値Vth以上の高輝度領域Rfh(図3ではVth以上の領域Rfhと略記)を有するか否かを、予め設定された閾値Vthと比較することにより判定する。なお、閾値Vthは、治療を要する病変部位において蛍光物質が集積した場合の蛍光輝度から予め設定される。また、この閾値Vthは、データ入力部23aから例えばメモリ36dに格納される。
In the next step S6, the fluorescence region extraction circuit 36a in the fluorescence / guide light processing circuit 36 has a brightness level greater than 0 level (or a predetermined value set greater than 0) from the fluorescence image (signal) stored in the fluorescence memory 34a. The region Rf of the fluorescence image that is equal to or greater than the threshold value is extracted. The fluorescence region extraction circuit 36a sends the fluorescence image (signal) of the extracted region Rf of the fluorescence image to the determination circuit 36b.
When the treatment position Pt is not manually specified, the fluorescence region extraction circuit 36a has a function of extracting the region Rf of the fluorescence image, and a high brightness region in the fluorescence image that is equal to or greater than the threshold Vth from the region Rf of the extracted fluorescence image. It has the function of determining the presence or absence of Rfh and further setting the position of the luminance center of gravity of the high luminance region Rfh as the treatment position Pt. That is, in the present embodiment, the treatment position Pt can be designated manually or the treatment position Pt can be set by image processing.
In the next step S7, the determination circuit 36b sets in advance whether or not the fluorescent image (signal) has a high luminance region Rfh (abbreviated as region Rfh above Vth in FIG. 3) that is equal to or higher than a threshold Vth that requires treatment. It is determined by comparing with the threshold value Vth. Note that the threshold value Vth is set in advance from the fluorescence luminance when the fluorescent substance is accumulated at the lesion site requiring treatment. The threshold value Vth is stored in the memory 36d from the data input unit 23a, for example.
 ステップS7により、閾値Vth以上の高輝度領域Rfhが検出されない場合には、ステップS6の処理に戻り、閾値Vth以上の高輝度領域Rfhが検出された場合には、ステップS8の処理に移る。 
 ステップS8において判定回路36bは、判定結果を光源制御部22に送り、光源制御部22はガイド光用光源24dがガイド光を連続して発生するように制御する。図4は、ガイド光用光源24dが、ガイド光を時間tg以降、連続して発生する様子を示す。光ファイバ17は、ガイド光を伝送し、光ファイバ17の先端面からガイド光を観察部位側に出射する。
If the high brightness area Rfh equal to or higher than the threshold value Vth is not detected in step S7, the process returns to step S6. If the high brightness area Rfh equal to or higher than the threshold value Vth is detected, the process proceeds to step S8.
In step S8, the determination circuit 36b sends the determination result to the light source control unit 22, and the light source control unit 22 controls the guide light source 24d to continuously generate the guide light. FIG. 4 shows how the guide light source 24d continuously generates guide light after time tg. The optical fiber 17 transmits guide light and emits the guide light from the distal end surface of the optical fiber 17 toward the observation site.
 光ファイバ17は、該光ファイバ17に入射されたガイド光を、(図1に示すように)先端面から光束が広がらないで収束させた状態で観察部位側に連続して出射する。なお、ガイド光を照射する状態になった後において、判定回路36bにより閾値Vth以上の高輝度領域Rfhが検出されなくなったと判定した場合には、その判定信号を光源制御部22に送り、光源制御部22がガイド光用光源24dに対してガイド光の発生を停止させるように制御しても良い。この場合には、光源制御部22は、治療光の発生も停止させるように制御する。 
 上記のようにガイド光を連続的に出射する場合、光源制御部22は、図4に示すように励起光と参照光とを交互で発生させた状態からガイド光のみを発生(照射)する第3のタイミングとなる照射期間となるフレーム期間を生成するように発光の制御を行う。 
 なお、本実施形態においては、閾値Vth以上の高輝度領域Rfhが検出された場合には、手動モードMmにおいてもステップS8においてガイド光を照射するようにしているが、手動モードMmの場合には、閾値Vth以上の高輝度領域Rfhが検出された旨をモニタ4において表示し、術者が入力部23からガイド光の照射を行う操作を促すような構成にしても良い。
The optical fiber 17 continuously emits the guide light incident on the optical fiber 17 toward the observation site in a state where the light beam is converged without spreading from the tip surface (as shown in FIG. 1). When the determination circuit 36b determines that the high brightness area Rfh equal to or higher than the threshold Vth is no longer detected after the guide light is irradiated, the determination signal is sent to the light source control unit 22 to control the light source. The unit 22 may control the guide light source 24d to stop generating the guide light. In this case, the light source control unit 22 controls to stop the generation of the treatment light.
When the guide light is continuously emitted as described above, the light source control unit 22 generates (irradiates) only the guide light from the state where the excitation light and the reference light are alternately generated as shown in FIG. The light emission is controlled so as to generate a frame period that is an irradiation period corresponding to timing 3.
In the present embodiment, when the high brightness area Rfh equal to or higher than the threshold value Vth is detected, the guide light is emitted in step S8 even in the manual mode Mm. However, in the manual mode Mm, The monitor 4 may display that the high-luminance region Rfh equal to or higher than the threshold value Vth has been detected, and the operator may be prompted to perform an operation of emitting guide light from the input unit 23.
 光源制御部22は、ガイド光を連続して発生させた信号を画像処理部21の制御回路37に送り、制御回路37は、ガイド光のみが照射された状態で撮像したガイド光画像を、マルチプレクサ33を介してガイド光用メモリ34cに格納する。図6Aは、ガイド光用メモリ34cに格納されるガイド光画像Igを示す。 
 ガイド光用メモリ34cは、モニタ4がカラー画像を表示する場合におけるR,G,BチャンネルにおけるGチャンネルに出力する画像メモリの機能を持つ。 
 なお、図6Aに示すガイド光画像Igにおいては、例えば中心側の円が、治療光が伝送されて光ファイバ17の先端から照射される部分(ガイド光画像では例えば黒色(信号レベルが0)となる)を示し、この円の外側の円環がガイド光部分となり、緑色の画素値が高い部分として検出される。図6Aの場合においては円環の中心が治療光の照射位置となる。図6Aにおける治療光を伝送する部分を共通にして、ガイド光も伝送するようにしても良い。 
 ガイド光が連続照射された場合には、蛍光用メモリ34aに格納される画像は、図6Bに示すように蛍光画像Ifとガイド光画像Igとが混在した画像If+Igとなり、また参照光用メモリ34bに格納される画像は、図6Cに示すように参照光画像Irとガイド光画像Igとが混在した画像Ir+Igとなる。
The light source control unit 22 sends a signal generated by continuously generating guide light to the control circuit 37 of the image processing unit 21, and the control circuit 37 multiplexes the guide light image captured in a state where only the guide light is irradiated. The light is stored in the guide light memory 34 c via the line 33. FIG. 6A shows a guide light image Ig stored in the guide light memory 34c.
The guide light memory 34c has a function of an image memory that outputs to the G channel in the R, G, and B channels when the monitor 4 displays a color image.
In the guide light image Ig shown in FIG. 6A, for example, a circle on the center side is a portion where therapeutic light is transmitted and irradiated from the tip of the optical fiber 17 (in the guide light image, for example, black (the signal level is 0)). The circular ring outside the circle is a guide light portion, and is detected as a portion having a high green pixel value. In the case of FIG. 6A, the center of the ring is the treatment light irradiation position. The portion for transmitting the treatment light in FIG. 6A may be shared, and the guide light may be transmitted.
When the guide light is continuously irradiated, the image stored in the fluorescence memory 34a is an image If + Ig in which the fluorescence image If and the guide light image Ig are mixed as shown in FIG. 6B, and the reference light memory 34b. The image stored in is an image Ir + Ig in which the reference light image Ir and the guide light image Ig are mixed as shown in FIG. 6C.
 (図3に示す)次のステップS9において表示制御回路35は、図7に示すように減算処理を行い、蛍光画像If、参照光画像Ir、ガイド光画像Igをそれぞれ異なる色信号として生成し、それぞれ異なる色信号をモニタ4のR,B,Gチャンネルに出力する。 
 図7に示すように表示制御回路35内の減算処理回路35aは、蛍光用メモリ34aに格納された1フレーム期間Tにおいて(同時に)取得された蛍光画像Ifとガイド光画像Igから、隣接する1フレーム期間Tにおいて取得され、ガイド光用メモリ34cに格納されたガイド光画像Igを減算する処理を行うことにより、蛍光画像を抽出し、モニタ4のRチャンネルに出力する。 
 また、表示制御回路35の減算処理回路35bは、参照光用メモリ34bに格納された1フレーム期間Tにおいて(同時に)取得された参照光画像Irとガイド光画像Igから、隣接する1フレーム期間Tにおいて取得され、ガイド光用メモリ34cに格納されたガイド光画像Igを減算する処理を行い、参照光画像Irを抽出し、モニタ4のBチャンネルに出力する。また、表示制御回路35は、ガイド光用メモリ34cに格納されたガイド光画像Igを、モニタ4のGチャンネルに出力する。
In the next step S9 (shown in FIG. 3), the display control circuit 35 performs a subtraction process as shown in FIG. 7 to generate the fluorescence image If, the reference light image Ir, and the guide light image Ig as different color signals, Different color signals are output to the R, B, and G channels of the monitor 4, respectively.
As shown in FIG. 7, the subtraction processing circuit 35a in the display control circuit 35 is connected to the adjacent one from the fluorescence image If and the guide light image Ig acquired (simultaneously) in one frame period T stored in the fluorescence memory 34a. A fluorescence image is extracted by performing a process of subtracting the guide light image Ig acquired in the frame period T and stored in the guide light memory 34 c, and is output to the R channel of the monitor 4.
In addition, the subtraction processing circuit 35b of the display control circuit 35 uses the adjacent one frame period T from the reference light image Ir and the guide light image Ig acquired (simultaneously) in the one frame period T stored in the reference light memory 34b. The guide light image Ig acquired in step S1 and stored in the guide light memory 34c is subtracted to extract the reference light image Ir and output it to the B channel of the monitor 4. In addition, the display control circuit 35 outputs the guide light image Ig stored in the guide light memory 34 c to the G channel of the monitor 4.
 なお、CCD14により撮像され、モニタ4に表示される画像の明るさを電子シャッタにより診断し易い明るさに調整するような場合においては、上述した減算処理を以下のように電子シャッタによる撮像期間(電子シャッタ値と呼ぶ)を考慮した処理を行うようにしても良い。つまり、減算処理回路35aは、減算処理の前に同時に取得された蛍光画像Ifとガイド光画像Ig(図7において減算処理回路35aに入力されるIf+Ig)、及び 隣接するフレーム期間に単独で取得されたガイド光画像Igの輝度値を補正する処理を実施してもよい。具体的には、各フレーム期間の輝度レベルをCCD14の電子シャッタにより調整した場合、蛍光画像Ifとガイド光画像Igを同時に取得するフレーム期間の電子シャッタ値に対する隣接するフレーム期間において単独で取得されるガイド光画像Igの電子シャッタ値を定数αとすると、減算処理回路35aは減算処理の前に隣接するフレーム期間におけるガイド光画像Igの各画素の輝度値を1/αに補正する処理を実施する。そして、補正する処理を実施した後、減算を行う。このように減算前のガイド光画像の明るさを調整することで、電子シャッタを利用した場合に対して、より高精度に蛍光画像Ifを抽出することができる。 
 また、減算処理回路35bは、上記の減算処理回路35aにおいての説明と同様に、減算処理の前に同時に取得された参照光画像Irとガイド光画像Ig(図7において減算処理回路35bに入力されるIr+Ig)、及び 隣接フレーム期間において単独で取得されたガイド光画像Igの輝度値を輝度レベルの調整値(たとえばCCD14による電子シャッタ値)に基づいて補正する処理を実施すれば良い。
In the case where the brightness of the image captured by the CCD 14 and displayed on the monitor 4 is adjusted to a brightness that can be easily diagnosed by the electronic shutter, the subtraction process described above is performed in the imaging period ( Processing that considers the electronic shutter value) may be performed. That is, the subtraction processing circuit 35a is independently acquired in the fluorescence image If and the guide light image Ig (If + Ig input to the subtraction processing circuit 35a in FIG. 7) acquired simultaneously before the subtraction processing, and in the adjacent frame period. Further, a process of correcting the luminance value of the guide light image Ig may be performed. Specifically, when the luminance level of each frame period is adjusted by the electronic shutter of the CCD 14, it is acquired independently in the adjacent frame period with respect to the electronic shutter value of the frame period in which the fluorescent image If and the guide light image Ig are acquired simultaneously. When the electronic shutter value of the guide light image Ig is a constant α, the subtraction processing circuit 35a performs a process of correcting the luminance value of each pixel of the guide light image Ig in the adjacent frame period to 1 / α before the subtraction process. . Then, after performing the correction process, subtraction is performed. Thus, by adjusting the brightness of the guide light image before subtraction, the fluorescence image If can be extracted with higher accuracy than when the electronic shutter is used.
Similarly to the description of the subtraction processing circuit 35a, the subtraction processing circuit 35b receives the reference light image Ir and the guide light image Ig acquired simultaneously before the subtraction processing (input to the subtraction processing circuit 35b in FIG. 7). Ir + Ig) and the luminance value of the guide light image Ig acquired independently in the adjacent frame period may be corrected based on the adjustment value of the luminance level (for example, the electronic shutter value by the CCD 14).
 モニタ4は、図6Dに示すように3つの画像がそれぞれ異なる色に割り当てた状態で重畳(合成)した画像If+Ir+Igとしてカラー表示する。より具体的に示すと、この画像If+Ir+Igは、画像If(R)+Ir(B)+Ig(G)となる。ここで、Ii(J)は、画像Ii(i=f,r,g)がJ(J=R,B,G)色で表示されることを表す。 
 術者は、図6Dの画像If+Ir+Igを観察することにより、蛍光画像If(R)から(換言すると、病変部位に集積し蛍光物質が発生する蛍光画像から)病変の程度を確認でき、ガイド光画像の位置から治療光を照射する位置を確認することができると共に、ガイド光画像Ig(G)の位置を蛍光画像における病変部位の位置に設定する操作が行い易くなる。 
 次のステップS10において蛍光/ガイド光処理回路36内のガイド位置抽出回路36cは、ガイド光用メモリ34cに格納されたガイド光画像から当該ガイド光画像の中心位置をガイド光の照射位置Pgとして抽出し、判定回路36bに送る。 
 次のステップS11において判定回路36bは、ガイド光の照射位置Pgと治療位置Ptとが一致するか否かの判定を行う。 
 図8Aと図8Bは判定回路36bによる判定の動作の説明図を示す。図5Aに示す蛍光画像Ifの状態と、例えば図6Aに示すガイド光画像Igの状態においては、蛍光画像Ifに対して手動又は画像処理で設定される治療位置Ptとガイド光の照射位置Pgとは異なる。図8Aは、このように蛍光画像Ifから設定される治療位置Pt(Xf,Yf)とガイド光の照射位置Pg(Xg,Yg)とが異なる状態を示す。なお、Pt(Xf,Yf)、Pg(Xg,Yg)は、蛍光画像If、ガイド光画像Igにおける治療位置Pt,照射位置PgにおけるXY座標系(X,Y)上の2次元位置を表す。また、図8A、図8Bにおける斜線は、信号レベル(画素値)が殆ど0となる暗い画像部分を示している。
As shown in FIG. 6D, the monitor 4 displays a color image as an image If + Ir + Ig superimposed (synthesized) in a state where the three images are assigned to different colors. More specifically, the image If + Ir + Ig is an image If (R) + Ir (B) + Ig (G). Here, Ii (J) represents that the image Ii (i = f, r, g) is displayed in J (J = R, B, G) color.
By observing the image If + Ir + Ig in FIG. 6D, the operator can confirm the extent of the lesion from the fluorescence image If (R) (in other words, from the fluorescence image in which the fluorescent substance is generated at the lesion site), and the guide light image From this position, it is possible to confirm the position where the treatment light is irradiated, and it is easy to perform an operation of setting the position of the guide light image Ig (G) to the position of the lesion site in the fluorescence image.
In the next step S10, the guide position extraction circuit 36c in the fluorescence / guide light processing circuit 36 extracts the center position of the guide light image from the guide light image stored in the guide light memory 34c as the guide light irradiation position Pg. And sent to the determination circuit 36b.
In the next step S11, the determination circuit 36b determines whether or not the irradiation position Pg of the guide light matches the treatment position Pt.
8A and 8B are explanatory diagrams of the determination operation by the determination circuit 36b. In the state of the fluorescence image If shown in FIG. 5A and the state of the guide light image Ig shown in FIG. 6A, for example, the treatment position Pt and the irradiation position Pg of the guide light set manually or by image processing with respect to the fluorescence image If Is different. FIG. 8A shows a state where the treatment position Pt (Xf, Yf) set from the fluorescence image If and the irradiation position Pg (Xg, Yg) of the guide light are different. Pt (Xf, Yf) and Pg (Xg, Yg) represent two-dimensional positions on the XY coordinate system (X, Y) at the treatment position Pt and the irradiation position Pg in the fluorescence image If and the guide light image Ig. 8A and 8B indicate a dark image portion where the signal level (pixel value) is almost zero.
 これに対して、術者が図8Aの状態のガイド光の照射位置Pg(Xg,Yg)を治療位置Pt(Xf,Yf)に移動し、図8Bに示すように治療位置Pt(Xf,Yf)とガイド光の照射位置Pg(Xg,Yg)とが一致すると、判定回路36bは、一致したと判定する。 
 ステップS11において治療位置Ptとガイド光の照射位置Pgとが一致しない判定結果の場合には、ステップS10の処理に戻る。 
 一方、治療位置Ptとガイド光の照射位置Pgとが一致する判定結果の場合には、ステップS12の処理に移る。 
 次のステップS12において判定回路36bは、現在、自動モードMaが選択されているか否かの判定を行う。そして、自動モードMaが選択されている判定結果の場合には、次のステップS13において判定回路36bは光源制御部22に治療光を発生させる信号を送る。 
 光源制御部22は、治療光用光源24cに対して治療光を発生させるように制御し、治療光用光源24cは治療光を連続的に発生する。治療光用光源24cで発生した治療光は、ガイド光を伝送する光ファイバ17により伝送され、ガイド光が照射される位置に治療光が照射される。なお、ガイド光が照射される位置、治療光が照射される位置は、通常、点状に狭い領域となる。換言すると、治療光は収束した状態で治療位置Ptに照射される。
On the other hand, the surgeon moves the irradiation position Pg (Xg, Yg) of the guide light in the state of FIG. 8A to the treatment position Pt (Xf, Yf), and as shown in FIG. 8B, the treatment position Pt (Xf, Yf). ) And the irradiation position Pg (Xg, Yg) of the guide light match, the determination circuit 36b determines that they match.
If it is determined in step S11 that the treatment position Pt does not match the irradiation position Pg of the guide light, the process returns to step S10.
On the other hand, if the determination result indicates that the treatment position Pt matches the guide light irradiation position Pg, the process proceeds to step S12.
In the next step S12, the determination circuit 36b determines whether or not the automatic mode Ma is currently selected. If the determination result indicates that the automatic mode Ma is selected, in the next step S13, the determination circuit 36b sends a signal for causing the light source control unit 22 to generate treatment light.
The light source control unit 22 controls the therapeutic light source 24c to generate therapeutic light, and the therapeutic light source 24c continuously generates therapeutic light. The therapeutic light generated by the therapeutic light source 24c is transmitted by the optical fiber 17 that transmits the guide light, and the therapeutic light is irradiated to the position where the guide light is irradiated. In addition, the position where the guide light is irradiated and the position where the treatment light is irradiated are usually narrow spots. In other words, the treatment light is irradiated to the treatment position Pt in a converged state.
 図4では、治療光用光源24cが治療光を時間tt以降連続的に発生する様子を示す。なお、治療光は、励起光と同じ波長帯域の光であり、励起光カットフィルタ15によりカットされるため、CCD14による撮像には影響しない。 
 治療光が照射される状態においては、ステップS14に示すように判定回路36bは、ガイド位置抽出回路36cにより抽出されるガイド光の照射位置Pgをモニタする。 
 そして、次のステップS15において判定回路36bは、ガイド光の照射位置Pgが治療位置Ptの近傍領域R以内に存在するか否かを判定する。図8Bにおいて点線により治療位置Ptを含むその近傍領域Rを示す。この近傍領域Rは、術者が入力部23から手動で設定しても良いし、(蛍光領域抽出回路36aによる)画像処理により治療位置Ptより若干輝度レベルが低い範囲を近傍領域Rとして設定しても良いし、治療位置Ptと殆ど同じ点に近い領域として設定(実質的に照射位置Pgが治療位置Ptと一致しているか否かのように設定)しても良い。 
 ステップS15において、ガイド光の照射位置Pgが治療位置Ptの近傍領域R以内に存在しない判定結果の場合には、判定回路36bは、その判定信号を光源制御部22に送る。
FIG. 4 shows a state where the treatment light source 24c continuously generates treatment light after the time tt. The treatment light is light in the same wavelength band as the excitation light and is cut by the excitation light cut filter 15 and thus does not affect the imaging by the CCD 14.
In the state where the treatment light is irradiated, the determination circuit 36b monitors the irradiation position Pg of the guide light extracted by the guide position extraction circuit 36c as shown in step S14.
In the next step S15, the determination circuit 36b determines whether or not the irradiation position Pg of the guide light exists within the vicinity region R of the treatment position Pt. The neighboring region R including the treatment position Pt is indicated by a dotted line in FIG. 8B. This neighboring region R may be set manually by the operator from the input unit 23, or a range whose luminance level is slightly lower than the treatment position Pt is set as the neighboring region R by image processing (by the fluorescence region extracting circuit 36a). Alternatively, it may be set as a region close to the same point as the treatment position Pt (set as if the irradiation position Pg substantially coincides with the treatment position Pt).
In step S15, when the determination result indicates that the irradiation position Pg of the guide light does not exist within the vicinity region R of the treatment position Pt, the determination circuit 36b sends the determination signal to the light source control unit 22.
 次のステップS16において光源制御部22は、治療光用光源24cが治療光を発生しないように制御する。つまり治療光はOFFとなり、ステップS10の処理に戻る。一方、ガイド光の照射位置Pgが治療位置Pt近傍領域R以内に存在する判定結果の場合には、ステップS17の処理に移る。このステップS17において例えば制御回路37(又は判定回路36b)は、治療光の照射開始から所定の照射時間tsが経過したか否かの判定を行い、所定の照射時間が経過していない場合には、ステップS14の処理に戻る。これに対して、治療光の照射開始から所定の照射時間tsが経過した判定結果の場合には、次のステップS18において光源制御部22は治療光をOFFにして、図3の処理を終了する。 
 なお、制御回路37(又は判定回路36b)は、治療光の照射開始から、実際に治療光が照射されている時間を積算するように時間の計測を行い、計測した時間が予め設定された所定の照射時間tsに達したか否かの判定を行う。 
 ステップS12の判定処理において、自動モードMaでなく、手動モードMmが設定されている場合には、ステップS19において判定回路36bは、治療位置Ptとガイド光の照射位置Pgとが一致した旨の信号を表示制御回路35に送る。表示制御回路35は、治療位置Ptとガイド光の照射位置Pgとが一致し、治療光を照射するのに適した状態である旨の表示を行う文字情報を生成しモニタ4で表示する。
In the next step S16, the light source control unit 22 controls the treatment light source 24c so that it does not generate treatment light. That is, the treatment light is turned off, and the process returns to step S10. On the other hand, if the determination result indicates that the irradiation position Pg of the guide light is within the region R near the treatment position Pt, the process proceeds to step S17. In this step S17, for example, the control circuit 37 (or determination circuit 36b) determines whether or not a predetermined irradiation time ts has elapsed from the start of treatment light irradiation, and if the predetermined irradiation time has not elapsed. The process returns to step S14. On the other hand, in the case of a determination result in which a predetermined irradiation time ts has elapsed since the start of treatment light irradiation, the light source control unit 22 turns off the treatment light in the next step S18 and ends the processing of FIG. .
The control circuit 37 (or the determination circuit 36b) measures the time so as to integrate the time during which the treatment light is actually irradiated from the start of the treatment light irradiation, and the measured time is set to a predetermined value set in advance. It is determined whether or not the irradiation time ts has been reached.
If the manual mode Mm is set instead of the automatic mode Ma in the determination process of step S12, the determination circuit 36b in step S19 indicates that the treatment position Pt and the irradiation position Pg of the guide light match. Is sent to the display control circuit 35. The display control circuit 35 generates character information for displaying that the treatment position Pt and the irradiation position Pg of the guide light coincide with each other and is suitable for irradiating treatment light, and displays the character information on the monitor 4.
 術者は、治療光を照射するのに適した状態である旨の表示により、治療光用スイッチSW2を操作するタイミングを把握することができる。 
 次のステップS20において光源制御部22は、治療光用スイッチSW2により治療光照射の操作が行われたか否かを判定し、操作されるのを待つ。 
 ステップS20において(治療光用スイッチSW2により)治療光照射の操作が行われた場合には、次のステップS21においてステップS13の場合と同様に光源制御部22は、治療光用光源24cに対して治療光を発生させるように制御し、治療光用光源24cは、治療光を連続的に発生する。治療光用光源24cで発生した治療光は、ガイド光を伝送する光ファイバ17により伝送され、ガイド光が照射される位置に治療光が照射される。 
 次のステップS22において判定回路36bは、ステップS14の場合と同様に、ガイド位置抽出回路36cにより抽出されるガイド光の照射位置Pgをモニタする。 
 そして、次のステップS23において判定回路36bは、ステップS15の場合と同様に、ガイド光の照射位置Pgが治療位置Ptの近傍領域R以内に存在するか否かを判定する。
The surgeon can grasp the timing of operating the treatment light switch SW2 by displaying that the state is suitable for irradiating treatment light.
In the next step S20, the light source control unit 22 determines whether or not the treatment light irradiation operation has been performed by the treatment light switch SW2, and waits for the operation.
When the treatment light irradiation operation is performed in step S20 (by the treatment light switch SW2), in the next step S21, the light source control unit 22 applies the treatment light source 24c to the treatment light source 24c as in the case of step S13. The treatment light is controlled to be generated, and the treatment light source 24c continuously generates the treatment light. The therapeutic light generated by the therapeutic light source 24c is transmitted by the optical fiber 17 that transmits the guide light, and the therapeutic light is irradiated to the position where the guide light is irradiated.
In the next step S22, the determination circuit 36b monitors the irradiation position Pg of the guide light extracted by the guide position extraction circuit 36c as in the case of step S14.
Then, in the next step S23, the determination circuit 36b determines whether or not the irradiation position Pg of the guide light exists within the vicinity region R of the treatment position Pt as in the case of step S15.
 ステップS23において、ガイド光の照射位置Pgが治療位置Ptの近傍領域R以内に存在しない判定結果の場合には、判定回路36bは、ステップS15の場合と同様に、その判定信号を光源制御部22に送る。 
 次のステップS24において判定回路36bは、ステップS16の場合と同様に、光源制御部22は、治療光用光源24cが治療光を発生しないように制御する。つなり治療光はOFFとなり、ステップS10の処理に戻る。 
 一方、ガイド光の照射位置Pgが治療位置Ptの近傍領域R以内に存在する判定結果の場合には、ステップS17の場合と同様にステップS25の処理に移り、このステップS25において例えば制御回路37(又は判定回路36b)は、治療光の照射開始から所定の照射時間tsが経過したか否かの判定を行い、所定の照射時間tsが経過していない場合には、ステップS22の処理に戻る。 
 これに対して、治療光の照射開始から所定の照射時間tsが経過した判定結果の場合には、次のステップS26において表示制御回路35は、所定の照射時間tsが経過した旨をモニタ4で表示するように制御し、次のステップS27において光源制御部22は、治療光をOFFにする操作がされるのを待つ。
In step S23, when the determination result indicates that the irradiation position Pg of the guide light does not exist within the vicinity region R of the treatment position Pt, the determination circuit 36b sends the determination signal to the light source control unit 22 as in step S15. Send to.
In the next step S24, the determination circuit 36b controls the light source control unit 22 so that the treatment light source 24c does not generate treatment light, as in step S16. The adult treatment light is turned off and the process returns to step S10.
On the other hand, if the determination result indicates that the irradiation position Pg of the guide light is within the vicinity region R of the treatment position Pt, the process proceeds to step S25 as in step S17. In step S25, for example, the control circuit 37 ( Alternatively, the determination circuit 36b) determines whether or not the predetermined irradiation time ts has elapsed from the start of treatment light irradiation, and when the predetermined irradiation time ts has not elapsed, the process returns to the process of step S22.
On the other hand, in the case of the determination result that the predetermined irradiation time ts has elapsed from the start of the treatment light irradiation, in the next step S26, the display control circuit 35 uses the monitor 4 to indicate that the predetermined irradiation time ts has elapsed. In step S27, the light source control unit 22 waits for an operation to turn off the treatment light.
 術者は、所定の照射時間tsが経過した旨の表示を参考にして、治療を終了する場合には、治療光用スイッチSW2を操作し、治療光をOFFにする。光源制御部22は治療光をOFFにする操作が行われた場合には、ステップS17に示すように治療光をOFFにして、図3の処理を終了する。 
 このように動作する第1の実施形態によれば、蛍光による病変部位の位置を表す蛍光画像と、(ガイド光の照射位置Pgの表示により)治療光の照射位置としての治療位置Ptとを同時に確認することができる観察画像を生成するので、治療光による照射による治療の処置を簡単に行うことができる。 
 また、治療位置Ptから外れた位置に治療光を照射する状態になると、自動的に治療光の照射を停止することができると共に、病変部位に照射された治療光の照射時間を精度良く計測できるため、治療光の照射時間を高精度に管理できる。 
 また、蛍光画像において閾値Vth以上の蛍光輝度Lfが検出されると自動的にガイド光が照射される状態に設定されるため、術者は病変部位の位置確認が簡単に行える。また、自動モードMaに設定した場合には、ガイド光の照射位置Pgが治療位置Ptに一致すると、治療光を照射する状態に設定するため、治療光の照射タイミングを遅滞なく行うことができ、短時間に治療を行うことができると共に、術者の負担を軽減できる。
The surgeon operates the therapeutic light switch SW2 to turn off the therapeutic light when ending the treatment with reference to the display indicating that the predetermined irradiation time ts has elapsed. When an operation for turning off the treatment light is performed, the light source control unit 22 turns off the treatment light as shown in step S17 and ends the processing of FIG.
According to the first embodiment operating in this manner, a fluorescence image representing the position of a lesion site due to fluorescence and a treatment position Pt as a treatment light irradiation position (by display of the irradiation position Pg of guide light) are simultaneously provided. Since an observation image that can be confirmed is generated, it is possible to easily perform treatment treatment by irradiation with therapeutic light.
In addition, when the treatment light is irradiated to a position deviating from the treatment position Pt, the irradiation of the treatment light can be automatically stopped and the irradiation time of the treatment light irradiated to the lesion site can be accurately measured. Therefore, the treatment light irradiation time can be managed with high accuracy.
In addition, since a guide light is automatically irradiated when a fluorescence brightness Lf equal to or higher than the threshold value Vth is detected in the fluorescence image, the operator can easily confirm the position of the lesion site. Further, when the automatic mode Ma is set, when the irradiation position Pg of the guide light coincides with the treatment position Pt, the treatment light irradiation timing can be set without delay in order to set the treatment light irradiation state. Treatment can be performed in a short time and the burden on the operator can be reduced.
 上述した第1の実施形態においては、モノクロの撮像素子を用いた場合の内視鏡装置1を説明したが、図9に示す変形例のようにカラーフィルタ41を備えた撮像素子としてのCCD14を用いて内視鏡装置1Bを用いることもできる。 
 図10Aは、モノクロのCCD14の撮像面に設けたカラーフィルタ41の1例を示す。カラーフィルタ41は、CCD14の撮像面における、例えば水平ラインの画素の上にR,G,Bの光を透過するR,G,Bストライプフィルタ(単に、R,G,Bフィルタと略記)42R,42G,42Bが縦方向に周期的に配置されている。なお、Rフィルタ42Rは、Rの他に赤外の波長帯域の蛍光も透過する特性を有する。 
 本変形例においては、励起光、参照光(図2A参照)、治療光(図2B参照)は、第1の実施形態と同じ波長帯域の光を発生する。これに対して、ガイド光は、図11に示すように青の波長帯域の特性Lgaに設定される(なお、図2Bにおいて示したように図11に示す波長帯域よりも狭帯域の特性にしても良い)。図11においては、治療光の波長帯域の特性Ltrも示している。また、蛍光物質は、第1の実施形態と同じ赤外の波長帯域の蛍光を発生し、また励起光カットフィルタ15は第1の実施形態と同じ透過特性のものが採用される。
In the first embodiment described above, the endoscope apparatus 1 in the case of using a monochrome imaging device has been described. However, as in the modification shown in FIG. 9, the CCD 14 as an imaging device including the color filter 41 is provided. It is also possible to use the endoscope apparatus 1B.
FIG. 10A shows an example of the color filter 41 provided on the imaging surface of the monochrome CCD 14. The color filter 41 is, for example, an R, G, B stripe filter (simply abbreviated as R, G, B filter) 42R, which transmits R, G, B light on the pixels of the horizontal line on the imaging surface of the CCD 14. 42G and 42B are periodically arranged in the vertical direction. The R filter 42R has a characteristic of transmitting fluorescence in the infrared wavelength band in addition to R.
In this modification, excitation light, reference light (see FIG. 2A), and treatment light (see FIG. 2B) generate light having the same wavelength band as that of the first embodiment. On the other hand, the guide light is set to a blue wavelength band characteristic Lga as shown in FIG. 11 (note that it has a narrower band characteristic than the wavelength band shown in FIG. 11 as shown in FIG. 2B). Is also good). In FIG. 11, the characteristic Ltr of the wavelength band of the treatment light is also shown. In addition, the fluorescent material generates fluorescence in the same infrared wavelength band as in the first embodiment, and the excitation light cut filter 15 has the same transmission characteristics as in the first embodiment.
 本変形例の場合には、蛍光、参照光、ガイド光は、それぞれR,G,Bフィルタ42R,42G,42Bによりそれぞれ(光学的に)色分離されてCCD14の撮像面の各画素43(図10A参照)に入射する。この場合、R,G,Bフィルタ42R,42G,42Bをそれぞれ通過した光を撮像する画素43は、それぞれ蛍光、参照光、ガイド光に感度を有する蛍光画素、参照光画素、ガイド光画素としての機能を持つ。 In the case of this modification, the fluorescence, reference light, and guide light are color-separated (optically) by R, G, B filters 42R, 42G, 42B, respectively, and each pixel 43 (see FIG. 10A). In this case, the pixels 43 that image the light that has passed through the R, G, B filters 42R, 42G, and 42B respectively serve as fluorescence pixels, reference light pixels, and guide light pixels that are sensitive to fluorescence, reference light, and guide light. Has function.
 このため、本変形例においては、光源制御部22は、光源部12に対して励起光、参照光、ガイド光、治療光を、それぞれ連続光として発生するように制御する。なお、参照光の強度が大き過ぎる場合には、図4に示したように各フレーム期間Tにおいて該フレーム期間Tよりも小さい照明期間Trにおいて、パルス発光させたり、発光強度を下げて連続発光させるようにすれば良い。 
 また、本変形例における画像処理部21Bにおいては、CCD駆動回路31によりCCD駆動信号が印加されたCCD14は、1フレーム分の同時式のカラー撮像信号を出力し、該カラー撮像信号は前処理回路32′に入力される。図1の前処理回路32は、面順次の撮像信号に対する前処理を行っていたが、本変形例における前処理回路32′は、R,G,Bフィルタ42R,42G,42Bを透過して撮像したR,G,B撮像信号に対する前処理を行う。 
 また、本変形例においては、Rフィルタ42Rを透過した蛍光画素の撮像信号(R撮像信号)に対しては、例えば図10Bに示すようにピクセルビニング(画素加算)するピクセルビニング部(又はピクセルビニング回路)45を有する。
For this reason, in this modification, the light source control unit 22 controls the light source unit 12 to generate excitation light, reference light, guide light, and treatment light as continuous light. When the intensity of the reference light is too high, as shown in FIG. 4, pulse emission is performed in the illumination period Tr smaller than the frame period T in each frame period T, or continuous emission is performed at a reduced emission intensity. You can do that.
In the image processing unit 21B according to this modification, the CCD 14 to which the CCD driving signal is applied by the CCD driving circuit 31 outputs a simultaneous color imaging signal for one frame, and the color imaging signal is a preprocessing circuit. 32 '. The pre-processing circuit 32 in FIG. 1 performs pre-processing on the frame-sequential imaging signal. However, the pre-processing circuit 32 ′ in this modification image is transmitted through the R, G, B filters 42R, 42G, 42B. Pre-processing is performed on the R, G, and B imaging signals.
In the present modification, for example, a pixel binning unit (or pixel binning) that performs pixel binning (pixel addition) as illustrated in FIG. 10B with respect to an imaging signal (R imaging signal) of a fluorescent pixel that has passed through the R filter 42R. Circuit) 45.
 CCD14におけるシフトレジスタ46は、通常は右端の出力端から加算回路47を経て1画素ずつの画素信号(撮像信号)を出力するが、水平方向の1ライン分のR画素の画素信号を出力するタイミングにおいて、CCD駆動回路31は、画素加算する(画素加算の)制御信号を加算回路47に送る。(画素加算の)制御信号が印加された加算回路47は、シフトレジスタ46における右端から例えば3画素分の画素信号を加算して、加算信号としてCCD14の出力端から出力する。 
 この場合には、水平方向に隣接する3画素分を加算した加算信号を出力する。なお、CCD駆動回路31からピクセルビニングする場合の加算する画素数の信号も加算回路47に送り、加算回路47は、加算することができる画素数以内において、任意の複数画素分、加算した加算信号を出力するようにしても良い。 
 図10Bに示すCCD14内でピクセルビニングを行う構成に限定されるものでなく、例えば前処理回路32′内においてR撮像信号における水平方向に隣接する複数の画素分を加算した加算信号を生成するようにしても良い。
The shift register 46 in the CCD 14 normally outputs a pixel signal (imaging signal) for each pixel from the output terminal on the right end via the adder circuit 47, but the timing for outputting the pixel signal of R pixels for one line in the horizontal direction. The CCD driving circuit 31 sends a control signal for pixel addition (pixel addition) to the addition circuit 47. The addition circuit 47 to which the control signal (for pixel addition) is applied adds pixel signals for, for example, three pixels from the right end of the shift register 46 and outputs the addition signal from the output end of the CCD 14.
In this case, an addition signal obtained by adding three pixels adjacent in the horizontal direction is output. Note that a signal indicating the number of pixels to be added in the case of pixel binning from the CCD drive circuit 31 is also sent to the addition circuit 47, and the addition circuit 47 adds the added signals for any plural pixels within the number of pixels that can be added. May be output.
The present invention is not limited to the configuration in which pixel binning is performed in the CCD 14 shown in FIG. 10B. For example, an addition signal obtained by adding a plurality of pixels adjacent in the horizontal direction in the R imaging signal is generated in the preprocessing circuit 32 ′. Anyway.
 また、本変形例においてはマルチプレクサ33′は、カラーフィルタ41におけるR,G,Bフィルタの配列に応じて、切り替えられる。具体的には、Rフィルタを透過した蛍光画素のR撮像信号からその信号成分を抽出したR画像信号が前処理回路32′から出力される場合(タイミング)には、マルチプレクサ33′は、蛍光用メモリ34aを選択し、R画像信号は蛍光用メモリ34aに格納される。 
 同様に、Gフィルタを透過した参照光を撮像した参照光画素のG撮像信号からその信号成分を抽出したG画像信号が前処理回路32′から出力される場合(タイミング)には、マルチプレクサ33′は、参照光用メモリ34bを選択し、G画像信号は、参照光用メモリ34bに格納される。 
 同様に、Bフィルタを透過したガイド光を撮像したガイド光画素のB撮像信号からその信号成分を抽出したB画像信号が前処理回路32′から出力される場合(タイミング)には、マルチプレクサ33′は、ガイド光用メモリ34cを選択し、B画像信号はガイド光用メモリ34cに格納される。
In the present modification, the multiplexer 33 ′ is switched according to the arrangement of the R, G, and B filters in the color filter 41. Specifically, when the R image signal obtained by extracting the signal component from the R imaging signal of the fluorescent pixel that has passed through the R filter is output (timing) from the preprocessing circuit 32 ′, the multiplexer 33 ′ The memory 34a is selected, and the R image signal is stored in the fluorescence memory 34a.
Similarly, when the G image signal obtained by extracting the signal component from the G imaging signal of the reference light pixel that has captured the reference light that has passed through the G filter is output from the preprocessing circuit 32 ′ (timing), the multiplexer 33 ′. Selects the reference light memory 34b, and the G image signal is stored in the reference light memory 34b.
Similarly, when the B image signal obtained by extracting the signal component from the B imaging signal of the guide light pixel obtained by imaging the guide light transmitted through the B filter is output from the preprocessing circuit 32 '(timing), the multiplexer 33' Selects the guide light memory 34c, and the B image signal is stored in the guide light memory 34c.
 なお、例えば、第1の実施形態において説明したように、励起光と参照光とを発生し、ガイド光を発生しない場合においても、B画像信号のタイミングにおいて、マルチプレクサ33′は、ガイド光用メモリ34cを選択する。 
 また、本変形例における表示制御回路35′は、メモリ部34からの画像信号をそのままモニタ4に出力する機能の他に、蛍光/ガイド光処理回路36に対応した文字情報の表示制御(図3におけるステップS19,S26)を行う。その他の構成は、第1の実施形態と同様の構成である。 
 本変形例の動作は、図3に示した第1の実施形態の場合と殆ど同様の動作となる。以下、異なる部分のみを説明する。 
図12に示すように最初のステップS31において、光源部12は、励起光と参照光とを連続光で発生し、励起光と参照光はライトガイド11により伝送され、ライトガイド11の先端面から励起光と参照光とが拡開して観察部位側に照射される。
Note that, for example, as described in the first embodiment, the multiplexer 33 ′ uses the guide light memory at the timing of the B image signal even when the excitation light and the reference light are generated and the guide light is not generated. 34c is selected.
In addition to the function of outputting the image signal from the memory unit 34 to the monitor 4 as it is, the display control circuit 35 ′ in this modification has character information display control corresponding to the fluorescence / guide light processing circuit 36 (FIG. 3). Steps S19 and S26) are performed. Other configurations are the same as those in the first embodiment.
The operation of this modification is almost the same as that of the first embodiment shown in FIG. Only the different parts will be described below.
As shown in FIG. 12, in the first step S <b> 31, the light source unit 12 generates excitation light and reference light as continuous light, and the excitation light and reference light are transmitted by the light guide 11 and from the front end surface of the light guide 11. Excitation light and reference light are spread and irradiated on the observation site side.
 本変形例においては観察部位側から発せられる蛍光は赤外帯域であるので、この蛍光はRフィルタ43Rを透過し、R画素で受光される。また、参照光の照射により観察部位側で反射された光は、Gフィルタ43Gを透過し、G画素で受光される。 
 本変形例においては、R撮像信号は、ピクセルビニング部45により複数の画素を加算した加算信号を蛍光撮像信号としてCCD14から出力する。 
 つまり、ステップS31の次のステップS32においてピクセルビニング部45は、蛍光の撮像画素に対しては、複数の画素を加算するピクセルビニングを行い、加算されたR撮像信号を出力する。 
 加算されたR画素のR撮像信号とG画素のG撮像信号は、前処理回路32′において信号成分が抽出されてR画像信号とG画像信号となる。つまり、図3のステップS2に示すように画像処理部21′は、前処理回路32′において、蛍光画像(信号)と参照光画像(信号)を生成する。
In the present modification, the fluorescence emitted from the observation site side is in the infrared band, so this fluorescence passes through the R filter 43R and is received by the R pixel. Further, the light reflected on the observation site side by the irradiation of the reference light passes through the G filter 43G and is received by the G pixel.
In this modification, the R imaging signal is output from the CCD 14 as a fluorescence imaging signal, which is an addition signal obtained by adding a plurality of pixels by the pixel binning unit 45.
That is, in step S32 subsequent to step S31, the pixel binning unit 45 performs pixel binning for adding a plurality of pixels to the fluorescent imaging pixel, and outputs the added R imaging signal.
The R image signal of the added R pixel and the G image signal of the G pixel are extracted as signal components in the pre-processing circuit 32 ′ to become an R image signal and a G image signal. That is, as shown in step S2 of FIG. 3, the image processing unit 21 ′ generates a fluorescence image (signal) and a reference light image (signal) in the preprocessing circuit 32 ′.
 R画像信号とG画像信号は、1フレーム期間内においてR,G,Bフィルタ42R,42G,42Bの配列に応じて切り替えられるマルチプレクサ33′を経て蛍光用メモリ34a、参照光用メモリ34bにそれぞれ格納される。 
 ステップS3以降は、図3に示すステップS3以降の各ステップとほぼ同様であるため、その説明を省略する。但し、図3におけるステップS3以降における処理は、モノクロの撮像素子を用いた場合の処理であり、本変形例はカラーフィルタ41を備えた撮像素子を用いたことによる各ステップにおける具体的な処理内容に差異が発生する場合がある。 
 例えば、励起光と参照光とを照射して蛍光画像と参照光画像をモニタに表示する状態において、ステップS8に示すように、さらにガイド光を照射する状態になった場合、第1の実施形態においては、蛍光画像にガイド光画像が混ざった状態で取得されてしまう期間が発生したが、本変形例においてはカラーフィルタ41により色分離して撮像を行うために、3つのフレームメモリに、蛍光画像、参照光画像、ガイド光画像を分離した状態で格納できる。そのため、表示制御回路35において分離する減算処理を行うことなく、モニタ4において蛍光画像、参照光画像、ガイド光画像をそれぞれ異なる色でカラー表示することができる。 
 また、本変形例においては、Rフィルタ42Rを透過したR画素の信号は、例えば水平方向に隣接する複数の画素、加算した加算信号として出力するため、信号強度が小さい蛍光の信号レベルを大幅に増大することができる。なお、加算した複数画素においては、同じ加算信号を出力するため、水平方向の解像度は、加算しない場合に比較すると低下することになる。
The R image signal and the G image signal are respectively stored in the fluorescence memory 34a and the reference light memory 34b via a multiplexer 33 'that is switched in accordance with the arrangement of the R, G, B filters 42R, 42G, 42B within one frame period. Is done.
Since step S3 and subsequent steps are substantially the same as the steps after step S3 shown in FIG. 3, the description thereof is omitted. However, the processing after step S3 in FIG. 3 is processing when a monochrome imaging device is used, and in this modification, specific processing contents in each step by using the imaging device including the color filter 41 are used. There may be discrepancies.
For example, in the state in which the excitation light and the reference light are irradiated and the fluorescence image and the reference light image are displayed on the monitor, as shown in step S8, the guide light is further irradiated in the first embodiment. In this modification, a period during which the guide light image is mixed with the fluorescence image has occurred. However, in this modification, the color filter 41 separates the images and images are captured in the three frame memories. Images, reference light images, and guide light images can be stored separately. Therefore, the fluorescence image, the reference light image, and the guide light image can be displayed in different colors on the monitor 4 without performing a subtraction process for separation in the display control circuit 35.
Further, in this modification, the R pixel signal that has passed through the R filter 42R is output as, for example, a plurality of pixels adjacent in the horizontal direction and an added sum signal, so that the signal level of the fluorescence with low signal intensity is greatly increased. Can be increased. In addition, since the same added signal is output in a plurality of added pixels, the resolution in the horizontal direction is lowered as compared with the case where the addition is not performed.
 本変形例によれば、第1の実施形態と同様の効果を有する。また、本変形例においては、蛍光を撮像した場合には、蛍光を撮像する、隣接する複数画素を加算するようにしているので、信号強度が小さい蛍光画像を視認し易い観察画像を生成することができる。 
 なお、上述した変形例及び実施形態における一部を組み合わせて構成される実施形態も本発明に属する。また、上記変形例において説明した画素加算を行うことを、第1の実施形態に適用するようにしても良い。その場合には、蛍光を撮像するフレーム期間毎に画素加算を行うようにすれば良い。但し、励起光の照射(による蛍光撮像)とガイド光の照射とが重なるフレームにおいては、ガイド光の画像部分を除去する必要がある。このため、励起光を照射する各フレーム期間においては、(参照光と共に)ガイド光の照射を停止し、蛍光のみによる撮像ができるように、例えば光源制御部22がガイド光の照射のON/OFFを制御するようにしても良い。また、ガイド光と共に治療光を照射している場合においては、ガイド光の照射をOFFにした場合には、治療光も同時にOFFにしても良い。 
 なお、上述した変形例及び実施形態においては、蛍光画像から0レベルを超える閾値以上の蛍光輝度を有する領域Rfを抽出し、領域Rfから高輝度領域Rfhを判定して、当該高輝度領域Rfhにおける輝度重心等の位置を治療位置Ptとして設定する場合を説明したが、領域Rf内となる任意の位置に治療位置Ptを設定しても良い。 
 また、上述した図3,図12に示すような手順により、励起光、参照光、ガイド光、治療光の照射のON/OFFする場合に限らず、術者の判断により、任意のタイミングで励起光、参照光、ガイド光、治療光の照射のON/OFFすることもできる。また、ガイド光、治療光を、連続照射する場合を説明したが、間欠的に照射するようにしても良い。
According to this modification, the same effect as that of the first embodiment is obtained. In addition, in this modification, when fluorescence is imaged, a plurality of adjacent pixels that capture fluorescence are added, so that an observation image in which a fluorescent image with low signal intensity is easily visible can be generated. Can do.
Note that embodiments configured by combining a part of the above-described modifications and embodiments also belong to the present invention. Further, the pixel addition described in the above modification may be applied to the first embodiment. In that case, pixel addition may be performed every frame period in which fluorescence is imaged. However, it is necessary to remove the image portion of the guide light in the frame where the irradiation of the excitation light (fluorescence imaging) and the irradiation of the guide light overlap. For this reason, in each frame period during which the excitation light is irradiated, for example, the light source control unit 22 turns on / off the guide light irradiation so that the irradiation of the guide light is stopped (along with the reference light) and the image can be captured only by the fluorescence. May be controlled. Further, when the treatment light is irradiated together with the guide light, the treatment light may be turned off simultaneously when the irradiation of the guide light is turned off.
In the modification and the embodiment described above, a region Rf having a fluorescence luminance equal to or higher than a threshold value exceeding 0 level is extracted from the fluorescence image, a high luminance region Rfh is determined from the region Rf, and the high luminance region Rfh is determined. Although the case where the position such as the luminance center of gravity is set as the treatment position Pt has been described, the treatment position Pt may be set at an arbitrary position within the region Rf.
3 and FIG. 12, the excitation light, reference light, guide light, and treatment light are not limited to ON / OFF, and excitation is performed at an arbitrary timing according to the judgment of the operator. It is also possible to turn on / off irradiation of light, reference light, guide light, and treatment light. Moreover, although the case where guide light and treatment light are continuously irradiated has been described, the light may be irradiated intermittently.
 本出願は、2015年1月7日に日本国に出願された特願2015-001786号を優先権主張の基礎として出願するものであり、上記の開示内容は、本願明細書、請求の範囲、図面に引用されたものとする。 This application is filed on the basis of the priority claim of Japanese Patent Application No. 2015-001786 filed in Japan on January 7, 2015, and the above disclosure is disclosed in the present specification, claims, It shall be cited in the drawing.

Claims (9)

  1.  病変部位に集積し、かつ励起波長の光が照射されることで蛍光を発し、かつ前記励起波長の光が照射されることで生体組織に対して特定の作用をする蛍光物質が投与された被検体に対して、前記励起波長を有し前記蛍光を発生させるための励起光を照射する励起光用光源部と、
     前記励起波長とは異なる波長であり、前記被検体の形態情報を取得するための参照光を照射する参照光用光源部と、
     前記被検体に対して前記励起光用光源部及び参照光用光源部からの光が照射される領域のうちの所定の領域に対して、前記被検体に投与された前記蛍光物質が前記特定の作用をさせるために収束された前記励起波長を有する作用光を照射する作用光用光源部と、
     前記所定の領域に対して、前記励起波長とは異なる波長のガイド光を照射するガイド光用光源部と、
     前記被検体からの光を受けて撮像信号を生成する撮像部と、
     前記撮像部と前記被検体との間に設けられ、前記励起波長の光をカットする励起光カットフィルタと、
     前記励起光用光源部、前記参照光用光源部、及び前記ガイド光用光源部からの光が照射された前記被検体を前記撮像部による撮像により生成される前記撮像信号から、前記励起光が照射された前記被検体から発生する前記蛍光の位置を表す蛍光情報と、前記参照光が照射された前記被検体の形態情報と、前記被検体におけるガイド光の照射位置を表すガイド光情報とを生成する情報生成部と、
     前記情報生成部において生成された前記被検体の形態情報に対して前記蛍光の発生位置と前記ガイド光の照射位置とを反映させた観察画像を生成する画像生成部と、
     を有することを特徴とする内視鏡装置。
    Fluorescence is emitted when irradiated with light having an excitation wavelength and accumulated at a lesion site, and is administered with a fluorescent substance having a specific action on living tissue when irradiated with light having the excitation wavelength. A light source unit for excitation light that irradiates the specimen with excitation light for generating the fluorescence having the excitation wavelength;
    A light source unit for reference light, which is a wavelength different from the excitation wavelength, and irradiates a reference light for acquiring morphological information of the subject;
    The fluorescent substance administered to the subject with respect to a predetermined region of the region irradiated with light from the excitation light source unit and the reference light source unit to the subject A working light source for irradiating with working light having the excitation wavelength converged to act;
    A light source unit for guide light that irradiates guide light having a wavelength different from the excitation wavelength with respect to the predetermined region;
    An imaging unit that receives light from the subject and generates an imaging signal;
    An excitation light cut filter that is provided between the imaging unit and the subject and cuts light of the excitation wavelength;
    The excitation light is generated from the imaging signal generated by the imaging unit imaging the subject irradiated with light from the excitation light source unit, the reference light source unit, and the guide light source unit. Fluorescence information indicating the position of the fluorescence generated from the irradiated subject, shape information of the subject irradiated with the reference light, and guide light information indicating the irradiation position of the guide light on the subject. An information generator to generate;
    An image generation unit that generates an observation image reflecting the fluorescence generation position and the guide light irradiation position with respect to the form information of the subject generated in the information generation unit;
    An endoscope apparatus characterized by comprising:
  2.  更に、前記蛍光の撮像信号に基づき、前記被検体における第1の閾値以上の蛍光輝度を有する領域内に設定される前記蛍光の発生位置と、前記ガイド光の撮像信号に基づき、前記ガイド光の照射位置とが一致しているかどうか判定する判定部と、
     前記判定部において前記蛍光の発生位置と前記ガイド光の照射位置が一致していると判定された場合に前記作用光を照射し、前記照射位置が一致していないと判定された場合に前記作用光を照射しないように前記作用光用光源部を制御する光源制御部と、
     を有することを特徴とする請求項1に記載の内視鏡装置。
    Further, based on the fluorescence imaging signal, the fluorescence generation position set in a region having a fluorescence luminance equal to or higher than a first threshold in the subject, and the guide light imaging signal based on the guide light imaging signal. A determination unit for determining whether the irradiation position matches,
    When the determination unit determines that the generation position of the fluorescence and the irradiation position of the guide light coincide with each other, the action light is emitted, and when it is determined that the irradiation position does not match, the action A light source control unit that controls the light source unit for working light so as not to emit light;
    The endoscope apparatus according to claim 1, further comprising:
  3.  第1のタイミングにおいて前記励起光を照射し、前記第1のタイミングとは異なる第2のタイミングにおいて前記参照光を照射し、前記第1のタイミング及び前記第2のタイミングとは異なる第3のタイミングにおいて消灯するように前記励起光用光源部と前記参照光用光源部とを制御し、かつ前記第1のタイミング及び前記第2のタイミング及び前記第3のタイミングにおいて前記ガイド光を照射するように前記ガイド光用光源部を制御し、さらに前記第3のタイミング以降における第4のタイミングにおいて前記作用光を照射するように前記作用光用光源部を制御する光源制御部と、を有し、
     前記撮像部は、モノクロの撮像素子であり、かつ前記第1のタイミングにおいて前記励起光及び前記作用光及び前記ガイド光が照射された前記被検体から前記蛍光と前記ガイド光とに対応する第1の撮像信号を生成し、前記第2のタイミングにおいて前記参照光及び前記作用光及び前記ガイド光が照射された前記被検体から前記参照光と前記ガイド光とに対応する第2の撮像信号を生成し、前記第3のタイミング以降において前記ガイド光が照射された前記被検体から前記被検体におけるガイド光の照射位置を表すガイド光撮像信号を生成し、
     前記情報生成部は、前記蛍光情報として前記第1の撮像信号と前記第3の撮像信号とから蛍光画像信号を生成し、前記参照光情報として前記第2の撮像信号と前記第3の撮像信号とから参照光画像信号を生成し、前記蛍光画像信号と前記参照光画像信号と前記ガイド光撮像信号に対応するガイド光画像信号とをそれぞれ異なる色に割り当てることで前記被検体の形態情報に対して前記蛍光の発生位置と前記ガイド光の照射位置とを反映させた画像を生成することを特徴とする請求項1に記載の内視鏡装置。
    The excitation light is irradiated at a first timing, the reference light is irradiated at a second timing different from the first timing, and a third timing different from the first timing and the second timing. The excitation light source unit and the reference light source unit are controlled so as to be turned off, and the guide light is emitted at the first timing, the second timing, and the third timing. A light source control unit that controls the light source unit for guide light and further controls the light source unit for working light so as to irradiate the working light at a fourth timing after the third timing,
    The imaging unit is a monochrome imaging device and corresponds to the fluorescence and the guide light from the subject irradiated with the excitation light, the action light, and the guide light at the first timing. And the second imaging signal corresponding to the reference light and the guide light is generated from the subject irradiated with the reference light, the action light, and the guide light at the second timing. And generating a guide light imaging signal representing the irradiation position of the guide light on the subject from the subject irradiated with the guide light after the third timing,
    The information generation unit generates a fluorescence image signal from the first imaging signal and the third imaging signal as the fluorescence information, and the second imaging signal and the third imaging signal as the reference light information. The reference light image signal is generated, and the fluorescence image signal, the reference light image signal, and the guide light image signal corresponding to the guide light imaging signal are assigned to different colors, respectively, for the morphological information of the subject. The endoscope apparatus according to claim 1, wherein an image reflecting the generation position of the fluorescence and the irradiation position of the guide light is generated.
  4.  前記励起光と前記参照光と前記作用光と前記ガイド光とを同時に照射する照射期間が形成されるように前記蛍光観察用光源部と前記作用光用光源部とを制御する光源制御部と、を有し、
     前記撮像部は、前記励起波長及び前記蛍光の波長に感度を有する蛍光画素と、前記参照光の波長に感度を有する参照光画素と、前記ガイド光の波長に感度を有するガイド光画素とを有し、前記蛍光画素において前記被検体からの光のうち前記励起光カットフィルタを通過する前記蛍光を受光して前記蛍光撮像信号を生成し、前記参照光画素において前記被検体からの光のうち前記参照光の反射光を受光して前記参照光撮像信号を生成し、前記ガイド光画素において前記被検体からの光のうち前記ガイド光の反射光を受光して前記ガイド光撮像信号を生成することを特徴とする請求項1に記載の内視鏡装置。
    A light source control unit that controls the fluorescence observation light source unit and the working light source unit so as to form an irradiation period in which the excitation light, the reference light, the working light, and the guide light are irradiated simultaneously; Have
    The imaging unit includes a fluorescent pixel having sensitivity to the excitation wavelength and the fluorescence wavelength, a reference light pixel having sensitivity to the wavelength of the reference light, and a guide light pixel having sensitivity to the wavelength of the guide light. And receiving the fluorescence passing through the excitation light cut filter out of the light from the subject in the fluorescence pixel to generate the fluorescence imaging signal, and the light out of the subject in the reference light pixel Receiving the reflected light of the reference light to generate the reference light imaging signal, and receiving the reflected light of the guide light among the light from the subject in the guide light pixel to generate the guide light imaging signal. The endoscope apparatus according to claim 1.
  5.  前記判定部は、更に前記蛍光の撮像信号に基づき、第2の閾値以上の蛍光輝度を有する蛍光の画像領域の存在の有無を判定し、
     前記蛍光の画像領域が存在する判定結果の場合には前記光源制御部は、前記ガイド光用光源部が前記ガイド光を照射するように制御することを特徴とする請求項2に記載の内視鏡装置。
    The determination unit further determines the presence / absence of a fluorescent image region having a fluorescent luminance equal to or higher than a second threshold based on the fluorescent imaging signal,
    3. The endoscopy according to claim 2, wherein in the case of the determination result that the fluorescent image area exists, the light source control unit controls the guide light source unit to emit the guide light. Mirror device.
  6.  更に、前記蛍光の撮像信号に基づき、第2の閾値以上の蛍光輝度を有する蛍光の画像領域の存在の有無を判定する判定部と、
     前記第2の閾値以上の蛍光の画像領域が存在する判定結果のタイミングを、前記第3のタイミングとして、前記ガイド光用光源部が前記ガイド光を照射するように制御する光源制御部と、を有し、
     更に、前記第3のタイミング以降において、前記ガイド光画像信号から抽出された前記ガイド光の照射位置が、前記蛍光の画像領域中に前記作用光を照射する照射位置として設定される設定位置と一致すると前記判定部により判定された判定結果のタイミングを、前記第4のタイミングとして、前記光源制御部は、前記作用光用光源部が前記作用光を照射するように制御することを特徴とする請求項3に記載の内視鏡装置。
    A determination unit for determining the presence / absence of a fluorescent image region having a fluorescent luminance equal to or higher than a second threshold based on the fluorescent imaging signal;
    A light source control unit that controls the light source unit for guide light to irradiate the guide light, with the timing of the determination result that the fluorescence image area equal to or greater than the second threshold is present as the third timing; Have
    Furthermore, after the third timing, the irradiation position of the guide light extracted from the guide light image signal coincides with a set position set as an irradiation position for irradiating the working light in the fluorescent image area. Then, with the timing of the determination result determined by the determination unit as the fourth timing, the light source control unit controls the working light source unit to irradiate the working light. Item 5. The endoscope apparatus according to Item 3.
  7.  更に、前記蛍光の撮像信号に基づき、第2の閾値以上の蛍光輝度を有する蛍光の画像領域の存在の有無を判定する判定部を有し、
     前記判定部により前記第2の閾値以上の蛍光の画像領域が存在する判定結果の場合に、前記発光制御部は、前記励起光と前記参照光とを同時に照射した第1の照射期間において、更に前記ガイド光用光源部が前記ガイド光を、前記励起光と前記参照光との照射と同時となる第2の照射期間となるように制御し、
     更に第2の照射期間において、前記判定部により前記蛍光の画像領域中に前記作用光を照射する照射位置として設定される設定位置と一致すると判定された判定結果の場合に、前記発光制御部は、前記作用光用光源部が前記作用光を、前記励起光と前記参照光と前記ガイド光との照射と同時となる前記照射期間を形成するよう前記作用光を照射するように制御することを特徴とする請求項4に記載の内視鏡装置。
    And a determination unit for determining the presence or absence of a fluorescent image region having a fluorescent luminance equal to or higher than a second threshold based on the fluorescent imaging signal,
    In the case where the determination result is a determination result that there is an image area of fluorescence equal to or greater than the second threshold, the light emission control unit further includes a first irradiation period in which the excitation light and the reference light are simultaneously irradiated. The guide light source unit controls the guide light so as to be in a second irradiation period that is simultaneous with the irradiation of the excitation light and the reference light,
    Furthermore, in the second irradiation period, in the case of a determination result determined by the determination unit to coincide with a set position set as an irradiation position for irradiating the action light in the fluorescence image area, the light emission control unit The working light source unit controls the working light to irradiate the working light so as to form the irradiation period that is simultaneous with the irradiation of the excitation light, the reference light, and the guide light. The endoscope apparatus according to claim 4, wherein the endoscope apparatus is characterized.
  8.  更に、前記蛍光撮像信号として前記蛍光画素それぞれから出力される際の隣接する複数の蛍光画素を加算した画素加算信号を、前記蛍光撮像信号として出力するピクセルビニング回路を備えることを特徴とする請求項4に記載の内視鏡装置。 The image processing apparatus further comprises a pixel binning circuit that outputs a pixel addition signal obtained by adding a plurality of adjacent fluorescent pixels when the fluorescent imaging signal is output from each of the fluorescent pixels as the fluorescent imaging signal. 4. The endoscope apparatus according to 4.
  9.  更に、前記蛍光撮像信号として前記蛍光画素それぞれから出力される際の隣接する複数の蛍光画素を加算した画素加算信号を、前記蛍光撮像信号として出力するピクセルビニング回路を備えることを特徴とする請求項7に記載の内視鏡装置。 The image processing apparatus further comprises a pixel binning circuit that outputs a pixel addition signal obtained by adding a plurality of adjacent fluorescent pixels when the fluorescent imaging signal is output from each of the fluorescent pixels as the fluorescent imaging signal. The endoscope apparatus according to 7.
PCT/JP2015/075084 2015-01-07 2015-09-03 Endoscopic device WO2016111043A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016526964A JP6062111B2 (en) 2015-01-07 2015-09-03 Endoscope device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015001786 2015-01-07
JP2015-001786 2015-01-07

Publications (1)

Publication Number Publication Date
WO2016111043A1 true WO2016111043A1 (en) 2016-07-14

Family

ID=56355756

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/075084 WO2016111043A1 (en) 2015-01-07 2015-09-03 Endoscopic device

Country Status (2)

Country Link
JP (1) JP6062111B2 (en)
WO (1) WO2016111043A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009022653A (en) * 2007-07-23 2009-02-05 Hoya Corp Electronic endoscope system
JP2010042182A (en) * 2008-08-18 2010-02-25 Fujifilm Corp Laser treatment device
JP2012065946A (en) * 2010-09-27 2012-04-05 Fujifilm Corp Electronic endoscope system
JP2012135550A (en) * 2010-12-27 2012-07-19 Nidek Co Ltd Ophthalmic apparatus for laser treatment
WO2012169270A1 (en) * 2011-06-07 2012-12-13 オリンパスメディカルシステムズ株式会社 Endoscope apparatus and light quantity control method for fluorescent light observation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009022653A (en) * 2007-07-23 2009-02-05 Hoya Corp Electronic endoscope system
JP2010042182A (en) * 2008-08-18 2010-02-25 Fujifilm Corp Laser treatment device
JP2012065946A (en) * 2010-09-27 2012-04-05 Fujifilm Corp Electronic endoscope system
JP2012135550A (en) * 2010-12-27 2012-07-19 Nidek Co Ltd Ophthalmic apparatus for laser treatment
WO2012169270A1 (en) * 2011-06-07 2012-12-13 オリンパスメディカルシステムズ株式会社 Endoscope apparatus and light quantity control method for fluorescent light observation

Also Published As

Publication number Publication date
JPWO2016111043A1 (en) 2017-04-27
JP6062111B2 (en) 2017-01-18

Similar Documents

Publication Publication Date Title
JP6184571B2 (en) Fluorescence observation endoscope system
JP5229723B2 (en) Fluorescence image acquisition device
JP5460536B2 (en) Electronic endoscope system
JP5296930B2 (en) Medical equipment
US20200397266A1 (en) Apparatus and method for enhanced tissue visualization
WO2016151888A1 (en) Image processing device
JP6581984B2 (en) Endoscope system
JP5110702B2 (en) Fluorescence image acquisition device
JP2015029841A (en) Imaging device and imaging method
JP6336098B2 (en) Living body observation system
EP2888989B1 (en) Switching between white light imaging and excitation light imaging leaving last video frame displayed
EP1728464A1 (en) Endoscope image pickup system
JP2010094153A (en) Electron endoscopic system and observation image forming method
JP5544260B2 (en) Electronic endoscope system
CN109475270B (en) Living body observation system
JPWO2019176253A1 (en) Medical observation system
JP2010094152A (en) Electron endoscopic system
JP2006346196A (en) Endoscope imaging system
JP2008272507A (en) Endoscope apparatus
JP6062111B2 (en) Endoscope device
JP2019041946A (en) Processor device and operation method thereof, and endoscope system
JP5977913B1 (en) Image processing device
JP2012100733A (en) Endoscopic diagnostic apparatus
WO2021186803A1 (en) Medical observation system, control device, and control method
JP6138386B1 (en) Endoscope apparatus and endoscope system

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016526964

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15876916

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15876916

Country of ref document: EP

Kind code of ref document: A1