WO2016110606A1 - System and method for detecting incident radiation on a solar receiver - Google Patents

System and method for detecting incident radiation on a solar receiver Download PDF

Info

Publication number
WO2016110606A1
WO2016110606A1 PCT/ES2016/070001 ES2016070001W WO2016110606A1 WO 2016110606 A1 WO2016110606 A1 WO 2016110606A1 ES 2016070001 W ES2016070001 W ES 2016070001W WO 2016110606 A1 WO2016110606 A1 WO 2016110606A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation
receiver
region
sensor
light guide
Prior art date
Application number
PCT/ES2016/070001
Other languages
Spanish (es)
French (fr)
Inventor
Guillermo ESPINOSA RUEDA
Noelia Martinez Sanz
Carlos Heras Vila
Iñigo SALINAS ARIZ
Rafael Alonso Esteban
David IZQUIERDO NUÑEZ
Marta OSTA LOMBARDO
Rafael GELLA MARIN
Original Assignee
Abengoa Solar New Technologies, S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Abengoa Solar New Technologies, S.A. filed Critical Abengoa Solar New Technologies, S.A.
Priority to MA40705A priority Critical patent/MA40705A1/en
Publication of WO2016110606A1 publication Critical patent/WO2016110606A1/en
Priority to ZA2017/05258A priority patent/ZA201705258B/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/20Solar heat collectors for receiving concentrated solar energy, e.g. receivers for solar power plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S50/00Arrangements for controlling solar heat collectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S80/00Details, accessories or component parts of solar heat collectors not provided for in groups F24S10/00-F24S70/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J2001/4266Photometry, e.g. photographic exposure meter using electric radiation detectors for measuring solar light
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Definitions

  • the present invention falls within the technology of optical systems or instruments for detecting and measuring radiation sources. More specifically, the invention relates to a system and a method of detecting, in real time, the light distribution that occurs in the solar receiver element located in a tower of a concentrating solar power plant.
  • the system includes the necessary components to measure the intensity of the incident radiation, including the processing of the associated data, and its sending to storage and analysis media.
  • thermoelectric solar energy produces electricity with a conventional thermoelectric cycle, which requires the heating of a high temperature fluid.
  • the tower solar thermal power plants concentrate solar energy, through the use of hundreds or thousands of mirrors, on a receiver that is located in a tower and has typical dimensions of a few tens of square meters, being the ideal situation for performance of this type of plant a uniform distribution of solar energy focused on the receiver from the mirrors.
  • the measurement of the spatial distribution of the receivers installed in the tower plays a role of great relevance for the improvement of said performance.
  • the control of the daily operation and the maintenance of the installations of production of electrical energy due to the large number of mirrors installed and the size of the receivers, it is therefore advisable to have systems that allow the characterization of spatial distribution in real time and quickly, conveniently and easily.
  • the main drawback for the direct capture of the radiation distribution in a receiver is the high temperature that it reaches (usually between 600 e C-700 e C, but can reach up to 1000 e C), which makes use unfeasible direct from photodiode type radiation detectors in the area where said receiver is arranged.
  • indirect methods do not perform a real measurement of the incident radiation on the different points of the receiver, but instead measure, using digital cameras placed at distances far from the receiver, the reflected radiation.
  • the calculation of flow distribution in the receiver can report significant uncertainties, because the measurement in the camera depends on the reflectance of the reflector in the mirror-receiver-camera direction, which is not known.
  • the second case by using a known diffuse reflector as a blank, which can be recalibrated from time to time, the uncertainties due to the reflectance of the target are reduced and flow distributions are obtained with high precision.
  • this method does not report a real-time measurement of the flow distribution and also requires the installation of mobile systems on the front of the receiver that displace the diffuser target.
  • Direct methods measure the radiation that reaches the receiver using sensors that can be thermocouples, thermopiles or calorimeters, located directly on the front of the receiver. These sensors can be fixed on the receiver, for example by the method explained in the article by Osuna, R., Morillo, R., Jiménez, JM, Fernández-Quero, V., "Control and Operation Strategies in PS10 Solar Plant” , Proceedings 13th Solar PACES, Sevilla, Spain, Jun.
  • the sensors and their associated wiring must withstand high temperatures and, depending on the sensor implemented, it is required to protect it by means of a cooling system.
  • the high temperatures to which these systems are subjected can reduce their operational life, in addition to introducing errors in the measurements. In general, these sensors are sensitive to air currents that increase the uncertainty of the measurement.
  • the hot spots of the receiver itself can also introduce errors on the measurement of the sensors.
  • the present invention proposes a solution to the technical problems described, through a novel optical measuring system and a method associated therewith, which allow to overcome the limitations of the systems known in the state of the art.
  • the measurement of the spatial distribution of targeting in receivers of tower exchanges plays a very important role in the total performance of said exchanges.
  • the control of daily operations and the maintenance of these facilities of production of electrical energy and due to the large number of reflective surfaces installed (heliostats) and the size of the receivers used, it is convenient to have systems that allow to perform the characterization of spatial distribution in real time and effectively.
  • the main drawback for the direct capture of the radiation distribution in the receiver is the high temperature that it reaches (typically up to 1 OOCO), which makes the direct use of radiation detectors, such as photodiodes or matrices, unfeasible. CCD, in the area of the receptor exposed to the radiation reflected by the heliostats.
  • an object of the present invention is, therefore, the obtaining of automated means of measurement, in real time, of the distribution of the incident radiation in the receiver, which has great robustness, manageability, rapidity in measurement, sensitivity and a Adequate dynamic range, which is not affected by the high temperatures in the area of the tower receiver.
  • the system comprises a set of sensors distributed on the surface of the receiver, a set of measurement modules located in a cold area, behind the surface of the receiver, and a central system of data processing and communication, which allows store and analyze the information collected.
  • Said object of the invention is thus carried out by means of a system for detecting incident radiation on a solar receiver, said receiver being of the type comprising an anterior region of high temperatures subjected to the incident radiation and a subsequent region of low temperatures. not subjected to incident radiation (for example, a tower receiver in a heliostat thermal power plant).
  • Said system preferably comprises:
  • At least one radiation sensor that communicates a first radiation reception end, located in the anterior region of high temperatures, with a second radiation detection end located in the rear region of low temperatures, said sensor comprising a light guide configured to guide the incident radiation from the first reception end to the second detection end;
  • At least one radiation measurement module guided by the radiation sensor located in the rear detection region and connected to the second detection end of said radiation sensor, comprising a detector of said radiation.
  • the light guide of the radiation sensor comprises a thermally resistant rod at the temperatures of the anterior region of the solar receiver, and / or optical fiber.
  • Said rod can be, for example, a quartz or crystal rod, preferably cylindrical with a diameter between 1 mm and 4 mm.
  • the rod can be connected to optical fiber by means of connectors adapted for this purpose, the optical fiber being connected to the measurement module of the system.
  • the light guide thus has adequate optical properties to transport the radiation (for example, low attenuation of the intensity in the internal reflections), to ensure that the radiation exit angle is equal to the angle of incidence, and thermal resistance suitable to withstand high temperatures (typically, up to 1000 ° C).
  • the rod is inserted into the surface of the receiver, with one end remaining on the front surface of the receiver (in the zone of high temperatures), and the other end crossing the wall of the receiver, which remains in the rear region of the receiver, in An area at room temperature.
  • the incident radiation at the point where the collector is located is collected by the light guide, and transported along it to its cold end, where the incident radiation measurement module will be located.
  • the radiation detector guided by the light guide preferably comprises a distribution of photodiodes, thermopiles, CCD arrays or arrangements (or, according to its English term, "arrays") of photodetectors that thus configure means of recording the intensity of the detected radiation, either promptly or in a detection plane.
  • the connection between the light guide and the measuring module is carried out by means of an intermediate spacing, so that the radiation leaving the second detection end of said light guide reaches the measuring module with a characteristic angular distribution.
  • the measurement module comprises a module for acquiring measured radiation data and, more preferably, said measuring module comprises a communication module configured to send and / or receive data to / from a system remote central This achieves the availability of means for processing and storing the information detected and measured by the system.
  • Another object of the invention relates to a method of detecting incident radiation on a solar receiver, said receiver being of the type comprising a previous region of high temperatures subjected to the incident radiation and a subsequent region of low temperatures not subjected to incident radiation, which includes the use of a measurement system according to any of the embodiments described herein, and where:
  • the method of the invention comprises a stage of analysis of the angular component of the radiation guided by the radiation sensor and, more preferably, in said stage the normal irradiance is calculated from the detected incident radiation and the angular component of guided radiation.
  • a plurality of radiation sensors are used, where their first detection ends are distributed in multiple measuring points over the previous high temperature region of the solar receiver, said measuring points being , preferably, sandwiched between the radiation absorbing elements of the solar receiver.
  • the main advantage of the proposed invention is that it allows real-time measurements of the light distribution that occurs in the receiving element located in a tower of a concentrating solar power plant to be obtained, through means configured to guide the radiation that reaches the tower from any angle of incidence, and with thermal resistance to withstand the high temperatures present in the detecting surface of the tower (typically, up to ⁇ ⁇ ' ⁇ ).
  • Figure 1 shows a scheme with the essential characteristics of a solar tower receiver.
  • Figure 2 shows an enlarged front view of the front face of a solar tower receiver.
  • FIG. 3 shows a general scheme of the system of the present invention, in which its main components and their arrangement in the solar tower receiver are indicated.
  • Figure 4 shows the scheme of a first preferred embodiment of the system of the invention.
  • Figure 5 shows the scheme of a second preferred embodiment of the system of the invention.
  • Figure 6 shows the scheme of a third preferred embodiment of the system of the invention.
  • FIG. 1 of this document shows a generic scheme of the receiver of a solar tower.
  • the incident radiation (1) that comes from the heliostats affects the anterior region of the tower receiver (7).
  • Said receiver preferably includes radiation absorbing tubes (3), a layer of thermal insulating material (4) and the clamping structure (5) of the receiver in the tower.
  • two differentiated thermal zones are distinguished: a zone of high temperatures in the anterior region (7) of the receiver and a zone of low or ambient temperatures in the posterior region (6) of the receiver.
  • the distribution of heliostats determines the incident flow configuration (1) on the surface of the receiver.
  • a series of measuring points (8) are also located, distributed uniformly in the front part (7) of the tower receiver (2).
  • Figure 2 of this document shows a front view of said front part of the receiver (7), with a possible distribution of the measuring points (8).
  • a radiation sensor (10) for its part, and as shown in Figure 3, at each measuring point (8) there is a radiation sensor (10), a measuring module (1 1) and a communication module (12) with a central system (9).
  • Said figure represents, in a cross section of the receiver, the arrangement of the elements that form a measuring point.
  • Each radiation sensor (10) preferably comprises a quartz rod between 1 mm and 4 mm in diameter, and more preferably 2 mm, these dimensions being suitable to be inserted into the receiver, between the absorber tubes (3), passing through the insulating material (4) and the support structure of the receiver (5).
  • the front end (10a) of the quartz rod is on the front face of the receiver (2) to collect the incident radiation
  • the rear end (10b) of the quartz rod is in the rear region of the receiver ( 6), in the zone of low or ambient temperatures.
  • the incident radiation (1) at each measurement point is collected by its rod (10) and guided to the rear end (10b) to be measured in the measurement module (1 1).
  • Figure 4 shows the scheme of a first preferred embodiment of the invention.
  • the measurement module (1 1) comprises a light radiation detector (13), which directly measures the radiation guided (14) by the sensor to its output, and a data acquisition module (15).
  • the light radiation detector (13) can be, for example, a photodiode or a thermopile.
  • the ratio of losses (attenuation) of the rod can be determined, which allows calculating the light power incident at the front end of the rod from the light power measured in the detector (13).
  • Each detector (13) is preferably followed by an amplification step, the gain of which depends on the value of the resistance included.
  • This resistance can be, for example, a digital potentiometer whose value can be controlled via software, which allows you to adjust the gain of each measurement point at any time using the digital outputs of the data acquisition module (15).
  • the data acquisition module (15) communicates with a central module (9) for data processing and system control.
  • Said central data processing and communication system (9) can be a computer. Preferably, it receives the data that comes from each of the measurement points, and incorporates them into a database and data processing software to calculate the distribution of incident flow in the receiver.
  • the scheme followed is analogous to that of the first preferred embodiment, except in the design of the measurement module (1 1).
  • the light radiation detector (13) can be a CCD matrix or an "array" of photodetectors, and is slightly separated from the rod (and, consequently, from the radiation sensor (10)), aligned with it. .
  • the intensity distribution of the radiation coming out of the sensor (10) is measured.
  • the ratio of the intensity distribution of the radiation coming out of the sensor (10) is fixed, with respect to the angle distribution of the incident radiation in the sensor that is known, which allows to calculate the light power incident in the front end of the rod from the light power measured in the detector (13).
  • the radiation exiting the sensor (10) is injected through a connector (16) to one or more fiber optic beams (17).
  • the light radiation detector (13) is placed, which can be for example a photodiode, a thermopile, a CCD matrix or an "array" of photodetectors (in the case of the latter two detectors, the fiber is slightly separated from the detector).
  • the radiation guided (18) by the fiber (17) can be taken to a location away from the sensor (10).
  • the ratio of losses of the rod, the connectors and the fiber can be determined, which makes it possible to calculate the light power incident at the front end of the rod from the light power measured in the detector (13).

Abstract

The invention relates to a system and method for detecting incident radiation on a solar receiver having regions at different temperatures, said system comprising: at least one radiation collector connecting a first radiation-receiving end, located in a high-temperature front region, and a second radiation-detecting region, located in a low-temperature rear region; and at lest one module for measuring the radiation guided by the radiation collector, located in the rear detection region. The invention can be used to obtain measurements of the light distribution in the receiver, using means designed to guide the light that hits the tower at any angle of incidence, said means having a thermal resistance to withstand the high temperatures present on the detection surface of the tower.

Description

DESCRIPCIÓN  DESCRIPTION
SISTEMA Y METODO DE DETECCION DE RADIACION INCIDENTE SOBRE UNSYSTEM AND METHOD OF RADIATION DETECTION INCIDENT ON A
RECEPTOR SOLAR SOLAR RECEIVER
CAMPO DE LA INVENCION FIELD OF THE INVENTION
La presente invención se encuadra dentro de la tecnología de sistemas o instrumentos ópticos de detección y medida de fuentes de radiación. Más concretamente, la invención se refiere a un sistema y a un método de detección, en tiempo real, de la distribución luminosa que se produce en el elemento receptor solar situado en una torre de una central solar de concentración. El sistema incluye los componentes necesarios para realizar la medida de la intensidad de la radiación incidente, incluyendo el procesado de los datos asociados, y su envío a medios de almacenamiento y análisis. The present invention falls within the technology of optical systems or instruments for detecting and measuring radiation sources. More specifically, the invention relates to a system and a method of detecting, in real time, the light distribution that occurs in the solar receiver element located in a tower of a concentrating solar power plant. The system includes the necessary components to measure the intensity of the incident radiation, including the processing of the associated data, and its sending to storage and analysis media.
ANTECEDENTES DE LA INVENCIÓN BACKGROUND OF THE INVENTION
Dentro del sector de las energías renovables, la captación de energía solar térmica posee actualmente una gran importancia tecnológica y económica, tanto en el ámbito doméstico como en el industrial. De entre las formas de obtención de energía solar térmica, la energía solar termoeléctrica produce electricidad con un ciclo termoeléctrico convencional, que precisa del calentamiento de un fluido a alta temperatura. Más concretamente, las centrales termosolares de torre concentran la energía solar, mediante el uso de centenares o millares de espejos, sobre un receptor que se sitúa en una torre y que tiene dimensiones típicas de unas decenas de metros cuadrados, siendo la situación ideal para el rendimiento de este tipo de centrales una distribución uniforme de la energía solar focalizada sobre el receptor desde los espejos. Within the renewable energy sector, solar thermal energy collection currently has a great technological and economic importance, both in the domestic and industrial fields. Among the ways of obtaining thermal solar energy, thermoelectric solar energy produces electricity with a conventional thermoelectric cycle, which requires the heating of a high temperature fluid. More specifically, the tower solar thermal power plants concentrate solar energy, through the use of hundreds or thousands of mirrors, on a receiver that is located in a tower and has typical dimensions of a few tens of square meters, being the ideal situation for performance of this type of plant a uniform distribution of solar energy focused on the receiver from the mirrors.
Dada la gran importancia de la configuración del conjunto formado por la torre y los espejos para el rendimiento energético de la central, la medida de la distribución espacial de focalización de los receptores instalados en la torre juega un papel de gran relevancia para la mejora de dicho rendimiento. Para la explotación, el control de la operación diaria y el mantenimiento de las instalaciones de producción de energía eléctrica, debido al gran número de espejos instalados y al tamaño de los receptores, es conveniente contar, pues, con sistemas que permitan realizar la caracterización de la distribución espacial en tiempo real y de forma rápida, cómoda y sencilla. El principal inconveniente para la captación directa de la distribución de radiación en un receptor es la elevada temperatura que éste alcanza (habitualmente, entre 600eC-700eC, pero pudiendo llegar hasta los 1000eC), lo cual hace inviable el uso directo de detectores de radiación de tipo fotodiodo en la zona donde se dispone dicho receptor. Para superar esta limitación, los métodos desarrollados hasta la fecha para realizar la medida de la distribución de radiación en los receptores de torre se dividen, tradicionalmente, en dos tipos: métodos indirectos y métodos directos. Los métodos indirectos no realizan una medida real de la radiación incidente sobre los diferentes puntos del receptor, sino que miden, usando cámaras digitales colocadas en distancias alejadas del receptor, la radiación reflejada. Este método es divulgado en el artículo Marc Róger et al., "Flux Density Measurement on Large-Scale Receivers", SolarPACES-201 1 (201 1 ). Dicha medida se realiza, bien directamente por el receptor, o bien por un blanco difuso (barras o similar) colocado por delante del receptor y que se desplaza a lo largo del mismo, tal y como se describe en el artículo de Von Tobel, G., Schelders, Ch., Real, M., "Concentrated Solar Flux Measurements at the IEA-SSPS Solar Central Receiver Power Plant", Tabernas- Almería, Spain, Final Report, Swiss (1982). En ambos casos, y a partir de la medida de la radiación reflejada, se estima mediante cálculos la densidad de flujo de la radiación incidente. En el primer caso, el cálculo de distribución de flujo en el receptor puede reportar incertidumbres importantes, debido a que la medida en la cámara depende de la reflectancia del reflector en la dirección espejo-receptor-cámara, que no es conocida. En el segundo caso, al usar como blanco un reflector difuso conocido, que puede recalibrarse cada cierto tiempo, se reducen las incertidumbres debidas a la reflectancia del blanco y se obtienen distribuciones de flujo con alta precisión. Sin embargo, este método no reporta una medida en tiempo real de la distribución de flujo y, además, exige la instalación de sistemas móviles en la parte frontal del receptor que desplacen el blanco difusor. Given the great importance of the configuration of the set formed by the tower and the mirrors for the power efficiency of the plant, the measurement of the spatial distribution of the receivers installed in the tower plays a role of great relevance for the improvement of said performance. For the operation, the control of the daily operation and the maintenance of the installations of production of electrical energy, due to the large number of mirrors installed and the size of the receivers, it is therefore advisable to have systems that allow the characterization of spatial distribution in real time and quickly, conveniently and easily. The main drawback for the direct capture of the radiation distribution in a receiver is the high temperature that it reaches (usually between 600 e C-700 e C, but can reach up to 1000 e C), which makes use unfeasible direct from photodiode type radiation detectors in the area where said receiver is arranged. To overcome this limitation, the methods developed to date to measure the distribution of radiation in tower receivers are traditionally divided into two types: indirect methods and direct methods. Indirect methods do not perform a real measurement of the incident radiation on the different points of the receiver, but instead measure, using digital cameras placed at distances far from the receiver, the reflected radiation. This method is disclosed in the article Marc Róger et al., "Flux Density Measurement on Large-Scale Receivers", SolarPACES-201 1 (201 1). This measurement is carried out, either directly by the receiver, or by a diffuse target (bars or similar) placed in front of the receiver and that moves along it, as described in the article by Von Tobel, G ., Schelders, Ch., Real, M., "Concentrated Solar Flux Measurements at the IEA-SSPS Solar Central Receiver Power Plant", Tabernas-Almeria, Spain, Final Report, Swiss (1982). In both cases, and based on the measurement of the reflected radiation, the flux density of the incident radiation is estimated by calculations. In the first case, the calculation of flow distribution in the receiver can report significant uncertainties, because the measurement in the camera depends on the reflectance of the reflector in the mirror-receiver-camera direction, which is not known. In the second case, by using a known diffuse reflector as a blank, which can be recalibrated from time to time, the uncertainties due to the reflectance of the target are reduced and flow distributions are obtained with high precision. However, this method does not report a real-time measurement of the flow distribution and also requires the installation of mobile systems on the front of the receiver that displace the diffuser target.
Los métodos directos miden la radiación que llega al receptor mediante sensores que pueden ser termopares, termopilas o calorímetros, ubicados directamente en la parte delantera del receptor. Estos sensores pueden colocarse fijos sobre el receptor, por ejemplo mediante el método explicado en el artículo de Osuna, R., Morillo, R., Jiménez, J. M., Fernández-Quero, V., "Control and Operation Strategies in PS10 Solar Plant", Proceedings 13th Solar PACES, Sevilla, Spain, Jun. 20-23 (2006), o pueden colocarse sobre barras o brazos móviles que se desplazan por delante del receptor, según lo divulgado en el artículo de Isayed, M. M., Fat ala , K. A., Al-Rabghi, O. M., "Measurements of Solar Flux Density Distribution on a Plañe Receiver due to a Fiat Heliostat", Sol. Energy, 54(6), pp. 403-41 1 (1995). Los sensores y su cableado asociado deben soportar altas temperaturas y, dependiendo del sensor implementado, se requiere protegerlo mediante un sistema de refrigeración. Las altas temperaturas a las que están sometidos estos sistemas pueden reducir la vida operativa de los mismos, además de introducir errores en las medidas. En general, estos sensores son sensibles a corrientes de aires que incrementan la incertidumbre de la medida. Los puntos calientes del propio receptor también pueden introducir errores sobre la medida de los sensores. Direct methods measure the radiation that reaches the receiver using sensors that can be thermocouples, thermopiles or calorimeters, located directly on the front of the receiver. These sensors can be fixed on the receiver, for example by the method explained in the article by Osuna, R., Morillo, R., Jiménez, JM, Fernández-Quero, V., "Control and Operation Strategies in PS10 Solar Plant" , Proceedings 13th Solar PACES, Sevilla, Spain, Jun. 20-23 (2006), or they can be placed on rods or mobile arms that move in front of the receiver, as disclosed in the article by Isayed, MM, Fat ala, KA, Al-Rabghi, OM, "Measurements of Solar Flux Density Distribution on a Plañe Receiver due to a Fiat Heliostat", Sol. Energy, 54 (6), pp. 403-41 1 (1995). The sensors and their associated wiring must withstand high temperatures and, depending on the sensor implemented, it is required to protect it by means of a cooling system. The high temperatures to which these systems are subjected can reduce their operational life, in addition to introducing errors in the measurements. In general, these sensors are sensitive to air currents that increase the uncertainty of the measurement. The hot spots of the receiver itself can also introduce errors on the measurement of the sensors.
Ninguno de los sistemas citados ni otros similares cumplen los requisitos necesarios para la medida de la distribución espacial de focalización en receptores de centrales termosolares de torre, ya sea por falta de capacidad de medida en tiempo real, de medida de radiación lumínica incidente o por incertidumbre de la medida. De este modo, la presente invención propone una solución a los problemas técnicos descritos, a través de un novedoso sistema óptico de medida y de un método asociado al mismo, que permiten superar las limitaciones de los sistemas conocidos del estado de la técnica. None of the aforementioned or similar systems meet the necessary requirements for the measurement of the spatial distribution of targeting in receivers of tower solar thermal power plants, either due to lack of real-time measurement capacity, measurement of incident light radiation or uncertainty of the measure. In this way, the present invention proposes a solution to the technical problems described, through a novel optical measuring system and a method associated therewith, which allow to overcome the limitations of the systems known in the state of the art.
DESCRIPCIÓN BREVE DE LA INVENCIÓN BRIEF DESCRIPTION OF THE INVENTION
Tal y como se ha mencionado previamente, la medida de la distribución espacial de focalización en receptores de centrales de torre juega un papel muy importante en el rendimiento total de dichas centrales. Para la explotación, el control de operaciones diarias y el mantenimiento de estas instalaciones de producción de energía eléctrica, y debido al gran número de superficies reflectantes instaladas (heliostatos) y al tamaño de los receptores utilizados, es conveniente contar con sistemas que permitan realizar la caracterización de la distribución espacial en tiempo real y de forma eficaz. Sin embargo, el principal inconveniente para la captación directa de la distribución de radiación en el receptor es la elevada temperatura que éste alcanza (típicamente de hasta l OOCO), lo cual hace inviable el uso directo de detectores de radiación, tales como fotodiodos o matrices CCD, en la zona del receptor expuesta a la radiación reflejada por los heliostatos. As previously mentioned, the measurement of the spatial distribution of targeting in receivers of tower exchanges plays a very important role in the total performance of said exchanges. For the operation, the control of daily operations and the maintenance of these facilities of production of electrical energy, and due to the large number of reflective surfaces installed (heliostats) and the size of the receivers used, it is convenient to have systems that allow to perform the characterization of spatial distribution in real time and effectively. However, the main drawback for the direct capture of the radiation distribution in the receiver is the high temperature that it reaches (typically up to 1 OOCO), which makes the direct use of radiation detectors, such as photodiodes or matrices, unfeasible. CCD, in the area of the receptor exposed to the radiation reflected by the heliostats.
En consecuencia, un objeto de la presente invención es, pues, la obtención de medios automatizados de medida, en tiempo real, de la distribución de la radiación incidente en el receptor, que presenta gran robustez, manejabilidad, rapidez en la medida, sensibilidad y un rango dinámico adecuado, que no se ve afectado por las altas temperaturas existentes en la zona del receptor de torre. Para ello, el sistema comprende un conjunto de captadores distribuidos en la superficie del receptor, un conjunto de módulos de medida ubicados en una zona fría, por detrás de la superficie del receptor, y un sistema central de tratamiento de datos y comunicación, que permita almacenar y analizar la información recabada. Consequently, an object of the present invention is, therefore, the obtaining of automated means of measurement, in real time, of the distribution of the incident radiation in the receiver, which has great robustness, manageability, rapidity in measurement, sensitivity and a Adequate dynamic range, which is not affected by the high temperatures in the area of the tower receiver. For this, the system comprises a set of sensors distributed on the surface of the receiver, a set of measurement modules located in a cold area, behind the surface of the receiver, and a central system of data processing and communication, which allows store and analyze the information collected.
Dicho objeto de la invención se realiza, pues, mediante un sistema de detección de radiación incidente sobre un receptor solar, siendo dicho receptor del tipo de los que comprenden una región anterior de altas temperaturas sometida a la radiación incidente y una región posterior de bajas temperaturas no sometida a la radiación incidente (por ejemplo, un receptor de torre en una central térmica de heliostatos). Dicho sistema comprende, preferentemente: Said object of the invention is thus carried out by means of a system for detecting incident radiation on a solar receiver, said receiver being of the type comprising an anterior region of high temperatures subjected to the incident radiation and a subsequent region of low temperatures. not subjected to incident radiation (for example, a tower receiver in a heliostat thermal power plant). Said system preferably comprises:
- al menos un captador de radiación que comunica un primer extremo de recepción de radiación, situado en la región anterior de altas temperaturas, con un segundo extremo de detección de radiación situado en la región posterior de bajas temperaturas, comprendiendo dicho captador una guía de luz configurada para guiar la radiación incidente desde el primer extremo de recepción hasta el segundo extremo de detección;  - at least one radiation sensor that communicates a first radiation reception end, located in the anterior region of high temperatures, with a second radiation detection end located in the rear region of low temperatures, said sensor comprising a light guide configured to guide the incident radiation from the first reception end to the second detection end;
- al menos un módulo de medida de la radiación guiada por el captador de radiación, situado en la región posterior de detección y conectado al segundo extremo de detección de dicho captador de radiación, que comprende un detector de dicha radiación.  - at least one radiation measurement module guided by the radiation sensor, located in the rear detection region and connected to the second detection end of said radiation sensor, comprising a detector of said radiation.
Preferentemente, la guía de luz del captador de radiación comprende una varilla térmicamente resistente a las temperaturas de la región anterior del receptor solar, y/o fibra óptica. Dicha varilla puede ser, por ejemplo, una varilla de cuarzo o cristal, preferentemente cilindrica con un diámetro de entre 1 mm y 4 mm. En diferentes realizaciones de la invención, la varilla puede estar conectada a fibra óptica por medio de conectores adaptados al efecto, estando a su vez la fibra óptica conectada al módulo de medida del sistema. Preferably, the light guide of the radiation sensor comprises a thermally resistant rod at the temperatures of the anterior region of the solar receiver, and / or optical fiber. Said rod can be, for example, a quartz or crystal rod, preferably cylindrical with a diameter between 1 mm and 4 mm. In different embodiments of the invention, the rod can be connected to optical fiber by means of connectors adapted for this purpose, the optical fiber being connected to the measurement module of the system.
La guía de luz posee, pues, propiedades ópticas adecuadas para transportar la radiación (por ejemplo, baja atenuación de la intensidad en las reflexiones internas), para asegurar que el ángulo de salida de la radiación sea igual al ángulo de incidencia, y resistencia térmica adecuada para soportar las altas temperaturas (típicamente, de hasta 1000°C). La varilla se inserta en la superficie del receptor, con un extremo que queda en la superficie anterior del receptor (en la zona de altas temperaturas), y el otro extremo atravesando la pared del receptor, que queda en la región posterior del receptor, en una zona a temperatura ambiente. La radiación incidente en el punto donde se ubica el captador es recogida por la guía de luz, y transportada a lo largo de la misma hasta su extremo frío, donde se ubicará el módulo de medida de la radiación incidente. The light guide thus has adequate optical properties to transport the radiation (for example, low attenuation of the intensity in the internal reflections), to ensure that the radiation exit angle is equal to the angle of incidence, and thermal resistance suitable to withstand high temperatures (typically, up to 1000 ° C). The rod is inserted into the surface of the receiver, with one end remaining on the front surface of the receiver (in the zone of high temperatures), and the other end crossing the wall of the receiver, which remains in the rear region of the receiver, in An area at room temperature. The incident radiation at the point where the collector is located is collected by the light guide, and transported along it to its cold end, where the incident radiation measurement module will be located.
Por su parte, el detector de la radiación guiada por la guía de luz comprende, preferentemente, una distribución de fotodiodos, termopilas, matrices CCD o disposiciones (o, según su término en inglés, "arrays") de fotodetectores que configuran, pues, medios de registro de la intensidad de la radiación detectada, ya sea puntualmente o en un plano de detección. En una realización preferente de la invención, la conexión entre la guía de luz y el módulo de medida se realiza mediante un espaciamiento intermedio, de forma que la radiación que sale del segundo extremo de detección de dicha guía de luz llega al módulo de medida con una distribución angular característica.  On the other hand, the radiation detector guided by the light guide preferably comprises a distribution of photodiodes, thermopiles, CCD arrays or arrangements (or, according to its English term, "arrays") of photodetectors that thus configure means of recording the intensity of the detected radiation, either promptly or in a detection plane. In a preferred embodiment of the invention, the connection between the light guide and the measuring module is carried out by means of an intermediate spacing, so that the radiation leaving the second detection end of said light guide reaches the measuring module with a characteristic angular distribution.
En una realización preferente de la invención, el módulo de medida comprende un módulo de adquisición de datos de la radiación medida y, más preferentemente, dicho módulo de medida comprende un módulo de comunicación configurado para enviar y/o recibir datos a/desde un sistema central remoto. Se consigue con ello disponer de medios de procesamiento y de almacenamiento de la información detectada y medida por el sistema. In a preferred embodiment of the invention, the measurement module comprises a module for acquiring measured radiation data and, more preferably, said measuring module comprises a communication module configured to send and / or receive data to / from a system remote central This achieves the availability of means for processing and storing the information detected and measured by the system.
Otro objeto de la invención se refiere a un método de detección de radiación incidente sobre un receptor solar, siendo dicho receptor del tipo de los que comprenden una región anterior de altas temperaturas sometida a la radiación incidente y una región posterior de bajas temperaturas no sometida a la radiación incidente, que comprende el uso de un sistema de medición según cualquiera de las realizaciones descritas en el presente documento, y donde: Another object of the invention relates to a method of detecting incident radiation on a solar receiver, said receiver being of the type comprising a previous region of high temperatures subjected to the incident radiation and a subsequent region of low temperatures not subjected to incident radiation, which includes the use of a measurement system according to any of the embodiments described herein, and where:
- se recibe la radiación incidente en el primer extremo de recepción del captador de radiación;  - the incident radiation is received at the first receiving end of the radiation sensor;
- se guía dicha radiación hasta el segundo extremo de detección del captador de radiación;  - said radiation is guided to the second detection end of the radiation sensor;
- se mide la intensidad de la radiación guiada en la región posterior de bajas temperaturas, por medio del módulo de medida. Preferentemente, el método de la invención comprende una etapa de análisis de la componente angular de la radiación guiada por el captador de radiación y, más preferentemente, en dicha etapa se calcula la irradiancia normal a partir de la radiación incidente detectada y de la componente angular de la radiación guiada. Asimismo, en diferentes realizaciones del método de la invención, se utiliza una pluralidad de captadores de radiación, donde sus primeros extremos de detección se encuentran distribuidos en múltiples puntos de medida sobre la región anterior de altas temperaturas del receptor solar, estando dichos puntos de medida, preferentemente, intercalados entre los elementos de absorción de radiación del receptor solar. - the intensity of the guided radiation in the posterior region of low temperatures is measured by means of the measuring module. Preferably, the method of the invention comprises a stage of analysis of the angular component of the radiation guided by the radiation sensor and, more preferably, in said stage the normal irradiance is calculated from the detected incident radiation and the angular component of guided radiation. Also, in different embodiments of the method of the invention, a plurality of radiation sensors are used, where their first detection ends are distributed in multiple measuring points over the previous high temperature region of the solar receiver, said measuring points being , preferably, sandwiched between the radiation absorbing elements of the solar receiver.
Tal y como se ha descrito anteriormente, la ventaja principal de la invención propuesta es que permite obtener medidas, en tiempo real, de la distribución luminosa que se produce en el elemento receptor situado en una torre de una central solar de concentración, a través de medios configurados para guiar la radiación que llega a la torre desde cualquier ángulo de incidencia, y con resistencia térmica para soportar las altas temperaturas presentes en la superficie detectora de la torre (típicamente, hasta Ι ΟΟΟ 'Ό). As described above, the main advantage of the proposed invention is that it allows real-time measurements of the light distribution that occurs in the receiving element located in a tower of a concentrating solar power plant to be obtained, through means configured to guide the radiation that reaches the tower from any angle of incidence, and with thermal resistance to withstand the high temperatures present in the detecting surface of the tower (typically, up to Ι ΟΟΟ 'Ό).
DESCRIPCIÓN DE LAS FIGURAS DESCRIPTION OF THE FIGURES
La Figura 1 muestra un esquema con las características esenciales de un receptor de torre solar. Figure 1 shows a scheme with the essential characteristics of a solar tower receiver.
La Figura 2 muestra una vista frontal ampliada de la cara anterior de un receptor de torre solar. Figure 2 shows an enlarged front view of the front face of a solar tower receiver.
La Figura 3 muestra un esquema general del sistema de la presente invención, en el que se indican sus componentes principales y su disposición en el receptor de torre solar. Figure 3 shows a general scheme of the system of the present invention, in which its main components and their arrangement in the solar tower receiver are indicated.
La Figura 4 muestra el esquema de una primera realización preferente del sistema de la invención. Figure 4 shows the scheme of a first preferred embodiment of the system of the invention.
La Figura 5 muestra el esquema de una segunda realización preferente del sistema de la invención. La Figura 6 muestra el esquema de una tercera realización preferente del sistema de la invención. Figure 5 shows the scheme of a second preferred embodiment of the system of the invention. Figure 6 shows the scheme of a third preferred embodiment of the system of the invention.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN La Figura 1 del presente documento muestra un esquema genérico del receptor de una torre solar. La radiación incidente (1 ) que proviene de los heliostatos incide sobre la región anterior del receptor de torre (7). Dicho receptor incluye, preferentemente, tubos absorbedores (3) de la radiación, una capa de material aislante térmico (4) y la estructura de sujeción (5) del receptor en la torre. De esta forma, se distinguen dos zonas térmicas diferenciadas: una zona de temperaturas altas en la región anterior (7) del receptor y una zona de temperaturas bajas o ambiente en la región posterior (6) del receptor. La distribución de los heliostatos determina la configuración de flujo incidente (1 ) en la superficie del receptor. DETAILED DESCRIPTION OF THE INVENTION Figure 1 of this document shows a generic scheme of the receiver of a solar tower. The incident radiation (1) that comes from the heliostats affects the anterior region of the tower receiver (7). Said receiver preferably includes radiation absorbing tubes (3), a layer of thermal insulating material (4) and the clamping structure (5) of the receiver in the tower. In this way, two differentiated thermal zones are distinguished: a zone of high temperatures in the anterior region (7) of the receiver and a zone of low or ambient temperatures in the posterior region (6) of the receiver. The distribution of heliostats determines the incident flow configuration (1) on the surface of the receiver.
En el receptor se localizan, asimismo, una serie de puntos de medida (8), distribuidos de forma uniforme en la parte anterior (7) del receptor de torre (2). La Figura 2 del presente documento muestra una vista frontal de dicha parte anterior del receptor (7), con una posible distribución de los puntos de medida (8). Por su parte, y tal como se muestra en la Figura 3, en cada punto de medida (8) se sitúa un captador de radiación (10), un módulo de medida (1 1 ) y un módulo de comunicación (12) con un sistema central (9). Dicha figura representa, en un corte transversal del receptor, la disposición de los elementos que forman un punto de medida. Cada captador de radiación (10) comprende preferentemente una varilla de cuarzo de entre 1 mm y 4 mm de diámetro, y más preferentemente de 2 mm, siendo estas dimensiones aptas como para insertarse en el receptor, entre los tubos absorbedores (3), atravesando el material aislante (4) y la estructura de soporte del receptor (5). De este modo, el extremo anterior (10a) de la varilla de cuarzo queda en la cara anterior del receptor (2) para recoger la radiación incidente y el extremo posterior (10b) de la varilla de cuarzo queda en la región posterior del receptor (6), en la zona de temperaturas bajas o ambiente. La radiación incidente (1 ) en cada punto de medida es recogida por su varilla (10) y guiada hasta el extremo posterior (10b) para ser medida en el módulo de medida (1 1 ). La Figura 4 muestra el esquema de una primera realización preferente de la invención. En dicha realización, el módulo de medida (1 1 ) comprende un detector de radiación lumínica (13), que mide directamente la radiación guiada (14) por el captador hasta su salida, y un módulo de adquisición de datos (15). El detector de radiación lumínica (13) puede ser, por ejemplo, un fotodiodo o una termopila. Mediante calibración previa, la relación de pérdidas (atenuación) de la varilla puede ser determinada, lo que permite calcular la potencia lumínica incidente en el extremo anterior de la varilla a partir de la potencia lumínica medida en el detector (13). Cada detector (13) está preferentemente seguido de una etapa de amplificación, cuya ganancia depende del valor de la resistencia que incluya. Esta resistencia puede ser, por ejemplo, un potenciómetro digital cuyo valor se puede controlar vía software, lo que permite ajustar la ganancia de cada punto de medida en cualquier momento utilizando las salidas digitales del módulo de adquisición de datos (15). In the receiver, a series of measuring points (8) are also located, distributed uniformly in the front part (7) of the tower receiver (2). Figure 2 of this document shows a front view of said front part of the receiver (7), with a possible distribution of the measuring points (8). For its part, and as shown in Figure 3, at each measuring point (8) there is a radiation sensor (10), a measuring module (1 1) and a communication module (12) with a central system (9). Said figure represents, in a cross section of the receiver, the arrangement of the elements that form a measuring point. Each radiation sensor (10) preferably comprises a quartz rod between 1 mm and 4 mm in diameter, and more preferably 2 mm, these dimensions being suitable to be inserted into the receiver, between the absorber tubes (3), passing through the insulating material (4) and the support structure of the receiver (5). Thus, the front end (10a) of the quartz rod is on the front face of the receiver (2) to collect the incident radiation and the rear end (10b) of the quartz rod is in the rear region of the receiver ( 6), in the zone of low or ambient temperatures. The incident radiation (1) at each measurement point is collected by its rod (10) and guided to the rear end (10b) to be measured in the measurement module (1 1). Figure 4 shows the scheme of a first preferred embodiment of the invention. In said embodiment, the measurement module (1 1) comprises a light radiation detector (13), which directly measures the radiation guided (14) by the sensor to its output, and a data acquisition module (15). The light radiation detector (13) can be, for example, a photodiode or a thermopile. By prior calibration, the ratio of losses (attenuation) of the rod can be determined, which allows calculating the light power incident at the front end of the rod from the light power measured in the detector (13). Each detector (13) is preferably followed by an amplification step, the gain of which depends on the value of the resistance included. This resistance can be, for example, a digital potentiometer whose value can be controlled via software, which allows you to adjust the gain of each measurement point at any time using the digital outputs of the data acquisition module (15).
El módulo de adquisición de datos (15) se comunica con un módulo central (9) de tratamiento de datos y de control del sistema. Dicho sistema central de tratamiento de datos y comunicación (9) puede ser un ordenador. Preferentemente, recibe los datos que provienen de cada uno de los puntos de medida, y los incorpora a una base de datos y a un software de tratamiento de datos para calcular la distribución de flujo incidente en el receptor. En una segunda realización preferente de la invención, representada por la Figura 5, el esquema seguido es análogo al de la primera realización preferente, salvo en el diseño del módulo de medida (1 1 ). En este caso, el detector de radiación lumínica (13) puede ser una matriz CCD o un "array" de fotodetectores, y está ligeramente separado de la varilla (y, en consecuencia, del captador de radiación (10)), alineado con ésta. Así, se mide la distribución de intensidades de la radiación que sale del captador (10). Mediante calibración previa, se fija la relación de distribución de intensidades de la radiación que sale del captador (10), respecto a la distribución en ángulos de la radiación incidente en el captador que es conocida, lo que permite calcular la potencia lumínica incidente en el extremo anterior de la varilla a partir de la potencia lumínica medida en el detector (13). The data acquisition module (15) communicates with a central module (9) for data processing and system control. Said central data processing and communication system (9) can be a computer. Preferably, it receives the data that comes from each of the measurement points, and incorporates them into a database and data processing software to calculate the distribution of incident flow in the receiver. In a second preferred embodiment of the invention, represented by Figure 5, the scheme followed is analogous to that of the first preferred embodiment, except in the design of the measurement module (1 1). In this case, the light radiation detector (13) can be a CCD matrix or an "array" of photodetectors, and is slightly separated from the rod (and, consequently, from the radiation sensor (10)), aligned with it. . Thus, the intensity distribution of the radiation coming out of the sensor (10) is measured. By means of a previous calibration, the ratio of the intensity distribution of the radiation coming out of the sensor (10) is fixed, with respect to the angle distribution of the incident radiation in the sensor that is known, which allows to calculate the light power incident in the front end of the rod from the light power measured in the detector (13).
En una tercera realización preferente, mostrada por la Figura 6 (análoga a la primera o a la segunda realización preferente, salvo en el diseño del módulo de medida (1 1 )), la radiación que sale del captador (10) es inyectada mediante un conector (16) a uno o más haces de fibra óptica (17). En el otro extremo de la fibra (17), tras un conector (16), se coloca el detector de radiación lumínica (13), que puede ser por ejemplo un fotodiodo, una termopila, una matriz CCD o un "array" de fotodetectores (estando en el caso de éstos dos últimos detectores la fibra ligeramente separada del detector). Así, la radiación guiada (18) por la fibra (17) puede llevarse a una ubicación alejada del captador (10). Mediante calibración previa, la relación de pérdidas de la varilla, los conectores y la fibra puede determinarse, lo que permite calcular la potencia lumínica incidente en el extremo anterior de la varilla a partir de la potencia lumínica medida en el detector (13). In a third preferred embodiment, shown by Figure 6 (analogous to the first or second preferred embodiment, except in the design of the measurement module (1 1)), the radiation exiting the sensor (10) is injected through a connector (16) to one or more fiber optic beams (17). At the other end of the fiber (17), after a connector (16), the light radiation detector (13) is placed, which can be for example a photodiode, a thermopile, a CCD matrix or an "array" of photodetectors (in the case of the latter two detectors, the fiber is slightly separated from the detector). Thus, the radiation guided (18) by the fiber (17) can be taken to a location away from the sensor (10). By prior calibration, the ratio of losses of the rod, the connectors and the fiber can be determined, which makes it possible to calculate the light power incident at the front end of the rod from the light power measured in the detector (13).
Para el cálculo de la intensidad de radiación recibida en el detector (13) es necesario, en el caso de la segunda y tercera realización preferente con matriz CCD o "array de fotodetectores, tener en cuenta el ángulo de incidencia de dicha radiación, puesto que la relación entre la intensidad de la radiación medida (lmed¡da) y la de la radiación incidente (l¡nc¡dente) será: lmed¡da= k(a) -cos(a)- linCidente, donde a es el valor del ángulo de incidencia de la radiación sobre el captador, y k(a) es el factor de atenuación que vendrá determinado por dicho ángulo de incidencia, así como por las características ópticas de la guía de luz del captador (10). For the calculation of the radiation intensity received in the detector (13) it is necessary, in the case of the second and third preferred embodiment with CCD matrix or "array of photodetectors, to take into account the angle of incidence of said radiation, since the relationship between the The intensity of the measured radiation (l gives me ) and that of the incident radiation (l ¡ nc ¡dente) will be: l give me = k (a) -cos (a) - l inC idente, where a is the value of the angle of incidence of the radiation on the sensor, and k (a) is the attenuation factor that will be determined by said angle of incidence, as well as by the optical characteristics of the light guide of the sensor (10).
Una vez descrita la invención propuesta por el solicitante, se incide de nuevo en su ventaja principal sobre los sistemas conocidos del estado de la técnica, que consiste en la capacidad de realizar la medida, en tiempo real, de la distribución luminosa que se produce en el elemento receptor situado en una torre de una central solar de concentración, a través de medios configurados para guiar la luz que llega a la torre desde cualquier ángulo de incidencia, y con resistencia térmica para soportar las altas temperaturas presentes en la superficie detectora de la torre (típicamente, hasta 1000°C). Once the invention proposed by the applicant has been described, its main advantage is again emphasized over the known systems of the state of the art, which consists in the ability to measure, in real time, the light distribution produced in the receiving element located in a tower of a concentration solar power plant, through means configured to guide the light that reaches the tower from any angle of incidence, and with thermal resistance to withstand the high temperatures present in the detection surface of the tower (typically, up to 1000 ° C).

Claims

REIVINDICACIONES
1 .- Sistema de detección de radiación incidente (1 ) sobre un receptor solar (2), siendo dicho receptor (2) del tipo de los que comprenden una región anterior (7) de altas temperaturas sometida a la radiación incidente (1 ) y una región posterior (6) de bajas temperaturas no sometida a la radiación incidente (1 ), caracterizado por que comprende: 1 .- Incident radiation detection system (1) on a solar receiver (2), said receiver (2) being the type of those comprising a high temperature anterior region (7) subjected to the incident radiation (1) and a posterior region (6) of low temperatures not subject to incident radiation (1), characterized in that it comprises:
- al menos un captador de radiación (10) que comunica un primer extremo (10a) de recepción de radiación, situado en la región anterior (7) de altas temperaturas, con un segundo extremo (10b) de detección de radiación situado en la región posterior (6) de bajas temperaturas, comprendiendo dicho captador (10) una guía de luz configurada para guiar la radiación incidente (1 ) desde el primer extremo (10a) de recepción hasta el segundo extremo (10b) de detección;  - at least one radiation sensor (10) that communicates a first end (10a) of radiation reception, located in the anterior region (7) of high temperatures, with a second end (10b) of radiation detection located in the region rear (6) of low temperatures, said sensor (10) comprising a light guide configured to guide the incident radiation (1) from the first receiving end (10a) to the second detection end (10b);
- al menos un módulo de medida (1 1 ) de la radiación guiada (14) por el captador de radiación (10), situado en la región posterior (6) de detección y conectado al segundo extremo (10b) de detección de dicho captador de radiación (10), que comprende un detector (13) de dicha radiación.  - at least one measuring module (1 1) of the radiation guided (14) by the radiation sensor (10), located in the rear detection region (6) and connected to the second detection end (10b) of said sensor of radiation (10), comprising a detector (13) of said radiation.
2. - Sistema según la reivindicación anterior, donde la guía de luz del captador de radiación (10) comprende una varilla térmicamente resistente a las temperaturas de la región anterior (7) del receptor solar (2), y/o fibra óptica (17). 2. - System according to the preceding claim, wherein the light guide of the radiation sensor (10) comprises a thermally resistant rod to the temperatures of the anterior region (7) of the solar receiver (2), and / or optical fiber (17 ).
3. - Sistema según cualquiera de las reivindicaciones anteriores, donde la guía de luz comprende una varilla de cuarzo o cristal. 3. - System according to any of the preceding claims, wherein the light guide comprises a quartz or crystal rod.
4.- Sistema según la reivindicación anterior, donde la varilla es cilindrica con un diámetro comprendido entre 1 mm y 4 mm. 4. System according to the preceding claim, wherein the rod is cylindrical with a diameter between 1 mm and 4 mm.
5.- Sistema según la reivindicación 2, donde la guía de luz comprende una varilla térmicamente aislante conectada a fibra óptica (17) por medio de conectores (16), estando a su vez la fibra óptica (17) conectada al módulo de medida (1 1 ). 5. System according to claim 2, wherein the light guide comprises a thermally insulating rod connected to optical fiber (17) by means of connectors (16), while the optical fiber (17) is connected to the measurement module ( eleven ).
6.- Sistema según cualquiera de las reivindicaciones anteriores, donde el módulo de medida (1 1 ) comprende una matriz CCD y/o una disposición de fotodetectores. 6. System according to any of the preceding claims, wherein the measurement module (1 1) comprises a CCD matrix and / or an array of photodetectors.
7. - Sistema según la reivindicación anterior, donde la conexión entre la guía de luz (10) y el módulo de medida (1 1 ) se realiza mediante un espaciamiento, de forma que la radiación que sale del segundo extremo (10b) de detección de dicha guía de luz (10) llega al módulo de medida (1 1 ) con una distribución angular característica. 7. - System according to the preceding claim, wherein the connection between the light guide (10) and the measurement module (1 1) is carried out by means of a spacing, so that the radiation leaving the second detection end (10b) of said light guide (10) arrives at the measurement module (1 1) with a characteristic angular distribution.
8. - Sistema según cualquiera de las reivindicaciones 1 -5, donde el detector (13) de radiación guiada (14) por la guía de luz (10) comprende fotodiodos y/o termopilas. 8. - System according to any one of claims 1-5, wherein the radiation detector (13) guided by the light guide (10) comprises photodiodes and / or thermopiles.
9. - Sistema según cualquiera de las reivindicaciones anteriores, donde el módulo de medida (1 1 ) comprende un módulo de comunicación (12) configurado para enviar y/o recibir datos a/desde un sistema central (9) remoto. 9. - System according to any of the preceding claims, wherein the measurement module (1 1) comprises a communication module (12) configured to send and / or receive data to / from a remote central system (9).
10. - Sistema según cualquiera de las reivindicaciones anteriores, donde el receptor solar (2) es un receptor de torre en una central térmica de heliostatos. 10. - System according to any of the preceding claims, wherein the solar receiver (2) is a tower receiver in a heliostat thermal power plant.
1 1 . - Método de detección de radiación incidente (1 ) sobre un receptor solar (2), siendo dicho receptor (2) del tipo de los que comprenden una región anterior (7) de altas temperaturas sometida a la radiación incidente (1 ) y una región posterior (6) de bajas temperaturas no sometida a la radiación incidente (1 ), caracterizado por que comprende el uso de un sistema de medición según cualquiera de las reivindicaciones anteriores y donde: eleven . - Method of detecting incident radiation (1) on a solar receiver (2), said receiver (2) being of the type comprising a high temperature anterior region (7) subjected to the incident radiation (1) and a region rear (6) of low temperatures not subject to incident radiation (1), characterized in that it comprises the use of a measuring system according to any of the preceding claims and wherein:
- se recibe la radiación incidente (1 ) en el primer extremo (10a) de recepción del captador de radiación (10);  - the incident radiation (1) is received at the first receiving end (10a) of the radiation sensor (10);
- se guía dicha radiación hasta el segundo extremo (10b) de detección del captador de radiación (10);  - said radiation is guided to the second detection end (10b) of the radiation sensor (10);
- se mide la intensidad de la radiación guiada (14) en la región posterior (6) de bajas temperaturas, por medio del módulo de medida (1 1 ).  - the intensity of the guided radiation (14) in the posterior region (6) of low temperatures is measured by means of the measuring module (1 1).
12. - Método según la reivindicación anterior, que comprende el uso de un sistema según la reivindicación 7 y donde se analiza la componente angular de la radiación guiada (14) por el captador de radiación (10). 12. - Method according to the preceding claim, comprising the use of a system according to claim 7 and wherein the angular component of the guided radiation (14) by the radiation sensor (10) is analyzed.
13. - Método según la reivindicación anterior, donde se calcula la irradiancia normal a partir de la radiación incidente (1 ) detectada y de la componente angular de la radiación guiada (14). 13. - Method according to the preceding claim, wherein the normal irradiance is calculated from the incident radiation (1) detected and the angular component of the guided radiation (14).
14. - Método según cualquiera de las reivindicaciones 1 1 -13, donde se utiliza una pluralidad de captadores de radiación (10), donde sus primeros extremos (10a) de detección se encuentran distribuidos en múltiples puntos de medida (8) sobre la región anterior (7) de altas temperaturas del receptor solar (2). 14. - Method according to any of claims 1 1 -13, wherein a plurality of radiation sensors (10) are used, wherein their first detection ends (10a) are distributed in multiple measuring points (8) over the region anterior (7) high temperature solar receiver (2).
15. - Método según la reivindicación anterior, donde los puntos de medida (8) se encuentran intercalados entre los elementos de absorción (3) de radiación del receptor solar (2) 15. - Method according to the preceding claim, wherein the measuring points (8) are intercalated between the radiation absorption elements (3) of the solar receiver (2)
PCT/ES2016/070001 2015-01-05 2016-01-05 System and method for detecting incident radiation on a solar receiver WO2016110606A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
MA40705A MA40705A1 (en) 2015-01-05 2016-01-05 System and method for detecting incident radiation on a solar receiver
ZA2017/05258A ZA201705258B (en) 2015-01-05 2017-08-03 System and method for detecting incident radiation on a solar receiver

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201530011 2015-01-05
ES201530011A ES2579208B1 (en) 2015-01-05 2015-01-05 INCIDENT RADIATION DETECTION SYSTEM AND METHOD ON A SOLAR RECEIVER

Publications (1)

Publication Number Publication Date
WO2016110606A1 true WO2016110606A1 (en) 2016-07-14

Family

ID=56355554

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2016/070001 WO2016110606A1 (en) 2015-01-05 2016-01-05 System and method for detecting incident radiation on a solar receiver

Country Status (5)

Country Link
CL (1) CL2017001752A1 (en)
ES (1) ES2579208B1 (en)
MA (1) MA40705A1 (en)
WO (1) WO2016110606A1 (en)
ZA (1) ZA201705258B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020021147A1 (en) * 2018-07-25 2020-01-30 Fundación Cener-Ciemat Device, system and method of characterizing reflective elements through reflected light beams
CN113835448A (en) * 2021-11-29 2021-12-24 国网山东省电力公司东平县供电公司 Monitoring system and method for solar tower

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2890455A1 (en) * 2020-07-02 2022-01-19 Univ Sevilla RADIOMETRY DEVICE AND PROCEDURE FOR THE MEASUREMENT OF SOLAR IRRADIANCE (Machine-translation by Google Translate, not legally binding)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2117550A1 (en) * 1994-12-23 1998-08-01 Deutsche Forsch Luft Raumfahrt Device for concentrating solar radiation
DE10322001A1 (en) * 2003-05-16 2004-12-09 Deutsches Zentrum für Luft- und Raumfahrt e.V. Radiation measurement device, has a radiation receiver with a number of modular measurement heads that are connected via optical fibers to a sensor unit with a camera
US20090217921A1 (en) * 2007-11-12 2009-09-03 Luz Il Ltd. Method and control system for operating a solar power tower system
US20100006087A1 (en) * 2008-07-10 2010-01-14 Brightsource Industries (Israel) Ltd. Systems and methods for control of a solar power tower using infrared thermography
US20100139644A1 (en) * 2008-10-29 2010-06-10 Brightsource Industries (Israel), Ltd. Heliostat calibration
CN101871811A (en) * 2010-06-09 2010-10-27 华北电力大学 Radiation measuring device of light-gathering heat collection pipe and scanning analysis method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2117550A1 (en) * 1994-12-23 1998-08-01 Deutsche Forsch Luft Raumfahrt Device for concentrating solar radiation
DE10322001A1 (en) * 2003-05-16 2004-12-09 Deutsches Zentrum für Luft- und Raumfahrt e.V. Radiation measurement device, has a radiation receiver with a number of modular measurement heads that are connected via optical fibers to a sensor unit with a camera
US20090217921A1 (en) * 2007-11-12 2009-09-03 Luz Il Ltd. Method and control system for operating a solar power tower system
US20100006087A1 (en) * 2008-07-10 2010-01-14 Brightsource Industries (Israel) Ltd. Systems and methods for control of a solar power tower using infrared thermography
US20100139644A1 (en) * 2008-10-29 2010-06-10 Brightsource Industries (Israel), Ltd. Heliostat calibration
CN101871811A (en) * 2010-06-09 2010-10-27 华北电力大学 Radiation measuring device of light-gathering heat collection pipe and scanning analysis method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020021147A1 (en) * 2018-07-25 2020-01-30 Fundación Cener-Ciemat Device, system and method of characterizing reflective elements through reflected light beams
CN112469947A (en) * 2018-07-25 2021-03-09 西班牙环境能源技术研究中心基金会 Apparatus, system and method for characterizing a reflective element by reflecting a beam
US20210318033A1 (en) * 2018-07-25 2021-10-14 Fundación Cener-Ciemat Characterization device, system and method for characterizing reflective elements from the light beams reflected therein
CN112469947B (en) * 2018-07-25 2022-10-11 西班牙环境能源技术研究中心基金会 Characterization device, system and method for characterizing the shape and deformation of a surface of a reflective element
US11953236B2 (en) 2018-07-25 2024-04-09 Fundación Cener-Ciemat Characterization device for characterizing the quality of light beams reflected from a surface of a reflective element and method therefor
CN113835448A (en) * 2021-11-29 2021-12-24 国网山东省电力公司东平县供电公司 Monitoring system and method for solar tower

Also Published As

Publication number Publication date
ES2579208A1 (en) 2016-08-08
ES2579208B1 (en) 2017-05-22
CL2017001752A1 (en) 2017-12-15
MA40705A1 (en) 2018-05-31
ZA201705258B (en) 2018-12-19

Similar Documents

Publication Publication Date Title
Röger et al. Techniques to measure solar flux density distribution on large-scale receivers
Guillot et al. Comparison of 3 heat flux gauges and a water calorimeter for concentrated solar irradiance measurement
ES2579208B1 (en) INCIDENT RADIATION DETECTION SYSTEM AND METHOD ON A SOLAR RECEIVER
CN108225552B (en) Method for measuring concentration energy flux density distribution of heliostat field in tower-type power station
CN103063312A (en) Measuring system and method for measuring object emissivity
Schmitz et al. On-sun optical characterization of a solar dish concentrator based on elliptical vacuum membrane facets
Hussain et al. Thermal performance evaluation of a conical solar water heater integrated with a thermal storage system
CN104280119A (en) Calibration system of biserial offset infrared spectrum instrument
Reddy et al. In-situ prediction of focal flux distribution for concentrating photovoltaic (CPV) system using inverse heat transfer technique for effective design of receiver
Pfänder et al. Infrared temperature measurements on solar trough absorber tubes
Ballestrín et al. Simplifying the measurement of high solar irradiance on receivers. Application to solar tower plants
Driesse et al. Indoor and outdoor evaluation of global irradiance sensors
CN105222991A (en) Disc type solar energy condenser focussing plane energy flux density measuring method and measurement mechanism
Mlatho et al. Determination of the spatial extent of the focal point of a parabolic dish reflector using a red laser diode
Mokhtar et al. A model for improved solar irradiation measurement at low flux
Lobo An electrically compensated radiometer
Kribus et al. Performance of a rectangular secondary concentrator with an asymmetric heliostat field
Szulmayer A solar strip concentrator
Widyolar et al. Compound parabolic concentrator for pentagon shape absorber
US6833547B2 (en) Ambient-to-cold focus and alignment of cryogenic space sensors using uncooled auxillary detectors
ES2249957B1 (en) RADIANT POWER MEASUREMENT DEVICE FOR EXTENSIVE SURFACES AND OPERATING METHOD.
ES2726474A1 (en) SYSTEM FOR MEASURING CONCENTRATED SOLAR RADIATION AND UNTRIPULATED AIR VEHICLE UNDERSTANDING (Machine-translation by Google Translate, not legally binding)
Luminosu et al. Thermal Solar Experimental Model Equipped With Fresnel Lenses
Zerlaut Solar radiation measurements: Calibration and standardization efforts
CN109297591A (en) Myriawatt power meter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16734938

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 40705

Country of ref document: MA

122 Ep: pct application non-entry in european phase

Ref document number: 16734938

Country of ref document: EP

Kind code of ref document: A1