WO2016109873A1 - Processo para obtenção de misturas de óleo vegetal biodegradável com nitreto de boro hexagonal para aplicação em transformadores elétricos - Google Patents

Processo para obtenção de misturas de óleo vegetal biodegradável com nitreto de boro hexagonal para aplicação em transformadores elétricos Download PDF

Info

Publication number
WO2016109873A1
WO2016109873A1 PCT/BR2015/000195 BR2015000195W WO2016109873A1 WO 2016109873 A1 WO2016109873 A1 WO 2016109873A1 BR 2015000195 W BR2015000195 W BR 2015000195W WO 2016109873 A1 WO2016109873 A1 WO 2016109873A1
Authority
WO
WIPO (PCT)
Prior art keywords
boron nitride
sonicated
hexagonal boron
vegetable oil
hexagonal
Prior art date
Application number
PCT/BR2015/000195
Other languages
English (en)
French (fr)
Inventor
José MAK
José Donato AMBRÓSIO
José Eduardo Blanco QUERIDO
Newton José GUARALDO
Original Assignee
Itapebi Geração De Energia S/A
Quantum Comércio E Serviços De Tecnologia E Inovação Ltda.
Afluente Geração De Energia Elétrica S/A
Afluente Transmissão De Energia Elétrica S/A
Geração Ciii S/A
Centro De Gestão De Tecnologua E Inovação - Cgti
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Itapebi Geração De Energia S/A, Quantum Comércio E Serviços De Tecnologia E Inovação Ltda., Afluente Geração De Energia Elétrica S/A, Afluente Transmissão De Energia Elétrica S/A, Geração Ciii S/A, Centro De Gestão De Tecnologua E Inovação - Cgti filed Critical Itapebi Geração De Energia S/A
Publication of WO2016109873A1 publication Critical patent/WO2016109873A1/pt

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/50Mixing liquids with solids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/064Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with boron
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/10Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/20Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances liquids, e.g. oils

Definitions

  • h-BN SONICATE FOR APPLICATION IN ELECTRICAL TRANSFORMERS ", hereinafter referred to as h-BN nanoparticle nanocomposite oil process for electrical transformers.
  • the present invention pertaining to materials science and more specifically nanotechnology relates to the process for obtaining the mixture of vegetable oil with hexagonal boron nitride (h-BN) in order to increase the thermal transfer of vegetable oils. and maintain the high level of electrical insulation.
  • h-BN hexagonal boron nitride
  • the inventive solution stands out as a benefit for the medium and high voltage, microelectronics and refrigeration areas, particularly in the manufacture of electrical transformers that use biodegradable vegetable oils as electrical insulators and as heat transfer fluids.
  • Mineral oils derived from crude oil are traditionally used as dielectric refrigerants for use in electrical and electrical power distribution equipment.
  • mineral oils were replaced in some electrical equipment by non-flammable liquids such as askarel fluids, synthetic liquid, electrically insulating and non-combustible - polychlorinated biphenyl - PCB (about 30 polychorinated biphenyl) years have been recognized as environmentally hazardous liquids and consequently prohibited from being produced and marketed. This was when new insulating liquids were replaced to replace polychlorinated biphenols, and about two decades ago, non-toxic, non-flammable, low-cost, environmentally safe insulating vegetable oils emerged because they are biodegradable in a short time.
  • the Hexagonal Boron Nitride (h-BN) blend of vegetable oil that increases the thermal transfer of vegetable oils is an electrical insulator that can be used with advantages over mineral oils in electrical equipment such as power transformers, distribution transformers, reactors, electrical circuit breakers, reclosers, disconnectors, voltage regulators, disconnect switches, circuit breakers, in electro-electronic and refrigeration equipment, with direct applicability in manufacturing cost reduction programs and applications both in Brazil and abroad.
  • Nanostructured materials are characterized by their size having a particle size (continuous crystalline zone) of less than 100 nm and can reach thicknesses of about 1 nm. W
  • Solid materials have higher conductivity than conventional fluids, and the use of nanofluids to increase heat transfer has been successful in many applications; In these, ultra-fine solid particles such as oxides, nitride and carbide ceramics, metals, semiconductors, carbon nanotubes and composite materials are suspended in the fluids, providing increased levels of thermal conductivity.
  • Two-dimensional materials are good options, as they exhibit versatile properties with excellent thermal conductivity and mechanical stability, as well as remarkable chemical inertness.
  • As an electrical insulating material with a high level of thermal conductivity hexagonal boron nitride (h-BN) outperforms other nanoparticles (ZHI, C. Y.; et al., 2010; Yu, J.; et al, 2010).
  • Heat transfer using fluids is a complex phenomenon, with several factors such as the stability of the fluid, composition, viscosity, surface charge, interface and morphology of the dispersed particles influencing the results.
  • US Patent 8,501,024 which addresses the method of manufacturing hexagonal boron nitride (h-BN) in at least one layer, is exemplary.
  • the US patent 8, 840,803 refers to a nanocomposite fluid with electrically and thermally conductive insulating nanoparticles, the method of fabricating the fluid with BN nanoparticles is in suspension with a solvent, surfactant, or a combination thereof, by combining the nanoparticles in half.
  • a Thermally conductive and electrically insulating sealant comprises an elastomer and the BN nanoparticles disposed on the elastomer, at the completion of the methods an electrode is disposed which by electrically discharging the nanocomposite fluid cuts the bottom element.
  • US 8,840,803 discloses innovation with respect to nanocomposite fluids with electrical and thermally conductive nanoparticles
  • US 8,501,024 also discloses innovation with respect to obtaining hexagonal boron nitride (h-BN);
  • h-BN hexagonal boron nitride
  • Insulating vegetable oil differs from conventional insulating mineral oil and other fire resistant fluids in that it is an agricultural product derived from vegetable oils rather than refined from petroleum reserves or synthesized from organic precursors.
  • Vegetable oils typically comprise mixed glycerides, formed from the combination of a polyol such as glycerine having a number of hydroxyls which have been esterified, with an equal number of fatty acid molecules, their composition and consequently their properties differ from those of the mineral oil which is. a complex mixture of paraffinic and naphthalene hydrocarbons.
  • vegetable oils for transformers and electrical equipment are actually a mixture of three or more different vegetable oils with additives of different classes: antimicrobials - which inhibit the growth of microbes; low temperature - which ensures that the oil is liquid even at low temperatures (below -20 ° C); and oxidants - which aim to improve oxygen expulsion.
  • Boron nitride is a compound of the III-V family, which has four different phases: hexagonal (h-BN), rhombohedral (r-BN), wurtzite (w-BN) and cubic (c-BN). Each of these structures has quite different characteristics and properties.
  • the first two phases are composed of sp 2 connection and the others, sp 3 connection.
  • Hexagonal boron nitride is a fine, soft, white powder arranged in highly sliding layers, similar to graphite.
  • the hexagonal structure is regarded as unique in physical and chemical properties such as low density, high thermal conductivity, low thermal expansion, high mechanical strength, high hardness, corrosion resistance and high melting point near 2600 ° C. .
  • it has the ability to lubricate over a long temperature range as its coefficient of friction is maintained up to 900 ° C.
  • hexagonal agonium boron nitride is a material that has no significant properties against visible (Vis) and ultraviolet (UV) radiation as it is transparent to them. But its absorption property in the infrared (IR) range makes it an important material for heat-related formulations.
  • h-BN hexagonal boron nitride
  • the sonicator contained in the paper filter should be initially dried in a bounded chapel for a minimum of 12 hours; then the sonicated h-BN contained in the paper filter should be placed in a vacuum oven at 40 ° C for a period of 30 minutes; and finally the last step will be to deagglomerate the sonicated powder, subjecting it to deagglomeration in a mortar mill (porcelain pestle type), to separate the h-BN particles; h-BN should be stored in labeled plastic packaging. This process should provide at least 4.0 g of sonicated h-BN.
  • Assay reference conditions were as follows: ambient temperature 20 ° C, oil temperature / h-BN 20 ° C, relative humidity 45% and electrical voltage 13800 Volts.
  • the h-BN nanoparticle nanocomposite oil process for transformers and electrical equipment constitutes a technological advance in the area of transmission and distribution of electricity, providing a solution for reducing manufacturing costs and as a vector for use.
  • biodegradable vegetable oils in the National Electricity Sector with significant gains for the environment and society as a whole.

Abstract

A presente patente refere-se ao processo para obtenção de misturas de óleo vegetal biodegradáveis com nitreto de boro hexagonal(h-bn) sonicado para aplicação em transformadores elétricos, O processo tem como objetivo preparar um fluido nanocompósito compreendendo: um meio fluido a base de óleo vegetal biodegradável e normatizado para uso em transformadores elétricos, e uma composição de nanopartículas de nitreto de boro hexagonal (h-BN) que são eletricamente isolantes e termicamente condutoras, preparadas através de um processo de sonicação e centrifugação do nitreto de boro hexagonal (h-BN).

Description

"PROCES SO PARA MISTURAS DE ÓLEO VEGETAL BIODEGRADÁVEIS COM NITRETO DE BORO HEXAGONAL
(h-BN) SONICADO PARA APLICAÇÃO EM TRANSFORMADORES ELÉTRICOS", aqui denominado processo de óleo nanocompósito com nanopartículas de h-BN para transformadores elétricos.
Campo da Invenção
A presente patente de invenção pertencente a área de ciência dos materiais e mais especificamente de nanotecnologia, refere-se ao processo para obtenção da mistura de óleo vegetal com nitreto de boro hexagonal (h-BN) de forma a aumentar a transferência térmica dos óleos vegetais e manter o alto nível de isolação elétrica. A solução inventiva se destaca como benefício para as áreas de média e alta tensão, de microel etrônica e de refrigeração, particularmente na fabricação de transformadores elétricos que usam óleos vegetais biodegradáveis como isolantes elétricos e como fluidos para transferência de calor.
Campo de Aplicação
Tradicionalmente utiliza-se como refrigerante dielétrico para uso em equipamentos elétricos e de distribuição de energia elétrica os óleos minerais derivados do petróleo bruto. Há cerca de 70 anos os óleos minerais foram substituídos em alguns equipamentos elétricos por líquidos não inflamáveis tais como fluidos de askarel, líquido sintético, eletricamente isolante e não combustível - bifenil policlorado - PCB (do inglês "polychorinated biphenyl ") que há cerca de 30 anos foram reconhecidos como líquidos ambientalmente perigosos e consequentemente proibidos de serem produzidos e comercializados. Foi quando se procurou novos líquidos isolantes que substituíssem os bifenóis policlorados, e há cerca de duas décadas surgiram os óleos vegetais isolantes, não tóxicos, não inflamáveis, de baixo custo e ambientalmente muito seguros por serem biodegradáveis em curto espaço de tempo.
Os óleos vegetais isolantes embora ecologicamente correios apresentam a condutividade térmica inferior a do óleo mineral, sendo um fator que afeta negativamente o seu desempenho nos equipamentos elétricos frente ao tradicional óleo mineral ainda em largo uso.
A mistura de óleo vegetal com nitreto de boro hexagonal (h-BN) que aumenta a transferência térmica dos óleos vegetais é um isolante elétrico que pode ser utilizado com vantagens em relação aos óleos minerais nos equipamentos elétricos como transformadores de potência, transformadores de distribuição, reatores, disjuntores elétricos, religadores, seccionalizadores, reguladores de tensão, chaves seccionadoras, disjuntores, em equipamentos eletro-eletrônicos e de refrigeração, com aplicabilidade direta em programas de redução de custos fabris e de aplicações tanto no Brasil como no exterior.
Antecedentes da invenção.
Os materiais nanoestruturados são caracterizados por terem um tamanho uma granulometria (zona cristalina contínua) inferior a 100 nm podendo atingir espessuras de cerca de 1 nm. W
3
Por terem um tamanho reduzido, suas propriedades em geral são diferentes dos materiais de granulometria micrométrica.
Materiais sólidos apresentam maior condutividade do que os fluidos convencionais, e o uso dos nanofluidos para aumentar a transferência de calor tem dado bons resultados em diversas aplicações; nestes, partículas sólidas ultrafinas como óxidos, cerâmica de nitretos e carbonetos, metais, semicondutores, nanotubos de carbono e materiais compostos estão em suspensão nos fluidos, proporcionando elevar os níveis de condutividade térmica.
Recentes avanços com materiais em camadas permitem a síntese em grande escala de vários materiais bidimensionais (2D). Materiais bidimensionais são boas opções, poi s exibem propriedades versáteis com excelente condutividade térmica e estabilidade mecânica, além de notável inércia química. Enquanto material isolante elétrico com alto nível de condutividade térmica, o nitreto de boro hexagonal (h-BN) supera os outros nanoparticulados (ZHI, C. Y. ; et al ., 2010; Yu, J. ; et al, 2010).
Outros estudos teóricos indicam, no entanto, que altos níveis de condutividade térmica somente podem ser obtidos nos planos (002) do nitreto de boro hexagonal (h-BN), e o nitreto de boro hexagonal (h-BN) esfoliado proporciona a máxima exposição para estes planos (002) (ZHI, C. Y. ; et al. ;
2009).
A transferência de calor usando fluidos é um fenómeno complexo, com vários fatores como a estabilidade do fluido, composição, vi scosidade, carga superficial , interface e morfologi a das partículas dispersas influenciando os resultados.
A melhora na condutividade térmica não pode ser alcançada aumentando a quantidade das partículas sólidas além do limite, pois o aumento na concentração destas aumenta a viscosidade com efeito adverso nas propriedades do fluido. Portanto, a procura de novas nanopartículas que consigam aliar a alta condutividade térmica com baixas concentrações das partículas é importante (CHOI, S . U. S . , 2009). Mesmo assim, as partículas que aumentam a condutividade térmica sem aumentar a condutividade elétrica são principalmente as partículas cerâmicas, e as partículas cerâmicas convencionais frequentemente apresentam problemas de dispersão ou de sedimentação, não tendo boa dispersividade.
Em pesquisa no banco de patentes do Instituto Nacional da Propriedade Industrial - INPI não foi encontrado qualquer processo no campo da invenção de nanocompósitos térmicos a base de nitreto de boro hexagonal (h-BN) e método de fabricação.
No banco de patentes dos Estados Unidos da América destaca-se a patente US 8 , 50 1 ,024 que aborda o método de fabricação de nitreto de boro hexagonal (h-BN) em pelo menos uma única camada, o exemplo de realização inclui a suspensão de BN multicamada por uma abertura em uma estrutura de suporte onde é realizada a erosão com íons reativos sobre o BN para produzir uma única camada de nitreto de boro hexagonal (h-BN) suspensa na lacuna da estrutura de suporte; a patente US 8 , 840,803 refere-se a um fluido nanocompósito com nanopartículas isolantes el étricas e termicamente condutoras, o método de fabricação do fluido com as nanopartículas BN é feita em suspensão com um solvente, surfactante, ou em uma combinação destes, combinando as nanopartículas ao meio fluido, que pode ser água deionizada, óleo, óleo sintético, óleo desti lado, ou uma combinação que compreende pelo menos uma das substâncias anteriores, e que, quando presente o solvente é removido para formar o fluido de nanocompósito, em uma outra realização um vedante termicamente condutor e eletricamente isolante compreende um elastômero e as nanopartículas BN dispostas no elastômero, na finalização dos métodos é disposto um eletrodo que através de descarga elétrica do fluido nanocompósito corta o elemento de fundo.
A patente US 8 , 840,803 apresenta inovação em relação a fluidos nanocompósitos com nanopartículas isolantes elétricas e termicamente condutoras, a patente US 8,501 ,024 também apresenta inovação em relação a obtenção do nitreto de boro hexagonal (h-BN) , no entanto, ambos os processos citados nas patentes norte-americanas não abordam de forma específica a obtenção do óleo vegetal nanocompósito para uso em transformadores elétricos.
Outro problema observado na literatura e no estado da arte atual é que embora existam citações teóricas e experimentações aplicáveis de que nanofolhas bidimensionai s de nitreto de boro hexagonal (h-BN) esfoliados em álcool isopropílico e redisperso em óleo mineral , dão ganhos significativos de condutividade térmica sem perda da isolação elétrica aos óleos minerais para uso em transformadores, inexiste de modo obj etivo citações teóricas e o uso de técnicas similares em relação aos óleos vegetais para transformadores.
O óleo vegetal isolante difere do óleo mineral isolante convencional e de outros fluidos resistentes ao fogo, por ser um produto agrícola derivado de óleos vegetais em vez de refinado de reservas de petróleo ou sintetizado a partir de precursores orgânicos. Óleos vegetais tipicamente compreendem glicerídeos misturados, formados da combinação de um poliol tal como a gl icerina tendo um numero de hidroxila que foram esterificados, com um número igual de moléculas de ácido graxo, sua composição e consequentemente suas propriedades diferem das do óleo mineral que é uma mistura complexa de hidrocarbonetos parafínicos e naftalênicos. Além disso, os óleos vegetais para transformadores e equipamentos elétricos na realidade é uma mistura de três ou mais diferentes óleos vegetais com aditivos de diferentes classes : antimicrobianos - que inibem o crescimento de micróbios; baixa temperatura - que garante que o óleo estej a líquido mesmo em baixas temperaturas (menores que - 20°C); e oxidantes - que visam melhorar a expulsão de oxigénio.
Outro problema ainda a ser considerado é que no Brasil o uso dos óleos vegetais para equipamentos elétricos devem seguir as especificações, e os métodos de ensaio preconizados pel a norma técnica NBR 1 5422 da Associação Brasileira de Normas Técnicas - ABNT. Tendo em vista os aspectos e problemas apresentados nos processos existentes e no estado da arte atual, e no propósito de superá-los é que na presente patente de invenção foi desenvolvido um novo processo para obtenção da mi stura de óleo vegetal normatizado com nitreto de boro hexagonal (h-BN), de forma a aumentar sua transferência térmica e manter o alto nível de isolação elétrica para aplicação particularmente na fabricação de transformadores elétricos que j á utilizam óleos vegetais biodegradáveis.
Fu ndamento base do invento
O nitreto de boro é um composto da família III-V, que apresenta quatro diferentes fases : hexagonal (h-BN), romboédrico (r-BN), wurtzite (w-BN) e cúbico (c-BN) . Cada uma dessas estruturas possui características e propriedades bastante diferentes. As primeiras duas fases são compostas de li gação sp2 e as outras, de ligação sp3.
O nitreto de boro hexagonal (h-BN) é um pó fino, macio e branco disposto em camadas altamente deslizantes, parecido com a grafite. A estrutura hexagonal é tida como única em propriedades físicas e químicas, como, por exemplo, baixa densidade, alta condutividade térmica, baixa expansão térmica, alta resi stência mecânica, dureza elevada, resistência à corrosão e ponto de fusão alto próximo a 2600°C. Além disso, possui a capacidade de lubrificar em um longo intervalo de temperaturas, j á que seu coeficiente de atrito é mantido até 900°C. Para a aplicação como aditivo em óleos para transformadores possui propriedades importantes como inércia química, não tóxico e capacidade de encapsular substâncias. S eu uso está relacionado com sua estrutura cristalina porque as suas moléculas se dispõem em camadas, que deslizam umas sobre as outras, assim como a grafite conferindo lubricidade.
Experimentos diversos mostram que o nitreto de boro hex agonal (h-BN) é um material que não apresenta propriedades significativas frente à radiação vi sível (Vis) e ultravioleta (UV), uma vez que ele é transparente às mesmas. Porém sua propriedade de absorção na faixa da radiação infravermelha (IV) converte-o num importante material para as formulações relacionadas ao calor.
Formulações e forma de execução.
O processo de sonicação e centrifugação do nitreto de boro hexagonal (h-BN) para mistura ao óleo vegetal é explicada por meio do exemplo a seguir.
Preparo de solução com concentração 5 ,00 mg/ml, utilizando 1 .000 ml de álcool isopropílico e 5 ,0 g de h-BN; procede-se experimentalmente : adicionar o h-BN aos poucos no meio líquido misturando com um bastão de vidro; após a adição de todo h-BN a mistura deve ser colocada em um agitador magnético por 10 minutos ; em seguida colocar a mistura em um béquer de 1 . 100 ml, no aparelho de ultrasom interno (USI), na potência de 100 W, por um tempo de 3 h; depois colocar a mistura era tubos de ensaios plásticos fechados e os tubos na centrífuga em uma rotação de 1 .500 rpm durante 30 minutos; posteriormente a mistura deve ser filtrada com bomba a vácuo utilizando filtro de papel fechado; depois a parte sólida de h-BN sonicado contido no filtro de papel deverá ser seco inicialmente em capela ligada por um período mínimo de 12 horas; em seguida o h-BN sonicado contido no fi ltro de papel deverá ser colocado em estufa à vácuo na temperatura de 40°C por um período de 30 minutos; e por fim o último passo será desaglomerar o pó sonicado, submetendo o mesmo a desaglomeração em um moinho tipo almofariz (tipo pil ão de porcelana), para separação das partículas de h-BN; o h-BN deverá ser armazenado em embalagem plástica identificada. Esse processo deverá fornecer pelo menos 4,0 g de h-BN sonicado.
Descrição do processo d e invenção
O processo de preparação da mistura de óleo vegetal normatizado com nitreto de boro hexagonal (h-BN) para uso em transformadores elétricos é explicado por meio do exemplo a seguir.
Preparo da mistura com concentração 0, 1 0 % em massa, utilizando 91 9,08 g de ól eo vegetal normatizado e comercializado a granel e 0,920 g de h-BN sonicado e anteriormente descrito ; procede- se experimentalmente: em um béquer de 1 . 1 00 ml adicionar aos poucos no óleo vegetal o h-BN sonicado, por exemplo, colocar aproximadamente 200 ml de óleo e aproximadamente 1 /5 do pó de h -HB e assim sucessivamente até que todo pó sej a adicionado ao óleo; a mistura do h-BN deve ser feita com um bastão de vidro; após a adição de todo h-BN ao óleo vegetal , a mistura óleo/h-BN deve ser colocada em um agitador magnético por 1 0 minutos; em seguida colocar a mistura óleo/h-BN no aparelho de ultrasom interno (USI), na potência de 1;00 W, por um tempo de 3 h; após o processo de sonicação, a mistura deve ser colocada em um recipiente fechado, e identificada como óleo/h-BN. É importante sal ientar que o óleo vegetal a ser nanoaditivado não i . - deve ficar em contato om a atmosfera para não absorver umidade e ter alterado suas propriedades isolantes.
Resu ltados Obtid os na Mistu ra Óleo/h-BN
Na tabela a seguir são apresentadas as principais propriedades do óleo nanocompósito com nanopartículas de h- BN para transformadores elétricos obtido pelo processo descrito e explicado na presente patente de invenção e comparado com as características de referência do óleo vegetal normatizado e comercializado a granel utilizado como base, estas características apenas demonstram que o óleo/h-BN atende os requisitos normatizados de um óleo isolante para transformadores e equipamentos elétricos.
Tabela dos parâmetros de transferência com ensaios
referendados na NBR15422/ABNT
Característica Unidade Referência
Rigidez Dielétrica kV mínimo 40 49
Viscosidade a 40°C cSt mínimo 1 32,9 Fator de Potência % máximo 48 1 7 a 100 °C
índice de mg KOH/g máximo 0,3 0 ,03 neutralização
máximo 400 222- Teor de água ppm Densidade relativa - máximo 0,96 0,92 a 20/4°C
As condições de referências do ensaio foram feitas em: temperatura ambiente 20°C, temperatura do óleo/h-BN 20°C, umidade relativa 45% e tensão elétrica 13800 Volts.
A melhoria da condutividade térmica obtida no óleo nanocompósito com nanopartículas de h-BN para transformadores elétricos obtido pelo processo descrito e explicado na presente patente de invenção e comparado com as características também medidas no óleo vegetal normatizado e comercializado a granel utilizado como base pode ser visualizada na tabela a seguir.
Tabela da condutividade térmica média (K w/m.°K )
com ensaios referendados na NBR15422/ABNT
Temperatura Inicial(°C) Óleo vegetal Óleo/h-BN
25 0,2357 0,1893
50 0,1627 0,1937
60 0,1540 0,1943
70 0,1565 0,1840
80 não realizada 0,1937 Fica portanto mostrado que o processo apresentado na presente patente de invenção traz melhoria na condutividade térmica do óleo/h-BN em relação ao óleo vegetal base, sobretudo nas faixas de temperatura de maior interesse de operações nos transformadores elétricos e nos equipamentos elétricos de média e alta tensão, temperaturas na faixa de 50°C a 80°C. Logicamente, o "PROCESSO PARA MISTURAS DE ÓLEO VEGETAL BIODEGRADÁVEIS COM NITRETO DE BORO HEXAGONAL (h-BN) SONICADO PARA APLICAÇÃO EM TRANSFORMADORES ELÉTRICOS" , obj eto da presente patente de invenção, com tal processo de preparação, pode ser obtida em outras proporções, para atender diferentes e específicas necessidades, sem a perda da inovação aqui apresentada.
Desta forma, como descrito, o processo de óleo nanocompósito com nanopartículas de h-BN para transformadores e equipamentos elétricos se constitui num avanço tecnológico na área de transmissão e distribuição de energia elétrica, proporcionando uma solução para redução de custos fabris e como vetor a utilização dos óleos vegetais biodegradáveis junto ao Setor Elétrico Nacional com ganhos significativos ao meio ambiente e a toda a sociedade .

Claims

REIVINDICAÇÕES
1 . "PROCESSO PARA MISTURAS DE ÓLEO VEGETAL BIODEGRADÁVEIS COM NITRETO DE BORO HEXAGONAL(h-BN) SONICADO PARA APLICAÇÃO EM TRANSFORMADORES ELÉTRICOS", caracterizado por preparar um fluido nanocompósito compreendendo: um meio fluido à base de óleo vegetal biodegradável e normatizado para uso em transformadores elétricos, e uma composição de nanopartículas de nitreto de boro hexagonal (h-BN) que são eletricamente isolantes e termicamente condutoras, preparadas através de um processo de sonicação e centrifugação do nitreto de boro hexagonal (h-BN) adquirido comercialmente, que após ser acrescida através de um processo de mistura ao fluido base forma a mistura de óleo vegetal biodegradável com nitreto de boro hexagonal(h-BN) sonicado.
2. "PROCESSO PARA MISTURAS DE ÓLEO VEGETAL BIODEGRADÁVEIS COM NITRETO DE BORO HEXAGONAL(h-BN) SONICADO PARA APLICAÇÃO EM TRANSFORMADORES ELÉTRICOS" de acordo com a reivindicação 1 , ca racterizado por o nitreto de boro hexagonal (h-BN) sonicado ser preparado através de um processo de sonicação e centrifugação do nitreto de boro hexagonal (h-BN) adquirido comercialmente.
3. "PROCESSO PARA MISTURAS DE ÓLEO VEGETAL BIODEGRADÁVEIS COM NITRETO DE BORO HEXAGONAL(h-BN) SONICADO PARA APLICAÇÃO EM TRANSFORMADORES ELÉTRICOS" de acordo com as reivin dicações 1 e 2, ca racterizado por o nitreto de boro hexagonal (h-BN) sonicado estar em uma concentração preferencialmente de 5,00 mg/ml" em álcool isopropílico.
4. "PROCESSO PARA MISTURAS DE ÓLEO VEGETAL BIODEGRADÁVEIS COM NITRETO DE BORO HEXAGONAL(h-BN) SONICADO PARA APLICAÇÃO EM TRANSFORMADORES ELÉTRICOS" de acordo com a reivindicações 1 , 2 e 3 , ca racterizado por as nanopartículas do nitreto de boro hexagonal (h-BN) sonicado serem eletricamente isolantes e termicamente condutoras .
5. "PROCESSO PARA MISTURAS DE ÓLEO VEGETAL BIODEGRADÁVEIS COM NITRETO DE BORO HEXAGONAL(h-BN) SONICADO PARA APLICAÇÃO EM TRANSFORMADORES ELÉTRICOS" de acordo com a reivindicações 1 , 2, caracterizado po r as nanopartículas do nitreto de boro hexagonal (h-BN) sonicado serem misturadas ao fluído base de óleo vegetal biodegradável e normatizado por um processo de mistura que utiliza agitador magnético e aparelho de ultrasom interno (USI), de forma a se obter misturas de óleo vegetal biodegradáveis com nitreto de boro hexagonal(h-bn) sonicado .
6. "PROCESSO PARA MISTURAS DE ÓLEO VEGETAL BIODEGRADÁVEIS COM NITRETO DE BORO HEXAGONAL(h-BN) SONICADO PARA APLICAÇÃO EM TRANSFORMADORES ELÉTRICOS" de acordo com a reivindicações 1 , 2 e 5, ca racterizado por as misturas de óleo vegetal biodegradáveis com nitreto de boro hexagonal(h-bn) sonicado ser obtida a partir do nitreto de boro hexagonal (h-BN) sonicado numa concentração preferencialmente de 0,10 % em massa.
7. "PROCESSO PARA MISTURAS DE ÓLEO VEGETAL BIODEGRADÁVEIS COM NITRETO DE BORO HEXAGONAL(h-BN) SONICADO PARA APLICAÇÃO EM TRANSFORMADORES ELÉTRICOS" de acordo com a reivindicações 1 , 2, 3 , 5 e 6 ca racterizad o por as misturas de óleo vegetal biodegradávei s com nitreto de boro hexagonal(h- bn) sonicado obtidas atender os requisitos normatizados de um óleo i solante para transformadores e equipamentos elétricos e apresentar maior condutividade térmica quando comparada a do óleo base tipo vegetal biodegradável e normatizado, sobretudo nas faixas de temperatura de maior interesse de operações dos transformadores elétricos e dos equipamentos el étricos de média e alta tensão, temperaturas na faixa de 50°C a 80°C .
PCT/BR2015/000195 2015-01-05 2015-12-22 Processo para obtenção de misturas de óleo vegetal biodegradável com nitreto de boro hexagonal para aplicação em transformadores elétricos WO2016109873A1 (pt)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BRBR1020150000669 2015-01-05
BR102015000066A BR102015000066A2 (pt) 2015-01-05 2015-01-05 processo para misturas de óleo vegetal biodegradáveis com nitreto de boro hexagonal (h-bn) sonicado para aplicação em transformadores elétricos

Publications (1)

Publication Number Publication Date
WO2016109873A1 true WO2016109873A1 (pt) 2016-07-14

Family

ID=56355234

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2015/000195 WO2016109873A1 (pt) 2015-01-05 2015-12-22 Processo para obtenção de misturas de óleo vegetal biodegradável com nitreto de boro hexagonal para aplicação em transformadores elétricos

Country Status (2)

Country Link
BR (1) BR102015000066A2 (pt)
WO (1) WO2016109873A1 (pt)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5451334A (en) * 1989-08-17 1995-09-19 Henkel Kommanditgesellschaft Auf Aktien Environment-friendly basic oil for formulating hydraulic fluids
US6037537A (en) * 1995-12-21 2000-03-14 Cooper Industries, Inc. Vegetable oil based dielectric coolant
US20110086965A1 (en) * 2009-10-08 2011-04-14 National Institute For Materials Science Boron nitride nanosheet, method for producing boron nitride nanosheet thereof and composition containing boron nitride nanosheet thereof
TW201125950A (en) * 2010-01-26 2011-08-01 Kinik Co Heat conductive insulating grease containing hexagonal boron nitride
US20140077138A1 (en) * 2012-09-10 2014-03-20 William Marsh Rice University Boron nitride-based fluid compositions and methods of making the same
US8840803B2 (en) * 2012-02-02 2014-09-23 Baker Hughes Incorporated Thermally conductive nanocomposition and method of making the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5451334A (en) * 1989-08-17 1995-09-19 Henkel Kommanditgesellschaft Auf Aktien Environment-friendly basic oil for formulating hydraulic fluids
US6037537A (en) * 1995-12-21 2000-03-14 Cooper Industries, Inc. Vegetable oil based dielectric coolant
US20110086965A1 (en) * 2009-10-08 2011-04-14 National Institute For Materials Science Boron nitride nanosheet, method for producing boron nitride nanosheet thereof and composition containing boron nitride nanosheet thereof
TW201125950A (en) * 2010-01-26 2011-08-01 Kinik Co Heat conductive insulating grease containing hexagonal boron nitride
US8840803B2 (en) * 2012-02-02 2014-09-23 Baker Hughes Incorporated Thermally conductive nanocomposition and method of making the same
US20140077138A1 (en) * 2012-09-10 2014-03-20 William Marsh Rice University Boron nitride-based fluid compositions and methods of making the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TAHA-TIJERINA, J. ET AL.: "Electrically insulating thermal nano-oils using 2D fillers.", ACS NANO, vol. 6, no. 2, 2012, pages 1214 - 1220 *

Also Published As

Publication number Publication date
BR102015000066A2 (pt) 2016-07-12

Similar Documents

Publication Publication Date Title
Suganthi et al. Metal oxide nanofluids: Review of formulation, thermo-physical properties, mechanisms, and heat transfer performance
Suhaimi et al. A review on oil-based nanofluid as next-generation insulation for transformer application
Wang et al. Electrorheological properties of organically modified nanolayered laponite: influence of intercalation, adsorption and wettability
Farade et al. Investigation of the dielectric and thermal properties of non-edible cottonseed oil by infusing h-BN nanoparticles
Zhu et al. Preparation, characterization, viscosity and thermal conductivity of CaCO 3 aqueous nanofluids
Hussain et al. Nanofluid transformer oil for cooling and insulating applications: A brief review
US20140077138A1 (en) Boron nitride-based fluid compositions and methods of making the same
Siddique et al. Development of graphene oxide dispersed natural ester based insulating oil for transformers
US20150294753A1 (en) Dielectric mineral oil conditioned with graphene nanoflakes
Akhter et al. Characterization and stability analysis of oil‐based copper oxide nanofluids for medium temperature solar collectors
Siddique et al. Dielectric behavior of natural ester based mineral oil blend dispersed with TiO2 and ZnO nanoparticles as insulating fluid for transformers
Azizie et al. Preparation of vegetable oil-based nanofluid and studies on its insulating property: A review
WO2016109873A1 (pt) Processo para obtenção de misturas de óleo vegetal biodegradável com nitreto de boro hexagonal para aplicação em transformadores elétricos
Siddique et al. Aging of Transformer Pressboard Impregnated With Conductive and Semi-Conductive Nanoparticles Dispersed Soyabean Oil Blend
Awua et al. Investigation into thermal conductivity of palm kernel fibre nanofluids with mixture of ethylene glycol/water as base fluid
Dombek et al. Cooling properties of natural ester modified by nanopowders fullerene C 60 and TiO 2 for high voltage insulation applications
CN111117743A (zh) 一种耐磨、耐高温的润滑油组合物
Thomas et al. The effect of Ba 0.85 Ca 0.15 Zr 0.1 Ti 0.9 O 3 (BCZT) nanoparticles on the critical parameters of Synthetic ester based nanofluids
Taha-Tijerina et al. 2D structures-based energy management nanofluids
Nadolny et al. Thermal properties of mineral oil admixed with C 60 and TiO 2 nanoparticles
Farade et al. The Effect of Nano-Additives in Natural Ester Dielectric Liquids: A Comprehensive Review on Stability and Thermal Properties
Maselugbo et al. Thermal conductivity of ethylene glycol and propylene glycol nanofluids with boron nitride nano-barbs
Mansour et al. Heat transport characteristics of oil-based nanofluids with different types of nanoparticles
CN110872491B (zh) 一种石墨烯导热油及其制备方法
Oparanti et al. A state-of-the-art review on green nanofluids for transformer insulation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15876406

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15876406

Country of ref document: EP

Kind code of ref document: A1