WO2016108676A1 - Resin composition for hard coating, and hard-coating film comprising cured form of same as coating layer - Google Patents

Resin composition for hard coating, and hard-coating film comprising cured form of same as coating layer Download PDF

Info

Publication number
WO2016108676A1
WO2016108676A1 PCT/KR2015/014594 KR2015014594W WO2016108676A1 WO 2016108676 A1 WO2016108676 A1 WO 2016108676A1 KR 2015014594 W KR2015014594 W KR 2015014594W WO 2016108676 A1 WO2016108676 A1 WO 2016108676A1
Authority
WO
WIPO (PCT)
Prior art keywords
hard coating
resin composition
resin
film
formula
Prior art date
Application number
PCT/KR2015/014594
Other languages
French (fr)
Korean (ko)
Inventor
안상현
우학용
정학기
이동희
안병준
김항근
Original Assignee
코오롱인더스트리 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150190471A external-priority patent/KR101967147B1/en
Priority claimed from KR1020150190464A external-priority patent/KR101942006B1/en
Priority claimed from KR1020150190456A external-priority patent/KR101967146B1/en
Application filed by 코오롱인더스트리 주식회사 filed Critical 코오롱인더스트리 주식회사
Priority to US15/540,874 priority Critical patent/US20180010012A1/en
Priority to EP15875770.8A priority patent/EP3241875B1/en
Priority to EP19193636.8A priority patent/EP3591017B1/en
Priority to JP2017535370A priority patent/JP2018506617A/en
Priority to CN201580075404.XA priority patent/CN107207906B/en
Priority to ES15875770T priority patent/ES2791040T3/en
Publication of WO2016108676A1 publication Critical patent/WO2016108676A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • C09D183/06Polysiloxanes containing silicon bound to oxygen-containing groups

Definitions

  • the present invention relates to a hard coating film comprising a resin composition for hard coating and a cured product thereof as a coating layer.
  • glass has been uniquely used as a material for important commercial products including optical functional products such as windows of various electronic products, touch screens for computers, lenses, automotive sunroofs, optical screens, light guide plates, and LED front panels.
  • optical functional products such as windows of various electronic products, touch screens for computers, lenses, automotive sunroofs, optical screens, light guide plates, and LED front panels.
  • the glass is heavy, fragile, and at the same time has the disadvantage that the defect rate is very high in the processing of the product, the situation that can overcome the disadvantages of the glass has been made in many ways.
  • the transparent polymer film is widely used as a core material of the optical and transparent display industries, and in particular, due to its light weight and ease of processing, it has emerged as a substitute material for glass in the display industry.
  • the polymer film has a lower surface hardness than glass, and thus has a disadvantage in that the wear resistance is insufficient. Therefore, a high hardness coating, that is, a hard coating technology for improving the surface hardness of the polymer film has been considered as an important issue.
  • Organic materials have the advantages of flexibility and formability due to the characteristics of organic materials, but have the disadvantage of low surface hardness. It has the advantages of hardness and transparency, but has the disadvantage of poor flexibility and formability.
  • organic-inorganic composite materials having both the advantages of both materials are currently in the spotlight, and much research is being conducted, but it is still insufficient to realize the advantages of both materials.
  • one of the coatings generally used for hard coating is a light or thermosetting coating agent.
  • Photocurable coatings can be cured in a short time, as well as room temperature can be used as a surface protective coating of various plastic products.
  • the hardness and the adhesion to the film should be excellent, and there should be no curl and rainbow.
  • the curl phenomenon may act as a big disadvantage in the roll-to-roll process, which is a mass-produced product, and even when provided as a product, it may cause a problem in the future, which is a particularly required physical property.
  • the display industry is moving into the era of flexible displays, which requires a flexible hard coating film.
  • Korean Patent Laid-Open Publication No. 2010-0041992 provides a hard coating film composition including a hardening polyurethane acrylate oligomer.
  • the patent minimizes curling and prevents rainbow phenomenon due to light interference, but does not overcome the limitation of low surface hardness as a hard coating film.
  • the present invention includes an alkoxy silane containing an alicyclic epoxy, which is an organic-inorganic complex, and a siloxane resin in which an alkoxy metal is chemically bonded, thereby securing a space in the molecular structure, thereby suppressing shrinkage while maintaining surface hardness and curling. It is to provide a resin composition for hard coating without.
  • the alkoxy silane and the alkoxy metal is added to the alkoxy silane containing a Q structure of the silane, such as TEOS (Tetraethyl orthosilicate) is further added to provide a resin composition for hard coating comprising a siloxane resin forming a bonding structure, or the siloxane
  • TEOS Tetraethyl orthosilicate
  • the cured product of the resin composition as a coating layer, there is no curl phenomenon, to provide a hard coating film excellent in high surface hardness, adhesion, wear resistance and flex resistance.
  • a first preferred embodiment of the present invention for solving the above problems is a hard coating comprising a siloxane resin chemically bonded by compounds comprising an alkoxy silane represented by the following formula (1) and an alkoxy metal compound represented by the following formula (2) Resin composition.
  • R 1 is an alkyl group of C 1 to C 3 including an alicyclic epoxy group
  • R 2 is an alkyl group of linear or branched C 1 to C 4
  • R 3 is a linear or branched An alkyl group of C 1 to C 4
  • M is at least one metal element selected from the group consisting of aluminum, titanium and zinc
  • n is an integer of 1 to 3
  • m is an integer of 2 to 4.
  • a second preferred embodiment of the present invention for solving the above problems is an alkoxy silane represented by the formula (1) in the first embodiment, the alkoxy silane represented by the following formula (3) to the alkoxy metal compound represented by the formula (2) It is a resin composition for hard coatings containing the siloxane resin chemically bonded by the containing compound.
  • R 3 is a C 1 to C 4 linear or branched alkyl group.
  • the siloxane resin of the first embodiment or the second embodiment is a first component, and at least one of an epoxy resin and an acrylic resin is further used as the second component. It is a resin composition for hard coatings containing.
  • a fourth preferred embodiment of the present invention for solving the above problems is a base film; And a hard coating layer formed on at least one surface of the base film by curing the resin composition for hard coating of the first to third embodiments.
  • the resin composition for hard coating of the present invention is a metal bond by the alkoxy metal in the molecule based on the alicyclic epoxy to ensure the intermolecular space, thereby minimizing shrinkage during curing, thereby excellent surface hardness When it is secured and formed into a coating layer, it is possible to effectively suppress curl generation of the hard coat film.
  • the resin composition for hard coating that can realize surface hardness during curing and minimal curl generation can be provided.
  • the resin composition for hard coating of the present invention using the alkoxy silane having the Q structure of silane includes the Q structure of the silane in the molecular structure, so that the crosslinking becomes dense during the polymerization reaction of the alicyclic organic material, thereby ensuring excellent surface hardness. It can be formed into a cured product on the film surface to provide a hard coating film of excellent performance.
  • the siloxane resin chemically bonded by the alkoxy silane which has an alicyclic epoxy group, the compound containing an alkoxy metal compound, or the alkoxy silane which has an alicyclic epoxy group, the alkoxy silane which has Q structure of a silane, and the compound containing an alkoxy metal compound,
  • the adhesion and the flex resistance can be further improved.
  • 1 is a reaction scheme showing a synthesis mechanism by a sol-gel (Sol-Gel) method of the siloxane resin contained in the resin composition for hard coating according to the first embodiment of the present invention.
  • the alkoxy silane may be represented by the following Chemical Formula 1, and according to a more preferred embodiment of the present invention, the alkoxy silane represented by the following Chemical Formula 1 is 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane , 2- (3,4-epoxycyclohexyl) ethyltriethoxysilane and 2- (3,4-epoxycyclohexyl) ethyltripropoxysilane.
  • R 1 is a linear C 1 to C 3 alkyl group including an alicyclic epoxy group
  • R 2 is a linear or branched C 1 to C 4 alkyl group
  • n is an integer of 1 to 3.
  • the formula (1) is an epoxy monomer is very significant in terms of having a low curing shrinkage rate and can ensure excellent surface hardness while suppressing curl generation. If the formula (1) is an acrylic monomer may exhibit a fast curing rate and high hardness, but the shrinkage rate is high, it may increase the probability of curling. In addition, if the formula (1) is an isocyanate monomer, the elastic modulus is high and excellent in flexibility and accordingly less curl generation probability, but may exhibit a low surface hardness.
  • the formula (1) is an epoxy monomer
  • the surface hardness is higher than that of the isocyanate group, and it has a lower curing shrinkage rate than the acryl group, thereby suppressing curl generation.
  • the formula (1) of the present invention is an alicyclic epoxy monomer, it is advantageous to secure an intermolecular space during curing than a linear epoxy monomer, so that the resin composition for hard coating of the present invention is more effectively prevented from curling due to cured shrinkage.
  • the siloxane resin of the present invention is capable of densely crosslinking siloxane molecules of various molecular weights during photopolymerization or thermal polymerization, thereby providing a hard coating cured product having high hardness.
  • the present invention provides a hard coating composition for a siloxane resin chemically bonded by compounds containing an alkoxy silane and an alkoxy metal compound represented by the following Formula 2 at the same time. It is made into the main ingredient. That is, by including a structure in which the alkoxy silane and the alkoxy metal compound are combined in the molecular structure, the intermolecular space can be further secured by the metal element, and accordingly, the hard coating resin composition of the present invention minimizes hardening shrinkage to prevent curling. It can be drastically reduced.
  • R 3 is a linear or branched C 1 to C 4 alkyl group
  • M is at least one metal element selected from the group consisting of aluminum, titanium and zinc
  • m is an integer of 2 to 4.
  • the alkoxy metal compound may be included in an amount of 0.2 mol% to 5.0 mol% based on the total moles of the alkoxy silane and the alkoxy metal compound, which may be preferable in terms of ensuring ease of processing and effectively suppressing curl generation. Can be.
  • the alkoxy metal compound When the alkoxy metal compound is included in less than 0.2 mol%, the effect of suppressing curl generation may be insignificant, and when the reaction temperature is lowered or the polymerization is stopped within a short time, up to 5.0 mol% metal compound may be added.
  • the alkoxy metal compound may be more preferably contained in 0.2 mol% to 3.0 mol%.
  • Figure 1 is a schematic of the reaction mechanism by the Sol-Gel method of the chemical reaction of the alkoxy silane and alkoxy metal compound of the present invention, the entire siloxane resin can be formed due to the repetition of Route 1 or Route 2 reaction have.
  • the siloxane resin synthesized by the condensation reaction may adjust the viscosity and the curing rate by the monomers added during the reaction, thereby providing an optimum resin composition suitable for the purpose.
  • the siloxane resin obtained through the reaction as described above can secure the intermolecular space during crosslinking, thereby preventing the curl phenomenon caused by curing shrinkage, and enables high surface hardness by crosslinking and metal elements.
  • the siloxane resin of the present invention is not limited thereto, and may further include alkoxy silane represented by Chemical Formula 1 and an alkoxy metal represented by Chemical Formula 2, further comprising an alkoxy silane represented by Chemical Formula 3 to form a chemical bond. .
  • R 3 is a C 1 to C 4 linear or branched alkyl group.
  • the alkoxy silane represented by Chemical Formula 3 includes a silane Q structure in the molecular structure, that is, a chemical bonding structure such as ⁇ Formula 1> having no alkoxy functional group in Si, thereby ensuring excellent hardness. That is, by including the Q structure found in the molecular structure of the glass in the molecular structure, the resin composition of the present invention is able to realize a rigidity similar to glass at the time of curing.
  • the alkoxy silane represented by the formula (1) and the alkoxy silane represented by the formula (3) in the present invention preferably has a molar ratio of 99: 1 to 20:80, more preferably 85:15 to 45:55. It is easy to prevent gelation during polymerization while securing high hardness.
  • the compound of Formula 1 and Formula 3 are used together, it is more advantageous to improve the surface hardness, but when the compound of Formula 3 is present in excess of the above range, it may be difficult to control the polymerization due to the possibility of gelation during polymerization.
  • the alkoxy metal compound represented by the formula (2) is 0.2 mol% based on a total of 100 mol of the alkoxy silane represented by the formula (1) and the alkoxy silane represented by the formula (3) It is more preferable for the synthesis control to contain from 5.0 mol%.
  • the weight average molecular weight is 5,000 to 22,000
  • the polydispersity index (PDI, molecular weight distribution) is preferably 1.5 to 3.1, and includes the formula (3)
  • the weight average molecular weight is 3000 to 50000
  • the polydispersity index (PDI) is preferably 1.5 to 7.0.
  • the molecular weight and the molecular weight distribution (PDI, Mw / Mn) is obtained by gel permeation chromatography (GPC) (Waters, model name e2695) to obtain the polystyrene reduced weight average molecular weight (Mw) and number average molecular weight (Mn) This is the value applied. More specifically, 20 ⁇ l of the solution was dissolved in tetrahydrofuran so as to have a concentration of 1% of the polymer to be measured, and then injected into a GPC, and flowed at a flow rate of 1.0 mL / min, and analysis was performed at 30 ° C.
  • GPC gel permeation chromatography
  • the hard coating composition of this invention makes the said siloxane resin a 1st component, and contains at least one of an epoxy resin and an acrylic resin as a 2nd component.
  • the second component may be a monomer or oligomer including at least one functional group among an epoxy group, an oxetane group, an acrylate group, a methacrylate group, a urethane acrylate group, and an ethylene oxide (EO) addition type acrylate group. have.
  • the second component When the second component is included in the present invention, as the bond between the siloxane resin and the monomer or the siloxane resin and the oligomer is generated, the linear structure becomes longer, and thus the siloxane resin is expressed in contrast to when the second component is not added. While maintaining the hardness as it is, the intramolecular spacing by the monomer or oligomer can be enlarged, and the flexibility of the cured film can be further increased.
  • the epoxy resin may be one or more selected from the group consisting of glycidyl-type epoxy resin, alicyclic epoxy resin and oxetane-based resin.
  • the glycidyl epoxy resin is bisphenol A epoxy resin, bisphenol F epoxy resin, bisphenol S epoxy resin, naphthalene type epoxy resin or hydrogenated materials thereof; Epoxy resins having a dicyclopentadiene skeleton; Epoxy resins having a triglycidyl isocyanurate skeleton; Epoxy resins having a cardo skeleton; And an epoxy resin having a polysiloxane structure.
  • the alicyclic epoxy resin is provided at both ends of 3,4-epoxycyclohexylmethyl-3 ', 4'-epoxycyclohexanecarboxylate, 1,2,8,9-diepoxylimonene and ⁇ -caprolactone oligomer.
  • Each of 3,4-epoxycyclohexyl methanol and 3,4-epoxycyclohexanecarboxylic acid may be ester-bonded or an epoxy resin having a hydrogenated bisphenol A skeleton, and the oxetane-based resin may be an oxetane resin having a hydroxy structure. It may be an oxetane resin having an ether oxetane resin or methoxy methyl benzene structure.
  • the acrylic resin is specifically, for example, bisphenol-A ethylene oxide diacrylate, bisphenol-A ethylene oxide dimethacrylate, bisphenol-A ethoxylate diacrylate, bisphenol-A ethoxylate Diacrylate, bisphenol-A polyethoxylate diacrylate, bisphenol-A diacrylate, bisphenol-S diacrylate, dicyclopentadienyl diacrylate, pentaerythritol triacrylate, tris (2-hydride Roxyethyl) isocyanurate triacrylate, pentaerythritol tetraacrylate, bisphenol-A dimethacrylate, bisphenol-S dimethacrylate, dicyclopentadienyl dimethacrylate, pentaerythritol trimethacryl Lates, tris (2-hydroxyethyl) isocyanurate trimethacrylate and pentaerythritol At least one selected from tetramethacrylate may be used,
  • the epoxy resin or acrylic resin is preferably used alone or used by mixing two or more kinds.
  • the compatibility between the resins used in a mixture may be lowered and the uniformity of the coating film may be lowered, it may be more preferable to use the mixture alone or in combination of three or less.
  • the first component and the second component described above are preferably included in a mixing ratio of 9: 1 to 6: 4 by weight in the resin composition for hard coating of the present invention.
  • the siloxane resin is used in an excess ratio, the hardness, abrasion resistance, and heat resistance are excellent, but there is a lack of flexibility, so cracking may occur in a process such as cutting after hard coating, and an epoxy resin or an acrylic resin is used in an excess ratio.
  • the hard coating layer may not be able to secure hardness, which is an essential property.
  • the resin composition for hard coating of the present invention may further include an initiator for the polymerization of the siloxane resin in addition to the first component and the second component, for example, a photopolymerization initiator such as an organometallic salt or an amine, imidazole, and the like.
  • a thermal polymerization initiator can be used, and a cationic polymerizer may also be included.
  • the amount of the initiator may be included in about 0.5 to 5 parts by weight based on 100 parts by weight of the total resin composition. If the content is less than 0.5 parts by weight, the curing time of the hard coating layer to increase the hardness is increased, and the efficiency is lowered. If the content is more than 5 parts by weight, the yellowness of the hard coating layer is increased, making it difficult to obtain a transparent coating layer. have.
  • the resin composition for hard coating of the present invention may further include one or more selected from the group consisting of surfactants, antioxidants and leveling agents, according to the special function or need, in particular, the viscosity of the siloxane resin
  • an organic solvent for controlling the controllability and at the same time to further control the thickness of the coating film.
  • the addition amount of the organic solvent is not particularly limited, but examples of the organic solvent that can be used include ketones such as acetone, methyl ethyl ketone, methyl butyl ketone and cyclohexanone, or cellosolves such as methyl cellosolve and butyl cellosolve, Or ethers such as ethyl ether and dioxane, alcohols such as isobutyl alcohol, isopropyl alcohol, butanol and methanol, or halogenated hydrocarbons such as dichloromethane, chloroform and trichloroethylene, or normal hexane, benzene and toluene It may include one or more selected from a solvent consisting of hydrocarbons and the like.
  • ketones such as acetone, methyl ethyl ketone, methyl butyl ketone and cyclohexanone
  • cellosolves such as methyl cellosolve and butyl cellosolv
  • the present invention is a base film; And it is laminated on at least one side of the base film, it can provide a hard coating film comprising a coating layer prepared by curing the resin composition for hard coating, the hard coating film according to the present invention is hardness, adhesion, bending resistance, It is excellent in physical properties such as chemical resistance and abrasion resistance, and it is possible to prevent phenomena such as curling and peeling due to bending during processing and heat treatment during manufacturing and heat treatment.
  • the hard coating film of the present invention is ASTM D3363 measurement standards, 4H to 9H in the direction in which the coating layer is formed, when the alkoxy silane of formula 3 includes 100mm X 100mm area, 25 °C and 50% RH conditions After 24 hours at, the maximum curl value at which the edge of the film is spaced from the horizontal bottom may be 30 mm, which may be particularly suitably applied as a display protective film.
  • the hard coating film may have a very good bendability such that the minimum curvature radius of the film does not cause cracks in the coating layer when the bend is formed in the opposite direction to the coating surface such that 2mm to 6mm is flexible.
  • the heat treatment may be performed for 2 minutes to 60 minutes at a temperature of 40 ° C. or more and about 200 ° C. or less according to the substrate, and in the case of thermal polymerization, 2 minutes at a temperature of 60 ° C. or more and about 300 ° C. or less depending on the substrate. To 60 minutes, but is not limited thereto.
  • the photo-polymerization heat treatment is 50mJ / cm 2 or more 20,000mJ / cm 2 or less, more preferably 200mJ / cm 2 more than 5,000mJ / cm 2 Performing below may be advantageous in terms of ensuring sufficient hardness while more suppressing the occurrence of yellowing.
  • the hard coating resin composition may be applied to a substrate by spraying, dip coating, spin coating, die coating, comma coating, screen coating, inkjet printing, pad printing, knife coating, kiss coating, bar coating, and gravure coating.
  • the coating may be made by any one method, and the thickness of the hard coating layer formed of the hard coating resin composition may be easily adjusted according to the type of the substrate or the use thereof, and in the present invention, 2 to 60 ⁇ m, preferably 10 to 30. Hardness and flexibility of the hard coat film can be secured at the same thickness.
  • the base film in the present invention is a polyethylene sulfonate (PES) film, polyethylene terephthalate (PET) film, polystyrene (PS), methyl methacrylate-styrene (MS), polycarbonate (PC)
  • the organic synthetic resin film including a film, a polymethyl methacrylate (PMMA) film, a sulfin (Surlyn (manufactured by BFGoodrich, USA)), a polyimide (PI) film, and the like may be laminated alone or two or more.
  • the resin composition for hard coating of the present invention may also be applied to inorganic substrates such as glass, quartz, glass wafers, silicon wafers and the like to form a hard coat layer, depending on the purpose.
  • the molecular weight of the resin was measured using GPC, and it was confirmed that it has a number average molecular weight of 7245, a weight average molecular weight of 20146, and a polydispersity index (PDI, M w / M n ) of 2.78.
  • IRGACURE 250 (BASF Co., Ltd.) was added as a photoinitiator to 100 parts by weight of the resin, and then coated on the surface of the colorless polyimide with varying thicknesses of 10, 20, and 30 ⁇ m, and the UV lamp having a wavelength of 315 nm was 30 It was exposed to light for a second time to prepare a hardened coating cured product.
  • siloxane resin was obtained in the same manner as in Example 1-1, 2-ethyl-4-methylimidazole (Sigma-Aldrich) was added 2 parts by weight based on 100 parts by weight of the resin as a thermal initiator instead of the photoinitiator, and the colorless poly On the mid surface was coated with varying thicknesses of 10, 20, 30um. It was heat-treated at a temperature of 120 ° C. for 4 hours to prepare a hard coating coating.
  • 2-ethyl-4-methylimidazole Sigma-Aldrich
  • Example 1-3 Aluminum alkoxide adding
  • Example 1 except that siloxane resin having a number average molecular weight of 7027, a weight average molecular weight of 21325, and a polydispersity index of 3.03 was prepared by adding 1.62 g of aluminum ethoxide (Sigma-Aldrich) instead of 2.96 mL of titanium isopropoxide. Resin was prepared and coated in the same manner as -1 to prepare a coating cured product.
  • Example 1 except that 1.27 g of zinc methoxide (Sigma-Aldrich) was added instead of 2.96 mL of titanium isopropoxide to prepare a siloxane resin having a number average molecular weight of 7312, a weight average molecular weight of 20072, and a polydispersity index of 2.74. Resin was prepared and coated in the same manner as -1 to prepare a coating cured product.
  • Example 1-5 Titanium alkoxide Change in content ( 0.1mol% )
  • Resin was prepared in the same manner as in Example 1-1, except that 0.30 mL of titanium isopropoxide (Sigma-Aldrich) was added to prepare a siloxane resin having a number average molecular weight of 7592, a weight average molecular weight of 20324, and a polydispersity index of 2.67. To prepare a coating cured product was prepared.
  • titanium isopropoxide Sigma-Aldrich
  • Example 1-6 Titanium alkoxide ratio change ( 0.5mol% )
  • Resin was prepared in the same manner as in Example 1-1, except that 1.48 mL of titanium isopropoxide (Sigma-Aldrich) was added to prepare a siloxane resin having a number average molecular weight of 6985, a weight average molecular weight of 19952, and a polydispersity index of 2.85. Was prepared and coated to prepare a coating cured product.
  • titanium isopropoxide Sigma-Aldrich
  • Example 1-7 Titanium alkoxide ratio change ( 1.5mol% )
  • Resin was prepared in the same manner as in Example 1-1, except that 4.44 mL of titanium isopropoxide (Sigma-Aldrich) was added to prepare a siloxane resin having a number average molecular weight of 7428, a weight average molecular weight of 20523, and a polydispersity index of 2.76. To prepare a coating cured product was prepared.
  • titanium isopropoxide Sigma-Aldrich
  • Example 1-8 Titanium alkoxide ratio change ( 1.8mol% )
  • Resin was prepared in the same manner as in Example 1-1, except that 5.33 mL of titanium isopropoxide (Sigma-Aldrich) was added to prepare a siloxane resin having a number average molecular weight of 7790, a weight average molecular weight of 21338, and a polydispersity index of 2.74. To prepare a coating cured product was prepared.
  • Example 1-9 Titanium alkoxide ratio change ( 2.0mol% ) And reaction time control
  • a siloxane resin having a number average molecular weight of 3438 weight average molecular weight of 5151 polydispersity index of 1.5 was obtained in the same manner as in Example 1-1, except that 5.92 mL of titanium isopropoxide (Sigma-Aldrich) was added and the reaction time was progressed for 5 hours. It was obtained and coated to prepare a coating cured product.
  • Example 1-10 Titanium alkoxide ratio change ( 5.0mol% ) And reaction time control
  • a siloxane resin having a number average molecular weight of 5395, a weight average molecular weight of 15116, and a polydispersity index of 2.80 was obtained by the same method as in Example 1 except that no titanium isopropoxide was added. Thereafter, the coating cured product coated with the siloxane resin obtained through Comparative Example 1 was prepared under the same conditions as in Example 1-1.
  • Example 2 Using the same resin as Comparative Example 1-1, using the same thermosetting coating method as in Example 2 to prepare a cured coating.
  • Titanium isopropoxide (Sigma-Aldrich) was added to 16.28mL and the reaction time was controlled to less than 1 hour to prepare a resin in the same manner as in Example 1-1 to coat the film, but difficult to control the gelation of the resin As a result, the solubility in organic solvents was drastically degraded, which was not suitable for coating.
  • Pencil hardness was measured at 750 gf load at a speed of 180 mm / min in accordance with ASTM D3363 using a pencil hardness tester manufactured by IMOTO, Japan.
  • the TEOS is used for the alkoxy silane represented by the general formula (3) of the present invention because TEOS is cheap and easy to obtain, and even if other alkoxy groups are used, the polymer structure has a Q structure. To be the same.
  • KBM-303 (Shinetsu), TEOS (Sigma-Aldrich) and H 2 O were mixed at a rate of 365.87 g: 2.50 g: 40.66 mL, placed in a 500 mL flask, 0.06 g of sodium hydroxide was added as a catalyst, and Titanium isopropoxide. 0.85 g of Sigma-Aldrich Co., Ltd. was added and stirred at 60 ° C. for 10 hours. Thereafter, the mixture was filtered using a 0.45 um Teflon filter to obtain a siloxane resin (weight average molecular weight 5000, polydispersity index 2.0). Next, 3 parts by weight of IRGACURE 250 (BASF, Inc.) as a photoinitiator was added to 100 parts by weight of the siloxane resin to obtain a resin composition for hard coating.
  • IRGACURE 250 BASF, Inc.
  • KBM-303 (Shinetsu), TEOS (Sigma-Aldrich) and H 2 O were mixed in a ratio of 332.61 g: 29.69 g: 41.87 mL into a 500 mL flask, 0.06 g of sodium hydroxide was added as a catalyst, and Titanium isopropoxide. (Sigma-Aldrich Co., Ltd.) was added 2.13g and stirred at 60 °C for 10 hours. Thereafter, the mixture was filtered using a 0.45 um Teflon filter to obtain a siloxane resin (weight average molecular weight 10000, polydispersity index 2.2). Next, 3 parts by weight of IRGACURE 250 (BASF, Inc.) as a photoinitiator was added to 100 parts by weight of the siloxane resin to obtain a resin composition for hard coating.
  • IRGACURE 250 BASF, Inc.
  • KBM-303 (Shinetsu), TEOS (Sigma-Aldrich) and H 2 O were mixed in a ratio of 295.66 g: 59.37 g: 43.22 mL, placed in a 500 mL flask, 0.06 g of sodium hydroxide was added as a catalyst, and Titanium isopropoxide. (Sigma-Aldrich, Inc.) was added 4.26g and stirred at 60 ° C for 10 hours. Thereafter, the resultant was filtered using a 0.45 um Teflon filter to obtain a siloxane resin (weight average molecular weight 15000, polydispersity index 3.0). Next, 3 parts by weight of IRGACURE 250 (BASF, Inc.) as a photoinitiator was added to 100 parts by weight of the siloxane resin to obtain a resin composition for hard coating.
  • IRGACURE 250 BASF, Inc.
  • KBM-303 (Shinetsu), TEOS (Sigma-Aldrich) and H 2 O were mixed at a ratio of 184.79 g: 146.87 g: 47.28 mL, placed in a 500 mL flask, 0.06 g of sodium hydroxide was added as a catalyst, and Titanium isopropoxide. 12.79 g of Sigma-Aldrich Co., Ltd. was added and stirred at 60 ° C. for 10 hours. Thereafter, the mixture was filtered using a 0.45 um Teflon filter to obtain a siloxane resin (weight average molecular weight 37000, polydispersity index 4.3). Next, 3 parts by weight of IRGACURE 250 (BASF, Inc.) as a photoinitiator was added to 100 parts by weight of the siloxane resin to obtain a resin composition for hard coating.
  • IRGACURE 250 BASF, Inc.
  • KBM-303 (Shinetsu), TEOS (Sigma-Aldrich) and H 2 O were mixed in a ratio of 73.91 g: 234.37 g: 51.33 mL, placed in a 500 mL flask, 0.06 g of sodium hydroxide was added as a catalyst, and Titanium isopropoxide. (Sigma-Aldrich Co., Ltd.) 21.32g was added and stirred for 10 hours at 60 °C gel was difficult to control. Thereafter, the resultant was filtered using a 0.45 um Teflon filter to obtain a siloxane resin (weight average molecular weight 50000, polydispersity index 6.2). Next, 3 parts by weight of IRGACURE 250 (BASF, Inc.) as a photoinitiator was added to 100 parts by weight of the siloxane resin to obtain a resin composition for hard coating.
  • IRGACURE 250 BASF, Inc.
  • KBM-303 (Shinetsu), TEOS (Sigma-Aldrich) and H 2 O were mixed in a ratio of 73.91 g: 234.37 g: 51.33 mL, placed in a 500 mL flask, 0.06 g of sodium hydroxide was added as a catalyst, and Titanium isopropoxide. (Sigma-Aldrich Co., Ltd.) After the addition of 21.32 g of stirring at 60 ° C. for 3 hours to prevent gelation, the siloxane resin (weight average molecular weight 3500, polydispersity index 1.8) was easily obtained without gelation. Thereafter, the mixture was filtered using a 0.45 um Teflon filter to obtain a siloxane resin. Next, 3 parts by weight of IRGACURE 250 (BASF, Inc.) as a photoinitiator was added to 100 parts by weight of the siloxane resin to obtain a resin composition for hard coating.
  • IRGACURE 250 BASF, Inc.
  • KBM-303 (Shinetsu Co., Ltd.), TEOS (Sigma-Aldrich Co., Ltd.) and H 2 O were mixed at a ratio of 295.66 g: 53.12 g: 43.22 mL, placed in a 500 mL flask, 0.06 g of sodium hydroxide was added as a catalyst, and Titanium isopropoxide. 12.79 g of Sigma-Aldrich Co., Ltd. was added and stirred at 60 ° C. for 10 hours. Thereafter, the mixture was filtered using a 0.45 um Teflon filter to obtain a siloxane resin (weight average molecular weight 28000, polydispersity index 3.2). Next, 3 parts by weight of IRGACURE 250 (BASF, Inc.) as a photoinitiator was added to 100 parts by weight of the siloxane resin to obtain a resin composition for hard coating.
  • IRGACURE 250 BASF, Inc.
  • KBM-303 (Shinetsu Co., Ltd.), TEOS (Sigma-Aldrich Co., Ltd.) and H 2 O were mixed at a ratio of 295.66 g: 601.87 g: 43.22 mL, placed in a 500 mL flask, 0.06 g of sodium hydroxide was added as a catalyst, and Titanium isopropoxide. 0.85 g of Sigma-Aldrich Co., Ltd. was added and stirred at 60 ° C. for 10 hours. Thereafter, the mixture was filtered using a 0.45 um Teflon filter to obtain a siloxane resin (weight average molecular weight 24000, polydispersity index 2.8). Next, 3 parts by weight of IRGACURE 250 (BASF, Inc.) as a photoinitiator was added to 100 parts by weight of the siloxane resin to obtain a resin composition for hard coating.
  • IRGACURE 250 (BASF, Inc.) as a photoinitiator was added to 100
  • KBM-303 (Shinetsu Co., Ltd.), TEOS (Sigma-Aldrich Co., Ltd.) and H 2 O were mixed at a ratio of 184.79 g: 146.87 g: 48.54 mL, placed in a 500 mL flask, 0.06 g of sodium hydroxide was added as a catalyst, and Titanium isopropoxide. (Sigma-Aldrich Co., Ltd.) 21.32g was added, but when stirred for 10 hours at 60 °C Gel is difficult to control the reaction time was shortened to 5 hours.
  • siloxane resin weight average molecular weight 30000, polydispersity index 5.2.
  • IRGACURE 250 BASF, Inc.
  • KBM-303 (Shinetsu), TEOS (Sigma-Aldrich) and H 2 O were mixed at a ratio of 258.70 g: 90.62 g: 44.57 mL, and placed in a 500 mL flask, 0.06 g of sodium hydroxide was added as a catalyst, and Titanium isopropoxide. (Sigma-Aldrich, Inc.) was added 4.26g and stirred at 60 ° C for 10 hours. Thereafter, the mixture was filtered using a 0.45 um Teflon filter to obtain a siloxane resin (weight average molecular weight 18000, polydispersity index 3.9). Next, 3 parts by weight of IRGACURE 250 (BASF, Inc.) as a photoinitiator was added to 100 parts by weight of the siloxane resin to obtain a resin composition for hard coating.
  • IRGACURE 250 BASF, Inc.
  • KBM-403 (Shinetsu), TEOS (Sigma-Aldrich) and H 2 O (Sigma-Aldrich) were mixed in a ratio of 350.96g: 2.50g: 40.66mL and placed in a 500mL flask, and 0.06g sodium hydroxide was catalyzed.
  • Titanium isopropoxide (Sigma-Aldrich) were added 0.85g and stirred at 60 ° C for 10 hours. Thereafter, the mixture was filtered using a 0.45 um Teflon filter to obtain a siloxane resin (weight average molecular weight 4000, polydispersity index 1.8).
  • 3 parts by weight of IRGACURE 250 (BASF, Inc.) as a photoinitiator was added to the siloxane resin obtained above, to 100 parts by weight of the siloxane resin, thereby obtaining a hard coating resin composition.
  • KBM-303 (Shinetsu), TEOS (Sigma-Aldrich) and H 2 O were mixed at a ratio of 295.66 g: 60.94 g: 43.22 mL, placed in a 500 mL flask, and 0.06 g of sodium hydroxide was added as a catalyst at 60 ° C. Stir for 10 hours. Thereafter, the mixture was filtered using a 0.45 um Teflon filter to obtain a siloxane resin (weight average molecular weight 21000, polydispersity index 2.3). Next, 3 parts by weight of IRGACURE 250 (BASF, Inc.) as a photoinitiator was added to 100 parts by weight of the siloxane resin to obtain a resin composition for hard coating.
  • IRGACURE 250 BASF, Inc.
  • KBM-303 (Shinetsu Co., Ltd.) and Titanium isopropoxide (Sigma-Aldrich Co., Ltd.), H 2 O, were mixed in a ratio of 365.87 g: 4.26 g: 40.66 mL, placed in a 500 mL flask, and 0.06 g of sodium hydroxide was added as a catalyst. Stir at 10 ° C. for 10 hours. Thereafter, the mixture was filtered using a 0.45 um Teflon filter to obtain a siloxane resin (weight average molecular weight 5000, polydispersity index 2.6). Next, 3 parts by weight of IRGACURE 250 (BASF, Inc.) as a photoinitiator was added to 100 parts by weight of the siloxane resin to obtain a resin composition for hard coating.
  • IRGACURE 250 BASF, Inc.
  • KBM-303 (Shinetsu Co., Ltd.), TEOS (Sigma-Aldrich Co., Ltd.) and H 2 O were mixed at a ratio of 36.96 g: 281.25 g: 52.68 mL, and placed in a 500 mL flask, followed by reaction by adding 0.06 g of sodium hydroxide as a catalyst. When stirred for 10 hours at 60 °C Gel was difficult to control the reaction time was shortened to 5 hours to react. Thereafter, the mixture was filtered using a 0.45 um Teflon filter to obtain a siloxane resin (weight average molecular weight 48000, polydispersity index 6.8). Next, 3 parts by weight of IRGACURE 250 (BASF, Inc.) as a photoinitiator was added to 100 parts by weight of the siloxane resin to obtain a resin composition for hard coating.
  • IRGACURE 250 BASF, Inc.
  • Pencil hardness was measured at 750 gf load at a speed of 180 mm / min in accordance with ASTM D3363 using a pencil hardness tester manufactured by IMOTO, Japan.
  • Examples 2-3 to 2-10 all showed excellent surface hardness and wear resistance.
  • Comparative Example 2-1 basically did not include an alkoxy silane having an alicyclic epoxy group even though the alkoxy metal was added, the surface hardness as well as the curl characteristics were not significantly improved.
  • Comparative Example 2-2 the TEOS addition amount was increased to improve the surface hardness than Comparative Example 2-1, but it was also confirmed that curling properties were not improved because no alkoxy metal was added.
  • the amount of TEOS added was less than that of Comparative Example 2-2, and thus the hardness was slightly lower, but it was confirmed that the addition of the alkoxy metal greatly improved the curl.
  • the hard coating film prepared using the hard coating resin composition of the present invention is excellent in hardness, wear resistance and curl characteristics, it could be confirmed through experiments that it may be particularly suitable as a film for display protection.
  • the content of TEOS is 17 mol% to 20 mol% based on the total alkoxy silane, and the alkoxy metal is included in the range of 0.2 mol% to 3 mol% based on the total alkoxy silane.
  • KBM-303 (Shinetsu), Titanium isopropoxide (Sigma-Aldrich) and H 2 O were mixed in a 500mL flask at a ratio of 245.2g: 1.4g: 27.2mL and then sodium hydroxide (Sigma-Aldrich) 0.1g was added as a catalyst and the reaction proceeded while removing the alcohol produced by the Dean Stark apparatus while stirring at 60 ° C. for 10 hours to obtain a siloxane resin polymer 1.
  • KBM-303 (Shinetsu), Titanium isopropoxide (Sigma-Aldrich) and H 2 O were mixed in a 500 mL flask at a ratio of 241.5 g: 5.7 g: 27.2 mL, and then 0.1 g sodium hydroxide (Sigma-Aldrich) was added as a catalyst and the reaction proceeded while removing the alcohol produced by the Dean Stark apparatus while stirring at 60 ° C. for 10 hours to obtain a siloxane resin polymer 2.
  • KBM-303 (Shinetsu), Titanium isopropoxide (Sigma-Aldrich) and H 2 O were mixed in a 500 mL flask at a ratio of 234.1 g: 14.2 g: 27.2 mL, and then 0.1 g sodium hydroxide (Sigma-Aldrich) was added as a catalyst and the reaction proceeded while removing the alcohol produced by the Dean Stark apparatus while stirring at 60 ° C. for 10 hours to obtain a siloxane resin polymer 3.
  • KBM-303 (Shinetsu), Aluminum ethoxide (Sigma-Aldrich) and H 2 O were mixed in a ratio of 259.8 mL: 1.62 g: 27.2 mL into a 500 mL flask, and 0.1 g sodium hydroxide was added as a catalyst. The reaction was carried out while removing the alcohol produced by the Dean Stark apparatus while stirring at 10C to obtain a siloxane resin polymer 4.
  • KBM-303 (Shinetsu Co., Ltd.), H 2 O was mixed in a 500 mL flask at a ratio of 246.4 g: 27.2 mL, and then 0.1 g of sodium hydroxide (Sigma-Aldrich) was added as a catalyst and stirred at 60 ° C. for 10 hours. The reaction was carried out while removing the alcohol produced by the Dean Stark apparatus while obtaining the siloxane resin polymer 5.
  • KBM-303 (Shinetsu), Titanium isopropoxide (Sigma-Aldrich) and H 2 O were mixed in a 500 mL flask at a ratio of 231.6 g: 17.1 g: 27.2 mL, and then sodium hydroxide (Sigma-Aldrich) 0.1 g was added as a catalyst and the reaction proceeded while removing the alcohol produced by the Dean Stark apparatus while stirring at 60 ° C. for 10 hours to obtain a siloxane resin polymer 3.
  • methyl ethyl ketone 40% by weight of methyl ethyl ketone as a diluting solvent, 1% by weight of triarylsulfonium hexafluoroantimonate (Sigma-Aldrich) as a photoinitiator, and a silicone-based leveling agent as an additive based on the total weight of the mixed mixture : BYK, product name: BYK-333) 0.4 wt% was added, and stirred for 1 hour using a stirrer to prepare a hard coat resin composition.
  • Ethyl oxetanyl methyl ether (manufacturer: Toagosei Co., Ltd., product name: OXT221) and cyclo aliphatic epoxide (manufactured by Daicel Co., Ltd., product name: Celloxide2021P) were prepared by mixing in a weight ratio of 1: 1.
  • the hard coating resin composition was prepared in the same manner as in Example 3-1.
  • Phenyl epoxy acrylate (manufacturer: Miwon Corporation, product name: PE110) and bisphenol A type EO addition diacrylate (manufacturer: Miwon Corporation, product name: M2100) was prepared by mixing in a weight ratio of 1: 1, in the polymerization example 2
  • Ethyl oxetanyl methyl ether (manufacturer: Toagosei Co., Ltd., product name: OXT221) and cyclo aliphatic epoxide (manufactured by Daicel Co., Ltd., product name: Celloxide2021P) were prepared by mixing in a weight ratio of 1: 1. It was mixed with the prepared siloxane resin in a weight ratio of 1: 1. After the hard coating resin composition was prepared in the same manner as in Example 3-1.
  • Ethyl oxetanyl methyl ether (manufacturer: Toagosei Co., Ltd., OXT221) and cyclo aliphatic epoxide (manufactured by Daicel Co., Ltd., product name: Celloxide2021P) were prepared by mixing in a weight ratio of 1: 1, and Comparative Polymerization Example 1 It was mixed with the siloxane resin prepared in the weight ratio of 3: 1. After the hard coating resin composition was prepared in the same manner as in Example 3-1.
  • Pencil hardness was measured at 750 gf load at a speed of 180 mm / min in accordance with ASTM D3363 using a pencil hardness tester manufactured by IMOTO, Japan.
  • the hard coat film manufactured using the hard coat resin composition of the present invention is excellent in strength, flexibility, and curl characteristics, and thus can be applied as a display protective film.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Laminated Bodies (AREA)
  • Paints Or Removers (AREA)

Abstract

The present invention relates to a resin composition for a hard coating, the composition comprising a siloxane resin that is chemically bonded by means of compounds comprising a compound of an alkoxy metal and alkoxysilane, and the invention relates to a hard-coating film comprising a hard-coating layer formed from the resin composition for a hard coating.

Description

하드 코팅용 수지 조성물 및 이의 경화물을 코팅층으로 포함하는 하드 코팅 필름Hard coating film comprising a resin composition for hard coating and a cured product thereof as a coating layer
본 발명은 하드 코팅용 수지 조성물 및 이의 경화물을 코팅층으로 포함하는 하드 코팅 필름에 관한 것이다.The present invention relates to a hard coating film comprising a resin composition for hard coating and a cured product thereof as a coating layer.
일반적으로 각종 전자제품의 윈도우, 컴퓨터용 터치 스크린, 렌즈, 자동차 선루프, 광학 스크린, 도광판 및 LED 전면판 등과 같은 광학적 기능성 제품을 비롯한 중요한 상업적 제품들의 소재로는 유리가 단연 독보적으로 사용되어 왔다. 그러나, 유리는 무겁고, 깨지기 쉬우며 제품 가공시 불량률이 상당히 높다는 단점을 동시에 지니고 있어, 이러한 유리의 단점을 극복할 수 있는 소재에 대한 검토가 다방면에서 이루어지고 있는 상황이다.In general, glass has been uniquely used as a material for important commercial products including optical functional products such as windows of various electronic products, touch screens for computers, lenses, automotive sunroofs, optical screens, light guide plates, and LED front panels. However, the glass is heavy, fragile, and at the same time has the disadvantage that the defect rate is very high in the processing of the product, the situation that can overcome the disadvantages of the glass has been made in many ways.
이와 같은 상황 속에서 투명 고분자 필름은 광학 및 투명 디스플레이 산업의 핵심소재로 많은 활용이 되고 있으며, 특히 그 경량성 및 가공 용이성으로 인해 디스플레이 산업에서 유리를 대체한 소재로 부상하고 있다. 하지만 고분자 필름은 유리에 비해 표면 경도가 낮고, 이로 인해 내마모성이 부족하다는 단점이 존재하여 고분자 필름의 표면 경도를 향상시키기 위한 고경도 코팅, 즉 하드 코팅 기술이 중요한 이슈로 거론되고 있다.In such a situation, the transparent polymer film is widely used as a core material of the optical and transparent display industries, and in particular, due to its light weight and ease of processing, it has emerged as a substitute material for glass in the display industry. However, the polymer film has a lower surface hardness than glass, and thus has a disadvantage in that the wear resistance is insufficient. Therefore, a high hardness coating, that is, a hard coating technology for improving the surface hardness of the polymer film has been considered as an important issue.
하드 코팅에 사용되는 재료는 크게 유기, 무기, 유무기 복합재료로 나뉘는데, 유기재료는 유기물의 특성으로 유연성, 성형성을 장점을 가지고 있지만 표면경도가 낮다는 단점을 가지고 있고, 무기재료는 높은 표면경도와 투명성의 장점을 가지고 있지만, 유연성 및 성형성이 저조하다는 단점을 가지고 있다. 이에 따라 두 재료의 장점을 모두 가진 유무기 복합재료는 현재 많은 각광을 받고 있고, 많은 연구가 진행되고 있지만, 아직 두 가지 재료의 장점을 모두 구현하기는 미흡한 실정이다.The materials used for hard coatings are largely divided into organic, inorganic and organic-inorganic composites. Organic materials have the advantages of flexibility and formability due to the characteristics of organic materials, but have the disadvantage of low surface hardness. It has the advantages of hardness and transparency, but has the disadvantage of poor flexibility and formability. As a result, organic-inorganic composite materials having both the advantages of both materials are currently in the spotlight, and much research is being conducted, but it is still insufficient to realize the advantages of both materials.
한편, 하드 코팅용에 일반적으로 사용되고 있는 코팅제 중 하나로 광 또는 열경화형 코팅제가 존재한다. 광경화형 코팅제는 짧은 시간에 경화가 가능할 뿐 아니라, 상온 경화가 가능하여 각종 플라스틱 제품들의 표면보호 코팅제로 사용되고 있다. 이러한 코팅제가 광학용으로 유용하게 적용되기 위해서는 경도와 더불어 필름과의 부착력이 우수해야 하며, 컬(Curl) 현상 및 레인보우(rainbow) 현상 등이 없어야 한다. 특히, 컬 현상의 경우 대량생산인 Roll to Roll 공정진행에서 큰 단점으로 작용할 수 있고, 제품으로 제공시에도 향후 내구성에 문제를 일으킬 수 있으므로 각별히 요구되는 물성이다. 또한 디스플레이 산업이 플렉시블 디스플레이 시대로 옮겨가고 있으며 이를 위해서는 유연성이 우수한 하드 코팅 필름이 반드시 필요하다.On the other hand, one of the coatings generally used for hard coating is a light or thermosetting coating agent. Photocurable coatings can be cured in a short time, as well as room temperature can be used as a surface protective coating of various plastic products. In order for this coating to be usefully applied for the optical, the hardness and the adhesion to the film should be excellent, and there should be no curl and rainbow. In particular, the curl phenomenon may act as a big disadvantage in the roll-to-roll process, which is a mass-produced product, and even when provided as a product, it may cause a problem in the future, which is a particularly required physical property. In addition, the display industry is moving into the era of flexible displays, which requires a flexible hard coating film.
광학용 제품에 적용한 광 또는 열 경화형 코팅제 관련 종래 기술로서, 대한민국 공개특허 2010-0041992호에는 자외선 경화성 폴리우레탄 아크릴레이트계 올리고머를 포함하는 고경도 하드 코팅 필름 조성물을 제공하고 있다. 상기 특허는 컬 현상을 최소화하고 광간섭에 의한 레인보우 현상을 방지하였으나, 하드 코팅 필름으로서 낮은 표면경도의 한계를 극복하지 못하였다.As a related art related to an optical or heat curable coating agent applied to an optical product, Korean Patent Laid-Open Publication No. 2010-0041992 provides a hard coating film composition including a hardening polyurethane acrylate oligomer. The patent minimizes curling and prevents rainbow phenomenon due to light interference, but does not overcome the limitation of low surface hardness as a hard coating film.
또한, 국제 공개특허공보 WO2013-187699호에는 지환식 에폭시기를 포함하는 고경도 실록산 수지 조성물과 그의 제조방법 및 상기 경화물을 포함하는 광학필름이 제안되어 있다. 상기 종래 기술은 9 H의 높은 경도를 달성하였으나, 단일 단량체의 사용과 양이온 개시제의 사용으로 인한 내후성이 문제가 될 수 있으며, 컬 현상이 발생할 수 있다는 문제가 여전히 존재한다.In addition, International Patent Publication No. WO2013-187699 proposes a high hardness siloxane resin composition containing an alicyclic epoxy group, a method for producing the same, and an optical film including the cured product. Although the prior art has achieved a high hardness of 9 H, there is still a problem that weather resistance due to the use of a single monomer and the use of a cationic initiator may be a problem, and curling may occur.
이렇듯, 분자간 치밀한 네트워크를 형성하여 하드 코팅층의 표면경도를 향상시키면, 수축성이 증가하여 유연성이 떨어지며, 컬 및 크랙이 발생하는 문제가 발생하고, 유연성을 증대시키고 컬과 크랙을 해소하면 표면경도의 한계를 극복하지 못한다는 문제가 발생한다. 따라서 유연성이 우수하며, 컬이 없고, 가공 용이성을 갖는 고경도 코팅 재료의 개발은 고분자 필름의 보다 광범위한 활용을 위해서도 절실히 필요한 상황이다.As such, when the surface hardness of the hard coating layer is improved by forming a dense intermolecular network, the shrinkage property increases and the flexibility decreases, the problem of curling and cracking occurs, and the increase of flexibility and the elimination of curling and cracking limits the surface hardness. The problem arises that it does not overcome. Therefore, the development of a high hardness coating material having excellent flexibility, no curl, and ease of processing is urgently needed for wider application of the polymer film.
이에 본 발명을 통해 유기-무기 복합체인 지환식 에폭시가 포함된 알콕시 실란과 알콕시 금속이 화학 결합된 실록산 수지를 포함함으로써, 분자 구조내의 공간을 확보하여, 표면경도를 유지하면서도 수축을 억제하고 컬 현상이 없는 하드 코팅용 수지 조성물을 제공하고자 한다.Therefore, the present invention includes an alkoxy silane containing an alicyclic epoxy, which is an organic-inorganic complex, and a siloxane resin in which an alkoxy metal is chemically bonded, thereby securing a space in the molecular structure, thereby suppressing shrinkage while maintaining surface hardness and curling. It is to provide a resin composition for hard coating without.
아울러, 상기 알콕시 실란과 알콕시 금속에 TEOS(Tetraethyl orthosilicate)와 같이 실란의 Q구조가 포함된 알콕시 실란이 더 추가되어 결합 구조를 이루고 있는 실록산 수지를 포함하는 하드 코팅용 수지 조성물을 제공하거나, 상기 실록산 수지와 함께 에폭시 내지 아크릴계 수지를 포함하는 하드 코팅용 수지 조성물을 제공하고자 한다In addition, the alkoxy silane and the alkoxy metal is added to the alkoxy silane containing a Q structure of the silane, such as TEOS (Tetraethyl orthosilicate) is further added to provide a resin composition for hard coating comprising a siloxane resin forming a bonding structure, or the siloxane To provide a resin composition for hard coating comprising an epoxy to acrylic resin with a resin
나아가, 상기 수지 조성물의 경화물을 코팅층으로 포함함으로써, 컬 현상이 없고, 높은 표면경도, 밀착성, 내마모성 및 내굴곡성 등이 우수한 하드 코팅 필름을 제공하고자 한다.Furthermore, by including the cured product of the resin composition as a coating layer, there is no curl phenomenon, to provide a hard coating film excellent in high surface hardness, adhesion, wear resistance and flex resistance.
상기 과제를 해결하기 위한 본 발명의 바람직한 제 1 구현예는 하기 화학식 1로 표시되는 알콕시 실란 및 하기 화학식 2로 표시되는 알콕시 금속 화합물을 포함하는 화합물들에 의해 화학 결합된 실록산 수지를 포함하는 하드 코팅용 수지 조성물이다.A first preferred embodiment of the present invention for solving the above problems is a hard coating comprising a siloxane resin chemically bonded by compounds comprising an alkoxy silane represented by the following formula (1) and an alkoxy metal compound represented by the following formula (2) Resin composition.
<화학식 1> R1 nSi(OR2)4-n <Formula 1> R 1 n Si (OR 2 ) 4-n
<화학식 2> M(OR3)m <Formula 2> M (OR 3 ) m
이때, 상기 화학식 1 내지 2에서 R1은 지환식 에폭시기를 포함하는 C1 내지 C3의 알킬기이고, R2는 선형 또는 분지형 C1 내지 C4의 알킬기이며, R3는 선형 또는 분지형의 C1 내지 C4의 알킬기이다. 또한, M은 알루미늄, 티타늄 및 아연으로 이루어진 그룹으로부터 선택된 1종 이상의 금속원소이며, n은 1 내지 3의 정수, m은 2 내지 4의 정수이다.In this case, in Formulas 1 to 2, R 1 is an alkyl group of C 1 to C 3 including an alicyclic epoxy group, R 2 is an alkyl group of linear or branched C 1 to C 4 , R 3 is a linear or branched An alkyl group of C 1 to C 4 . In addition, M is at least one metal element selected from the group consisting of aluminum, titanium and zinc, n is an integer of 1 to 3, m is an integer of 2 to 4.
또한, 상기 과제를 해결하기 위한 본 발명의 바람직한 제 2 구현예는 상기 제 1 구현예에서 화학식 1 로 표시되는 알콕시 실란, 화학식 2로 표시되는 알콕시 금속 화합물에 하기 화학식 3으로 표시되는 알콕시 실란을 더 포함하는 화합물 들에 의해 화학 결합된 실록산 수지를 포함하는 하드 코팅용 수지 조성물이다.In addition, a second preferred embodiment of the present invention for solving the above problems is an alkoxy silane represented by the formula (1) in the first embodiment, the alkoxy silane represented by the following formula (3) to the alkoxy metal compound represented by the formula (2) It is a resin composition for hard coatings containing the siloxane resin chemically bonded by the containing compound.
<화학식 3> Si(OR3)4 <Formula 3> Si (OR 3 ) 4
단, 상기 화학식 3 에서 R3은 C1 내지 C4의 선형 또는 분지형 알킬기이다.However, in Formula 3, R 3 is a C 1 to C 4 linear or branched alkyl group.
아울러, 상기 과제를 해결하기 위한 본 발명의 바람직한 제 3 구현예는 상기 제 1 구현예 또는 제 2 구현예의 실록산 수지를 제 1 성분으로 하고, 제 2 성분으로서 에폭시 수지 및 아크릴계 수지 중 적어도 하나를 더 포함하는 하드 코팅용 수지 조성물이다.In addition, according to a third preferred embodiment of the present invention for solving the above problems, the siloxane resin of the first embodiment or the second embodiment is a first component, and at least one of an epoxy resin and an acrylic resin is further used as the second component. It is a resin composition for hard coatings containing.
나아가, 상기 과제를 해결하기 위한 본 발명의 바람직한 제 4 구현예는 기재필름; 및 상기 기재필름의 적어도 일면에, 상기 제 1 구현예 내지 제 3 구현예의 하드 코팅용 수지 조성물을 경화하여 형성한 하드 코팅층을 포함하는 하드 코팅 필름이다.Furthermore, a fourth preferred embodiment of the present invention for solving the above problems is a base film; And a hard coating layer formed on at least one surface of the base film by curing the resin composition for hard coating of the first to third embodiments.
본 발명에 따르면 우수한 표면경도를 유지하면서도 수축을 억제하여 컬 현상이 없는 하드 코팅용 수지 조성물을 제공할 수 있으며, 상기 수지 조성물을 사용하여 컬 현상이 없고 높은 표면 경도를 갖는 코팅층을 포함한 하드 코팅 필름을 제공할 수 있다. 특히, 본 발명의 하드 코팅용 수지 조성물은 지환식 에폭시를 기반으로 분자내에 알콕시 금속에 의한 금속이 화학결합을 이루고 있어 분자간 공간이 확보될 수 있고, 이에 따라 경화시 수축이 최소화되어 우수한 표면 경도를 확보할 수 있으며, 코팅층으로 형성되었을 경우, 하드 코팅 필름의 컬 발생을 효과적으로 억제할 수 있다. According to the present invention, it is possible to provide a resin composition for hard coating without curling by maintaining shrinkage while maintaining excellent surface hardness, and using the resin composition, a hard coating film including a coating layer having no high surface hardness and no curling phenomenon. Can be provided. In particular, the resin composition for hard coating of the present invention is a metal bond by the alkoxy metal in the molecule based on the alicyclic epoxy to ensure the intermolecular space, thereby minimizing shrinkage during curing, thereby excellent surface hardness When it is secured and formed into a coating layer, it is possible to effectively suppress curl generation of the hard coat film.
또한, 본 발명에 따르면 지환식 에폭시기를 갖는 알콕시 실란에 실란의 Q구조를 갖는 알콕시 실란과 알콕시 금속화합물을 함께 도입함으로써, 경화 시 표면경도 향상과 최소한의 컬 발생을 구현할 수 있는 하드 코팅용 수지 조성물을 제공할 수 있다. 무엇보다도 실란의 Q구조를 갖는 알콕시 실란을 이용한 본 발명의 하드 코팅용 수지 조성물은 분자 구조내에 실란의 Q구조를 포함하게 됨으로써 지환식 유기물의 중합반응시 가교가 치밀하게 이루어져 우수한 표면경도를 확보할 수 있어, 필름 표면상에 경화물로 형성하여 우수한 성능의 하드 코팅 필름을 제공할 수 있다.In addition, according to the present invention by introducing alkoxy silane having a Q structure of the silane and an alkoxy metal compound together in the alkoxy silane having an alicyclic epoxy group, the resin composition for hard coating that can realize surface hardness during curing and minimal curl generation Can be provided. Above all, the resin composition for hard coating of the present invention using the alkoxy silane having the Q structure of silane includes the Q structure of the silane in the molecular structure, so that the crosslinking becomes dense during the polymerization reaction of the alicyclic organic material, thereby ensuring excellent surface hardness. It can be formed into a cured product on the film surface to provide a hard coating film of excellent performance.
나아가, 지환식 에폭시기를 갖는 알콕시 실란, 알콕시 금속 화합물을 포함하는 화합물 또는 지환식 에폭시기를 갖는 알콕시 실란, 실란의 Q구조를 갖는 알콕시 실란, 알콕시 금속 화합물을 포함하는 화합물에 의해 화학 결합된 실록산 수지와 함께 에폭시 내지 아크릴계 수지를 더 포함함으로써 밀착성 및 내굴곡성을 보다 향상시킬 수 있다.Furthermore, the siloxane resin chemically bonded by the alkoxy silane which has an alicyclic epoxy group, the compound containing an alkoxy metal compound, or the alkoxy silane which has an alicyclic epoxy group, the alkoxy silane which has Q structure of a silane, and the compound containing an alkoxy metal compound, By further including an epoxy to acrylic resin together, the adhesion and the flex resistance can be further improved.
도 1 은 본 발명의 제 1 구현예에 따른 하드 코팅용 수지 조성물에 포함되는 실록산 수지의 졸-겔(Sol-Gel)법에 의한 합성 메커니즘을 나타낸 반응식이다.1 is a reaction scheme showing a synthesis mechanism by a sol-gel (Sol-Gel) method of the siloxane resin contained in the resin composition for hard coating according to the first embodiment of the present invention.
본 발명은 지환식 에폭시기를 포함하는 알콕시 실란 및 알콕시 금속 화합물을 포함하는 화합물들에 의해 화학 결합된 실록산 수지를 포함하는 하드 코팅용 수지 조성물을 제공한다. The present invention provides a resin composition for hard coating comprising a siloxane resin chemically bonded by alkoxy silane containing an alicyclic epoxy group and compounds containing an alkoxy metal compound.
본 발명에서 상기 알콕시 실란은 하기 화학식 1로 표시될 수 있으며, 본 발명의 보다 바람직한 양태에 따르면, 하기 화학식 1로서 표시되는 알콕시 실란은 2-(3,4-에폭시사이클로헥실)에틸트리메톡시실란, 2-(3,4-에폭시사이클로헥실)에틸트리에톡시실란 및 2-(3,4-에폭시사이클로헥실)에틸트리프로폭시실란 중 선택된 적어도 하나인 것일 수 있다.In the present invention, the alkoxy silane may be represented by the following Chemical Formula 1, and according to a more preferred embodiment of the present invention, the alkoxy silane represented by the following Chemical Formula 1 is 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane , 2- (3,4-epoxycyclohexyl) ethyltriethoxysilane and 2- (3,4-epoxycyclohexyl) ethyltripropoxysilane.
<화학식 1> R1 nSi(OR2)4-n <Formula 1> R 1 n Si (OR 2 ) 4-n
상기 화학식 1에서 R1은 지환식 에폭시기를 포함하는 선형의 C1 내지 C3의 알킬기이고, R2는 선형 또는 분지형 C1 내지 C4의 알킬기이며, n은 1 내지 3의 정수이다. In Formula 1, R 1 is a linear C 1 to C 3 alkyl group including an alicyclic epoxy group, R 2 is a linear or branched C 1 to C 4 alkyl group, n is an integer of 1 to 3.
보다 구체적으로 상기 화학식 1의 R1에 포함된 지환식 에폭시기는 C3 내지 C8의 지환형 알킬기에 의해 이루어진 지환구조를 갖는 것이 바람직하다. 다만, C3 내지 C5 지환형일 경우 분자간 간격 감소로 컬 현상이 발생할 수 있고, C7 내지 C8의 지환형일 경우 에폭시 경화 반응이 늦게 진행될 수 있어, 경화 속도나 컬 특성 개선 측면에서 C6의 지환식 에폭시기인 것이 바람직하나 본 발명이 반드시 이에 한정되는 것은 아니다.More specifically, it is preferable that the alicyclic epoxy group included in R 1 of Formula 1 has an alicyclic structure composed of C 3 to C 8 alicyclic alkyl groups. However, in the case of C 3 to C 5 alicyclic, curling may occur due to a decrease in intermolecular spacing, and in the case of alicyclic C 7 to C 8, the epoxy curing reaction may proceed slowly, thereby improving the curing rate or curling characteristics of C 6 . Although it is preferable that it is an alicyclic epoxy group, this invention is not necessarily limited to this.
본 발명에서 상기 화학식 1이 에폭시계 모노머인 것은 낮은 경화 수축율을 가지고 있어 컬 발생을 억제하면서도 우수한 표면경도를 확보할 수 있다는 측면에서 매우 의미 있다. 만약 화학식 1이 아크릴계 모노머라면 빠른 경화속도와 높은 경도를 나타낼 수 있으나, 수축율이 높아 컬 발생 확률이 높아질 수 있다. 또한, 화학식 1이 이소시아네이트계 모노머라면, 탄성율이 높아 유연성이 뛰어나며 이에 따라 컬 발생 확률은 적으나, 낮은 표면경도를 나타낼 수 있다. In the present invention, the formula (1) is an epoxy monomer is very significant in terms of having a low curing shrinkage rate and can ensure excellent surface hardness while suppressing curl generation. If the formula (1) is an acrylic monomer may exhibit a fast curing rate and high hardness, but the shrinkage rate is high, it may increase the probability of curling. In addition, if the formula (1) is an isocyanate monomer, the elastic modulus is high and excellent in flexibility and accordingly less curl generation probability, but may exhibit a low surface hardness.
이에 반해 본 발명은 화학식 1이 에폭시계 모노머임에 따라 이소시아네이트기 대비 표면경도가 높으며, 아크릴기 보다 낮은 경화 수축율을 가지고 있어 컬 발생을 억제할 수 있는 것이다. 특히, 본 발명의 화학식 1은 지환식 에폭시계 모노머임에 따라 선형 에폭시계 모노머보다 경화시 분자간 공간 확보가 유리하므로 본 발명의 하드 코팅용 수지 조성물은 경화수축이 억제되어 컬 발생을 보다 효과적으로 방지할 수 있다.이로써, 본 발명의 상기 실록산 수지는 광중합 또는 열중합 시 다양한 분자량의 실록산 분자들이 치밀하게 가교를 이루는 것이 가능해지므로, 이에 기인하는 높은 경도의 하드 코팅 경화물을 제공할 수 있게 되는 것이다.On the contrary, according to the present invention, since the formula (1) is an epoxy monomer, the surface hardness is higher than that of the isocyanate group, and it has a lower curing shrinkage rate than the acryl group, thereby suppressing curl generation. In particular, since the formula (1) of the present invention is an alicyclic epoxy monomer, it is advantageous to secure an intermolecular space during curing than a linear epoxy monomer, so that the resin composition for hard coating of the present invention is more effectively prevented from curling due to cured shrinkage. Thus, the siloxane resin of the present invention is capable of densely crosslinking siloxane molecules of various molecular weights during photopolymerization or thermal polymerization, thereby providing a hard coating cured product having high hardness.
다만, 경화수축에 의한 컬 발생은 필연적인 현상이므로, 이에 본 발명은 상기 알콕시 실란과 더불어 하기 화학식 2로 표시되는 알콕시 금속 화합물을 동시에 포함하는 화합물들에 의해 화학 결합된 실록산 수지를 하드 코팅 주시 조성물의 주 성분으로 한다. 즉, 분자 구조내에 알콕시 실란과 알콕시 금속화합물이 결합된 구조가 포함됨으로써, 금속 원소에 의해 분자간 공간이 더욱 확보될 수 있고, 이에 따라 본 발명의 하드 코팅 수지 조성물은 경화수축을 최소화하여 컬 발생을 획기적으로 감소시킬 수 있는 것이다.However, since curling due to curing shrinkage is an inevitable phenomenon, the present invention provides a hard coating composition for a siloxane resin chemically bonded by compounds containing an alkoxy silane and an alkoxy metal compound represented by the following Formula 2 at the same time. It is made into the main ingredient. That is, by including a structure in which the alkoxy silane and the alkoxy metal compound are combined in the molecular structure, the intermolecular space can be further secured by the metal element, and accordingly, the hard coating resin composition of the present invention minimizes hardening shrinkage to prevent curling. It can be drastically reduced.
<화학식 2> M(OR3)m<Formula 2> M (OR 3 ) m
상기 화학식 2에서 R3는 선형 또는 분지형의 C1 내지 C4의 알킬기이고, M은 알루미늄, 티타늄 및 아연으로 이루어진 그룹으로부터 선택된 1종 이상의 금속원소이며, m은 2 내지 4의 정수이다. In Formula 2, R 3 is a linear or branched C 1 to C 4 alkyl group, M is at least one metal element selected from the group consisting of aluminum, titanium and zinc, m is an integer of 2 to 4.
본 발명에서 상기 알콕시 금속 화합물은 알콕시 실란과 알콕시 금속화합물의 총 몰수에 대해 0.2몰% 내지 5.0몰%로 포함되는 것이 가공 용이성을 확보할 수 있고, 컬 발생을 효과적으로 억제할 수 있는 측면에서 바람직할 수 있다. 상기 알콕시 금속 화합물이 0.2몰% 미만으로 포함될 경우 컬 발생 억제 효과가 미미해질 수 있고, 반응 온도를 낮추거나 빠른 시간내에 중합을 중지하면 5.0몰% 금속 화합물까지 첨가가 가능하다. 다만, 5.0몰%을 초과하여 포함될 경우 겔화가 급속히 진행됨에 따라 수지의 점도가 빠른 속도로 상승할 가능성이 높아지고, 강한 내용제성으로 가공성이 현저히 떨어질 수 있며, 충분히 반응시킬 수도 없어 최종적으로 표면경도 개선의 폭이 크지 못할 수 있다. 이에 상기 알콕시 금속 화합물은 0.2몰% 내지 3.0몰%로 포함되는 것이 보다 바람직할 수 있다.In the present invention, the alkoxy metal compound may be included in an amount of 0.2 mol% to 5.0 mol% based on the total moles of the alkoxy silane and the alkoxy metal compound, which may be preferable in terms of ensuring ease of processing and effectively suppressing curl generation. Can be. When the alkoxy metal compound is included in less than 0.2 mol%, the effect of suppressing curl generation may be insignificant, and when the reaction temperature is lowered or the polymerization is stopped within a short time, up to 5.0 mol% metal compound may be added. However, when contained in excess of 5.0 mol%, as the gelation progresses rapidly, the viscosity of the resin rises rapidly, and the solvent resistance may be significantly decreased due to the strong solvent resistance. May not be large. Thus, the alkoxy metal compound may be more preferably contained in 0.2 mol% to 3.0 mol%.
참고로, 도 1은 본 발명의 상기 알콕시 실란과 알콕시 금속 화합물의 화학반응 중 Sol-Gel법에 의한 반응 메커니즘을 도식화한 것으로서, Route 1 또는 Route 2 반응의 반복으로 인하여 전체 실록산 수지가 형성될 수 있다.For reference, Figure 1 is a schematic of the reaction mechanism by the Sol-Gel method of the chemical reaction of the alkoxy silane and alkoxy metal compound of the present invention, the entire siloxane resin can be formed due to the repetition of Route 1 or Route 2 reaction have.
본 발명에서 상기 실록산 수지 형성 반응은 상온에서 진행될 수 있으나, 반응을 촉진하기 위해서 50℃ 내지 120℃에서 1시간에서 120시간 동안 교반할 수 도 있다. 또한, 상기 반응시 가수분해와 축합반응을 진행하기 위한 촉매로서, 염산, 아세트산, 불화수소, 질산, 황산 요오드산 등의 산 촉매, 암모니아, 수산화칼륨, 수산화나트륨, 수산화바륨, 이미다졸 등의 염기 촉매 및 Amberite 등 이온교환수지가 사용 될 수 있으며, 이들 촉매는 단독으로 사용될 수도 있으나 이들을 조합하여 사용하는 것도 가능하다. 촉매의 양은 특별히 제한되지 않으나, 실록산 수지 100 중량부 기준 0.0001 내지 약 10 중량부를 첨가할 수 있다.In the present invention, the siloxane resin formation reaction may proceed at room temperature, but may be stirred for 1 hour to 120 hours at 50 ℃ to 120 ℃ to promote the reaction. In addition, as a catalyst for the hydrolysis and condensation reaction during the reaction, an acid catalyst such as hydrochloric acid, acetic acid, hydrogen fluoride, nitric acid and iodide sulfate, base such as ammonia, potassium hydroxide, sodium hydroxide, barium hydroxide, imidazole and the like Catalysts and ion exchange resins such as Amberite may be used, and these catalysts may be used alone but may be used in combination. The amount of the catalyst is not particularly limited, but may be added in an amount of 0.0001 to about 10 parts by weight based on 100 parts by weight of the siloxane resin.
상기 가수분해와 축합반응이 진행되면, 부산물인 알코올이 생성되는데 이를 제거함으로써 역반응을 줄여 정반응을 보다 빠르게 진행할 수 있으며 이를 통한 반응속도 조절이 가능하다. 또한 반응 종료 후, 상기 부산물은 감압하며 열을 가함으로써 제거할 수 있다. When the hydrolysis and condensation reaction proceeds, by-product alcohol is generated, and by removing this, the reverse reaction can be reduced to allow the forward reaction to proceed more quickly, and the reaction rate can be controlled through the reaction. In addition, after the reaction, the by-products can be removed by applying heat under reduced pressure.
이와 같이 축합반응에 의해 합성된 상기 실록산 수지는 반응시 첨가되는 모노머들에 의해 점도와 경화 속도를 조절할 수 있으며, 이를 통해 용도에 맞는 최적의 수지 조성물을 제공할 수 있다. 또한, 상기와 같은 반응을 통해 얻어진 실록산 수지는 가교시 분자간 공간이 확보되므로 경화 수축에 의한 컬 현상을 방지할 수 있으며, 가교 및 금속 원소에 의한 높은 표면 경도 구현이 가능하게 된다.As described above, the siloxane resin synthesized by the condensation reaction may adjust the viscosity and the curing rate by the monomers added during the reaction, thereby providing an optimum resin composition suitable for the purpose. In addition, the siloxane resin obtained through the reaction as described above can secure the intermolecular space during crosslinking, thereby preventing the curl phenomenon caused by curing shrinkage, and enables high surface hardness by crosslinking and metal elements.
한편, 본 발명의 상기 실록산 수지는 이에 그치지 않고, 상기 화학식 1로 표기되는 알콕시 실란과 화학식 2로 표시되는 알콕시 금속에 하기 화학식 3으로 표시되는 알콕시 실란을 더 포함하여 화학 결합을 이루고 있는 것일 수 있다.Meanwhile, the siloxane resin of the present invention is not limited thereto, and may further include alkoxy silane represented by Chemical Formula 1 and an alkoxy metal represented by Chemical Formula 2, further comprising an alkoxy silane represented by Chemical Formula 3 to form a chemical bond. .
<화학식 3> Si(OR3)4 <Formula 3> Si (OR 3 ) 4
상기 화학식 3에서 R3는 C1 내지 C4의 선형 또는 분지형 알킬기이다.In Formula 3, R 3 is a C 1 to C 4 linear or branched alkyl group.
상기 화학식 3으로 표시되는 알콕시 실란은 분자 구조내에 실란 Q 구조 즉, Si에 알콕시 관능기가 없는 하기 <구조식 1>과 같은 화학 결합 구조를 포함함으로써, 우수한 경도를 확보할 수 있다. 즉, 유리의 분자 구조에서 찾아 볼 수 있는 Q구조를 분자 구조내에 포함함에 따라 본 발명의 수지 조성물은 경화시 유리와 유사한 단단함을 구현할 수 있게 되는 것이다.The alkoxy silane represented by Chemical Formula 3 includes a silane Q structure in the molecular structure, that is, a chemical bonding structure such as <Formula 1> having no alkoxy functional group in Si, thereby ensuring excellent hardness. That is, by including the Q structure found in the molecular structure of the glass in the molecular structure, the resin composition of the present invention is able to realize a rigidity similar to glass at the time of curing.
<구조식 1><Structure 1>
Figure PCTKR2015014594-appb-I000001
Figure PCTKR2015014594-appb-I000001
이때, 본 발명에서 상기 화학식 1로 표시되는 알콕시 실란 및 화학식 3로 표시되는 알콕시 실란은 몰 비율이 99:1 내지 20:80인 것이 바람직하며, 보다 바람직하게는 85:15 내지 45:55인 것이 고경도를 확보하면서 중합 시 Gelation을 방지하는데 용이하다. 화학식 1의 화합물과 화학식 3을 함께 사용될 경우, 표면 경도 향상에 보다 유리하나, 화학식 3의 화합물이 상기 범위를 초과하여 존재할 경우 중합시 Gelation 발생 우려가 있어 중합 컨트롤이 곤란할 수 있으니 주의하는 것이 좋다.At this time, the alkoxy silane represented by the formula (1) and the alkoxy silane represented by the formula (3) in the present invention preferably has a molar ratio of 99: 1 to 20:80, more preferably 85:15 to 45:55. It is easy to prevent gelation during polymerization while securing high hardness. When the compound of Formula 1 and Formula 3 are used together, it is more advantageous to improve the surface hardness, but when the compound of Formula 3 is present in excess of the above range, it may be difficult to control the polymerization due to the possibility of gelation during polymerization.
또한, 본 발명이 상기 화학식 3을 더 포함할 경우, 상기 화학식 2으로 표시되는 알콕시 금속 화합물은 상기 화학식 1로 표시되는 알콕시 실란 및 화학식 3로 표시되는 알콕시 실란의 합 총 100몰에 대해 0.2몰% 내지 5.0몰% 포함되는 것이 합성 제어에 보다 바람직하다.In addition, when the present invention further includes the formula (3), the alkoxy metal compound represented by the formula (2) is 0.2 mol% based on a total of 100 mol of the alkoxy silane represented by the formula (1) and the alkoxy silane represented by the formula (3) It is more preferable for the synthesis control to contain from 5.0 mol%.
이로써 제조된 본 발명의 실록산 수지는 상기 화학식 3을 포함하지 않는 경우, 중량평균 분자량이 5,000 내지 22,000, 다분산 지수(PDI, 분자량 분포도)가 1.5 내지 3.1인 것이 바람직하고, 상기 화학식 3을 포함하는 경우엔 중량평균 분자량이 3000 내지 50000 이고, 다분산 지수(PDI)가 1.5 내지 7.0인 것이 바람직하다. When the siloxane resin prepared according to the present invention does not include Formula 3, the weight average molecular weight is 5,000 to 22,000, the polydispersity index (PDI, molecular weight distribution) is preferably 1.5 to 3.1, and includes the formula (3) In this case, the weight average molecular weight is 3000 to 50000, and the polydispersity index (PDI) is preferably 1.5 to 7.0.
본 발명에서 상기 분자량 및 분자량 분포도(PDI, Mw/Mn)는 겔 투과 크로마토그래피(GPC) (Waters사 제품, 모델명 e2695)에 의해 폴리스티렌 환산 중량평균분자량(Mw) 및 수평균분자량(Mn)을 구한 것을 적용한 값이다. 보다 구체적으로는 측정하는 중합체 1%의 농도가 되도록 테트라히드로푸란에 용해시켜 GPC에 20㎕ 주입하되, 1.0mL/분의 유속으로 유입하였고, 30℃에서 분석을 수행하였다. 또한, 컬럼은 Waters사 Styragel HR3 2개를 직렬로 연결하였고, 검출기로는 RI 검출기 (Waters사 제품, 2414)를 이용하여 40℃에서 측정하였다. 또한, 측정된 중량평균분자량을 수평균분자량으로 나누어 PDI(분자량 분포도)를 산출하였다.In the present invention, the molecular weight and the molecular weight distribution (PDI, Mw / Mn) is obtained by gel permeation chromatography (GPC) (Waters, model name e2695) to obtain the polystyrene reduced weight average molecular weight (Mw) and number average molecular weight (Mn) This is the value applied. More specifically, 20 μl of the solution was dissolved in tetrahydrofuran so as to have a concentration of 1% of the polymer to be measured, and then injected into a GPC, and flowed at a flow rate of 1.0 mL / min, and analysis was performed at 30 ° C. In addition, two columns of Waters' Styragel HR3 were connected in series, and the column was measured at 40 ° C using an RI detector (Waters, 2414) as a detector. In addition, PDI (molecular weight distribution map) was calculated by dividing the measured weight average molecular weight by the number average molecular weight.
나아가, 본 발명의 하드 코팅 조성물은 상기 실록산 수지를 제 1 성분으로 하고, 제 2 성분으로서, 에폭시 수지 및 아크릴계 수지 중 적어도 하나를 포함한다. 보다 구체적으로 상기 제 2 성분은 에폭시기, 옥세탄기, 아크릴레이트기, 메타크릴레이트기, 우레탄 아크릴레이트기 및 에틸렌옥사이드(EO) 부가형 아크릴레이트기 중 적어도 하나의 작용기를 포함하는 모노머 또는 올리고머일 수 있다.Furthermore, the hard coating composition of this invention makes the said siloxane resin a 1st component, and contains at least one of an epoxy resin and an acrylic resin as a 2nd component. More specifically, the second component may be a monomer or oligomer including at least one functional group among an epoxy group, an oxetane group, an acrylate group, a methacrylate group, a urethane acrylate group, and an ethylene oxide (EO) addition type acrylate group. have.
본 발명에서 상기 제 2 성분을 포함하게 될 경우, 실록산 수지와 모노머 또는 실록산 수지와 올리고머간 결합이 발생되어 선형 구조가 보다 길어짐에 따라 상기 제 2성분을 첨가하지 않았을 때 대비하여 실록산 수지가 발현하는 경도를 그대로 유지하면서 동시에 모노머 또는 올리고머에 의한 분자내 간격을 확대 시킬 수 있어, 경화막의 유연성을 보다 증대시킬 수 있다.When the second component is included in the present invention, as the bond between the siloxane resin and the monomer or the siloxane resin and the oligomer is generated, the linear structure becomes longer, and thus the siloxane resin is expressed in contrast to when the second component is not added. While maintaining the hardness as it is, the intramolecular spacing by the monomer or oligomer can be enlarged, and the flexibility of the cured film can be further increased.
본 발명에서 상기 에폭시 수지는 글리시딜형 에폭시 수지, 지환식 에폭시 수지 및 옥세탄계 수지로 이루어진 군으로부터 선택되는 1종 이상일 수 있다. 이때, 상기 글리시딜형 에폭시 수지는 비스페놀 A형 에폭시 수지, 비스페놀 F형 에폭시 수지, 비스페놀 S형 에폭시 수지, 나프탈렌형 에폭시 수지 또는 이들의 수소첨가물; 디시클로펜타디엔 골격을 가지는 에폭시 수지; 트리글리시딜이소시아누레이트 골격을 가지는 에폭시 수지; 카르도 골격을 가지는 에폭시 수지; 및 폴리실록산 구조를 가지는 에폭시 수지;중 어느 하나일 수 있다. In the present invention, the epoxy resin may be one or more selected from the group consisting of glycidyl-type epoxy resin, alicyclic epoxy resin and oxetane-based resin. At this time, the glycidyl epoxy resin is bisphenol A epoxy resin, bisphenol F epoxy resin, bisphenol S epoxy resin, naphthalene type epoxy resin or hydrogenated materials thereof; Epoxy resins having a dicyclopentadiene skeleton; Epoxy resins having a triglycidyl isocyanurate skeleton; Epoxy resins having a cardo skeleton; And an epoxy resin having a polysiloxane structure.
또, 상기 지환식 에폭시 수지는 3,4-에폭시시클로헥실메틸-3',4'-에폭시시클로헥산카르복실레이트, 1,2,8,9-디에폭시리모넨, ε-카프로락톤 올리고머의 양단에 각각 3,4-에폭시시클로헥실메탄올과 3,4-에폭시시클로헥산카르복시산이 에스테르 결합된 것 또는 수소 첨가 비스페놀 A 골격을 가지는 에폭시 수지일 수 있으며, 상기 옥세탄계 수지는 하이드록시 구조를 가지는 옥세탄 수지, 에테르계 옥세탄 수지 또는 메톡시 메틸 벤젠 구조를 가지는 옥세탄 수지일 수 있다. The alicyclic epoxy resin is provided at both ends of 3,4-epoxycyclohexylmethyl-3 ', 4'-epoxycyclohexanecarboxylate, 1,2,8,9-diepoxylimonene and ε-caprolactone oligomer. Each of 3,4-epoxycyclohexyl methanol and 3,4-epoxycyclohexanecarboxylic acid may be ester-bonded or an epoxy resin having a hydrogenated bisphenol A skeleton, and the oxetane-based resin may be an oxetane resin having a hydroxy structure. It may be an oxetane resin having an ether oxetane resin or methoxy methyl benzene structure.
또한, 본 발명에서 상기 아크릴계 수지는 구체적으로 예를 들어, 비스페놀-A 에틸렌옥사이드 디아크릴레이트, 비스페놀-A 에틸렌옥사이드 디메타아크릴레이트, 비스페놀-A 에톡시레이트 디아크릴레이트, 비스페놀-A 에톡시레이트 디아크릴레이트, 비스페놀-A 폴리에톡시레이트 디아크릴레이트, 비스페놀-A 디아크릴레이트, 비스페놀-S 디아크릴레이트, 디사이클로펜타디에닐 디아크릴레이트, 펜타에리트리톨 트리아크릴레이트, 트리스(2-히드록시에틸)이소시아누레이트 트리아크릴레이트, 펜타에리트리톨 테트라아크릴레이트, 비스페놀-A 디메타크릴레이트, 비스페놀-S 디메타크릴레이트, 디사이클로펜타디에닐 디메타크릴레이트, 펜타에리트리톨 트리메타크릴레이트, 트리스(2-히드록시에틸)이소시아누레이트 트리메타크릴레이트 및 펜타에리트리톨 테트라메타크릴레이트 중 선택된 적어도 1종일 수 있으며, 아크릴계 수지 역시 시판품을 사용할 수 있다. In the present invention, the acrylic resin is specifically, for example, bisphenol-A ethylene oxide diacrylate, bisphenol-A ethylene oxide dimethacrylate, bisphenol-A ethoxylate diacrylate, bisphenol-A ethoxylate Diacrylate, bisphenol-A polyethoxylate diacrylate, bisphenol-A diacrylate, bisphenol-S diacrylate, dicyclopentadienyl diacrylate, pentaerythritol triacrylate, tris (2-hydride Roxyethyl) isocyanurate triacrylate, pentaerythritol tetraacrylate, bisphenol-A dimethacrylate, bisphenol-S dimethacrylate, dicyclopentadienyl dimethacrylate, pentaerythritol trimethacryl Lates, tris (2-hydroxyethyl) isocyanurate trimethacrylate and pentaerythritol At least one selected from tetramethacrylate may be used, and an acrylic resin may also use a commercially available product.
본 발명에서 상기 에폭시 수지 또는 아크릴계 수지는 단독으로 사용하거나 2종 이상을 혼합하여 사용하는 것이 바람직하다. 그러나, 혼합하여 사용되는 수지 간의 상용성이 저하되는 경우가 발생하여 코팅 도막의 균일성이 낮아질 수 있으므로, 단독 내지 3종 이하로 혼합하여 사용하는 것이 더욱 바람직할 수 있다.In the present invention, the epoxy resin or acrylic resin is preferably used alone or used by mixing two or more kinds. However, since the compatibility between the resins used in a mixture may be lowered and the uniformity of the coating film may be lowered, it may be more preferable to use the mixture alone or in combination of three or less.
이상, 설명한 상기 제 1 성분 및 제 2 성분은 본 발명의 하드 코팅용 수지 조성물에서 중량 기준 9:1 내지 6:4의 혼합 비율로 포함되는 것이 바람직하다. 상기 실록산 수지를 초과 비율로 사용하면 경도, 내마모성 및 내열성은 우수하지만, 유연성이 부족하여 하드 코팅 이후의 절단 등의 공정에서 크랙(crack)이 발생할 수 있으며, 에폭시 수지 또는 아크릴계 수지를 초과 비율로 사용하면 하드 코팅 층이 필수적으로 필요한 물성인 경도를 확보할 수 없게 된다.As described above, the first component and the second component described above are preferably included in a mixing ratio of 9: 1 to 6: 4 by weight in the resin composition for hard coating of the present invention. When the siloxane resin is used in an excess ratio, the hardness, abrasion resistance, and heat resistance are excellent, but there is a lack of flexibility, so cracking may occur in a process such as cutting after hard coating, and an epoxy resin or an acrylic resin is used in an excess ratio. In other words, the hard coating layer may not be able to secure hardness, which is an essential property.
한편, 본 발명의 하드 코팅용 수지 조성물은 상기 제 1 성분 및 제 2 성분 이외에도 실록산 수지의 중합을 위해 개시제를 추가적으로 포함할 수 있으며, 예를 들어 유기금속염 등의 광중합개시제 또는 아민, 이미다졸 등의 열중합 개시제를 사용할 수 있으며, 양이온 중합제를 포함하는 것도 좋다. 다만, 개시제의 첨가량은 수지 조성물 총 100중량부에 대해 약 0.5 내지 5 중량부로 포함될 수 있다. 0.5 중량부 미만으로 포함되면 충분한 경도를 얻기 위한 하드 코팅 층의 경화 시간이 증대되어 효율성이 저하되며, 5 중량부를 초과할 경우 하드 코팅 층의 황색도가 증대되어 투명한 코팅 층을 얻기가 어려워 질 수 있다.On the other hand, the resin composition for hard coating of the present invention may further include an initiator for the polymerization of the siloxane resin in addition to the first component and the second component, for example, a photopolymerization initiator such as an organometallic salt or an amine, imidazole, and the like. A thermal polymerization initiator can be used, and a cationic polymerizer may also be included. However, the amount of the initiator may be included in about 0.5 to 5 parts by weight based on 100 parts by weight of the total resin composition. If the content is less than 0.5 parts by weight, the curing time of the hard coating layer to increase the hardness is increased, and the efficiency is lowered. If the content is more than 5 parts by weight, the yellowness of the hard coating layer is increased, making it difficult to obtain a transparent coating layer. have.
또한, 본 발명의 상기 하드 코팅용 수지 조성물은 특별한 기능발현이나 필요에 따라 추가로 계면 활성제, 산화 방지제 및 레벨링제로 이루어진 군으로부터 선택되는 1종 이상을 포함할 수 있으며, 특히, 상기 실록산 수지의 점도를 제어하여 가공성을 더욱 용이하게 함과 동시에 코팅막의 두께를 조절하기 위해 유기용매를 더 첨가할 수 있다. In addition, the resin composition for hard coating of the present invention may further include one or more selected from the group consisting of surfactants, antioxidants and leveling agents, according to the special function or need, in particular, the viscosity of the siloxane resin In order to control the controllability and at the same time to further control the thickness of the coating film may be further added an organic solvent.
유기용매의 첨가량은, 특별히 제한되지 않으나, 사용 가능한 유기용매로는, 아세톤, 메틸에틸케톤, 메틸부틸케톤, 사이클로헥사논 등 케톤류, 또는 메틸셀로솔브, 부틸셀로솔브 등의 셀로솔브류, 또는 에틸에테르, 디옥산 등의 에테르류, 이소부틸알코올, 이소프로필알코올, 부탄올, 메탄올 등 알코올류, 또는 디클로로메탄, 클로로포름, 트리클로로에틸렌 등의 할로겐화 탄화수소류, 또는 노르말 헥산, 벤젠, 톨루엔 등의 탄화수소류 등으로 이루어진 용매로부터 선택된 1종 이상을 포함할 수 있다.The addition amount of the organic solvent is not particularly limited, but examples of the organic solvent that can be used include ketones such as acetone, methyl ethyl ketone, methyl butyl ketone and cyclohexanone, or cellosolves such as methyl cellosolve and butyl cellosolve, Or ethers such as ethyl ether and dioxane, alcohols such as isobutyl alcohol, isopropyl alcohol, butanol and methanol, or halogenated hydrocarbons such as dichloromethane, chloroform and trichloroethylene, or normal hexane, benzene and toluene It may include one or more selected from a solvent consisting of hydrocarbons and the like.
이에 따라, 본 발명은 기재필름; 및 상기 기재필름의 적어도 일면에 적층되며, 상기 하드 코팅용 수지 조성물을 경화하여 제조한 코팅층을 포함하는 하드 코팅 필름을 제공할 수 있으며, 본 발명에 의한 하드 코팅 필름은 경도, 밀착성, 내굴곡성, 내화학성 및 내마모성 등의 물리적 특성이 우수하며, 제조 및 가열 처리시 발생하는 컬, 가공시 굴곡에 의한 갈라짐 및 벗겨짐 등과 같은 현상을 방지할 수 있다. Accordingly, the present invention is a base film; And it is laminated on at least one side of the base film, it can provide a hard coating film comprising a coating layer prepared by curing the resin composition for hard coating, the hard coating film according to the present invention is hardness, adhesion, bending resistance, It is excellent in physical properties such as chemical resistance and abrasion resistance, and it is possible to prevent phenomena such as curling and peeling due to bending during processing and heat treatment during manufacturing and heat treatment.
보다 구체적으로 본 발명의 하드 코팅 필름은 코팅층이 형성된 방향으로 ASTM D3363 측정 기준, 4H 내지 9H이고, 화학식 3의 알콕시 실란을 포함하는 경우엔 100mm X 100 mm의 면적 기준, 25℃ 및 50% RH 조건에서 24시간 방치 후, 수평 바닥으로부터 필름의 모서리가 이격되는 최대 컬(Curl) 값이 30mm일 수 있어 디스플레이 보호용 필름으로 특히 적합하게 적용될 수 있다. 또, 제 2 성분까지 혼합하면, 상기 하드 코팅 필름은 코팅면 반대 방향으로 굴곡 형성 시 코팅층에 크랙이 발생되지 않는 필름 최소 곡률 반지름이 2mm 내지 6mm정도로 매우 우수한 굴곡성을 갖게 되어 플렉서블이 구현될 수 있다.More specifically, the hard coating film of the present invention is ASTM D3363 measurement standards, 4H to 9H in the direction in which the coating layer is formed, when the alkoxy silane of formula 3 includes 100mm X 100mm area, 25 ℃ and 50% RH conditions After 24 hours at, the maximum curl value at which the edge of the film is spaced from the horizontal bottom may be 30 mm, which may be particularly suitably applied as a display protective film. In addition, when mixing up to the second component, the hard coating film may have a very good bendability such that the minimum curvature radius of the film does not cause cracks in the coating layer when the bend is formed in the opposite direction to the coating surface such that 2mm to 6mm is flexible. .
본 발명에서는 광중합 또는 열중합 경화 전, 별도의 열처리를 통해 표면을 균일하게 하는 공정을 더 수행할 수 있는데, 이와 같은 추가 열처리를 통해서 하드 코팅층의 경도를 더욱 향상시킬 수 있다. 이때, 광 중합의 경우 상기 열처리는 기재에 따라 40℃ 이상 약 200℃ 이하의 온도에서 2분 내지 60분간 수행될 수 있고, 열중합의 경우 기재에 따라 60℃ 이상 약 300℃ 이하의 온도에서 2분 내지 60분간 수행될 수 있으나, 이에 제한되지 않는다. 또, 열처리 이후 광중합은 50mJ/cm2 이상 20,000mJ/cm2 이하, 보다 바람직하게는 200mJ/cm2 이상 5,000mJ/cm2 이하에서 수행하는 것이 경도를 충분히 확보하면서도 황변 발생을 보다 억제할 수 있는 측면에서 유리할 수 있다.In the present invention, before the photopolymerization or thermal polymerization curing, it is possible to further perform a process to uniform the surface through a separate heat treatment, through this additional heat treatment can further improve the hardness of the hard coating layer. In this case, in the case of photopolymerization, the heat treatment may be performed for 2 minutes to 60 minutes at a temperature of 40 ° C. or more and about 200 ° C. or less according to the substrate, and in the case of thermal polymerization, 2 minutes at a temperature of 60 ° C. or more and about 300 ° C. or less depending on the substrate. To 60 minutes, but is not limited thereto. Further, since the photo-polymerization heat treatment is 50mJ / cm 2 or more 20,000mJ / cm 2 or less, more preferably 200mJ / cm 2 more than 5,000mJ / cm 2 Performing below may be advantageous in terms of ensuring sufficient hardness while more suppressing the occurrence of yellowing.
상기 하드 코팅 수지 조성물을 기재에 도포하는 방법으로는 스프레이, 딥코팅, 스핀 코팅, 다이 코팅, 콤마 코팅, 스크린코팅, 잉크젯 프린팅, 패드 프린팅, 나이프 코팅, 키스 코팅, 바 코팅 및 그라비아 코팅 중에서 선택되는 어느 하나의 방법에 의해 코팅이 이루어질 수 있고, 기재 종류나 용도 등에 따라 하드 코팅 수지 조성물로 형성된 하드 코팅 층의 두께를 용이하게 조절할 수 있으며, 본 발명에서는 2 내지 60㎛, 바람직하게는 10 내지 30㎛ 두께에서 하드 코팅 필름의 경도와 굴곡성을 동시에 확보할 수 있다.The hard coating resin composition may be applied to a substrate by spraying, dip coating, spin coating, die coating, comma coating, screen coating, inkjet printing, pad printing, knife coating, kiss coating, bar coating, and gravure coating. The coating may be made by any one method, and the thickness of the hard coating layer formed of the hard coating resin composition may be easily adjusted according to the type of the substrate or the use thereof, and in the present invention, 2 to 60 μm, preferably 10 to 30. Hardness and flexibility of the hard coat film can be secured at the same thickness.
반드시 이에 한정되는 것은 아니나, 본 발명에서 상기 기재필름은 폴리에틸렌설포네이트(PES) 필름, 폴리에틸렌테레프탈레이트(PET) 필름, 폴리스티렌(PS), 메틸메타크릴레이트-스티렌(MS), 폴리카보네이트(PC) 필름, 폴리메틸메타크릴레이트(PMMA) 필름, 설린(Surlyn, 미국의 BFGoodrich사 제조) 및 폴리이미드(PI) 필름 등을 포함하는 유기 합성 수지 필름을 단독 또는 2이상 적층한 것일 수 있다. Although not necessarily limited thereto, the base film in the present invention is a polyethylene sulfonate (PES) film, polyethylene terephthalate (PET) film, polystyrene (PS), methyl methacrylate-styrene (MS), polycarbonate (PC) The organic synthetic resin film including a film, a polymethyl methacrylate (PMMA) film, a sulfin (Surlyn (manufactured by BFGoodrich, USA)), a polyimide (PI) film, and the like may be laminated alone or two or more.
또한, 본 발명의 하드 코팅용 수지 조성물은 목적에 따라서는 유리, 수정, 글래스 웨이퍼 및 실리콘 웨이퍼 등과 같은 무기 기재에도 도포되어 하드 코팅층을 형성할 수도 있다.In addition, the resin composition for hard coating of the present invention may also be applied to inorganic substrates such as glass, quartz, glass wafers, silicon wafers and the like to form a hard coat layer, depending on the purpose.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로서, 이에 의해 본 발명이 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are only for illustrating the present invention more specifically, and the present invention is not limited thereto.
[[ 제 1First 실시예Example ]]
실시예Example 1-1.  1-1. 광경화Photocuring 코팅  coating 경화물Cured product 제조 Produce
227.96mL의 KBM-303(Shinetsu社), 2.96mL의 Titanium isopropoxide(Sigma-Aldrich社) 및 27.02mL의 H2O를 혼합하여 500mL 플라스크에 넣은 후, 수산화나트륨 0.2g을 촉매로 첨가하여 60℃에서 24시간 동안 교반하였다. 이 후, 0.45um 테프론 필터를 사용해 여과하여 Titanium이 공유 결합된 실록산 수지를 얻었다. 상기 수지의 분자량은 GPC를 이용하여 측정하였으며, 7245의 수평균분자량과 20146 의 중량평균분자량, 그리고 2.78의 다분산지수(PDI, Mw/Mn)값을 가짐을 확인하였다.227.96 mL of KBM-303 (Shinetsu), 2.96 mL of Titanium isopropoxide (Sigma-Aldrich) and 27.02 mL of H 2 O were mixed and placed in a 500 mL flask, and 0.2 g of sodium hydroxide was added as a catalyst at 60 ° C. Stir for 24 hours. Thereafter, the resultant was filtered using a 0.45 um Teflon filter to obtain a siloxane resin covalently bonded to Titanium. The molecular weight of the resin was measured using GPC, and it was confirmed that it has a number average molecular weight of 7245, a weight average molecular weight of 20146, and a polydispersity index (PDI, M w / M n ) of 2.78.
다음으로, 광개시제로 IRGACURE 250(BASF社)를 상기 수지 100 중량부 대비 3 중량부 첨가한 후, 무색 폴리이미드 표면위에 10, 20, 30um으로 두께를 달리하여 코팅하고, 315nm 파장의 자외선 램프에 30초간 노출하여 광경화하여, 고경도 코팅 경화물을 제작하였다.Next, 3 parts by weight of IRGACURE 250 (BASF Co., Ltd.) was added as a photoinitiator to 100 parts by weight of the resin, and then coated on the surface of the colorless polyimide with varying thicknesses of 10, 20, and 30 μm, and the UV lamp having a wavelength of 315 nm was 30 It was exposed to light for a second time to prepare a hardened coating cured product.
실시예Example 1-2.  1-2. 열경화Thermosetting 코팅  coating 경화물Cured product 제조 Produce
상기 실시예 1-1과 동일한 방법으로 실록산 수지를 수득한 후, 광개시제 대신 열중합개시제로 2-ethyl-4-methylimidazole (Sigma-Aldrich社)를 수지 100 중량부 대비 2 중량부 첨가하고, 무색 폴리이미드 표면위에 10, 20, 30um으로 두께를 달리하여 코팅하였다. 이를 120℃의 온도에서 4시간 동안 열처리하여, 고경도 코팅 경화물을 제작하였다.After the siloxane resin was obtained in the same manner as in Example 1-1, 2-ethyl-4-methylimidazole (Sigma-Aldrich) was added 2 parts by weight based on 100 parts by weight of the resin as a thermal initiator instead of the photoinitiator, and the colorless poly On the mid surface was coated with varying thicknesses of 10, 20, 30um. It was heat-treated at a temperature of 120 ° C. for 4 hours to prepare a hard coating coating.
실시예Example 1-3. Aluminum  1-3. Aluminum alkoxidealkoxide 첨가 adding
2.96mL의 Titanium isopropoxide 대신 1.62g의 Aluminum ethoxide (Sigma-Aldrich社)를 첨가하여 수평균 분자량이 7027, 중량평균 분자량이 21325, 다분산지수가 3.03인 실록산 수지를 제조한 것을 제외하고 상기 실시예 1-1과 동일한 방법으로 수지를 제조하고 코팅하여 코팅경화물을 제조하였다. Example 1 except that siloxane resin having a number average molecular weight of 7027, a weight average molecular weight of 21325, and a polydispersity index of 3.03 was prepared by adding 1.62 g of aluminum ethoxide (Sigma-Aldrich) instead of 2.96 mL of titanium isopropoxide. Resin was prepared and coated in the same manner as -1 to prepare a coating cured product.
실시예Example 1-4. Zinc  1-4. Zinc alkoxidealkoxide 첨가 adding
2.96mL의 Titanium isopropoxide 대신 1.27g의 Zinc methoxide(Sigma-Aldrich社)를 첨가하여 수평균 분자량이 7312, 중량평균 분자량이 20072, 다분산지수가 2.74인 실록산 수지를 제조한 것을 제외하고 상기 실시예 1-1과 동일한 방법으로 수지를 제조하고 코팅하여 코팅 경화물을 제조하였다. Example 1 except that 1.27 g of zinc methoxide (Sigma-Aldrich) was added instead of 2.96 mL of titanium isopropoxide to prepare a siloxane resin having a number average molecular weight of 7312, a weight average molecular weight of 20072, and a polydispersity index of 2.74. Resin was prepared and coated in the same manner as -1 to prepare a coating cured product.
실시예Example 1-5. Titanium  1-5. Titanium alkoxidealkoxide 함량 변화( Change in content ( 0.1mol%0.1mol% ))
Titanium isopropoxide(Sigma-Aldrich社)를 0.30mL 첨가하여 수평균 분자량이 7592, 중량평균 분자량이 20324, 다분산지수가 2.67인 실록산 수지를 제조한 것을 제외하고, 실시예 1-1과 동일한 방법으로 수지를 제조하고 코팅하여 코팅 경화물 제조하였다. Resin was prepared in the same manner as in Example 1-1, except that 0.30 mL of titanium isopropoxide (Sigma-Aldrich) was added to prepare a siloxane resin having a number average molecular weight of 7592, a weight average molecular weight of 20324, and a polydispersity index of 2.67. To prepare a coating cured product was prepared.
실시예Example 1-6. Titanium  1-6. Titanium alkoxidealkoxide ratio 변화 ( ratio change ( 0.5mol%0.5mol% ))
Titanium isopropoxide(Sigma-Aldrich社)를 1.48mL 첨가하여 수평균 분자량이 6985, 중량평균 분자량이 19952, 다분산지수가 2.85인 실록산 수지를 제조한 것을 제외하고, 실시예 1-1과 동일한 방법으로 수지를 제조하고 코팅하여 코팅 경화물을 제조하였다.Resin was prepared in the same manner as in Example 1-1, except that 1.48 mL of titanium isopropoxide (Sigma-Aldrich) was added to prepare a siloxane resin having a number average molecular weight of 6985, a weight average molecular weight of 19952, and a polydispersity index of 2.85. Was prepared and coated to prepare a coating cured product.
실시예Example 1-7. Titanium  1-7. Titanium alkoxidealkoxide ratio 변화 ( ratio change ( 1.5mol%1.5mol% ))
Titanium isopropoxide(Sigma-Aldrich社)를 4.44mL 첨가하여 수평균 분자량이 7428, 중량평균 분자량이 20523, 다분산지수가 2.76인 실록산 수지를 제조한 것을 제외하고, 실시예 1-1과 동일한 방법으로 수지를 제조하고 코팅하여 코팅 경화물 제조하였다.Resin was prepared in the same manner as in Example 1-1, except that 4.44 mL of titanium isopropoxide (Sigma-Aldrich) was added to prepare a siloxane resin having a number average molecular weight of 7428, a weight average molecular weight of 20523, and a polydispersity index of 2.76. To prepare a coating cured product was prepared.
실시예Example 1-8. Titanium  1-8. Titanium alkoxidealkoxide ratio 변화 ( ratio change ( 1.8mol%1.8mol% ))
Titanium isopropoxide(Sigma-Aldrich社)를 5.33mL 첨가하여 수평균 분자량이 7790, 중량평균 분자량이 21338, 다분산지수가 2.74인 실록산 수지를 제조한 것을 제외하고, 실시예 1-1과 동일한 방법으로 수지를 제조하고 코팅하여 코팅 경화물 제조하였다.Resin was prepared in the same manner as in Example 1-1, except that 5.33 mL of titanium isopropoxide (Sigma-Aldrich) was added to prepare a siloxane resin having a number average molecular weight of 7790, a weight average molecular weight of 21338, and a polydispersity index of 2.74. To prepare a coating cured product was prepared.
실시예Example 1-9. Titanium  1-9. Titanium alkoxidealkoxide ratio 변화 ( ratio change ( 2.0mol%2.0mol% ) 및 반응 시간 조절) And reaction time control
Titanium isopropoxide(Sigma-Aldrich社)를 5.92mL 첨가한 것과 반응 시간을 5시간 진행한 것을 제외하고, 실시예 1-1과 동일한 방법으로 수평균분자량 3438 중량평균분자량 5151 다분산지수 1.5 인 실록산 수지를 얻었으며, 이를 코팅하여 코팅 경화물을 제조하였다.A siloxane resin having a number average molecular weight of 3438 weight average molecular weight of 5151 polydispersity index of 1.5 was obtained in the same manner as in Example 1-1, except that 5.92 mL of titanium isopropoxide (Sigma-Aldrich) was added and the reaction time was progressed for 5 hours. It was obtained and coated to prepare a coating cured product.
실시예Example 1-10. Titanium  1-10. Titanium alkoxidealkoxide ratio 변화 ( ratio change ( 5.0mol%5.0mol% ) 및 반응 시간 조절) And reaction time control
Titanium isopropoxide(Sigma-Aldrich社)를 14.80mL 첨가한 것과 반응 시간을 2시간 진행한 것을 제외하고, 실시예 1-1과 동일한 방법으로 수평균분자량 2654 중량평균분자량 5600 다분산지수 2.1 인 실록산 수지를 얻었으며, 이를 코팅하여 코팅 경화물을 제조하였다. A siloxane resin having a number average molecular weight of 2654 weight average molecular weight of 5600 polydispersity index 2.1 in the same manner as in Example 1-1, except that 14.80 mL of titanium isopropoxide (Sigma-Aldrich) was added and the reaction time was progressed for 2 hours. It was obtained and coated to prepare a coating cured product.
비교예Comparative example 1-1.  1-1. 광경화Photocuring 코팅  coating 경화물Cured product
Titanium isopropoxide를 첨가하지 않은 것을 제외하고 상시 실시예 1과 동일한 방법으로 제조하여 수평균 분자량이 5395, 중량평균 분자량이 15116, 다분산지수가 2.80인 실록산 수지를 수득하였다. 이후, 상기 실시예 1-1과 동일한 조건으로 코팅하여 비교예 1을 통해 수득된 실록산 수지가 코팅된 코팅 경화물을 제작하였다.A siloxane resin having a number average molecular weight of 5395, a weight average molecular weight of 15116, and a polydispersity index of 2.80 was obtained by the same method as in Example 1 except that no titanium isopropoxide was added. Thereafter, the coating cured product coated with the siloxane resin obtained through Comparative Example 1 was prepared under the same conditions as in Example 1-1.
비교예Comparative example 1-2.  1-2. 열경화Thermosetting 코팅  coating 경화물Cured product
상기 비교예 1-1과 동일한 수지를 이용하되, 실시예 2와 같은 열경화 코팅 방법을 이용하여 코팅 경화물을 제조하였다.Using the same resin as Comparative Example 1-1, using the same thermosetting coating method as in Example 2 to prepare a cured coating.
비교예Comparative example 1-3. Titanium  1-3. Titanium alkoxidealkoxide ratio 변화( change ratio ( 5.5mol%5.5mol% ) 및 반응시간 조절) And response time
Titanium isopropoxide(Sigma-Aldrich社)를 16.28mL 첨가하고 반응시간을 1시간 미만으로 제어한 것을 제외하고 실시예 1-1과 동일한 방법으로 수지를 제조하여 필름에 코팅하고자 하였으나, 수지의 겔화 제어가 곤란하였고 이에 따라 유기용매에 대한 용해성이 급격히 떨어져 코팅에 적합하지 않았다.Titanium isopropoxide (Sigma-Aldrich) was added to 16.28mL and the reaction time was controlled to less than 1 hour to prepare a resin in the same manner as in Example 1-1 to coat the film, but difficult to control the gelation of the resin As a result, the solubility in organic solvents was drastically degraded, which was not suitable for coating.
<< 제 1First 측정예Measurement example >>
이어서, 코팅에 적합하지 않은 비교예 1-3을 제외하고, 상기 실시예 1-1 내지 1-10과 비교예 1-1 내지 1-2를 대상으로 하여 하기 방법에 따라 물성 평가를 실시하여 그 결과를 하기 표 1에 나타내었다.Subsequently, except for Comparative Examples 1-3, which are not suitable for coating, the physical properties of the Examples 1-1 to 1-10 and Comparative Examples 1-1 to 1-2 were evaluated according to the following method. The results are shown in Table 1 below.
(1) 표면 경도: 일본 IMOTO사의 연필경도 측정기를 사용하여 ASTM D3363에 따라 180mm/min의 속도로 하중을 750gf로 연필경도를 측정하였다.(1) Surface hardness: Pencil hardness was measured at 750 gf load at a speed of 180 mm / min in accordance with ASTM D3363 using a pencil hardness tester manufactured by IMOTO, Japan.
(2) 컬 발생: 코팅된 필름을 30cm X 21cm로 잘라 평면에 위치시켰을 때 각 모서리의 일변이 평면으로부터 이격되는 거리의 최대값으로 측정하였다.(2) Curling: When the coated film was cut into 30 cm X 21 cm and placed on a flat surface, one side of each corner was measured as the maximum value of the distance from the flat surface.
(3) 내화학성: 슬라이드 글라스에 1cm X 1cm로 자른 필름을 코팅면이 위로 가게 접착테이프(3M)로 고정시킨 후, 아세톤, NMP, KOH 0.05% 수용액에 12시간 동안 담근 후 코팅 층의 박리가 발생하는지 여부를 측정하여 박리가 발생할 경우 불량, 발생하지 않을 경우 양호로 판단하여 하기 표 1에 반영하였다.(3) Chemical resistance: After fixing the film cut to 1cm X 1cm on the slide glass with the adhesive tape (3M) with the coating surface facing upward, immersed in acetone, NMP, KOH 0.05% aqueous solution for 12 hours, then peeling off the coating layer It was determined by measuring whether or not to occur when the peeling occurs, it is judged to be good when not reflected in Table 1 below.
[표 1]TABLE 1
Figure PCTKR2015014594-appb-I000002
Figure PCTKR2015014594-appb-I000002
두께에 따른 표면경도 측정 결과에 따르면, 비교예 1-1 및 1-2에 비해 알콕시 금속을 첨가한 실시예 1-1 내지 1-10의 표면경도와 컬 특성이 현저히 개선됨을 확인할 수 있었으며, 이때 열경화(실시예 1-2)보다 광경화(실시예 1-1)에 의한 경화가 표면경도에 좀 더 유리한 것으로 나타났다. 이에 반해, 열 경화시에는 30㎛의 두께에서도 컬이 발생하지 않아 컬 발생 억제 측면에서는 열 경화가 보다 유리할 수 있음이 확인되었다. According to the surface hardness measurement results according to the thickness, compared with Comparative Examples 1-1 and 1-2, it was confirmed that the surface hardness and curl characteristics of Examples 1-1 to 1-10 with the addition of the alkoxy metal were remarkably improved. Curing by photocuring (Example 1-1) was shown to be more advantageous for surface hardness than thermosetting (Example 1-2). On the contrary, it was confirmed that curling does not occur even at a thickness of 30 μm during thermal curing, and thermal curing may be more advantageous in terms of suppressing curl generation.
나아가, 실시예 1-5 내지 1-10의 컬특성을 대비해 봄으로써, 알콕시 금속의 첨가량이 더 증가할 경우, 분자구조내 분자간 거리가 확보되어 컬 특성이 좀 더 개선될 수 있는 것을 확인할 수 있었다. 다만, 알콕시 금속 함량이 2몰% 이상 첨가되는 시점(실시예 1-9, 실시예 1-10)에서는 반응 시간을 줄여줌으로써 표면경도와 컬 발생을 억제할 수 있었으나, 5.0몰%를 초과하는 비교예 1-3의 경우, 겔화가 진행되기 전에 반응을 멈추면 충분한 반응이 이루어지지 않거나, 충분한 반응을 고려해서 반응시간을 최소화하는 경우에는 겔화의 진행을 억제할 수 없어 수지의 점도가 급격히 상승하였으며 이에 따라 코팅이 어려운 것을 확인할 수 있었다.Furthermore, by contrasting the curl characteristics of Examples 1-5 to 1-10, when the amount of the addition of the alkoxy metal was further increased, it was confirmed that the intermolecular distance in the molecular structure can be secured and the curl characteristics can be further improved. . However, at the time when 2 mol% or more of the alkoxy metal content was added (Examples 1-9 and 1-10), the surface hardness and curl generation could be suppressed by reducing the reaction time, but the comparison exceeded 5.0 mol%. In the case of Example 1-3, if the reaction was stopped before gelation proceeded, sufficient reaction did not occur, or if the reaction time was minimized in consideration of the sufficient reaction, the progress of gelation could not be suppressed and the viscosity of the resin rapidly increased. Accordingly, it was confirmed that the coating is difficult.
[[ 제 22nd 실시예Example ]]
우선, 제 2 실시예에서 본 발명의 화학식 3으로 표시되는 알콕시 실란을 TEOS만 사용한 이유는 TEOS가 가격이 싸고 구하기 쉽기 때문일 뿐, 이외의 다른 알콕시기를 사용하더라도 중합생성물의 분자구조에 Q구조를 갖게 되는 것은 동일하다.First, in the second embodiment, only the TEOS is used for the alkoxy silane represented by the general formula (3) of the present invention because TEOS is cheap and easy to obtain, and even if other alkoxy groups are used, the polymer structure has a Q structure. To be the same.
실시예Example 2-1 2-1
KBM-303(Shinetsu社), TEOS(Sigma-Aldrich社) 및 H2O를 365.87g : 2.50g : 40.66mL의 비율로 혼합하여 500mL 플라스크에 넣은 후 수산화나트륨 0.06g을 촉매로 첨가하고, Titanium isopropoxide (Sigma-Aldrich社) 0.85g 첨가하여 60℃에서 10시간 동안 교반하였다. 이 후, 0.45um 테프론 필터를 사용해 여과하여 실록산 수지(중량평균분자량 5000, 다분산지수 2.0)를 얻었다. 다음으로, 광개시제인 IRGACURE 250(BASF社)를 상기 실록산 수지 100 중량부 대비 3 중량부 첨가하여 하드 코팅용 수지 조성물을 얻었다.KBM-303 (Shinetsu), TEOS (Sigma-Aldrich) and H 2 O were mixed at a rate of 365.87 g: 2.50 g: 40.66 mL, placed in a 500 mL flask, 0.06 g of sodium hydroxide was added as a catalyst, and Titanium isopropoxide. 0.85 g of Sigma-Aldrich Co., Ltd. was added and stirred at 60 ° C. for 10 hours. Thereafter, the mixture was filtered using a 0.45 um Teflon filter to obtain a siloxane resin (weight average molecular weight 5000, polydispersity index 2.0). Next, 3 parts by weight of IRGACURE 250 (BASF, Inc.) as a photoinitiator was added to 100 parts by weight of the siloxane resin to obtain a resin composition for hard coating.
실시예Example 2-2 2-2
KBM-303(Shinetsu社), TEOS(Sigma-Aldrich社) 및 H2O를 332.61g : 29.69g : 41.87mL의 비율로 혼합하여 500mL 플라스크에 넣은 후 수산화나트륨 0.06g을 촉매로 첨가하고, Titanium isopropoxide (Sigma-Aldrich社) 2.13g 첨가하여 60℃에서 10시간 동안 교반하였다. 이 후, 0.45um 테프론 필터를 사용해 여과하여 실록산 수지(중량평균분자량 10000, 다분산지수 2.2)를 얻었다. 다음으로, 광개시제인 IRGACURE 250(BASF社)를 상기 실록산 수지 100 중량부 대비 3 중량부 첨가하여 하드 코팅용 수지 조성물을 얻었다.KBM-303 (Shinetsu), TEOS (Sigma-Aldrich) and H 2 O were mixed in a ratio of 332.61 g: 29.69 g: 41.87 mL into a 500 mL flask, 0.06 g of sodium hydroxide was added as a catalyst, and Titanium isopropoxide. (Sigma-Aldrich Co., Ltd.) was added 2.13g and stirred at 60 ℃ for 10 hours. Thereafter, the mixture was filtered using a 0.45 um Teflon filter to obtain a siloxane resin (weight average molecular weight 10000, polydispersity index 2.2). Next, 3 parts by weight of IRGACURE 250 (BASF, Inc.) as a photoinitiator was added to 100 parts by weight of the siloxane resin to obtain a resin composition for hard coating.
실시예Example 2-3 2-3
KBM-303(Shinetsu社), TEOS(Sigma-Aldrich社) 및 H2O를 295.66g : 59.37g : 43.22mL의 비율로 혼합하여 500mL 플라스크에 넣은 후 수산화나트륨 0.06g을 촉매로 첨가하고, Titanium isopropoxide (Sigma-Aldrich社) 4.26g 첨가하여 60℃에서 10시간 동안 교반하였다. 이 후, 0.45um 테프론 필터를 사용해 여과하여 실록산 수지(중량평균분자량 15000, 다분산지수 3.0)를 얻었다. 다음으로, 광개시제인 IRGACURE 250(BASF社)를 상기 실록산 수지 100 중량부 대비 3 중량부 첨가하여 하드 코팅용 수지 조성물을 얻었다.KBM-303 (Shinetsu), TEOS (Sigma-Aldrich) and H 2 O were mixed in a ratio of 295.66 g: 59.37 g: 43.22 mL, placed in a 500 mL flask, 0.06 g of sodium hydroxide was added as a catalyst, and Titanium isopropoxide. (Sigma-Aldrich, Inc.) was added 4.26g and stirred at 60 ° C for 10 hours. Thereafter, the resultant was filtered using a 0.45 um Teflon filter to obtain a siloxane resin (weight average molecular weight 15000, polydispersity index 3.0). Next, 3 parts by weight of IRGACURE 250 (BASF, Inc.) as a photoinitiator was added to 100 parts by weight of the siloxane resin to obtain a resin composition for hard coating.
실시예Example 2-4 2-4
KBM-303(Shinetsu社), TEOS(Sigma-Aldrich社) 및 H2O를 184.79g : 146.87g : 47.28mL의 비율로 혼합하여 500mL 플라스크에 넣은 후 수산화나트륨 0.06g을 촉매로 첨가하고, Titanium isopropoxide (Sigma-Aldrich社) 12.79g 첨가하여 60℃에서 10시간 동안 교반하였다. 이 후, 0.45um 테프론 필터를 사용해 여과하여 실록산 수지(중량평균분자량 37000, 다분산지수 4.3)를 얻었다. 다음으로, 광개시제인 IRGACURE 250(BASF社)를 상기 실록산 수지 100 중량부 대비 3 중량부 첨가하여 하드 코팅용 수지 조성물을 얻었다. KBM-303 (Shinetsu), TEOS (Sigma-Aldrich) and H 2 O were mixed at a ratio of 184.79 g: 146.87 g: 47.28 mL, placed in a 500 mL flask, 0.06 g of sodium hydroxide was added as a catalyst, and Titanium isopropoxide. 12.79 g of Sigma-Aldrich Co., Ltd. was added and stirred at 60 ° C. for 10 hours. Thereafter, the mixture was filtered using a 0.45 um Teflon filter to obtain a siloxane resin (weight average molecular weight 37000, polydispersity index 4.3). Next, 3 parts by weight of IRGACURE 250 (BASF, Inc.) as a photoinitiator was added to 100 parts by weight of the siloxane resin to obtain a resin composition for hard coating.
실시예Example 2-5 2-5
KBM-303(Shinetsu社), TEOS(Sigma-Aldrich社) 및 H2O를 73.91g : 234.37g : 51.33mL의 비율로 혼합하여 500mL 플라스크에 넣은 후 수산화나트륨 0.06g을 촉매로 첨가하고, Titanium isopropoxide (Sigma-Aldrich社) 21.32g 첨가하여 60℃에서 10시간 동안 교반하였더니 Gel화되어 컨트롤이 힘들었다. 이 후, 0.45um 테프론 필터를 사용해 여과하여 실록산 수지(중량평균분자량 50000, 다분산지수 6.2)를 얻었다. 다음으로, 광개시제인 IRGACURE 250(BASF社)를 상기 실록산 수지 100 중량부 대비 3 중량부 첨가하여 하드 코팅용 수지 조성물을 얻었다.KBM-303 (Shinetsu), TEOS (Sigma-Aldrich) and H 2 O were mixed in a ratio of 73.91 g: 234.37 g: 51.33 mL, placed in a 500 mL flask, 0.06 g of sodium hydroxide was added as a catalyst, and Titanium isopropoxide. (Sigma-Aldrich Co., Ltd.) 21.32g was added and stirred for 10 hours at 60 ℃ gel was difficult to control. Thereafter, the resultant was filtered using a 0.45 um Teflon filter to obtain a siloxane resin (weight average molecular weight 50000, polydispersity index 6.2). Next, 3 parts by weight of IRGACURE 250 (BASF, Inc.) as a photoinitiator was added to 100 parts by weight of the siloxane resin to obtain a resin composition for hard coating.
실시예Example 2-6 2-6
KBM-303(Shinetsu社), TEOS(Sigma-Aldrich社) 및 H2O를 73.91g : 234.37g : 51.33mL의 비율로 혼합하여 500mL 플라스크에 넣은 후 수산화나트륨 0.06g을 촉매로 첨가하고, Titanium isopropoxide (Sigma-Aldrich社) 21.32g 첨가하여 Gel화 방지를 위해 60℃에서 3시간 동안 교반하였더니 Gel화되지 않고 수월하게 실록산 수지(중량평균분자량 3500, 다분산지수 1.8)를 수득할 수 있었다. 이 후, 0.45um 테프론 필터를 사용해 여과하여 실록산 수지를 얻었다. 다음으로, 광개시제인 IRGACURE 250(BASF社)를 상기 실록산 수지 100 중량부 대비 3 중량부 첨가하여 하드 코팅용 수지 조성물을 얻었다.KBM-303 (Shinetsu), TEOS (Sigma-Aldrich) and H 2 O were mixed in a ratio of 73.91 g: 234.37 g: 51.33 mL, placed in a 500 mL flask, 0.06 g of sodium hydroxide was added as a catalyst, and Titanium isopropoxide. (Sigma-Aldrich Co., Ltd.) After the addition of 21.32 g of stirring at 60 ° C. for 3 hours to prevent gelation, the siloxane resin (weight average molecular weight 3500, polydispersity index 1.8) was easily obtained without gelation. Thereafter, the mixture was filtered using a 0.45 um Teflon filter to obtain a siloxane resin. Next, 3 parts by weight of IRGACURE 250 (BASF, Inc.) as a photoinitiator was added to 100 parts by weight of the siloxane resin to obtain a resin composition for hard coating.
실시예Example 2-7 2-7
KBM-303(Shinetsu社), TEOS(Sigma-Aldrich社) 및 H2O를 295.66g : 53.12g : 43.22mL의 비율로 혼합하여 500mL 플라스크에 넣은 후 수산화나트륨 0.06g을 촉매로 첨가하고, Titanium isopropoxide (Sigma-Aldrich社) 12.79g 첨가하여 60℃에서 10시간 동안 교반하였다. 이 후, 0.45um 테프론 필터를 사용해 여과하여 실록산 수지(중량평균분자량 28000, 다분산지수 3.2)를 얻었다. 다음으로, 광개시제인 IRGACURE 250(BASF社)를 상기 실록산 수지 100 중량부 대비 3 중량부 첨가하여 하드 코팅용 수지 조성물을 얻었다.KBM-303 (Shinetsu Co., Ltd.), TEOS (Sigma-Aldrich Co., Ltd.) and H 2 O were mixed at a ratio of 295.66 g: 53.12 g: 43.22 mL, placed in a 500 mL flask, 0.06 g of sodium hydroxide was added as a catalyst, and Titanium isopropoxide. 12.79 g of Sigma-Aldrich Co., Ltd. was added and stirred at 60 ° C. for 10 hours. Thereafter, the mixture was filtered using a 0.45 um Teflon filter to obtain a siloxane resin (weight average molecular weight 28000, polydispersity index 3.2). Next, 3 parts by weight of IRGACURE 250 (BASF, Inc.) as a photoinitiator was added to 100 parts by weight of the siloxane resin to obtain a resin composition for hard coating.
실시예Example 2-8 2-8
KBM-303(Shinetsu社), TEOS(Sigma-Aldrich社) 및 H2O를 295.66g : 601.87g : 43.22mL의 비율로 혼합하여 500mL 플라스크에 넣은 후 수산화나트륨 0.06g을 촉매로 첨가하고, Titanium isopropoxide (Sigma-Aldrich社) 0.85g 첨가하여 60℃에서 10시간 동안 교반하였다. 이 후, 0.45um 테프론 필터를 사용해 여과하여 실록산 수지(중량평균분자량 24000, 다분산지수 2.8)를 얻었다. 다음으로, 광개시제인 IRGACURE 250(BASF社)를 상기 실록산 수지 100 중량부 대비 3 중량부 첨가하여 하드 코팅용 수지 조성물을 얻었다.KBM-303 (Shinetsu Co., Ltd.), TEOS (Sigma-Aldrich Co., Ltd.) and H 2 O were mixed at a ratio of 295.66 g: 601.87 g: 43.22 mL, placed in a 500 mL flask, 0.06 g of sodium hydroxide was added as a catalyst, and Titanium isopropoxide. 0.85 g of Sigma-Aldrich Co., Ltd. was added and stirred at 60 ° C. for 10 hours. Thereafter, the mixture was filtered using a 0.45 um Teflon filter to obtain a siloxane resin (weight average molecular weight 24000, polydispersity index 2.8). Next, 3 parts by weight of IRGACURE 250 (BASF, Inc.) as a photoinitiator was added to 100 parts by weight of the siloxane resin to obtain a resin composition for hard coating.
실시예Example 2-9 2-9
KBM-303(Shinetsu社), TEOS(Sigma-Aldrich社) 및 H2O를 184.79g : 146.87g : 48.54mL의 비율로 혼합하여 500mL 플라스크에 넣은 후 수산화나트륨 0.06g을 촉매로 첨가하고, Titanium isopropoxide (Sigma-Aldrich社) 21.32g 첨가하되, 60℃에서 10시간동안 교반할 경우 Gel화되어 컨트롤이 힘들어 교반 시간을 5시간으로 단축하여 반응시켰다. 이 후, 0.45um 테프론 필터를 사용해 여과하여 실록산 수지(중량평균분자량 30000, 다분산지수 5.2)를 얻었다. 다음으로, 광개시제인 IRGACURE 250(BASF社)를 상기 실록산 수지 100 중량부 대비 3 중량부 첨가하여 하드 코팅용 수지 조성물을 얻었다.KBM-303 (Shinetsu Co., Ltd.), TEOS (Sigma-Aldrich Co., Ltd.) and H 2 O were mixed at a ratio of 184.79 g: 146.87 g: 48.54 mL, placed in a 500 mL flask, 0.06 g of sodium hydroxide was added as a catalyst, and Titanium isopropoxide. (Sigma-Aldrich Co., Ltd.) 21.32g was added, but when stirred for 10 hours at 60 ℃ Gel is difficult to control the reaction time was shortened to 5 hours. Thereafter, the mixture was filtered using a 0.45 um Teflon filter to obtain a siloxane resin (weight average molecular weight 30000, polydispersity index 5.2). Next, 3 parts by weight of IRGACURE 250 (BASF, Inc.) as a photoinitiator was added to 100 parts by weight of the siloxane resin to obtain a resin composition for hard coating.
실시예Example 2-10 2-10
KBM-303(Shinetsu社), TEOS(Sigma-Aldrich社) 및 H2O를 258.70g : 90.62g : 44.57mL의 비율로 혼합하여 500mL 플라스크에 넣은 후 수산화나트륨 0.06g을 촉매로 첨가하고, Titanium isopropoxide (Sigma-Aldrich社) 4.26g 첨가하여 60℃에서 10시간 동안 교반하였다. 이 후, 0.45um 테프론 필터를 사용해 여과하여 실록산 수지(중량평균분자량 18000, 다분산지수 3.9)를 얻었다. 다음으로, 광개시제인 IRGACURE 250(BASF社)를 상기 실록산 수지 100 중량부 대비 3 중량부 첨가하여 하드 코팅용 수지 조성물을 얻었다.KBM-303 (Shinetsu), TEOS (Sigma-Aldrich) and H 2 O were mixed at a ratio of 258.70 g: 90.62 g: 44.57 mL, and placed in a 500 mL flask, 0.06 g of sodium hydroxide was added as a catalyst, and Titanium isopropoxide. (Sigma-Aldrich, Inc.) was added 4.26g and stirred at 60 ° C for 10 hours. Thereafter, the mixture was filtered using a 0.45 um Teflon filter to obtain a siloxane resin (weight average molecular weight 18000, polydispersity index 3.9). Next, 3 parts by weight of IRGACURE 250 (BASF, Inc.) as a photoinitiator was added to 100 parts by weight of the siloxane resin to obtain a resin composition for hard coating.
비교예Comparative example 2-1 2-1
KBM-403(Shinetsu社), TEOS(Sigma-Aldrich社) 및 H2O를 (Sigma-Aldrich社) 350.96g : 2.50g : 40.66mL의 비율로 혼합하여 500mL 플라스크에 넣은 후 수산화나트륨 0.06g을 촉매로 첨가하고 Titanium isopropoxide (Sigma-Aldrich社) 0.85g 첨가하여 60℃에서 10시간 동안 교반하였다. 이 후, 0.45um 테프론 필터를 사용해 여과하여 실록산 수지(중량평균분자량 4000, 다분산지수 1.8)를 얻었다. 다음으로, 상기 수득된 실록산 수지에 광개시제인 IRGACURE 250(BASF社)를 상기 실록산 수지 100 중량부 대비 3 중량부 첨가하여 하드 코팅용 수지 조성물을 얻었다.KBM-403 (Shinetsu), TEOS (Sigma-Aldrich) and H 2 O (Sigma-Aldrich) were mixed in a ratio of 350.96g: 2.50g: 40.66mL and placed in a 500mL flask, and 0.06g sodium hydroxide was catalyzed. And Titanium isopropoxide (Sigma-Aldrich) were added 0.85g and stirred at 60 ° C for 10 hours. Thereafter, the mixture was filtered using a 0.45 um Teflon filter to obtain a siloxane resin (weight average molecular weight 4000, polydispersity index 1.8). Next, 3 parts by weight of IRGACURE 250 (BASF, Inc.) as a photoinitiator was added to the siloxane resin obtained above, to 100 parts by weight of the siloxane resin, thereby obtaining a hard coating resin composition.
비교예Comparative example 2-2 2-2
KBM-303(Shinetsu社), TEOS(Sigma-Aldrich社) 및 H2O를 295.66g : 60.94g : 43.22mL의 비율로 혼합하여 500mL 플라스크에 넣은 후 수산화나트륨 0.06g을 촉매로 첨가하여 60℃에서 10시간 동안 교반하였다. 이 후, 0.45um 테프론 필터를 사용해 여과하여 실록산 수지(중량평균분자량 21000, 다분산지수 2.3)를 얻었다. 다음으로, 광개시제인 IRGACURE 250(BASF社)를 상기 실록산 수지 100 중량부 대비 3 중량부 첨가하여 하드 코팅용 수지 조성물을 얻었다.KBM-303 (Shinetsu), TEOS (Sigma-Aldrich) and H 2 O were mixed at a ratio of 295.66 g: 60.94 g: 43.22 mL, placed in a 500 mL flask, and 0.06 g of sodium hydroxide was added as a catalyst at 60 ° C. Stir for 10 hours. Thereafter, the mixture was filtered using a 0.45 um Teflon filter to obtain a siloxane resin (weight average molecular weight 21000, polydispersity index 2.3). Next, 3 parts by weight of IRGACURE 250 (BASF, Inc.) as a photoinitiator was added to 100 parts by weight of the siloxane resin to obtain a resin composition for hard coating.
비교예Comparative example 2-3 2-3
KBM-303(Shinetsu社) 및 Titanium isopropoxide (Sigma-Aldrich社), H2O를 365.87g : 4.26g : 40.66mL의 비율로 혼합하여 500mL 플라스크에 넣은 후 수산화나트륨 0.06g을 촉매로 첨가하고, 60℃에서 10시간 동안 교반하였다. 이 후, 0.45um 테프론 필터를 사용해 여과하여 실록산 수지(중량평균분자량 5000, 다분산지수 2.6)를 얻었다. 다음으로, 광개시제인 IRGACURE 250(BASF社)를 상기 실록산 수지 100 중량부 대비 3 중량부 첨가하여 하드 코팅용 수지 조성물을 얻었다.KBM-303 (Shinetsu Co., Ltd.) and Titanium isopropoxide (Sigma-Aldrich Co., Ltd.), H 2 O, were mixed in a ratio of 365.87 g: 4.26 g: 40.66 mL, placed in a 500 mL flask, and 0.06 g of sodium hydroxide was added as a catalyst. Stir at 10 ° C. for 10 hours. Thereafter, the mixture was filtered using a 0.45 um Teflon filter to obtain a siloxane resin (weight average molecular weight 5000, polydispersity index 2.6). Next, 3 parts by weight of IRGACURE 250 (BASF, Inc.) as a photoinitiator was added to 100 parts by weight of the siloxane resin to obtain a resin composition for hard coating.
비교예Comparative example 2-4 2-4
KBM-303(Shinetsu社), TEOS(Sigma-Aldrich社) 및 H2O를 36.96g : 281.25g : 52.68mL의 비율로 혼합하여 500mL 플라스크에 넣은 후 수산화나트륨 0.06g을 촉매로 첨가하여 반응하되, 60℃에서 10시간동안 교반할 경우 Gel화되어 컨트롤이 힘들어 교반 시간을 5시간으로 단축하여 반응시켰다. 이 후, 0.45um 테프론 필터를 사용해 여과하여 실록산 수지(중량평균분자량 48000, 다분산지수 6.8)를 얻었다. 다음으로, 광개시제인 IRGACURE 250(BASF社)를 상기 실록산 수지 100 중량부 대비 3 중량부 첨가하여 하드 코팅용 수지 조성물을 얻었다.KBM-303 (Shinetsu Co., Ltd.), TEOS (Sigma-Aldrich Co., Ltd.) and H 2 O were mixed at a ratio of 36.96 g: 281.25 g: 52.68 mL, and placed in a 500 mL flask, followed by reaction by adding 0.06 g of sodium hydroxide as a catalyst. When stirred for 10 hours at 60 ℃ Gel was difficult to control the reaction time was shortened to 5 hours to react. Thereafter, the mixture was filtered using a 0.45 um Teflon filter to obtain a siloxane resin (weight average molecular weight 48000, polydispersity index 6.8). Next, 3 parts by weight of IRGACURE 250 (BASF, Inc.) as a photoinitiator was added to 100 parts by weight of the siloxane resin to obtain a resin composition for hard coating.
<< 제 22nd 측정예Measurement example >>
상기 실시예 2-1 내지 2-10 및 비교예 2-1 내지 2-4의 하드 코팅용 수지 조성물을 기재인 75㎛ 두께의 폴리에틸렌테레프탈레이트 필름(제조사: 코오롱, 제품명: HP34P)의 일면에 각각 10, 20, 30u㎛ 으로 두께를 달리하여 코팅한 뒤, 80℃ 오븐에서 30분 동안 건조하고, 자외선 조사장치로 하드 코팅 조성물을 도포한 방향에서 80mW/㎠의 조도로 1,000mJ/㎠을 조사한 후, 85℃ 오븐에서 24시간 동안 열처리를 진행하여 하드 코팅 필름을 제조하였다. 이어서, 제조된 하드 코팅 필름을 대상으로 하여 하기 방법에 따라 물성 평가를 실시하여 그 결과를 하기 표 2에 나타내었다.On one surface of a 75 μm-thick polyethylene terephthalate film (manufacturer: Kolon, product name: HP34P) based on the resin compositions for hard coating of Examples 2-1 to 2-10 and Comparative Examples 2-1 to 2-4 10, 20, 30u㎛ coated after varying the thickness, and dried for 30 minutes in an oven at 80 ℃, irradiated with 1,000mJ / ㎠ at a roughness of 80mW / ㎠ in the direction of applying the hard coating composition with an ultraviolet irradiation device Heat treatment for 24 hours in an 85 ℃ oven to prepare a hard coating film. Subsequently, the physical properties of the prepared hard coat film were evaluated according to the following method, and the results are shown in Table 2 below.
(1) 표면 경도: 일본 IMOTO사의 연필경도 측정기를 사용하여 ASTM D3363에 따라 180mm/min의 속도로 하중을 750gf로 연필경도를 측정하였다.(1) Surface hardness: Pencil hardness was measured at 750 gf load at a speed of 180 mm / min in accordance with ASTM D3363 using a pencil hardness tester manufactured by IMOTO, Japan.
(2) 컬 발생: 코팅된 필름을 100mm X 100 mm로 잘라 25℃ 및 50% RH 조건에서 24시간 방치 후, 평면에 위치시켰을 때 각 모서리의 일변이 평면으로부터 이격되는 거리의 최대값으로 측정하였다.(2) Curling: The coated film was cut into 100 mm × 100 mm and left for 24 hours at 25 ° C. and 50% RH, and then measured as the maximum value of the distance from one side of each corner to the plane when placed on the plane. .
(3) 내마모성: 평면에 20cm X 5cm로 자른 필름을 코팅면이 위로 가게 접착테이프(3M)로 고정시킨 후, #0000 부직포를 감은 봉으로 1kgf의 하중, 15RPM 속도로 1000회 동안 표면을 왕복시켰을 때 스크래치가 발생하는지 여부를 측정하여 스크래치가 발생할 경우 불량, 발생하지 않을 경우 양호로 판단하여 하기 표 2에 반영하였다.(3) Abrasion resistance: After fixing the film cut to 20cm X 5cm on the plane with the adhesive tape (3M) with the coated side up, the surface was reciprocated for 1000 times at a load of 1kgf and 15RPM with a rod wrapped with # 0000 nonwoven fabric. When the scratch is generated or not when the scratch occurs, it is judged to be good if it does not occur, and reflected in Table 2 below.
[표 2]TABLE 2
Figure PCTKR2015014594-appb-I000003
Figure PCTKR2015014594-appb-I000003
상기 표 2를 통해 확인할 수 있듯이, 지환식 에폭시기가 아닌 일반 에폭시기를 갖는 알콕시 실란을 사용한 비교예 2-1 대비 실시예 2-3 내지 2-10은 모두 표면 경도와 내마모성이 우수하게 나타났다. 특히, 비교예 2-1은 알콕시 금속을 첨가했음에도 불구하고 지환식 에폭시기를 갖는 알콕시 실란을 기본적으로 포함하지 않음에 따라 표면 경도는 물론 컬 특성이 크게 개선되지 못하였다. 비교예 2-2는 TEOS첨가량을 늘려 표면경도를 비교예 2-1보다는 향상시켰으나 역시 알콕시 금속을 첨가하지 않아 컬 특성은 개선되지 않는 것을 확인할 수 있었다. 이에 반해, 실시예 2-1 내지 2-2는 비교예 2-2 대비 TEOS 첨가량이 적어 경도는 미약하게 낮지만 알콕시 금속을 첨가함에 따라 컬에서 대폭 개선되는 것을 확인하였다.As can be seen through Table 2, compared with Comparative Example 2-1 using an alkoxy silane having a general epoxy group rather than an alicyclic epoxy group, Examples 2-3 to 2-10 all showed excellent surface hardness and wear resistance. In particular, although Comparative Example 2-1 basically did not include an alkoxy silane having an alicyclic epoxy group even though the alkoxy metal was added, the surface hardness as well as the curl characteristics were not significantly improved. In Comparative Example 2-2, the TEOS addition amount was increased to improve the surface hardness than Comparative Example 2-1, but it was also confirmed that curling properties were not improved because no alkoxy metal was added. On the contrary, in Examples 2-1 to 2-2, the amount of TEOS added was less than that of Comparative Example 2-2, and thus the hardness was slightly lower, but it was confirmed that the addition of the alkoxy metal greatly improved the curl.
또한, 비교예 2-3의 경우 TEOS를 적용하지 않음으로 인해 표면경도와 내마모성이 상대적으로 낮은 것으로 나타났고, 비교예 2-4의 경우 표면 경도와 내마모성은 충분히 확보될 수 있었으나, TEOS의 비율은 지나치게 높고, 알콕시 금속 화합물은 첨가되지 못하여 컬 특성 개선 효과가 크지 않았다. 이에 반해, 실시예 2-1 내지 2-10은 모두 비교예 2-3 및 2-4에 비해 표면경도 및 내마모성, 컬 특성이 균형있게 개선된 것으로 확인되었다.In addition, in case of Comparative Example 2-3, the surface hardness and abrasion resistance were relatively low due to not applying TEOS. In Comparative Example 2-4, the surface hardness and the abrasion resistance were sufficiently secured, but the ratio of TEOS was It was too high, and the alkoxy metal compound was not added, and the effect of improving curl properties was not large. On the contrary, in Examples 2-1 to 2-10, it was confirmed that the surface hardness, abrasion resistance, and curl characteristics were all balanced in comparison with Comparative Examples 2-3 and 2-4.
따라서, 본 발명의 하드 코팅 수지 조성물을 이용하여 제조된 하드 코팅 필름은 경도, 내마모성 및 컬 특성이 우수하므로, 특히 디스플레이 보호용 필름으로 적합할 수 있다는 것을 실험을 통하여 확인할 수 있었다.Therefore, since the hard coating film prepared using the hard coating resin composition of the present invention is excellent in hardness, wear resistance and curl characteristics, it could be confirmed through experiments that it may be particularly suitable as a film for display protection.
다만, TEOS의 함량이 알콕시 실란 총 합을 기준으로 75몰% 이상이고, 알콕시 금속(Titanium isopropoxide)이 알콕시 실란 총 합에 대해 0.2몰% 내지 5.0몰% 인 실시예 2-5 및 2-6은 실시예 2-1 내지 2-4 및 2-7 내지 2-10 에 비해 경도 및 내마모성은 변화가 없었으나, 컬 특성이 조금 뒤쳐지는 것으로 나타났다. 이에 따라, TEOS의 함량이 알콕시 실란 총 합을 기준으로 17몰% 내지 20몰%고, 알콕시 금속이 알콕시 실란 총 합에 대해 0.2몰% 내지 3몰% 포함인 실시예 2-3, 2-7 및 2-8 이나, TEOS의 함량이 알콕시 실란 총 합을 기준으로 29몰% 내지 52몰%이고, 알콕시 금속이 알콕시 실란 총 합에 대해 1몰% 내지 5.0몰% 포함된 실시예 2-4, 2-9 및 2-10이 보다 바람직한 것으로 분석되었다.However, Examples 2-5 and 2-6 in which the content of TEOS is 75 mol% or more based on the total alkoxy silane and 0.2 to 5.0 mol% of the alkoxy silane (Titanium isopropoxide) is based on the total alkoxy silane. Compared with Examples 2-1 to 2-4 and 2-7 to 2-10, the hardness and abrasion resistance were not changed, but curling properties were slightly behind. Accordingly, the content of TEOS is 17 mol% to 20 mol% based on the total alkoxy silane, and the alkoxy metal is included in the range of 0.2 mol% to 3 mol% based on the total alkoxy silane. Examples 2-3, 2-7 And 2-8, but Examples 2-4, wherein the content of TEOS is 29 mol% to 52 mol% based on the total alkoxy silane and the alkoxy metal is included in the range of 1 mol% to 5.0 mol% based on the total alkoxy silane. 2-9 and 2-10 were analyzed to be more preferred.
[[ 제 33rd 실시예Example ]]
중합예Polymerization example 1 One
KBM-303 (Shinetsu社), Titanium isopropoxide (Sigma-Aldrich社), H2O를 245.2g:1.4g:27.2mL의 비율로 혼합하여 500mL 플라스크에 넣은 후, 수산화나트륨 (Sigma-Aldrich社) 0.1g을 촉매로 첨가하여 60℃에서 10시간 동안 교반하면서 딘스탁 장치로 생성되는 알코올을 제거하면서 반응을 진행하여 실록산 수지 중합물 1을 얻었다. KBM-303 (Shinetsu), Titanium isopropoxide (Sigma-Aldrich) and H 2 O were mixed in a 500mL flask at a ratio of 245.2g: 1.4g: 27.2mL and then sodium hydroxide (Sigma-Aldrich) 0.1g Was added as a catalyst and the reaction proceeded while removing the alcohol produced by the Dean Stark apparatus while stirring at 60 ° C. for 10 hours to obtain a siloxane resin polymer 1.
중합예Polymerization example 2 2
KBM-303 (Shinetsu社), Titanium isopropoxide (Sigma-Aldrich社), H2O를 241.5g:5.7g:27.2mL의 비율로 혼합하여 500mL 플라스크에 넣은 후, 수산화나트륨 (Sigma-Aldrich社) 0.1g을 촉매로 첨가하여 60℃에서 10시간 동안 교반하면서 딘스탁 장치로 생성되는 알코올을 제거하면서 반응을 진행하여 실록산 수지 중합물 2을 얻었다. KBM-303 (Shinetsu), Titanium isopropoxide (Sigma-Aldrich) and H 2 O were mixed in a 500 mL flask at a ratio of 241.5 g: 5.7 g: 27.2 mL, and then 0.1 g sodium hydroxide (Sigma-Aldrich) Was added as a catalyst and the reaction proceeded while removing the alcohol produced by the Dean Stark apparatus while stirring at 60 ° C. for 10 hours to obtain a siloxane resin polymer 2.
중합예Polymerization example 3 3
KBM-303 (Shinetsu社), Titanium isopropoxide (Sigma-Aldrich社), H2O를 234.1g:14.2g:27.2mL의 비율로 혼합하여 500mL 플라스크에 넣은 후, 수산화나트륨 (Sigma-Aldrich社) 0.1g을 촉매로 첨가하여 60℃에서 10시간 동안 교반하면서 딘스탁 장치로 생성되는 알코올을 제거하면서 반응을 진행하여 실록산 수지 중합물 3을 얻었다. KBM-303 (Shinetsu), Titanium isopropoxide (Sigma-Aldrich) and H 2 O were mixed in a 500 mL flask at a ratio of 234.1 g: 14.2 g: 27.2 mL, and then 0.1 g sodium hydroxide (Sigma-Aldrich) Was added as a catalyst and the reaction proceeded while removing the alcohol produced by the Dean Stark apparatus while stirring at 60 ° C. for 10 hours to obtain a siloxane resin polymer 3.
중합예Polymerization example 4 4
KBM-303 (Shinetsu社), Aluminum ethoxide(Sigma-Aldrich社), H2O를 259.8mL:1.62g:27.2mL의 비율로 혼합하여 500mL 플라스크에 넣은 후, 수산화나트륨 0.1g을 촉매로 첨가하여 60℃에서 10시간 동안 교반하면서 딘스탁 장치로 생성되는 알코올을 제거하면서 반응을 진행하여 실록산 수지 중합물 4를 얻었다. KBM-303 (Shinetsu), Aluminum ethoxide (Sigma-Aldrich) and H 2 O were mixed in a ratio of 259.8 mL: 1.62 g: 27.2 mL into a 500 mL flask, and 0.1 g sodium hydroxide was added as a catalyst. The reaction was carried out while removing the alcohol produced by the Dean Stark apparatus while stirring at 10C to obtain a siloxane resin polymer 4.
비교 compare 중합예Polymerization example 1 One
KBM-303 (Shinetsu社), H2O를 246.4g: 27.2mL의 비율로 혼합하여 500mL 플라스크에 넣은 후, 수산화나트륨 (Sigma-Aldrich社) 0.1g을 촉매로 첨가하여 60℃에서 10시간 동안 교반하면서 딘스탁 장치로 생성되는 알코올을 제거하면서 반응을 진행하여 실록산 수지 중합물 5을 얻었다. KBM-303 (Shinetsu Co., Ltd.), H 2 O was mixed in a 500 mL flask at a ratio of 246.4 g: 27.2 mL, and then 0.1 g of sodium hydroxide (Sigma-Aldrich) was added as a catalyst and stirred at 60 ° C. for 10 hours. The reaction was carried out while removing the alcohol produced by the Dean Stark apparatus while obtaining the siloxane resin polymer 5.
비교 compare 중합예Polymerization example 2 2
KBM-303 (Shinetsu社), Titanium isopropoxide (Sigma-Aldrich社), H2O를 231.6g:17.1g:27.2mL의 비율로 혼합하여 500mL 플라스크에 넣은 후, 수산화나트륨 (Sigma-Aldrich社)0.1g을 촉매로 첨가하여 60℃에서 10시간 동안 교반하면서 딘스탁 장치로 생성되는 알코올을 제거하면서 반응을 진행하여 실록산 수지 중합물 3을 얻었다. KBM-303 (Shinetsu), Titanium isopropoxide (Sigma-Aldrich) and H 2 O were mixed in a 500 mL flask at a ratio of 231.6 g: 17.1 g: 27.2 mL, and then sodium hydroxide (Sigma-Aldrich) 0.1 g Was added as a catalyst and the reaction proceeded while removing the alcohol produced by the Dean Stark apparatus while stirring at 60 ° C. for 10 hours to obtain a siloxane resin polymer 3.
상기 중합예 1 내지 4 및 비교 중합예 1 내지 2의 내용을 정리하면 다음과 같다.The contents of the polymerization examples 1 to 4 and comparative polymerization examples 1 to 2 are summarized as follows.
[표 3]TABLE 3
Figure PCTKR2015014594-appb-I000004
Figure PCTKR2015014594-appb-I000004
실시예Example 3-1 3-1
에틸 옥세타닐 메틸 에테르 (제조사: 토아고세이사, 제품명: OXT221) 및 사이클로 알리파틱 에폭사이드(제조사: 다이셀사, 제품명: Celloxide2021P)를 1:1의 중량비로 혼합하여 준비하였으며, 상기 중합예 1에서 제조한 실록산 수지와 3:1의 중량비(실록산 수지=3)로 혼합하였다. 상기 혼합된 혼합물의 총 중량을 기준으로 희석 용매로 메틸 에틸 케톤 40중량%, 광개시제로 트리아릴설포니움 헥사플로로안티모네이트 (시그마-알드리치사) 1 중량%, 첨가제로 실리콘계 레벨링제(제조사:BYK, 제품명: BYK-333) 0.4 중량%를 첨가하고, 교반기를 이용하여 1시간 동안 교반하여 하드 코팅 수지 조성물을 제조하였다.Ethyl oxetanyl methyl ether (manufacturer: Toagosei Co., Ltd., OXT221) and cyclo aliphatic epoxide (manufactured by Daicel Co., Ltd., product name: Celloxide2021P) were prepared by mixing in a weight ratio of 1: 1. It mixed with the produced siloxane resin in the weight ratio of 3: 1 (siloxane resin = 3). 40% by weight of methyl ethyl ketone as a diluting solvent, 1% by weight of triarylsulfonium hexafluoroantimonate (Sigma-Aldrich) as a photoinitiator, and a silicone-based leveling agent as an additive based on the total weight of the mixed mixture : BYK, product name: BYK-333) 0.4 wt% was added, and stirred for 1 hour using a stirrer to prepare a hard coat resin composition.
실시예Example 3-2 3-2
에틸 옥세타닐 메틸 에테르 (제조사: 토아고세이사, 제품명: OXT221) 및 사이클로 알리파틱 에폭사이드(제조사: 다이셀사, 제품명: Celloxide2021P)를 1:1의 중량비로 혼합하여 준비하였으며, 상기 중합예 2에서 제조한 실록산 수지와 9:1의 중량비(실록산 수지=9)로 혼합하였다. 이후 상기 실시예 3-1과 동일한 방법으로 하드 코팅 수지 조성물을 제조하였다. Ethyl oxetanyl methyl ether (manufacturer: Toagosei Co., Ltd., product name: OXT221) and cyclo aliphatic epoxide (manufactured by Daicel Co., Ltd., product name: Celloxide2021P) were prepared by mixing in a weight ratio of 1: 1. The siloxane resin thus prepared was mixed at a weight ratio of 9: 1 (siloxane resin = 9). After the hard coating resin composition was prepared in the same manner as in Example 3-1.
실시예Example 3-3 3-3
에틸 옥세타닐 메틸 에테르 (제조사: 토아고세이사, 제품명: OXT221) 및 사이클로 알리파틱 에폭사이드(제조사: 다이셀사, 제품명: Celloxide2021P)를 1:1의 중량비로 혼합하여 준비하였으며, 상기 중합예 2에서 제조한 실록산 수지와 3:1의 중량비(실록산 수지=3)로 혼합하였다. 이후 상기 실시예 3-1과 동일한 방법으로 하드 코팅 수지 조성물을 제조하였다. Ethyl oxetanyl methyl ether (manufacturer: Toagosei Co., Ltd., product name: OXT221) and cyclo aliphatic epoxide (manufactured by Daicel Co., Ltd., product name: Celloxide2021P) were prepared by mixing in a weight ratio of 1: 1. It mixed with the produced siloxane resin in the weight ratio of 3: 1 (siloxane resin = 3). After the hard coating resin composition was prepared in the same manner as in Example 3-1.
실시예Example 3-4 3-4
에틸 옥세타닐 메틸 에테르 (제조사: 토아고세이사, 제품명: OXT221) 및 사이클로 알리파틱 에폭사이드(제조사: 다이셀사, 제품명: Celloxide2021P)를 1:1의 중량비로 혼합하여 준비하였으며, 상기 중합예 2에서 제조한 실록산 수지와 3:2의 중량비(실록산 수지=3)로 혼합하였다. 이후 상기 실시예 3-1과 동일한 방법으로 하드 코팅 수지 조성물을 제조하였다. Ethyl oxetanyl methyl ether (manufacturer: Toagosei Co., Ltd., product name: OXT221) and cyclo aliphatic epoxide (manufactured by Daicel Co., Ltd., product name: Celloxide2021P) were prepared by mixing in a weight ratio of 1: 1. It mixed with the produced siloxane resin in the weight ratio (siloxane resin = 3) of 3: 2. After the hard coating resin composition was prepared in the same manner as in Example 3-1.
실시예Example 3-5 3-5
페닐 에폭시 아크릴레이트(제조사: 미원상사, 제품명: PE110) 및 비스페놀 A형 EO부가 다이아크릴레이트(제조사: 미원상사, 제품명: M2100)를 1:1의 중량비로 혼합하여 준비하였으며, 상기 중합예 2에서 제조한 실록산 수지와 3:1의 중량비(실록산 수지=3)로 혼합하였다. 상기 혼합된 혼합물의 총 중량을 기준으로 희석 용매로 메틸 에틸 케톤 40중량%, 광개시제로 트리아릴설포니움 헥사플로로안티모네이트 (시그마-알드리치사) 0.67 중량%, 1-히드록시사이클로헥실 페닐 케톤(제조사: Basf, 상품명: Irgacure 184) 0.33 중량%, 첨가제로 실리콘계 레벨링제(제조사:BYK, 제품명: BYK-333) 0.4 중량%를 첨가하고, 교반기를 이용하여 1시간 동안 교반하여 하드 코팅 수지 조성물을 제조하였다.Phenyl epoxy acrylate (manufacturer: Miwon Corporation, product name: PE110) and bisphenol A type EO addition diacrylate (manufacturer: Miwon Corporation, product name: M2100) was prepared by mixing in a weight ratio of 1: 1, in the polymerization example 2 The prepared siloxane resin was mixed at a weight ratio of 3: 1 (siloxane resin = 3). 40 wt% methyl ethyl ketone as diluent solvent, 0.67 wt% triarylsulfonium hexafluoroantimonate (Sigma-Aldrich) as photoinitiator, 1-hydroxycyclohexyl phenyl based on the total weight of the mixed mixture 0.33% by weight of ketone (manufacturer: Basf, trade name: Irgacure 184), 0.4% by weight of silicone-based leveling agent (manufacturer: BYK, product name: BYK-333) was added as an additive, and stirred for 1 hour using a stirrer to hard-coat resin The composition was prepared.
실시예Example 3-6 3-6
에틸 옥세타닐 메틸 에테르 (제조사: 토아고세이사, 제품명: OXT221) 및 사이클로 알리파틱 에폭사이드(제조사: 다이셀사, 제품명: Celloxide2021P)를 1:1의 중량비로 혼합하여 준비하였으며, 상기 중합예 3에서 제조한 실록산 수지와 3:1의 중량비(실록산 수지=3)로 혼합하였다. 이후 상기 실시예 3-1과 동일한 방법으로 하드 코팅 수지 조성물을 제조하였다. Ethyl oxetanyl methyl ether (manufacturer: Toagosei Co., Ltd., product name: OXT221) and cyclo aliphatic epoxide (manufactured by Daicel Co., Ltd., product name: Celloxide2021P) were prepared by mixing in a weight ratio of 1: 1. It mixed with the produced siloxane resin in the weight ratio of 3: 1 (siloxane resin = 3). After the hard coating resin composition was prepared in the same manner as in Example 3-1.
실시예Example 3-7 3-7
에틸 옥세타닐 메틸 에테르 (제조사: 토아고세이사, 제품명: OXT221) 및 사이클로 알리파틱 에폭사이드(제조사: 다이셀사, 제품명: Celloxide2021P)를 1:1의 중량비로 혼합하여 준비하였으며, 상기 중합예 4에서 제조한 실록산 수지와 3:1의 중량비(실록산 수지=3)로 혼합하였다. 이후 상기 실시예 3-1과 동일한 방법으로 하드 코팅 수지 조성물을 제조하였다. Ethyl oxetanyl methyl ether (manufacturer: Toagosei Co., Ltd., OXT221) and cyclo aliphatic epoxide (manufactured by Daicel Co., Ltd., product name: Celloxide2021P) were prepared by mixing in a weight ratio of 1: 1. It mixed with the produced siloxane resin in the weight ratio of 3: 1 (siloxane resin = 3). After the hard coating resin composition was prepared in the same manner as in Example 3-1.
비교예Comparative example 3-1 3-1
상기 중합예 2에서 제조한 실록산 수지의 중량을 기준으로 기준으로 희석 용매로 메틸 에틸 케톤 40중량%, 광개시제로 트리아릴설포니움 헥사플로로안티모네이트 (시그마-알드리치사) 1 중량%, 첨가제로 실리콘계 레벨링제(제조사:BYK, 제품명: BYK-333) 0.4 중량%를 첨가하고, 교반기를 이용하여 1시간 동안 교반하여 하드 코팅 수지 조성물을 제조하였다.40 wt% of methyl ethyl ketone as a diluting solvent based on the weight of the siloxane resin prepared in the polymerization example 2, 1 wt% of triarylsulfonium hexafluoroantimonate (Sigma-Aldrich) as an photoinitiator, additive A silicon-based leveling agent (manufacturer: BYK, product name: BYK-333) was added to 0.4 wt%, and stirred for 1 hour using a stirrer to prepare a hard coat resin composition.
비교예Comparative example 3-2 3-2
에틸 옥세타닐 메틸 에테르 (제조사: 토아고세이사, 제품명: OXT221) 및 사이클로 알리파틱 에폭사이드(제조사: 다이셀사, 제품명: Celloxide2021P)를 1:1의 중량비로 혼합하여 준비하였으며, 상기 중합예 2에서 제조한 실록산 수지와 1:1의 중량비로 혼합하였다. 이후 상기 실시예 3-1과 동일한 방법으로 하드 코팅 수지 조성물을 제조하였다. Ethyl oxetanyl methyl ether (manufacturer: Toagosei Co., Ltd., product name: OXT221) and cyclo aliphatic epoxide (manufactured by Daicel Co., Ltd., product name: Celloxide2021P) were prepared by mixing in a weight ratio of 1: 1. It was mixed with the prepared siloxane resin in a weight ratio of 1: 1. After the hard coating resin composition was prepared in the same manner as in Example 3-1.
비교예Comparative example 3-3 3-3
상기 비교중합예 1에서 제조한 실록산 수지의 중량을 기준으로 기준으로 희석 용매로 메틸 에틸 케톤 40중량%, 광개시제로 트리아릴설포니움 헥사플로로안티모네이트(시그마-알드리치사) 1 중량%, 첨가제로 실리콘계 레벨링제(제조사:BYK, 제품명: BYK-333) 0.4 중량%를 첨가하고, 교반기를 이용하여 1시간 동안 교반하여 하드 코팅 수지 조성물을 제조하였다.40 wt% of methyl ethyl ketone as a diluting solvent based on the weight of the siloxane resin prepared in Comparative Polymerization Example 1, 1 wt% of triarylsulfonium hexafluoroantimonate (Sigma-Aldrich) as a photoinitiator, As an additive, 0.4 wt% of a silicon-based leveling agent (manufacturer: BYK, product name: BYK-333) was added, and stirred for 1 hour using a stirrer to prepare a hard coat resin composition.
비교예Comparative example 3-4 3-4
에틸 옥세타닐 메틸 에테르 (제조사: 토아고세이사, 제품명: OXT221) 및 사이클로 알리파틱 에폭사이드(제조사: 다이셀사, 제품명: Celloxide2021P)를 1:1의 중량비로 혼합하여 준비하였으며, 상기 비교중합예 1에서 제조한 실록산 수지와 3:1의 중량비로 혼합하였다. 이후 상기 실시예 3-1과 동일한 방법으로 하드 코팅 수지 조성물을 제조하였다. Ethyl oxetanyl methyl ether (manufacturer: Toagosei Co., Ltd., OXT221) and cyclo aliphatic epoxide (manufactured by Daicel Co., Ltd., product name: Celloxide2021P) were prepared by mixing in a weight ratio of 1: 1, and Comparative Polymerization Example 1 It was mixed with the siloxane resin prepared in the weight ratio of 3: 1. After the hard coating resin composition was prepared in the same manner as in Example 3-1.
<< 제 33rd 측정예Measurement example >>
이와 같이 제조된 상기 실시예 3-1 내지 3-7 및 비교예 3-1 내지 3-4의 수지 조성물을 기재인 75㎛ 두께의 폴리에틸렌테레프탈레이트 필름 (제조사: 코오롱, 제품명: HP34P)의 일면에 도포한 후, 80℃ 오븐에서 30분 동안 건조하고, 자외선 조사장치로 하드 코팅 조성물을 도포한 방향에서 80mW/㎠의 조도로 1,000mJ/㎠을 조사한 후, 85℃ 오븐에서 24시간 동안 열처리를 진행하여 85㎛ 및 100㎛ 두께를 가지는 하드 코팅 필름 각각 2종씩 제조하였다. 이어서, 제조된 하드 코팅 필름을 가지고 하기 물성 평가를 실시하였다. On one side of a 75 μm-thick polyethylene terephthalate film (manufacturer: Kolon, product name: HP34P) based on the resin compositions of Examples 3-1 to 3-7 and Comparative Examples 3-1 to 3-4 prepared as described above. After application, it was dried in an oven at 80 ° C. for 30 minutes, irradiated with 1,000 mJ / cm 2 at an illuminance of 80 mW / cm 2 in the direction of applying the hard coating composition with an ultraviolet irradiation device, and then heat-treated in an oven at 85 ° C. for 24 hours. To prepare a hard coating film having two thicknesses of 85㎛ and 100㎛ respectively. Subsequently, the following physical property evaluation was performed with the manufactured hard coat film.
(1) 표면 경도: 일본 IMOTO사의 연필경도 측정기를 사용하여 ASTM D3363에 따라 180mm/min의 속도로 하중을 750gf로 연필경도를 측정하였다.(1) Surface hardness: Pencil hardness was measured at 750 gf load at a speed of 180 mm / min in accordance with ASTM D3363 using a pencil hardness tester manufactured by IMOTO, Japan.
(2) 굴곡성: 코팅층을 바깥 방향으로 향하게 하여, 1mm 단위로 반지름 간격을 갖는 봉에 감아서 코팅면에 크랙(crack)이 일어나지 않는 최소 반지름을 확인하였다.(2) Flexibility: With the coating layer facing outwards, it was wound around a rod having a radius interval in units of 1 mm to check the minimum radius where cracks did not occur in the coating surface.
(3) 컬 발생: 코팅된 필름을 100mm X 100 mm로 잘라 평면에 위치시켰을 때 각 모서리의 일변이 평면으로부터 이격되는 거리의 최대값으로 측정하였다.(3) Curling: When the coated film was cut into 100 mm × 100 mm and placed on a flat surface, one side of each corner was measured as the maximum value of the distance from the flat surface.
[표 4]TABLE 4
Figure PCTKR2015014594-appb-I000005
Figure PCTKR2015014594-appb-I000005
상기 표 4의 결과로부터, 실시예 3-1 내지 3-7의 하드 코팅 필름은 연필경도, 굴곡성 및 컬 특성 모두 우수한 결과를 나타내는 것을 알 수 있었으며, 반지름이 6mm이하인 봉에 감더라도 크렉이 발생하지 않아 굴곡성이 아주 우수한 것으로 확인되었다.From the results of Table 4, it can be seen that the hard coating films of Examples 3-1 to 3-7 exhibited excellent results in terms of pencil hardness, flexibility, and curl characteristics, and cracks did not occur even when wound on rods having a radius of 6 mm or less. It was confirmed that the flexibility is very excellent.
이에 반해, 중합예를 통해 제조한 실록산 수지만으로 코팅층을 형성할 경우 비교예 3-1처럼 굴곡성이 현저히 떨어지는 것으로 나타났고, 실록산 수지의 비율을 떨어뜨린 비교예 3-2의 경우 표면 경도가 확보되지 않는 것으로 확인되었으며, 비교 중합예 1을 통해 제조한 실록산 수지를 이용할 경우 비교예 3-3 및 3-4와 같이 실록산에 포함된 금속함량이 미미하여 결국 하드 코팅층 형성시 컬 발생이 개선되지 못함을 확인할 수 있었다.On the contrary, when the coating layer was formed using only the siloxane resin prepared through the polymerization example, the flexibility was remarkably inferior as in Comparative Example 3-1, and in Comparative Example 3-2 in which the ratio of the siloxane resin was decreased, the surface hardness was not secured. When using the siloxane resin prepared in Comparative Polymerization Example 1, it was confirmed that the metal content included in the siloxane is insignificant as in Comparative Examples 3-3 and 3-4, so that curl generation does not improve when the hard coating layer is formed. Could.
따라서, 본 발명의 하드 코팅 수지 조성물을 이용하여 제조된 하드 코팅 필름은 강도, 굴곡성 및 컬 특성이 우수하여 디스플레이 보호용 필름으로 적용 가능하다는 것을 실험을 통하여 확인할 수 있었다.Therefore, it was confirmed through experiments that the hard coat film manufactured using the hard coat resin composition of the present invention is excellent in strength, flexibility, and curl characteristics, and thus can be applied as a display protective film.

Claims (29)

  1. 하기 화학식 1로 표시되는 알콕시 실란 및 하기 화학식 2로 표시되는 알콕시 금속 화합물을 포함하는 화합물들에 의해 화학 결합된 실록산 수지를 포함하는 하드 코팅용 수지 조성물:Resin composition for hard coating comprising a siloxane resin chemically bonded by alkoxy silane represented by the formula (1) and alkoxy metal compound represented by the formula (2):
    <화학식 1> R1 nSi(OR2)4-n <Formula 1> R 1 n Si (OR 2 ) 4-n
    <화학식 2> M(OR3)m<Formula 2> M (OR 3 ) m
    상기 화학식 1 내지 2에서 R1은 지환식 에폭시기를 포함하는 선형의 C1 내지 C3의 알킬기이고, R2는 선형 또는 분지형 C1 내지 C4의 알킬기이며, R3는 선형 또는 분지형의 C1 내지 C4의 알킬기이다. 또한, M은 알루미늄, 티타늄 및 아연으로 이루어진 그룹으로부터 선택된 1종 이상의 금속원소이며, n은 1 내지 3의 정수, m은 2 내지 4의 정수이다.In Formulas 1 to 2, R 1 is a linear C 1 to C 3 alkyl group including an alicyclic epoxy group, R 2 is a linear or branched C 1 to C 4 alkyl group, R 3 is a linear or branched An alkyl group of C 1 to C 4 . In addition, M is at least one metal element selected from the group consisting of aluminum, titanium and zinc, n is an integer of 1 to 3, m is an integer of 2 to 4.
  2. 제 1 항에 있어서, 상기 화학식 1로 표시되는 알콕시 실란은 2-(3,4-에폭시사이클로헥실)에틸트리메톡시실란, 2-(3,4-에폭시사이클로헥실)에틸트리에톡시실란 및 2-(3,4-에폭시사이클로헥실)에틸트리프로폭시실란 중 선택된 적어도 하나인 것임을 특징으로 하는 하드 코팅용 수지 조성물. The alkoxy silane represented by the formula (1) is 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltriethoxysilane and 2 -(3,4-epoxycyclohexyl) ethyltripropoxysilane is at least one selected from a resin composition for hard coating.
  3. 제 1 항에 있어서, 상기 알콕시 금속 화합물은 상기 알콕시 실란 및 상기 알콕시 금속 화합물 총 몰에 대해 0.2몰% 내지 5.0몰%로 포함되는 것임을 특징으로 하는 하드 코팅용 수지 조성물.The resin composition for hard coating of claim 1, wherein the alkoxy metal compound is included in an amount of 0.2 mol% to 5.0 mol% based on the total moles of the alkoxy silane and the alkoxy metal compound.
  4. 제 3 항에 있어서, 상기 실록산 수지는 중량평균 분자량이 5,000 내지 22,000 이고, 다분산 지수(PDI)는 1.5 내지 3.1인 것임을 특징으로 하는 하드 코팅용 수지 조성물.The resin composition of claim 3, wherein the siloxane resin has a weight average molecular weight of 5,000 to 22,000, and a polydispersity index (PDI) of 1.5 to 3.1.
  5. 제 3 항에 있어서, 상기 하드 코팅용 수지 조성물은 상기 실록산 수지를 제 1 성분으로 포함하고, 에폭시 수지 및 아크릴계 수지 중 적어도 하나를 제 2 성분으로 더 포함하는 것임을 특징으로 하는 하드 코팅용 수지 조성물.The resin composition for hard coating according to claim 3, wherein the resin composition for hard coating comprises the siloxane resin as a first component, and further comprises at least one of an epoxy resin and an acrylic resin as a second component.
  6. 제 5 항에 있어서, 상기 제 1 성분 및 제 2 성분은 9:1 내지 6:4의 중량비율로 혼합되는 것임을 특징으로 하는 하드 코팅용 수지 조성물.The resin composition for hard coating according to claim 5, wherein the first component and the second component are mixed in a weight ratio of 9: 1 to 6: 4.
  7. 제 5 항에 있어서, 상기 제 2 성분은 에폭시기, 옥세탄기, 아크릴레이트기, 메타크릴레이트기, 우레탄 아크릴레이트기 및 에틸렌옥사이드(EO) 부가형 아크릴레이트기 중 적어도 하나의 작용기를 포함하는 모노머 또는 올리고머인 것임을 특징으로 하는 하드 코팅용 수지 조성물.The monomer of claim 5, wherein the second component comprises at least one functional group selected from an epoxy group, an oxetane group, an acrylate group, a methacrylate group, a urethane acrylate group, and an ethylene oxide (EO) addition type acrylate group. It is an oligomer, The resin composition for hard coatings characterized by the above-mentioned.
  8. 제 1 항에 있어서, 상기 실록산 수지는 하기 화학식 3으로 표시되는 알콕시 실란을 더 포함하여 화학 결합을 이루고 있는 것임을 특징으로 하는 하드 코팅용 수지 조성물.The resin composition for hard coating according to claim 1, wherein the siloxane resin further comprises an alkoxy silane represented by the following formula (3) to form a chemical bond.
    <화학식 3> Si(OR3)4 <Formula 3> Si (OR 3 ) 4
    상기 화학식 3에서 R3는 C1 내지 C4의 선형 또는 분지형 알킬기이다.In Formula 3, R 3 is a C 1 to C 4 linear or branched alkyl group.
  9. 제 8 항에 있어서, 상기 화학식 1로 표시되는 알콕시 실란은 2-(3,4-에폭시사이클로헥실)에틸트리메톡시실란, 2-(3,4-에폭시사이클로헥실)에틸트리에톡시실란 및 2-(3,4-에폭시사이클로헥실)에틸트리프로폭시실란 중 선택된 적어도 하나인 것임을 특징으로 하는 하드 코팅용 수지 조성물. The alkoxy silane represented by Formula 1 is 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltriethoxysilane and -(3,4-epoxycyclohexyl) ethyltripropoxysilane is at least one selected from a resin composition for hard coating.
  10. 제 8 항에 있어서, 상기 화학식 1로 표시되는 알콕시 실란 및 화학식 3로 표시되는 알콕시 실란은 몰 비율이 99:1 내지 20:80이고,The alkoxy silane represented by Formula 1 and the alkoxy silane represented by Formula 3 have a molar ratio of 99: 1 to 20:80,
    이때, 상기 화학식 2으로 표시되는 알콕시 금속 화합물은 상기 화학식 1로 표시되는 알콕시 실란 및 화학식 3로 표시되는 알콕시 실란의 합 총 100몰에 대해 0.2몰% 내지 5.0몰% 포함되는 것임을 특징으로 하는 하드 코팅용 수지 조성물.At this time, the alkoxy metal compound represented by the formula (2) is a hard coating, characterized in that containing 0.2 mol% to 5.0 mol% based on a total of 100 mol of the alkoxy silane represented by the formula (1) and the alkoxy silane represented by the formula (3) Resin composition.
  11. 제 10 항에 있어서, 상기 상기 화학식 1로 표시되는 알콕시 실란 및 화학식 3으로 표시되는 알콕시 실란은 몰 비율이 85:15 내지 45:55인 것임을 특징으로 하는 하드 코팅용 수지 조성물.The resin composition for hard coating of claim 10, wherein the alkoxy silane represented by Chemical Formula 1 and the alkoxy silane represented by Chemical Formula 3 have a molar ratio of 85:15 to 45:55.
  12. 제 8 항에 있어서, 상기 실록산 수지는 중량평균 분자량이 3,000 내지 50,000 이고, 다분산 지수(PDI)가 1.5 내지 7.0인 것임을 특징으로 하는 하드 코팅용 수지 조성물.The resin composition for hard coating according to claim 8, wherein the siloxane resin has a weight average molecular weight of 3,000 to 50,000 and a polydispersity index (PDI) of 1.5 to 7.0.
  13. 제 8 항에 있어서, 상기 하드 코팅용 수지 조성물은 상기 실록산 수지를 제 1 성분으로 포함하고, 에폭시 수지 및 아크릴계 수지 중 적어도 하나를 제 2 성분으로 더 포함하는 것임을 특징으로 하는 하드 코팅용 수지 조성물.The resin composition for hard coating according to claim 8, wherein the resin composition for hard coating comprises the siloxane resin as a first component, and further comprises at least one of an epoxy resin and an acrylic resin as a second component.
  14. 제 13 항에 있어서, 상기 제 1 성분 및 제 2 성분은 9:1 내지 6:4의 중량비율로 혼합되는 것임을 특징으로 하는 하드 코팅용 수지 조성물.The resin composition for hard coating according to claim 13, wherein the first component and the second component are mixed in a weight ratio of 9: 1 to 6: 4.
  15. 제 13 항에 있어서, 상기 제 2 성분은 에폭시기, 옥세탄기, 아크릴레이트기, 메타크릴레이트기, 우레탄 아크릴레이트기 및 에틸렌옥사이드(EO) 부가형 아크릴레이트기 중 적어도 하나의 작용기를 포함하는 모노머 또는 올리고머인 것임을 특징으로 하는 하드 코팅용 수지 조성물.The monomer of claim 13, wherein the second component comprises at least one functional group selected from an epoxy group, an oxetane group, an acrylate group, a methacrylate group, a urethane acrylate group, and an ethylene oxide (EO) addition type acrylate group. It is an oligomer, The resin composition for hard coatings characterized by the above-mentioned.
  16. 제 1 항 내지 제 15 항 중 어느 한 항에 있어서, 상기 하드 코팅용 수지 조성물은 유기용매, 광개시제, 열개시제, 산화방지제, 레벨링제 및 코팅조제로 이루어진 군에서 선택된 1종 이상의 첨가물을 더 포함하는 것임을 특징으로 하는 하드 코팅용 수지 조성물.The resin composition for hard coating according to any one of claims 1 to 15, further comprising at least one additive selected from the group consisting of an organic solvent, a photoinitiator, a thermal initiator, an antioxidant, a leveling agent and a coating aid. Hard coating resin composition, characterized in that.
  17. 기재필름 및 상기 기재필름의 적어도 일면에 상기 제 1 항 내지 제 4 항 중 어느 한 항의 하드 코팅용 수지 조성물을 경화하여 형성한 하드 코팅층을 포함하는 하드 코팅 필름.Hard coating film comprising a base film and a hard coating layer formed by curing the resin composition for hard coating of any one of claims 1 to 4 on at least one surface of the base film.
  18. 제 17 항에 있어서, 상기 하드 코팅 필름은 코팅층이 형성된 방향으로의 표면 경도가 ASTM D3363 측정 기준, 4H 내지 9H인 것임을 특징으로 하는 하드 코팅 필름.18. The hard coat film of claim 17, wherein the hard coat film has a surface hardness in the direction in which the coating layer is formed, based on ASTM D3363, 4H to 9H.
  19. 기재필름 및 상기 기재필름의 적어도 일면에 상기 제 5 항 내지 제 7 항 중 어느 한 항의 하드 코팅용 수지 조성물을 경화하여 형성한 하드 코팅층을 포함하는 하드 코팅 필름.A hard coating film comprising a base film and a hard coating layer formed on at least one surface of the base film by curing the resin composition for hard coating according to any one of claims 5 to 7.
  20. 제 19 항에 있어서, 상기 하드 코팅 필름은 코팅층이 형성된 방향으로의 표면 경도가 ASTM D3363 측정 기준, 4H 내지 9H인 것임을 특징으로 하는 하드 코팅 필름.20. The hard coating film of claim 19, wherein the hard coating film has a surface hardness in the direction in which the coating layer is formed, based on ASTM D3363 measurement standards, 4H to 9H.
  21. 제 19 항에 있어서, 상기 하드 코팅 필름은 코팅층이 형성된 반대 방향으로 굴곡 형성 시 코팅층에 크랙이 발생되지 않는 필름 최소 곡률 반지름이 2 내지 6mm인 것임을 특징으로 하는 하드 코팅 필름.The hard coating film of claim 19, wherein the hard coating film has a minimum radius of curvature of 2 to 6 mm in which a crack is not generated in the coating layer when bending is formed in an opposite direction in which the coating layer is formed.
  22. 기재필름 및 상기 기재필름의 적어도 일면에 상기 제 8 항 내지 제 12 항 중 어느 한 항의 하드 코팅용 수지 조성물을 경화하여 형성한 하드 코팅층을 포함하는 하드 코팅 필름.Hard coating film comprising a base film and a hard coating layer formed by curing the resin composition for hard coating of any one of claims 8 to 12 on at least one surface of the base film.
  23. 제 22 항에 있어서, 상기 하드 코팅 필름은 코팅층이 형성된 방향으로의 표면 경도가 ASTM D3363 측정 기준, 4H 내지 9H인 것임을 특징으로 하는 하드 코팅 필름.The hard coating film of claim 22, wherein the hard coating film has a surface hardness in the direction in which the coating layer is formed, based on ASTM D3363 measurement standards, 4H to 9H.
  24. 제 22 항에 있어서, 상기 하드 코팅 필름은 100mm X 100 mm로 잘라 25℃ 및 50% RH(상대습도) 조건에서 24시간 방치 후, 평면에 위치 시켰을 때 각 모서리의 일변이 평면으로부터 이격되는 거리의 최대 값이 30mm이하인 것임을 특징으로 하는 하드 코팅 필름.23. The method of claim 22, wherein the hard coating film is cut into 100mm X 100mm and left for 24 hours at 25 ℃ and 50% RH (relative humidity) conditions, when placed in the plane of the distance that one side of each corner is separated from the plane Hard coating film, characterized in that the maximum value is 30mm or less.
  25. 기재필름 및 상기 기재필름의 적어도 일면에 상기 제 13 항 내지 제 15 항 중 어느 한 항의 하드 코팅용 수지 조성물을 경화하여 형성한 하드 코팅층을 포함하는 하드 코팅 필름.Hard coating film comprising a base film and a hard coating layer formed by curing the resin composition for hard coating of any one of claims 13 to 15 on at least one surface of the base film.
  26. 제 25 항에 있어서, 상기 하드 코팅 필름은 코팅층이 형성된 방향으로의 표면 경도가 ASTM D3363 측정 기준, 4H 내지 9H인 것임을 특징으로 하는 하드 코팅 필름.26. The hard coating film of claim 25, wherein the hard coating film has a surface hardness in the direction in which the coating layer is formed, based on ASTM D3363 measurement standards, 4H to 9H.
  27. 제 25 항에 있어서, 상기 하드 코팅 필름은 100mm X 100 mm로 잘라 25℃ 및 50% RH(상대습도) 조건에서 24시간 방치 후, 평면에 위치 시켰을 때 각 모서리의 일변이 평면으로부터 이격되는 거리의 최대 값이 30mm이하인 것임을 특징으로 하는 하드 코팅 필름.26. The method of claim 25, wherein the hard coating film is cut into 100mm X 100mm and left for 24 hours at 25 ℃ and 50% RH (relative humidity) conditions, when placed in the plane of the distance that one side of each corner is separated from the plane Hard coating film, characterized in that the maximum value is 30mm or less.
  28. 제 25 항에 있어서, 상기 하드 코팅 필름은 코팅층이 형성된 반대 방향으로 굴곡 형성 시 코팅층에 크랙이 발생되지 않는 필름 최소 곡률 반지름이 2 내지 6mm인 것임을 특징으로 하는 하드 코팅 필름.26. The hard coating film of claim 25, wherein the hard coating film has a minimum radius of curvature of 2 to 6 mm in which a crack is not generated in the coating layer when bending is formed in an opposite direction in which the coating layer is formed.
  29. 기재필름 및 상기 기재필름의 적어도 일면에 상기 제 16 항의 하드 코팅용 수지 조성물을 경화하여 형성한 하드 코팅층을 포함하는 하드 코팅 필름.Hard coating film comprising a base film and a hard coating layer formed by curing the resin composition for hard coating of claim 16 on at least one surface of the base film.
PCT/KR2015/014594 2014-12-31 2015-12-31 Resin composition for hard coating, and hard-coating film comprising cured form of same as coating layer WO2016108676A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US15/540,874 US20180010012A1 (en) 2014-12-31 2015-12-31 Resin composition for hard coating, and hard-coating film comprising cured form of same as coating layer
EP15875770.8A EP3241875B1 (en) 2014-12-31 2015-12-31 Resin composition for hard coating, and hard-coating film comprising cured form of same as coating layer
EP19193636.8A EP3591017B1 (en) 2014-12-31 2015-12-31 Resin composition for hard coating, and hard-coating film comprising cured form of same as coating layer
JP2017535370A JP2018506617A (en) 2014-12-31 2015-12-31 Hard coating resin composition and hard coating film containing cured product thereof as coating layer
CN201580075404.XA CN107207906B (en) 2014-12-31 2015-12-31 Resin composition for hard coat layer and hard coat film comprising cured form thereof as coating layer
ES15875770T ES2791040T3 (en) 2014-12-31 2015-12-31 Hardcoat resin composition and hardcoat film comprising a cured form thereof as a cover layer

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
KR10-2014-0196056 2014-12-31
KR20140196056 2014-12-31
KR10-2015-0190456 2015-12-30
KR1020150190471A KR101967147B1 (en) 2015-12-30 2015-12-30 Composition For Hard Coating and Hard Coating film Including Cured Product Of The Same As The Coating Layer
KR10-2015-0190464 2015-12-30
KR10-2015-0190471 2015-12-30
KR1020150190464A KR101942006B1 (en) 2015-12-30 2015-12-30 Composition For Hard Coating and Hard Coating Film Including Cured Product Of The Same As The Coating Layer
KR1020150190456A KR101967146B1 (en) 2014-12-31 2015-12-30 Composition For Hard Coating and Hard Coating Film Including Cured Product Of The Same As The Coating Layer

Publications (1)

Publication Number Publication Date
WO2016108676A1 true WO2016108676A1 (en) 2016-07-07

Family

ID=56284717

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/014594 WO2016108676A1 (en) 2014-12-31 2015-12-31 Resin composition for hard coating, and hard-coating film comprising cured form of same as coating layer

Country Status (1)

Country Link
WO (1) WO2016108676A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180072265A (en) * 2016-12-21 2018-06-29 코오롱인더스트리 주식회사 Composition For Hard Coating and Hard Coating film Including Cured Product Of The Same As The Coating Layer
CN108864937A (en) * 2017-05-16 2018-11-23 韩国生产技术研究院 Hard composition of resinizing, hard painting sheet material and display device
JP2020519709A (en) * 2017-05-31 2020-07-02 コーロン インダストリーズ インク Coating film containing coating resin composition and cured product thereof as a coating layer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0051966A2 (en) * 1980-11-10 1982-05-19 Dow Corning Corporation Aluminum catalyzed silicon alkoxide-epoxy compositions
JP2005213517A (en) * 2005-04-01 2005-08-11 Shin Etsu Chem Co Ltd Coating agent composition and coated article
JP4615641B2 (en) * 1999-02-15 2011-01-19 品川リフラクトリーズ株式会社 Method for producing coating composition
KR20120098588A (en) * 2009-07-02 2012-09-05 다우 코닝 코포레이션 Methods for preparing polyheterosiloxanes
KR20140004568A (en) * 2012-06-12 2014-01-13 한국과학기술원 Siloxane hard coating resin composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0051966A2 (en) * 1980-11-10 1982-05-19 Dow Corning Corporation Aluminum catalyzed silicon alkoxide-epoxy compositions
JP4615641B2 (en) * 1999-02-15 2011-01-19 品川リフラクトリーズ株式会社 Method for producing coating composition
JP2005213517A (en) * 2005-04-01 2005-08-11 Shin Etsu Chem Co Ltd Coating agent composition and coated article
KR20120098588A (en) * 2009-07-02 2012-09-05 다우 코닝 코포레이션 Methods for preparing polyheterosiloxanes
KR20140004568A (en) * 2012-06-12 2014-01-13 한국과학기술원 Siloxane hard coating resin composition

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180072265A (en) * 2016-12-21 2018-06-29 코오롱인더스트리 주식회사 Composition For Hard Coating and Hard Coating film Including Cured Product Of The Same As The Coating Layer
KR102109345B1 (en) * 2016-12-21 2020-05-28 코오롱인더스트리 주식회사 Composition For Hard Coating and Hard Coating film Including Cured Product Of The Same As The Coating Layer
CN108864937A (en) * 2017-05-16 2018-11-23 韩国生产技术研究院 Hard composition of resinizing, hard painting sheet material and display device
JP2020519709A (en) * 2017-05-31 2020-07-02 コーロン インダストリーズ インク Coating film containing coating resin composition and cured product thereof as a coating layer
US11236251B2 (en) 2017-05-31 2022-02-01 Kolon Industries, Inc. Resin composition for coating, and coating film comprising cured product thereof as coating layer

Similar Documents

Publication Publication Date Title
KR102244400B1 (en) Curable composition and shaped product
WO2020149597A1 (en) Optical laminate
CN107207906B (en) Resin composition for hard coat layer and hard coat film comprising cured form thereof as coating layer
WO2018208049A1 (en) Optical laminate and flexible display comprising same
WO2014123308A1 (en) Polarizing plate and liquid crystal display including same
WO2019240408A1 (en) Siloxane oligomer having organic metal, method for preparation of siloxane oligomer, hard coating composition containing siloxane oligomer, hard coating film, and display device
KR101942006B1 (en) Composition For Hard Coating and Hard Coating Film Including Cured Product Of The Same As The Coating Layer
WO2017039159A1 (en) Low temperature curing composition, cured film formed therefrom, and electronic device having cured film
WO2018159923A1 (en) Window film, window film laminate comprising same and image display device
WO2019093731A1 (en) Photocurable composition and coating layer including cured product thereof
WO2016108676A1 (en) Resin composition for hard coating, and hard-coating film comprising cured form of same as coating layer
WO2020013461A1 (en) Siloxane oligomer having organic metal, method for producing siloxane oligomer, hard coating composition comprising siloxane oligomer, hard coating film and display device
KR102131994B1 (en) Hard coating film
WO2017195927A1 (en) Novel 2,4,6-triaminotriazine-based urethane acrylate compound and preparation method therefor
WO2021060961A1 (en) Optical laminate and flexible display device comprising same
WO2015141899A1 (en) Hard coating liquid composition and polycarbonate glazing using same
WO2020091321A1 (en) Hard-coated laminate
WO2023059146A1 (en) Substrate-less cover window for display device, display device comprising same, and method for manufacturing same
KR20160081848A (en) Composition For Hard Coating and Hard Coating Film Including Cured Product Of The Same As The Coating Layer
WO2020013462A1 (en) Siloxane oligomer having organometal, method for preparing siloxane oligomer, hard coating composition comprising siloxane oligomer, hard coating film, and display apparatus
WO2022139220A1 (en) Optical laminate and flexible display device comprising same
WO2018221980A1 (en) Resin composition for coating, and coating film comprising cured product thereof as coating layer
WO2022108053A1 (en) Cover window for flexible display device, and flexible display device
WO2019039881A1 (en) Coating resin composition and coating film comprising cured article thereof as coating layer
WO2024143872A1 (en) Coating composition containing silsesquioxane polymer, and flexible display film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15875770

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015875770

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15540874

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017535370

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE