WO2016108401A1 - 입자분리농축장치 및 이를 이용한 입자분리농축 및 토출방법 - Google Patents

입자분리농축장치 및 이를 이용한 입자분리농축 및 토출방법 Download PDF

Info

Publication number
WO2016108401A1
WO2016108401A1 PCT/KR2015/010059 KR2015010059W WO2016108401A1 WO 2016108401 A1 WO2016108401 A1 WO 2016108401A1 KR 2015010059 W KR2015010059 W KR 2015010059W WO 2016108401 A1 WO2016108401 A1 WO 2016108401A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
valve
particles
region
particle separation
Prior art date
Application number
PCT/KR2015/010059
Other languages
English (en)
French (fr)
Inventor
김성재
홍종욱
문재석
허건
최지혜
김희찬
채종희
Original Assignee
서울대학교 산학협력단
한양대학교 에리카산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교 산학협력단, 한양대학교 에리카산학협력단 filed Critical 서울대학교 산학협력단
Publication of WO2016108401A1 publication Critical patent/WO2016108401A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L9/00Supporting devices; Holding devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L9/00Supporting devices; Holding devices
    • B01L9/52Supports specially adapted for flat sample carriers, e.g. for plates, slides, chips
    • B01L9/527Supports specially adapted for flat sample carriers, e.g. for plates, slides, chips for microfluidic devices, e.g. used for lab-on-a-chip
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N2001/4038Concentrating samples electric methods, e.g. electromigration, electrophoresis, ionisation

Definitions

  • the present invention relates to a particle separation concentration device and a particle separation concentration and discharge method using the same, and more particularly, a particle separation concentration device for separating particles using a microchannel device having an ion permeable membrane layer and a particle separation concentration using the same. And a discharge method.
  • Particulate matter has a great impact on the human body and the global environment through various forms and pathways.
  • the importance of the industry is increasing with the development of related industries and the growing interest in the environment.
  • Molecules that affect us vary in size and concentration, from measuring the various molecules capable of obtaining biometric information in life fluids to finding low concentrations of environmental substances in the air.
  • Various sensors and reactors have been developed to efficiently measure and analyze them.
  • the sensors and reactors are designed to be operated in a state where they are separated from other materials within a certain concentration range.
  • the sensors and reactors allow stable analysis through a pretreatment process that separates and concentrates particles and molecules to desired levels.
  • the pretreatment process mainly includes separating the material according to the size, density, and charge of the material, and concentrating the concentration of the material within a measurable concentration range.
  • the pretreatment process requires more than a certain level of advanced equipment and skilled personnel.
  • the separation process is generally a temporary separation due to the difference in the mobility of the material.
  • work is minimized to minimize dispersion and diffusion, followed by isolation of isolated molecules. This is because dispersion and diffusion proceed with time according to the process.
  • a method of increasing the concentration before separation and maintaining the concentration after the separation has been proposed.
  • the sensors and reactors are used for the purpose of simply separating and condensing particles larger and smaller than the particle size, and in order to separate and concentrate particles of a specific size, they are used in a multistage form by connecting several devices. There is a problem that the composition is complicated and the time for separating and concentrating the particles increases.
  • the present invention is to solve a number of problems including the above problems, using a particle separation and concentration device and a particle separation concentration and discharge method using the same structure that can easily separate particles using an ion permeable membrane layer. It aims to provide.
  • these problems are illustrative, and the scope of the present invention is not limited thereby.
  • a particle separation and concentration device comprising a first channel; A second channel disposed in parallel with the first channel; An ion permeable membrane layer interposed between the first channel and the second channel to provide a transfer path of ions; A third channel connected with a side of the second channel; And a plurality of valves formed in at least a portion of the second channel and the third channel to control the movement of the fluid passing through the second channel and the third channel.
  • Ion Concentration Polarization ICP occurs in the region adjacent to the second channel and the ion permeable membrane layer by applying an electric field passing through the ion permeable membrane layer and the first channel, thereby separating particles from the fluid. The particles may be moved by the plurality of valves.
  • the plurality of valves includes a first valve, a second valve, a third valve, and a fourth valve, the first valve pressurizing a first region of the third channel such that the fluid inside the second channel is
  • the ion concentration polarization prevents the particles from diffusing into the third channel while separating and concentrating the particles
  • the second valve and the fourth valve are disposed at the front and rear ends of the second region in the extending direction of the second channel.
  • Each of the particles may be disposed to isolate and concentrate the particles
  • the third valve may pressurize the second region of the second channel to discharge the particles isolated through the third channel to the separation reservoir.
  • the first channel may be grounded to be electrically balanced.
  • the second channel and the third channel may include a body in which a bottleneck section is reduced in cross section is enlarged and enlarged in the middle of the third channel.
  • the body may have a shape of at least one of a straight pipe, a round pipe, a triangle pipe and a square pipe.
  • the plurality of valves may be connected to a pneumatic valve and a pressure pump as a flexible micro oil pipe.
  • a particle separation concentration and discharge method includes supplying a fluid to one end of the second channel of the particle separation and concentrating device described above; An ion depletion zone is formed by applying an electric field to the second channel to generate the ion concentration polarization (ICP) at a region adjacent to a branch point between the second channel and the ion permeable membrane layer. Separating the particles from the fluid; First particles and second particles in the region adjacent to the second region and the second region of the second channel by the ion concentration polarization while the first valve pressurizes the first region of the third channel.
  • ICP ion concentration polarization
  • the structure is simple by using a micro-channel device having an ion permeable membrane layer, it is possible to separate and concentrate the particles at low power, economically advantageous particle separation and concentration apparatus Particle separation and concentration using the discharge method can be implemented.
  • the scope of the present invention is not limited by these effects.
  • FIG. 1 is a view schematically showing an ion concentration polarization phenomenon according to an embodiment of the present invention.
  • FIG. 2 is a view schematically showing a particle separation and concentration device according to an embodiment of the present invention.
  • FIG. 3 is a view schematically showing a coupling structure of the particle separation and concentration device shown in FIG.
  • FIG. 4 is a view schematically showing a cross section taken along C1-C2 shown in FIG.
  • FIG. 5 is a view schematically showing the opening and closing of the valve in accordance with the operating sequence of the particle separation concentrating device according to an embodiment of the present invention.
  • FIG. 6 is a view schematically showing various experimental examples of the body of the particle separation and concentration device according to an embodiment of the present invention.
  • first, second, etc. are used herein to describe various members, parts, regions, layers, and / or parts, these members, parts, regions, layers, and / or parts are defined by these terms. It is obvious that not. These terms are only used to distinguish one member, part, region, layer or portion from another region, layer or portion. Thus, the first member, part, region, layer or portion, which will be discussed below, may refer to the second member, component, region, layer or portion without departing from the teachings of the present invention.
  • top or “above” and “bottom” or “bottom” may be used herein to describe the relationship of certain elements to other elements as illustrated in the figures. It may be understood that relative terms are intended to include other directions of the device in addition to the direction depicted in the figures. For example, if the device is turned over in the figures, elements depicted as present on the face of the top of the other elements are oriented on the face of the bottom of the other elements. Thus, the exemplary term “top” may include both “bottom” and “top” directions depending on the particular direction of the figure. If the device faces in the other direction (rotated 90 degrees relative to the other direction), the relative descriptions used herein can be interpreted accordingly.
  • FIG. 1 is a view schematically showing an ion concentration polarization phenomenon according to an embodiment of the present invention.
  • the ion concentration polarization phenomenon is as follows.
  • ICP ion concentration polarization
  • a low ion concentration and a high electric field are distributed in the depletion zone near the ion permeable membrane layer 500, and a relatively low electric field is distributed outside.
  • the molecules and charged particles under the electric field are subjected to both the force (E drag ) and the electrophoresis (F EP ) by the electroosmotic.
  • the points at which the forces are in equilibrium vary depending on the size of the particles and the amount of charge.
  • all particles in the microchannel 200a are concentrated.
  • the equilibrium regions EP1 and EP2 may vary depending on the size of the molecule and the amount of charge.
  • the ion concentration polarization phenomenon is one of the electrochemical transfer phenomena observed around the structure having the nanomembrane.
  • the nanomembrane may be understood as an ion permeable membrane layer 500.
  • the electric double layer overlaps inside the nanomembrane to show single ion permeability. Ions with charges such as the wall charge of the nano-permeable membrane do not pass through the nano-membrane due to diffusion and drift force, and only ions having opposite charges to the wall inversion pass through. appear.
  • the solution when a solution having an arbitrary charge is supplied into the microchannel 200a and a voltage is applied to both ends of the microchannel 200a, the solution has a specific charge due to the force caused by the ion concentration polarization phenomenon due to the ion concentration gradient.
  • the material may be pushed out of the interface of the ICP zone due to the ion concentration polarization phenomenon.
  • the material can be electrically balanced by the force (F drag ) by the electroosmotic force (F EP ) and the electrophoresis (F EP ).
  • F drag the force
  • F EP electroosmotic force
  • F EP electrophoresis
  • FIG. 2 is a view schematically showing a particle separation and concentration device according to an embodiment of the present invention
  • Figure 3 is a view showing a coupling structure of the particle separation and concentration device shown in Figure 2 (b) schematically.
  • the particle separation and concentration device 1000 is a first channel 100, a second channel (parallel with the first channel 100) ( 200), an ion permeable membrane layer 500 interposed between the first channel 100 and the second channel 200 to provide a transfer path of ions, and a third channel 300 connected to a side surface of the second channel 200.
  • a plurality of valves 410 formed in at least a portion of the second channel 200 and the third channel 300 to control the movement of the fluid passing through the second channel 200 and the third channel 300.
  • the first channel 100 may be grounded to be electrically balanced.
  • the fluid can be understood as, for example, any charged solution.
  • the plurality of valves 410, 420, 430, and 440 may include a first valve 410, a second valve 420, a third valve 430, and a fourth valve 440.
  • the first valve 410 separates and concentrates the particles in the second channel 200 by ion concentration polarization while pressurizing the first region of the third channel 300.
  • the fourth valve 440 are disposed at the front and rear ends of the second area in the extending direction of the second channel 200, respectively, and the third valve 430 is the second channel of the second channel 200.
  • the region may be pressurized to be discharged to the separation reservoir through the third channel 300.
  • the second area means an area in which the second channel 200 and the third channel 300 are connected to each other, and the first area is located in the third channel 300 and is adjacent to the second area. It means.
  • a detailed description of the plurality of valves (410, 420, 430, 440) will be described later with reference to FIG.
  • the bottle 250 may be repeatedly formed in the middle of the second channel 200 and the third channel 300, the bottleneck section is reduced and enlarged.
  • the body 250 may have a bottleneck shape of various shapes.
  • Various shapes of the body 250 may have, for example, a shape of at least one of a straight tube, a circular tube, a triangular tube, and a square tube when viewed from the top. A detailed description of the body 250 having the bottleneck section will be described later with reference to FIG. 5.
  • the particle separation and concentrating device 1000 may include an upper layer part 1000a and a lower layer part 1000b.
  • a plurality of valves having a structure capable of blocking an oil pipe located in the lower layer part 1000b by selectively applying pressure may be provided.
  • the plurality of valves may be used to discharge the isolated and separated concentrated particles of the milk pipe.
  • electrodes for applying an electric field are positioned at both ends of the second channel 200, and fluid is contained in the second channel 200.
  • the first channel 100 is disposed in parallel with the second channel 200, and the ion permeable membrane layer 500 is formed as a nanostructure between the first channel 100 and the second channel 200 to form the first channel. 100 and the second channel 200 may be connected.
  • the first channel 100 is grounded to allow current to flow through the ion permeable membrane layer 500.
  • the first channel 100 may be filled with a buffer solution having a different concentration from that of the fluid provided in the second channel 200. This allows the electric field to be adjusted.
  • the second channel 200 has a repeatable rectangular structure, but may be designed in various shapes according to the kind of the conductive liquid and the separation concentration rate.
  • the third channel 300 may be connected to the middle of the second channel 200 to provide a discharge port through which the sample in which the conductive liquid is separated and concentrated is discharged.
  • FIG. 4 is a view schematically showing a cross section taken along C1-C2 shown in FIG.
  • the plurality of valves 410, 420, 430, and 440 may be connected to a pneumatic valve and a pressure pump as microchannels having elasticity. Depending on the size and the amount of charge, the concentrated material can be sprayed and analyzed through the discharge port while being isolated in the microchannel through a pneumatic valve to minimize diffusion and dispersion.
  • the liquid sample 20 may be positioned on the substrate 10.
  • the polydimethylsiloxane polydimethylsolixane, hereinafter referred to as PDMS 30
  • PDMS 30 polydimethylsolixane
  • the PDMS constituting the microchannel as the pressure ⁇ P is varied. 30 may pressurize the sample 20 to isolate the microchannels.
  • the pneumatic valve 410 may perform a function of blocking the outside air so that the ion concentration polarization phenomenon can occur stably.
  • the high concentration of the sample can be effectively isolated so that diffusion or dispersion does not occur in the microchannel that is not subjected to the electric field.
  • it can perform a function of applying a pressure so that the isolated sample can be discharged to the outside.
  • the blue area is an area where separation and concentration of particles occur and the red area is an area of a pneumatic valve that serves to isolate and discharge the particles.
  • FIG. 5 is a view schematically showing the opening and closing of the valve in accordance with the operating sequence of the particle separation concentrating device according to an embodiment of the present invention.
  • the particle separation and concentration method according to an embodiment of the present invention one end of the second channel 200 of the particle separation and concentration apparatus 1000 described above with reference to Figure 2 (a) and (b).
  • Supplying a fluid to the second channel 200 an electric field is applied to both ends of the second channel 200, and ion concentration polarization (ICP) is applied to a region adjacent to a branch point between the second channel 200 and the ion permeable membrane layer 500. ), An ion depletion zone may be formed (ICP zone shown in FIG. 1) to separate the particles.
  • ICP ion concentration polarization
  • FIG. 5 is a photograph shown in the order of opening and closing the valve of the particle separation concentrator
  • Figure 5 (d), (e), (f) is the particle separation
  • the regions of the ink shown in (d), (e), and (f) of FIG. 5 are each channel 200, 300 shown in (a), (b), (c) of FIG. 5 for ease of understanding.
  • the body 250 of FIG. 2 is shown to match the positions of the respective valves 410, 420, and 430, and the body 250 where the fourth valve 440 is located is omitted.
  • the first valve 410 pressurizes the first region of the third channel 300 so that the particles are formed in the second region and the second region of the second channel 200. And separating and concentrating the first particles and the second particles in a region adjacent to the two regions.
  • the second valve 420 and the fourth valve 440 are closed to isolate the first particles to the second region, and to the third valve 430.
  • the method may further include pressurizing the second region of the second channel 200, opening the first valve 410, and discharging the first particles to the separation reservoir.
  • the second particles are discharged to the outside through the other end of the second channel 200 or further circulated in the particle separation concentrator 1000 It may also include.
  • FIG. 6 is a view schematically showing various embodiments of the body of the particle separation and concentration device according to an embodiment of the present invention.
  • Figure 6 (a) is the separation concentration in the body 250 formed of a straight pipe
  • 6 (b) is a separate concentration when the body 250 formed of a straight pipe and the body 250 formed of a triangular pipe is combined
  • Figure 6 (c) is a body 250 formed of a repeating rectangular pipe Separation concentration in.
  • the type of milk duct separating and concentrating the sulfodadamine B dye and the alexa dye can be freely controlled, thereby effectively controlling the ratio of the electric field.
  • the flow rate is drastically slowed in the rectangular structure of the wide area, and the unwanted outflow of particles located in the rectangular structure of the wide area due to the concentration effect of the electric field in the structure of rapidly expanding or contracting rapidly. Since it is possible to minimize the location of the concentrated particles by the ion concentration polarization can be determined in advance.
  • the structure of the pneumatic valve layer can act to block the fluidized bed, it is possible to efficiently separate concentration and isolation through the repeated rectangular structure.
  • the concentration of the sample may be lowered by performing a task of separating a high concentration of the sample, or a high temperature heat or time may be required in the concentration process, thereby affecting the reactivity of the molecule.
  • the conventional method requires a gel that acts as a matrix in the separation process, or a buffer of a different concentration in the concentration process, but the present method does not require additional materials. Separation and concentration occur simultaneously using the distribution of ionic concentration and electric field resulting from ion separation in aqueous solution. Therefore, the process of separating and extracting from a matrix such as gel is unnecessary.
  • a polymer of a specific size with a specific charge amount separated in this way can be selectively discharged to the outside of the device through a valve, and depending on the structure, it is post-processed inside the device or used and analyzed in connection with the equipment used. can do.
  • the concentrator using the conventional ion concentration polarization not only performs the function of concentration but does not perform the separation function. Although some phenomena have been observed, there was no ability to generate and extract them reliably. In addition, ion concentration polarization and other concentration methods that do not rely on the structure has a disadvantage that the concentration is lowered because of the large diffusion and dispersion due to the high concentration gradient when the electric field or other driving principle is removed.
  • the particle separation and concentration device stabilizes the flow of the sample through a repetitive rectangular structure instead of a straight tube, and can isolate the high concentration sample in a state of suppressing diffusion or dispersion through a pneumatic valve. .
  • the particle separation and concentration device is a pre-treatment step of the analysis using a serum-free fetal DNA (Cell-Free Fetal DNA), etc. as a technique for separating, enriching and discharging maternal DNA and fetal DNA It can be utilized. It may open up the possibility of diagnosing fetal genetic disease early in pregnancy.
  • a serum-free fetal DNA Cell-Free Fetal DNA
  • the particle separation and concentration device can be utilized in a new way of free solution electrophoresis.
  • the existing technology of separating DNA by length has a large market of about $ 1.5 billion, but the fundamental method has not changed much except for the optimization of gels and devices.
  • the present method can be achieved more quickly and efficiently because the separation and concentration are performed at the same time.
  • the concentration of various environmental substances that can be measured at the current ppm or ppb level can be lowered from several hundred times to several thousand times.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Clinical Laboratory Science (AREA)
  • Dispersion Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

본 발명은 제 1 채널; 상기 제 1 채널과 나란하게 배치된 제 2 채널; 상기 제 1 채널과 상기 제 2 채널 사이에 개재되어 이온의 전달경로를 제공하는 이온투과막층; 상기 제 2 채널의 측면과 연결된 제 3 채널; 및 상기 제 2 채널 및 상기 제 3 채널의 적어도 일부에 형성되어 상기 제 2 채널 및 상기 제 3 채널을 통과하는 유체의 이동을 제어할 수 있는 복수개의 밸브;를 포함하고, 상기 제 2 채널, 상기 이온투과막층 및 상기 제 1 채널을 관통하는 전기장을 인가하여 상기 제 2 채널 및 상기 이온투과막층에 인접한 부위에 이온농도분극(ICP;Ion Concentration Polarization) 현상이 발생함으로써 상기 유체로부터 입자가 분리되고, 상기 복수개의 밸브에 의해 상기 입자가 이동될 수 있는, 입자분리농축장치 및 이를 이용한 입자분리농축 및 토출방법을 제공한다.

Description

입자분리농축장치 및 이를 이용한 입자분리농축 및 토출방법
본 발명은 입자분리농축장치 및 이를 이용한 입자분리농축 및 토출방법에 관한 것으로서, 더 상세하게는 이온투과막층을 구비한 마이크로 채널 디바이스를 이용하여 입자를 분리하는 입자분리농축장치 및 이를 이용한 입자분리농축 및 토출방법에 관한 것이다.
입자상 물질은 다양한 형태와 경로를 통해 인체와 지구환경에 큰 영향을 주고 있다. 관련 산업의 발전과 환경에 대한 관심의 증대에 따라 그 중요성도 점차 부각되고 있다. 생명 유체 내에서의 생체정보를 획득할 수 있는 다양한 분자를 측정하는 것에서부터, 공기 중에 분포하는 저농도의 환경물질을 발견하는 것까지 우리에게 영향을 끼치는 분자들은 그 크기와 농도가 다양하다. 이를 효율적으로 측정하고 분석하기 위해서 다양한 센서 및 반응기들이 개발되어왔다.
이러한 센서 및 반응기들은 특정 농도 범위 내에서 다른 물질과 분리되어 있는 상태에서 구동될 수 있게 설계되어 있다. 상기 센서 및 반응기들은 입자 및 분자를 원하는 수준으로 분리 및 농축하는 전처리 과정을 통해 안정적인 분석이 이루어질 수 있게 된다. 상기 전처리 과정은 주로 물질의 크기와 밀도, 전하량에 따라 분리하고 물질의 농도를 측정 가능한 농도 범위내로 농축하는 과정을 포함한다. 상기 전처리 과정은 일정 수준 이상의 고급 장비와 숙련된 인력을 필요로 한다.
또한, 분리과정은 일반적으로 물질의 이동도의 차이에 따른 일시적인 분리이다. 높은 분리도를 유지하기 위해 작업시간을 최소한으로 하여 분산 및 확산을 최소화하며, 분리된 분자들을 고립시켜야 하는 과정이 뒤따른다. 이는 공정에 따라 시간이 흐를수록 분산 및 확산이 진행되기 때문이며, 이를 보완해주기 위해 분리 이전에 농도를 높여 분리 이후에도 필요 이상의 농도를 유지할 수 있도록 하는 방법들이 제안되고 있다.
그러나 상기 센서 및 반응기들은 단순히 분리입경보다 큰 입자와 작은 입자를 분리하여 농축하는 용도로 많이 사용되고 있으며, 특정 크기의 입자를 분리하고 농축하기 위해서 여러 장치들을 연결하여 다단 형태로 쓰고 있지만, 이러한 형태는 구성이 복잡하고 입자의 분리 및 농축하는 시간이 증가한다는 문제점이 있다.
본 발명은 상기와 같은 문제점을 포함하여 여러 문제점들을 해결하기 위한 것으로서, 이온투과막층을 이용하여 구조가 간단하고 용이하게 입자를 분리할 수 있는 입자분리농축장치 및 이를 이용한 입자분리농축 및 토출방법을 제공하는 것을 목적으로 한다. 그러나, 이러한 과제는 예시적인 것으로, 이에 의해 본 발명의 범위가 한정되는 것은 아니다.
본 발명의 일 관점에 따르면, 입자분리농축장치가 제공된다. 상기 입자분리농축장치는 제 1 채널; 상기 제 1 채널과 나란하게 배치된 제 2 채널; 상기 제 1 채널과 상기 제 2 채널 사이에 개재되어 이온의 전달경로를 제공하는 이온투과막층; 상기 제 2 채널의 측면과 연결된 제 3 채널; 및 상기 제 2 채널 및 상기 제 3 채널의 적어도 일부에 형성되어 상기 제 2 채널 및 상기 제 3 채널을 통과하는 유체의 이동을 제어할 수 있는 복수개의 밸브;를 포함하고, 상기 제 2 채널, 상기 이온투과막층 및 상기 제 1 채널을 관통하는 전기장을 인가하여 상기 제 2 채널 및 상기 이온투과막층에 인접한 부위에 이온농도분극(ICP;Ion Concentration Polarization) 현상이 발생함으로써 상기 유체로부터 입자가 분리되고, 상기 복수개의 밸브에 의해 상기 입자가 이동될 수 있다.
상기 복수개의 밸브는 제 1 밸브, 제 2 밸브, 제 3 밸브 및 제 4 밸브를 포함하고, 상기 제 1 밸브는 상기 제 3 채널의 제 1 영역을 가압하여 상기 제 2 채널 내부의 상기 유체가 상기 이온농도분극 현상에 의해 상기 입자들이 분리농축시키는 동안 상기 제 3 채널로의 확산을 방지하며, 상기 제 2 밸브 및 상기 제 4 밸브는 상기 제 2 채널의 연장방향으로 제 2 영역의 전단 및 후단에 각각 배치시켜 분리농축된 상기 입자들을 고립시키고, 상기 제 3 밸브는 상기 제 2 채널의 상기 제 2 영역을 가압하여 상기 제 3 채널을 통해 고립된 상기 입자들을 분리저장조로 토출시킬 수 있다.
상기 제 1 채널은 전기적으로 평형을 이루도록 접지될 수 있다.
상기 제 2 채널 및 상기 제 3 채널의 중간에 단면적이 축소 및 확대되는 병목구간이 반복적으로 형성된 몸체를 포함할 수 있다.
상기 몸체는 직선유관, 원형유관, 삼각형유관 및 사각형유관 중 적어도 어느 하나의 형상을 가질 수 있다.
상기 복수개의 밸브는 신축성을 가지는 미세유관으로서 공압밸브 및 압력펌프가 연결될 수 있다.
본 발명의 다른 관점에 따르면, 입자분리농축 및 토출방법이 제공된다. 상기 입자분리농축 및 토출방법은 상술한 입자분리농축장치의 상기 제 2 채널의 일단에 유체를 공급하는 단계; 상기 제 2 채널에 전기장을 인가하여, 상기 제 2 채널과 이온투과막층 사이의 분기점에 인접한 부위에 상기 이온농도분극(ICP;Ion Concentration Polarization) 현상이 발생함으로써 이온공핍영역(ion depletion zone)이 형성되어 상기 유체로부터 상기 입자가 분리되는 단계; 상기 제 1 밸브가 상기 제 3 채널의 제 1 영역을 가압하는 동안 상기 이온농도분극에 의해 상기 입자가 상기 제 2 채널의 제 2 영역 및 상기 제 2 영역과 인접한 영역에서 제 1 입자 및 제 2 입자로 분리농축되는 단계; 상기 제 2 밸브 및 상기 제 4 밸브를 닫아 상기 제 1 입자를 상기 제 2 영역에 고립시키는 단계; 및 상기 제 3 밸브에 의해 상기 제 2 채널의 상기 제 2 영역을 가압하고, 상기 제 1 밸브를 열어 상기 제 1 입자를 상기 분리저장조로 토출시키고, 상기 제 2 입자는 상기 제 2 채널의 타단을 통해서 외부로 배출되거나 상기 입자분리농축장치 내에서 순환되는 단계;를 포함할 수 있다.
상기한 바와 같이 이루어진 본 발명의 일 실시예에 따르면, 이온투과막층을 구비한 미세 채널 디바이스를 사용함으로써 구조가 간단하며, 저전력으로 입자를 분리농축할 수 있으므로, 경제적으로 유리한 입자분리농축장치 및 이를 이용한 입자분리농축 및 토출방법을 구현할 수 있다. 물론 이러한 효과에 의해 본 발명의 범위가 한정되는 것은 아니다.
도 1은 본 발명의 일 실시예에 따른 이온농도분극 현상을 개략적으로 도시한 도면이다.
도 2는 본 발명의 일 실시예에 따른 입자분리농축장치를 개략적으로 도시한 도면이다.
도 3은 도 2의 (b)에 도시된 입자분리농축장치의 결합구조를 개략적으로 도시한 도면이다.
도 4는 도 2의 (a)에 도시된 C1-C2를 따라 절단한 단면을 개략적으로 도시한 도면이다.
도 5는 본 발명의 일 실시예에 따른 입자분리농축장치의 작동순서에 따라 밸브의 개폐를 개략적으로 도시한 도면이다.
도 6은 본 발명의 일 실시예에 따른 입자분리농축장치의 몸체의 다양한 실험예들을 개략적으로 도시한 도면이다.
이하, 첨부된 도면들을 참조하여 본 발명의 실시예를 상세히 설명하면 다음과 같다. 그러나 본 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있는 것으로, 이하의 실시예는 본 발명의 개시가 완전하도록 하며, 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다. 또한 설명의 편의를 위하여 도면에서는 구성 요소들이 그 크기가 과장 또는 축소될 수 있다.
명세서 전체에 걸쳐서, 막, 영역 또는 기판과 같은 하나의 구성요소가 다른 구성요소 "상에", "연결되어", "적층되어" 또는 "커플링되어" 위치한다고 언급할 때는, 상기 하나의 구성요소가 직접적으로 다른 구성요소 "상에", "연결되어", "적층되어" 또는 "커플링되어" 접합하거나, 그 사이에 개재되는 또 다른 구성요소들이 존재할 수 있다고 해석될 수 있다. 반면에, 하나의 구성요소가 다른 구성요소 "직접적으로 상에", "직접 연결되어", 또는 "직접 커플링되어" 위치한다고 언급할 때는, 그 사이에 개재되는 다른 구성요소들이 존재하지 않는다고 해석된다. 동일한 부호는 동일한 요소를 지칭한다. 본 명세서에서 사용된 바와 같이, 용어 "및/또는"은 해당 열거된 항목 중 어느 하나 및 하나 이상의 모든 조합을 포함한다.
본 명세서에서 제 1, 제 2 등의 용어가 다양한 부재, 부품, 영역, 층들 및/또는 부분들을 설명하기 위하여 사용되지만, 이들 부재, 부품, 영역, 층들 및/또는 부분들은 이들 용어에 의해 한정되어서는 안됨은 자명하다. 이들 용어는 하나의 부재, 부품, 영역, 층 또는 부분을 다른 영역, 층 또는 부분과 구별하기 위하여만 사용된다. 따라서, 이하 상술할 제 1 부재, 부품, 영역, 층 또는 부분은 본 발명의 가르침으로부터 벗어나지 않고서도 제 2 부재, 부품, 영역, 층 또는 부분을 지칭할 수 있다.
또한, "상의" 또는 "위의" 및 "하의" 또는 "아래의"와 같은 상대적인 용어들은 도면들에서 도해되는 것처럼 다른 요소들에 대한 어떤 요소들의 관계를 기술하기 위해 여기에서 사용될 수 있다. 상대적 용어들은 도면들에서 묘사되는 방향에 추가하여 소자의 다른 방향들을 포함하는 것을 의도한다고 이해될 수 있다. 예를 들어, 도면들에서 소자가 뒤집어 진다면(turned over), 다른 요소들의 상부의 면 상에 존재하는 것으로 묘사되는 요소들은 상기 다른 요소들의 하부의 면 상에 방향을 가지게 된다. 그러므로, 예로써 든 "상의"라는 용어는, 도면의 특정한 방향에 의존하여 "하의" 및 "상의" 방향 모두를 포함할 수 있다. 소자가 다른 방향으로 향한다면(다른 방향에 대하여 90도 회전), 본 명세서에 사용되는 상대적인 설명들은 이에 따라 해석될 수 있다.
본 명세서에서 사용된 용어는 특정 실시예를 설명하기 위하여 사용되며, 본 발명을 제한하기 위한 것이 아니다. 본 명세서에서 사용된 바와 같이, 단수 형태는 문맥상 다른 경우를 분명히 지적하는 것이 아니라면, 복수의 형태를 포함할 수 있다. 또한, 본 명세서에서 사용되는 경우 "포함한다(comprise)" 및/또는 "포함하는(comprising)"은 언급한 형상들, 숫자, 단계, 동작, 부재, 요소 및/또는 이들 그룹의 존재를 특정하는 것이며, 하나 이상의 다른 형상, 숫자, 동작, 부재, 요소 및/또는 그룹들의 존재 또는 부가를 배제하는 것이 아니다.
이하, 본 발명의 실시예들은 본 발명의 이상적인 실시예들을 개략적으로 도시하는 도면들을 참조하여 설명한다. 도면들에 있어서, 예를 들면, 제조 기술 및/또는 공차(tolerance)에 따라, 도시된 형상의 변형들이 예상될 수 있다. 따라서, 본 발명 사상의 실시예는 본 명세서에 도시된 영역의 특정 형상에 제한된 것으로 해석되어서는 아니 되며, 예를 들면 제조상 초래되는 형상의 변화를 포함하여야 한다.
도 1은 본 발명의 일 실시예에 따른 이온농도분극 현상을 개략적으로 도시한 도면이다.
도 1을 참조하면, 본 발명의 일 실시예에 따른 이온농도분극 현상은 다음과 같다. 이온투과막층(500)을 구비하는 미세채널(200a) 내에 유체를 공급하고, 미세채널(200a)의 양단에 전기장을 인가하면, 이온농도분극(ICP;Ion Concentration Polarization) 현상이 일어나면서 이온투과막층(500) 근처에는 높은 전기장과 낮은 전기장이 특정적으로 분포하게 된다.
즉, 이온투과막층(500) 부근의 공핍층(Depletion Zone)에서는 낮은 이온 농도와 높은 전기장이, 외곽에서는 상대적으로 적은 전기장이 분포한다. 이 때, 전기장 하에서 분자 및 하전 입자들은 전기삼투에 의한 힘(Fdrag)과 전기영동으로 인한 힘(FEP)을 모두 받게 된다.
입자의 크기와 전하량에 따라 그 힘이 평형을 이루는 지점은 모두 다르며, 평형을 이루는 영역(EP1, EP2)에서는 미세채널(200a) 내의 모든 입자는 농축이 된다. 이 때, 평형을 이루는 영역(EP1, EP2)은 분자의 크기와 전하량에 따라 달라질 수 있다.
여기서, 이온농도분극 현상은 나노막을 갖는 구조 주변에서 관찰되는 전기화학 전달 현상 중의 하나이다. 상기 나노막은 이온투과막층(500)으로 이해될 수 있다. 전기 이중층의 두께가 상기 나노막의 크기와 비슷하다고 가정할 때, 상기 나노막 내부에서 전기 이중층이 겹침으로써 단일 이온 투과성을 보인다. 나노투과막의 벽면 전하와 같은 전하를 갖는 이온들은 확산과 표류력에 의해 상기 나노막을 통과하지 못하고 벽면 전화와 반대 전하를 갖는 이온들만이 통과하게 되면서, 상기 나노막 경계면에서는 이온들의 공핍과 과다 현상이 나타난다.
상기 나노막을 통과하지 못한 이온들 사이에서는 강한 전기적인 반발력이 작용하여 양이온과 음이온 모두 영향을 받게 되고, 이에 따라 이온 농도 구배 현상이 나타난다. 이 때, 전하를 띠고 있는 입자나 세포, 액적들도 이온 농도 공핍층 경계면에서 이온들의 전기적 반발력에 영향을 받아 상기 나노막 주변에서 밀려나게 된다.
또한, 대부분의 물질은 전해질과 접촉시 물질 표면에 일정 수준의 전하와 전위를 띠고 있으며, 이에 따라 수용액 상에서는 채널 내부는 양전하와 음전하가 일정한 분포를 갖게 되지만 채널 표면 근처에서는 표면 전위와 반대 극성 이온이 모이게 된다. 이런 표면전하와 그로 인한 반대 극성의 이온이 전기장 하에서 이동을 하면서 유체 및 입자의 흐름을 만들어내는 현상을 전기수력현상이라 한다. 이때 전기삼투로 인한 힘(Fdrag)은 채널 내부의 유체의 흐름에 의한 힘이며, 전기영동으로 인한 힘(FEP)은 채널 내부의 입자의 이동도에 따라 상이해지는 힘이다.
즉, 임의의 전하를 띤 용액이 미세채널(200a) 내에 공급되고, 미세채널(200a)의 양단에 전압을 인가하게 되면, 이온농도 구배로 인한 이온농도분극 현상에 의한 힘에 의해 특정 전하를 가진 물질이 이온농도분극 현상에 의해 이온공핍영역(ICP Zone)의 경계면에서 밀려날 수 있다. 이 때, 상기 물질은 전기삼투에 의한 힘(Fdrag)과 전기영동으로 인한 힘(FEP)에 의해 전기적으로 평형을 이룰 수 있다. 각 물질의 분자량의 크기 및 전하량에 따라 평형을 이루는 지점은 각각 다를 수 있다.
도 2는 본 발명의 일 실시예에 따른 입자분리농축장치를 개략적으로 도시한 도면이고, 도 3은 도 2의 (b)에 도시된 입자분리농축장치의 결합구조를 개략적으로 도시한 도면이다.
먼저, 도 2의 (a)를 참조하면, 본 발명의 일 실시예에 따른 입자분리농축장치(1000)는 제 1 채널(100), 제 1 채널(100)과 나란하게 배치된 제 2 채널(200), 제 1 채널(100)과 제 2 채널(200) 사이에 개재되어 이온의 전달경로를 제공하는 이온투과막층(500), 제 2 채널(200)의 측면과 연결된 제 3 채널(300) 및 제 2 채널(200) 및 제 3 채널(300)의 적어도 일부에 형성되어 제 2 채널(200) 및 제 3 채널(300)을 통과하는 유체의 이동을 제어할 수 있는 복수개의 밸브(410, 420, 430, 440)를 포함할 수 있다. 제 1 채널(100)은 전기적으로 평형을 이루도록 접지될 수 있다. 여기서, 상기 유체는 예를 들어, 임의의 전하를 띤 용액으로 이해될 수 있다.
복수개의 밸브(410, 420, 430, 440)는 제 1 밸브(410), 제 2 밸브(420), 제 3 밸브(430) 및 제 4 밸브(440)를 포함할 수 있다. 제 1 밸브(410)는 제 3 채널(300)의 제 1 영역을 가압하는 동안 이온농도분극으로 제 2 채널(200) 내부의 입자를 분리농축시키며, 분리농축된 상기 입자를 제 2 밸브(420) 및 제 4 밸브(440)는 제 2 채널(200)의 연장방향으로 제 2 영역의 전단 및 후단에 각각 배치시켜 고립시키고, 제 3 밸브(430)는 제 2 채널(200)의 상기 제 2 영역을 가압하여 제 3 채널(300)을 통해 분리저장조로 토출시킬 수 있다. 여기서, 상기 제 2 영역은 제 2 채널(200)과 제 3 채널(300)이 서로 연결된 영역을 뜻하며, 상기 제 1 영역은 제 3 채널(300)에 위치하며, 상기 제 2 영역과 인접한 영역을 뜻한다. 여기서, 복수개의 밸브(410, 420, 430, 440)에 대한 상세한 설명은 도 4를 참조하여 후술한다.
또한, 제 2 채널(200) 및 제 3 채널(300)의 중간에 단면적이 축소 및 확대되는 병목구간이 반복적으로 형성된 몸체(250)를 포함할 수 있다. 몸체(250)는 다양한 형상의 병목형태를 가질 수 있다. 몸체(250)의 다양한 형상은 예를 들어, 상면에서 바라봤을 때, 직선유관, 원형유관, 삼각형유관 및 사각형 유관 중 적어도 어느 하나의 형상을 가질 수 있다. 상기 병목구간을 구비하는 몸체(250)에 대한 상세한 설명은 도 5를 참조하여 후술한다.
한편, 도 2의 (b) 및 도 3의 (a) 내지 (c)를 참조하면, 입자분리농축장치(1000)를 제조할 수 있다. 입자분리농축장치(1000)는 상층부(1000a)와 하층부(1000b)를 포함할 수 있다. 먼저, 상층부(1000a)를 살펴보면, 선택적으로 압력을 가하여 하층부(1000b)에 위치한 유관을 막을 수 있는 구조로 이루어진 복수개의 밸브를 구비할 수 있다. 상기 복수개의 밸브에 의해 유관의 고립 및 분리농축된 입자의 토출이 이루어질 수 있다.
또한, 하층부(1000b)를 살펴보면, 전기장을 인가하기 위한 전극이 제 2 채널(200)의 양단에 위치하고, 제 2 채널(200)에는 유체가 들어 있다. 제 2 채널(200)과 나란하게 제 1 채널(100)이 배치되어 있으며, 제 1 채널(100)과 제 2 채널(200) 사이에 나노구조체로 이온투과막층(500)이 형성되어 제 1 채널(100)과 제 2 채널(200)이 연결될 수 있다. 제 1 채널(100)은 이온투과막층(500)을 통해 전류가 흐를 수 있게 접지되어 있다. 제 1 채널(100)은 제 2 채널(200) 내에 구비된 상기 유체와 다른 농도의 버퍼용액으로 차있을 수 있다. 이를 통해 전기장을 조절할 수 있다.
또한, 제 2 채널(200)은 반복성 있는 사각형 구조가 자리 잡고 있으나, 전도성 액체의 종류 및 분리농축 속도 등에 따라 다양한 형상으로 설계가능하다. 제 2 채널(200)의 중간에 제 3 채널(300)이 연결되어 상기 전도성 액체가 분리 농축된 시료가 토출되는 토출구가 구비될 수 있다.
도 4는 도 2의 (a)에 도시된 C1-C2를 따라 절단한 단면을 개략적으로 도시한 도면이다.
도 4의 (a) 및 (b)를 참조하면, 도면에 도시되지는 않았지만, 복수개의 밸브(410, 420, 430, 440)는 신축성을 가지는 미세채널로서 공압밸브 및 압력펌프가 연결될 수 있다. 크기와 전하량에 따라 분리 농축된 물질들은 공압밸브를 통해 미세채널 내에서 고립되어 확산과 분산을 최소화한 상태에서 토출구를 통해 분사 및 분석될 수 있다.
예를 들면, 도 4의 (a)에 도시된 제 1 밸브(410)는 기판(10) 상에 액상의 샘플(20)이 위치할 수 있다. 이 때, 미세채널을 이루고 있는 폴리디메틸실록산(Polydimethylsolixane, 이하 PDMS(30))는 신축성을 갖고 있는 투명 재질로서, 작은 구조물을 안정적으로 모사할 수 있는 특성을 갖는다.
도 4의 (b)와 같이, 제 1 밸브(410)가 작동할 때, 즉, 공압밸브(제 1 밸브, 410)가 동작하면, 압력(△P)이 가변됨에 따라 미세채널을 구성하는 PDMS(30)가 샘플(20)을 가압하여 미세채널을 고립시킬 수 있다.
즉, 상기 공압밸브(410)는 첫째, 이온농도분극현상이 안정적으로 일어날 수 있도록 외부의 공기와 차단하는 기능을 수행할 수 있다. 둘째, 고농도의 시료가 전기장이 걸려있지 않은 미세채널 내에서 확산이나 분산이 일어나지 않도록 효과적으로 고립시키는 기능을 수행할 수 있다. 마지막으로, 고립된 시료가 외부로 토출될 수 있게 압력을 가하는 기능을 수행할 수 있다.
이하, 본 발명의 이해를 돕기 위해서 상술한 기술적 사상을 적용한 실험예를 설명한다. 다만, 하기의 실험예는 본 발명의 이해를 돕기 위한 것일 뿐, 본 발명이 아래의 실험예에 의해서 한정되는 것은 아니다.
[실험예]
도 2의 (b)를 참조하여 상술한 입자분리농축장치(1000)의 몸체(250)의 다양한 형상에 따른 작동을 확인하기 위하여 두 개의 다른 고분자인 설퍼로다민 B(Sulforhodamine B;SRB) 염료와 알렉사(Alexa 488) 염료를 전기장 하에 노출시켰다. 입자분리농축장치(1000)에서 파란색 영역은 입자의 분리 농축 및 토출이 일어나는 영역이며, 빨간색 영역은 농축된 입자의 고립 및 상기 입자를 토출시키는 역할을 수행하는 공압밸브의 영역이다.
도 5는 본 발명의 일 실시예에 따른 입자분리농축장치의 작동순서에 따라 밸브의 개폐를 개략적으로 도시한 도면이다.
도 5를 참조하면, 본 발명의 일 실시예에 의한 입자분리농축방법은 도 2의 (a) 및 (b)를 참조하여 상술한 입자분리농축장치(1000)의 제 2 채널(200)의 일단에 유체를 공급하는 단계, 제 2 채널(200)의 양단에 전기장을 인가하여, 제 2 채널(200)과 이온투과막층(500) 사이의 분기점에 인접한 부위에 이온농도분극(ICP;Ion Concentration Polarization) 현상이 발생함으로써 이온공핍영역(ion depletion zone)이 형성(도 1에 도시된 ICP Zone)되어 상기 입자가 분리되는 단계를 포함할 수 있다.
여기서, 도 5의 (a), (b), (c)는 입자분리농축장치의 밸브들이 개폐되는 순서대로 도시된 사진이고, 도 5의 (d), (e), (f)는 입자분리농축장치의 각 채널에서 잉크가 분리되는 현상을 분석한 사진이다. 여기서, 도 5의 (d), (e), (f)에 나타난 잉크의 영역은 이해를 쉽게 하기 위하여 도 5의 (a), (b), (c)에 도시된 각 채널(200, 300)의 몸체(250) 중 각 밸브(410, 420, 430)의 위치와 매칭시켜 도시한 것이며, 제 4 밸브(440)가 위치한 곳의 몸체(250)는 생략되어 있다.
도 5의 (a) 및 (d)를 참조하면, 제 1 밸브(410)가 제 3 채널(300)의 제 1 영역을 가압하여 상기 입자가 제 2 채널(200)의 제 2 영역 및 상기 제 2 영역과 인접한 영역에서 제 1 입자 및 제 2 입자로 분리농축되는 단계를 포함할 수 있다.
도 5의 (b) 및 (e)를 참조하면, 제 2 밸브(420) 및 제 4 밸브(440)를 닫아 상기 제 1 입자를 상기 제 2 영역에 고립시키는 단계 및 제 3 밸브(430)에 의해 제 2 채널(200)의 상기 제 2 영역을 가압하고, 제 1 밸브(410)를 열어 상기 제 1 입자를 상기 분리저장조로 토출시키는 단계를 더 포함할 수 있다.
반면에, 도 5의 (c) 및 (f)를 참조하면, 상기 제 2 입자는 제 2 채널(200)의 타단을 통해서 외부로 배출되거나 입자분리농축장치(1000) 내에서 순환되는 단계를 더 포함할 수도 있다.
도 6은 본 발명의 일 실시예에 따른 입자분리농축장치의 몸체의 다양한 실시예들을 개략적으로 도시한 도면이다.
도 6을 참조하면, 본 발명의 일 실시예에 따른 입자분리농축장치의 몸체(250)의 다양한 실시예들로서, 도 6의 (a)는 직선유관으로 형성된 몸체(250)에서의 분리농축이며, 도 6의 (b)는 직선유관으로 형성된 몸체(250)와 삼각형유관으로 형성된 몸체(250)가 결합되었을 경우의 분리농축이고, 도 6의 (c)는 반복하는 사각형 유관으로 형성된 몸체(250)에서의 분리농축이다. 설퍼로다민 B 염료와 알렉사 염료를 분리 농축하는 유관의 형태는 자유로우며, 이를 통해 전기장의 비율을 효율적으로 조절할 수 있다. 또, 다양한 유관 안에서 이온농도분극 현상 이후에 분리 되는 것을 확인할 수 있다. 이 때, 유관의 형태는 직선형, 원형, 삼각형 및 사각형 모두 분리농축이 되는 것을 확인할 수 있었다.
즉, 베르누이의 원리에 따라 넓은 영역의 사각형 구조에서는 직선형에 비해 유속이 급격하게 느려지며, 급격히 확장 또는 급격히 수축하는 구조에서의 전기장의 집중 효과로 인해 넓은 영역의 사각형 구조에 위치한 입자들의 원치 않는 유출을 최소화할 수 있으므로 이온농도분극에 의한 농축된 입자의 위치를 미리 정할 수 있다. 또 공압밸브 층의 구조에 따라 유동층을 막아주는 역할을 할 수 있기 때문에, 반복되는 사각형 구조를 통하여 효율적인 분리농축 및 고립을 할 수 있게 하였다.
상술한 바와 같이, 종래에는 고농도의 샘플을 분리하는 작업을 수행하여 농도가 낮아지거나, 농축과정에 있어서 고온의 열, 또는 시간을 필요로하여 분자의 반응성에 영향을 줄 가능성이 존재하였다.
또한, 종래에는 분리과정에서 매트릭스(matrix) 역할을 하는 겔(gel)을 필요로 하거나, 농축과정에 있어서 다른 농도의 버퍼(buffer)를 필요로 하였으나, 본 방식은 추가적인 물질을 필요로 하지 않고, 수용액상의 이온분리현상의 결과로 나타난 이온 농도 및 전기장의 분포를 이용하여 분리농축이 동시에 일어난다. 따라서 겔 등의 매트릭스에서 분리하고 추출하는 과정이 불필요하다.
또한, 이렇게 분리가 된 특정 전하량을 띤 특정 크기의 고분자는 밸브를 통해 선택적으로 장치 외부로 토출될 수 있으며, 구조에 따라 장치 내부에서 후처리를 하거나 사용화 된 장비와 연계하여 활용 및 분석을 수행할 수 있다.
종래의 이온농도분극현상을 이용한 농축기는 농축의 기능을 수행할 뿐, 분리 기능을 수행하지 않았다. 일부, 분리현상이 관측된 적은 있으나, 이를 안정적으로 생성하고 추출할 수 있는 기능은 없었다. 또, 이온농도분극현상 및 기타 다른 구조물에 의지하지 않는 농축 방법들은 전기장 혹은 기타 구동 원리가 제거되었을 때, 높은 농도구배로 인해 큰 확산 및 분산하기 때문에 농도가 낮아지는 단점이 있었다.
본 발명의 일 실시예에 의한 입자분리농축장치는 직선의 유관 대신에 반복적인 사각형 구조를 통해 시료의 유동을 안정화하고, 공압밸브를 통해 고농도 시료를 확산이나 분산을 억제한 상태에서 고립시킬 수 있다. 또, 분리된 분자 및 입자들이 충분히 추가적인 공정을 거칠 수 있도록 토출하는 기능을 통합적으로 수행할 수 있다.
한편, 본 발명의 일 실시예에 의한 입자분리농축장치는 무혈청 태아 DNA(Cell-Free Fetal DNA) 등을 이용한 분석의 전처리 단계로 산모의 DNA와 태아의 DNA를 분리, 농축하여 토출하는 기술로 활용 가능하다. 임신 초기에 태아의 유전병 유무를 진단할 수 있는 가능성을 열 수 있다.
또한, 본 발명의 일 실시예에 의한 입자분리농축장치는 전기영동(free solution electrophoresis)의 새로운 방식으로 활용할 수 있다. 기존의 DNA를 길이별로 분리하는 기술은 약 15억불의 큰 시장을 갖고 있으나, 겔과 기기의 최적화를 제외한 근본적인 방식은 큰 변화를 갖고 있지 않았다. 그러나 현재와 같은 방식은 분리와 농축이 동시에 이루어지기 때문에 더 빠르게, 고효율로 이루어질 수 있다.
따라서 본 발명의 일 실시예에 의한 입자분리농축장치를 통해 농축을 하게 되면, 현재 ppm 또는 ppb 수준에서 측정가능한 여러 환경 물질의 농도를 수백배에서 수천배 이하로 낮출 수 있다.
본 발명은 도면에 도시된 일 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 당해 기술분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 실시예가 가능하다는 점을 이해할 것이다. 따라서 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다.

Claims (7)

  1. 제 1 채널;
    상기 제 1 채널과 나란하게 배치된 제 2 채널;
    상기 제 1 채널과 상기 제 2 채널 사이에 개재되어 이온의 전달경로를 제공하는 이온투과막층;
    상기 제 2 채널의 측면과 연결된 제 3 채널; 및
    상기 제 2 채널 및 상기 제 3 채널의 적어도 일부에 형성되어 상기 제 2 채널 및 상기 제 3 채널을 통과하는 유체의 이동을 제어할 수 있는 복수개의 밸브;
    를 포함하고,
    상기 제 2 채널, 상기 이온투과막층 및 상기 제 1 채널을 관통하는 전기장을 인가하여 상기 제 2 채널 및 상기 이온투과막층에 인접한 부위에 이온농도분극(ICP;Ion Concentration Polarization) 현상이 발생함으로써 상기 유체로부터 입자가 분리되고, 상기 복수개의 밸브에 의해 상기 입자가 이동될 수 있는,
    입자분리농축장치.
  2. 제 1 항에 있어서,
    상기 복수개의 밸브는 제 1 밸브, 제 2 밸브, 제 3 밸브 및 제 4 밸브를 포함하고,
    상기 제 1 밸브는 상기 제 3 채널의 제 1 영역을 가압하여 상기 제 2 채널 내부의 상기 유체가 상기 이온농도분극 현상에 의해 상기 입자들이 분리농축시키는 동안 상기 제 3 채널로의 확산을 방지하며, 상기 제 2 밸브 및 상기 제 4 밸브는 상기 제 2 채널의 연장방향으로 제 2 영역의 전단 및 후단에 각각 배치시켜 분리농축된 상기 입자들을 고립시키고, 상기 제 3 밸브는 상기 제 2 채널의 상기 제 2 영역을 가압하여 상기 제 3 채널을 통해 고립된 상기 입자들을 분리저장조로 토출시키는, 입자분리농축장치.
  3. 제 1 항에 있어서,
    상기 제 1 채널은 전기적으로 평형을 이루도록 접지된, 입자분리농축장치.
  4. 제 1 항에 있어서,
    상기 제 2 채널 및 상기 제 3 채널의 중간에 단면적이 축소 및 확대되는 병목구간이 반복적으로 형성된 몸체를 포함하는, 입자분리농축장치.
  5. 제 4 항에 있어서,
    상기 몸체는 직선유관, 원형유관, 삼각형유관 및 사각형유관 중 적어도 어느 하나의 형상을 가지는, 입자분리농축장치.
  6. 제 1 항에 있어서,
    상기 복수개의 밸브는 신축성을 가지는 미세유관으로서 공압밸브 및 압력펌프가 연결된, 입자분리농축장치.
  7. 제 1 항 내지 제 6 항 중 적어도 어느 한 항에 의한 상기 입자분리농축장치의 상기 제 2 채널의 일단에 상기 유체를 공급하는 단계;
    상기 제 2 채널에 전기장을 인가하여, 상기 제 2 채널과 이온투과막층 사이의 분기점에 인접한 부위에 상기 이온농도분극(ICP;Ion Concentration Polarization) 현상이 발생함으로써 이온공핍영역(ion depletion zone)이 형성되어 상기 유체로부터 상기 입자가 분리되는 단계;
    상기 제 1 밸브가 상기 제 3 채널의 제 1 영역을 가압하는 동안 상기 이온농도분극에 의해 상기 입자가 상기 제 2 채널의 제 2 영역 및 상기 제 2 영역과 인접한 영역에서 제 1 입자 및 제 2 입자로 분리농축되는 단계;
    상기 제 2 밸브 및 상기 제 4 밸브를 닫아 상기 제 1 입자를 상기 제 2 영역에 고립시키는 단계; 및
    상기 제 3 밸브에 의해 상기 제 2 채널의 상기 제 2 영역을 가압하고, 상기 제 1 밸브를 열어 상기 제 1 입자를 상기 분리저장조로 토출시키고, 상기 제 2 입자는 상기 제 2 채널의 타단을 통해서 외부로 배출되거나 상기 입자분리농축장치 내에서 순환되는 단계;
    를 포함하는,
    입자분리농축 및 토출방법.
PCT/KR2015/010059 2014-12-31 2015-09-24 입자분리농축장치 및 이를 이용한 입자분리농축 및 토출방법 WO2016108401A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140195138A KR101769529B1 (ko) 2014-12-31 2014-12-31 입자분리농축장치 및 이를 이용한 입자분리농축 및 토출방법
KR10-2014-0195138 2014-12-31

Publications (1)

Publication Number Publication Date
WO2016108401A1 true WO2016108401A1 (ko) 2016-07-07

Family

ID=56284517

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/010059 WO2016108401A1 (ko) 2014-12-31 2015-09-24 입자분리농축장치 및 이를 이용한 입자분리농축 및 토출방법

Country Status (2)

Country Link
KR (1) KR101769529B1 (ko)
WO (1) WO2016108401A1 (ko)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101871887B1 (ko) * 2016-12-13 2018-06-27 서울대학교 산학협력단 비대칭 이온 농도 분극 층에 의한 유체 정류 소자 및 능동적 정류 방법
KR101953894B1 (ko) * 2017-01-23 2019-03-04 서울대학교산학협력단 분석 물질의 농축 형태 판단 방법 및 분석 물질의 농축 형태 전환 방법
US10669572B2 (en) 2017-05-31 2020-06-02 University Of Notre Dame Du Lac Ultra-sensitive multi-target lateral flow molecular assay with field-induced precipitation
KR20190006719A (ko) 2017-07-11 2019-01-21 광주과학기술원 진단 키트, 진단 방법 및 진단 장치
KR102033385B1 (ko) * 2018-04-11 2019-10-18 인제대학교 산학협력단 공압 구동 방식의 미세 입자 농축기
WO2020175780A1 (ko) * 2019-02-25 2020-09-03 한양대학교 에리카산학협력단 입자 분리 농축 장치 및 그 동작 방법
KR102297288B1 (ko) * 2019-02-25 2021-09-03 한양대학교 에리카산학협력단 입자 분리 농축 장치 및 그 동작 방법
KR102092230B1 (ko) * 2019-06-25 2020-03-23 광주과학기술원 진단 키트, 진단 방법 및 진단 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070092411A1 (en) * 2005-10-26 2007-04-26 General Electric Company Microfluidic devices and methods of making the same
KR20100087130A (ko) * 2007-09-26 2010-08-03 메사추세츠 인스티튜트 오브 테크놀로지 전기역학적 농축 장치 및 그의 사용 방법
KR20130015717A (ko) * 2011-08-04 2013-02-14 국립대학법인 울산과학기술대학교 산학협력단 단일 채널 농도분극 방법 및 바이오물질 집적장치
KR20130062130A (ko) * 2011-12-02 2013-06-12 서강대학교산학협력단 미세채널 내의 이온선택성 멤브레인 형성방법 및 미세채널 장치
KR20140094725A (ko) * 2013-01-21 2014-07-31 포항공과대학교 산학협력단 혼성 삼각 나노채널을 갖는 이온 투과 장치 및 이의 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070092411A1 (en) * 2005-10-26 2007-04-26 General Electric Company Microfluidic devices and methods of making the same
KR20100087130A (ko) * 2007-09-26 2010-08-03 메사추세츠 인스티튜트 오브 테크놀로지 전기역학적 농축 장치 및 그의 사용 방법
KR20130015717A (ko) * 2011-08-04 2013-02-14 국립대학법인 울산과학기술대학교 산학협력단 단일 채널 농도분극 방법 및 바이오물질 집적장치
KR20130062130A (ko) * 2011-12-02 2013-06-12 서강대학교산학협력단 미세채널 내의 이온선택성 멤브레인 형성방법 및 미세채널 장치
KR20140094725A (ko) * 2013-01-21 2014-07-31 포항공과대학교 산학협력단 혼성 삼각 나노채널을 갖는 이온 투과 장치 및 이의 제조 방법

Also Published As

Publication number Publication date
KR20160081379A (ko) 2016-07-08
KR101769529B1 (ko) 2017-08-21

Similar Documents

Publication Publication Date Title
WO2016108401A1 (ko) 입자분리농축장치 및 이를 이용한 입자분리농축 및 토출방법
US6695009B2 (en) Microfluidic methods, devices and systems for in situ material concentration
CA2302675C (en) Micropump
US8783466B2 (en) Continuous biomolecule separation in a nanofilter
WO2012138035A1 (ko) 마이크로 펌프
US8366899B2 (en) Isoelectric focusing systems and methods
JP2013520298A (ja) 動電学的流体システム
US20170022539A1 (en) Chip for analysis of target substance
US20010035351A1 (en) Cross channel device for serial sample injection
WO2017039080A1 (ko) 샘플 농축 장치 및 이를 이용하여 농축된 샘플 추출 방법
US20080206828A1 (en) Device For Introducing Substance Into Cell, Cell Clamping Device and Flow Path Forming Method
KR20240097974A (ko) 인터페이싱을 위해 공동에 근접한 입자의 유전영동 고정화
US20030057092A1 (en) Microfluidic methods, devices and systems for in situ material concentration
US20120186977A1 (en) Devices and methods for electroosmotic transport of non-polar solvents
Loufakis et al. Focusing of mammalian cells under an ultrahigh pH gradient created by unidirectional electropulsation in a confined microchamber
US20050011761A1 (en) Microfluidic methods, devices and systems for in situ material concentration
WO2020175780A1 (ko) 입자 분리 농축 장치 및 그 동작 방법
KR20240058636A (ko) 미세유체 칩 및 이를 이용한 미세입자 제어방법
CN109304094A (zh) 一种主动式电渗萃取微混合的集成装置及其萃取集成方法
KR102297288B1 (ko) 입자 분리 농축 장치 및 그 동작 방법
WO2011102804A1 (en) An electro-fluidic interface to a multi-well plate
KR101796184B1 (ko) 압력 구동 유동과 자유 흐름 전기 영동을 이용한 입자 분리 장치
Ortiz Microfluidic Platforms for the Separation of Particles
Lam et al. Single-Bacteria Isolation and Selective Extraction Based on Microfluidic Emulsion and Sequential Micro-Sieves
Mawatari et al. Living single cell sampling interface: Cell release and viability test

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15875495

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15875495

Country of ref document: EP

Kind code of ref document: A1