WO2016107932A1 - Method for producing a neutron reflector and neutron reflector produced by such a method - Google Patents

Method for producing a neutron reflector and neutron reflector produced by such a method Download PDF

Info

Publication number
WO2016107932A1
WO2016107932A1 PCT/EP2016/050030 EP2016050030W WO2016107932A1 WO 2016107932 A1 WO2016107932 A1 WO 2016107932A1 EP 2016050030 W EP2016050030 W EP 2016050030W WO 2016107932 A1 WO2016107932 A1 WO 2016107932A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanodiamonds
reflector
envelope
neutron
neutrons
Prior art date
Application number
PCT/EP2016/050030
Other languages
French (fr)
Inventor
Valeri NESVIJEVSKI
Alexei BOSAK
Original Assignee
Nesvijevski Valeri
Bosak Alexei
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nesvijevski Valeri, Bosak Alexei filed Critical Nesvijevski Valeri
Publication of WO2016107932A1 publication Critical patent/WO2016107932A1/en

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/06Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diffraction, refraction or reflection, e.g. monochromators
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/10Scattering devices; Absorbing devices; Ionising radiation filters
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K2201/00Arrangements for handling radiation or particles
    • G21K2201/06Arrangements for handling radiation or particles using diffractive, refractive or reflecting elements
    • G21K2201/068Arrangements for handling radiation or particles using diffractive, refractive or reflecting elements specially adapted for particle beams

Definitions

  • the present invention relates to a method of manufacturing a neutron reflector and a neutron reflector obtained by such a method.
  • Different materials are adapted to reflect neutrons according to the speed of said neutrons.
  • Such nanodiamonds have a size of between a few nanometers and a few tens of nanometers.
  • nanodiamonds are typically, but not exclusively, obtained by detonation of a mixture of explosives and graphite in a low oxygen atmosphere.
  • These nanodiamonds have a core consisting of carbon atoms and a surface envelope comprising various impurities, including hydrogen atoms.
  • a layer of nanodiamonds is trapped in a holding envelope.
  • the hydrogen atoms present in the surface envelope and / or in the water present on the surface of the nanodiamonds, are attributed to a loss of effectiveness of the reflection. Indeed, the hydrogen atoms cause an inelastic neutron scattering ("up-scattering" in the English terminology) so that said neutrons pass through the layer of nanodiamonds instead of reflecting on the particles [1]. Hydrogen atoms are also responsible for nuclear neutron absorption.
  • One solution would be to cool the nanodiamonds to a very low temperature so as to minimize the phenomenon of inelastic neutron scattering on the hydrogen atoms.
  • Another solution would be to replace hydrogen with deuterium, which does not interfere with the reflective properties of nanodiamonds. This would involve making nanodiamonds from explosives or other precursors containing deuterium. However, such a manufacturing process does not currently exist on an industrial scale and would prove very expensive.
  • An object of the invention is to improve the reflection of neutrons in a wide range of speed. Another object of the invention is to design a method of manufacturing a neutron reflector which is easy to implement industrially and is inexpensive.
  • a neutron reflector comprising:
  • said nanodiamonds are obtained by detonation of a mixture of explosives and graphite and substitution, on the surface of said nanodiamonds, of at least a portion of the hydrogen atoms by fluorine atoms.
  • said nanodiamonds are obtained by a laser process and then substitution, on the surface of said nanodiamonds, of at least a portion of the hydrogen atoms by fluorine atoms.
  • the substitution of the hydrogen atoms by the fluorine atoms is obtained by the reaction of the nanodiamonds with fluorine gas.
  • Said reaction is advantageously carried out at a temperature of between 300 and 600 ° C.
  • the encapsulation of nanodiamonds in the envelope is implemented at a temperature between 400 and 500 ° C and under a vacuum between 10 "4 and 10" -3 mbar or under an inert gas
  • Said reflector comprises a wall formed of a nanodiamond powder layer in a casing made of a material that does not absorb neutrons, said nanodiamonds having a fluorine saturated surface.
  • the envelope is advantageously made of a material consisting of atoms chosen from the following elements: O, C, F, Be, D, Zr and Al.
  • the envelope comprises a sheet and / or a plate of polytetrafluoroethylene (PTFE), aluminum or beryllium.
  • PTFE polytetrafluoroethylene
  • the envelope on the inner face of the reflector, intended to be exposed to neutrons, has a thickness between 5 and 30 ⁇ . Moreover, the thickness of the nanodiamond layer is typically between 1 and 1000 mm.
  • the reflector further advantageously comprises a structure for holding the envelope containing the nanodiamonds.
  • the invention also relates to a neutron guide comprising a reflector as described above.
  • the invention also relates to a neutron trap comprising a reflector as described above.
  • the invention also relates to an assembly comprising a neutron source and a reflector as described above surrounding said source.
  • the invention relates to a method for reflecting neutrons having a speed of between 160 and 700 m / s, characterized in that it comprises the provision of a device comprising a reflector as described above and the reflection of said neutrons on the fluorine saturated surface of the nanodiamonds of said reflector.
  • FIG. 1 is a block diagram of an installation comprising a neutron trap
  • FIG. 2 is a sectional view of the wall of the neutron trap
  • FIG. 3 is a sectional view of the neutron trap cover
  • FIG. 4 is a block diagram of an assembly of a neutron source and a neutron reflector
  • FIG. 5 is a curve illustrating the reflection of neutrons as a function of their speed expressed in m / s.
  • the invention applies to the reflection of neutrons in a speed range of between 10 and 700 m / s.
  • the known devices make it possible to reflect the neutrons either in a speed range of less than 160 m / s (curve a, obtained with a coating of DLC (acronym for the Anglo-Saxon term "Diamond- Like Carbon ”)) or in a speed range greater than 700 m / s (curve b, obtained with a graphite wall).
  • Curve c illustrates the reflection obtained with a supermirror.
  • the curve d shows the reflection obtained with a reflector according to the invention and shows that the invention makes it possible to cover a speed range for which no reflection could previously be obtained (namely the range between 160 and 700 m / s). .
  • the nanodiamonds used in the present invention are generally obtained, conventionally, by detonation of a mixture of explosives and graphite in a low oxygen atmosphere, or by a laser process. Reference may be made to Articles [4, 5] which respectively describe each of these methods.
  • Said nanodiamonds are in the form of a powder whose size is between a few nanometers and a few tens of nanometers.
  • the points e represent the neutron reflection obtained with a reflector consisting of a 3 cm layer of such nanodiamonds in a non-neutron absorbing envelope.
  • the reflection is improved with respect to the devices corresponding to the curves a and c, it is limited to neutrons having a speed lower than 160 m / s.
  • said nanodiamonds resulting directly from the abovementioned manufacturing processes are not used, but a fluorination process is applied to them.
  • the powder is exposed to fluorine gas at high temperature (typically between 300 and 600 ° C.) at a pressure of approximately 1 bar.
  • the document [6] describes an example of implementation of such a method of fluorination of nanodiamonds. It will be noted that in this document the fluorination process is an intermediate step of a method of functionalization of the nanodiamonds, the fluorine atoms being intended to be subsequently substituted by functional groups. On the contrary, the present invention uses nanodiamonds resulting preferably directly from the fluorination.
  • the fluorination process makes it possible to substitute the hydrogen atoms with fluorine atoms on the surface without affecting the core composition of the nanodiamonds.
  • the fluorine atoms do not deteriorate the reflective properties of the nanodiamonds.
  • the optical potential of fluorine is slightly positive while that of hydrogen is slightly negative, the reflectivity of the fluorinated nanodiamonds is slightly improved.
  • fluorination makes it possible to eliminate the hydrophilic groups on the surface of nanodiamonds. This therefore decreases the presence of water on the surface of nanodiamonds.
  • fluorination Another advantage of fluorination is that it reduces the concentration of metallic impurities present on the surface of nanodiamonds.
  • these impurities are harmful insofar as, when they are irradiated by neutrons, they become moderately radioactive and therefore require special reprocessing.
  • the surface of the nanodiamonds is saturated with fluorine.
  • the estimation of the fluorine content can be carried out for example by EDX spectroscopy (acronym for the English term “Energy Dispersive X-ray”).
  • nanodiamonds have a surface hydrogen atom content that is at least 50 times lower than the initial content.
  • the estimation of the hydrogen content can be carried out according to the method described in [7].
  • Fluorination does not remove the hydrogen atoms in the core of nanodiamonds, but insofar as these atoms are present in small amounts, they do not interfere with reflective properties.
  • the fluorinated nanodiamonds have a low residual content of metal impurities, so that even if these residual impurities are irradiated, the resulting radioactivity is low enough not to require specific reprocessing.
  • the fluorinated nanodiamonds described above are used so as to form a layer contained in an envelope and this layer is put in place in a structure which makes it possible to maintain the layer in the desired position.
  • the thickness of the nanodiamond layer is as great as possible to improve the reflectivity, the layer to be thicker as the neutron velocity is large.
  • said thickness is between 1 and 1000 mm.
  • the casing has sufficient mechanical rigidity to give the reflector the desired shape.
  • the envelope is made of a material that does not absorb neutrons, that is to say a material containing only atoms selected from the following elements: O, C, F, Be, D, Zr and Al.
  • the envelope may be made of polytetrafluoroethylene (PTFE), aluminum or beryllium.
  • PTFE polytetrafluoroethylene
  • the thickness of the envelope is preferably the finest possible while having a suitable mechanical stability. Typically, the envelope has a thickness of between 5 and 30 ⁇ .
  • the conditioning of the nanodiamonds in the envelope is carried out under particular temperature and pressure conditions to preserve the reflection properties of the layer.
  • the presence of water, which would absorb the neutrons should be avoided.
  • the introduction of the nanodiamonds in the envelope is advantageously carried out at a temperature of the order of 400 to 500 ° C, under vacuum (of the order of 10 "4 to 10 " 3 mbar) or presence of an inert gas (or gas mixture).
  • One application of the invention relates to a neutron trap comprising a reflector as described above.
  • Figure 1 is a block diagram of an installation comprising such a neutron trap.
  • the trap is typically in the form of a cavity delimited by a wall provided with an opening 10 through which neutrons are introduced into the trap.
  • the opening has a surface of a few cm 2 .
  • the trap has a cylindrical shape and the opening is arranged in the circumferential wall of the trap.
  • each wall comprises a layer 1 1 c of fluorinated nanodiamonds contained in an envelope 11a, 11b and held in a structure defining the shape of the trap.
  • the envelope January 1 comprises for example an aluminum plate having a thickness of about 1 mm, this plate essentially fulfilling a mechanical support function.
  • the envelope 1 1b comprises for example an aluminum foil having a thickness of the order of 5 to 30 ⁇ .
  • the thickness of the layer 1 1 c of fluorinated nanodiamonds is between 1 and 1000 cm depending on the speed of the neutrons.
  • the trap 1 further comprises a lid 12, also comprising a reflector as described above.
  • the cover 12 comprises a layer 12c of fluorinated nanodiamonds contained in an envelope 12a, 12b defining the shape of the trap.
  • the envelope 12a comprises for example an aluminum plate having a thickness of the order of 1 mm.
  • the envelope 12b comprises for example an aluminum foil having a thickness of the order of 5 to 30 ⁇ .
  • the thickness of the layer 12c of fluorinated nanodiamonds is between 1 and 1000 cm depending on the speed of the neutrons.
  • the cover 12 has an aluminum window 120 through which the neutrons can exit the trap 1.
  • the trap 1 is arranged in a vacuum chamber 2.
  • the enclosure comprises, facing the window 10, a quartz window 20 through which the neutrons can enter the chamber 2.
  • a neutron source (not shown) emits a beam 3 of neutrons having a diameter of about 1 cm towards the window 20 and the opening 10.
  • the installation comprises a speed selector 4 and a valve 5. These devices are known as such and will not be described in detail.
  • the neutrons introduced into the trap 1 undergo multiple reflections by the nanodiamonds contained in the walls of the trap and the lid.
  • the residual content in Hydrogen atoms on the surface of nanodiamonds provide a much higher reflectivity than known traps.
  • the installation comprises a detector 6 for counting the number of neutrons.
  • Another application of the invention relates to a neutron guide comprising a reflector as described above.
  • FIG. 4 Another application of the invention, illustrated schematically in FIG. 4, concerns an assembly formed of a source 7 of neutrons surrounded by a reflector 8 as described above.
  • the wall 1 1 of the reflector being similar to that of the trap 1 described with reference to Figure 1, it is not described again here.
  • the reflector 8 comprises a window 1 10 for example made of aluminum to allow the output of neutrons.
  • the source and the associated trap can take different forms depending on the speed of the neutrons emitted.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

The invention relates to a method for producing a neutron reflector, comprising: producing a nanodiamond powder, said nanodiamonds having a surface saturated with fluorine, and forming a wall (11, 12) of the reflector encapsulating a layer (11c, 12c) of said nanodiamonds in an envelope (11a, 11b; 12a, 12b) made of a material that does not absorb the neutrons. The invention also relates to a neutron reflector comprising a wall (11, 12) formed from a layer (11c, 12c) of nanodiamond powder in an envelope (11a, 11b; 12a, 12b) that does not absorb the neutrons, said nanodiamonds having a surface saturated with fluorine.

Description

PROCEDE DE FABRICATION D'UN REFLECTEUR DE NEUTRONS  METHOD FOR MANUFACTURING A NEUTRON REFLECTOR
ET REFLECTEUR DE NEUTRONS OBTENU PAR UN TEL PROCEDE  AND NEUTRON REFLECTOR OBTAINED BY SUCH A METHOD
DOMAINE DE L'INVENTION FIELD OF THE INVENTION
La présente invention concerne un procédé de fabrication d'un réflecteur de neutrons et un réflecteur de neutrons obtenu par un tel procédé.  The present invention relates to a method of manufacturing a neutron reflector and a neutron reflector obtained by such a method.
ARRIERE PLAN DE L'INVENTION BACKGROUND OF THE INVENTION
Différents matériaux sont adaptés pour réfléchir des neutrons selon la vitesse desdits neutrons.  Different materials are adapted to reflect neutrons according to the speed of said neutrons.
Pour des neutrons ayant une vitesse comprise entre 10 et 160 m/s, des publications en mis en évidence les propriétés réfléchissantes des nanodiamants [1]-[3].  For neutrons with a velocity between 10 and 160 m / s, publications highlighted the reflective properties of nanodiamonds [1] - [3].
De tels nanodiamants présentent une taille comprise entre quelques nanomètres et quelques dizaines de nanomètres.  Such nanodiamonds have a size of between a few nanometers and a few tens of nanometers.
Ces nanodiamants sont typiquement, mais non exclusivement, obtenus par détonation d'un mélange d'explosifs et de graphite dans une atmosphère pauvre en oxygène.  These nanodiamonds are typically, but not exclusively, obtained by detonation of a mixture of explosives and graphite in a low oxygen atmosphere.
Ces nanodiamants présentent un cœur constitué d'atomes de carbone et d'une enveloppe superficielle comprenant diverses impuretés, dont des atomes d'hydrogène.  These nanodiamonds have a core consisting of carbon atoms and a surface envelope comprising various impurities, including hydrogen atoms.
Pour former un réflecteur de neutrons, on emprisonne une couche de nanodiamants dans une enveloppe de maintien.  To form a neutron reflector, a layer of nanodiamonds is trapped in a holding envelope.
Or, on attribue aux atomes d'hydrogène, présents dans l'enveloppe superficielle et/ou dans de l'eau présente à la surface des nanodiamants, une perte d'efficacité de la réflexion. En effet, les atomes d'hydrogène provoquent une diffusion inélastique des neutrons (« up-scattering » selon la terminologie anglo-saxonne) de sorte que lesdits neutrons traversent la couche de nanodiamants au lieu de se réfléchir sur les particules [1 ]. Les atomes d'hydrogène sont également responsables d'une absorption nucléaire des neutrons.  However, the hydrogen atoms, present in the surface envelope and / or in the water present on the surface of the nanodiamonds, are attributed to a loss of effectiveness of the reflection. Indeed, the hydrogen atoms cause an inelastic neutron scattering ("up-scattering" in the English terminology) so that said neutrons pass through the layer of nanodiamonds instead of reflecting on the particles [1]. Hydrogen atoms are also responsible for nuclear neutron absorption.
Une solution serait de refroidir les nanodiamants à une température très basse de sorte à minimiser le phénomène de diffusion inélastique des neutrons sur les atomes d'hydrogène.  One solution would be to cool the nanodiamonds to a very low temperature so as to minimize the phenomenon of inelastic neutron scattering on the hydrogen atoms.
Cependant, une telle solution rend plus complexe la mise en œuvre du réflecteur de neutrons. Par ailleurs, elle ne permet pas de remédier au phénomène d'absorption nucléaire.  However, such a solution makes the implementation of the neutron reflector more complex. Moreover, it does not make it possible to remedy the phenomenon of nuclear absorption.
Une autre solution serait de remplacer l'hydrogène par du deutérium, celui-ci ne nuisant pas aux propriétés réfléchissantes des nanodiamants. Ceci supposerait de fabriquer les nanodiamants à partir d'explosifs ou d'autres précurseurs contenant du deutérium. Cependant, un tel procédé de fabrication n'existe pas actuellement à l'échelle industrielle et se révélerait très onéreux. Another solution would be to replace hydrogen with deuterium, which does not interfere with the reflective properties of nanodiamonds. This would involve making nanodiamonds from explosives or other precursors containing deuterium. However, such a manufacturing process does not currently exist on an industrial scale and would prove very expensive.
BREVE DESCRIPTION DE L'INVENTION BRIEF DESCRIPTION OF THE INVENTION
Un but de l'invention est d'améliorer la réflexion des neutrons dans une large gamme de vitesse. Un autre but de l'invention est de concevoir un procédé de fabrication d'un réflecteur de neutrons qui soit facile à mettre en œuvre industriellement et qui soit peu onéreux.  An object of the invention is to improve the reflection of neutrons in a wide range of speed. Another object of the invention is to design a method of manufacturing a neutron reflector which is easy to implement industrially and is inexpensive.
Conformément à l'invention, il est proposé un procédé de fabrication d'un réflecteur de neutrons comprenant :  According to the invention, there is provided a method of manufacturing a neutron reflector comprising:
- l'obtention d'une poudre de nanodiamants, lesdits nanodiamants présentant une surface saturée en fluor,  obtaining a powder of nanodiamonds, said nanodiamonds having a surface saturated with fluorine,
- la formation d'une paroi du réflecteur en encapsulant une couche desdits nanodiamants dans une enveloppe en un matériau n'absorbant pas les neutrons.  the formation of a wall of the reflector by encapsulating a layer of said nanodiamonds in an envelope made of a material that does not absorb neutrons.
Selon un mode de réalisation, lesdits nanodiamants sont obtenus par détonation d'un mélange d'explosifs et de graphite puis substitution, à la surface desdits nanodiamants, d'au moins une partie des atomes d'hydrogène par des atomes de fluor.  According to one embodiment, said nanodiamonds are obtained by detonation of a mixture of explosives and graphite and substitution, on the surface of said nanodiamonds, of at least a portion of the hydrogen atoms by fluorine atoms.
De manière alternative, lesdits nanodiamants sont obtenus par un procédé laser puis substitution, à la surface desdits nanodiamants, d'au moins une partie des atomes d'hydrogène par des atomes de fluor.  Alternatively, said nanodiamonds are obtained by a laser process and then substitution, on the surface of said nanodiamonds, of at least a portion of the hydrogen atoms by fluorine atoms.
De manière avantageuse, la substitution des atomes d'hydrogène par les atomes de fluor est obtenue par la réaction des nanodiamants avec du gaz fluor.  Advantageously, the substitution of the hydrogen atoms by the fluorine atoms is obtained by the reaction of the nanodiamonds with fluorine gas.
Ladite réaction est avantageusement mise en œuvre à une température comprise entre 300 et 600°C.  Said reaction is advantageously carried out at a temperature of between 300 and 600 ° C.
De manière particulièrement avantageuse, l'encapsulation des nanodiamants dans l'enveloppe est mise en œuvre à une température comprise entre 400 et 500°C et sous un vide compris entre 10"4 et 10"3 mbar ou sous un gaz inerte In particularly advantageous manner, the encapsulation of nanodiamonds in the envelope is implemented at a temperature between 400 and 500 ° C and under a vacuum between 10 "4 and 10" -3 mbar or under an inert gas
Un autre objet concerne un réflecteur de neutrons obtenu par le procédé décrit plus haut. Ledit réflecteur comprend une paroi formée d'une couche de poudre de nanodiamants dans une enveloppe en un matériau n'absorbant pas les neutrons, lesdits nanodiamants présentant une surface saturée en fluor.  Another object relates to a neutron reflector obtained by the method described above. Said reflector comprises a wall formed of a nanodiamond powder layer in a casing made of a material that does not absorb neutrons, said nanodiamonds having a fluorine saturated surface.
L'enveloppe est avantageusement réalisée en un matériau constitué d'atomes choisis parmi les éléments suivants : O, C, F, Be, D, Zr et Al.  The envelope is advantageously made of a material consisting of atoms chosen from the following elements: O, C, F, Be, D, Zr and Al.
De manière préférée, l'enveloppe comprend une feuille et/ou une plaque de polytétrafluoroéthylène (PTFE), d'aluminium ou de béryllium.  Preferably, the envelope comprises a sheet and / or a plate of polytetrafluoroethylene (PTFE), aluminum or beryllium.
De manière avantageuse, sur la face intérieure du réflecteur, destinée à être exposée aux neutons, l'enveloppe présente une épaisseur comprise entre 5 et 30 μηι. Par ailleurs, l'épaisseur de la couche de nanodiamants est typiquement comprise entre 1 et 1000 mm. Advantageously, on the inner face of the reflector, intended to be exposed to neutrons, the envelope has a thickness between 5 and 30 μηι. Moreover, the thickness of the nanodiamond layer is typically between 1 and 1000 mm.
Le réflecteur comprend en outre avantageusement une structure pour maintenir l'enveloppe contenant les nanodiamants.  The reflector further advantageously comprises a structure for holding the envelope containing the nanodiamonds.
L'invention concerne également un guide de neutrons comprenant un réflecteur tel que décrit ci-dessus.  The invention also relates to a neutron guide comprising a reflector as described above.
L'invention concerne également un piège à neutrons comprenant un réflecteur tel que décrit ci-dessus.  The invention also relates to a neutron trap comprising a reflector as described above.
L'invention concerne aussi un ensemble comprenant une source de neutrons et un réflecteur tel que décrit ci-dessus entourant ladite source.  The invention also relates to an assembly comprising a neutron source and a reflector as described above surrounding said source.
Enfin, l'invention concerne un procédé pour réfléchir des neutrons présentant une vitesse comprise entre 160 et 700 m/s, caractérisé en ce qu'il comprend la fourniture d'un dispositif comprenant un réflecteur tel que décrit ci-dessus et la réflexion desdits neutrons sur la surface saturée en fluor des nanodiamants dudit réflecteur.  Finally, the invention relates to a method for reflecting neutrons having a speed of between 160 and 700 m / s, characterized in that it comprises the provision of a device comprising a reflector as described above and the reflection of said neutrons on the fluorine saturated surface of the nanodiamonds of said reflector.
BREVE DESCRIPTION DES DESSINS BRIEF DESCRIPTION OF THE DRAWINGS
D'autres caractéristiques et avantages de l'invention ressortiront de la description détaillée qui va suivre, en référence aux dessins annexés sur lesquels :  Other characteristics and advantages of the invention will emerge from the detailed description which follows, with reference to the appended drawings in which:
la figure 1 est un schéma de principe d'une installation comprenant un piège à neutrons,  FIG. 1 is a block diagram of an installation comprising a neutron trap,
la figure 2 est une vue en coupe de la paroi du piège à neutrons,  FIG. 2 is a sectional view of the wall of the neutron trap,
la figure 3 est une vue en coupe du couvercle du piège à neutrons, la figure 4 est un schéma de principe d'un ensemble d'une source de neutrons et d'un réflecteur de neutrons,  FIG. 3 is a sectional view of the neutron trap cover, FIG. 4 is a block diagram of an assembly of a neutron source and a neutron reflector,
- la figure 5 est une courbe illustrant la réflexion des neutrons en fonction de leur vitesse exprimée en m/s.  FIG. 5 is a curve illustrating the reflection of neutrons as a function of their speed expressed in m / s.
DESCRIPTION DETAILLEE DE L'INVENTION DETAILED DESCRIPTION OF THE INVENTION
L'invention s'applique à la réflexion des neutrons dans une gamme de vitesse comprise entre 10 et 700 m/s.  The invention applies to the reflection of neutrons in a speed range of between 10 and 700 m / s.
En effet, comme le montre la figure 5, les dispositifs connus permettent de réfléchir les neutrons soit dans une gamme de vitesse inférieure à 160 m/s (courbe a, obtenue avec un revêtement de DLC (acronyme du terme anglo-saxon « Diamond-Like Carbon »)) soit dans une gamme de vitesse supérieure à 700 m/s (courbe b, obtenue avec une paroi en graphite). La courbe c illustre la réflexion obtenue avec un supermiroir. La courbe d présente la réflexion obtenue avec un réflecteur selon l'invention et montre que l'invention permet de couvrir une gamme de vitesse pour laquelle aucune réflexion ne pouvait être obtenue précédemment (à savoir la gamme comprise entre 160 et 700 m/s). Les nanodiamants utilisés dans la présente invention sont généralement obtenus, de manière conventionnelle, par détonation d'un mélange d'explosifs et de graphite dans une atmosphère pauvre en oxygène, ou par un procédé laser. On pourra se référer aux articles [4, 5] qui décrivent respectivement chacun de ces procédés. Indeed, as shown in FIG. 5, the known devices make it possible to reflect the neutrons either in a speed range of less than 160 m / s (curve a, obtained with a coating of DLC (acronym for the Anglo-Saxon term "Diamond- Like Carbon ")) or in a speed range greater than 700 m / s (curve b, obtained with a graphite wall). Curve c illustrates the reflection obtained with a supermirror. The curve d shows the reflection obtained with a reflector according to the invention and shows that the invention makes it possible to cover a speed range for which no reflection could previously be obtained (namely the range between 160 and 700 m / s). . The nanodiamonds used in the present invention are generally obtained, conventionally, by detonation of a mixture of explosives and graphite in a low oxygen atmosphere, or by a laser process. Reference may be made to Articles [4, 5] which respectively describe each of these methods.
Lesdits nanodiamants se présentent sous la forme d'une poudre dont la taille est comprise entre quelques nanomètres et quelques dizaines de nanomètres.  Said nanodiamonds are in the form of a powder whose size is between a few nanometers and a few tens of nanometers.
Sur la figure 5, les points e représentent la réflexion des neutrons obtenue avec un réflecteur constitué d'une couche de 3 cm de tels nanodiamants dans une enveloppe n'absorbant pas les neutrons. Comme on le voit, même si la réflexion est améliorée par rapport aux dispositifs correspondant aux courbes a et c, elle est limitée à des neutrons présentant une vitesse inférieure à 160 m/s.  In FIG. 5, the points e represent the neutron reflection obtained with a reflector consisting of a 3 cm layer of such nanodiamonds in a non-neutron absorbing envelope. As can be seen, even if the reflection is improved with respect to the devices corresponding to the curves a and c, it is limited to neutrons having a speed lower than 160 m / s.
Conformément à l'invention, on n'utilise pas lesdits nanodiamants résultant directement des procédés de fabrication susmentionnés mais on leur applique un procédé de fluorination.  According to the invention, said nanodiamonds resulting directly from the abovementioned manufacturing processes are not used, but a fluorination process is applied to them.
A cet effet, on expose la poudre à du gaz fluor, à haute température (typiquement entre 300 et 600°C), sous une pression d'environ 1 bar.  For this purpose, the powder is exposed to fluorine gas at high temperature (typically between 300 and 600 ° C.) at a pressure of approximately 1 bar.
Le document [6] décrit un exemple de mise en œuvre d'un tel procédé de fluorination des nanodiamants. On notera que dans ce document le procédé de fluorination est une étape intermédiaire d'un procédé de fonctionnalisation des nanodiamants, les atomes de fluor étant destinés à être ultérieurement substitués par des groupements fonctionnels. Au contraire, la présente invention met en œuvre des nanodiamants résultant de préférence directement de la fluorination.  The document [6] describes an example of implementation of such a method of fluorination of nanodiamonds. It will be noted that in this document the fluorination process is an intermediate step of a method of functionalization of the nanodiamonds, the fluorine atoms being intended to be subsequently substituted by functional groups. On the contrary, the present invention uses nanodiamonds resulting preferably directly from the fluorination.
Le procédé de fluorination permet de substituer les atomes d'hydrogène par des atomes de fluor à la surface sans affecter la composition du cœur des nanodiamants.  The fluorination process makes it possible to substitute the hydrogen atoms with fluorine atoms on the surface without affecting the core composition of the nanodiamonds.
Par ailleurs, les atomes de fluor ne détériorent pas les propriétés réfléchissantes des nanodiamants. Au contraire, le potentiel optique du fluor étant légèrement positif tandis que celui de l'hydrogène est légèrement négatif, la réflectivité des nanodiamants fluorinés se trouve légèrement améliorée.  On the other hand, the fluorine atoms do not deteriorate the reflective properties of the nanodiamonds. On the other hand, since the optical potential of fluorine is slightly positive while that of hydrogen is slightly negative, the reflectivity of the fluorinated nanodiamonds is slightly improved.
D'autre part, la fluorination permet de supprimer les groupements hydrophiles à la surface des nanodiamants. Ceci diminue par conséquent la présence d'eau à la surface des nanodiamants.  On the other hand, fluorination makes it possible to eliminate the hydrophilic groups on the surface of nanodiamonds. This therefore decreases the presence of water on the surface of nanodiamonds.
Un autre avantage de la fluorination est qu'elle diminue la concentration d'impuretés métalliques présentes à la surface des nanodiamants. Or, ces impuretés sont néfastes dans la mesure où, lorsqu'elles sont irradiées par des neutrons, elles deviennent modérément radioactives et nécessitent donc un retraitement spécial.  Another advantage of fluorination is that it reduces the concentration of metallic impurities present on the surface of nanodiamonds. However, these impurities are harmful insofar as, when they are irradiated by neutrons, they become moderately radioactive and therefore require special reprocessing.
A l'issue de l'étape de fluorination, la surface des nanodiamants est saturée en fluor. L'estimation de la teneur en fluor peut être réalisée par exemple par spectroscopie EDX (acronyme du terme anglo-saxon « Energy Dispersive X-ray »). Par ailleurs, les nanodiamants présentent une teneur en atomes d'hydrogène à la surface qui est au moins 50 fois inférieure à la teneur initiale. At the end of the fluorination step, the surface of the nanodiamonds is saturated with fluorine. The estimation of the fluorine content can be carried out for example by EDX spectroscopy (acronym for the English term "Energy Dispersive X-ray"). In addition, nanodiamonds have a surface hydrogen atom content that is at least 50 times lower than the initial content.
L'estimation de la teneur en hydrogène peut être réalisée selon la méthode décrite dans [7].  The estimation of the hydrogen content can be carried out according to the method described in [7].
La fluorination ne permet pas de supprimer les atomes d'hydrogène présents dans le cœur des nanodiamants, mais dans la mesure où ces atomes y sont présents en petite quantité, ils ne nuisent pas aux propriétés réfléchissantes.  Fluorination does not remove the hydrogen atoms in the core of nanodiamonds, but insofar as these atoms are present in small amounts, they do not interfere with reflective properties.
Enfin, les nanodiamants fluorinés présentent une faible teneur résiduelle en impuretés métalliques, de telle sorte que même si ces impuretés résiduelles sont irradiées, la radioactivité résultante est suffisamment faible pour ne pas nécessiter de retraitement spécifique.  Finally, the fluorinated nanodiamonds have a low residual content of metal impurities, so that even if these residual impurities are irradiated, the resulting radioactivity is low enough not to require specific reprocessing.
Pour fabriquer un réflecteur de neutrons, on utilise les nanodiamants fluorinés décrits ci-dessus, de sorte à former une couche contenue dans une enveloppe et l'on met en place cette couche dans une structure qui permet de maintenir la couche dans la position souhaitée.  In order to manufacture a neutron reflector, the fluorinated nanodiamonds described above are used so as to form a layer contained in an envelope and this layer is put in place in a structure which makes it possible to maintain the layer in the desired position.
L'épaisseur de la couche de nanodiamants est aussi grande que possible pour améliorer la réflectivité, la couche devant être d'autant plus épaisse que la vitesse des neutrons est grande.  The thickness of the nanodiamond layer is as great as possible to improve the reflectivity, the layer to be thicker as the neutron velocity is large.
De manière avantageuse, en fonction de la vitesse des neutrons, ladite épaisseur est comprise entre 1 et 1000 mm.  Advantageously, depending on the speed of the neutrons, said thickness is between 1 and 1000 mm.
L'enveloppe présente une rigidité mécanique suffisante pour donner au réflecteur la forme souhaitée. L'enveloppe est réalisée en un matériau n'absorbant pas les neutrons, c'est-à-dire un matériau ne contenant que des atomes choisis parmi les éléments suivants : O, C, F, Be, D, Zr et Al. Par exemple, l'enveloppe peut être réalisée en polytétrafluoroéthylène (PTFE), en aluminium ou en béryllium. L'épaisseur de l'enveloppe est de préférence la plus fine possible tout en présentant une stabilité mécanique adaptée. Typiquement, l'enveloppe présente une épaisseur comprise entre 5 et 30 μηι.  The casing has sufficient mechanical rigidity to give the reflector the desired shape. The envelope is made of a material that does not absorb neutrons, that is to say a material containing only atoms selected from the following elements: O, C, F, Be, D, Zr and Al. For example, the envelope may be made of polytetrafluoroethylene (PTFE), aluminum or beryllium. The thickness of the envelope is preferably the finest possible while having a suitable mechanical stability. Typically, the envelope has a thickness of between 5 and 30 μηι.
Le conditionnement des nanodiamants dans l'enveloppe est réalisé dans des conditions de température et de pression particulières pour préserver les propriétés de réflexion de la couche. Notamment, la présence d'eau, qui absorberait les neutrons, doit être évitée. Ainsi, la mise en place des nanodiamants dans l'enveloppe est avantageusement mise en œuvre à une température de l'ordre de 400 à 500°C, sous vide (de l'ordre de 10"4 à 10"3 mbar) ou en présence d'un gaz (ou d'un mélange de gaz) inerte. The conditioning of the nanodiamonds in the envelope is carried out under particular temperature and pressure conditions to preserve the reflection properties of the layer. In particular, the presence of water, which would absorb the neutrons, should be avoided. Thus, the introduction of the nanodiamonds in the envelope is advantageously carried out at a temperature of the order of 400 to 500 ° C, under vacuum (of the order of 10 "4 to 10 " 3 mbar) or presence of an inert gas (or gas mixture).
Une application de l'invention concerne un piège à neutrons comprenant un réflecteur tel que décrit ci-dessus.  One application of the invention relates to a neutron trap comprising a reflector as described above.
La figure 1 est un schéma de principe d'une installation comprenant un tel piège à neutrons. Une installation similaire, dans laquelle les nanodiamants ne sont pas fluorinés, est décrite dans [2]. Le piège se présente typiquement sous la forme d'une cavité délimitée par une paroi pourvue d'une ouverture 10 au travers de laquelle les neutrons sont introduits dans le piège. L'ouverture présente une surface de quelques cm2. Par exemple, le piège présente une forme cylindrique et l'ouverture est agencée dans la paroi circonférentielle du piège. Figure 1 is a block diagram of an installation comprising such a neutron trap. A similar installation, in which nanodiamonds are not fluorinated, is described in [2]. The trap is typically in the form of a cavity delimited by a wall provided with an opening 10 through which neutrons are introduced into the trap. The opening has a surface of a few cm 2 . For example, the trap has a cylindrical shape and the opening is arranged in the circumferential wall of the trap.
Les parois du piège sont formées du réflecteur de neutrons décrit plus haut. Ainsi, comme illustré sur la figure 2 qui présente une vue en coupe de la paroi 1 1 , chaque paroi comprend une couche 1 1 c de nanodiamants fluorinés contenue dans une enveloppe 1 1 a, 1 1 b et maintenue dans une structure définissant la forme du piège.  The walls of the trap are formed of the neutron reflector described above. Thus, as illustrated in FIG. 2, which has a cross-sectional view of the wall 11, each wall comprises a layer 1 1 c of fluorinated nanodiamonds contained in an envelope 11a, 11b and held in a structure defining the shape of the trap.
Sur la face extérieure du piège, l'enveloppe 1 1 a comprend par exemple une plaque d'aluminium présentant une épaisseur de l'ordre de 1 mm, cette plaque remplissant essentiellement une fonction de support mécanique.  On the outer face of the trap, the envelope January 1 comprises for example an aluminum plate having a thickness of about 1 mm, this plate essentially fulfilling a mechanical support function.
Sur la face intérieure du piège, l'enveloppe 1 1 b comprend par exemple une feuille d'aluminium présentant une épaisseur de l'ordre de 5 à 30 μηη.  On the inside of the trap, the envelope 1 1b comprises for example an aluminum foil having a thickness of the order of 5 to 30 μηη.
L'épaisseur de la couche 1 1 c de nanodiamants fluorinés est comprise entre 1 et 1000 cm selon la vitesse des neutrons.  The thickness of the layer 1 1 c of fluorinated nanodiamonds is between 1 and 1000 cm depending on the speed of the neutrons.
Le piège 1 comprend en outre un couvercle 12, comprenant également un réflecteur tel que décrit plus haut. Comme illustré sur la figure 3, le couvercle 12 comprend une couche 12c de nanodiamants fluorinés contenue dans une enveloppe 12a, 12b définissant la forme du piège.  The trap 1 further comprises a lid 12, also comprising a reflector as described above. As illustrated in FIG. 3, the cover 12 comprises a layer 12c of fluorinated nanodiamonds contained in an envelope 12a, 12b defining the shape of the trap.
Sur la face extérieure du couvercle, l'enveloppe 12a comprend par exemple une plaque d'aluminium présentant une épaisseur de l'ordre de 1 mm.  On the outer face of the cover, the envelope 12a comprises for example an aluminum plate having a thickness of the order of 1 mm.
Sur la face intérieure du couvercle, l'enveloppe 12b comprend par exemple une feuille d'aluminium présentant une épaisseur de l'ordre de 5 à 30 μηη.  On the inside of the cover, the envelope 12b comprises for example an aluminum foil having a thickness of the order of 5 to 30 μηη.
L'épaisseur de la couche 12c de nanodiamants fluorinés est comprise entre 1 et 1000 cm selon la vitesse des neutrons.  The thickness of the layer 12c of fluorinated nanodiamonds is between 1 and 1000 cm depending on the speed of the neutrons.
Le couvercle 12 présente une fenêtre 120 en aluminium au travers de laquelle les neutrons peuvent sortir du piège 1 .  The cover 12 has an aluminum window 120 through which the neutrons can exit the trap 1.
Revenant à la figure 1 , le piège 1 est agencé dans une enceinte à vide 2. L'enceinte comprend, en regard de la fenêtre 10, une fenêtre 20 en quartz au travers de laquelle les neutrons peuvent pénétrer dans l'enceinte 2.  Returning to Figure 1, the trap 1 is arranged in a vacuum chamber 2. The enclosure comprises, facing the window 10, a quartz window 20 through which the neutrons can enter the chamber 2.
Une source de neutrons (non représentée) émet un faisceau 3 de neutrons présentant un diamètre de l'ordre de 1 cm en direction de la fenêtre 20 et de l'ouverture 10.  A neutron source (not shown) emits a beam 3 of neutrons having a diameter of about 1 cm towards the window 20 and the opening 10.
Sur le trajet du faisceau 3, l'installation comprend un sélecteur de vitesse 4 et une valve 5. Ces dispositifs sont connus en tant que tels et ne seront donc pas décrits en détail.  In the path of the beam 3, the installation comprises a speed selector 4 and a valve 5. These devices are known as such and will not be described in detail.
Les neutrons introduits dans le piège 1 subissent de multiples réflexions par les nanodiamants contenus dans les parois du piège et du couvercle. La teneur résiduelle en atomes d'hydrogène à la surface des nanodiamants procure une réflectivité bien supérieure à celle des pièges connus. The neutrons introduced into the trap 1 undergo multiple reflections by the nanodiamonds contained in the walls of the trap and the lid. The residual content in Hydrogen atoms on the surface of nanodiamonds provide a much higher reflectivity than known traps.
En regard de la fenêtre 120 du couvercle du piège, l'installation comprend un détecteur 6 permettant de compter le nombre de neutrons.  Opposite the window 120 of the trap cover, the installation comprises a detector 6 for counting the number of neutrons.
Une autre application de l'invention concerne un guide de neutrons comprenant un réflecteur tel que décrit ci-dessus.  Another application of the invention relates to a neutron guide comprising a reflector as described above.
Une autre application de l'invention, illustrée de manière schématique sur la figure 4, concerne un ensemble formé d'une source 7 de neutrons entourée d'un réflecteur 8 tel que décrit ci-dessus. La paroi 1 1 du réflecteur étant similaire à celle du piège 1 décrit en référence à la figure 1 , elle n'est pas décrite à nouveau ici. Le réflecteur 8 comprend une fenêtre 1 10 par exemple en aluminium pour permettre la sortie des neutrons. Naturellement, la source et le piège associé peuvent prendre différentes formes selon la vitesse des neutrons émis. REFERENCES  Another application of the invention, illustrated schematically in FIG. 4, concerns an assembly formed of a source 7 of neutrons surrounded by a reflector 8 as described above. The wall 1 1 of the reflector being similar to that of the trap 1 described with reference to Figure 1, it is not described again here. The reflector 8 comprises a window 1 10 for example made of aluminum to allow the output of neutrons. Naturally, the source and the associated trap can take different forms depending on the speed of the neutrons emitted. REFERENCES
[1 ] The reflection of very cold neutrons from diamond powder nanoparticles, V.V.  [1] The reflection of very cold neutrons from diamond powder nanoparticles, V.V.
Nesvizhevsky et al, Nuclear Instruments and Methods in Physics Research Nesvizhevsky et al, Nuclear Instruments and Methods in Physics Research
A595 (2008) 631 -636 A595 (2008) 631-636
[2] Storage of very cold neutrons in a trap with nano-structured walls, E.V.  [2] Storage of very cold neutrons in a trap with nano-structured walls, E.V.
Lychagin et al, Physics Letters B 679 (2009) 186-190  Lychagin et al., Physics Letters B 679 (2009) 186-190
[3] Application of Diamond Nanoparticles in Low-Energy Neutron Physics, V.V.  [3] Application of Diamond Nanoparticles in Low-Energy Neutron Physics, V.V.
Nesvizhevsky et al, Materials 2010, 3, 1768-1781  Nesvizhevsky et al, Materials 2010, 3, 1768-1781
[4] Diamonds in détonation soot, N. Roy Greiner et al, Nature, Vol. 333, June 1988, pp. 440-442  [4] Diamonds in detonation, N. Roy Greiner et al, Nature, Vol. 333, June 1988, pp. 440-442
[5] Structure of Nanodiamonds Prepared by Laser Synthesis, M. V. Baidakova et al, Physics of the Solid State, 2013, Vol. 55, No. 8, pp. 1747-1753  [5] Structure of Nanodiamonds Prepared by Laser Synthesis, M. V. Baidakova et al, Physics of the Solid State, 2013, Vol. 55, No. 8, pp. 1747-1753
[6] US 2005/0158549  [6] US 2005/0158549
[7] Study of Bound Hydrogen in Powders of Diamond Nanoparticles, A. R. Krylov et al, ISSN 1063-7745, Crystallography Reports, 201 1 , Vol. 56, No. 7, pp. 102-  [7] Study of Bound Hydrogen in Powders of Diamond Nanoparticles, A.R. Krylov et al, ISSN 1063-7745, Crystallography Reports, 201 1, Vol. 56, No. 7, pp. 102-

Claims

REVENDICATIONS
1 . Procédé de fabrication d'un réflecteur de neutrons comprenant : 1. A method of manufacturing a neutron reflector comprising:
- l'obtention d'une poudre de nanodiamants, lesdits nanodiamants présentant une surface saturée en fluor,  obtaining a powder of nanodiamonds, said nanodiamonds having a surface saturated with fluorine,
- la formation d'une paroi (1 1 , 12) du réflecteur en encapsulant une couche (1 1 c, 12c) desdits nanodiamants dans une enveloppe (1 1 a, 1 1 b ; 12a, 12b) en un matériau n'absorbant pas les neutrons.  the formation of a wall (1 1, 12) of the reflector by encapsulating a layer (11c, 12c) of said nanodiamonds in an envelope (11a, 11b, 12a, 12b) made of an absorbent material not the neutrons.
2. Procédé selon la revendication 1 , dans lequel les nanodiamants sont obtenus par détonation d'un mélange d'explosifs et de graphite puis substitution, à la surface desdits nanodiamants, d'au moins une partie des atomes d'hydrogène par des atomes de fluor. 2. The method of claim 1, wherein the nanodiamonds are obtained by detonation of a mixture of explosives and graphite and substitution on the surface of said nanodiamonds, at least a portion of the hydrogen atoms by atoms of fluorine.
3. Procédé selon la revendication 1 , dans lequel les nanodiamants sont obtenus par un procédé laser puis substitution, à la surface desdits nanodiamants, d'au moins une partie des atomes d'hydrogène par des atomes de fluor. 3. The method of claim 1, wherein the nanodiamonds are obtained by a laser process and substitution on the surface of said nanodiamonds, at least a portion of the hydrogen atoms by fluorine atoms.
4. Procédé selon l'une des revendications 2 ou 3, dans lequel la substitution des atomes d'hydrogène par les atomes de fluor est obtenue par la réaction des nanodiamants avec du gaz fluor. 4. Method according to one of claims 2 or 3, wherein the substitution of hydrogen atoms by the fluorine atoms is obtained by the reaction of nanodiamonds with fluorine gas.
5. Procédé selon la revendication 4, dans lequel la réaction est mise en œuvre à une température comprise entre 300 et 600°C. 5. The process according to claim 4, wherein the reaction is carried out at a temperature between 300 and 600 ° C.
6. Procédé selon l'une des revendications 1 à 5, dans lequel l'encapsulation des nanodiamants dans l'enveloppe est mise en œuvre à une température comprise entre 400 et 500°C et sous un vide compris entre 10"4 et 10"3 mbar ou sous un gaz inerte. 6. Method according to one of claims 1 to 5, wherein the encapsulation of nanodiamonds in the envelope is implemented at a temperature between 400 and 500 ° C and under a vacuum between 10 "4 and 10 " 3 mbar or under an inert gas.
7. Réflecteur de neutrons comprenant une paroi (1 1 , 12) formée d'une couche7. Neutron reflector comprising a wall (1 1, 12) formed of a layer
(1 1 c, 12c) de poudre de nanodiamants dans une enveloppe (1 1 a, 1 1 b ; 12a, 12b) en un matériau n'absorbant pas les neutrons, lesdits nanodiamants présentant une surface saturée en fluor. (1 1 c, 12c) nanodiamond powder in a casing (11a, 11b; 12a, 12b) of a non-neutron absorbing material, said nanodiamonds having a saturated fluorine surface.
8. Réflecteur selon la revendication 7, dans lequel l'enveloppe est réalisée en un matériau constitué d'atomes choisis parmi les éléments suivants : O, C, F, Be, D, Zr et Al. 8. Reflector according to claim 7, wherein the envelope is made of a material consisting of atoms selected from the following elements: O, C, F, Be, D, Zr and Al.
9. Réflecteur selon la revendication 8, dans lequel l'enveloppe comprend une feuille et/ou une plaque de polytétrafluoroéthylène (PTFE), d'aluminium ou de béryllium. 9. Reflector according to claim 8, wherein the envelope comprises a sheet and / or a plate of polytetrafluoroethylene (PTFE), aluminum or beryllium.
10. Réflecteur selon l'une des revendications 7 à 9, dans lequel, sur la face intérieure du réflecteur, l'enveloppe présente une épaisseur comprise entre 5 et 30 μηι. 10. Reflector according to one of claims 7 to 9, wherein, on the inner face of the reflector, the envelope has a thickness between 5 and 30 μηι.
1 1 . Réflecteur selon l'une des revendications 7 à 10, dans lequel l'épaisseur de la couche (1 1 c, 12c) de nanodiamants est comprise entre 1 et 1000 mm. 1 1. Reflector according to one of claims 7 to 10, wherein the thickness of the layer (1 1 c, 12c) of nanodiamonds is between 1 and 1000 mm.
12. Réflecteur selon l'une des revendications 7 à 1 1 , comprenant en outre une structure pour maintenir l'enveloppe contenant les nanodiamants. 12. Reflector according to one of claims 7 to 11, further comprising a structure for holding the envelope containing the nanodiamonds.
13. Guide de neutrons comprenant un réflecteur selon l'une des revendications 7 à13. A neutron guide comprising a reflector according to one of claims 7 to
10. 10.
14. Piège à neutrons comprenant un réflecteur selon l'une des revendications 7 à14. Neutron trap comprising a reflector according to one of claims 7 to
10. 10.
15. Ensemble comprenant une source (7) de neutrons et un réflecteur (8) selon l'une des revendications 7 à 10 entourant ladite source. 15. An assembly comprising a source (7) of neutrons and a reflector (8) according to one of claims 7 to 10 surrounding said source.
16. Procédé pour réfléchir des neutrons présentant une vitesse comprise entre 160 et 700 m/s, caractérisé en ce qu'il comprend la fourniture d'un dispositif comprenant un réflecteur selon l'une des revendications 7 à 12 et la réflexion desdits neutrons sur la surface saturée en fluor des nanodiamants dudit réflecteur. 16. A method for reflecting neutrons having a speed of between 160 and 700 m / s, characterized in that it comprises the provision of a device comprising a reflector according to one of claims 7 to 12 and the reflection of said neutrons on the saturated fluorine surface of the nanodiamonds of said reflector.
PCT/EP2016/050030 2014-12-29 2016-01-04 Method for producing a neutron reflector and neutron reflector produced by such a method WO2016107932A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1463376A FR3031228B1 (en) 2014-12-29 2014-12-29 METHOD FOR MANUFACTURING A NEUTRON REFLECTOR AND NEUTRON REFLECTOR OBTAINED BY SUCH A METHOD
FR1463376 2014-12-29

Publications (1)

Publication Number Publication Date
WO2016107932A1 true WO2016107932A1 (en) 2016-07-07

Family

ID=53200042

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2016/050030 WO2016107932A1 (en) 2014-12-29 2016-01-04 Method for producing a neutron reflector and neutron reflector produced by such a method

Country Status (2)

Country Link
FR (1) FR3031228B1 (en)
WO (1) WO2016107932A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5880478A (en) * 1997-05-19 1999-03-09 Lucent Technologies Inc. Compound refractive lenses for low energy neutrons
US20050158549A1 (en) * 2003-11-26 2005-07-21 William Marsh Rice University Functionalization of nanodiamond powder through fluorination and subsequent derivatization reactions

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5880478A (en) * 1997-05-19 1999-03-09 Lucent Technologies Inc. Compound refractive lenses for low energy neutrons
US20050158549A1 (en) * 2003-11-26 2005-07-21 William Marsh Rice University Functionalization of nanodiamond powder through fluorination and subsequent derivatization reactions

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "Carbon Products Suppliers,Nano Diamond Powder For Sale", 16 September 2014 (2014-09-16), XP055225501, Retrieved from the Internet <URL:https://web.archive.org/web/20140916025401/http://www.hwnanomaterial.com/Nano-Diamond-Powder_c83> [retrieved on 20151103] *
M. V. BAIDAKOVA ET AL: "Structure of nanodiamonds prepared by laser synthesis", PHYSICS OF THE SOLID STATE., vol. 55, no. 8, 1 August 2013 (2013-08-01), US, pages 1747 - 1753, XP055225491, ISSN: 1063-7834, DOI: 10.1134/S1063783413080027 *
NESVIZHEVSKY V V ET AL: "The reflection of very cold neutrons from diamond powder nanoparticles", NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH. SECTION A: ACCELERATORS, SPECTROMETERS, DETECTORS, AND ASSOCIATED EQUIPMENT, ELSEVIER BV * NORTH-HOLLAND, NL, vol. 595, no. 3, 11 October 2008 (2008-10-11), pages 631 - 636, XP025467509, ISSN: 0168-9002, [retrieved on 20080812], DOI: 10.1016/J.NIMA.2008.07.149 *

Also Published As

Publication number Publication date
FR3031228B1 (en) 2017-02-03
FR3031228A1 (en) 2016-07-01

Similar Documents

Publication Publication Date Title
US9977149B2 (en) Synthetic diamond optical elements
FR2996962A1 (en) ALKALINE STEAM CELL PARTICULARLY FOR ATOMIC CLOCK AND METHOD OF MANUFACTURING THE SAME
EP2783241B1 (en) Method for processing a signal from a phoswich scintillator, and associated scintillation detector
EP2176877A2 (en) Device for providing a high energy x-ray beam
EP2614363A1 (en) Device for the high-resolution mapping and analysis of elements in solids
Addie et al. Amorphous carbon nitride dual-function anti-reflection coating for crystalline silicon solar cells
EP2564398B1 (en) Collimator for x-ray beam
EP1842209B1 (en) X-ray or neutron monochromator
Magdi et al. One step fabrication of Silicon nanocones with wide-angle enhanced light absorption
FR3055738A1 (en) IR INFRARED RADIATION EMISSION SURFACE WITH HIGH THERMAL EMISSIVITY AND HIGH LIFETIME AND METHOD OF MANUFACTURING THE SAME
WO2016107932A1 (en) Method for producing a neutron reflector and neutron reflector produced by such a method
WO2006043010A1 (en) Cryostat for studying samples in a vacuum
EP0003454B1 (en) X-ray tube comprising a device for reducing the divergence of its useful beam
Mannino et al. Octahedral faceted Si nanoparticles as optical traps with enormous yield amplification
EP2907154A1 (en) Semi-transparent photocathode with improved absorption rate
Fakhri et al. Nano silver oxide based on insulator for optoelectronic device
Modi et al. Study of interface reaction in a B4C/Cr mirror at elevated temperature using soft X-ray reflectivity
Melikhova et al. Positron annihilation study of cavities in black Au films
Mohammed et al. Study the Influence of number of laser pulses on Optical Properties of CdS Thin Films Prepared by Laser Pulsed Deposition
Korovin et al. Nonlinear absorption in silicon nanocrystals
WO2014131983A1 (en) Process for treating a structure
EP0090695A1 (en) Optical disc protected from humidity
Goncharov et al. Optical behavior of some nanosized structures formed due to laser irradiation
WO2017191408A1 (en) Pumped-down optical apparatus and method for obtaining a pumped-down optical apparatus
Atutov et al. Photo Extraction of Rubidium Atoms from the Bulk of a Photonic Crystal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16700239

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16700239

Country of ref document: EP

Kind code of ref document: A1