WO2016107806A1 - Hybrid inertia sensor employing cold atoms and mems and associated inertial platform - Google Patents

Hybrid inertia sensor employing cold atoms and mems and associated inertial platform Download PDF

Info

Publication number
WO2016107806A1
WO2016107806A1 PCT/EP2015/081115 EP2015081115W WO2016107806A1 WO 2016107806 A1 WO2016107806 A1 WO 2016107806A1 EP 2015081115 W EP2015081115 W EP 2015081115W WO 2016107806 A1 WO2016107806 A1 WO 2016107806A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
measurement
measuring
inertia parameter
frequency
Prior art date
Application number
PCT/EP2015/081115
Other languages
French (fr)
Inventor
Sylvain Schwartz
Matthieu DUPONT-NIVET
Original Assignee
Thales
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales filed Critical Thales
Publication of WO2016107806A1 publication Critical patent/WO2016107806A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P21/00Testing or calibrating of apparatus or devices covered by the preceding groups
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/183Compensation of inertial measurements, e.g. for temperature effects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/58Turn-sensitive devices without moving masses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/166Mechanical, construction or arrangement details of inertial navigation systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C25/00Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
    • G01C25/005Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass initial alignment, calibration or starting-up of inertial devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values

Definitions

  • Hybrid cold-inertia sensor with MEMS and associated inertial unit with MEMS and associated inertial unit
  • the field of the invention is that of inertial navigation.
  • the purpose of an inertial unit is to provide the angular velocity and acceleration information of a moving vehicle.
  • the preferred field of application is aeronautics.
  • An inertial unit therefore includes gyrometers and accelerometers to ensure the necessary measurements.
  • gyrometers There are currently two categories of inertial units, depending on the required levels of performance and space requirements.
  • High-end inertial units are generally based on optical gyrometers. They have the disadvantage of having a size that can be important, even prohibitive for some applications.
  • MEMS micro-electromechanical sensors
  • MEMS Micro Electro Mechanical Systems
  • these sensors have significant levels of bias drift.
  • the drift is of the order of degree per hour for the best MEMS gyrometers, which limits their applications to the areas of bass and average performance. More information on this type of MEMS can be found in the publication "Performance of MEMS inertial sensors” by Kourepenis et al, published in IEEE PLANS April 1998.
  • Inertial sensors that are extremely stable over the long term have been developed in recent years using atomic interferometry techniques with laser-cooled atoms. It is now possible to make this type of sensor in a small footprint. The atoms are then trapped in the vicinity of a substrate or "atomic chip" throughout the detection cycle.
  • An architecture of this type potentially has, compared to sensors using cold atoms in free fall, the advantages of a great compactness.
  • the cold atomic sensors have a reduced level of bandwidth, typically of the order of the hertz. Indeed, the measurement accuracy depends on the separation time of cold atoms that can hardly be reduced without affecting the accuracy of the measurement. However, for some applications, this measurement rate is too low.
  • the device for measuring an inertial parameter is also a hybrid device that combines both a microelectromechanical sensor and a cold-on-chip sensor.
  • it can be applied to all types of MEMS and cold atomic sensors as this device is not dedicated to a particular parameter or technology.
  • the subject of the invention is a device for measuring an inertial parameter comprising a first sensor for measuring said inertia parameter, said first sensor being an electromechanical microsystem operating at a first frequency, characterized in that said measuring device comprises:
  • a second sensor for measuring said inertia parameter, said second sensor being a cold-atom device operating at a second measurement frequency lower than the first measurement frequency, and;
  • a comparison electronics comprising:
  • first calculating means operating at the second measurement frequency and calculating, from a first measurement resulting from the first sensor and a second measurement from the second sensor, a bias between said first measurement and said second measurement;
  • second computing means operating at the first measurement frequency, and calculating measurements of said inertia parameter, each of said calculated measurements being equal to a first measurement from the first corrected sensor of said bias.
  • the bias correction is an electronic correction performed by the second calculation means.
  • the bias correction is obtained by a modification of one or more physical parameters of the first sensor.
  • the physical parameters are the voltages of the control electrodes of the electromechanical microsystem.
  • the physical parameter is the temperature of the electromechanical microsystem.
  • the second sensor comprises an electronic chip comprising parallel conductive wires and power supply means for said conductive wires, the cloud of cold atoms necessary for the measurement being disposed in the vicinity of said electronic chip, the conductive wires and their means.
  • power supply are arranged to create the electromagnetic fields necessary for the superposition of internal states of the atoms, their separation and their recombination.
  • the first sensor is implanted on said electronic chip.
  • the electronic chip is arranged to measure at least one second inertia parameter.
  • the inertia parameter is either an acceleration or a rotational speed.
  • the invention also relates to an inertial unit comprising three accelerometers arranged to measure the acceleration in three non-coplanar space directions and three gyrometers arranged to measure the speed of rotation in three directions of the non-space. coplanar. At least one of the accelerometers or one of the gyrometers of said inertial unit is a device for measuring an inertia parameter as described above.
  • the three accelerometers and the three gyrometers are devices for measuring an inertia parameter as described above.
  • FIG. 1 represents the block diagram of a device for measuring an inertia parameter according to the invention comprising two inertia sensors;
  • FIG. 2 represents a view of an implantation of the two inertia sensors on the same electronic chip.
  • FIG. 1 represents the block diagram of a device for measuring an inertia parameter according to the invention.
  • the devices are shown boxed and the arrows represent the direction of transmission of information.
  • the measuring device essentially comprises:
  • a first sensor of the electromechanical microsystem type measuring said inertia parameter operates at a first frequency F1 and we note M1 (t) the measurements from this sensor as a function of time t;
  • a second cold atom device sensor also measuring said inertia parameter.
  • This sensor operates at a second measurement frequency F2 lower than the first measurement frequency F1.
  • F2 is of the order of Hertz.
  • M2 (t) measures the measurements from this sensor as a function of time t;
  • a comparison electronics that has two functions. Its first function is to compare at a rate that is that of the second frequency, the measurements from the first and the second sensor. Its second function is to calculate a measurement of the inertia parameter at the first frequency.
  • T2 a period of time which is equal to 1 / F 2 flows. With a measurement rate at 1 Hertz, T2 is 1 second. During this period T2, even if the first sensor drifts, its bias remains practically constant. Thus, we can consider that at any time t selected between t 0 and t 0 + T2, the measurement from the first sensor is accurate provided that it is corrected bias B (t 0 ). We can then write, noting V RAIE (Î) the exact measure at time t:
  • Bias correction can be done electronically.
  • the bias between the two sensors is periodically calculated and taken into account in the calculation of the final measurement. It can also be obtained by modifying one or more physical parameters of the first sensor. It is thus possible to act on the voltages of the control electrodes of the electromechanical microsystem or to regulate its temperature so as to reduce the bias to near zero.
  • the cold atom device may be of different natures. However, it is interesting to focus on compact architectures, for example with trapped atoms, in particular on electronic chips that allow the integration of the MEMS sensor on the same electronic chip.
  • a cold atomic sensor of this type comprises a central part consisting of a vacuum chamber, all walls of which are transparent, except the upper wall which consists of a chip on which conductor wires have been deposited.
  • This chip 10 is represented in the perspective view of FIG. 2.
  • the measured inertial parameter is the acceleration whose direction is symbolized by four chevrons in FIG. 2.
  • the chip electronic also includes the MEMS sensor 20 which in this case is an accelerometer.
  • the measuring atoms initially in the gaseous phase at room temperature in the chamber, are trapped and cooled by six laser beams arranged symmetrically two by two on three axes perpendicular two by two combined with a magnetic field gradient generated by external magnetic coils.
  • the six laser beams are arranged symmetrically on three perpendicular axes.
  • the set of laser beams and magnetic coils is called three-dimensional magnetoptic trap or "P O 3D".
  • the atoms are transferred into a purely magnetic conservative trap created in the vicinity of the conductive wires of the chip 10 and prepared in an internal state, for example
  • the atoms are located at an initial spatial position above the electronic chip 10.
  • the electronic chip 10 comprises at least a first central conductor wire 1 1 used as the main trapping wire, a second conductive wire 12 perpendicular to the first wire and used as a secondary trapping wire, 13 lateral wave parallel to each other, parallel to the secondary trapping wire 12 and arranged symmetrically with respect thereto.
  • the atomic cloud 15 is located above the first conductive wire 1 1, said first conductor wire being traversed by a first current and generating a magnetostatic field, the first waveguide 13 being traversed by a second current modulated to a second microwave frequency generating a second microwave field and the second waveguide 13 being traversed by a third current modulated at a third microwave frequency, generating a third microwave field.
  • This arrangement makes it possible to separate and recombine magnetically the atomic cloud.
  • the separation-recombination method is detailed below.
  • the atoms are transferred in an equal weight superposition of the internal states
  • the atoms are separated into two wave packets associated with the internal states
  • the microwave field used for the separation is generated by the two coplanar waveguides or CPW 13.
  • the separation is in the direction of the acceleration of to be as sensitive as possible.
  • the separation distance s of the atoms is of the order of one or more tens of micrometers.
  • the separation during a time T s causes a phase shift between the two wave packets related to the local acceleration.
  • atoms are recombined by the suppression of the applied microwave fields.
  • the phase shift is then converted into a population difference between the internal states by means of a second pulse " ⁇ / 2".
  • the atomic cloud is detected using the absorption imaging technique, which consists of measuring the absorption of a quasi-resonant laser beam by the atomic cloud using a CCD camera.
  • Optical spectroscopy thus gives access to the populations of the two internal states, thus to the desired phase shift.
  • the populations of the two internal states can be measured by fluorescence using photodiodes.
  • the acceleration is calculated, which is then compared to that obtained by the MEMS accelerometer.
  • the device according to the invention combining two types of sensors makes it possible to measure accelerations and speeds of rotation at a high measurement rate and with high precision.
  • An inertial unit has three acceleration sensors and three rotation sensors.
  • An inertial unit can be made from this type of measuring device, either totally or partially.
  • One of the advantages of cold-carbon sensors on an electronic chip is that, not only can one or more MEMS be integrated on the same chip, but it is also possible to measure different inertia parameters according to the fields with the same chip.
  • electromagnetic generated in the conductive wires This considerably simplifies the construction of the inertial unit.
  • the industrial applications of this inertial unit concern in particular devices requiring precision inertial guidance in environments where the "GPS", acronym for "Global Positioning System" may be absent for relatively long times, of the order of several tens of hours. minutes. Such lack of GPS may be accidental due, for example, to poor reception or intentional, the GPS signal is then scrambled.

Abstract

Device for measuring an inertia parameter comprising a first sensor of electromechanical microsystem type operating at a first frequency and a second sensor of cold atoms device type operating at a second frequency which is lower than the first measurement frequency. The device moreover comprises comparison electronics comprising: first means of calculation operating at the second frequency and calculating, on the basis of a first measurement emanating from the first sensor and of a second measurement emanating from the second sensor, a bias between said first measurement and said second measurement and; second means of calculation operating at the first frequency, and calculating measurements of said inertia parameter, each of said calculated measurements being equal to a first measurement emanating from the first sensor and corrected for said bias. This device is well adapted to the production of inertial platforms.

Description

Capteur d'inertie hybride à atomes froids et MEMS et centrale inertielle associée  Hybrid cold-inertia sensor with MEMS and associated inertial unit
Le domaine de l'invention est celui de la navigation inertielle. L'objet d'une centrale inertielle est de fournir les informations de vitesse angulaire et d'accélération d'un véhicule en mouvement. Le domaine d'application privilégiée est l'aéronautique. The field of the invention is that of inertial navigation. The purpose of an inertial unit is to provide the angular velocity and acceleration information of a moving vehicle. The preferred field of application is aeronautics.
Une centrale inertielle comporte donc des gyromètres et des accéléromètres pour assurer les mesures nécessaires. Il existe actuellement deux catégories de centrales inertielles selon les niveaux de performance et d'encombrement requis. Les centrales inertielles haut de gamme sont généralement réalisées à base de gyromètres optiques. Elles présentent l'inconvénient d'avoir un encombrement qui peut être important, voire rédhibitoire pour certaines applications. An inertial unit therefore includes gyrometers and accelerometers to ensure the necessary measurements. There are currently two categories of inertial units, depending on the required levels of performance and space requirements. High-end inertial units are generally based on optical gyrometers. They have the disadvantage of having a size that can be important, even prohibitive for some applications.
Les centrales inertielles à base de capteurs micro-électromécaniques, encore appelés « MEMS », acronyme signifiant « Micro Electro Mechanical Systems », sont de taille significativement réduite par rapport aux technologies optiques. Cependant, ces capteurs présentent des niveaux de dérive du biais importants. Typiquement, la dérive est de l'ordre du degré par heure pour les meilleurs gyromètres à MEMS, ce qui restreint leurs applications aux domaines de la basse et de la moyenne performance. On trouvera plus d'informations sur ce type de MEMS dans la publication intitulée « Performance of MEMS inertial sensors » de Kourepenis et al, publiée dans IEEE PLANS April 1998.  Inertial units based on micro-electromechanical sensors, also called "MEMS", acronym meaning "Micro Electro Mechanical Systems", are significantly smaller in size compared to optical technologies. However, these sensors have significant levels of bias drift. Typically, the drift is of the order of degree per hour for the best MEMS gyrometers, which limits their applications to the areas of bass and average performance. More information on this type of MEMS can be found in the publication "Performance of MEMS inertial sensors" by Kourepenis et al, published in IEEE PLANS April 1998.
Des capteurs inertiels extrêmement stables sur le long terme ont été développés ces dernières années utilisant des techniques d'interférométrie atomique avec des atomes refroidis par laser. Il est aujourd'hui possible de réaliser ce type de capteur dans un encombrement réduit. Les atomes sont alors piégés au voisinage d'un substrat ou « puce atomique » tout au long du cycle de détection. Une architecture de ce type présente potentiellement, par rapport aux capteurs utilisant des atomes froids en chute libre, les avantages d'une grande compacité. Cependant, les capteurs à atomes froids ont un niveau de bande passante réduit, typiquement de l'ordre de l'hertz. En effet, la précision de mesure dépend du temps de séparation des atomes froids qui peut difficilement être réduit sans nuire à la précision de la mesure. Or, pour certaines applications, cette cadence de mesure est trop faible. Inertial sensors that are extremely stable over the long term have been developed in recent years using atomic interferometry techniques with laser-cooled atoms. It is now possible to make this type of sensor in a small footprint. The atoms are then trapped in the vicinity of a substrate or "atomic chip" throughout the detection cycle. An architecture of this type potentially has, compared to sensors using cold atoms in free fall, the advantages of a great compactness. However, the cold atomic sensors have a reduced level of bandwidth, typically of the order of the hertz. Indeed, the measurement accuracy depends on the separation time of cold atoms that can hardly be reduced without affecting the accuracy of the measurement. However, for some applications, this measurement rate is too low.
Dans la publication « Hybridizing matter-wave and classical accelerometers » de Lautier et al, publiée dans Applied Physics Letters 105,144102(2014), l'hybridation d'un accéléromètre et d'un g ravi m être atomique a été proposée. Dans l'hybridation décrite, l'accéléromètre est utilisé pour asservir le miroir de renvoi d'un gravimètre atomique fonctionnant par interférométrie. Cette disposition permet d'obtenir à la fois une grande précision de mesure et une bande passante plus importante que celle d'un gravimètre non asservi. Cependant, cette application est limitée à la gravimétrie avec des atomes en chute libre et ne peut s'appliquer facilement à la mesure d'autres paramètres inertiels. Par ailleurs, ce dispositif reste un dispositif de laboratoire. Enfin, ce dispositif présente l'inconvénient d'asservir le système complexe d'un capteur à atomes froids.  In the publication "Hybridizing matter-wave and classical accelerometers" by Lautier et al, published in Applied Physics Letters 105, 144102 (2014), the hybridization of an accelerometer and a g ravi m to be atomic has been proposed. In the hybridization described, the accelerometer is used to slave the reflecting mirror of an atomic gravimeter operating by interferometry. This arrangement makes it possible to obtain both a high measurement accuracy and a larger bandwidth than that of a non-controlled gravimeter. However, this application is limited to gravimetry with free falling atoms and can not easily be applied to the measurement of other inertial parameters. Moreover, this device remains a laboratory device. Finally, this device has the disadvantage of slaving the complex system of a cold atomic sensor.
Le dispositif de mesure d'un paramètre d'inertie selon l'invention est également un dispositif hybride qui réunit à la fois un capteur microélectromécanique et un capteur à atomes froids sur puce. Cependant, il peut s'appliquer à tous types de MEMS et de capteurs à atomes froids dans la mesure où ce dispositif n'est pas dédié à un paramètre particulier ou à une technologie particulière. En combinant les mesures d'un même paramètre inertiel réalisées par deux capteurs de nature différente, on obtient à la fois la précision des systèmes à atomes froids et la bande passante des capteurs à MEMS.  The device for measuring an inertial parameter according to the invention is also a hybrid device that combines both a microelectromechanical sensor and a cold-on-chip sensor. However, it can be applied to all types of MEMS and cold atomic sensors as this device is not dedicated to a particular parameter or technology. By combining measurements of the same inertial parameter made by two sensors of different nature, one obtains both the precision of the cold atom systems and the bandwidth of the MEMS sensors.
Plus précisément, l'invention a pour objet un dispositif de mesure d'un paramètre d'inertie comprenant un premier capteur de mesure dudit paramètre d'inertie, ledit premier capteur étant un microsystème électromécanique fonctionnant à une première fréquence, caractérisé en ce que ledit dispositif de mesure comporte :  More specifically, the subject of the invention is a device for measuring an inertial parameter comprising a first sensor for measuring said inertia parameter, said first sensor being an electromechanical microsystem operating at a first frequency, characterized in that said measuring device comprises:
un second capteur de mesure dudit paramètre d'inertie, ledit second capteur étant un dispositif à atomes froids fonctionnant à une seconde fréquence de mesure inférieure à la première fréquence de mesure, et ;  a second sensor for measuring said inertia parameter, said second sensor being a cold-atom device operating at a second measurement frequency lower than the first measurement frequency, and;
une électronique de comparaison comprenant :  a comparison electronics comprising:
des premiers moyens de calcul fonctionnant à la seconde fréquence de mesure et calculant, à partir d'une première mesure issue du premier capteur et d'une seconde mesure issue du second capteur, un biais entre ladite première mesure et ladite seconde mesure et ; first calculating means operating at the second measurement frequency and calculating, from a first measurement resulting from the first sensor and a second measurement from the second sensor, a bias between said first measurement and said second measurement;
des seconds moyens de calcul fonctionnant à la première fréquence de mesure, et calculant des mesures dudit paramètre d'inertie, chacune desdites mesures calculées étant égale à une première mesure issue du premier capteur corrigée dudit biais.  second computing means operating at the first measurement frequency, and calculating measurements of said inertia parameter, each of said calculated measurements being equal to a first measurement from the first corrected sensor of said bias.
Avantageusement, la correction du biais est une correction électronique effectuée par les seconds moyens de calcul.  Advantageously, the bias correction is an electronic correction performed by the second calculation means.
Avantageusement, la correction du biais est obtenue par une modification d'un ou de plusieurs paramètres physiques du premier capteur.  Advantageously, the bias correction is obtained by a modification of one or more physical parameters of the first sensor.
Avantageusement, les paramètres physiques sont les tensions des électrodes de commande du microsystème électromécanique.  Advantageously, the physical parameters are the voltages of the control electrodes of the electromechanical microsystem.
Avantageusement, le paramètre physique est la température du microsystème électromécanique.  Advantageously, the physical parameter is the temperature of the electromechanical microsystem.
Avantageusement, le second capteur comporte une puce électronique comportant des fils conducteurs parallèles et des moyens d'alimentation électrique desdits fils conducteurs, le nuage d'atomes froids nécessaire à la mesure étant disposé au voisinage de ladite puce électronique, les fils conducteurs et leurs moyens d'alimentation étant agencés de façon à créer les champs électromagnétiques nécessaires à la superposition d'états internes des atomes, à leur séparation et à leur recombinaison.  Advantageously, the second sensor comprises an electronic chip comprising parallel conductive wires and power supply means for said conductive wires, the cloud of cold atoms necessary for the measurement being disposed in the vicinity of said electronic chip, the conductive wires and their means. power supply are arranged to create the electromagnetic fields necessary for the superposition of internal states of the atoms, their separation and their recombination.
Avantageusement, le premier capteur est implanté sur ladite puce électronique.  Advantageously, the first sensor is implanted on said electronic chip.
Avantageusement, la puce électronique est agencée de façon à mesurer au moins un second paramètre d'inertie.  Advantageously, the electronic chip is arranged to measure at least one second inertia parameter.
Avantageusement, le paramètre d'inertie est soit une accélération, soit une vitesse de rotation.  Advantageously, the inertia parameter is either an acceleration or a rotational speed.
L'invention a également pour objet une centrale inertielle comprenant trois accéléromètres agencés de façon à mesurer l'accélération dans trois directions de l'espace non coplanaires et trois gyromètres agencés de façon à mesurer la vitesse de rotation dans trois directions de l'espace non coplanaires. Au moins un des accéléromètres ou un des gyromètres de ladite centrale inertielle est un dispositif de mesure d'un paramètre d'inertie comme décrit ci-dessus. Avantageusement, les trois accéléromètres et les trois gyromètres sont des dispositifs de mesure d'un paramètre d'inertie comme décrit ci- dessus. L'invention sera mieux comprise et d'autres avantages apparaîtront à la lecture de la description qui va suivre donnée à titre non limitatif et grâce aux figures annexées parmi lesquelles : The invention also relates to an inertial unit comprising three accelerometers arranged to measure the acceleration in three non-coplanar space directions and three gyrometers arranged to measure the speed of rotation in three directions of the non-space. coplanar. At least one of the accelerometers or one of the gyrometers of said inertial unit is a device for measuring an inertia parameter as described above. Advantageously, the three accelerometers and the three gyrometers are devices for measuring an inertia parameter as described above. The invention will be better understood and other advantages will become apparent on reading the description which follows given by way of non-limiting example and by virtue of the appended figures among which:
La figure 1 représente le synoptique d'un dispositif de mesure d'un paramètre d'inertie selon l'invention comportant deux capteurs d'inertie ;  FIG. 1 represents the block diagram of a device for measuring an inertia parameter according to the invention comprising two inertia sensors;
La figure 2 représente une vue d'une implantation des deux capteurs d'inertie sur une même puce électronique.  FIG. 2 represents a view of an implantation of the two inertia sensors on the same electronic chip.
A titre d'exemple, la figure 1 représente le synoptique d'un dispositif de mesure d'un paramètre d'inertie selon l'invention. Sur cette figure, les dispositifs sont représentés encadrés et les flèches représentent le sens de transmission des informations. Le dispositif de mesure comporte essentiellement : By way of example, FIG. 1 represents the block diagram of a device for measuring an inertia parameter according to the invention. In this figure, the devices are shown boxed and the arrows represent the direction of transmission of information. The measuring device essentially comprises:
- Un premier capteur de type microsystème électromécanique mesurant ledit paramètre d'inertie. Ce capteur fonctionne à une première fréquence F1 et on note M1 (t) les mesures issues de ce capteur en fonction du temps t ;  A first sensor of the electromechanical microsystem type measuring said inertia parameter. This sensor operates at a first frequency F1 and we note M1 (t) the measurements from this sensor as a function of time t;
- un second capteur de type dispositif à atomes froids mesurant également ledit paramètre d'inertie. Ce capteur fonctionne à une seconde fréquence de mesure F2 inférieure à la première fréquence de mesure F1 . Typiquement, F2 est de l'ordre du Hertz. On note M2(t) les mesures issues de ce capteur en fonction du temps t ;  a second cold atom device sensor also measuring said inertia parameter. This sensor operates at a second measurement frequency F2 lower than the first measurement frequency F1. Typically, F2 is of the order of Hertz. M2 (t) measures the measurements from this sensor as a function of time t;
- Une électronique de comparaison qui a deux fonctions. Sa première fonction est de comparer à une cadence qui est celle de la seconde fréquence, les mesures issues du premier et du second capteur. Sa seconde fonction est de calculer une mesure du paramètre d'inertie à la première fréquence.  - A comparison electronics that has two functions. Its first function is to compare at a rate that is that of the second frequency, the measurements from the first and the second sensor. Its second function is to calculate a measurement of the inertia parameter at the first frequency.
On sait que, par nature, les dispositifs à atomes froids donnent des mesures d'une grande stabilité. Par conséquent, à un instant t0 de mesure, la mesure 2(t0) est considérée comme une mesure exacte du paramètre. Généralement, le premier capteur étant moins précis que le second, sa mesure M1 (t0) à cet instant t0 est différente de M2(t0). On appelle B(t0) le biais qui existe entre ces deux mesures et on a la relation simple :It is known that, by nature, the cold atom devices give measures of great stability. Therefore, at a time t 0 of measurement, the measurement 2 (t 0 ) is considered as an exact measure of the parameter. Generally, the first sensor is less accurate than the second, its measurement M1 (t 0 ) at this time t 0 is different from M2 (t 0 ). We call B (t 0 ) the bias that exists between these two measures and we have the simple relation:
2(to) = M1 (to) + B(to)  2 (to) = M1 (to) + B (to)
Entre cette première mesure réalisée à l'instant t0 et la mesure suivante réalisée par le second capteur, il s'écoule une période de temps T2 qui vaut 1 /F2. Avec une cadence de mesure à 1 Hertz, T2 vaut 1 seconde. Pendant cette durée T2, même si le premier capteur dérive, son biais reste pratiquement constant. Ainsi, on peut considérer qu'à tout instant t choisi entre t0 et t0 +T2, la mesure issue du premier capteur est exacte à condition qu'elle soit corrigée du biais B(t0). On peut alors écrire, en notant VRAIE(Î) la mesure exacte à l'instant t : Between this first measurement carried out at time t 0 and the next measurement made by the second sensor, a period of time T2 which is equal to 1 / F 2 flows. With a measurement rate at 1 Hertz, T2 is 1 second. During this period T2, even if the first sensor drifts, its bias remains practically constant. Thus, we can consider that at any time t selected between t 0 and t 0 + T2, the measurement from the first sensor is accurate provided that it is corrected bias B (t 0 ). We can then write, noting V RAIE (Î) the exact measure at time t:
MVRAIE(t) = M1 (t) + B(to) M V RAIE (t) = M1 (t) + B (to)
Ainsi, la connaissance du biais à la fréquence F2 permet, à partir de la mesure effectuée par le premier capteur de connaître la mesure vraie à la fréquence F1 qui peut être beaucoup plus importante que la fréquence F2 et qui n'est limitée que par les caractéristiques du capteur MEMS.  Thus, knowledge of the bias at the frequency F2 makes it possible, from the measurement made by the first sensor, to know the true measurement at the frequency F1, which can be much greater than the frequency F2 and which is only limited by the MEMS sensor characteristics.
La correction du biais peut se faire de façon électronique. On calcule périodiquement le biais entre les deux capteurs et on en tient compte dans le calcul de la mesure finale. Elle peut également être obtenue par une modification d'un ou de plusieurs paramètres physiques du premier capteur. On peut ainsi agir sur les tensions des électrodes de commande du microsystème électromécanique ou réguler sa température de façon à ramener le biais au voisinage de zéro. Bias correction can be done electronically. The bias between the two sensors is periodically calculated and taken into account in the calculation of the final measurement. It can also be obtained by modifying one or more physical parameters of the first sensor. It is thus possible to act on the voltages of the control electrodes of the electromechanical microsystem or to regulate its temperature so as to reduce the bias to near zero.
Le dispositif à atomes froids peut être de différentes natures. Cependant, il est intéressant de privilégier les architectures compactes, par exemple à atomes piégés, notamment sur puce électronique qui permettent l'intégration du capteur MEMS sur la même puce électronique. The cold atom device may be of different natures. However, it is interesting to focus on compact architectures, for example with trapped atoms, in particular on electronic chips that allow the integration of the MEMS sensor on the same electronic chip.
Un capteur à atomes froids de ce type comporte une partie centrale constituée d'une enceinte à vide dont toutes les parois sont transparentes, sauf la paroi supérieure qui est constituée d'une puce sur laquelle ont été déposés des fils conducteurs. Cette puce 10 est représentée sur la vue en perspective de la figure 2. Dans le cas de la figure 2, le paramètre inertiel mesuré est l'accélération dont la direction est symbolisée par quatre chevrons sur la figure 2. Dans cette version, la puce électronique comporte également le capteur MEMS 20 qui est dans ce cas, un accéléromètre. A cold atomic sensor of this type comprises a central part consisting of a vacuum chamber, all walls of which are transparent, except the upper wall which consists of a chip on which conductor wires have been deposited. This chip 10 is represented in the perspective view of FIG. 2. In the case of FIG. 2, the measured inertial parameter is the acceleration whose direction is symbolized by four chevrons in FIG. 2. In this version, the chip electronic also includes the MEMS sensor 20 which in this case is an accelerometer.
Les atomes servant à la mesure, initialement en phase gazeuse à température ambiante dans l'enceinte, sont piégés et refroidis à l'aide de six faisceaux laser disposés symétriquement deux à deux sur trois axes perpendiculaires deux à deux combinés à un gradient de champ magnétique généré par des bobines magnétiques extérieures. Les six faisceaux laser sont disposés symétriquement sur trois axes perpendiculaires. L'ensemble des faisceaux laser et des bobines magnétiques est appelé piège magnéto- optique tridimensionnel ou « P O 3D ».  The measuring atoms, initially in the gaseous phase at room temperature in the chamber, are trapped and cooled by six laser beams arranged symmetrically two by two on three axes perpendicular two by two combined with a magnetic field gradient generated by external magnetic coils. The six laser beams are arranged symmetrically on three perpendicular axes. The set of laser beams and magnetic coils is called three-dimensional magnetoptic trap or "P O 3D".
A la fin de la phase de refroidissement et de piégeage, les atomes sont transférés dans un piège conservatif purement magnétique créé au voisinage des fils conducteurs de la puce 10 et préparés dans un état interne, par exemple |1 >. A l'issue de cette phase, les atomes sont situés à une position spatiale initiale au-dessus de la puce électronique 10.  At the end of the cooling and trapping phase, the atoms are transferred into a purely magnetic conservative trap created in the vicinity of the conductive wires of the chip 10 and prepared in an internal state, for example | 1>. At the end of this phase, the atoms are located at an initial spatial position above the electronic chip 10.
Comme on le voit sur la figure 2, la puce électronique 10 comporte au moins un premier fil conducteur central 1 1 utilisé comme fil de piégeage principal, un second fil conducteur 12 perpendiculaire au premier fil et utilisé comme fil de piégeage secondaire, deux guides d'onde 13 latéraux parallèles entre eux, parallèles au fil de piégeage secondaire 12 et disposés symétriquement par rapport à celui-ci. Le nuage d'atomes 15 étant situé au- dessus du premier fil conducteur 1 1 , ledit premier fil conducteur étant traversé par un premier courant et générant un champ magnétostatique, le premier guide d'onde 13 étant traversé par un second courant modulé à une seconde fréquence micro-onde générant un second champ micro-onde et le second guide d'onde 13 étant traversé par un troisième courant modulé à une troisième fréquence micro-onde, générant un troisième champ microonde. Cette disposition permet de séparer et de recombiner magnétiquement le nuage atomique. Le procédé de séparation-recombinaison est détaillé ci- dessous.  As seen in FIG. 2, the electronic chip 10 comprises at least a first central conductor wire 1 1 used as the main trapping wire, a second conductive wire 12 perpendicular to the first wire and used as a secondary trapping wire, 13 lateral wave parallel to each other, parallel to the secondary trapping wire 12 and arranged symmetrically with respect thereto. The atomic cloud 15 is located above the first conductive wire 1 1, said first conductor wire being traversed by a first current and generating a magnetostatic field, the first waveguide 13 being traversed by a second current modulated to a second microwave frequency generating a second microwave field and the second waveguide 13 being traversed by a third current modulated at a third microwave frequency, generating a third microwave field. This arrangement makes it possible to separate and recombine magnetically the atomic cloud. The separation-recombination method is detailed below.
Dans une première étape, les atomes sont transférés dans une superposition à poids égaux des états internes |1 > et |2>, par une impulsion de durée courte dite impulsion π/2 combinant un champ micro-onde et un champ radiofréquence générés, par exemple, par les lignes conductrices 13 de la puce 10. Chaque atome est alors dans un état intermédiaire résultant noté (|1 > + |2>)/ v2. Dans une seconde étape, les atomes sont séparés en deux paquets d'onde associés aux états internes |1 > et |2>, grâce à un potentiel micro-onde MW dépendant de l'état interne. C'est cette phase de séparation atomique qui est représentée sur la figure 2. Le champ micro-onde utilisé pour la séparation est généré par les deux guides d'onde coplanaires ou CPW 13. La séparation est suivant la direction de l'accélération de façon à être le plus sensible possible. La distance de séparation s des atomes est de l'ordre d'une ou de plusieurs dizaines de micromètres. La séparation pendant un temps Ts entraîne un déphasage entre les deux paquets d'onde lié à l'accélération locale. In a first step, the atoms are transferred in an equal weight superposition of the internal states | 1> and | 2>, by a pulse of short duration called π / 2 pulse combining a microwave field and a radiofrequency field generated by for example, by the conductive lines 13 of the chip 10. Each atom is then in a resulting intermediate state noted (| 1> + | 2>) / v2. In a second step, the atoms are separated into two wave packets associated with the internal states | 1> and | 2>, thanks to a microwave potential MW depending on the internal state. It is this phase of atomic separation which is represented in FIG. 2. The microwave field used for the separation is generated by the two coplanar waveguides or CPW 13. The separation is in the direction of the acceleration of to be as sensitive as possible. The separation distance s of the atoms is of the order of one or more tens of micrometers. The separation during a time T s causes a phase shift between the two wave packets related to the local acceleration.
Dans une troisième étape, les atomes sont recombinés par la suppression des champs micro-ondes appliqués. Le déphasage est ensuite converti en différence de population entre les états internes au moyen d'une seconde impulsion « π/2 ».  In a third step, the atoms are recombined by the suppression of the applied microwave fields. The phase shift is then converted into a population difference between the internal states by means of a second pulse "π / 2".
Le nuage atomique est détecté en utilisant la technique d'imagerie par absorption qui consiste à mesurer à l'aide d'une caméra CCD l'absorption d'un faisceau laser quasi-résonant par le nuage atomique. On a ainsi accès, par spectroscopie optique, aux populations des deux états internes donc au déphasage recherché. Alternativement, les populations des deux états internes peuvent être mesurées par fluorescence à l'aide de photodiodes. Enfin, on calcule l'accélération qui est ensuite comparée à celle obtenue par l'accéléromètre à MEMS.  The atomic cloud is detected using the absorption imaging technique, which consists of measuring the absorption of a quasi-resonant laser beam by the atomic cloud using a CCD camera. Optical spectroscopy thus gives access to the populations of the two internal states, thus to the desired phase shift. Alternatively, the populations of the two internal states can be measured by fluorescence using photodiodes. Finally, the acceleration is calculated, which is then compared to that obtained by the MEMS accelerometer.
Le dispositif selon l'invention combinant deux types de capteurs permet de mesurer les accélérations et les vitesses de rotation à une cadence de mesure importante et avec une haute précision. The device according to the invention combining two types of sensors makes it possible to measure accelerations and speeds of rotation at a high measurement rate and with high precision.
Une centrale inertielle comporte trois capteurs d'accélération et trois capteurs de rotation. On peut réaliser une centrale inertielle à partir de ce type de dispositif de mesure, soit en totalité, soit partiellement. Un des avantages des capteurs à atomes froids sur puce électronique est que, non seulement, il est possible d'intégrer sur la même puce un ou plusieurs MEMS mais l'on peut également mesurer avec la même puce différents paramètres d'inertie selon les champs électromagnétiques générés dans les fils conducteurs. On simplifie ainsi considérablement la réalisation de la centrale inertielle. Les applications industrielles de cette centrale inertielle concernent notamment les dispositifs nécessitant un guidage inertiei de précision dans des environnements où le « GPS », acronyme de « Global Positioning System » peut être absent pendant des temps relativement longs, de l'ordre de plusieurs dizaines de minutes. De telles absence de GPS peuvent être accidentelles dues, par exemple, à une mauvaise réception ou intentionnelles, le signal GPS étant alors brouillé. An inertial unit has three acceleration sensors and three rotation sensors. An inertial unit can be made from this type of measuring device, either totally or partially. One of the advantages of cold-carbon sensors on an electronic chip is that, not only can one or more MEMS be integrated on the same chip, but it is also possible to measure different inertia parameters according to the fields with the same chip. electromagnetic generated in the conductive wires. This considerably simplifies the construction of the inertial unit. The industrial applications of this inertial unit concern in particular devices requiring precision inertial guidance in environments where the "GPS", acronym for "Global Positioning System" may be absent for relatively long times, of the order of several tens of hours. minutes. Such lack of GPS may be accidental due, for example, to poor reception or intentional, the GPS signal is then scrambled.

Claims

REVENDICATIONS
1 . Dispositif de mesure d'un paramètre d'inertie comprenant un premier capteur de mesure (20) dudit paramètre d'inertie, ledit premier capteur étant un microsystème électromécanique fonctionnant à une première fréquence, caractérisé en ce que ledit dispositif de mesure comporte : 1. A device for measuring an inertia parameter comprising a first measurement sensor (20) of said inertia parameter, said first sensor being an electromechanical microsystem operating at a first frequency, characterized in that said measuring device comprises:
- un second capteur de mesure dudit paramètre d'inertie, ledit second capteur étant un dispositif à atomes froids fonctionnant à une seconde fréquence de mesure inférieure à la première fréquence de mesure, ledit second capteur comportant une puce électronique (10) comportant des fils conducteurs parallèles (12, 13) et des moyens d'alimentation électrique desdits fils conducteurs, le nuage d'atomes froids nécessaire à la mesure étant disposé au voisinage de ladite puce électronique, les fils conducteurs et leurs moyens d'alimentation étant agencés de façon à créer les champs électromagnétiques nécessaires à la superposition d'états internes des atomes, à leur séparation et à leur recombinaison, le premier capteur (20) étant implanté sur ladite puce électronique ;  a second sensor for measuring said inertia parameter, said second sensor being a cold-atom device operating at a second measurement frequency lower than the first measurement frequency, said second sensor comprising an electronic chip (10) comprising conducting wires parallel (12, 13) and power supply means of said conductive son, the cloud of cold atoms necessary for the measurement being disposed in the vicinity of said electronic chip, the son son and their supply means being arranged to creating the electromagnetic fields necessary for the superposition of internal states of the atoms, their separation and their recombination, the first sensor (20) being implanted on said electronic chip;
une électronique de comparaison comprenant : des premiers moyens de calcul fonctionnant à la seconde fréquence de mesure et calculant, à partir d'une première mesure issue du premier capteur et d'une seconde mesure issue du second capteur, un biais entre ladite première mesure et ladite seconde mesure et ;  a comparison electronics comprising: first computing means operating at the second measurement frequency and calculating, from a first measurement from the first sensor and a second measurement from the second sensor, a bias between said first measurement and said second measure and;
des seconds moyens de calcul fonctionnant à la première fréquence de mesure, et calculant des mesures dudit paramètre d'inertie, chacune desdites mesures calculées étant égale à une première mesure issue du premier capteur corrigée dudit biais.  second computing means operating at the first measurement frequency, and calculating measurements of said inertia parameter, each of said calculated measurements being equal to a first measurement from the first corrected sensor of said bias.
2. Dispositif de mesure d'un paramètre d'inertie selon la revendication 1 , caractérisé en ce que la correction du biais est une correction électronique effectuée par les seconds moyens de calcul. 2. Device for measuring an inertia parameter according to claim 1, characterized in that the bias correction is an electronic correction performed by the second calculation means.
3. Dispositif de mesure d'un paramètre d'inertie selon la revendication 1 , caractérisé en ce que la correction du biais est obtenue par une modification d'un ou de plusieurs paramètres physiques du premier capteur. Device for measuring an inertia parameter according to claim 1, characterized in that the correction of the bias is obtained by a modification of one or more physical parameters of the first sensor.
4. Dispositif de mesure d'un paramètre d'inertie selon la revendication 3, caractérisé en ce que les paramètres physiques sont les tensions des électrodes de commande du microsystème électromécanique. 4. Device for measuring an inertia parameter according to claim 3, characterized in that the physical parameters are the voltages of the control electrodes of the electromechanical microsystem.
5. Dispositif de mesure d'un paramètre d'inertie selon la revendication 3, caractérisé en ce que le paramètre physique est la température du microsystème électromécanique. 5. Device for measuring an inertial parameter according to claim 3, characterized in that the physical parameter is the temperature of the electromechanical microsystem.
6. Dispositif de mesure d'un paramètre d'inertie selon la revendication 1 , caractérisé en ce que la puce électronique est agencée de façon à mesurer au moins un second paramètre d'inertie. 6. Device for measuring an inertia parameter according to claim 1, characterized in that the electronic chip is arranged to measure at least one second inertia parameter.
7. Dispositif de mesure d'un paramètre d'inertie selon l'une des revendications précédentes, caractérisé en ce que le paramètre d'inertie est soit une accélération, soit une vitesse de rotation. 7. Device for measuring an inertia parameter according to one of the preceding claims, characterized in that the inertia parameter is either an acceleration or a rotational speed.
8. Centrale inertielle comprenant trois accéléromètres agencés de façon à mesurer l'accélération dans trois directions de l'espace non coplanaires et trois gyromètres agencés de façon à mesurer la vitesse de rotation dans trois directions de l'espace non coplanaires, caractérisé en ce que au moins un des accéléromètres ou un des gyromètres de ladite centrale inertielle est un dispositif de mesure d'un paramètre d'inertie selon l'une des revendications précédentes. 8. Inertial unit comprising three accelerometers arranged to measure the acceleration in three non-coplanar space directions and three gyrometers arranged to measure the speed of rotation in three non-coplanar space directions, characterized in that at least one of the accelerometers or one of the gyrometers of said inertial unit is a device for measuring an inertia parameter according to one of the preceding claims.
9. Centrale inertielle selon la revendication 8, caractérisé en ce que les trois accéléromètres et les trois gyromètres sont des dispositifs de mesure d'un paramètre d'inertie selon l'une des revendications 1 à 7. 9. Inertial unit according to claim 8, characterized in that the three accelerometers and three gyrometers are devices for measuring an inertia parameter according to one of claims 1 to 7.
PCT/EP2015/081115 2014-12-30 2015-12-23 Hybrid inertia sensor employing cold atoms and mems and associated inertial platform WO2016107806A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1403026A FR3031187B1 (en) 2014-12-30 2014-12-30 COLD ATOMIC HYBRID INERTIA SENSOR AND MEMS AND ASSOCIATED INERTIAL PLANT
FR1403026 2014-12-30

Publications (1)

Publication Number Publication Date
WO2016107806A1 true WO2016107806A1 (en) 2016-07-07

Family

ID=52737140

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2015/081115 WO2016107806A1 (en) 2014-12-30 2015-12-23 Hybrid inertia sensor employing cold atoms and mems and associated inertial platform

Country Status (2)

Country Link
FR (1) FR3031187B1 (en)
WO (1) WO2016107806A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3060114A1 (en) * 2016-12-13 2018-06-15 Commissariat A L'energie Atomique Et Aux Energies Alternatives NAVIGATION ASSISTANCE METHOD, COMPUTER PROGRAM PRODUCT, AND INERTIAL NAVIGATION CENTER
WO2019134755A1 (en) * 2018-01-08 2019-07-11 Siemens Aktiengesellschaft Multi-axis sensor device
EP3816577A1 (en) * 2019-10-28 2021-05-05 Honeywell International Inc. System having an extended life high performance sensor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100149541A1 (en) * 2008-12-17 2010-06-17 Lockheed Martin Corporation Performance of an Atom Interferometric Device through Complementary Filtering
EP2199742A1 (en) * 2008-12-16 2010-06-23 Thales Matter-wave gyrometric and accelerometric sensor integrated on an atomic chip
FR2975218A1 (en) * 2011-05-10 2012-11-16 Thales Sa Atom cooling and trapping device for use in e.g. rotation sensor, for cooling atoms to specific temperature, has substrate that is made transparent to preset wavelength, and optical beam passing through chip
US20130152680A1 (en) * 2011-12-15 2013-06-20 Honeywell International Inc. Atom-based accelerometer
EP2629303A1 (en) * 2012-02-17 2013-08-21 Honeywell International Inc. Atom interferometer with adaptive launch direction and/or position
EP2679953A1 (en) * 2012-06-27 2014-01-01 Honeywell International Inc. Closed loop atomic inertial sensor
WO2014145233A1 (en) * 2013-03-15 2014-09-18 Johnson David M S Ring architecture for sequential operation of an atomic gyroscope

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2199742A1 (en) * 2008-12-16 2010-06-23 Thales Matter-wave gyrometric and accelerometric sensor integrated on an atomic chip
US20100149541A1 (en) * 2008-12-17 2010-06-17 Lockheed Martin Corporation Performance of an Atom Interferometric Device through Complementary Filtering
FR2975218A1 (en) * 2011-05-10 2012-11-16 Thales Sa Atom cooling and trapping device for use in e.g. rotation sensor, for cooling atoms to specific temperature, has substrate that is made transparent to preset wavelength, and optical beam passing through chip
US20130152680A1 (en) * 2011-12-15 2013-06-20 Honeywell International Inc. Atom-based accelerometer
EP2629303A1 (en) * 2012-02-17 2013-08-21 Honeywell International Inc. Atom interferometer with adaptive launch direction and/or position
EP2679953A1 (en) * 2012-06-27 2014-01-01 Honeywell International Inc. Closed loop atomic inertial sensor
WO2014145233A1 (en) * 2013-03-15 2014-09-18 Johnson David M S Ring architecture for sequential operation of an atomic gyroscope

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DE KOUREPENIS ET AL.: "Performance of MEMS inertial sensors", IEEE PLANS, April 1998 (1998-04-01)
DE LAUTIER ET AL.: "Hybridizing matter-wave and classical accelerometers", APPLIED PHYSICS LETTERS, vol. 105, 2014, pages 144102
LAUTIER J ET AL: "Hybridizing matter-wave and classical accelerometers", APPLIED PHYSICS LETTERS, AMERICAN INSTITUTE OF PHYSICS, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747, vol. 105, no. 14, 6 October 2014 (2014-10-06), XP012190775, ISSN: 0003-6951, [retrieved on 19010101], DOI: 10.1063/1.4897358 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3060114A1 (en) * 2016-12-13 2018-06-15 Commissariat A L'energie Atomique Et Aux Energies Alternatives NAVIGATION ASSISTANCE METHOD, COMPUTER PROGRAM PRODUCT, AND INERTIAL NAVIGATION CENTER
EP3339805A1 (en) * 2016-12-13 2018-06-27 Commissariat à l'énergie atomique et aux énergies alternatives Method for assisting navigation, associated computer program product and inertial navigation unit
US10401177B2 (en) 2016-12-13 2019-09-03 Commissariat A L'energie Atomique Et Aux Energies Alternatives Navigational aid method, computer program product and inertial navigation system therefor
WO2019134755A1 (en) * 2018-01-08 2019-07-11 Siemens Aktiengesellschaft Multi-axis sensor device
EP3816577A1 (en) * 2019-10-28 2021-05-05 Honeywell International Inc. System having an extended life high performance sensor
US11255672B2 (en) 2019-10-28 2022-02-22 Honeywell International Inc. System having an extended life high performance sensor

Also Published As

Publication number Publication date
FR3031187B1 (en) 2017-10-20
FR3031187A1 (en) 2016-07-01

Similar Documents

Publication Publication Date Title
Dutta et al. Continuous cold-atom inertial sensor with 1 nrad/sec rotation stability
TWI642938B (en) Composite mass system and mathod for determining an inertial parameter
Garrido Alzar Compact chip-scale guided cold atom gyrometers for inertial navigation: Enabling technologies and design study
Stockton et al. Absolute geodetic rotation measurement using atom interferometry
WO2018154254A1 (en) Hybrid inertial measurement system and method using a light pulse cold atom interferometer
EP2791620B1 (en) Measurement by means of atom interferometry
JP5523702B2 (en) Inertial navigation device
FR3048085B1 (en) ACCELEROMETER OF MAGNETIC LEVITATION WITH HIGH PRECISION
EP2199742B1 (en) Matter-wave gyrometric and accelerometric sensor integrated on an atomic chip
WO2016107806A1 (en) Hybrid inertia sensor employing cold atoms and mems and associated inertial platform
FR2551552A1 (en) ANGULAR SPEED DETECTOR USING TWO VIBRANT ACCELEROMETERS FIXED TO A PARRALLELOGRAM
EP3436779B1 (en) Device for measuring rotation, associated method and inertial navigation unit
US9227840B2 (en) Micro-electro mechanical apparatus with PN-junction
FR2531481A1 (en) TRANSDUCER AND METHOD FOR DETECTING THE ANGULAR POSITION OF THE BODY OF A MEASUREMENT INSTRUMENT AND OF SURVEY CONTROL IN RELATION TO A REFERENCE POSITION
WO2017093166A1 (en) Inertial navigation system with improved accuracy
Hauth et al. Atom interferometry for absolute measurements of local gravity
Wang et al. Enhancing inertial navigation performance via fusion of classical and quantum accelerometers
WO2020084272A1 (en) Multi-axis atom interferometer system and method
Carraz et al. Measuring the Earth's gravity field with cold atom interferometers
FR3021120A1 (en) GRAVIMETER WITH WAVES OF MATERIAL WITH MAGNETIC FIELD MICROWAVE SEPARATION
Wang et al. Improving measurement performance via fusion of classical and quantum accelerometers
Wang et al. High resolution quartz flexure accelerometer based on laser self-mixing interferometry
FR2826446A1 (en) Gyrometer/accelerometer inertial value atomic interferometer having vacuum ballistic trajectory laser beam transmitting/separating trajectories and detecting recombined level with successive burst alternate directions
WO2023194296A1 (en) Cold-atom and light-pulse interferometric system and method, for the on-board measurement of acceleration or rotation
Gao et al. Improvement of atom interferometer by rejecting typical noise sources

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15825796

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15825796

Country of ref document: EP

Kind code of ref document: A1