WO2016106700A1 - Communication method and apparatus - Google Patents

Communication method and apparatus Download PDF

Info

Publication number
WO2016106700A1
WO2016106700A1 PCT/CN2014/095946 CN2014095946W WO2016106700A1 WO 2016106700 A1 WO2016106700 A1 WO 2016106700A1 CN 2014095946 W CN2014095946 W CN 2014095946W WO 2016106700 A1 WO2016106700 A1 WO 2016106700A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmit power
parameter
base station
power
processing unit
Prior art date
Application number
PCT/CN2014/095946
Other languages
French (fr)
Chinese (zh)
Inventor
程型清
吴海
吴强
龚政委
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2014/095946 priority Critical patent/WO2016106700A1/en
Priority to CN201480084392.2A priority patent/CN107113736B/en
Publication of WO2016106700A1 publication Critical patent/WO2016106700A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters

Definitions

  • the present invention relates to the field of communications, and in particular, to a communication method and apparatus.
  • the downlink In the existing LTE (Long Term Evolution) system, the downlink generally employs OFDMA (Orthogonal Frequency Division Multiple Access) technology.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • NOMA Non-Orthogonal Multiple Access
  • the base station allocates different powers to different user equipments (UEs), but different UEs can use the same frequency resources.
  • paired UEs Two or more UEs that communicate with the base station using the same time-frequency resource block are referred to as paired UEs.
  • UE1 and UE2 use the same time-frequency resource block to communicate with the base station, and UE2 and UE1 are paired UEs.
  • the base station uses different transmit powers to transmit signals to UE1 and UE2.
  • Downstream usually refers to the direction of the base station to the UE.
  • UE1 needs to eliminate the interference of the downlink signal of UE2.
  • UE1 cannot obtain related information of downlink signals of UE2, and cannot implement communication by using NOMA technology.
  • Embodiments of the present invention provide a communication method and apparatus, which implement communication by using NOMA technology.
  • an embodiment of the present invention provides a base station, which is configured to serve the at least two user equipments, where the at least two UEs include a first UE and a second UE, and includes: a processing unit, configured to determine the a power parameter of the first UE and a parameter ⁇ 2, ue1 ; wherein the power parameter of the first UE includes: a UE-specific parameter of the first UE Cell specific parameters of the first UE And a reference signal transmission power of the first UE, where the parameter ⁇ 2, ue1 is a parameter related to a ratio of the first transmit power to the second transmit power, where the first transmit power is downlink data of the first UE Transmit power, the second transmit power is the transmit power of the downlink data of the second UE, and the sending unit is configured to send the power parameter of the first UE and the parameter ⁇ 2 to the first UE ,
  • the processing unit is further configured to determine the first transmit power according to the power parameter of the first UE, where the sending unit is
  • the parameter ⁇ 2, ue1 is a ratio of the first transmit power to the second transmit power; or the parameter ⁇ 2, ue1 is the first ⁇ ue1 UE and ⁇ ue2 ratio of the second UE, wherein the ⁇ ue1 represents EPRE energy per resource element of the physical downlink shared channel PDSCH of the first UE and the first UE-specific reference cell a ratio of EPREs of the signals, the ⁇ ue1 including ⁇ A, ue1 and ⁇ B, ue1 , the ⁇ A, ue1 and ⁇ B, ue1 corresponding to different orthogonal frequency division multiplexing OFDM symbol indexes of the first UE;
  • the ⁇ ue2 represents a ratio of an EPRE of a PDSCH of the second UE and an EPRE of a cell-specific reference signal of the second UE, where ⁇ ue2 includes ⁇ A, ue2 and ⁇ B
  • the processing unit is further configured to acquire the adjustment parameter ⁇ 1, ue1 of the first transmit power;
  • the sending unit is further configured to send, to the first UE, the adjustment parameter ⁇ 1, ue1 of the first transmit power , where the processing unit is specifically configured to use, according to the power parameter of the first UE,
  • the first transmit power adjustment parameter ⁇ 1, ue1 determines the first transmit power.
  • the adjustment parameter ⁇ 1, ue1 of the first transmit power is an adjustment value of the first transmit power.
  • the processing unit is specifically configured to be used according to the Said And the adjustment parameter ⁇ 1, ue1 of the first transmit power determines the ⁇ A, ue1 and the ⁇ B, ue1 ; and according to the ⁇ A, ue1 and the ⁇ B, ue1 and the first UE
  • the reference signal transmits power to determine the first transmit power.
  • the processing unit is specifically configured to be used according to the foregoing And said Determining the ⁇ A, ue1 and the ⁇ B, ue1 , and determining the first transmit power according to the ⁇ A, ue1 and the ⁇ B, ue1 and the reference signal transmit power of the first UE.
  • the processing unit is further configured to use, according to the power parameter of the first UE And determining, by the parameter ⁇ 2, ue1 , the second transmit power; the sending unit is further configured to send the downlink data of the second UE by using the second transmit power.
  • the embodiment of the present invention provides a communication method, which is applicable to a communication network that includes at least two user equipments, where the at least two UEs include a first UE and a second UE, and the method includes:
  • the base station acquires the power parameter of the first UE and the parameter ⁇ 2, ue1 ; wherein the power parameter of the first UE includes: the UE-specific parameter of the first UE Cell specific parameters of the first UE And a reference signal transmission power of the first UE, where the parameter ⁇ 2, ue1 is a parameter related to a ratio of the first transmit power to the second transmit power, where the first transmit power is downlink data of the first UE Transmit power; the second transmit power is a transmit power of downlink data of the second UE;
  • the base station sends the downlink signal of the first UE by using the first transmit power.
  • the parameter ⁇ 2, ue1 is a ratio of the first transmit power to the second transmit power; or the parameter ⁇ 2, ue1 is the first ⁇ ue1 UE and the second UE ratio ⁇ ue2, wherein the ⁇ ue1 represents the physical downlink shared channel PDSCH EPRE energy per resource element of the first UE and the first UE to a cell-specific reference signal Ratio of EPRE, the ⁇ ue1 includes ⁇ A, ue1 and ⁇ B, ue1 , the ⁇ A, ue1 and ⁇ B, ue1 corresponding to different orthogonal frequency division multiplexing OFDM symbol indexes of the first UE; ⁇ ue2 represents a ratio of an EPRE of a PDSCH of the second UE to an EPRE of a cell-specific reference signal of the second UE, the ⁇ ue2 including ⁇ A, ue2 and ⁇ B, ue
  • the method further:
  • the base station acquires an adjustment parameter ⁇ 1, ue1 of the first transmit power; the base station sends an adjustment parameter ⁇ 1, ue1 of the first transmit power to the first UE; Determining the first transmit power by the power parameter of the UE includes: determining, by the base station, the first transmit power according to the power parameter of the first UE and the adjustment parameter ⁇ 1, ue1 of the first transmit power.
  • the adjustment parameter ⁇ 1, ue1 of the first transmit power is an adjustment value of the first transmit power.
  • the base station determines, according to the power parameter of the first UE and the adjustment parameter ⁇ 1, ue1 of the first transmit power
  • the first transmit power includes: the base station according to the Said Determining the ⁇ A, ue1 and the ⁇ B, ue1 with the adjustment parameter ⁇ 1, ue1 of the first transmit power; the base station according to the ⁇ A, ue1 and the ⁇ B, ue1 and the The reference signal of a UE transmits power, and the first transmit power is determined.
  • the determining, by the base station, the first transmit power according to the power parameter of the first UE includes: And said Determining the ⁇ A, ue1 and the ⁇ B, ue1 ; the base station determines the first transmission according to the ⁇ A, ue1 and the ⁇ B, ue1 and the reference signal transmission power of the first UE power.
  • the method further includes: the base station according to the power parameter and location of the first UE Determining the second transmission power by using the parameter ⁇ 2, ue1 ; the base station transmitting the second downlink data by using the second transmission power.
  • the embodiment of the present invention provides a first user equipment UE, where the first UE communicates with a base station, the base station serves at least two UEs, and the at least two UEs include the first UE.
  • a second UE comprising: a receiving unit, configured to receive a power parameter of the first UE and a parameter ⁇ 2, ue1 sent by the base station; where the power parameter of the first UE includes: First UE Cell specific parameters of the first UE And a reference signal transmission power of the first UE, where the parameter ⁇ 2, ue1 is a parameter related to a ratio of the first transmit power to the second transmit power, where the first transmit power is downlink data of the first UE Transmit power; the second transmit power is the transmit power of the downlink data of the second UE; the processing unit is configured to determine the first transmit power according to the power parameter of the first UE; the processing unit, The method is further configured to determine the second transmit power according to the power parameter of the first UE and the parameter
  • the parameter ⁇ 2, ue1 is a ratio of the first transmit power to the second transmit power; or the parameter ⁇ 2, ue1 is the first ⁇ ue1 UE and ⁇ ue2 ratio of the second UE, wherein the ⁇ ue1 represents EPRE energy per resource element of the physical downlink shared channel PDSCH of the first UE and the first UE-specific reference cell a ratio of EPREs of the signals, the ⁇ ue1 including ⁇ A, ue1 and ⁇ B, ue1 , the ⁇ A, ue1 and ⁇ B, ue1 corresponding to different orthogonal frequency division multiplexing OFDM symbol indexes of the first UE;
  • the ⁇ ue2 represents a ratio of an EPRE of a PDSCH of the second UE and an EPRE of a cell-specific reference signal of the second UE, where ⁇ ue2 includes ⁇ A, ue2 and ⁇ B
  • the receiving unit is further configured to receive, by the base station, an adjustment parameter of the first transmit power ⁇ 1, ue1 ;
  • the processing unit is specifically configured to determine the first transmit power according to the power parameter of the first UE and the adjustment parameter ⁇ 1, ue1 of the first transmit power.
  • the adjustment parameter ⁇ 1, ue1 of the first transmit power is an adjustment value of the first transmit power.
  • the processing unit is specifically configured to be used according to the foregoing Said And the adjustment parameter ⁇ 1, ue1 of the first transmit power determines the ⁇ A, ue1 and the ⁇ B, ue1 ; and according to the ⁇ A, ue1 and the ⁇ B, ue1 and the first UE
  • the reference signal transmits power to determine the first transmit power.
  • the processing unit is specifically configured to be used according to the foregoing And said Determining the ⁇ A, ue1 and the ⁇ B, ue1 , and determining the first transmit power according to the ⁇ A, ue1 and the ⁇ B, ue1 and the reference signal transmit power of the first UE.
  • the embodiment of the present invention provides a communication method, which is applicable to a communication network that includes at least two user equipments, where the at least two UEs include a first UE and a second UE, and the method includes: The UE receives the power parameter of the first UE and the parameter ⁇ 2, ue1 sent by the base station, where the power parameter of the first UE includes: the first UE Cell specific parameters of the first UE And a reference signal transmission power of the first UE, where the parameter ⁇ 2, ue1 is a parameter related to a ratio of the first transmit power and the second transmit power, where the first transmit power is the first UE
  • the transmit power of the downlink data; the second transmit power is the transmit power of the downlink data of the second UE; the first UE determines the first transmit power according to the power parameter of the first UE; Determining, by the UE , the second transmit power according to the first transmit power and the parameter ⁇ 2, ue1 ; the first UE receives a
  • the parameter ⁇ 2, ue1 is a ratio of the first transmit power to the second transmit power; or the parameter ⁇ 2, ue1 is the first ⁇ ue1 UE and ⁇ ue2 ratio of the second UE, wherein the ⁇ ue1 represents EPRE energy per resource element of the physical downlink shared channel PDSCH of the first UE and the first UE-specific reference cell a ratio of EPREs of the signals, the ⁇ ue1 including ⁇ A, ue1 and ⁇ B, ue1 , the ⁇ A, ue1 and ⁇ B, ue1 corresponding to different orthogonal frequency division multiplexing OFDM symbol indexes of the first UE;
  • the ⁇ ue2 represents a ratio of an EPRE of a PDSCH of the second UE and an EPRE of a cell-specific reference signal of the second UE, where ⁇ ue2 includes ⁇ A, ue2 and ⁇ B
  • the method further includes: receiving, by the first UE, the first transmit power sent by the base station The adjustment parameter ⁇ 1, ue1 ; determining, by the first UE, the first transmit power according to the power parameter of the first UE, that: the first UE according to the power parameter of the first UE and the first transmit power The adjustment parameter ⁇ 1, ue1 determines the first transmit power.
  • the adjustment parameter ⁇ 1, ue1 of the first transmit power is an adjustment value of the first transmit power.
  • the first UE, according to the power parameter of the first UE, and the adjustment parameter of the first transmit power, ⁇ 1, ue1 Determining the first transmit power includes: the first UE according to the Said Determining the ⁇ A, ue1 and the ⁇ B, ue1 with the adjustment parameter ⁇ 1, ue1 of the first transmit power; the first UE according to the ⁇ A, ue1 and the ⁇ B, ue1 and Determining the first transmit power by using a reference signal transmit power of the first UE.
  • the determining, by the first UE, the first transmit power according to the power parameter of the first UE includes: Description And said Determining the ⁇ A, ue1 and the ⁇ B, ue1 ; the first UE determines the first according to the ⁇ A, ue1 and the ⁇ B, ue1 and the reference signal transmit power of the first UE A transmit power.
  • an embodiment of the present invention provides a communication system, including a base station and at least two user equipments, the base station serving the at least two UEs, where the at least two UEs include a first UE and a second
  • the UE is the base station included in the foregoing first aspect
  • the first UE is the first UE included in the foregoing third aspect.
  • the base station acquires the power parameter of the first user equipment UE and the parameter ⁇ 2, ue1 , and sends the power parameter of the first user equipment UE and the parameter ⁇ 2, ue1 to the first UE, so that the first UE
  • the first transmit power may be obtained according to the power parameter of the first user equipment UE
  • the second transmit power is determined according to the parameter ⁇ 2, ue1 and the first transmit power.
  • the first UE can cancel the interference of the downlink data of the second UE according to the second transmit power, and implement communication by using the NOMA technology.
  • FIG. 1 is a schematic structural diagram of a network architecture according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of a base station according to Embodiment 1 of the present invention.
  • FIG. 3 is a schematic structural diagram of a first UE according to Embodiment 3 of the present invention.
  • FIG. 4 is a schematic flowchart of a communication method according to Embodiment 5 of the present invention.
  • FIG. 5 is a schematic flow chart of a communication method according to Embodiment 7 of the present invention.
  • the UE in the embodiment of the present invention may be, for example, a cellular phone, a cordless phone, a SIP (Session Initiation Protocol) phone, a WLL (Wireless Local Loop) station, or a PDA (Personal Digital Assistant, Personal digital processing), handheld devices with wireless communication capabilities, in-vehicle devices, wearable devices, A computing device or other processing device connected to a wireless modem.
  • a cellular phone a cordless phone
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant, Personal digital processing
  • a base station in an embodiment of the invention may, for example, refer to a device in an access network that communicates with a wireless terminal over one or more sectors over an air interface.
  • the base station can be used to convert the received air frame and the network interconnection protocol (English: Internet Protocol, IP for short) into a router between the wireless terminal and the rest of the access network, where the access is performed.
  • the rest of the network may include an IP protocol network.
  • the base station can also coordinate attribute management of the air interface.
  • the base station may be a base station (English: Base Transceiver Station, BTS for short) in GSM (English: Global System for Mobile Communication) or CDMA (Code Division Multiple Access).
  • NodeB Wideband Code Division Multiple Access
  • LTE Long Term Evolution
  • An embodiment of the present invention discloses a communication method and apparatus, where a base station notifies a first UE of information related to a first transmit power and a second transmit power, and the first UE acquires information related to the first transmit power and the second transmit power, thereby The first UE cancels the interference of the downlink data of the second UE according to the information related to the first transmit power and the second transmit power, and implements communication using NOMA.
  • the first transmit power is the transmit power of the downlink data of the first UE; the second transmit power is the transmit power of the downlink data of the second UE.
  • FIG. 1 is a schematic structural diagram of a network architecture according to an embodiment of the present invention.
  • the network includes a base station and a UE, and the UE may be two or more. Only the first UE and the second UE are shown in the figure.
  • the first UE and the second UE communicate with the base station by using the same time-frequency resource block, and the downlink data of the first UE and the downlink data of the second UE are different in transmit power.
  • the base station is any one of the base stations in the embodiment of the present invention
  • the first UE is any one of the first UEs in the embodiment of the present invention.
  • the first embodiment of the present invention discloses a base station, where the base station serves at least two UEs, and the at least two UEs include a first UE and a second UE.
  • FIG. 2 is a schematic structural diagram of a base station according to Embodiment 1 of the present invention.
  • the base station includes a processing unit 201 and a transmitting unit 202.
  • the processing unit may be a processor, and the sending unit may be a transmitter.
  • the processing unit 201 is used for the power parameter and the parameter ⁇ 2, ue1 of the first user equipment UE;
  • the sending unit 202 is configured to send the power parameter of the first UE and the parameter ⁇ 2, ue1 to the first UE;
  • the processing unit 201 is further configured to determine the first transmit power according to the power parameter of the first UE;
  • the sending unit 202 is further configured to send downlink data of the first UE by using the first transmit power.
  • the power parameter of the first UE includes: UE specific parameters of the first UE Cell specific parameters of the first UE And a reference signal transmission power of the first UE.
  • the parameter ⁇ 2, ue1 is a parameter related to a ratio of the first transmit power to the second transmit power, where the first transmit power is a transmit power of downlink data of the first UE; the second transmit power The transmit power of the downlink data of the second UE.
  • UE-specific parameters of the first UE provided by the first higher layer a cell-specific parameter of the first UE that is provided by the first layer;
  • the first layer is a higher layer of the first UE, and may be a base station of the first UE or another network entity.
  • the P A of different UEs in the same cell may be different, but the transmit power of P B and the reference signal are the same.
  • the parameter ⁇ 2, ue1 is a ratio of the first transmit power to the second transmit power.
  • the parameter ⁇ 2, ue1 to the first UE ⁇ ue1 and ⁇ ue2 ratio of the second UE indicates an energy per resource element (EPRE) of a physical downlink share channel (PDSCH) of the first UE and a cell-specific reference signal of the first UE Ratio of EPRE, the ⁇ ue1 includes ⁇ A, ue1 and ⁇ B, ue1 , the ⁇ A, ue1 and ⁇ B, ue1 corresponding to different orthogonal frequency division multiplexing of the first UE (orthogonal frequency division Multiplexing, OFDM) symbol index; the ⁇ ue2 represents a ratio of an EPRE of a PDSCH of the second UE and an EPRE of a cell-specific reference signal of the second UE, the ⁇ ue2 including ⁇ A, ue2 and ⁇ B , ue2 , the ⁇ A, ue2 and ⁇
  • the OFDM symbol index corresponding to the ⁇ A, ue1 and the ⁇ B, ue1 is as shown in Table 1 or Table 2:
  • n s represents a slot index in a radio frame.
  • the OFDM symbol index corresponding to the ⁇ A, ue2, and ⁇ B, ue2 is as shown in Table 3 or Table 4:
  • n s represents a slot index in a radio frame.
  • the sending unit 202 sends the downlink control information (DCI) to the first UE by using a high layer signaling or a downlink downlink control channel (PDCCH).
  • DCI downlink control information
  • PDCCH downlink downlink control channel
  • the processing unit 201 is configured according to the And said Determining the ⁇ A, ue1 and ⁇ B, ue1 , and determining the first transmit power according to the ⁇ A, ue1 and ⁇ B, ue1 and the reference signal transmit power of the first UE.
  • the processing unit 201 determines the ⁇ A, ue1 according to the following formula:
  • the processing unit 201 is specifically configured to determine the ⁇ B, ue1 according to the ⁇ A, ue1 and the fifth table:
  • the sending unit 202 is further configured to indicate a ⁇ power-offset in a downlink power offset field in a DCI of a PDCCH of the first UE.
  • the downlink power offset domain can occupy one bit.
  • the first UE learns the delta power-offset through the downlink power offset domain.
  • the downlink power offset domain can be as follows:
  • the processing unit 201 is further configured to determine the second transmit power according to the power parameter of the first UE and the parameter ⁇ 2, ue1 ; the sending unit 202 is further configured to: Transmitting downlink data of the second UE by using the second transmit power.
  • the processing unit 201 is configured to use the first transmit power and the parameter ⁇ 2, ue1 determines the second transmit power. For the determination of the first transmit power, refer to the previous description.
  • the processing unit 201 for respectively 2, ue1 determining the ⁇ A, ue2 and ⁇ B, ue2 according to the ⁇ A, ue1, ⁇ B, ue1 , and the parameter ⁇ , and according to the ⁇ A, ue2 and ⁇ B, ue2 determines the second transmit power.
  • the processing unit 201 is further configured to determine the second transmit power according to the reference signal transmission powers of the ⁇ A, ue1 , ⁇ B, ue1 and the second UE.
  • the base station 201 acquires a first embodiment of the present invention, the user equipment UE power parameters and parameter ⁇ 2, ue1, and the transmitting unit 202 by a first user equipment UE power parameter and the parameter ⁇ 2, ue1 to a The first UE, so that the first UE can acquire the first transmit power according to the power parameter of the first user equipment UE, and determine the second transmit power according to the parameter ⁇ 2, ue1 and the first transmit power.
  • the first UE can cancel the interference of the downlink data of the second UE according to the second transmit power, and implement communication by using the NOMA technology.
  • the second embodiment of the present invention further discloses a base station.
  • the difference between the first embodiment and the second embodiment is that the processing unit 201 is further configured to acquire the adjustment parameter ⁇ 1, ue1 of the first transmit power.
  • the sending unit 202 is further configured to send the adjustment parameter ⁇ 1, ue1 of the first transmit power to the first UE.
  • the processing unit 201 is specifically configured to determine the first transmit power according to the power parameter of the first UE and the adjustment parameter ⁇ 1, ue1 of the first transmit power.
  • the sending unit 202 sends the adjustment parameter ⁇ 1, ue1 of the first transmit power to the first UE by using a downlink control in a higher layer signaling or a physical downlink control channel PDCCH. .
  • the adjustment parameter ⁇ 1, ue1 of the first transmit power is an adjustment value of the first transmit power.
  • the processing unit 201 determines the obtained third transmit power according to the power parameter of the first UE, where the first transmit power is a third transmit power minus or plus an adjustment value of the first transmit power.
  • the processing unit 201 determines, according to the power parameter of the first UE, a process of determining the obtained third transmit power, and the processing unit 201 in the first embodiment determines the The process of transmitting power is the same.
  • the processing unit 201 is according to the And said Determining ⁇ A, ue1 and ⁇ B, ue1 , and determining the third transmit power according to the ⁇ A, ue1 and the ⁇ B, ue1 and the reference signal transmit power of the first UE.
  • the processing unit 201 when determining the third transmit power, is specifically configured to determine the ⁇ A, ue1 according to the following formula:
  • the processing unit 201 is specifically configured to determine the ⁇ B, ue1 according to the ⁇ A, ue1 and the fifth table.
  • the processing unit 201 is configured according to the Said And the first transmit power adjustment parameter ⁇ 1, ue1 determines ⁇ A, ue1 and ⁇ B, ue1 ; and according to the ⁇ A, ue1 and the ⁇ B, ue1 and the reference signal of the first UE Power, determining the first transmit power.
  • processing unit 201 is specifically configured to: ⁇ A, ue1 according to the following formula:
  • the processing unit 201 is specifically configured to determine the ⁇ B, ue1 according to the ⁇ A, ue1 and Table 5.
  • the processing unit 201 in the base station acquires the adjustment parameter ⁇ 1, ue1 of the first transmit power, and sends the adjustment parameter ⁇ 1, ue1 of the first transmit power by using the sending unit 202 .
  • the base station schedules the first transmit power by using the first transmit power adjustment parameter ⁇ 1, ue1 to implement dynamic scheduling of the transmit power under the NOMA technology.
  • the third embodiment of the present invention further discloses a first user equipment UE.
  • the first UE communicates with a base station, the base station serves at least two UEs, and the at least two UEs include the first UE and the second UE.
  • FIG. 3 is a schematic structural diagram of a first UE according to Embodiment 3 of the present invention.
  • the first UE may include: a receiving unit 301 and a processing unit 302.
  • the receiving unit may specifically be a receiver, and the processing unit may be a processor.
  • the receiving unit 301 is configured to receive a power parameter of the first UE and a parameter ⁇ 2, ue1 sent by the base station.
  • the processing unit 302 is configured to determine a first transmit power according to a power parameter of the first UE.
  • the processing unit 302 is further configured to determine a second transmit power according to the power parameter of the first UE and the parameter ⁇ 2, ue1 .
  • the receiving unit 301 is further configured to receive a signal sent by the base station, where the received signal includes downlink data of the first UE.
  • the processing unit 302 is further configured to acquire downlink data of the first UE from the signal received by the receiving unit according to the first transmit power and the second transmit power.
  • the receiving unit 301 is specifically configured to receive, by the base station, a power parameter of the first UE and a parameter that is sent by using a downlink control indication in a high-level signaling or a physical downlink control channel PDCCH. ⁇ 2, ue1 .
  • the UE determines the first transmit power by using a method similar to the base station in the first embodiment.
  • the processing unit 302 is configured according to the And said Determining ⁇ A, ue1 and ⁇ B, ue1 ; and determining the first transmit power according to the ⁇ A, ue1 and the ⁇ B, ue1 and the reference signal transmit power of the first UE.
  • the meaning of the related parameters refer to the description in the first embodiment.
  • processing unit 302 is specifically configured to: ⁇ A, ue1 according to the following formula:
  • the processing unit 302 is specifically configured to determine the ⁇ B, ue1 according to the ⁇ A, ue1 and Table 5.
  • the processing unit 302 is configured according to the first transmit power and the parameter ⁇ 2, Ue1 determines the second transmit power.
  • the manner of determining the first transmit power refer to the foregoing description.
  • the processing unit 302 for respectively 2, ue1 determining the ⁇ A, ue2 and ⁇ B, ue2 according to the ⁇ A, ue1, ⁇ B, ue1 , and the parameter ⁇ , and according to the ⁇ A, ue2 and ⁇ B, ue2 determines the second transmit power.
  • ⁇ A, ue1 and ⁇ B, ue1 refer to the previous description.
  • the first UE when the first UE acquires downlink data of the first UE, the first UE needs to use an advanced receiver, such as a maximum likelihood (ML) receiver or a codeword level interference deletion (codeword). Interference cancellation, CWIC) receivers, etc.
  • an advanced receiver such as a maximum likelihood (ML) receiver or a codeword level interference deletion (codeword). Interference cancellation, CWIC) receivers, etc.
  • the possible candidate downlink signals of the first UE and the second UE are matched with the received signal, and the soft information of the corresponding bit of the downlink signal of the first UE is determined, in a general sense
  • the downlink signal of the second UE is an interference signal for the first UE, and the transmission constellation of the first UE and the second UE is effectively designed, which can increase the corresponding bit distance of the downlink signal of the first UE, thereby improving transmission.
  • the reliability such as the composite constellation of the first UE and the second UE, conforms to the Gray mapping and the like.
  • the downlink signal of the first UE carries downlink data of the first UE.
  • the downlink signal of the second UE is first demodulated, and then the downlink signal of the second UE is subtracted from the received signal to obtain a downlink signal of the first UE.
  • the second UE may use the downlink signal of the first UE as interference and directly use an existing conventional receiver.
  • the channel coefficient corresponding to the first UE is H 1 and the noise interference is ⁇ 1 .
  • the channel coefficient corresponding to the second UE is H 2 and the noise interference is ⁇ 2 .
  • the first transmit power of the downlink signal X 1 of the first UE sent by the base station is P 1
  • the second transmit power of the downlink signal X 2 of the second UE sent by the base station on the same time-frequency resource is P 2 .
  • the received signals of the first UE and the second UE are Y 1 and Y 2 respectively, which are respectively expressed as:
  • the received received signal Y 1 is obtained by channel estimation and noise estimation, respectively, by obtaining channel H 1 and interference ⁇ 1 according to powers P 1 and P 2 ; and then preferentially solving the downlink signal X of the second UE. 2.
  • the first UE may solve the downlink signal X 1 of the first UE.
  • the first UE can preferentially solve X 2 and then subtract X 2 to obtain a more accurate estimation of X 1 because the first The signal-to-noise ratio of the UE is higher than that of the second UE, so the first UE can correctly solve the downlink signal X 2 of the second UE. Therefore, for the second UE, since the downlink signal X 1 of the second UE cannot be correctly solved, X 2 can be directly solved according to the following formula:
  • the receiving unit 301 of the first UE receives the power parameter of the first UE and the parameter ⁇ 2, ue1 sent by the base station , and the processing unit 302 of the first UE acquires the first transmission according to the power parameter of the first user equipment UE. Power, and determining the second transmit power based on the parameters ⁇ 2, ue1 and the first transmit power.
  • the first UE can eliminate the interference of the signal of the second UE according to the second transmit power, and implement communication by using the NOMA technology.
  • the first UE of the fourth embodiment of the present invention is different from the fourth embodiment.
  • the receiving device 301 of the first UE is further configured to receive the adjustment parameter ⁇ 1, ue1 of the first transmit power sent by the base station .
  • the processing unit 302 is specifically configured to determine the first transmit power according to the power parameter of the first UE and the adjustment parameter ⁇ 1, ue1 of the first transmit power.
  • the receiving device 301 is specifically configured to receive, by the base station, the adjustment parameter ⁇ 1, ue1 of the first transmit power that is sent by the DCI in the high layer signaling or the PDCCH.
  • the adjustment parameter ⁇ 1, ue1 of the first transmit power is an adjustment value of the first transmit power.
  • the processing unit 302 is specifically configured to determine, according to the power parameter of the first UE, a third transmit power, where the first transmit power is a third transmit power minus or plus an adjustment value of the first transmit power. .
  • the processing unit 302 is specifically configured to be used according to the And said Determining the ⁇ A, ue1 and the ⁇ B, ue1 ; and determining the third transmit power according to the ⁇ A, ue1 and the ⁇ B, ue1 and the reference signal transmit power of the first UE.
  • the processing unit 302 when determining the third transmit power, is specifically configured to: ⁇ A, ue1 according to the following formula:
  • the processing unit 302 is specifically configured to determine the ⁇ B, ue1 according to the ⁇ A, ue1 and Table 5.
  • the processing unit 302 is specifically configured to be used according to the Said And the adjustment parameter ⁇ 1, ue1 of the first transmit power determines the ⁇ A, ue1 and the ⁇ B, ue1 ; and according to the ⁇ A, ue1 and the ⁇ B, ue1 and the first UE
  • the reference signal transmits power to determine the first transmit power.
  • processing unit 302 is specifically configured to determine the ⁇ A, ue1 according to the following formula:
  • the processing unit 302 determines the ⁇ B, ue1 according to the ⁇ A, ue1 and Table 5.
  • the receiving unit 301 of the first UE receives the adjustment parameter ⁇ 1, ue1 of the first transmit power sent by the base station.
  • the base station schedules the transmit power by using the first transmit power adjustment parameter ⁇ 1, ue1 to implement dynamic scheduling of the transmit power under the NOMA technology.
  • a fifth embodiment of the present invention discloses a communication method.
  • Figure 4 is A schematic flowchart of a communication method disclosed in Embodiment 5 of the present invention.
  • the method shown in FIG. 4 is applicable to a communication network including at least two user equipment UEs, and the at least two UEs include a first UE and a second UE.
  • the communication method may include the following steps:
  • the base station acquires a power parameter and a parameter ⁇ 2, ue1 of the first UE.
  • the base station sends, to the first UE, a power parameter of the first UE and the parameter ⁇ 2, ue1 ;
  • the base station determines the first transmit power according to the power parameter of the first UE.
  • the base station sends the downlink signal of the first UE by using the first transmit power.
  • the power parameter of the first UE includes: UE specific parameters of the first UE Cell specific parameters of the first UE And a reference signal transmission power of the first UE.
  • the parameter ⁇ 2, ue1 is a parameter related to a ratio of the first transmit power to the second transmit power, where the first transmit power is a transmit power of downlink data of the first UE; the second transmit power The transmit power of the downlink data of the second UE.
  • the base station sends the power parameter of the first UE and the parameter ⁇ 2, ue1 to the first UE by using high layer signaling or DCI in the PDCCH.
  • the base station is configured according to the And said Determining the ⁇ A, ue1 and the ⁇ B, ue1 ; the base station determines the first transmit power according to the ⁇ A, ue1 and the ⁇ B, ue1 and the first reference signal transmission power.
  • the base station is according to the And said Determining the ⁇ A, ue1 and the ⁇ B, ue1 include:
  • the base station determines the ⁇ A, ue1 according to the following formula:
  • the base station determines the ⁇ B, ue1 according to the ⁇ A, ue1 and Table 5 , respectively .
  • the base station indicates a delta power-offset in a downlink power offset field in a DCI of a PDCCH of the first UE.
  • the downlink power offset domain can occupy one bit.
  • the first UE learns the delta power-offset through the downlink power offset domain.
  • the downlink power offset domain can be as shown in Table 6.
  • the method further includes: determining, by the base station, the second transmit power according to the power parameter of the first UE and the parameter ⁇ 2, ue1 ; Transmit power transmits downlink data of the second UE.
  • the ⁇ ue1 includes ⁇ A, ue1 and ⁇ B, ue1
  • the ⁇ ue2 includes ⁇ A, ue2 and ⁇ B, ue2 .
  • the base station respectively according to the ⁇ A, ue1, ⁇ B, ue1 , and the parameter ⁇ 2, ue1 determining the ⁇ A, ue2 and ⁇ B, ue2, and according to the ⁇ A, ue2 and ⁇ B, ue2
  • the second transmit power is determined.
  • the base station further determines the second transmit power according to the ⁇ A, ue1 , ⁇ B, ue1 and the reference signal transmit power of the second UE.
  • the base station acquires the power parameter of the first UE and the parameter ⁇ 2, ue1 , and sends the power parameter of the first UE and the parameter ⁇ 2, ue1 to the first UE, so that the first UE can be
  • a power parameter of a UE acquires a first transmit power, and determines a second transmit power according to the parameter ⁇ 2, ue1 and the first transmit power.
  • the first UE can cancel the interference of the downlink data of the second UE according to the second transmit power, and implement communication by using the NOMA technology.
  • the communication method of the sixth embodiment of the present invention is further disclosed.
  • the difference between the sixth embodiment and the fifth embodiment is that the base station further acquires the adjustment parameter ⁇ 1, ue1 of the first transmit power, and adjusts the first transmit power.
  • the parameter ⁇ 1, ue1 is sent to the first UE.
  • the base station determines the first transmit power according to the power parameter of the first UE and the adjustment parameter ⁇ 1, ue1 of the first transmit power.
  • the fifth embodiment For the meaning of related parameters, refer to the fifth embodiment.
  • the base station sends the adjustment parameter ⁇ 1, ue1 of the first transmit power to the first UE by using high layer signaling or DCI in the PDCCH.
  • the adjustment parameter ⁇ 1, ue1 of the first transmit power is an adjustment value of the first transmit power.
  • the base station determines the obtained third transmit power according to the power parameter of the first UE, where the first transmit power is a third transmit power minus or plus an adjustment value of the first transmit power.
  • the process of determining, by the base station, the obtained third transmit power according to the power parameter of the first UE may be the same as the process of determining, by the base station in the fifth embodiment, the first transmit power.
  • the base station when the base station determines the third transmit power, the base station is configured according to the And said Determining the ⁇ A, ue1 and the ⁇ B, ue1 include:
  • the base station determines the ⁇ A, ue1 according to the following formula:
  • the base station determines the ⁇ B, ue1 according to the ⁇ A, ue1 and Table 5.
  • the base station according to the Said Determining the ⁇ A, ue1 and the ⁇ B, ue1 with the adjustment parameter ⁇ 1, ue1 of the first transmit power; the base station according to the ⁇ A, ue1 and the ⁇ B, ue1 and the The reference signal of a UE transmits power, and the first transmit power is determined.
  • the base station according to the Said And determining , by the adjustment parameter ⁇ 1, ue1 of the first transmit power , the ⁇ A, ue1 and the ⁇ B, ue1 include:
  • the base station determines the ⁇ B, ue1 according to the ⁇ A, ue1 and Table 5.
  • the first base station acquires the transmission power adjustment parameter ⁇ 1, ue1, and transmits a first adjustment parameter ⁇ of the transmission power of 1, ue1 to the first UE.
  • the base station schedules the transmit power by using the first transmit power adjustment parameter ⁇ 1, ue1 to implement dynamic scheduling of the transmit power under the NOMA technology.
  • FIG. 5 is a schematic flowchart diagram of a communication method according to Embodiment 7 of the present invention.
  • the method is applicable to a communication network including at least two user equipment UEs, where the at least two UEs include a first UE and a second UE.
  • the communication method may include the following steps:
  • the first user equipment UE receives the power parameter of the first UE and the parameter ⁇ 2, ue1 sent by the base station.
  • the first UE determines the first transmit power according to a power parameter of the first UE.
  • the first UE determines the second transmit power according to the first transmit power and the parameter ⁇ 2, ue1 .
  • the first UE receives a signal sent by the base station, where the received signal includes downlink data of the first UE.
  • the first UE acquires downlink data of the first UE from the received signal according to the first transmit power and the second transmit power.
  • the parameter ⁇ 2, ue1 is a parameter related to a ratio of the first transmit power to the second transmit power, where the first transmit power is a transmit power of downlink data of the first UE; the second transmit power The transmit power of the downlink data of the second UE.
  • the first UE receives a power parameter and a location of the first UE that is sent by the base station by using a downlink control in a higher layer signaling or a physical downlink control channel PDCCH.
  • the first UE determines the first transmit power by using a method similar to the base station in the fifth embodiment.
  • the first UE according to the And said Determining ⁇ A, ue1 and ⁇ B, ue1 ; the base station determines the first transmit power according to the ⁇ A, ue1 and the ⁇ B, ue1 and the reference signal transmit power of the first UE.
  • the base station determines the first transmit power according to the ⁇ A, ue1 and the ⁇ B, ue1 and the reference signal transmit power of the first UE.
  • the first UE is according to the And said Determining the ⁇ A, ue1 and the ⁇ B, ue1 include:
  • the first UE determines the ⁇ A, ue1 according to the following formula:
  • the first UE determines the ⁇ B, ue1 according to the ⁇ A, ue1 and the fifth table.
  • the first UE receives, by the base station, a PDCCH of the first UE, where the first UE acquires a ⁇ power-offset from a downlink power offset field in the DCI in the PDCCH.
  • the downlink power offset domain can be as shown in Table 6.
  • the downlink power offset domain is one bit.
  • step 503 the determining, by the first UE , the second transmit power according to the power parameter of the first UE and the parameter ⁇ 2, ue1 includes:
  • the first UE determines the second transmit power according to the first transmit power and the parameter ⁇ 2, ue1 .
  • the manner of determining the first transmit power refer to the foregoing description. or,
  • ue1 is the ratio of ⁇ ue1 of the first UE to the ⁇ ue2 of the second UE.
  • the ⁇ ue1 includes ⁇ A, ue1 and ⁇ B, ue1
  • the ⁇ ue2 includes ⁇ A, ue2 and ⁇ B, ue2 .
  • the UE respectively according to the first ⁇ A, ue1, ⁇ B, ue1 , and the parameter ⁇ 2, ue1 determining the ⁇ A, ue2 and ⁇ B, ue2, and according to the ⁇ A, ue2 and ⁇ B , ue2 determines the second transmit power.
  • the determination manner of the ⁇ A, ue1 and ⁇ B, ue1 refer to the previous description.
  • step 504 when the first UE receives the signal sent by the base station, the first UE needs to use an advanced receiver, such as a maximum likelihood (ML) receiver or a codeword level interference. Deletion (codeword interference cancellation, CWIC) receiver, etc.
  • ML maximum likelihood
  • CWIC codeword interference cancellation
  • the possible candidate downlink signals of the first UE and the second UE are matched with the received signal, and the soft information of the corresponding bit of the downlink signal of the first UE is determined, in a general sense
  • the downlink signal of the second UE is an interference signal for the first UE, and the transmission constellation of the first UE and the second UE is effectively designed, which can increase the corresponding bit distance of the downlink signal of the first UE, thereby improving transmission.
  • the reliability such as the composite constellation of the first UE and the second UE, conforms to the Gray mapping and the like.
  • the downlink signal of the first UE carries downlink data of the first UE.
  • the downlink signal of the second UE is first demodulated, and then the received signal is received.
  • the downlink signal of the second UE is subtracted, and the downlink signal of the first UE is obtained.
  • the second UE may use the downlink signal of the first UE as interference and directly use an existing conventional receiver.
  • step 505 the first UE acquires downlink data of the first UE from the received signal according to the first transmit power and the second transmit power.
  • the channel coefficient corresponding to the first UE is H 1 and the noise interference is ⁇ 1 .
  • the channel coefficient corresponding to the second UE is H 2 and the noise interference is ⁇ 2 .
  • the first transmit power of the downlink signal X 1 of the first UE sent by the base station is P 1
  • the second transmit power of the downlink signal X 2 of the second UE sent by the base station on the same time-frequency resource is P 2 .
  • the received signals of the first UE and the second UE are Y 1 and Y 2 respectively, which are respectively expressed as:
  • the received received signal Y 1 is obtained by channel estimation and noise estimation, respectively, by obtaining channel H 1 and interference ⁇ 1 according to powers P 1 and P 2 ; and then preferentially solving the downlink signal X of the second UE. 2.
  • the first UE may solve the downlink signal X 1 of the first UE.
  • the first UE can preferentially solve X 2 and then subtract X 2 to obtain a more accurate estimation of X 1 because the first The signal-to-noise ratio of the UE is higher than that of the second UE, so the first UE can correctly solve the downlink signal X 2 of the second UE. Therefore, for the second UE, since the downlink signal X 1 of the second UE cannot be correctly solved, X 2 can be directly solved according to the following formula:
  • the first UE receives the power parameter of the first UE and the parameter ⁇ 2, ue1 , and the first UE acquires the first transmit power according to the power parameter of the first user equipment UE, and according to the parameter ⁇ 2, Ue1 and the first transmit power determine the second transmit power.
  • the first UE can eliminate the interference of the signal of the second UE according to the second transmit power, and implement communication by using the NOMA technology.
  • Embodiment 8 of the present invention A communication method is disclosed in Embodiment 8 of the present invention.
  • the difference between Embodiment 8 and Embodiment 7 is that the first UE receives the adjustment parameter ⁇ 1, ue1 of the first transmit power sent by the base station.
  • the first UE determines the first transmit power according to the power parameter of the first UE and the adjustment parameter ⁇ 1, ue1 of the first transmit power.
  • the first UE receives the adjustment parameter ⁇ 1, ue1 of the first transmit power that is sent by the base station by using the high layer signaling or the DCI in the PDCCH.
  • the adjustment parameter ⁇ 1, ue1 of the first transmit power is an adjustment value of the first transmit power. Determining , by the first UE, the first transmit power according to the power parameter of the first UE and the adjustment parameter ⁇ 1, ue1 of the first transmit power, that: the first UE is determined according to a power parameter of the first UE And obtaining a third transmit power, where the first transmit power is a third transmit power minus or plus an adjustment value of the first transmit power.
  • the first UE is specifically according to the And said Determining the ⁇ A, ue1 and the ⁇ B, ue1 ; the first UE determines the first according to the ⁇ A, ue1 and the ⁇ B, ue1 and the reference signal transmit power of the first UE Three transmit power.
  • the first UE determines the ⁇ A, ue1 according to the following formula:
  • the first UE determines the ⁇ B, ue1 according to the ⁇ A, ue1 and the fifth table.
  • the manner of determining the third power can be referred to the manner of determining the first transmit power in Embodiment 15.
  • the first UE is according to the Said Determining the ⁇ A, ue1 and the ⁇ B, ue1 with the adjustment parameter ⁇ 1, ue1 of the first transmit power; the first UE according to the ⁇ A, ue1 and the ⁇ B, ue1 and Determining the first transmit power by using a reference signal transmit power of the first UE.
  • the first UE determines the ⁇ A, ue1 according to the following formula:
  • the first UE determines the ⁇ B, ue1 according to the ⁇ A, ue1 and Table 5.
  • the first UE receives a ⁇ power-offset indicated by a downlink power offset field in a DCI of the PDCCH of the first UE by the base station.
  • the downlink power offset domain can be as follows.
  • the first UE receives the adjustment parameter ⁇ 1, ue1 of the first transmit power sent by the base station.
  • the base station schedules the transmit power by using the first transmit power adjustment parameter ⁇ 1, ue1 to implement dynamic scheduling of the transmit power under the NOMA technology.
  • the disclosed apparatus and method can be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention which is essential or contributes to the prior art, or all or part of the technical solution, may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A communication method and apparatus. The method comprises: a base station acquires power parameters of a first user equipment (UE) and a parameter δ2,ue1, the power parameters of the first UE comprising PA,ue1 , PB,ue1 and first reference signal transmit power; the base station sends to the first UE the power parameters of the first UE and the parameter δ2,ue1; the base station determines first transmit power according to the power parameters of the first UE; and the base station sends a signal to the first UE by using the first transmit power.

Description

通信方法和装置Communication method and device 技术领域Technical field
本发明涉及通信领域,尤其涉及一种通信方法和装置。The present invention relates to the field of communications, and in particular, to a communication method and apparatus.
背景技术Background technique
在现有的LTE(Long Term Evolution,长期演进)系统中,下行通常采用OFDMA(Orthogonal Frequency Division Multiple Access,正交频分多址)技术。为了有效提升小区中心和小区边缘的吞吐量,NOMA(Non-Orthogonal Multiple Access,非正交多址)技术是一种潜在的候选技术。采用NOMA进行通信时,基站给不同的用户设备(user equipment,UE)分配不同的功率,但不同的UE可以使用相同的频率资源。In the existing LTE (Long Term Evolution) system, the downlink generally employs OFDMA (Orthogonal Frequency Division Multiple Access) technology. In order to effectively improve the throughput of the cell center and the cell edge, NOMA (Non-Orthogonal Multiple Access) technology is a potential candidate technology. When using NOMA for communication, the base station allocates different powers to different user equipments (UEs), but different UEs can use the same frequency resources.
使用相同的时频资源块跟基站通信的两个或多个UE,被称为配对UE。比如在采用NOMA技术时,UE1和UE2使用相同的时频资源块跟基站进行通信,UE2和UE1为配对UE。基站采用不同的发射功率,向UE1和UE2发送信号。UE1的下行信号和UE2的下行信号间会有干扰。下行,通常是指基站到UE的方向。为了有效地提取UE1的下行信号,UE1需要消除掉UE2的下行信号的干扰。现有技术中,UE1无法获取UE2下行信号的相关信息,不能实现采用NOMA技术进行通信。Two or more UEs that communicate with the base station using the same time-frequency resource block are referred to as paired UEs. For example, when using the NOMA technology, UE1 and UE2 use the same time-frequency resource block to communicate with the base station, and UE2 and UE1 are paired UEs. The base station uses different transmit powers to transmit signals to UE1 and UE2. There is interference between the downlink signal of UE1 and the downlink signal of UE2. Downstream usually refers to the direction of the base station to the UE. In order to effectively extract the downlink signal of UE1, UE1 needs to eliminate the interference of the downlink signal of UE2. In the prior art, UE1 cannot obtain related information of downlink signals of UE2, and cannot implement communication by using NOMA technology.
发明内容Summary of the invention
本发明实施例提供了一种通信方法和装置,实现采用NOMA技术进行通信。Embodiments of the present invention provide a communication method and apparatus, which implement communication by using NOMA technology.
第一方面,本发明实施例提供了一种基站,为所述至少两个用户设备UE服务,所述至少两个UE包括第一UE和第二UE,包括:处理单元,用于确定所述第一UE的功率参数和参数δ2,ue1;其中,所述第一UE的功率参数包括:所述第一UE的UE特定参数
Figure PCTCN2014095946-appb-000001
所述第一UE的小区特定参数
Figure PCTCN2014095946-appb-000002
和所述第一UE的参考信号发射功率,所述参数δ2,ue1为第一发射功率和第二发射功率的比值相关的参数,所述第一发射功率为所述第一UE的下行数据的发射功率;所述第二发射功率为所述第二UE的下行数据的发射功率;发送单元,用于向所述第一UE发送所述第一UE的功率参数和所述参数δ2,ue1;所述处理单元,还用于根据所述第一UE的功率参数确定所述第一发射功率;所述发送单元,还用于使用所述第一 发射功率发送所述第一UE的下行数据。
In a first aspect, an embodiment of the present invention provides a base station, which is configured to serve the at least two user equipments, where the at least two UEs include a first UE and a second UE, and includes: a processing unit, configured to determine the a power parameter of the first UE and a parameter δ 2, ue1 ; wherein the power parameter of the first UE includes: a UE-specific parameter of the first UE
Figure PCTCN2014095946-appb-000001
Cell specific parameters of the first UE
Figure PCTCN2014095946-appb-000002
And a reference signal transmission power of the first UE, where the parameter δ 2, ue1 is a parameter related to a ratio of the first transmit power to the second transmit power, where the first transmit power is downlink data of the first UE Transmit power, the second transmit power is the transmit power of the downlink data of the second UE, and the sending unit is configured to send the power parameter of the first UE and the parameter δ 2 to the first UE , The processing unit is further configured to determine the first transmit power according to the power parameter of the first UE, where the sending unit is further configured to send the downlink of the first UE by using the first transmit power data.
在第一方面的第一种可能的实现方式中,所述参数δ2,ue1为所述第一发射功率和第二发射功率的比值;或者,所述参数δ2,ue1为所述第一UE的ρue1和所述第二UE的ρue2比值,其中,所述ρue1表示所述第一UE的物理下行共享信道PDSCH的每资源单元能量EPRE和所述第一UE的小区特定的参考信号的EPRE的比值,所述ρue1包括ρA,ue1和ρB,ue1,所述ρA,ue1和ρB,ue1对应所述第一UE的不同正交频分复用OFDM符号索引;所述ρue2表示所述第二UE的PDSCH的EPRE和所述第二UE的小区特定的参考信号的EPRE的比值,所述ρue2包括ρA,ue2和ρB,ue2,所述ρA,ue2和ρB,ue2对应所述第二UE的不同OFDM符号索引。In a first possible implementation manner of the first aspect, the parameter δ 2, ue1 is a ratio of the first transmit power to the second transmit power; or the parameter δ 2, ue1 is the first ρ ue1 UE and ρ ue2 ratio of the second UE, wherein the ρ ue1 represents EPRE energy per resource element of the physical downlink shared channel PDSCH of the first UE and the first UE-specific reference cell a ratio of EPREs of the signals, the ρ ue1 including ρ A, ue1 and ρ B, ue1 , the ρ A, ue1 and ρ B, ue1 corresponding to different orthogonal frequency division multiplexing OFDM symbol indexes of the first UE; The ρ ue2 represents a ratio of an EPRE of a PDSCH of the second UE and an EPRE of a cell-specific reference signal of the second UE, where ρ ue2 includes ρ A, ue2 and ρ B, ue2 , the ρ A , ue2 and ρ B, ue2 correspond to different OFDM symbol indexes of the second UE.
结合第一方面,或者第一方面第一种可能的实现方式,在第二种可能的实现方式中,所述处理单元,还用于获取所述第一发射功率的调整参数δ1,ue1;所述发送单元,还用于向所述第一UE发送所述第一发射功率的调整参数δ1,ue1;所述处理单元,具具体用于根据所述第一UE的功率参数和所述第一发射功率的调整参数δ1,ue1确定所述第一发射功率。With reference to the first aspect, or the first possible implementation manner of the first aspect, in a second possible implementation, the processing unit is further configured to acquire the adjustment parameter δ 1, ue1 of the first transmit power; The sending unit is further configured to send, to the first UE, the adjustment parameter δ 1, ue1 of the first transmit power , where the processing unit is specifically configured to use, according to the power parameter of the first UE, The first transmit power adjustment parameter δ 1, ue1 determines the first transmit power.
结合第一方面第二种可能的实现方式,在第三种可能的实现方式中,所述第一发射功率的调整参数δ1,ue1为所述第一发射功率的调整值。In conjunction with the second possible implementation of the first aspect, in a third possible implementation, the adjustment parameter δ 1, ue1 of the first transmit power is an adjustment value of the first transmit power.
结合第一方面第二种可能的实现方式,在第四种可能的实现方式中,所述处理单元,具体用于根据所述
Figure PCTCN2014095946-appb-000003
所述
Figure PCTCN2014095946-appb-000004
和所述第一发射功率的调整参数δ1,ue1确定所述ρA,ue1和所述ρB,ue1;并根据所述ρA,ue1和所述ρB,ue1和所述第一UE的参考信号发射功率,确定所述第一发射功率。
With reference to the second possible implementation of the first aspect, in a fourth possible implementation, the processing unit is specifically configured to be used according to the
Figure PCTCN2014095946-appb-000003
Said
Figure PCTCN2014095946-appb-000004
And the adjustment parameter δ 1, ue1 of the first transmit power determines the ρ A, ue1 and the ρ B, ue1 ; and according to the ρ A, ue1 and the ρ B, ue1 and the first UE The reference signal transmits power to determine the first transmit power.
结合第一方面第一种可能的实现方式,在第五种可能的实现方式中,所述处理单元,具体用于根据所述
Figure PCTCN2014095946-appb-000005
和所述
Figure PCTCN2014095946-appb-000006
确定所述ρA,ue1和所述ρB,ue1,并根据所述ρA,ue1和所述ρB,ue1和所述第一UE的参考信号发射功率,确定所述第一发射功率。
With reference to the first possible implementation manner of the first aspect, in a fifth possible implementation, the processing unit is specifically configured to be used according to the foregoing
Figure PCTCN2014095946-appb-000005
And said
Figure PCTCN2014095946-appb-000006
Determining the ρ A, ue1 and the ρ B, ue1 , and determining the first transmit power according to the ρ A, ue1 and the ρ B, ue1 and the reference signal transmit power of the first UE.
结合第一方面,或者第一方面第一至第五种任意一种可能的实现方式,在第六种可能的实现方式中,所述处理单元,还用于根据所述第一UE的功率参数和所述参数δ2,ue1,确定所述第二发射功率;所述发送单元,还用于使用所述第二发射功率发送所述第二UE的下 行数据。With reference to the first aspect, or any one of the foregoing first to fifth possible implementation manners, in a sixth possible implementation, the processing unit is further configured to use, according to the power parameter of the first UE And determining, by the parameter δ 2, ue1 , the second transmit power; the sending unit is further configured to send the downlink data of the second UE by using the second transmit power.
第二方面,本发明实施例提供了一种通信方法,适用于包括至少两个用户设备UE的通信网络,所述至少两个UE包括第一UE和第二UE,其特征在于,包括:In a second aspect, the embodiment of the present invention provides a communication method, which is applicable to a communication network that includes at least two user equipments, where the at least two UEs include a first UE and a second UE, and the method includes:
所述基站获取所述第一UE的功率参数和参数δ2,ue1;其中,所述第一UE的功率参数包括:所述第一UE的UE特定参数
Figure PCTCN2014095946-appb-000007
所述第一UE的小区特定参数
Figure PCTCN2014095946-appb-000008
和所述第一UE的参考信号发射功率,所述参数δ2,ue1为第一发射功率和第二发射功率的比值相关的参数,所述第一发射功率为所述第一UE的下行数据的发射功率;所述第二发射功率为所述第二UE的下行数据的发射功率;
The base station acquires the power parameter of the first UE and the parameter δ 2, ue1 ; wherein the power parameter of the first UE includes: the UE-specific parameter of the first UE
Figure PCTCN2014095946-appb-000007
Cell specific parameters of the first UE
Figure PCTCN2014095946-appb-000008
And a reference signal transmission power of the first UE, where the parameter δ 2, ue1 is a parameter related to a ratio of the first transmit power to the second transmit power, where the first transmit power is downlink data of the first UE Transmit power; the second transmit power is a transmit power of downlink data of the second UE;
所述基站向所述第一UE发送所述第一UE的功率参数和所述参数δ2,ue1Sending, by the base station, the power parameter of the first UE and the parameter δ 2, ue1 to the first UE;
所述基站根据所述第一UE的功率参数确定所述第一发射功率;Determining, by the base station, the first transmit power according to a power parameter of the first UE;
所述基站使用所述第一发射功率发送所述第一UE的下行信号。The base station sends the downlink signal of the first UE by using the first transmit power.
在第二方面的第一种可能的实现方式中,所述参数δ2,ue1为所述第一发射功率和第二发射功率的比值;或者,所述参数δ2,ue1为所述第一UE的ρue1和所述第二UE的ρue2比值,其中所述ρue1表示所述第一UE的物理下行共享信道PDSCH的每资源单元能量EPRE和所述第一UE的小区特定的参考信号的EPRE的比值,所述ρue1包括ρA,ue1和ρB,ue1,所述ρA,ue1和ρB,ue1对应所述第一UE的不同正交频分复用OFDM符号索引;所述ρue2表示所述第二UE的PDSCH的EPRE和所述第二UE的小区特定的参考信号的EPRE的比值,所述ρue2包括ρA,ue2和ρB,ue2,所述ρA,ue2和ρB,ue2对应所述第二UE的不同OFDM符号索引。In a first possible implementation manner of the second aspect, the parameter δ 2, ue1 is a ratio of the first transmit power to the second transmit power; or the parameter δ 2, ue1 is the first ρ ue1 UE and the second UE ratio ρ ue2, wherein the ρ ue1 represents the physical downlink shared channel PDSCH EPRE energy per resource element of the first UE and the first UE to a cell-specific reference signal Ratio of EPRE, the ρ ue1 includes ρ A, ue1 and ρ B, ue1 , the ρ A, ue1 and ρ B, ue1 corresponding to different orthogonal frequency division multiplexing OFDM symbol indexes of the first UE; ρ ue2 represents a ratio of an EPRE of a PDSCH of the second UE to an EPRE of a cell-specific reference signal of the second UE, the ρ ue2 including ρ A, ue2 and ρ B, ue2 , the ρ A, Ue2 and ρ B, ue2 correspond to different OFDM symbol indexes of the second UE.
结合第二方面,或者第二方面第一种可能的实现方式,在第二种可能的实现方式中,该方法进一步:With reference to the second aspect, or the first possible implementation manner of the second aspect, in a second possible implementation manner, the method further:
所述基站获取所述第一发射功率的调整参数δ1,ue1;所述基站向所述第一UE发送所述第一发射功率的调整参数δ1,ue1;所述基站根据所述第一UE的功率参数确定第一发射功率包括:所述基站根据所述第一UE的功率参数和所述第一发射功率的调整参数δ1,ue1确定所述第一发射功率。 The base station acquires an adjustment parameter δ 1, ue1 of the first transmit power; the base station sends an adjustment parameter δ 1, ue1 of the first transmit power to the first UE; Determining the first transmit power by the power parameter of the UE includes: determining, by the base station, the first transmit power according to the power parameter of the first UE and the adjustment parameter δ 1, ue1 of the first transmit power.
结合第二方面第二种可能的实现方式,在第三种可能的实现方式中,所述第一发射功率的调整参数δ1,ue1为所述第一发射功率的调整值。With reference to the second possible implementation of the second aspect, in a third possible implementation, the adjustment parameter δ 1, ue1 of the first transmit power is an adjustment value of the first transmit power.
结合第二方面第二种可能的实现方式,在第四种可能的实现方式中,所述基站根据所述第一UE的功率参数和所述第一发射功率的调整参数δ1,ue1确定所述第一发射功率包括:所述基站根据所述
Figure PCTCN2014095946-appb-000009
所述
Figure PCTCN2014095946-appb-000010
和所述第一发射功率的调整参数δ1,ue1确定所述ρA,ue1和所述ρB,ue1;所述基站根据所述ρA,ue1和所述ρB,ue1和所述第一UE的参考信号发射功率,确定所述第一发射功率。
With reference to the second possible implementation manner of the second aspect, in a fourth possible implementation manner, the base station determines, according to the power parameter of the first UE and the adjustment parameter δ 1, ue1 of the first transmit power The first transmit power includes: the base station according to the
Figure PCTCN2014095946-appb-000009
Said
Figure PCTCN2014095946-appb-000010
Determining the ρ A, ue1 and the ρ B, ue1 with the adjustment parameter δ 1, ue1 of the first transmit power; the base station according to the ρ A, ue1 and the ρ B, ue1 and the The reference signal of a UE transmits power, and the first transmit power is determined.
结合第二方面第一种可能的实现方式,在第五种可能的实现方式中,所述基站根据所述第一UE的功率参数确定所述第一发射功率包括:所述基站根据所述
Figure PCTCN2014095946-appb-000011
和所述
Figure PCTCN2014095946-appb-000012
确定所述ρA,ue1和所述ρB,ue1;所述基站根据所述ρA,ue1和所述ρB,ue1和所述第一UE的参考信号发射功率,确定所述第一发射功率。
With reference to the first possible implementation manner of the second aspect, in a fifth possible implementation, the determining, by the base station, the first transmit power according to the power parameter of the first UE includes:
Figure PCTCN2014095946-appb-000011
And said
Figure PCTCN2014095946-appb-000012
Determining the ρ A, ue1 and the ρ B, ue1 ; the base station determines the first transmission according to the ρ A, ue1 and the ρ B, ue1 and the reference signal transmission power of the first UE power.
结合第二方面,或者第二方面第一至第五种任意一种可能的实现方式,在第六种可能的实现方式中,进一步包括,所述基站根据所述第一UE的功率参数和所述参数δ2,ue1,确定所述第二发射功率;所述基站使用所述第二发射功率发送所述第二的下行数据。With reference to the second aspect, or any one of the first to fifth possible implementation manners of the second aspect, in a sixth possible implementation, the method further includes: the base station according to the power parameter and location of the first UE Determining the second transmission power by using the parameter δ 2, ue1 ; the base station transmitting the second downlink data by using the second transmission power.
第三方面,本发明实施例提供了一种第一用户设备UE,所述第一UE跟基站进行通信,所述基站为至少两个UE服务,所述至少两个UE包括所述第一UE和第二UE,其特征在于,包括:接收单元,用于接收所述基站发送的所述第一UE的功率参数和参数δ2,ue1;其中,所述第一UE的功率参数包括:所述第一UE的
Figure PCTCN2014095946-appb-000013
所述第一UE的小区特定参数
Figure PCTCN2014095946-appb-000014
和所述第一UE的参考信号发射功率,所述参数δ2,ue1为第一发射功率和第二发射功率的比值相关的参数,所述第一发射功率为所述第一UE的下行数据的发射功率;所述第二发射功率为所述第二UE的下行数据的发射功率;处理单元,用于根据所述第一UE的功率参数确定所述第一发射功率;所述处理单元,还用于根据所述第一UE的功率参数和所述参数δ2,ue1确定所述第二发射功率;所述接收单元,还用于接收所述基站发送的信号,所述接收的信号包括所述第一UE的下行数据;所述处理单元,还用于根据所述第一发射功率和所述第二发射功率从所述接收单元接收的信号中获取所述第一UE的下行数据。
In a third aspect, the embodiment of the present invention provides a first user equipment UE, where the first UE communicates with a base station, the base station serves at least two UEs, and the at least two UEs include the first UE. And a second UE, comprising: a receiving unit, configured to receive a power parameter of the first UE and a parameter δ 2, ue1 sent by the base station; where the power parameter of the first UE includes: First UE
Figure PCTCN2014095946-appb-000013
Cell specific parameters of the first UE
Figure PCTCN2014095946-appb-000014
And a reference signal transmission power of the first UE, where the parameter δ 2, ue1 is a parameter related to a ratio of the first transmit power to the second transmit power, where the first transmit power is downlink data of the first UE Transmit power; the second transmit power is the transmit power of the downlink data of the second UE; the processing unit is configured to determine the first transmit power according to the power parameter of the first UE; the processing unit, The method is further configured to determine the second transmit power according to the power parameter of the first UE and the parameter δ 2, ue1 ; the receiving unit is further configured to receive a signal sent by the base station, where the received signal includes And the processing unit is further configured to acquire downlink data of the first UE according to the signal that is received by the receiving unit according to the first transmit power and the second transmit power.
在第三方面的第一种可能的实现方式中,所述参数δ2,ue1为所述第一发射功率和第二发 射功率的比值;或者,所述参数δ2,ue1为所述第一UE的ρue1和所述第二UE的ρue2比值,其中,所述ρue1表示所述第一UE的物理下行共享信道PDSCH的每资源单元能量EPRE和所述第一UE的小区特定的参考信号的EPRE的比值,所述ρue1包括ρA,ue1和ρB,ue1,所述ρA,ue1和ρB,ue1对应所述第一UE的不同正交频分复用OFDM符号索引;所述ρue2表示所述第二UE的PDSCH的EPRE和所述第二UE的小区特定的参考信号的EPRE的比值,所述ρue2包括ρA,ue2和ρB,ue2,所述ρA,ue2和ρB,ue2对应所述第二UE的不同OFDM符号索引。In a first possible implementation manner of the third aspect, the parameter δ 2, ue1 is a ratio of the first transmit power to the second transmit power; or the parameter δ 2, ue1 is the first ρ ue1 UE and ρ ue2 ratio of the second UE, wherein the ρ ue1 represents EPRE energy per resource element of the physical downlink shared channel PDSCH of the first UE and the first UE-specific reference cell a ratio of EPREs of the signals, the ρ ue1 including ρ A, ue1 and ρ B, ue1 , the ρ A, ue1 and ρ B, ue1 corresponding to different orthogonal frequency division multiplexing OFDM symbol indexes of the first UE; The ρ ue2 represents a ratio of an EPRE of a PDSCH of the second UE and an EPRE of a cell-specific reference signal of the second UE, where ρ ue2 includes ρ A, ue2 and ρ B, ue2 , the ρ A , ue2 and ρ B, ue2 correspond to different OFDM symbol indexes of the second UE.
结合第三方面,或者第三方面第一种可能的实现方式,在第二种可能的实现方式中,所述接收单元,还用于接收所述基站发送的所述第一发射功率的调整参数δ1,ue1;所述处理单元,具体用于根据所述第一UE的功率参数和所述第一发射功率的调整参数δ1,ue1确定所述第一发射功率。With reference to the third aspect, or the first possible implementation manner of the third aspect, in a second possible implementation, the receiving unit is further configured to receive, by the base station, an adjustment parameter of the first transmit power δ 1, ue1 ; The processing unit is specifically configured to determine the first transmit power according to the power parameter of the first UE and the adjustment parameter δ 1, ue1 of the first transmit power.
结合第三方面第二种可能的实现方式,在第三种可能的实现方式中,所述第一发射功率的调整参数δ1,ue1为所述第一发射功率的调整值。With reference to the second possible implementation of the third aspect, in a third possible implementation, the adjustment parameter δ 1, ue1 of the first transmit power is an adjustment value of the first transmit power.
结合第三方面第二种可能的实现方式,在第四种可能的实现方式中,,所述处理单元,具体用于根据所述
Figure PCTCN2014095946-appb-000015
所述
Figure PCTCN2014095946-appb-000016
和所述第一发射功率的调整参数δ1,ue1确定所述ρA,ue1和所述ρB,ue1;并根据所述ρA,ue1和所述ρB,ue1和所述第一UE的参考信号发射功率,确定所述第一发射功率。
With reference to the second possible implementation manner of the third aspect, in a fourth possible implementation, the processing unit is specifically configured to be used according to the foregoing
Figure PCTCN2014095946-appb-000015
Said
Figure PCTCN2014095946-appb-000016
And the adjustment parameter δ 1, ue1 of the first transmit power determines the ρ A, ue1 and the ρ B, ue1 ; and according to the ρ A, ue1 and the ρ B, ue1 and the first UE The reference signal transmits power to determine the first transmit power.
结合第三方面第二种可能的实现方式,在第四种可能的实现方式中,所述处理单元,具体用于根据所述
Figure PCTCN2014095946-appb-000017
和所述
Figure PCTCN2014095946-appb-000018
确定所述ρA,ue1和所述ρB,ue1,并根据所述ρA,ue1和所述ρB,ue1和所述第一UE的参考信号发射功率,确定所述第一发射功率。
With reference to the second possible implementation manner of the third aspect, in a fourth possible implementation, the processing unit is specifically configured to be used according to the foregoing
Figure PCTCN2014095946-appb-000017
And said
Figure PCTCN2014095946-appb-000018
Determining the ρ A, ue1 and the ρ B, ue1 , and determining the first transmit power according to the ρ A, ue1 and the ρ B, ue1 and the reference signal transmit power of the first UE.
第四方面,本发明实施例提供了一种通信方法,适用于包括至少两个用户设备UE的通信网络,所述至少两个UE包括第一UE和第二UE,其特征在于,包括:第一UE接收基站发送的所述第一UE的功率参数和参数δ2,ue1;其中,所述第一UE的功率参数包括:所述第一UE的
Figure PCTCN2014095946-appb-000019
所述第一UE的小区特定参数
Figure PCTCN2014095946-appb-000020
和所述第一UE的参考信号发射功率,所述参数δ2,ue1为所述第一发射功率和第二发射功率的比值相关的参数,所述第一发射功率 为所述第一UE的下行数据的发射功率;所述第二发射功率为所述第二UE的下行数据的发射功率;所述第一UE根据所述第一UE的功率参数确定所述第一发射功率;所述第一UE根据所述第一发射功率和所述参数δ2,ue1确定所述第二发射功率;所述第一UE接收所述基站发送的信号,所述接收的信号包括所述第一UE的下行数据;所述第一UE根据所述第一发射功率和所述第二发射功率从所述接收的信号中获取所述第一UE的下行数据。
In a fourth aspect, the embodiment of the present invention provides a communication method, which is applicable to a communication network that includes at least two user equipments, where the at least two UEs include a first UE and a second UE, and the method includes: The UE receives the power parameter of the first UE and the parameter δ 2, ue1 sent by the base station, where the power parameter of the first UE includes: the first UE
Figure PCTCN2014095946-appb-000019
Cell specific parameters of the first UE
Figure PCTCN2014095946-appb-000020
And a reference signal transmission power of the first UE, where the parameter δ 2, ue1 is a parameter related to a ratio of the first transmit power and the second transmit power, where the first transmit power is the first UE The transmit power of the downlink data; the second transmit power is the transmit power of the downlink data of the second UE; the first UE determines the first transmit power according to the power parameter of the first UE; Determining, by the UE , the second transmit power according to the first transmit power and the parameter δ 2, ue1 ; the first UE receives a signal sent by the base station, where the received signal includes the first UE Downstream data; the first UE acquires downlink data of the first UE from the received signal according to the first transmit power and the second transmit power.
在第四方面的第一种可能的实现方式中,所述参数δ2,ue1为所述第一发射功率和第二发射功率的比值;或者,所述参数δ2,ue1为所述第一UE的ρue1和所述第二UE的ρue2比值,其中,所述ρue1表示所述第一UE的物理下行共享信道PDSCH的每资源单元能量EPRE和所述第一UE的小区特定的参考信号的EPRE的比值,所述ρue1包括ρA,ue1和ρB,ue1,所述ρA,ue1和ρB,ue1对应所述第一UE的不同正交频分复用OFDM符号索引;所述ρue2表示所述第二UE的PDSCH的EPRE和所述第二UE的小区特定的参考信号的EPRE的比值,所述ρue2包括ρA,ue2和ρB,ue2,所述ρA,ue2和ρB,ue2对应所述第二UE的不同OFDM符号索引。In a first possible implementation manner of the fourth aspect, the parameter δ 2, ue1 is a ratio of the first transmit power to the second transmit power; or the parameter δ 2, ue1 is the first ρ ue1 UE and ρ ue2 ratio of the second UE, wherein the ρ ue1 represents EPRE energy per resource element of the physical downlink shared channel PDSCH of the first UE and the first UE-specific reference cell a ratio of EPREs of the signals, the ρ ue1 including ρ A, ue1 and ρ B, ue1 , the ρ A, ue1 and ρ B, ue1 corresponding to different orthogonal frequency division multiplexing OFDM symbol indexes of the first UE; The ρ ue2 represents a ratio of an EPRE of a PDSCH of the second UE and an EPRE of a cell-specific reference signal of the second UE, where ρ ue2 includes ρ A, ue2 and ρ B, ue2 , the ρ A , ue2 and ρ B, ue2 correspond to different OFDM symbol indexes of the second UE.
结合第四方面,或者第四方面第一种可能的实现方式,在第二种可能的实现方式中,,该方法进一步包括:所述第一UE接收所述基站发送的所述第一发射功率的调整参数δ1,ue1;所述第一UE根据所述第一UE的功率参数确定第一发射功率包括:所述第一UE根据所述第一UE的功率参数和所述第一发射功率的调整参数δ1,ue1确定所述第一发射功率。With reference to the fourth aspect, or the first possible implementation manner of the fourth aspect, in a second possible implementation, the method further includes: receiving, by the first UE, the first transmit power sent by the base station The adjustment parameter δ 1, ue1 ; determining, by the first UE, the first transmit power according to the power parameter of the first UE, that: the first UE according to the power parameter of the first UE and the first transmit power The adjustment parameter δ 1, ue1 determines the first transmit power.
结合第四方面第二种可能的实现方式,在第三种可能的实现方式中,所述第一发射功率的调整参数δ1,ue1为所述第一发射功率的调整值。With reference to the second possible implementation of the fourth aspect, in a third possible implementation, the adjustment parameter δ 1, ue1 of the first transmit power is an adjustment value of the first transmit power.
结合第四方面第二种可能的实现方式,在第四种可能的实现方式中,所述第一UE根据所述第一UE的功率参数和所述第一发射功率的调整参数δ1,ue1确定所述第一发射功率包括:所述第一UE根据所述
Figure PCTCN2014095946-appb-000021
所述
Figure PCTCN2014095946-appb-000022
和所述第一发射功率的调整参数δ1,ue1确定所述ρA,ue1和所述ρB,ue1;所述第一UE根据所述ρA,ue1和所述ρB,ue1和所述第一UE的参考信号发射功率,确定所述第一发射功率。
With reference to the second possible implementation manner of the fourth aspect, in a fourth possible implementation manner, the first UE, according to the power parameter of the first UE, and the adjustment parameter of the first transmit power, δ 1, ue1 Determining the first transmit power includes: the first UE according to the
Figure PCTCN2014095946-appb-000021
Said
Figure PCTCN2014095946-appb-000022
Determining the ρ A, ue1 and the ρ B, ue1 with the adjustment parameter δ 1, ue1 of the first transmit power; the first UE according to the ρ A, ue1 and the ρ B, ue1 and Determining the first transmit power by using a reference signal transmit power of the first UE.
结合第四方面第一种可能的实现方式,在第五种可能的实现方式中,所述第一UE根据所述第一UE的功率参数确定第一发射功率包括:所述第一UE根据所述
Figure PCTCN2014095946-appb-000023
和所述
Figure PCTCN2014095946-appb-000024
确 定所述ρA,ue1和所述ρB,ue1;所述第一UE根据所述ρA,ue1和所述ρB,ue1和所述第一UE的参考信号发射功率,确定所述第一发射功率。
With reference to the first possible implementation manner of the fourth aspect, in a fifth possible implementation, the determining, by the first UE, the first transmit power according to the power parameter of the first UE includes: Description
Figure PCTCN2014095946-appb-000023
And said
Figure PCTCN2014095946-appb-000024
Determining the ρ A, ue1 and the ρ B, ue1 ; the first UE determines the first according to the ρ A, ue1 and the ρ B, ue1 and the reference signal transmit power of the first UE A transmit power.
第五方面,本发明实施例提供了一种通信系统,包括基站和至少两个用户设备UE,所述基站为所述至少两个UE服务,所述至少两个UE包括第一UE和第二UE,所述基站为上述第一方面中所包含的基站,所述的第一UE为上述第三方面中所包含的第一UE。In a fifth aspect, an embodiment of the present invention provides a communication system, including a base station and at least two user equipments, the base station serving the at least two UEs, where the at least two UEs include a first UE and a second The UE is the base station included in the foregoing first aspect, and the first UE is the first UE included in the foregoing third aspect.
本发明实施例中,基站获取第一用户设备UE的功率参数和参数δ2,ue1,并把第一用户设备UE的功率参数和参数δ2,ue1发送给第一UE,从而使第一UE可以根据第一用户设备UE的功率参数获取第一发射功率,并根据参数δ2,ue1和第一发射功率确定第二发射功率。第一UE能够根据第二发射功率消除掉第二UE的下行数据的干扰,实现采用NOMA技术进行通信。In the embodiment of the present invention, the base station acquires the power parameter of the first user equipment UE and the parameter δ 2, ue1 , and sends the power parameter of the first user equipment UE and the parameter δ 2, ue1 to the first UE, so that the first UE The first transmit power may be obtained according to the power parameter of the first user equipment UE , and the second transmit power is determined according to the parameter δ 2, ue1 and the first transmit power. The first UE can cancel the interference of the downlink data of the second UE according to the second transmit power, and implement communication by using the NOMA technology.
附图说明DRAWINGS
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the drawings to be used in the embodiments will be briefly described below. Obviously, the drawings in the following description are only some of the present invention. For the embodiments, those skilled in the art can obtain other drawings according to the drawings without any creative work.
图1是本发明实施例公开的一种网络架构的结构示意图;1 is a schematic structural diagram of a network architecture according to an embodiment of the present invention;
图2是本发明实施例一公开的一种基站结构示意图;2 is a schematic structural diagram of a base station according to Embodiment 1 of the present invention;
图3是本发明实施例三公开的一种第一UE的结构示意图;3 is a schematic structural diagram of a first UE according to Embodiment 3 of the present invention;
图4是本发明实施例五公开的一种通信方法的流程示意图;4 is a schematic flowchart of a communication method according to Embodiment 5 of the present invention;
图5是本发明实施例七公开的一种通信方法的流程示意图。FIG. 5 is a schematic flow chart of a communication method according to Embodiment 7 of the present invention.
具体实施方式detailed description
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention are clearly and completely described in the following with reference to the accompanying drawings in the embodiments of the present invention. It is obvious that the described embodiments are only a part of the embodiments of the present invention, but not all embodiments. All other embodiments obtained by those skilled in the art based on the embodiments of the present invention without creative efforts are within the scope of the present invention.
本发明的实施例中的UE,例如,可以为蜂窝电话、无绳电话、SIP(Session Initiation Protocol,会话启动协议)电话、WLL(Wireless Local Loop,无线本地环路)站、PDA(Personal Digital Assistant,个人数字处理)、具有无线通信功能的手持设备、车载设备、可穿戴设备、 计算设备或连接到无线调制解调器的其它处理设备。The UE in the embodiment of the present invention may be, for example, a cellular phone, a cordless phone, a SIP (Session Initiation Protocol) phone, a WLL (Wireless Local Loop) station, or a PDA (Personal Digital Assistant, Personal digital processing), handheld devices with wireless communication capabilities, in-vehicle devices, wearable devices, A computing device or other processing device connected to a wireless modem.
本发明的实施例中的基站,例如可以是指接入网中在空中接口上通过一个或多个扇区与无线终端通信的设备。基站可用于将收到的空中帧与网络之间互连的协议(英文:Internet Protocol,简称:IP)分组进行相互转换,作为无线终端与接入网的其余部分之间的路由器,其中接入网的其余部分可包括IP协议网络。基站还可协调对空中接口的属性管理。例如,基站可以是GSM(英文:Global System for Mobile Communication,全球移动通信系统)或CDMA(英文:Code Division Multiple Access,码分多址)中的基站(英文:Base Transceiver Station,简称:BTS),也可以是WCDMA(Wideband CDMA,宽带码分多址)中的基站(简称:NodeB),还可以是LTE中的演进型基站(英文:evolutional Node B简称:NodeB或eNB或e-NodeB),本发明实施例中并不限定。A base station in an embodiment of the invention may, for example, refer to a device in an access network that communicates with a wireless terminal over one or more sectors over an air interface. The base station can be used to convert the received air frame and the network interconnection protocol (English: Internet Protocol, IP for short) into a router between the wireless terminal and the rest of the access network, where the access is performed. The rest of the network may include an IP protocol network. The base station can also coordinate attribute management of the air interface. For example, the base station may be a base station (English: Base Transceiver Station, BTS for short) in GSM (English: Global System for Mobile Communication) or CDMA (Code Division Multiple Access). It can also be a base station in WCDMA (Wideband CDMA, Wideband Code Division Multiple Access) (abbreviation: NodeB), or an evolved base station in LTE (English: evolutional Node B abbreviation: NodeB or eNB or e-NodeB), this It is not limited in the embodiment of the invention.
本发明实施例公开了一种通信方法和装置,基站向第一UE通知第一发射功率和第二发射功率相关的信息,第一UE获取第一发射功率和第二发射功率相关的信息,从而第一UE根据第一发射功率和第二发射功率相关的信息消除第二UE下行数据的干扰,实现采用NOMA的通信。第一发射功率为第一UE的下行数据的发射功率;第二发射功率为第二UE的下行数据的的发射功率。下边进行详细说明。An embodiment of the present invention discloses a communication method and apparatus, where a base station notifies a first UE of information related to a first transmit power and a second transmit power, and the first UE acquires information related to the first transmit power and the second transmit power, thereby The first UE cancels the interference of the downlink data of the second UE according to the information related to the first transmit power and the second transmit power, and implements communication using NOMA. The first transmit power is the transmit power of the downlink data of the first UE; the second transmit power is the transmit power of the downlink data of the second UE. The details are explained below.
为了更好的理解本发明,下面先对本发明实施例使用的网络架构进行描述。请参阅图1,图1是本发明实施例公开的一种网络架构的结构示意图。如图1所示,该网络包括基站和UE,UE可以为两个或多个,图中只显示了第一UE和第二UE。第一UE和第二UE使用相同的时频资源块跟基站进行通信,第一UE的下行数据和第二UE的下行数据的发射功率不同。所述基站为本发明实施例中任一基站,所述第一UE为本发明实施例中任一第一UE。For a better understanding of the present invention, the network architecture used in the embodiments of the present invention will be described below. Please refer to FIG. 1. FIG. 1 is a schematic structural diagram of a network architecture according to an embodiment of the present invention. As shown in FIG. 1, the network includes a base station and a UE, and the UE may be two or more. Only the first UE and the second UE are shown in the figure. The first UE and the second UE communicate with the base station by using the same time-frequency resource block, and the downlink data of the first UE and the downlink data of the second UE are different in transmit power. The base station is any one of the base stations in the embodiment of the present invention, and the first UE is any one of the first UEs in the embodiment of the present invention.
基于图1所示的网络架构,本发明实施例一公开了一种基站,该基站为至少两个UE服务,所述至少两个UE包括第一UE和第二UE。请参阅图2,图2是本发明实施例一公开的一种基站结构示意图。如图2所示,该基站包括:处理单元201和发送单元202。其中,处理单元可以是处理器,发送单元可以是发射器。Based on the network architecture shown in FIG. 1 , the first embodiment of the present invention discloses a base station, where the base station serves at least two UEs, and the at least two UEs include a first UE and a second UE. Referring to FIG. 2, FIG. 2 is a schematic structural diagram of a base station according to Embodiment 1 of the present invention. As shown in FIG. 2, the base station includes a processing unit 201 and a transmitting unit 202. The processing unit may be a processor, and the sending unit may be a transmitter.
处理单元201用于第一用户设备UE的功率参数和参数δ2,ue1The processing unit 201 is used for the power parameter and the parameter δ 2, ue1 of the first user equipment UE;
发送单元202用于向所述第一UE发送所述第一UE的功率参数和所述参数δ2,ue1The sending unit 202 is configured to send the power parameter of the first UE and the parameter δ 2, ue1 to the first UE;
所述处理单元201还用于根据所述第一UE的功率参数确定所述第一发射功率;The processing unit 201 is further configured to determine the first transmit power according to the power parameter of the first UE;
所述发送单元202还用于使用所述第一发射功率发送所述第一UE的下行数据。The sending unit 202 is further configured to send downlink data of the first UE by using the first transmit power.
本发明实施例中,所述第一UE的功率参数包括:所述第一UE的UE特定参数
Figure PCTCN2014095946-appb-000025
所述第一UE的小区特定参数
Figure PCTCN2014095946-appb-000026
和所述第一UE的参考信号发射功率。所述参数δ2,ue1为所述第一发射功率和第二发射功率的比值相关的参数,所述第一发射功率为所述第一UE的下行数据的发射功率;所述第二发射功率为所述第二UE的下行数据的发射功率。
In the embodiment of the present invention, the power parameter of the first UE includes: UE specific parameters of the first UE
Figure PCTCN2014095946-appb-000025
Cell specific parameters of the first UE
Figure PCTCN2014095946-appb-000026
And a reference signal transmission power of the first UE. The parameter δ 2, ue1 is a parameter related to a ratio of the first transmit power to the second transmit power, where the first transmit power is a transmit power of downlink data of the first UE; the second transmit power The transmit power of the downlink data of the second UE.
一种可选的实施方式,所述
Figure PCTCN2014095946-appb-000027
第一高层提供的所述第一UE的UE特定的参数,所述
Figure PCTCN2014095946-appb-000028
为所述第一高层提供的所述第一UE的小区特定的参数;第一高层为第一UE的高层,可以为第一UE的基站或者其他网络实体。同一小区中不同UE的PA可能不相同,但是PB和参考信号发射功率相同。
An optional implementation manner,
Figure PCTCN2014095946-appb-000027
UE-specific parameters of the first UE provided by the first higher layer,
Figure PCTCN2014095946-appb-000028
a cell-specific parameter of the first UE that is provided by the first layer; the first layer is a higher layer of the first UE, and may be a base station of the first UE or another network entity. The P A of different UEs in the same cell may be different, but the transmit power of P B and the reference signal are the same.
一种可选的实施方式,所述参数δ2,ue1为所述第一发射功率和第二发射功率的比值。In an optional implementation manner, the parameter δ 2, ue1 is a ratio of the first transmit power to the second transmit power.
一种可选的实施方式,所述参数δ2,ue1为所述第一UE的ρue1和所述第二UE的ρue2比值。其中,所述ρue1表示所述第一UE的物理下行共享信道(physical downlink share channel,PDSCH)的每资源单元能量(energy per resource element,EPRE)和所述第一UE的小区特定的参考信号的EPRE的比值,所述ρue1包括ρA,ue1和ρB,ue1,所述ρA,ue1和ρB,ue1对应所述第一UE的不同的正交频分复用(orthogonal frequency division multiplexing,OFDM)符号索引;所述ρue2表示所述第二UE的PDSCH的EPRE和所述第二UE的小区特定的参考信号的EPRE的比值,所述ρue2包括ρA,ue2和ρB,ue2,所述ρA,ue2和ρB,ue2对应所述第二UE的不同OFDM符号索引。An alternative embodiment, the parameter δ 2, ue1 to the first UE ρ ue1 and ρ ue2 ratio of the second UE. The ρ ue1 indicates an energy per resource element (EPRE) of a physical downlink share channel (PDSCH) of the first UE and a cell-specific reference signal of the first UE Ratio of EPRE, the ρ ue1 includes ρ A, ue1 and ρ B, ue1 , the ρ A, ue1 and ρ B, ue1 corresponding to different orthogonal frequency division multiplexing of the first UE (orthogonal frequency division Multiplexing, OFDM) symbol index; the ρ ue2 represents a ratio of an EPRE of a PDSCH of the second UE and an EPRE of a cell-specific reference signal of the second UE, the ρ ue2 including ρ A, ue2 and ρ B , ue2 , the ρ A, ue2 and ρ B, ue2 correspond to different OFDM symbol indexes of the second UE.
一种可选的实施方式,所述ρA,ue1和所述ρB,ue1所对应的OFDM符号索引如表一或者表二:An optional implementation manner, the OFDM symbol index corresponding to the ρ A, ue1 and the ρ B, ue1 is as shown in Table 1 or Table 2:
表一Table I
Figure PCTCN2014095946-appb-000029
Figure PCTCN2014095946-appb-000029
表二 Table II
Figure PCTCN2014095946-appb-000030
Figure PCTCN2014095946-appb-000030
其中,ns表示的是一个无线帧(radio frame)中的时隙索引(slot index)。Where n s represents a slot index in a radio frame.
一种可选的实施方式,所述ρA,ue2和ρB,ue2所对应的OFDM符号索引如表三或者表四:In an optional implementation manner, the OFDM symbol index corresponding to the ρ A, ue2, and ρ B, ue2 is as shown in Table 3 or Table 4:
表三Table 3
Figure PCTCN2014095946-appb-000031
Figure PCTCN2014095946-appb-000031
表四 Table 4
Figure PCTCN2014095946-appb-000032
Figure PCTCN2014095946-appb-000032
其中,ns表示的是一个无线帧(radio frame)中的时隙索引(slot index)。Where n s represents a slot index in a radio frame.
作为一种可选的实施方式,发送单元202通过高层信令或物理下行控制信道(physical downlink control channel,PDCCH)中的下行控制指示(downlink control information,DCI)向所述第一UE发送所述第一UE的功率参数和所述参数δ2,ue1As an optional implementation manner, the sending unit 202 sends the downlink control information (DCI) to the first UE by using a high layer signaling or a downlink downlink control channel (PDCCH). The power parameter of the first UE and the parameter δ 2, ue1 .
作为一种可选的实施方式,所述处理单元201根据所述
Figure PCTCN2014095946-appb-000033
和所述
Figure PCTCN2014095946-appb-000034
确定所述ρA,ue1和ρB,ue1,并根据所述ρA,ue1和ρB,ue1和所述第一UE的参考信号发射功率,确定所述第一发射功率。
As an optional implementation manner, the processing unit 201 is configured according to the
Figure PCTCN2014095946-appb-000033
And said
Figure PCTCN2014095946-appb-000034
Determining the ρ A, ue1 and ρ B, ue1 , and determining the first transmit power according to the ρ A, ue1 and ρ B, ue1 and the reference signal transmit power of the first UE.
作为一种可选的实施方式,所述处理单元201具体根据如下公式确定所述ρA,ue1As an optional implementation manner, the processing unit 201 determines the ρ A, ue1 according to the following formula:
Figure PCTCN2014095946-appb-000035
Figure PCTCN2014095946-appb-000035
Figure PCTCN2014095946-appb-000036
Figure PCTCN2014095946-appb-000036
所述处理单元201,具体用于根据所述ρA,ue1和表五,确定所述ρB,ue1The processing unit 201 is specifically configured to determine the ρ B, ue1 according to the ρ A, ue1 and the fifth table:
表五 Table 5
Figure PCTCN2014095946-appb-000037
Figure PCTCN2014095946-appb-000037
作为一种可选的实施方式,所述发送单元202还用于在第一UE的PDCCH的DCI中的下行功率偏置域(downlink power offset field)来指示δpower-offset。该下行功率偏置域可以占用一个比特。第一UE通过该下行功率偏置域来获知δpower-offset。比如,下行功率偏置域可以如下表六:As an optional implementation manner, the sending unit 202 is further configured to indicate a δ power-offset in a downlink power offset field in a DCI of a PDCCH of the first UE. The downlink power offset domain can occupy one bit. The first UE learns the delta power-offset through the downlink power offset domain. For example, the downlink power offset domain can be as follows:
表六Table 6
Downlink power offset fieldDownlink power offset field δpower-offset[dB]δ power-offset [dB]
00 -10log10(2)-10log 10 (2)
11 00
一种可选的实施方式,所述处理单元201,还用于根据第一UE的功率参数和所述参数δ2,ue1,确定所述第二发射功率;所述发送单元202,还用于使用所述第二发射功率发送所述第二UE的下行数据。An optional implementation manner, the processing unit 201 is further configured to determine the second transmit power according to the power parameter of the first UE and the parameter δ 2, ue1 ; the sending unit 202 is further configured to: Transmitting downlink data of the second UE by using the second transmit power.
一种可选的实施方式,如果所述参数δ2,ue1为所述第一发射功率和第二发射功率的比值,所述处理单元201,用于根据所述第一发射功率和所述参数δ2,ue1确定所述第二发射功率。第一发射功率的确定方式,可以参见前边的描述。An optional implementation, if the parameter δ 2, ue1 is a ratio of the first transmit power to the second transmit power, the processing unit 201 is configured to use the first transmit power and the parameter δ 2, ue1 determines the second transmit power. For the determination of the first transmit power, refer to the previous description.
一种可选的实施方式,如果所述参数δ2,ue1为所述第一UE的ρue1和所述第二UE的ρue2比值。所述ρue1包括ρA,ue1和ρB,ue1,所述ρue2包括ρA,ue2和ρB,ue2。所述处理单元201用于分别根据所述ρA,ue1、ρB,ue1和所述参数δ2,ue1确定所述ρA,ue2和ρB,ue2,并根据所述ρA,ue2和ρB,ue2确定所述第二发射功率。其中,所述ρA,ue1和ρB,ue1的确定方式,可以参见前边的描述。所述处理单元201,还用于根据所述ρA,ue1、ρB,ue1和所述第二UE的参考信号发射功率,确定所述第二发射功率。 An alternative embodiment, if the parameter δ 2, ue1 to the first UE ρ ue1 and ρ ue2 ratio of the second UE. The ρ ue1 includes ρ A, ue1 and ρ B, ue1 , and the ρ ue2 includes ρ A, ue2 and ρ B, ue2 . The processing unit 201 for respectively 2, ue1 determining the ρ A, ue2 and ρ B, ue2 according to the ρ A, ue1, ρ B, ue1 , and the parameter δ, and according to the ρ A, ue2 and ρ B, ue2 determines the second transmit power. For the determination manner of the ρ A, ue1 and ρ B, ue1 , refer to the previous description. The processing unit 201 is further configured to determine the second transmit power according to the reference signal transmission powers of the ρ A, ue1 , ρ B, ue1 and the second UE.
本发明实施例一中,基站的处理单元201获取第一用户设备UE的功率参数和参数δ2,ue1,并通过发送单元202把第一用户设备UE的功率参数和参数δ2,ue1发送给第一UE,从而使第一UE可以根据第一用户设备UE的功率参数获取第一发射功率,并根据参数δ2,ue1和第一发射功率确定第二发射功率。第一UE能够根据第二发射功率消除掉第二UE的下行数据的干扰,实现采用NOMA技术进行通信。A processing unit in the embodiment, the base station 201 acquires a first embodiment of the present invention, the user equipment UE power parameters and parameter δ 2, ue1, and the transmitting unit 202 by a first user equipment UE power parameter and the parameter δ 2, ue1 to a The first UE, so that the first UE can acquire the first transmit power according to the power parameter of the first user equipment UE, and determine the second transmit power according to the parameter δ 2, ue1 and the first transmit power. The first UE can cancel the interference of the downlink data of the second UE according to the second transmit power, and implement communication by using the NOMA technology.
本发明实施例二又公开的一种基站,实施例一和实施例二的区别在于,所述处理单元201进一步用于获取所述第一发射功率的调整参数δ1,ue1。所述发送单元202进一步用于将该第一发射功率的调整参数δ1,ue1发送给第一UE。所述处理单元201具体用于根据所述第一UE的功率参数和所述第一发射功率的调整参数δ1,ue1确定所述第一发射功率。The second embodiment of the present invention further discloses a base station. The difference between the first embodiment and the second embodiment is that the processing unit 201 is further configured to acquire the adjustment parameter δ 1, ue1 of the first transmit power. The sending unit 202 is further configured to send the adjustment parameter δ 1, ue1 of the first transmit power to the first UE. The processing unit 201 is specifically configured to determine the first transmit power according to the power parameter of the first UE and the adjustment parameter δ 1, ue1 of the first transmit power.
一种可选的实施方式,所述发送单元202具体通过高层信令或物理下行控制信道PDCCH中的下行控制指示DCI向所述第一UE发送所述第一发射功率的调整参数δ1,ue1In an optional implementation manner, the sending unit 202 sends the adjustment parameter δ 1, ue1 of the first transmit power to the first UE by using a downlink control in a higher layer signaling or a physical downlink control channel PDCCH. .
一种可选的实施方式,所述第一发射功率的调整参数δ1,ue1为所述第一发射功率的调整值。所述处理单元201根据所述第一UE的功率参数确定得到的第三发射功率,所述第一发射功率为第三发射功率减去或加上所述第一发射功率的调整值。In an optional implementation manner, the adjustment parameter δ 1, ue1 of the first transmit power is an adjustment value of the first transmit power. The processing unit 201 determines the obtained third transmit power according to the power parameter of the first UE, where the first transmit power is a third transmit power minus or plus an adjustment value of the first transmit power.
作为一种可选的实施方式,所述处理单元201所述根据所述第一UE的功率参数确定得到的第三发射功率的过程,可以跟实施例一中所述处理单元201确定所述第一发射功率的过程相同。所述处理单元201根据所述
Figure PCTCN2014095946-appb-000038
和所述
Figure PCTCN2014095946-appb-000039
确定ρA,ue1和ρB,ue1,并根据所述ρA,ue1和所述ρB,ue1和所述第一UE的参考信号发射功率,确定所述第三发射功率。
As an optional implementation manner, the processing unit 201 determines, according to the power parameter of the first UE, a process of determining the obtained third transmit power, and the processing unit 201 in the first embodiment determines the The process of transmitting power is the same. The processing unit 201 is according to the
Figure PCTCN2014095946-appb-000038
And said
Figure PCTCN2014095946-appb-000039
Determining ρ A, ue1 and ρ B, ue1 , and determining the third transmit power according to the ρ A, ue1 and the ρ B, ue1 and the reference signal transmit power of the first UE.
作为一种可选的实施方式,在确定所述第三发射功率时,所述处理单元201具体用于根据如下公式确定所述ρA,ue1As an optional implementation manner, when determining the third transmit power, the processing unit 201 is specifically configured to determine the ρ A, ue1 according to the following formula:
Figure PCTCN2014095946-appb-000040
Figure PCTCN2014095946-appb-000040
Figure PCTCN2014095946-appb-000041
Figure PCTCN2014095946-appb-000041
所述处理单元201,具体用于根据所述ρA,ue1和表五,确定所述ρB,ue1The processing unit 201 is specifically configured to determine the ρ B, ue1 according to the ρ A, ue1 and the fifth table.
一种可选的实施方式,所述处理单元201根据所述
Figure PCTCN2014095946-appb-000042
所述
Figure PCTCN2014095946-appb-000043
和所述第一发射功 率的调整参数δ1,ue1确定ρA,ue1和ρB,ue1;并根据所述ρA,ue1和所述ρB,ue1和所述第一UE的参考信号发射功率,确定所述第一发射功率。
An optional implementation manner, the processing unit 201 is configured according to the
Figure PCTCN2014095946-appb-000042
Said
Figure PCTCN2014095946-appb-000043
And the first transmit power adjustment parameter δ 1, ue1 determines ρ A, ue1 and ρ B, ue1 ; and according to the ρ A, ue1 and the ρ B, ue1 and the reference signal of the first UE Power, determining the first transmit power.
一种可选的实施方式,所述处理单元201具体用于根据如下公式所述ρA,ue1An optional implementation manner, the processing unit 201 is specifically configured to: ρ A, ue1 according to the following formula:
Figure PCTCN2014095946-appb-000044
Figure PCTCN2014095946-appb-000044
Figure PCTCN2014095946-appb-000045
Figure PCTCN2014095946-appb-000045
所述处理单元201具体用于根据所述ρA,ue1和表五确定所述ρB,ue1The processing unit 201 is specifically configured to determine the ρ B, ue1 according to the ρ A, ue1 and Table 5.
本发明实施例二中,基站中的所述处理单元201获取所述第一发射功率的调整参数δ1,ue1,并通过所述发送单元202把第一发射功率的调整参数δ1,ue1发送给第一UE。基站通过第一发射功率的调整参数δ1,ue1对第一发射功率进行调度,从而实现NOMA技术下发射功率的动态调度。In the second embodiment of the present invention, the processing unit 201 in the base station acquires the adjustment parameter δ 1, ue1 of the first transmit power, and sends the adjustment parameter δ 1, ue1 of the first transmit power by using the sending unit 202 . Give the first UE. The base station schedules the first transmit power by using the first transmit power adjustment parameter δ 1, ue1 to implement dynamic scheduling of the transmit power under the NOMA technology.
基于图1所示的网络架构,本发明实施例三又公开了一种第一用户设备UE。所述第一UE跟基站进行通信,所述基站为至少两个UE服务,所述至少两个UE包括所述第一UE和第二UE。图3是本发明实施例三公开的一种第一UE的结构示意图。如图3所示,该第一UE可以包括:接收单元301和处理单元302。其中,接收单元具体可以是接收器,处理单元可以是处理器。Based on the network architecture shown in FIG. 1, the third embodiment of the present invention further discloses a first user equipment UE. The first UE communicates with a base station, the base station serves at least two UEs, and the at least two UEs include the first UE and the second UE. FIG. 3 is a schematic structural diagram of a first UE according to Embodiment 3 of the present invention. As shown in FIG. 3, the first UE may include: a receiving unit 301 and a processing unit 302. The receiving unit may specifically be a receiver, and the processing unit may be a processor.
所述接收单元301用于接收基站发送的所述第一UE的功率参数和参数δ2,ue1The receiving unit 301 is configured to receive a power parameter of the first UE and a parameter δ 2, ue1 sent by the base station.
所述处理单元302用于根据所述第一UE的功率参数确定第一发射功率。The processing unit 302 is configured to determine a first transmit power according to a power parameter of the first UE.
所述处理单元302还用于根据所述第一UE的功率参数和所述参数δ2,ue1确定第二发射功率。The processing unit 302 is further configured to determine a second transmit power according to the power parameter of the first UE and the parameter δ 2, ue1 .
所述接收单元301还用于接收所述基站发送的信号,所述接收的信号包括所述第一UE的下行数据。The receiving unit 301 is further configured to receive a signal sent by the base station, where the received signal includes downlink data of the first UE.
所述处理单元302还用于根据所述第一发射功率和所述第二发射功率从所述接收单元接收的信号中获取所述第一UE的下行数据。The processing unit 302 is further configured to acquire downlink data of the first UE from the signal received by the receiving unit according to the first transmit power and the second transmit power.
本发明实施例中,相关参数的具体含义可以参见实施例一的描述。For the specific meaning of related parameters in the embodiment of the present invention, refer to the description of Embodiment 1.
一种可选的实施方式,所述接收单元301具体用于接收所述基站通过高层信令或物理 下行控制信道PDCCH中的下行控制指示DCI发送的所述第一UE的功率参数和所述参数δ2,ue1An optional implementation manner, the receiving unit 301 is specifically configured to receive, by the base station, a power parameter of the first UE and a parameter that is sent by using a downlink control indication in a high-level signaling or a physical downlink control channel PDCCH. δ 2, ue1 .
一种可选的实施方式,UE采用跟实施例一中基站类似的方法确定所述第一发射功率。所述处理单元302根据所述
Figure PCTCN2014095946-appb-000046
和所述
Figure PCTCN2014095946-appb-000047
确定ρA,ue1和ρB,ue1;并根据所述ρA,ue1和所述ρB,ue1和所述第一UE的参考信号发射功率,确定所述第一发射功率。相关参数的含义,具体可以参见实施例一中的描述。
In an optional implementation manner, the UE determines the first transmit power by using a method similar to the base station in the first embodiment. The processing unit 302 is configured according to the
Figure PCTCN2014095946-appb-000046
And said
Figure PCTCN2014095946-appb-000047
Determining ρ A, ue1 and ρ B, ue1 ; and determining the first transmit power according to the ρ A, ue1 and the ρ B, ue1 and the reference signal transmit power of the first UE. For the meaning of the related parameters, refer to the description in the first embodiment.
一种可选的实施方式,所述处理单元302具体用于根据如下公式所述ρA,ue1An optional implementation manner, the processing unit 302 is specifically configured to: ρ A, ue1 according to the following formula:
Figure PCTCN2014095946-appb-000048
Figure PCTCN2014095946-appb-000048
Figure PCTCN2014095946-appb-000049
Figure PCTCN2014095946-appb-000049
所述处理单元302具体用于根据所述ρA,ue1和表五确定所述ρB,ue1The processing unit 302 is specifically configured to determine the ρ B, ue1 according to the ρ A, ue1 and Table 5.
一种可选的实施方式,如果所述参数δ2,ue1为所述第一发射功率和第二发射功率的比值,所述处理单元302根据所述第一发射功率和所述参数δ2,ue1确定所述第二发射功率。其中,所述第一发射功率的确定方式,可以参见前边的描述。An optional implementation manner, if the parameter δ 2, ue1 is a ratio of the first transmit power to the second transmit power, the processing unit 302 is configured according to the first transmit power and the parameter δ 2, Ue1 determines the second transmit power. For the manner of determining the first transmit power, refer to the foregoing description.
一种可选的实施方式,如果所述参数δ2,ue1为所述第一UE的ρue1和所述第二UE的ρue2比值。所述ρue1包括ρA,ue1和ρB,ue1,所述ρue2包括ρA,ue2和ρB,ue2。所述处理单元302用于分别根据所述ρA,ue1、ρB,ue1和所述参数δ2,ue1确定所述ρA,ue2和ρB,ue2,并根据所述ρA,ue2和ρB,ue2确定所述第二发射功率。其中,所述ρA,ue1和ρB,ue1的确定方式,可以参见前边的描述。An alternative embodiment, if the parameter δ 2, ue1 to the first UE ρ ue1 and ρ ue2 ratio of the second UE. The ρ ue1 includes ρ A, ue1 and ρ B, ue1 , and the ρ ue2 includes ρ A, ue2 and ρ B, ue2 . The processing unit 302 for respectively 2, ue1 determining the ρ A, ue2 and ρ B, ue2 according to the ρ A, ue1, ρ B, ue1 , and the parameter δ, and according to the ρ A, ue2 and ρ B, ue2 determines the second transmit power. For the determination manner of the ρ A, ue1 and ρ B, ue1 , refer to the previous description.
一种可选的实施方式,第一UE获取第一UE的下行数据时,第一UE需要使用先进接收机,如极大似然(maximum likehood,ML)接收机或码字级干扰删除(codeword interference cancellation,CWIC)接收机等。In an optional implementation manner, when the first UE acquires downlink data of the first UE, the first UE needs to use an advanced receiver, such as a maximum likelihood (ML) receiver or a codeword level interference deletion (codeword). Interference cancellation, CWIC) receivers, etc.
第一UE使用最大似然接收机时,可以将第一UE和第二UE的可能候选下行信号与接收信号相匹配,确定出第一UE的下行信号对应比特的软信息,从一般意义上来讲,第二UE的下行信号对第一UE来说是干扰信号,有效的设计第一UE和第二UE的发送星座图,可以等效的增大第一UE下行信号对应比特距离,从而提高传输的可靠性,如第一UE和第二UE的合成星座图符合格雷映射等。所述第一UE的下行信号携带第一UE的下行数据。 When the first UE uses the maximum likelihood receiver, the possible candidate downlink signals of the first UE and the second UE are matched with the received signal, and the soft information of the corresponding bit of the downlink signal of the first UE is determined, in a general sense The downlink signal of the second UE is an interference signal for the first UE, and the transmission constellation of the first UE and the second UE is effectively designed, which can increase the corresponding bit distance of the downlink signal of the first UE, thereby improving transmission. The reliability, such as the composite constellation of the first UE and the second UE, conforms to the Gray mapping and the like. The downlink signal of the first UE carries downlink data of the first UE.
第一UE使用CWIC接收机时,首先将第二UE的下行信号解调出来,然后从接收信号中将第二UE的下行信号减掉,得到第一UE的下行信号。When the first UE uses the CWIC receiver, the downlink signal of the second UE is first demodulated, and then the downlink signal of the second UE is subtracted from the received signal to obtain a downlink signal of the first UE.
第二UE可以将第一UE的下行信号当成干扰,直接使用现有的常规接收机。The second UE may use the downlink signal of the first UE as interference and directly use an existing conventional receiver.
比如,假设第一UE对应的信道系数为H1,受到噪声干扰为σ1。第二UE对应的信道系数为H2,受到噪声干扰为σ2。基站发送的第一UE的下行信号X1的第一发射功率为P1,基站在相同的时频资源上发送第二UE的下行信号X2的第二发射功率为P2。则此时第一UE和第二UE接收信号分别为Y1和Y2,分别表示为:For example, assume that the channel coefficient corresponding to the first UE is H 1 and the noise interference is σ 1 . The channel coefficient corresponding to the second UE is H 2 and the noise interference is σ 2 . The first transmit power of the downlink signal X 1 of the first UE sent by the base station is P 1 , and the second transmit power of the downlink signal X 2 of the second UE sent by the base station on the same time-frequency resource is P 2 . Then, the received signals of the first UE and the second UE are Y 1 and Y 2 respectively, which are respectively expressed as:
Figure PCTCN2014095946-appb-000050
Figure PCTCN2014095946-appb-000050
Figure PCTCN2014095946-appb-000051
Figure PCTCN2014095946-appb-000051
对于第一UE而言,接收到的接收信号Y1,通过信道估计和噪声估计分别得到信道H1和干扰σ1,根据功率P1和P2;然后优先解出第二UE的下行信号X2,根据上述公式,第一UE可以解出第一UE的下行信号X1For the first UE, the received received signal Y 1 is obtained by channel estimation and noise estimation, respectively, by obtaining channel H 1 and interference σ 1 according to powers P 1 and P 2 ; and then preferentially solving the downlink signal X of the second UE. 2. According to the above formula, the first UE may solve the downlink signal X 1 of the first UE.
需要注意的是,在以上求解第一UE的下行信号X1过程中,第一UE之所以可以优先求解X2然后减掉X2以获得对X1的更精确的估计,原因是在于第一UE的信噪比高于第二UE,所以第一UE可以正确的解出第二UE的下行信号X2。所以对于第二UE而言,由于无法正确求解第二UE的下行信号X1,所以只能按照以下公式直接求解X2It should be noted that in the above process of solving the downlink signal X 1 of the first UE, the first UE can preferentially solve X 2 and then subtract X 2 to obtain a more accurate estimation of X 1 because the first The signal-to-noise ratio of the UE is higher than that of the second UE, so the first UE can correctly solve the downlink signal X 2 of the second UE. Therefore, for the second UE, since the downlink signal X 1 of the second UE cannot be correctly solved, X 2 can be directly solved according to the following formula:
Figure PCTCN2014095946-appb-000052
Figure PCTCN2014095946-appb-000052
发明实施例三中,第一UE的接收单元301接收基站发送的第一UE的功率参数和参数δ2,ue1,第一UE的处理单元302根据第一用户设备UE的功率参数获取第一发射功率,并根据参数δ2,ue1和第一发射功率确定第二发射功率。第一UE能够根据第二发射功率消除掉第二UE的信号的干扰,实现采用NOMA技术进行通信。In the third embodiment of the present invention, the receiving unit 301 of the first UE receives the power parameter of the first UE and the parameter δ 2, ue1 sent by the base station , and the processing unit 302 of the first UE acquires the first transmission according to the power parameter of the first user equipment UE. Power, and determining the second transmit power based on the parameters δ 2, ue1 and the first transmit power. The first UE can eliminate the interference of the signal of the second UE according to the second transmit power, and implement communication by using the NOMA technology.
本发明实施例四又公开的一种第一UE,实施例三和实施例四的区别在于,第一UE的接收设备301进一步用于接收基站发送的第一发射功率的调整参数δ1,ue1。所述处理单元302,具体用于根据所述第一UE的功率参数和所述第一发射功率的调整参数δ1,ue1确定所述第一发射功率。The first UE of the fourth embodiment of the present invention is different from the fourth embodiment. The receiving device 301 of the first UE is further configured to receive the adjustment parameter δ 1, ue1 of the first transmit power sent by the base station . . The processing unit 302 is specifically configured to determine the first transmit power according to the power parameter of the first UE and the adjustment parameter δ 1, ue1 of the first transmit power.
一种可选的实施方式,所述接收设备301具体用于接收基站通过高层信令或PDCCH中的示DCI发送的所述第一发射功率的调整参数δ1,ue1An optional implementation manner, the receiving device 301 is specifically configured to receive, by the base station, the adjustment parameter δ 1, ue1 of the first transmit power that is sent by the DCI in the high layer signaling or the PDCCH.
一种可选的实施方式,所述第一发射功率的调整参数δ1,ue1为所述第一发射功率的调整值。所述处理单元302具体用于根据所述第一UE的功率参数确定得到的第三发射功率,所述第一发射功率为第三发射功率减去或加上所述第一发射功率的调整值。In an optional implementation manner, the adjustment parameter δ 1, ue1 of the first transmit power is an adjustment value of the first transmit power. The processing unit 302 is specifically configured to determine, according to the power parameter of the first UE, a third transmit power, where the first transmit power is a third transmit power minus or plus an adjustment value of the first transmit power. .
作为一种可选的实施方式,所述处理单元302具体用于根据所述
Figure PCTCN2014095946-appb-000053
和所述
Figure PCTCN2014095946-appb-000054
确定所述ρA,ue1和所述ρB,ue1;并根据所述ρA,ue1和所述ρB,ue1和所述第一UE的参考信号发射功率,确定所述第三发射功率。
As an optional implementation manner, the processing unit 302 is specifically configured to be used according to the
Figure PCTCN2014095946-appb-000053
And said
Figure PCTCN2014095946-appb-000054
Determining the ρ A, ue1 and the ρ B, ue1 ; and determining the third transmit power according to the ρ A, ue1 and the ρ B, ue1 and the reference signal transmit power of the first UE.
作为一种可选的实施方式,在确定所述第三发射功率时,所述处理单元302具体用于根据如下公式所述ρA,ue1As an optional implementation manner, when determining the third transmit power, the processing unit 302 is specifically configured to: ρ A, ue1 according to the following formula:
Figure PCTCN2014095946-appb-000055
Figure PCTCN2014095946-appb-000055
Figure PCTCN2014095946-appb-000056
Figure PCTCN2014095946-appb-000056
所述处理单元302,具体用于根据所述ρA,ue1和表五,确定所述ρB,ue1The processing unit 302 is specifically configured to determine the ρ B, ue1 according to the ρ A, ue1 and Table 5.
一种可选的实施方式,所述处理单元302具体用于根据所述
Figure PCTCN2014095946-appb-000057
所述
Figure PCTCN2014095946-appb-000058
和所述第一发射功率的调整参数δ1,ue1确定所述ρA,ue1和所述ρB,ue1;并根据所述ρA,ue1和所述ρB,ue1和所述第一UE的参考信号发射功率,确定所述第一发射功率。
An optional implementation manner, the processing unit 302 is specifically configured to be used according to the
Figure PCTCN2014095946-appb-000057
Said
Figure PCTCN2014095946-appb-000058
And the adjustment parameter δ 1, ue1 of the first transmit power determines the ρ A, ue1 and the ρ B, ue1 ; and according to the ρ A, ue1 and the ρ B, ue1 and the first UE The reference signal transmits power to determine the first transmit power.
一种可选的实施方式,所述处理单元302具体用于根据如下公式确定所述ρA,ue1An optional implementation manner, the processing unit 302 is specifically configured to determine the ρ A, ue1 according to the following formula:
Figure PCTCN2014095946-appb-000059
Figure PCTCN2014095946-appb-000059
Figure PCTCN2014095946-appb-000060
Figure PCTCN2014095946-appb-000060
所述处理单元302根据所述所述ρA,ue1和表五确定所述ρB,ue1The processing unit 302 determines the ρ B, ue1 according to the ρ A, ue1 and Table 5.
本发明实施例四中,第一UE的接收单元301接收基站发送的第一发射功率的调整参数δ1,ue1。基站通过第一发射功率的调整参数δ1,ue1对发射功率进行调度,从而实现NOMA技术下发射功率的动态调度。In the fourth embodiment of the present invention, the receiving unit 301 of the first UE receives the adjustment parameter δ 1, ue1 of the first transmit power sent by the base station. The base station schedules the transmit power by using the first transmit power adjustment parameter δ 1, ue1 to implement dynamic scheduling of the transmit power under the NOMA technology.
基于图1所示的网络架构,本发明实施例五公开了一种通信方法。请参阅图4,图4是 本发明实施例五公开的一种通信方法的流程示意图。其中,图4所示的方法适用于包括至少两个用户设备UE的通信网络,所述至少两个UE包括第一UE和第二UE。如图4所示,该通信方法可以包括以下步骤:Based on the network architecture shown in FIG. 1, a fifth embodiment of the present invention discloses a communication method. Please refer to Figure 4, Figure 4 is A schematic flowchart of a communication method disclosed in Embodiment 5 of the present invention. The method shown in FIG. 4 is applicable to a communication network including at least two user equipment UEs, and the at least two UEs include a first UE and a second UE. As shown in FIG. 4, the communication method may include the following steps:
401、基站获取第一UE的功率参数和参数δ2,ue1401. The base station acquires a power parameter and a parameter δ 2, ue1 of the first UE.
402、所述基站向所述第一UE发送所述第一UE的功率参数和所述参数δ2,ue1402. The base station sends, to the first UE, a power parameter of the first UE and the parameter δ 2, ue1 ;
403、所述基站根据所述第一UE的功率参数确定所述第一发射功率;403. The base station determines the first transmit power according to the power parameter of the first UE.
404、所述基站使用所述第一发射功率发送所述第一UE的下行信号。404. The base station sends the downlink signal of the first UE by using the first transmit power.
所述第一UE的功率参数包括:所述第一UE的UE特定参数
Figure PCTCN2014095946-appb-000061
所述第一UE的小区特定参数
Figure PCTCN2014095946-appb-000062
和所述第一UE的参考信号发射功率。所述参数δ2,ue1为所述第一发射功率和第二发射功率的比值相关的参数,所述第一发射功率为所述第一UE的下行数据的发射功率;所述第二发射功率为所述第二UE的下行数据的发射功率。本发明实施例中相关参数的描述,可以参见实施例一中的相关描述。
The power parameter of the first UE includes: UE specific parameters of the first UE
Figure PCTCN2014095946-appb-000061
Cell specific parameters of the first UE
Figure PCTCN2014095946-appb-000062
And a reference signal transmission power of the first UE. The parameter δ 2, ue1 is a parameter related to a ratio of the first transmit power to the second transmit power, where the first transmit power is a transmit power of downlink data of the first UE; the second transmit power The transmit power of the downlink data of the second UE. For a description of the related parameters in the embodiment of the present invention, refer to the related description in the first embodiment.
作为一种可选的实施方式,步骤402中,所述基站通过高层信令或PDCCH中的DCI向所述第一UE发送所述第一UE的功率参数和所述参数δ2,ue1As an optional implementation manner, in step 402, the base station sends the power parameter of the first UE and the parameter δ 2, ue1 to the first UE by using high layer signaling or DCI in the PDCCH.
作为一种可选的实施方式,步骤403中,所述基站根据所述
Figure PCTCN2014095946-appb-000063
和所述
Figure PCTCN2014095946-appb-000064
确定所述ρA,ue1和所述ρB,ue1;所述基站根据所述ρA,ue1和所述ρB,ue1和所述第一参考信号发射功率,确定所述第一发射功率。
As an optional implementation manner, in step 403, the base station is configured according to the
Figure PCTCN2014095946-appb-000063
And said
Figure PCTCN2014095946-appb-000064
Determining the ρ A, ue1 and the ρ B, ue1 ; the base station determines the first transmit power according to the ρ A, ue1 and the ρ B, ue1 and the first reference signal transmission power.
作为一种可选的实施方式,所述基站根据所述
Figure PCTCN2014095946-appb-000065
和所述
Figure PCTCN2014095946-appb-000066
确定所述ρA,ue1和所述ρB,ue1包括:
As an optional implementation manner, the base station is according to the
Figure PCTCN2014095946-appb-000065
And said
Figure PCTCN2014095946-appb-000066
Determining the ρ A, ue1 and the ρ B, ue1 include:
所述基站具体根据如下公式确定所述ρA,ue1The base station determines the ρ A, ue1 according to the following formula:
Figure PCTCN2014095946-appb-000067
Figure PCTCN2014095946-appb-000067
Figure PCTCN2014095946-appb-000068
Figure PCTCN2014095946-appb-000068
所述基站具体根据根据所述ρA,ue1和表五,确定所述ρB,ue1The base station determines the ρ B, ue1 according to the ρ A, ue1 and Table 5 , respectively .
作为一种可选的实施方式,基站在第一UE的PDCCH的DCI中的下行功率偏置域 (downlink power offset field)来指示δpower-offset。该下行功率偏置域可以占用一个比特。第一UE通过该下行功率偏置域来获知δpower-offset。下行功率偏置域可以如表六所示。As an optional implementation manner, the base station indicates a delta power-offset in a downlink power offset field in a DCI of a PDCCH of the first UE. The downlink power offset domain can occupy one bit. The first UE learns the delta power-offset through the downlink power offset domain. The downlink power offset domain can be as shown in Table 6.
一种可选的实施方式,该方法进一步包括,所述基站根据所述第一UE的功率参数和所述参数δ2,ue1,确定所述第二发射功率;所述基站使用所述第二发射功率发送所述第二UE的下行数据。An optional implementation manner, the method further includes: determining, by the base station, the second transmit power according to the power parameter of the first UE and the parameter δ 2, ue1 ; Transmit power transmits downlink data of the second UE.
一种可选的实施方式,如果所述参数δ2,ue1为所述第一发射功率和第二发射功率的比值,所述基站根根据所述第一发射功率和所述参数δ2,ue1确定所述第二发射功率。第一发射功率的确定方式,可以参见前边的描述。An optional implementation manner, if the parameter δ 2, ue1 is a ratio of the first transmit power to the second transmit power, the base station root according to the first transmit power and the parameter δ 2, ue1 The second transmit power is determined. For the determination of the first transmit power, refer to the previous description.
一种可选的实施方式,如果所述参数δ2,ue1为所述第一UE的ρue1和所述第二UE的ρue2比值。所述ρue1包括ρA,ue1和ρB,ue1,所述ρue2包括ρA,ue2和ρB,ue2。所述基站分别根据所述ρA,ue1、ρB,ue1和所述参数δ2,ue1确定所述ρA,ue2和ρB,ue2,并根据所述ρA,ue2和ρB,ue2确定所述第二发射功率。其中,所述ρA,ue1和ρB,ue1的确定方式,可以参见前边的描述。所述基站还根据所述ρA,ue1、ρB,ue1和所述第二UE的参考信号发射功率,确定所述第二发射功率。An alternative embodiment, if the parameter δ 2, ue1 to the first UE ρ ue1 and ρ ue2 ratio of the second UE. The ρ ue1 includes ρ A, ue1 and ρ B, ue1 , and the ρ ue2 includes ρ A, ue2 and ρ B, ue2 . The base station respectively according to the ρ A, ue1, ρ B, ue1 , and the parameter δ 2, ue1 determining the ρ A, ue2 and ρ B, ue2, and according to the ρ A, ue2 and ρ B, ue2 The second transmit power is determined. For the determination manner of the ρ A, ue1 and ρ B, ue1 , refer to the previous description. The base station further determines the second transmit power according to the ρ A, ue1 , ρ B, ue1 and the reference signal transmit power of the second UE.
发明实施例五中,基站获取第一UE的功率参数和参数δ2,ue1,并把该第一UE的功率参数和参数δ2,ue1发送给第一UE,从而使第一UE可以根据第一UE的功率参数获取第一发射功率,并根据参数δ2,ue1和第一发射功率确定第二发射功率。第一UE能够根据第二发射功率消除掉第二UE的下行数据的干扰,实现采用NOMA技术进行通信。In the fifth embodiment of the present invention, the base station acquires the power parameter of the first UE and the parameter δ 2, ue1 , and sends the power parameter of the first UE and the parameter δ 2, ue1 to the first UE, so that the first UE can be A power parameter of a UE acquires a first transmit power, and determines a second transmit power according to the parameter δ 2, ue1 and the first transmit power. The first UE can cancel the interference of the downlink data of the second UE according to the second transmit power, and implement communication by using the NOMA technology.
本发明实施例六又公开的一种通信方法,实施例六和实施例五的区别在于,基站进一步获取所述第一发射功率的调整参数δ1,ue1,并把该第一发射功率的调整参数δ1,ue1发送给第一UE。在步骤403中,所述基站具体根据所述第一UE的功率参数和所述第一发射功率的调整参数δ1,ue1确定所述第一发射功率。相关参数的含义,可以参见实施例五。The communication method of the sixth embodiment of the present invention is further disclosed. The difference between the sixth embodiment and the fifth embodiment is that the base station further acquires the adjustment parameter δ 1, ue1 of the first transmit power, and adjusts the first transmit power. The parameter δ 1, ue1 is sent to the first UE. In step 403, the base station determines the first transmit power according to the power parameter of the first UE and the adjustment parameter δ 1, ue1 of the first transmit power. For the meaning of related parameters, refer to the fifth embodiment.
一种可选的实施方式,所述基站通过高层信令或PDCCH中的DCI向所述第一UE发送所述第一发射功率的调整参数δ1,ue1In an optional implementation manner, the base station sends the adjustment parameter δ 1, ue1 of the first transmit power to the first UE by using high layer signaling or DCI in the PDCCH.
一种可选的实施方式,所述第一发射功率的调整参数δ1,ue1为所述第一发射功率的调整值。基站根据所述第一UE的功率参数确定得到的第三发射功率,所述第一发射功率为第三 发射功率减去或加上所述第一发射功率的调整值。In an optional implementation manner, the adjustment parameter δ 1, ue1 of the first transmit power is an adjustment value of the first transmit power. The base station determines the obtained third transmit power according to the power parameter of the first UE, where the first transmit power is a third transmit power minus or plus an adjustment value of the first transmit power.
一种可选的实施方式,所述基站根据所述第一UE的功率参数确定得到的第三发射功率的过程,可以跟实施例五中所述基站确定所述第一发射功率的过程相同。所述基站根据所述
Figure PCTCN2014095946-appb-000069
和所述
Figure PCTCN2014095946-appb-000070
确定ρA,ue1和ρB,ue1,并根据所述ρA,ue1和所述ρB,ue1和所述第一UE的参考信号发射功率,确定所述第三发射功率。
In an optional implementation manner, the process of determining, by the base station, the obtained third transmit power according to the power parameter of the first UE may be the same as the process of determining, by the base station in the fifth embodiment, the first transmit power. The base station according to the
Figure PCTCN2014095946-appb-000069
And said
Figure PCTCN2014095946-appb-000070
Determining ρ A, ue1 and ρ B, ue1 , and determining the third transmit power according to the ρ A, ue1 and the ρ B, ue1 and the reference signal transmit power of the first UE.
作为一种可选的实施方式,所述基站确定所述第三发射功率时,所述基站根据所述
Figure PCTCN2014095946-appb-000071
和所述
Figure PCTCN2014095946-appb-000072
确定所述ρA,ue1和所述ρB,ue1包括:
In an optional implementation manner, when the base station determines the third transmit power, the base station is configured according to the
Figure PCTCN2014095946-appb-000071
And said
Figure PCTCN2014095946-appb-000072
Determining the ρ A, ue1 and the ρ B, ue1 include:
所述基站根据如下公式确定所述ρA,ue1The base station determines the ρ A, ue1 according to the following formula:
Figure PCTCN2014095946-appb-000073
Figure PCTCN2014095946-appb-000073
Figure PCTCN2014095946-appb-000074
Figure PCTCN2014095946-appb-000074
所述基站根据所述ρA,ue1和表五,确定所述ρB,ue1The base station determines the ρ B, ue1 according to the ρ A, ue1 and Table 5.
一种可选的实施方式,所述基站根据所述
Figure PCTCN2014095946-appb-000075
所述
Figure PCTCN2014095946-appb-000076
和所述第一发射功率的调整参数δ1,ue1确定所述ρA,ue1和所述ρB,ue1;所述基站根据所述ρA,ue1和所述ρB,ue1和所述第一UE的参考信号发射功率,确定所述第一发射功率。
An optional implementation manner, the base station according to the
Figure PCTCN2014095946-appb-000075
Said
Figure PCTCN2014095946-appb-000076
Determining the ρ A, ue1 and the ρ B, ue1 with the adjustment parameter δ 1, ue1 of the first transmit power; the base station according to the ρ A, ue1 and the ρ B, ue1 and the The reference signal of a UE transmits power, and the first transmit power is determined.
一种可选的实施方式,所述基站根据所述
Figure PCTCN2014095946-appb-000077
所述
Figure PCTCN2014095946-appb-000078
和所述第一发射功率的调整参数δ1,ue1确定所述ρA,ue1和所述ρB,ue1包括:
An optional implementation manner, the base station according to the
Figure PCTCN2014095946-appb-000077
Said
Figure PCTCN2014095946-appb-000078
And determining , by the adjustment parameter δ 1, ue1 of the first transmit power , the ρ A, ue1 and the ρ B, ue1 include:
所述基站根据如下公式所述ρA,ue1The base station according to the following formula ρ A, ue1 :
Figure PCTCN2014095946-appb-000079
Figure PCTCN2014095946-appb-000079
Figure PCTCN2014095946-appb-000080
Figure PCTCN2014095946-appb-000080
所述基站根据所述ρA,ue1和表五确定所述ρB,ue1The base station determines the ρ B, ue1 according to the ρ A, ue1 and Table 5.
本发明实施例六中,基站获取所述第一发射功率的调整参数δ1,ue1,并把该第一发射功 率的调整参数δ1,ue1发送给第一UE。基站通过第一发射功率的调整参数δ1,ue1对发射功率进行调度,从而实现NOMA技术下发射功率的动态调度。Sixth embodiment of the present invention embodiment, the first base station acquires the transmission power adjustment parameter δ 1, ue1, and transmits a first adjustment parameter δ of the transmission power of 1, ue1 to the first UE. The base station schedules the transmit power by using the first transmit power adjustment parameter δ 1, ue1 to implement dynamic scheduling of the transmit power under the NOMA technology.
基于图1所示的网络架构,本发明实施例七又公开了一种通信方法。请参阅图5,图5是本发明实施例七公开的一种通信方法的流程示意图。其中,适用于包括至少两个用户设备UE的通信网络,所述至少两个UE包括第一UE和第二UE。如图5所示,该通信方法可以包括以下步骤:Based on the network architecture shown in FIG. 1, a seventh embodiment of the present invention further discloses a communication method. Referring to FIG. 5, FIG. 5 is a schematic flowchart diagram of a communication method according to Embodiment 7 of the present invention. The method is applicable to a communication network including at least two user equipment UEs, where the at least two UEs include a first UE and a second UE. As shown in FIG. 5, the communication method may include the following steps:
501、第一用户设备UE接收基站发送的所述第一UE的功率参数和参数δ2,ue1501. The first user equipment UE receives the power parameter of the first UE and the parameter δ 2, ue1 sent by the base station.
502、所述第一UE根据所述第一UE的功率参数确定所述第一发射功率;502. The first UE determines the first transmit power according to a power parameter of the first UE.
503、所述第一UE根据所述第一发射功率和所述参数δ2,ue1确定所述第二发射功率;503. The first UE determines the second transmit power according to the first transmit power and the parameter δ 2, ue1 .
504、所述第一UE接收所述基站发送的信号,所述接收的信号包括所述第一UE的下行数据;504. The first UE receives a signal sent by the base station, where the received signal includes downlink data of the first UE.
505、所述第一UE根据所述第一发射功率和所述第二发射功率从所述接收的信号中获取所述第一UE的下行数据。505. The first UE acquires downlink data of the first UE from the received signal according to the first transmit power and the second transmit power.
所述第一UE的UE特定参数
Figure PCTCN2014095946-appb-000081
所述第一UE的小区特定参数
Figure PCTCN2014095946-appb-000082
和所述第一UE的参考信号发射功率。所述参数δ2,ue1为所述第一发射功率和第二发射功率的比值相关的参数,所述第一发射功率为所述第一UE的下行数据的发射功率;所述第二发射功率为所述第二UE的下行数据的发射功率。本发明实施例中相关参数的描述,可以参见实施例一中的相关描述。
UE specific parameters of the first UE
Figure PCTCN2014095946-appb-000081
Cell specific parameters of the first UE
Figure PCTCN2014095946-appb-000082
And a reference signal transmission power of the first UE. The parameter δ 2, ue1 is a parameter related to a ratio of the first transmit power to the second transmit power, where the first transmit power is a transmit power of downlink data of the first UE; the second transmit power The transmit power of the downlink data of the second UE. For a description of the related parameters in the embodiment of the present invention, refer to the related description in the first embodiment.
一种可选的实施方式,在步骤501中,所述第一UE接收所述基站通过高层信令或物理下行控制信道PDCCH中的下行控制指示DCI发送的所述第一UE的功率参数和所述参数δ2,ue1In an optional implementation manner, in step 501, the first UE receives a power parameter and a location of the first UE that is sent by the base station by using a downlink control in a higher layer signaling or a physical downlink control channel PDCCH. The parameter δ 2, ue1 .
一种可选的实施方式,在步骤502中,第一UE采用跟实施例五中基站类似的方法确定第一发射功率。所述第一UE根据所述
Figure PCTCN2014095946-appb-000083
和所述
Figure PCTCN2014095946-appb-000084
确定ρA,ue1和ρB,ue1;所述基站根据所述ρA,ue1和所述ρB,ue1和所述第一UE的参考信号发射功率,确定所述第一发射功率。具体可以参见实施例一中的描述。
In an optional implementation manner, in step 502, the first UE determines the first transmit power by using a method similar to the base station in the fifth embodiment. The first UE according to the
Figure PCTCN2014095946-appb-000083
And said
Figure PCTCN2014095946-appb-000084
Determining ρ A, ue1 and ρ B, ue1 ; the base station determines the first transmit power according to the ρ A, ue1 and the ρ B, ue1 and the reference signal transmit power of the first UE. For details, refer to the description in the first embodiment.
一种可选的实施方式,所述第一UE根据所述
Figure PCTCN2014095946-appb-000085
和所述
Figure PCTCN2014095946-appb-000086
确定所述ρA,ue1和所述ρB,ue1包括:
An optional implementation manner, the first UE is according to the
Figure PCTCN2014095946-appb-000085
And said
Figure PCTCN2014095946-appb-000086
Determining the ρ A, ue1 and the ρ B, ue1 include:
所述第一UE具体根据如下公式确定所述ρA,ue1The first UE determines the ρ A, ue1 according to the following formula:
Figure PCTCN2014095946-appb-000087
Figure PCTCN2014095946-appb-000087
Figure PCTCN2014095946-appb-000088
Figure PCTCN2014095946-appb-000088
所述第一UE具体根据根据所述ρA,ue1和表五确定所述ρB,ue1The first UE determines the ρ B, ue1 according to the ρ A, ue1 and the fifth table.
作为一种可选的实施方式,第一UE接收基站发送第一UE的PDCCH,该第一UE从该PDCCH中的DCI中的的下行功率偏置域(downlink power offset field)获取δpower-offset。比如,下行功率偏置域可以如表六。该下行功率偏置域为一比特。As an optional implementation manner, the first UE receives, by the base station, a PDCCH of the first UE, where the first UE acquires a δ power-offset from a downlink power offset field in the DCI in the PDCCH. . For example, the downlink power offset domain can be as shown in Table 6. The downlink power offset domain is one bit.
一种可选的实施方式,在步骤503中,所述第一UE根据所述第一UE的功率参数和所述参数δ2,ue1确定第二发射功率包括:An optional implementation manner, in step 503, the determining, by the first UE , the second transmit power according to the power parameter of the first UE and the parameter δ 2, ue1 includes:
如果所述参数δ2,ue1为所述第一发射功率和第二发射功率的比值,所述第一UE根据所述第一发射功率和所述参数δ2,ue1确定所述第二发射功率。其中,所述第一发射功率的确定方式,可以参见前边的描述。或者,If the parameter δ 2, ue1 is the ratio of the first transmit power to the second transmit power, the first UE determines the second transmit power according to the first transmit power and the parameter δ 2, ue1 . For the manner of determining the first transmit power, refer to the foregoing description. or,
如果所述参数δ2,ue1为所述第一UE的ρue1和所述第二UE的ρue2比值。所述ρue1包括ρA,ue1和ρB,ue1,所述ρue2包括ρA,ue2和ρB,ue2。所述第一UE分别根据所述ρA,ue1、ρB,ue1和所述参数δ2,ue1确定所述ρA,ue2和ρB,ue2,并根据所述ρA,ue2和ρB,ue2确定所述第二发射功率。其中,所述ρA,ue1和ρB,ue1的确定方式,可以参见前边的描述。If the parameter δ 2, ue1 is the ratio of ρ ue1 of the first UE to the ρ ue2 of the second UE. The ρ ue1 includes ρ A, ue1 and ρ B, ue1 , and the ρ ue2 includes ρ A, ue2 and ρ B, ue2 . The UE respectively according to the first ρ A, ue1, ρ B, ue1 , and the parameter δ 2, ue1 determining the ρ A, ue2 and ρ B, ue2, and according to the ρ A, ue2 and ρ B , ue2 determines the second transmit power. For the determination manner of the ρ A, ue1 and ρ B, ue1 , refer to the previous description.
一种可选的实施方式,在步骤504中,第一UE接收基站发送的信号时,第一UE需要使用先进接收机,如极大似然(maximum likehood,ML)接收机或码字级干扰删除(codeword interference cancellation,CWIC)接收机等。In an optional implementation manner, in step 504, when the first UE receives the signal sent by the base station, the first UE needs to use an advanced receiver, such as a maximum likelihood (ML) receiver or a codeword level interference. Deletion (codeword interference cancellation, CWIC) receiver, etc.
第一UE使用最大似然接收机时,可以将第一UE和第二UE的可能候选下行信号与接收信号相匹配,确定出第一UE的下行信号对应比特的软信息,从一般意义上来讲,第二UE的下行信号对第一UE来说是干扰信号,有效的设计第一UE和第二UE的发送星座图,可以等效的增大第一UE下行信号对应比特距离,从而提高传输的可靠性,如第一UE和第二UE的合成星座图符合格雷映射等。所述第一UE的下行信号携带第一UE的下行数据。When the first UE uses the maximum likelihood receiver, the possible candidate downlink signals of the first UE and the second UE are matched with the received signal, and the soft information of the corresponding bit of the downlink signal of the first UE is determined, in a general sense The downlink signal of the second UE is an interference signal for the first UE, and the transmission constellation of the first UE and the second UE is effectively designed, which can increase the corresponding bit distance of the downlink signal of the first UE, thereby improving transmission. The reliability, such as the composite constellation of the first UE and the second UE, conforms to the Gray mapping and the like. The downlink signal of the first UE carries downlink data of the first UE.
第一UE使用CWIC接收机时,首先将第二UE的下行信号解调出来,然后从接收信号 中将第二UE的下行信号减掉,得到第一UE的下行信号。When the first UE uses the CWIC receiver, the downlink signal of the second UE is first demodulated, and then the received signal is received. The downlink signal of the second UE is subtracted, and the downlink signal of the first UE is obtained.
第二UE可以将第一UE的下行信号当成干扰,直接使用现有的常规接收机。The second UE may use the downlink signal of the first UE as interference and directly use an existing conventional receiver.
一种可选的实施方式,在步骤505中,所述第一UE根据所述第一发射功率和所述第二发射功率从所述接收的信号中获取所述第一UE的下行数据。In an optional implementation manner, in step 505, the first UE acquires downlink data of the first UE from the received signal according to the first transmit power and the second transmit power.
比如,假设第一UE对应的信道系数为H1,受到噪声干扰为σ1。第二UE对应的信道系数为H2,受到噪声干扰为σ2。基站发送的第一UE的下行信号X1的第一发射功率为P1,基站在相同的时频资源上发送第二UE的下行信号X2的第二发射功率为P2。则此时第一UE和第二UE接收信号分别为Y1和Y2,分别表示为:For example, assume that the channel coefficient corresponding to the first UE is H 1 and the noise interference is σ 1 . The channel coefficient corresponding to the second UE is H 2 and the noise interference is σ 2 . The first transmit power of the downlink signal X 1 of the first UE sent by the base station is P 1 , and the second transmit power of the downlink signal X 2 of the second UE sent by the base station on the same time-frequency resource is P 2 . Then, the received signals of the first UE and the second UE are Y 1 and Y 2 respectively, which are respectively expressed as:
Figure PCTCN2014095946-appb-000089
Figure PCTCN2014095946-appb-000089
Figure PCTCN2014095946-appb-000090
Figure PCTCN2014095946-appb-000090
对于第一UE而言,接收到的接收信号Y1,通过信道估计和噪声估计分别得到信道H1和干扰σ1,根据功率P1和P2;然后优先解出第二UE的下行信号X2,根据上述公式,第一UE可以解出第一UE的下行信号X1For the first UE, the received received signal Y 1 is obtained by channel estimation and noise estimation, respectively, by obtaining channel H 1 and interference σ 1 according to powers P 1 and P 2 ; and then preferentially solving the downlink signal X of the second UE. 2. According to the above formula, the first UE may solve the downlink signal X 1 of the first UE.
需要注意的是,在以上求解第一UE的下行信号X1过程中,第一UE之所以可以优先求解X2然后减掉X2以获得对X1的更精确的估计,原因是在于第一UE的信噪比高于第二UE,所以第一UE可以正确的解出第二UE的下行信号X2。所以对于第二UE而言,由于无法正确求解第二UE的下行信号X1,所以只能按照以下公式直接求解X2It should be noted that in the above process of solving the downlink signal X 1 of the first UE, the first UE can preferentially solve X 2 and then subtract X 2 to obtain a more accurate estimation of X 1 because the first The signal-to-noise ratio of the UE is higher than that of the second UE, so the first UE can correctly solve the downlink signal X 2 of the second UE. Therefore, for the second UE, since the downlink signal X 1 of the second UE cannot be correctly solved, X 2 can be directly solved according to the following formula:
Figure PCTCN2014095946-appb-000091
Figure PCTCN2014095946-appb-000091
发明实施例七中,第一UE接收基站发送的第一UE的功率参数和参数δ2,ue1,第一UE根据第一用户设备UE的功率参数获取第一发射功率,并根据参数δ2,ue1和第一发射功率确定第二发射功率。第一UE能够根据第二发射功率消除掉第二UE的信号的干扰,实现采用NOMA技术进行通信。In the seventh embodiment of the present invention, the first UE receives the power parameter of the first UE and the parameter δ 2, ue1 , and the first UE acquires the first transmit power according to the power parameter of the first user equipment UE, and according to the parameter δ 2, Ue1 and the first transmit power determine the second transmit power. The first UE can eliminate the interference of the signal of the second UE according to the second transmit power, and implement communication by using the NOMA technology.
本发明实施例八又公开的一种通信方法,实施例八和实施例七的区别在于,第一UE接收基站发送的第一发射功率的调整参数δ1,ue1。所述第一UE具体根据所述第一UE的功率参数和所述第一发射功率的调整参数δ1,ue1确定所述第一发射功率。A communication method is disclosed in Embodiment 8 of the present invention. The difference between Embodiment 8 and Embodiment 7 is that the first UE receives the adjustment parameter δ 1, ue1 of the first transmit power sent by the base station. The first UE determines the first transmit power according to the power parameter of the first UE and the adjustment parameter δ 1, ue1 of the first transmit power.
一种可选的实施方式,所述第一UE接收基站通过高层信令或PDCCH中的DCI发送的所述第一发射功率的调整参数δ1,ue1In an optional implementation manner, the first UE receives the adjustment parameter δ 1, ue1 of the first transmit power that is sent by the base station by using the high layer signaling or the DCI in the PDCCH.
一种可选的实施方式,所述第一发射功率的调整参数δ1,ue1为所述第一发射功率的调整值。第一UE根据所述第一UE的功率参数和所述第一发射功率的调整参数δ1,ue1确定所述第一发射功率包括:所述第一UE根据所述第一UE的功率参数确定得到的第三发射功率,所述第一发射功率为第三发射功率减去或加上所述第一发射功率的调整值。In an optional implementation manner, the adjustment parameter δ 1, ue1 of the first transmit power is an adjustment value of the first transmit power. Determining , by the first UE, the first transmit power according to the power parameter of the first UE and the adjustment parameter δ 1, ue1 of the first transmit power, that: the first UE is determined according to a power parameter of the first UE And obtaining a third transmit power, where the first transmit power is a third transmit power minus or plus an adjustment value of the first transmit power.
一种可选的实施方式,所述第一UE具体根据所述
Figure PCTCN2014095946-appb-000092
和所述
Figure PCTCN2014095946-appb-000093
确定所述ρA,ue1和所述ρB,ue1;所述第一UE根据所述ρA,ue1和所述ρB,ue1和所述第一UE的参考信号发射功率,确定所述第三发射功率。
An optional implementation manner, where the first UE is specifically according to the
Figure PCTCN2014095946-appb-000092
And said
Figure PCTCN2014095946-appb-000093
Determining the ρ A, ue1 and the ρ B, ue1 ; the first UE determines the first according to the ρ A, ue1 and the ρ B, ue1 and the reference signal transmit power of the first UE Three transmit power.
作为一种可选的实施方式,确定第三发射功率时,所述第一UE具体根据如下公式确定所述ρA,ue1As an optional implementation manner, when determining the third transmit power, the first UE determines the ρ A, ue1 according to the following formula:
Figure PCTCN2014095946-appb-000094
Figure PCTCN2014095946-appb-000094
Figure PCTCN2014095946-appb-000095
Figure PCTCN2014095946-appb-000095
所述第一UE具体根据所述ρA,ue1和表五,确定所述ρB,ue1The first UE determines the ρ B, ue1 according to the ρ A, ue1 and the fifth table.
这里第三功率的确定方式,可以参见实施例十五中确定第一发射功率的方式。Here, the manner of determining the third power can be referred to the manner of determining the first transmit power in Embodiment 15.
一种可选的实施方式,所述第一UE根据所述
Figure PCTCN2014095946-appb-000096
所述
Figure PCTCN2014095946-appb-000097
和所述第一发射功率的调整参数δ1,ue1确定所述ρA,ue1和所述ρB,ue1;所述第一UE根据所述ρA,ue1和所述ρB,ue1和所述第一UE的参考信号发射功率,确定所述第一发射功率。
An optional implementation manner, the first UE is according to the
Figure PCTCN2014095946-appb-000096
Said
Figure PCTCN2014095946-appb-000097
Determining the ρ A, ue1 and the ρ B, ue1 with the adjustment parameter δ 1, ue1 of the first transmit power; the first UE according to the ρ A, ue1 and the ρ B, ue1 and Determining the first transmit power by using a reference signal transmit power of the first UE.
一种可选的实施方式,所述第一UE具体根据所述
Figure PCTCN2014095946-appb-000098
所述和所述第一发射功率的调整参数δ1,ue1确定所述ρA,ue1和所述ρB,ue1包括:
An optional implementation manner, where the first UE is specifically according to the
Figure PCTCN2014095946-appb-000098
Said And determining , by the adjustment parameter δ 1, ue1 of the first transmit power , the ρ A, ue1 and the ρ B, ue1 include:
所述第一UE具体根据如下公式确定所述ρA,ue1The first UE determines the ρ A, ue1 according to the following formula:
Figure PCTCN2014095946-appb-000100
Figure PCTCN2014095946-appb-000100
Figure PCTCN2014095946-appb-000101
Figure PCTCN2014095946-appb-000101
所述第一UE具体根据所述ρA,ue1和表五确定所述ρB,ue1The first UE determines the ρ B, ue1 according to the ρ A, ue1 and Table 5.
作为一种可选的实施方式,第一UE接收基站通过第一UE的PDCCH的DCI中下行功率偏置域(downlink power offset field)指示的δpower-offset。比如,下行功率偏置域可以下表六。As an optional implementation manner, the first UE receives a δ power-offset indicated by a downlink power offset field in a DCI of the PDCCH of the first UE by the base station. For example, the downlink power offset domain can be as follows.
本发明实施例七中,第一UE接收基站发送的第一发射功率的调整参数δ1,ue1。基站通过第一发射功率的调整参数δ1,ue1对发射功率进行调度,从而实现NOMA技术下发射功率的动态调度。In the seventh embodiment of the present invention, the first UE receives the adjustment parameter δ 1, ue1 of the first transmit power sent by the base station. The base station schedules the transmit power by using the first transmit power adjustment parameter δ 1, ue1 to implement dynamic scheduling of the transmit power under the NOMA technology.
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。In the several embodiments provided herein, it should be understood that the disclosed apparatus and method can be implemented in other ways. For example, the device embodiments described above are merely illustrative. For example, the division of the unit is only a logical function division. In actual implementation, there may be another division manner, for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed. In addition, the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。The units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。In addition, each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit. The above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。The integrated unit, if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium. Based on such understanding, the technical solution of the present invention, which is essential or contributes to the prior art, or all or part of the technical solution, may be embodied in the form of a software product stored in a storage medium. A number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention. The foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖 在本发明的保护范围之内。因此,本发明的保护范围应所述以权利要求的保护范围为准。 The above is only a specific embodiment of the present invention, but the scope of the present invention is not limited thereto, and any person skilled in the art can easily think of changes or substitutions within the technical scope of the present invention. Should be covered It is within the scope of the invention. Therefore, the scope of the invention should be determined by the scope of the claims.

Claims (27)

  1. 一种基站,为至少两个用户设备UE服务,所述至少两个UE包括第一UE和第二UE,其特征在于,包括:A base station, serving at least two user equipment UEs, where the at least two UEs include a first UE and a second UE, and the method includes:
    处理单元,用于确定所述第一UE的功率参数和参数δ2,ue1;其中,所述第一UE的功率参数包括:所述第一UE的UE特定参数
    Figure PCTCN2014095946-appb-100001
    所述第一UE的小区特定参数
    Figure PCTCN2014095946-appb-100002
    和所述第一UE的参考信号发射功率,所述参数δ2,ue1为第一发射功率和第二发射功率的比值相关的参数,所述第一发射功率为所述第一UE的下行数据的发射功率;所述第二发射功率为所述第二UE的下行数据的发射功率;
    a processing unit, configured to determine a power parameter and a parameter δ 2, ue1 of the first UE, where the power parameter of the first UE includes: a UE-specific parameter of the first UE
    Figure PCTCN2014095946-appb-100001
    Cell specific parameters of the first UE
    Figure PCTCN2014095946-appb-100002
    And a reference signal transmission power of the first UE, where the parameter δ 2, ue1 is a parameter related to a ratio of the first transmit power to the second transmit power, where the first transmit power is downlink data of the first UE Transmit power; the second transmit power is a transmit power of downlink data of the second UE;
    发送单元,用于向所述第一UE发送所述第一UE的功率参数和所述参数δ2,ue1a sending unit, configured to send, to the first UE, a power parameter of the first UE and the parameter δ 2, ue1 ;
    所述处理单元,还用于根据所述第一UE的功率参数确定所述第一发射功率;The processing unit is further configured to determine the first transmit power according to the power parameter of the first UE;
    所述发送单元,还用于使用所述第一发射功率发送所述第一UE的下行数据。The sending unit is further configured to send downlink data of the first UE by using the first transmit power.
  2. 根据权利要求1所述的基站,其特征在于,所述参数δ2,ue1为所述第一发射功率和第二发射功率的比值;或者The base station according to claim 1, wherein said parameter δ 2, ue1 is a ratio of said first transmit power to a second transmit power; or
    所述参数δ2,ue1为所述第一UE的ρue1和所述第二UE的ρue2比值,其中,所述ρue1表示所述第一UE的物理下行共享信道PDSCH的每资源单元能量EPRE和所述第一UE的小区特定的参考信号的EPRE的比值,所述ρue1包括ρA,ue1和ρB,ue1,所述ρA,ue1和ρB,ue1对应所述第一UE的不同正交频分复用OFDM符号索引;所述ρue2表示所述第二UE的PDSCH的EPRE和所述第二UE的小区特定的参考信号的EPRE的比值,所述ρue2包括ρA,ue2和ρB,ue2,所述ρA,ue2和ρB,ue2对应所述第二UE的不同OFDM符号索引。The parameter δ 2, ue1 ρ ue1 said first ratio ρ ue2 UE and the second UE, wherein, the resource element ρ ue1 represents the energy physical downlink shared channel (PDSCH) in each of the first UE a ratio of an EPRE and an EPRE of a cell-specific reference signal of the first UE, the ρ ue1 including ρ A, ue1 and ρ B, ue1 , the ρ A, ue1 and ρ B, ue1 corresponding to the first UE Different orthogonal frequency division multiplexing OFDM symbol indices; the ρ ue2 represents a ratio of an EPRE of a PDSCH of the second UE and an EPRE of a cell-specific reference signal of the second UE, the ρ ue2 including ρ A , ue2 and ρ B, ue2 , the ρ A, ue2 and ρ B, ue2 correspond to different OFDM symbol indexes of the second UE.
  3. 根据权利要求1或2所述的基站,其特征在于,A base station according to claim 1 or 2, characterized in that
    所述处理单元,还用于获取所述第一发射功率的调整参数δ1,ue1The processing unit is further configured to acquire the adjustment parameter δ 1, ue1 of the first transmit power;
    所述发送单元,还用于向所述第一UE发送所述第一发射功率的调整参数δ1,ue1The sending unit is further configured to send, to the first UE, the adjustment parameter δ 1, ue1 of the first transmit power;
    所述处理单元,具体用于根据所述第一UE的功率参数和所述第一发射功率的调整参数δ1,ue1确定所述第一发射功率。The processing unit is specifically configured to determine the first transmit power according to the power parameter of the first UE and the adjustment parameter δ 1, ue1 of the first transmit power.
  4. 根据权利要求3所述的基站,其特征在于,所述第一发射功率的调整参数δ1,ue1为所 述第一发射功率的调整值。The base station according to claim 3, wherein the adjustment parameter δ 1, ue1 of the first transmission power is an adjustment value of the first transmission power.
  5. 根据权利要求3所述的基站,其特征在于,所述处理单元,具体用于根据所述
    Figure PCTCN2014095946-appb-100003
    所述
    Figure PCTCN2014095946-appb-100004
    和所述第一发射功率的调整参数δ1,ue1确定所述ρA,ue1和所述ρB,ue1;并根据所述ρA,ue1和所述ρB,ue1和所述第一UE的参考信号发射功率,确定所述第一发射功率。
    The base station according to claim 3, wherein the processing unit is specifically configured to perform according to the
    Figure PCTCN2014095946-appb-100003
    Said
    Figure PCTCN2014095946-appb-100004
    And the adjustment parameter δ 1, ue1 of the first transmit power determines the ρ A, ue1 and the ρ B, ue1 ; and according to the ρ A, ue1 and the ρ B, ue1 and the first UE The reference signal transmits power to determine the first transmit power.
  6. 根据权利要求5所述的基站,其特征在于,所述处理单元,具体用于根据如下公式确定所述ρA,ue1The base station according to claim 5, wherein the processing unit is specifically configured to determine the ρ A, ue1 according to the following formula:
    Figure PCTCN2014095946-appb-100005
    Figure PCTCN2014095946-appb-100005
    Figure PCTCN2014095946-appb-100006
    Figure PCTCN2014095946-appb-100006
    所述处理单元,具体用于根据所述ρA,ue1和如下表格,确定所述ρB,ue1The processing unit is specifically configured to determine the ρ B, ue1 according to the ρ A, ue1 and a table as follows:
    Figure PCTCN2014095946-appb-100007
    Figure PCTCN2014095946-appb-100007
  7. 根据权利要求2所述的基站,其特征在于,所述处理单元,具体用于根据所述
    Figure PCTCN2014095946-appb-100008
    和所述
    Figure PCTCN2014095946-appb-100009
    确定所述ρA,ue1和所述ρB,ue1,并根据所述ρA,ue1和所述ρB,ue1和所述第一UE的参考信号发射功率,确定所述第一发射功率。
    The base station according to claim 2, wherein the processing unit is specifically configured to perform according to the
    Figure PCTCN2014095946-appb-100008
    And said
    Figure PCTCN2014095946-appb-100009
    Determining the ρ A, ue1 and the ρ B, ue1 , and determining the first transmit power according to the ρ A, ue1 and the ρ B, ue1 and the reference signal transmit power of the first UE.
  8. 根据权利要求7所述的基站,其特征在于,所述处理单元,具体用于根据如下公式确定所述ρA,ue1The base station according to claim 7, wherein the processing unit is specifically configured to determine the ρ A, ue1 according to the following formula:
    Figure PCTCN2014095946-appb-100010
    Figure PCTCN2014095946-appb-100010
    Figure PCTCN2014095946-appb-100011
    Figure PCTCN2014095946-appb-100011
    所述处理单元,具体用于根据所述ρA,ue1和如下表格,确定所述ρB,ue1The processing unit is specifically configured to determine the ρ B, ue1 according to the ρ A, ue1 and a table as follows:
    Figure PCTCN2014095946-appb-100012
    Figure PCTCN2014095946-appb-100012
  9. 根据权利要求1-8任一项所述的基站,其特征在于,所述处理单元,还用于根据所述第一UE的功率参数和所述参数δ2,ue1,确定所述第二发射功率;The base station according to any one of claims 1 to 8, wherein the processing unit is further configured to determine the second transmission according to the power parameter of the first UE and the parameter δ 2, ue1 power;
    所述发送单元,还用于使用所述第二发射功率发送所述第二UE的下行数据。The sending unit is further configured to send downlink data of the second UE by using the second transmit power.
  10. 一种通信方法,适用于包括至少两个用户设备UE的通信网络,所述至少两个UE包括第一UE和第二UE,其特征在于,包括:A communication method is applicable to a communication network that includes at least two user equipments, the at least two UEs, including the first UE and the second UE, including:
    基站获取所述第一UE的功率参数和参数δ2,ue1;其中,所述第一UE的功率参数包括:所述第一UE的UE特定参数
    Figure PCTCN2014095946-appb-100013
    所述第一UE的小区特定参数
    Figure PCTCN2014095946-appb-100014
    和所述第一UE的参考信号发射功率,所述参数δ2,ue1为第一发射功率和第二发射功率的比值相关的参数,所述第一发射功率为所述第一UE的下行数据的发射功率;所述第二发射功率为所述第二UE的下行数据的发射功率;
    The base station acquires the power parameter of the first UE and the parameter δ 2, ue1 ; wherein the power parameter of the first UE includes: the UE-specific parameter of the first UE
    Figure PCTCN2014095946-appb-100013
    Cell specific parameters of the first UE
    Figure PCTCN2014095946-appb-100014
    And a reference signal transmission power of the first UE, where the parameter δ 2, ue1 is a parameter related to a ratio of the first transmit power to the second transmit power, where the first transmit power is downlink data of the first UE Transmit power; the second transmit power is a transmit power of downlink data of the second UE;
    所述基站向所述第一UE发送所述第一UE的功率参数和所述参数δ2,ue1Sending, by the base station, the power parameter of the first UE and the parameter δ 2, ue1 to the first UE;
    所述基站根据所述第一UE的功率参数确定所述第一发射功率;Determining, by the base station, the first transmit power according to a power parameter of the first UE;
    所述基站使用所述第一发射功率发送所述第一UE的下行信号。The base station sends the downlink signal of the first UE by using the first transmit power.
  11. 根据权利要求10所述的方法,其特征在于,所述参数δ2,ue1为所述第一发射功率和第二发射功率的比值;或者The method according to claim 10, wherein said parameter δ 2, ue1 is a ratio of said first transmit power to a second transmit power; or
    所述参数δ2,ue1为所述第一UE的ρue1和所述第二UE的ρue2比值,其中所述ρue1表示所述第一UE的物理下行共享信道PDSCH的每资源单元能量EPRE和所述第一UE的小区特定的参考信号的EPRE的比值,所述ρue1包括ρA,ue1和ρB,ue1,所述ρA,ue1和ρB,ue1对应所述第一 UE的不同正交频分复用OFDM符号索引;所述ρue2表示所述第二UE的PDSCH的EPRE和所述第二UE的小区特定的参考信号的EPRE的比值,所述ρue2包括ρA,ue2和ρB,ue2,所述ρA,ue2和ρB,ue2对应所述第二UE的不同OFDM符号索引。The parameter δ 2, ue1 ρ ue1 said first ratio ρ ue2 UE and the second UE, wherein the ρ ue1 represents the physical downlink shared channel PDSCH EPRE Energy per resource element of the first UE a ratio of the EPRE of the cell-specific reference signal of the first UE, where ρ ue1 includes ρ A, ue1 and ρ B, ue1 , the ρ A, ue1 and ρ B, ue1 corresponding to the first UE Different orthogonal frequency division multiplexing OFDM symbol indexes; the ρ ue2 represents a ratio of an EPRE of a PDSCH of the second UE and an EPRE of a cell-specific reference signal of the second UE, where ρ ue2 includes ρ A, Ue2 and ρ B, ue2 , the ρ A, ue2 and ρ B, ue2 correspond to different OFDM symbol indexes of the second UE.
  12. 根据权利要求10或11所述的方法,其特征在于,进一步包括:The method of claim 10 or 11, further comprising:
    所述基站获取所述第一发射功率的调整参数δ1,ue1The base station acquires an adjustment parameter δ 1, ue1 of the first transmit power;
    所述基站向所述第一UE发送所述第一发射功率的调整参数δ1,ue1Sending, by the base station, the adjustment parameter δ 1, ue1 of the first transmit power to the first UE;
    所述基站根据所述第一UE的功率参数确定第一发射功率包括:所述基站根据所述第一UE的功率参数和所述第一发射功率的调整参数δ1,ue1确定所述第一发射功率。Determining, by the base station, the first transmit power according to the power parameter of the first UE, the determining, by the base station, the first, according to the power parameter of the first UE and the adjustment parameter δ 1, ue1 of the first transmit power Transmit power.
  13. 根据权利要求12所述的方法,其特征在于,所述第一发射功率的调整参数δ1,ue1为所述第一发射功率的调整值。The method according to claim 12, wherein the adjustment parameter δ 1, ue1 of the first transmission power is an adjustment value of the first transmission power.
  14. 根据权利要求13所述的方法,其特征在于,所述基站根据所述第一UE的功率参数和所述第一发射功率的调整参数δ1,ue1确定所述第一发射功率包括:所述基站根据所述
    Figure PCTCN2014095946-appb-100015
    所述
    Figure PCTCN2014095946-appb-100016
    和所述第一发射功率的调整参数δ1,ue1确定所述ρA,ue1和所述ρB,ue1
    The method according to claim 13, wherein the determining, by the base station, the first transmit power according to the power parameter of the first UE and the adjustment parameter δ 1, ue1 of the first transmit power comprises: Base station according to the
    Figure PCTCN2014095946-appb-100015
    Said
    Figure PCTCN2014095946-appb-100016
    And determining the ρ A, ue1 and the ρ B, ue1 by the adjustment parameter δ 1, ue1 of the first transmit power;
    所述基站根据所述ρA,ue1和所述ρB,ue1和所述第一UE的参考信号发射功率,确定所述第一发射功率。The base station determines the first transmit power according to the ρ A, ue1 and the ρ B, ue1 and the reference signal transmit power of the first UE.
  15. 根据权利要求14所述的方法,其特征在于,所述基站根据所述
    Figure PCTCN2014095946-appb-100017
    所述
    Figure PCTCN2014095946-appb-100018
    和所述第一发射功率的调整参数δ1,ue1确定所述ρA,ue1和所述ρB,ue1包括:
    The method of claim 14 wherein said base station is in accordance with said
    Figure PCTCN2014095946-appb-100017
    Said
    Figure PCTCN2014095946-appb-100018
    And determining , by the adjustment parameter δ 1, ue1 of the first transmit power , the ρ A, ue1 and the ρ B, ue1 include:
    所述基站根据如下公式确定所述ρA,ue1The base station determines the ρ A, ue1 according to the following formula:
    Figure PCTCN2014095946-appb-100019
    Figure PCTCN2014095946-appb-100019
    Figure PCTCN2014095946-appb-100020
    Figure PCTCN2014095946-appb-100020
    所述基站根据所述ρA,ue1和如下表格,确定所述ρB,ue1The base station determines the ρ B, ue1 according to the ρ A, ue1 and the following table:
    Figure PCTCN2014095946-appb-100021
    Figure PCTCN2014095946-appb-100021
    Figure PCTCN2014095946-appb-100022
    Figure PCTCN2014095946-appb-100022
  16. 根据权利要求11所述的方法,其特征在于,所述基站根据所述第一UE的功率参数确定所述第一发射功率包括:The method according to claim 11, wherein the determining, by the base station, the first transmit power according to the power parameter of the first UE comprises:
    所述基站根据所述
    Figure PCTCN2014095946-appb-100023
    和所述
    Figure PCTCN2014095946-appb-100024
    确定所述ρA,ue1和所述ρB,ue1
    The base station according to the
    Figure PCTCN2014095946-appb-100023
    And said
    Figure PCTCN2014095946-appb-100024
    Determining the ρ A, ue1 and the ρ B, ue1 ;
    所述基站根据所述ρA,ue1和所述ρB,ue1和所述第一UE的参考信号发射功率,确定所述第一发射功率。The base station determines the first transmit power according to the ρ A, ue1 and the ρ B, ue1 and the reference signal transmit power of the first UE.
  17. 根据权利要求16所述的方法,其特征在于,所述基站根据所述
    Figure PCTCN2014095946-appb-100025
    和所述
    Figure PCTCN2014095946-appb-100026
    确定所述ρA,ue1和所述ρB,ue1包括:
    The method of claim 16 wherein said base station is in accordance with said
    Figure PCTCN2014095946-appb-100025
    And said
    Figure PCTCN2014095946-appb-100026
    Determining the ρ A, ue1 and the ρ B, ue1 include:
    所述基站根据如下公式确定所述ρA,ue1The base station determines the ρ A, ue1 according to the following formula:
    Figure PCTCN2014095946-appb-100027
    Figure PCTCN2014095946-appb-100027
    Figure PCTCN2014095946-appb-100028
    Figure PCTCN2014095946-appb-100028
    所述基站根据所述ρA,ue1和如下表格确定所述ρB,ue1The base station determines the ρ B, ue1 according to the ρ A, ue1 and a table as follows:
    Figure PCTCN2014095946-appb-100029
    Figure PCTCN2014095946-appb-100029
  18. 根据权利要求10-17任一项所述的方法,其特征在于,进一步包括,所述基站根据所述第一UE的功率参数和所述参数δ2,ue1,确定所述第二发射功率; The method according to any one of claims 10-17, further comprising: the base station determining the second transmit power according to the power parameter of the first UE and the parameter δ 2, ue1 ;
    所述基站使用所述第二发射功率发送所述第二UE的下行数据。The base station sends downlink data of the second UE by using the second transmit power.
  19. 一种第一用户设备UE,所述第一UE跟基站进行通信,所述基站为至少两个UE服务,所述至少两个UE包括所述第一UE和第二UE,其特征在于,包括:a first user equipment UE, the first UE is in communication with a base station, the base station is serving at least two UEs, and the at least two UEs include the first UE and the second UE, and is characterized by including :
    接收单元,用于接收所述基站发送的所述第一UE的功率参数和参数δ2,ue1;其中,所述第一UE的功率参数包括:所述第一UE的
    Figure PCTCN2014095946-appb-100030
    所述第一UE的小区特定参数
    Figure PCTCN2014095946-appb-100031
    和所述第一UE的参考信号发射功率,所述参数δ2,ue1为第一发射功率和第二发射功率的比值相关的参数,所述第一发射功率为所述第一UE的下行数据的发射功率;所述第二发射功率为所述第二UE的下行数据的发射功率;
    a receiving unit, configured to receive the power parameter of the first UE and the parameter δ 2, ue1 sent by the base station, where the power parameter of the first UE includes: the first UE
    Figure PCTCN2014095946-appb-100030
    Cell specific parameters of the first UE
    Figure PCTCN2014095946-appb-100031
    And a reference signal transmission power of the first UE, where the parameter δ 2, ue1 is a parameter related to a ratio of the first transmit power to the second transmit power, where the first transmit power is downlink data of the first UE Transmit power; the second transmit power is a transmit power of downlink data of the second UE;
    处理单元,用于根据所述第一UE的功率参数确定所述第一发射功率;a processing unit, configured to determine the first transmit power according to a power parameter of the first UE;
    所述处理单元,还用于根据所述第一UE的功率参数和所述参数δ2,ue1确定所述第二发射功率;The processing unit is further configured to determine the second transmit power according to the power parameter of the first UE and the parameter δ 2, ue1 ;
    所述接收单元,还用于接收所述基站发送的信号,所述接收的信号包括所述第一UE的下行数据;The receiving unit is further configured to receive a signal sent by the base station, where the received signal includes downlink data of the first UE;
    所述处理单元,还用于根据所述第一发射功率和所述第二发射功率从所述接收单元接收的信号中获取所述第一UE的下行数据。The processing unit is further configured to acquire downlink data of the first UE according to the signal that is received by the receiving unit according to the first transmit power and the second transmit power.
  20. 根据权利要求19所述的第一UE,其特征在于,所述参数δ2,ue1为所述第一发射功率和第二发射功率的比值;或者The first UE according to claim 19, wherein the parameter δ 2, ue1 is a ratio of the first transmit power to the second transmit power; or
    所述参数δ2,ue1为所述第一UE的ρue1和所述第二UE的ρue2比值,其中,所述ρue1表示所述第一UE的物理下行共享信道PDSCH的每资源单元能量EPRE和所述第一UE的小区特定的参考信号的EPRE的比值,所述ρue1包括ρA,ue1和ρB,ue1,所述ρA,ue1和ρB,ue1对应所述第一UE的不同正交频分复用OFDM符号索引;所述ρue2表示所述第二UE的PDSCH的EPRE和所述第二UE的小区特定的参考信号的EPRE的比值,所述ρue2包括ρA,ue2和ρB,ue2,所述ρA,ue2和ρB,ue2对应所述第二UE的不同OFDM符号索引。The parameter δ 2, ue1 ρ ue1 said first ratio ρ ue2 UE and the second UE, wherein, the resource element ρ ue1 represents the energy physical downlink shared channel (PDSCH) in each of the first UE a ratio of an EPRE and an EPRE of a cell-specific reference signal of the first UE, the ρ ue1 including ρ A, ue1 and ρ B, ue1 , the ρ A, ue1 and ρ B, ue1 corresponding to the first UE Different orthogonal frequency division multiplexing OFDM symbol indices; the ρ ue2 represents a ratio of an EPRE of a PDSCH of the second UE and an EPRE of a cell-specific reference signal of the second UE, the ρ ue2 including ρ A , ue2 and ρ B, ue2 , the ρ A, ue2 and ρ B, ue2 correspond to different OFDM symbol indexes of the second UE.
  21. 根据权利要求19或20所述的第一UE,其特征在于,A first UE according to claim 19 or 20, characterized in that
    所述接收单元,还用于接收所述基站发送的所述第一发射功率的调整参数δ1,ue1The receiving unit is further configured to receive the adjustment parameter δ 1, ue1 of the first transmit power sent by the base station;
    所述处理单元,具体用于根据所述第一UE的功率参数和所述第一发射功率的调整参数 δ1,ue1确定所述第一发射功率。The processing unit is specifically configured to determine the first transmit power according to the power parameter of the first UE and the adjustment parameter δ 1, ue1 of the first transmit power.
  22. 根据权利要求21所述的第一UE,其特征在于,所述第一发射功率的调整参数δ1,ue1为所述第一发射功率的调整值。The first UE according to claim 21, wherein the adjustment parameter δ 1, ue1 of the first transmit power is an adjustment value of the first transmit power.
  23. 根据权利要求21所述的第一UE,其特征在于,所述处理单元,具体用于根据所述
    Figure PCTCN2014095946-appb-100032
    所述
    Figure PCTCN2014095946-appb-100033
    和所述第一发射功率的调整参数δ1,ue1确定所述ρA,ue1和所述ρB,ue1;并根据所述ρA,ue1和所述ρB,ue1和所述第一UE的参考信号发射功率,确定所述第一发射功率。
    The first UE according to claim 21, wherein the processing unit is specifically configured to perform according to the
    Figure PCTCN2014095946-appb-100032
    Said
    Figure PCTCN2014095946-appb-100033
    And the adjustment parameter δ 1, ue1 of the first transmit power determines the ρ A, ue1 and the ρ B, ue1 ; and according to the ρ A, ue1 and the ρ B, ue1 and the first UE The reference signal transmits power to determine the first transmit power.
  24. 根据权利要求23所述的第一UE,其特征在于,所述处理单元,具体用于根据如下公式确定所述ρA,ue1The first UE according to claim 23, wherein the processing unit is specifically configured to determine the ρ A, ue1 according to the following formula:
    Figure PCTCN2014095946-appb-100034
    Figure PCTCN2014095946-appb-100034
    Figure PCTCN2014095946-appb-100035
    Figure PCTCN2014095946-appb-100035
    所述处理单元,具体用于根据所述ρA,ue1和如下表格,确定所述ρB,ue1The processing unit is specifically configured to determine the ρ B, ue1 according to the ρ A, ue1 and a table as follows:
    Figure PCTCN2014095946-appb-100036
    Figure PCTCN2014095946-appb-100036
  25. 根据权利要求20所述的第一UE,其特征在于,所述处理单元,具体用于根据所述
    Figure PCTCN2014095946-appb-100037
    和所述
    Figure PCTCN2014095946-appb-100038
    确定所述ρA,ue1和所述ρB,ue1,并根据所述ρA,ue1和所述ρB,ue1和所述第一UE的参考信号发射功率,确定所述第一发射功率。
    The first UE according to claim 20, wherein the processing unit is specifically configured to perform according to the
    Figure PCTCN2014095946-appb-100037
    And said
    Figure PCTCN2014095946-appb-100038
    Determining the ρ A, ue1 and the ρ B, ue1 , and determining the first transmit power according to the ρ A, ue1 and the ρ B, ue1 and the reference signal transmit power of the first UE.
  26. 根据权利要求25所述的第一UE,其特征在于,所述处理单元,具体用于根据如下公式确定所述ρA,ue1The first UE according to claim 25, wherein the processing unit is specifically configured to determine the ρ A, ue1 according to the following formula:
    Figure PCTCN2014095946-appb-100039
    Figure PCTCN2014095946-appb-100039
    Figure PCTCN2014095946-appb-100040
    Figure PCTCN2014095946-appb-100040
    所述处理单元,具体用于根据所述ρA,ue1和如下表格,确定所述ρB,ue1The processing unit is specifically configured to determine the ρ B, ue1 according to the ρ A, ue1 and a table as follows:
    Figure PCTCN2014095946-appb-100041
    Figure PCTCN2014095946-appb-100041
  27. 一种通信系统,包括基站和至少两个用户设备UE,所述基站为所述至少两个UE服务,所述至少两个UE包括第一UE和第二UE,其特征在于,所述基站为根据权利要求1-9任一项所述的基站,所述的第一UE为根据权利要求19-26任一项所述的第一UE。 A communication system, comprising: a base station and at least two user equipments, the base station serving the at least two UEs, the at least two UEs comprising a first UE and a second UE, wherein the base station is The base station according to any one of claims 1 to 9, wherein the first UE is the first UE according to any one of claims 19-26.
PCT/CN2014/095946 2014-12-31 2014-12-31 Communication method and apparatus WO2016106700A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2014/095946 WO2016106700A1 (en) 2014-12-31 2014-12-31 Communication method and apparatus
CN201480084392.2A CN107113736B (en) 2014-12-31 2014-12-31 Communication method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/095946 WO2016106700A1 (en) 2014-12-31 2014-12-31 Communication method and apparatus

Publications (1)

Publication Number Publication Date
WO2016106700A1 true WO2016106700A1 (en) 2016-07-07

Family

ID=56283974

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/095946 WO2016106700A1 (en) 2014-12-31 2014-12-31 Communication method and apparatus

Country Status (2)

Country Link
CN (1) CN107113736B (en)
WO (1) WO2016106700A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101527587A (en) * 2008-03-04 2009-09-09 大唐移动通信设备有限公司 Method, system and relay equipment for power control
CN101981979A (en) * 2009-03-17 2011-02-23 华为技术有限公司 Downlink power distributing method, apparatus and system
CN103139889A (en) * 2011-11-28 2013-06-05 华为技术有限公司 Power control method, user equipment, base station and communication system of dimension to dimension (D2D)
US8472539B2 (en) * 2009-04-07 2013-06-25 Lg Electronics Inc. Method of transmitting power information in wireless communication system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103312484B (en) * 2012-03-16 2017-12-29 中兴通讯股份有限公司 Control method, user equipment and the base station of detection reference signal transmission power
JP6050028B2 (en) * 2012-05-25 2016-12-21 シャープ株式会社 Terminal, base station, communication method and integrated circuit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101527587A (en) * 2008-03-04 2009-09-09 大唐移动通信设备有限公司 Method, system and relay equipment for power control
CN101981979A (en) * 2009-03-17 2011-02-23 华为技术有限公司 Downlink power distributing method, apparatus and system
US8472539B2 (en) * 2009-04-07 2013-06-25 Lg Electronics Inc. Method of transmitting power information in wireless communication system
CN103139889A (en) * 2011-11-28 2013-06-05 华为技术有限公司 Power control method, user equipment, base station and communication system of dimension to dimension (D2D)

Also Published As

Publication number Publication date
CN107113736B (en) 2020-12-15
CN107113736A (en) 2017-08-29

Similar Documents

Publication Publication Date Title
JP6946311B2 (en) Pilot Design for Uplink (UL) Narrowband Internet of Things (NB-IOT)
US8401111B2 (en) Method and apparatus for sequencing and correlating a positioning reference signal
US20150365178A1 (en) System, method, and apparatus for signaling intefering cell information
EP3562082B1 (en) Resource indication method, resource acquisition method and related device
KR102351999B1 (en) Terminal device, communication method and integrated circuit
WO2016107472A1 (en) Device, system and method for transmitting demodulation reference signal
JP6197244B2 (en) Method, apparatus and system for handling co-channel cell interference
US10708941B2 (en) Apparatus for acquiring and reporting power allocation
WO2018171491A1 (en) Wireless communication method, network device and terminal device
WO2016154991A1 (en) Communication method and device based on non-orthogonal transmission
EP2553847A2 (en) Physical downlink shared channel muting on cell-specific reference symbols locations for non-serving cells
CN111245750B (en) Frequency offset estimation method, device and storage medium
JP2016521493A (en) Feedback message matching for multi-carrier systems with flexible bandwidth carriers
WO2016141529A1 (en) Data transmission device, method and system
WO2016065516A1 (en) Method and device for adaptive modulation and coding
WO2016136779A1 (en) Terminal device, base station device, and communication method
CN114208294A (en) Method and apparatus for receiving RMSI from neighboring cells
KR20170027519A (en) Method and apparatus for determining cell id in a wireless communication system
US10368316B2 (en) Communication method and apparatus
WO2016150148A1 (en) Method and apparatus for base station to transmit cell reference signal, and base station
US20170099123A1 (en) Terminal device and integrated circuit
WO2018028532A1 (en) Control channel transmission method, device and system
JP2022507396A (en) Methods and equipment for generating and processing sequences
WO2016106700A1 (en) Communication method and apparatus
WO2018196657A1 (en) Interference cancellation method, user equipment, and network device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14909508

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14909508

Country of ref document: EP

Kind code of ref document: A1