WO2016106664A1 - Granulator - Google Patents

Granulator Download PDF

Info

Publication number
WO2016106664A1
WO2016106664A1 PCT/CN2014/095857 CN2014095857W WO2016106664A1 WO 2016106664 A1 WO2016106664 A1 WO 2016106664A1 CN 2014095857 W CN2014095857 W CN 2014095857W WO 2016106664 A1 WO2016106664 A1 WO 2016106664A1
Authority
WO
WIPO (PCT)
Prior art keywords
granulator
scrapers
rotary
rotary cylinders
rotary cylinder
Prior art date
Application number
PCT/CN2014/095857
Other languages
French (fr)
Inventor
Wei Jin
Weifeng Shi
Yongfu Wang
Kaiyu WAN
Original Assignee
Nestec S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nestec S.A. filed Critical Nestec S.A.
Priority to MYUI2017701970A priority Critical patent/MY185468A/en
Priority to PCT/CN2014/095857 priority patent/WO2016106664A1/en
Priority to CN201490001626.8U priority patent/CN207899417U/en
Publication of WO2016106664A1 publication Critical patent/WO2016106664A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • B01J2/006Coating of the granules without description of the process or the device by which the granules are obtained

Definitions

  • the present invention relates to a technical field of material agglomeration apparatus, and more particularly to a granulator, e.g. oscillating type granulator, adapted for forming wet powdered materials into granules.
  • a granulator e.g. oscillating type granulator
  • Oscillating granulators which have seen wide application in particular, include single-head oscillating granulators and twin-head oscillating granulators, which are both primarily intended for forming wet mass or agglomerated dry material into granules of desired size.
  • CN203139976U Chinese utility model CN203139976U (hereinafter referred to as “CN’ 976U” ) discloses a twin-head oscillating granulator, comprising two rotary cylinders arranged in parallel and each having connecting ribs and scraper plates and an inverted U shaped or an inverted V-shaped guide plate positioned in a region between a supporting rod and opposed peripheral walls of the two rotary cylinders in the hopper.
  • the twin-head oscillating granulator disclosed in this patent is capable of avoiding accumulation of powered raw materials in a recess of the mesh formed in the region at the opposed peripheral walls of the two rotary cylinders.
  • powdered raw materials may inevitably accumulate in the gap.
  • the twin-head oscillating granulator described in the patent CN’ 976U is used to granulate especially a highly sticky material (for example comprising amorphous compounds of more than 50wt%on a dry weight per cent basis)
  • the sticky material may easily accumulate on a surface of any one of the rotary cylinders and finally cover over the entire rotary cylinder, which results in low throughput, material waste and difficulty in cleaning.
  • residual wet materials on the rotary cylinder will cause gradual temperature rise in the rotary cylinder and because of the temperature rise, the material having low glass transition temperature Tg may be transformed from a glass state into a rubber state, which results in properties change of the wet material.
  • a finished product produced from the transformed material changes not only in the solubility, but also in the flavor, and the life time of the mesh collaborating with the rotary cylinder, the throughput and size of the granules may also be influenced by this transformation.
  • the present invention is intended to overcome design defects and disadvantages of the granulators available in the market now and to provide a granulator of high efficiency and great throughput.
  • the objective of the invention is to provide a granulator which enables improving production efficiency and yield, reducing maintenance cost and ensuring product quality and which is in particular adapted for granulation of highly sticky materials.
  • a granulator comprising a driving unit and a granulation unit, the granulation unit comprising: a hopper;
  • At least two rotary cylinders disposed in the hopper and each comprising: a mounting portion for connecting the rotary cylinder to the driving unit such that the rotary cylinder is able to oscillate around its axis; at least one bracket connected to the mounting portion or forming into one piece with the mounting portion; and a plurality of scrapers attached on the bracket and spaced in the circumferential direction of the rotary cylinder; and
  • the rotary cylinders are able to smash and break an aggregate of material accumulated in adjacent rotary cylinders while oscillating so as to prevent continuous accumulation of the material in the rotary cylinders and avoid increase in material waste and oscillation resistance of the rotary cylinders.
  • At least one of the brackets comprises a plate-like element, with the scrapers being attached on the peripheral edge of the plate-like element, preferably the plate-like element comprising a plate-like body and fingers radially extending outward from the plate-like body, with the scrapers being attached on the outer ends of the fingers.
  • the bracket is simple in structure, easy to be manufactured and ready to be assembled with the scrappers.
  • two ends of at least one of the rotary cylinders each are provided with one bracket.
  • the inner side of the rotary cylinders can be designed as hollow, reducing the risk of materials sticking to a surface inside the rotary cylinders and mitigating the possibility of agglomerating the material in the inner side of the cylinders.
  • the mounting portion comprises two mounting elements each being disposed on one end of the rotary cylinder.
  • the two mounting elements are arranged at an outer side of the brackets disposed at both ends of the rotary cylinder, a hollow section is formed in the rotary cylinder so that the risk of agglomerating the material in the rotary cylinder is minimized.
  • At least one of the brackets is located in the middle position along the axial direction of at least one of the rotary cylinders.
  • At least one of the rotary cylinders further comprises at least one, preferably annular, reinforcement configured to connect the scrapers in the circumferential direction of the rotary cylinder.
  • the scrapers distributed over the circumference of the rotary cylinders can be connected as a whole by means of the reinforcement.
  • neighbored scrapers and corresponding portion of the bracket define a U shaped profile.
  • the number of the scrapers of the rotary cylinder is from 3 to13, preferably from 5 to 11, more preferably from 7 to 9, most preferably 9.
  • the number of the scrapers can be properly set in order that the material can be granulated with high efficiency and reduced risk of material agglomeration.
  • the scrapers have isosceles trapezoid shapes or rounded isosceles triangle shapes in cross section.
  • the scrapers in this configuration are able to not only break agglomerated material efficiently, but also apply a proper force to the material when cooperating with the mesh, thereby achieving high efficiency and great throughput of the granulator.
  • life time of the mesh is secured.
  • the scraper may have a cross section in other symmetrical shapes.
  • an end of the mounting portion connected to the driving unit has a spline structure, preferably an involute spline structure.
  • This configuration has the benefits of bearing greater load, reducing rigid impacts between coupling components and increasing life time of the components and loading capacity of the machine.
  • the spline structure has a positioning means for assembling, the positioning means preferably comprising at least one broader or higher tooth than other teeth of the spline structure. Positioning requirement during installation of the meshed type rotary cylinders can be satisfied by means of the positioning means, thus ensuring that the two rotary cylinders oscillate in a meshed manner.
  • an end of the mounting portion connected to the driving unit has a chromed surface, which has the advantage of improving corrosion resistance of the components.
  • the rotary cylinder comprises a stator element attached onto the hopper and having at least one stationary blade located inside the rotary cylinder with respect to the scrapers.
  • This configuration is advantageous in smashing the material in the inner side of the rotary cylinders to prevent accumulation of the material in the cylinders.
  • the granulator further comprises a mesh support shaft located below the meshing area between two adjacent rotary cylinders, the surface of the mesh preferably being spaced from the running trace of the scrapers in the area of the mesh support shaft by a distance in the range from 1 to 20mm, preferably from 2 to 15mm, more preferably from 4 to 10mm, most preferably 7mm.
  • a working area between the mesh and the rotary cylinders is increased, i.e.
  • the area of the mesh adapted for granulation actually is enlarged, and meanwhile it is possible to prevent a large vacant area where the materials are easy to stay and aggregate from appearing in or under the lower part of the two meshed rotary cylinders, and also to prevent the powdered wet material entering into the region of final products directly, thus ensuring product quality.
  • the granulator is a twin-head granulator, which has a simple design, compact structure and can be assembled easily and operate highly efficiently.
  • the present invention by way of meshing the rotary cylinders with each other, the possibility of accumulating material in the rotary cylinders is decreased considerably, material waste can be prevented, and throughput and operation efficiency of the granulator is improved significantly with reduced maintenance cost and without any degradation in product quality, and particularly the invention is applicable to highly sticky materials.
  • the wet material is a food product.
  • the wet material preferably comprises crystalline and/or amorphous compounds. More preferably, the wet material comprises more amorphous compounds than crystalline compounds on a dry weight percent basis, preferably the content of the amorphous compounds being more than 50%.
  • the wet material is a food product, such as a soup concentrate, a sauce concentrate or a condiment product.
  • a method for producing granules comprising a step of using the granulator is provided.
  • FIG. 1 is a general view of a granulator of the present invention
  • FIG. 2 shows a granulation unit of the granulator of the present invention
  • FIG. 3 is a perspective view of two meshed adjacent rotary cylinders
  • FIG. 4 is a view showing another embodiment of the rotary cylinders of the present invention.
  • FIG. 5 is a sectional view of an exemplary embodiment of two meshed adjacent rotary cylinders according to the present invention.
  • FIG. 6 is a sectional view of another exemplary embodiment of two meshed adjacent rotary cylinders according to the present invention.
  • FIG. 1 shows a general view of the granulator according to the present invention.
  • the granulator 1 of the invention comprises a driving unit 10 and a granulation unit 20.
  • the driving unit 10 includes a decelerator motor 11 comprising a motor and a decelerator through which electrical energy is converted into a rotation output having a desired rotation speed and rotation torque, and a transmission actuator mechanism 12 configured for converting rotation input from the decelerator motor into an oscillation movement of a gear shaft 121 (i.e. rotating the gear shaft in positive and negative directions alternately) .
  • a gear shaft 121 i.e. rotating the gear shaft in positive and negative directions alternately
  • the granulation unit 20 includes a hopper 21, two rotary cylinders 22, 22’ disposed in the hopper 21 and a mesh 23 located below the rotary cylinders.
  • the rotary cylinders 22, 22’ each comprise: a mounting portion 221, 221’ for connecting the rotary cylinders 22, 22’ to the driving unit 10 (e.g.
  • the gear shaft 121) such that the rotary cylinders are able to oscillate around their axes; a plurality of brackets 222, 222’ connected to the mounting portion 221, 221’ or forming into one piece therewith; and a plurality of scrapers 223, 223’ a ttached on the brackets 222, 222’ and spaced in the circumferential direction of the rotary cylinders.
  • a circumferential gap between neighbored scrapers is called a scraper gap
  • the bracket 222, 222’ is generally called a scraper bracket.
  • the mesh 23 is mounted such that the rotary cylinders 22, 22’ are partially wrapped by the mesh, as shown in FIG. 2.
  • one end of the mesh 23 is fastened to a mesh fastener 24 and the other end thereof runs under the bottom of the rotary cylinder 22 and across the top of a mesh support shaft 25 and then along the bottom of the other rotary cylinder 22’ until it reaches another mesh fastener 24’ .
  • the mesh fasteners 24, 24’ are configured to fasten the mesh 23 and apply a tension force thereto. Wet material enters into the hopper 21 from the top.
  • the mesh 23 is woven by a metal wire (which may be made of Type 316L or Type 304 stainless steel, and the mesh range and wire diameter of which vary according to the granule products to be produced, usually comprising 8-20 meshes) or a plastic wire (which may be e.g. nylon and the mesh range and wire diameter of which vary according to the granule products to be produced, usually comprising 8-20 meshes) .
  • a metal wire which may be made of Type 316L or Type 304 stainless steel, and the mesh range and wire diameter of which vary according to the granule products to be produced, usually comprising 8-20 meshes
  • plastic wire which may be e.g. nylon and the mesh range and wire diameter of which vary according to the granule products to be produced, usually comprising 8-20 meshes
  • the term “mesh” in “meshed with each other” herein means that in at least one cross sectional view of the rotary cylinders, at least one scraper of at least one rotary cylinder protrudes into at least one scraper gap of the adjacent rotary cylinder, without making contact with any part of the adjacent rotary cylinder during oscillation of the rotary cylinders.
  • the imaginary peripheral surfaces of the rotary cylinders, in which scrapers are located respectively overlap with each other.
  • the overlapping area of the imaginary peripheral surfaces is also called a meshing area of the two rotary cylinders.
  • the rotary cylinders oscillate in such a manner that their scrapers are meshed with each other herein means that the meshing area appears at least for a moment during the oscillation process or appears during the whole oscillation process.
  • the two adjacent rotary cylinders 22, 22’ interact during an alternating positive and negative rotation process due to the above meshed type cooperation, so that the material is prevented from accumulating in the rotary cylinders, and large pieces possibly contained in the wet material can be broken by meshed scrapers making positive and negative movements alternately, such that sufficient material can be provided for the granulation process, increasing throughput and efficiency of the granulation.
  • a meshed configuration of the rotary cylinders 22, 22’ is shown, in which rotary cylinders 22, 22’ are in substantially the same structure.
  • the bracket 222, 222’ comprises a plate-like body 2221, 2221’ a nd fingers 2222, 2222’ radially extending outward from the plate-like body.
  • two ends of the rotary cylinders 22, 22’ each are provided with one bracket 222, 222’ .
  • the scrapers 223, 223’ are attached at outer ends of the fingers 2222, 2222’ of the brackets 222, 222’ disposed oppositely.
  • the scrapers 223, 223’ each extend in an axial direction of the respective rotary cylinders 22, 22’ .
  • the scrapers 223, 223’ each are in a straight elongated shape.
  • the scrapers can be designed in other shapes, e.g. elongated shape extending helically along the axial direction of the rotary cylinders.
  • the scrapers of one and the same rotary cylinder may be designed to distance from the center of the rotary cylinder by different intervals or at different positions along the extension direction of one scraper, the distances between the same scraper and the center line of the corresponding rotary cylinder are different.
  • the shape or arrangement of the bracket is not limited to those shown in FIG. 3.
  • the bracket may be designed in a disc-shape, and the scrapers 223 are attached directly on a peripheral edge of the disc-shaped bracket.
  • FIG. 4 only schematically shows a disc-shaped bracket.
  • the shape of the bracket 222 is not limited to the disc shape shown in FIG. 4, but may be any shape other than that shown in FIG. 4.
  • FIG. 4 shows the disc-shaped bracket is in a generally middle position in the axial direction of the rotary cylinder. Those skilled in the art may envisage placing at each end of the rotary cylinder, optionally or additionally, a disc-shaped bracket.
  • a portion of the bracket 222 between adjacent scrappers may be configured as an inwardly concave or outwardly convex arc section, as long as it does not interfere in the meshing between the rotary cylinders.
  • the portion of the bracket 222 between adjacent scrapers may have an inwardly concave, preferably U-shape profile, such that in the portion of the rotary cylinder corresponding to the meshed area, a boundary of the space defined by neighbored scrapers and corresponding portion of the bracket has a U-shaped profile.
  • An exemplary rotary cylinder shown in FIG. 4 further comprises an annular reinforcement 26 configured to connect the scrapers 223, 223’ in the circumferential direction.
  • the reinforcement is designed to connect at least some of the scrapers or all of the scrapers distributed in the circumferential direction of the rotary cylinder as a whole in order to increase integral rigidity of the scrapers.
  • a reinforcement 26 is disposed at each end of the rotary cylinder.
  • the reinforcement illustrated is in the form of a closed ring, those skilled in the art may envisage that the reinforcement may be in a non-closed elongated shape also.
  • the reinforcement can be positioned at any axial position of the rotary cylinders, including but not limited to the end of the rotary cylinders.
  • one or more reinforcements may be disposed in an area of the scraper receiving greater force, e.g. a middle section of the scraper in its extension direction.
  • the rotary cylinder 22 preferably comprises a stator element 27 attached to the hopper as shown in FIG. 4.
  • the stator element 27, as shown in FIG. 4 has two base plate elements 270 attached to the hopper and five stationary blades 271 extending from each base plate element into the inner side of the rotary cylinder and evenly spaced in the circumferential direction.
  • stator element is shown in the drawing to have two parts (i.e. be in a two-piece form) those skilled in the art can easily envisage that it may be designed differently to have other configurations according to the structure and mounting position of the bracket.
  • the stator element may be designed to have base plate elements mounted at opposite sides of the hopper and a blade extending between the base plate elements, and accordingly the bracket of the rotary cylinder is designed in such a manner that it is allowed to displace relative to the blade within an angular range of oscillation of the rotary cylinder.
  • FIG. 4 shows five blades 271, it can be contemplated that the number of the stationary blades can be different from five.
  • the blades may be arranged in a manner distinct from that shown in FIG. 4.
  • FIGS. 5 and 6 show a meshed configuration of the rotary cylinders 22, 22’ having a bracket 222, 222’ with fingers.
  • a single rotary cylinder may be provided with 3-13, preferably 5-11, more preferably 7-9, most preferably 9 scrapers (as shown in FIG. 5) .
  • the scraper 223 has an isosceles trapezoid shape or a rounded isosceles triangle shape in cross section and has corners subject to a rounding process.
  • the advantage of this design is that granulation efficiency is improved and life time of the mesh 23 can be increased because a sharp scraper or a scraper with a working edge of an oversmall width will increase wear of the mesh during the granulation process.
  • the cross section shown in the drawings is in isosceles triangle shape, it can be envisaged that the scraper may have a cross section in other symmetrical shapes.
  • the mounting portions 221, 221’ may be configured to comprise two mounting elements each being disposed on an end of the rotary cylinder respectively, e.g. short supporting rods or supporting cylinders (as shown in FIG. 3) or configured as one shaft-like element extending in the axial direction of the rotary cylinder (as shown in FIG. 4) .
  • the mounting portion in the configuration shown in FIG. 3 is preferable, especially in the case of low oscillation speed of the rotary cylinder, this is because highly sticky materials tend to stick easily to any surface existing inside the rotary cylinder and accumulate increasingly to fill the whole internal space of the rotary cylinder during low speed oscillation, thus affecting normal operation of the rotary cylinder.
  • end (s) of the mounting portion 221, 221’ connected to the gear shaft 121 may have a spline structure, preferably an involute spline structure.
  • the conventional coupling between a mounting portion and a gear shaft is usually done by means of a flat key binding structure.
  • a spline structure is adopted, which has more teeth and larger contact area. Therefore, it is able to bear greater load with force being evenly distributed over the contact area, thus reducing rigid impacts between coupled components and increasing life time of the components and loading capacity of the machine.
  • the spline structure has a positioning means for assembling, which, for example, comprises at least one broader or higher tooth than other teeth of the spline structure.
  • the positioning means facilitates the positioning during the mounting of rotary cylinders so as to ensure the two rotary cylinders oscillate in a meshed manner and prevent some scrapers from contacting with other scrapers and brackets in the meshing area during the oscillation of the rotary cylinders.
  • end (s) of the mounting portion 221, 221’ connected to the gear shaft may have a chromed surface, which has the advantage of increasing corrosion resistance of the mounting portion.
  • the mesh support shaft 25 of the granulation unit 20 is located below the meshing area between two adjacent rotary cylinders, the surface of the mesh preferably being distanced from the running trace of the scrapers in the area of the mesh support shaft by a distance in the range from 1 to 20 mm, more preferably from 2 to 15 mm, more preferably from 4 to 10 mm, most preferably about 7mm.
  • This configuration enables to increase the working area between the mesh and the rotary cylinders (i.e.
  • the area of the mesh adapted for granulation actually is enlarged prevents creating a larger vacant area where the material stays and accumulates easily from appearing in or under the lower portions of the two meshed rotary cylinders, so that it is possible to ensure that no material accumulation takes place in this area and avoid, to the greatest extent, powdered wet material entering into the region of products directly, thereby ensuring product quality.
  • the two rotary cylinders are disposed in the hopper and cooperate in a meshed manner as shown in FIG. 2, those skilled in the art can envisage providing more meshed rotary cylinders side by side according to real requirements.
  • a single rotary cylinder may be provided with one or more brackets, and the position of brackets in the axial direction of the rotary cylinder may vary according to real requirements.
  • a plurality of brackets of the same rotary cylinder may have different configurations.
  • the adjacent meshed rotary cylinders may have brackets of different structures and in different arrangements. For instance, one of the rotary cylinders has a disc-shaped bracket located in the middle along the axial direction of the rotary cylinder while the other cylinder has two brackets having fingers, with each bracket being located at one end thereof.
  • the motor is started and a powdered mixture having certain degree of wetness is fed to the hopper and into the region of the rotary cylinders.
  • the power of the motor drives the transmission actuator mechanism 12 through the decelerator, which transmission actuator mechanism 12 in turn drives the gear shaft 121 to rotate alternately in opposite directions.
  • a friction between the material and the mesh 23 is generated due to the force applied by the scrapers on the peripheral surface of the rotary cylinders.
  • the wet powdered material is extruded from the mesh through its pores and made into granule products of desired sizes.
  • one of the rotary cylinders oscillating in a meshed manner have scrapers protruding into scraper gaps of the other cylinder, so that the materials adhered or accumulated inside the rotary cylinders are smashed or broken, thereby preventing accumulation of the materials inside or around the rotary cylinders.
  • the granulator according to the invention is particularly applicable for highly sticky wet materials.
  • the wet material contains crystalline compounds and/or amorphous compounds.
  • the wet material comprises more amorphous compounds than crystalline compounds on a dry weight percent basis, preferably the content of the amorphous compounds being more than 50%.
  • the crystalline compound refers to a substance with an ordered molecule arrangement (with a fixed structure) into which no foreign molecules (such as water) can be incorporated, including for example salt, sugar, monosodium glutamate and so on.
  • a crystalline formula contains more than 50%of crystalline, preferably more than 70%.
  • the amorphous compound refers to a substance without an ordered molecule arrangement into which foreign molecules can be incorporated, including for example starch, maltodextrin, yeast extract powder, tomato powder and so on.
  • an amorphous formula contains more than 50%of amorphous compound content.
  • the wet material may be food, such as soup concentrate, sauce concentrate or seasoning concentrate.
  • step b) forming the wet material obtained in step a) by means of the granulator of the invention to obtain granules of certain size (for example, particle size of 1.4mm) ;
  • step b) subjecting the granules obtained in step b) to a fluidized bed drying process using a fluidized bed dryer (for example, a vibrating fluidized bed) with the drying temperature arrange from 75°C to 105°C, and cooling down to room temperature to obtain granule products having water content of 1.0-3.0wt%;
  • a fluidized bed dryer for example, a vibrating fluidized bed
  • the above is only exemplary embodiments of the granulator.
  • the granulator is not limited to the specific embodiments described herein, but rather, each of the components may be utilized independently and separately from other components herein.
  • the terms “an example” , “another example” , “examples” and so on means that a member/element (e.g. feature, structure and/or feature) related to the example (s) is contained in at least one of the examples herein but may or may not be introduced in other examples.
  • a member/element e.g. feature, structure and/or feature
  • the articles “a” , “an” , “the” , and “said” are intended to mean that there are one or more of the element (s) /component (s) /etc.
  • the terms “comprising” , “including” , and “having” are intended to be inclusive and mean that there may be additional element (s) /component (s) /etc. other than the listed element (s) /component (s) /etc.

Abstract

A granulator (1) comprises a driving unit (10) and a granulation unit (20). The granulation unit (20) comprises: a hopper (21), at least two rotary cylinders (22, 22') disposed in the hopper (21) and each comprising: a mounting portion (221, 221') for connecting the rotary cylinders (22, 22') to the driving unit (10); at least one bracket (222, 222') connected to the mounting portion (221, 221') or forming into one piece with the mounting portion (221, 221'); and a plurality of scrapers (223, 223') attached on the bracket (222, 222') and spaced in the circumferential direction of the rotary cylinders (22, 22'); and a mesh (23) located below the rotary cylinders (22, 22'). The scrapers (223, 223') of the rotary cylinders (22, 22') are meshed with each other.

Description

GRANULATOR TECHNICAL FIELD
The present invention relates to a technical field of material agglomeration apparatus, and more particularly to a granulator, e.g. oscillating type granulator, adapted for forming wet powdered materials into granules.
BACKGROUND OF THE INVENTION
Wet granulation technology prevails in the industry of food, pharmaceutical, chemical and etc. at present. Oscillating granulators, which have seen wide application in particular, include single-head oscillating granulators and twin-head oscillating granulators, which are both primarily intended for forming wet mass or agglomerated dry material into granules of desired size.
Chinese utility model CN203139976U (hereinafter referred to as “CN’ 976U” ) discloses a twin-head oscillating granulator, comprising two rotary cylinders arranged in parallel and each having connecting ribs and scraper plates and an inverted U shaped or an inverted V-shaped guide plate positioned in a region between a supporting rod and opposed peripheral walls of the two rotary cylinders in the hopper. The twin-head oscillating granulator disclosed in this patent is capable of avoiding accumulation of powered raw materials in a recess of the mesh formed in the region at the opposed peripheral walls of the two rotary cylinders. However, due to a greater gap between an upper surface of the guide plate and a running trace of the connecting ribs in the outer circumferential surface of the rotary cylinders, powdered raw materials may inevitably accumulate in the gap.
Furthermore, when the twin-head oscillating granulator described in the patent CN’ 976U is used to granulate especially a highly sticky material (for example comprising amorphous compounds of more than 50wt%on a dry weight per cent basis) , the sticky material may easily accumulate on a surface of any one of the rotary cylinders and finally cover over the entire rotary cylinder, which results in low throughput, material waste and difficulty in cleaning. Also, residual wet materials on the rotary cylinder will cause gradual temperature rise in the rotary cylinder and  because of the temperature rise, the material having low glass transition temperature Tg may be transformed from a glass state into a rubber state, which results in properties change of the wet material. A finished product produced from the transformed material changes not only in the solubility, but also in the flavor, and the life time of the mesh collaborating with the rotary cylinder, the throughput and size of the granules may also be influenced by this transformation.
The present invention is intended to overcome design defects and disadvantages of the granulators available in the market now and to provide a granulator of high efficiency and great throughput.
SUMMARY OF THE INVENTION
The objective of the invention is to provide a granulator which enables improving production efficiency and yield, reducing maintenance cost and ensuring product quality and which is in particular adapted for granulation of highly sticky materials.
The above objective is achieved by a granulator having the following technical features:
A granulator comprising a driving unit and a granulation unit, the granulation unit comprising: a hopper;
at least two rotary cylinders disposed in the hopper and each comprising: a mounting portion for connecting the rotary cylinder to the driving unit such that the rotary cylinder is able to oscillate around its axis; at least one bracket connected to the mounting portion or forming into one piece with the mounting portion; and a plurality of scrapers attached on the bracket and spaced in the circumferential direction of the rotary cylinder; and
a mesh located below the rotary cylinders,
wherein, the rotary cylinders are placed next to each other such that the rotary cylinders oscillate in such a manner that their scrapers are meshed with each other.
By virtue of the granulator in the above structure, the rotary cylinders are able to smash and break an aggregate of material accumulated in adjacent rotary cylinders while oscillating so as to prevent continuous accumulation of the material in the rotary cylinders and avoid increase in material waste and oscillation resistance of the rotary cylinders.
Preferably, at least one of the brackets comprises a plate-like element, with the scrapers being attached on the peripheral edge of the plate-like element, preferably the plate-like element comprising a plate-like body and fingers radially extending outward from the plate-like body, with the scrapers being attached on the outer ends of the fingers. The bracket is simple in structure, easy to be manufactured and ready to be assembled with the scrappers.
Preferably, two ends of at least one of the rotary cylinders each are provided with one bracket. By doing so, the inner side of the rotary cylinders can be designed as hollow, reducing the risk of materials sticking to a surface inside the rotary cylinders and mitigating the possibility of agglomerating the material in the inner side of the cylinders.
Preferably, the mounting portion comprises two mounting elements each being disposed on one end of the rotary cylinder. By way of arranging the two mounting elements at an outer side of the brackets disposed at both ends of the rotary cylinder, a hollow section is formed in the rotary cylinder so that the risk of agglomerating the material in the rotary cylinder is minimized.
Preferably, at least one of the brackets is located in the middle position along the axial direction of at least one of the rotary cylinders. By doing so, it allows increasing support at a middle section of an elongated scraper, therefore securing the strength of the scraper and preventing the same from breaking.
Preferably, at least one of the rotary cylinders further comprises at least one, preferably annular, reinforcement configured to connect the scrapers in the circumferential direction of the rotary cylinder. The scrapers distributed over the circumference of the rotary cylinders can be connected as a whole by means of the reinforcement.
Preferably, neighbored scrapers and corresponding portion of the bracket define a U shaped profile. By virtue of this configuration, drastic change in quality of the material caused by pressing between the scrapers or between the scrapers and the brackets during oscillation of the rotary cylinders can be avoided, thereby securing product quality.
Preferably, the number of the scrapers of the rotary cylinder is from 3 to13, preferably from 5 to 11, more preferably from 7 to 9, most preferably 9. The number of the scrapers can be properly set in order that the material can be granulated with high efficiency and reduced risk of material  agglomeration.
Preferably, the scrapers have isosceles trapezoid shapes or rounded isosceles triangle shapes in cross section. The scrapers in this configuration are able to not only break agglomerated material efficiently, but also apply a proper force to the material when cooperating with the mesh, thereby achieving high efficiency and great throughput of the granulator. In addition, life time of the mesh is secured. It can be envisaged that the scraper may have a cross section in other symmetrical shapes.
Preferably, an end of the mounting portion connected to the driving unit has a spline structure, preferably an involute spline structure. This configuration has the benefits of bearing greater load, reducing rigid impacts between coupling components and increasing life time of the components and loading capacity of the machine.
Preferably, the spline structure has a positioning means for assembling, the positioning means preferably comprising at least one broader or higher tooth than other teeth of the spline structure. Positioning requirement during installation of the meshed type rotary cylinders can be satisfied by means of the positioning means, thus ensuring that the two rotary cylinders oscillate in a meshed manner.
Preferably, an end of the mounting portion connected to the driving unit has a chromed surface, which has the advantage of improving corrosion resistance of the components.
Preferably, the rotary cylinder comprises a stator element attached onto the hopper and having at least one stationary blade located inside the rotary cylinder with respect to the scrapers. This configuration is advantageous in smashing the material in the inner side of the rotary cylinders to prevent accumulation of the material in the cylinders.
Preferably, the granulator further comprises a mesh support shaft located below the meshing area between two adjacent rotary cylinders, the surface of the mesh preferably being spaced from the running trace of the scrapers in the area of the mesh support shaft by a distance in the range from 1 to 20mm, preferably from 2 to 15mm, more preferably from 4 to 10mm, most preferably 7mm. In this way, a working area between the mesh and the rotary cylinders is increased, i.e. the area of the mesh adapted for granulation actually is enlarged, and meanwhile it is possible to  prevent a large vacant area where the materials are easy to stay and aggregate from appearing in or under the lower part of the two meshed rotary cylinders, and also to prevent the powdered wet material entering into the region of final products directly, thus ensuring product quality.
Preferably, the granulator is a twin-head granulator, which has a simple design, compact structure and can be assembled easily and operate highly efficiently.
According to the present invention, by way of meshing the rotary cylinders with each other, the possibility of accumulating material in the rotary cylinders is decreased considerably, material waste can be prevented, and throughput and operation efficiency of the granulator is improved significantly with reduced maintenance cost and without any degradation in product quality, and particularly the invention is applicable to highly sticky materials.
According to another aspect of the invention, a use of the granulator for granulating a wet material into granules is provided. Preferably the wet material is a food product. The wet material preferably comprises crystalline and/or amorphous compounds. More preferably, the wet material comprises more amorphous compounds than crystalline compounds on a dry weight percent basis, preferably the content of the amorphous compounds being more than 50%.
Preferably, the wet material is a food product, such as a soup concentrate, a sauce concentrate or a condiment product.
According to another aspect of the invention, a method for producing granules comprising a step of using the granulator is provided.
BRIEF DESCRIPTION OF THE DRAWINGS
The features and advantages of the examples of the invention will become apparent with reference to the embodiments and drawings, in which:
FIG. 1 is a general view of a granulator of the present invention;
FIG. 2 shows a granulation unit of the granulator of the present invention;
FIG. 3 is a perspective view of two meshed adjacent rotary cylinders;
FIG. 4 is a view showing another embodiment of the rotary cylinders of the present invention;
FIG. 5 is a sectional view of an exemplary embodiment of two meshed adjacent rotary  cylinders according to the present invention; and
FIG. 6 is a sectional view of another exemplary embodiment of two meshed adjacent rotary cylinders according to the present invention.
DETAILED DESCRIPTION OF THE EMBODIMENTS
The present invention will be described below with reference to the embodiments, which are shown in the drawings. The same reference numbers, if possible, are used throughout the drawings to indicate the same or similar components.
FIG. 1 shows a general view of the granulator according to the present invention. The granulator 1 of the invention comprises a driving unit 10 and a granulation unit 20. The driving unit 10 includes a decelerator motor 11 comprising a motor and a decelerator through which electrical energy is converted into a rotation output having a desired rotation speed and rotation torque, and a transmission actuator mechanism 12 configured for converting rotation input from the decelerator motor into an oscillation movement of a gear shaft 121 (i.e. rotating the gear shaft in positive and negative directions alternately) .
As shown in FIG. 2, the granulation unit 20 includes a hopper 21, two rotary cylinders 22, 22’ disposed in the hopper 21 and a mesh 23 located below the rotary cylinders. The rotary cylinders 22, 22’ each comprise: a mounting portion 221, 221’ for connecting the rotary cylinders 22, 22’ to the driving unit 10 (e.g. the gear shaft 121) such that the rotary cylinders are able to oscillate around their axes; a plurality of brackets 222, 222’ connected to the mounting portion 221, 221’ or forming into one piece therewith; and a plurality of scrapers 223, 223’ a ttached on the brackets 222, 222’ and spaced in the circumferential direction of the rotary cylinders. A circumferential gap between neighbored scrapers is called a scraper gap, and the bracket 222, 222’ is generally called a scraper bracket.
The mesh 23 is mounted such that the rotary cylinders 22, 22’ are partially wrapped by the mesh, as shown in FIG. 2. During the mounting process, one end of the mesh 23 is fastened to a mesh fastener 24 and the other end thereof runs under the bottom of the rotary cylinder 22 and across the top of a mesh support shaft 25 and then along the bottom of the other rotary cylinder 22’  until it reaches another mesh fastener 24’ . The mesh fasteners 24, 24’ are configured to fasten the mesh 23 and apply a tension force thereto. Wet material enters into the hopper 21 from the top.
Preferably, the mesh 23 is woven by a metal wire (which may be made of Type 316L or Type 304 stainless steel, and the mesh range and wire diameter of which vary according to the granule products to be produced, usually comprising 8-20 meshes) or a plastic wire (which may be e.g. nylon and the mesh range and wire diameter of which vary according to the granule products to be produced, usually comprising 8-20 meshes) .
Further referring to FIG. 2, the rotary cylinders 22, 22’ are brought close to each other such that the scrapers thereon are meshed with each other.
The term “mesh” in “meshed with each other” herein means that in at least one cross sectional view of the rotary cylinders, at least one scraper of at least one rotary cylinder protrudes into at least one scraper gap of the adjacent rotary cylinder, without making contact with any part of the adjacent rotary cylinder during oscillation of the rotary cylinders. In other words, the imaginary peripheral surfaces of the rotary cylinders, in which scrapers are located respectively, overlap with each other. The overlapping area of the imaginary peripheral surfaces is also called a meshing area of the two rotary cylinders.
The phrase “the rotary cylinders oscillate in such a manner that their scrapers are meshed with each other” herein means that the meshing area appears at least for a moment during the oscillation process or appears during the whole oscillation process.
The two adjacent rotary cylinders 22, 22’ interact during an alternating positive and negative rotation process due to the above meshed type cooperation, so that the material is prevented from accumulating in the rotary cylinders, and large pieces possibly contained in the wet material can be broken by meshed scrapers making positive and negative movements alternately, such that sufficient material can be provided for the granulation process, increasing throughput and efficiency of the granulation.
As illustrated in FIG. 3, a meshed configuration of the rotary cylinders 22, 22’ is shown, in which rotary cylinders 22, 22’ are in substantially the same structure. Specifically, the bracket 222, 222’ comprises a plate-like body 2221, 2221’ a nd fingers 2222, 2222’ radially extending outward  from the plate-like body. In the illustrated embodiment, two ends of the rotary cylinders 22, 22’ each are provided with one bracket 222, 222’ . The scrapers 223, 223’ are attached at outer ends of the fingers 2222, 2222’ of the brackets 222, 222’ disposed oppositely. In the embodiment as shown, the scrapers 223, 223’ each extend in an axial direction of the respective rotary cylinders 22, 22’ . Preferably, the scrapers 223, 223’ each are in a straight elongated shape. Those skilled in the art, of course, can contemplate that the scrapers can be designed in other shapes, e.g. elongated shape extending helically along the axial direction of the rotary cylinders. Also, according to real requirements, the scrapers of one and the same rotary cylinder may be designed to distance from the center of the rotary cylinder by different intervals or at different positions along the extension direction of one scraper, the distances between the same scraper and the center line of the corresponding rotary cylinder are different.
In addition, the shape or arrangement of the bracket is not limited to those shown in FIG. 3. For example, the bracket may be designed in a disc-shape, and the scrapers 223 are attached directly on a peripheral edge of the disc-shaped bracket. FIG. 4 only schematically shows a disc-shaped bracket. Of course, the shape of the bracket 222 is not limited to the disc shape shown in FIG. 4, but may be any shape other than that shown in FIG. 4. Also, FIG. 4 shows the disc-shaped bracket is in a generally middle position in the axial direction of the rotary cylinder. Those skilled in the art may envisage placing at each end of the rotary cylinder, optionally or additionally, a disc-shaped bracket.
A portion of the bracket 222 between adjacent scrappers may be configured as an inwardly concave or outwardly convex arc section, as long as it does not interfere in the meshing between the rotary cylinders. Preferably, in a portion of the rotary cylinder corresponding to the meshing area, the portion of the bracket 222 between adjacent scrapers may have an inwardly concave, preferably U-shape profile, such that in the portion of the rotary cylinder corresponding to the meshed area, a boundary of the space defined by neighbored scrapers and corresponding portion of the bracket has a U-shaped profile. By virtue of this configuration, drastic change in material properties caused by pressing between the scrapers or between the scrapers and the brackets during oscillation of the rotary cylinders can be inhibited, thereby ensuring product quality.
An exemplary rotary cylinder shown in FIG. 4 further comprises an annular reinforcement 26 configured to connect the scrapers 223, 223’ in the circumferential direction. The reinforcement is designed to connect at least some of the scrapers or all of the scrapers distributed in the circumferential direction of the rotary cylinder as a whole in order to increase integral rigidity of the scrapers. Regarding the configuration in which the bracket is located in the middle of the rotary cylinder in the axial direction, as shown in FIG. 4, it is preferable that a reinforcement 26 is disposed at each end of the rotary cylinder. Although the reinforcement illustrated is in the form of a closed ring, those skilled in the art may envisage that the reinforcement may be in a non-closed elongated shape also. Further, the reinforcement can be positioned at any axial position of the rotary cylinders, including but not limited to the end of the rotary cylinders. For instance, one or more reinforcements may be disposed in an area of the scraper receiving greater force, e.g. a middle section of the scraper in its extension direction.
In order to prevent the wet material from accumulating or agglomerating at the inner side of the rotary cylinder, the rotary cylinder 22 preferably comprises a stator element 27 attached to the hopper as shown in FIG. 4. The stator element 27, as shown in FIG. 4, has two base plate elements 270 attached to the hopper and five stationary blades 271 extending from each base plate element into the inner side of the rotary cylinder and evenly spaced in the circumferential direction. Since the stationary blades 271 of the stator element 27 are positioned inside the rotary cylinder and remain stationary with respect to the hopper while the scraper 223 on the peripheral surface of the rotary cylinder oscillate about the axis of the rotary cylinder, relative movement between the stationary blades of the stator element and the scrapers on the peripheral surface of the rotary cylinder takes place so that the material at the inner side of the rotary cylinder is smashed and prevented from accumulation, thereby providing sufficient material for granulation and increasing throughput.
Although the stator element is shown in the drawing to have two parts (i.e. be in a two-piece form) those skilled in the art can easily envisage that it may be designed differently to have other configurations according to the structure and mounting position of the bracket. For example, the stator element may be designed to have base plate elements mounted at opposite sides of the hopper  and a blade extending between the base plate elements, and accordingly the bracket of the rotary cylinder is designed in such a manner that it is allowed to displace relative to the blade within an angular range of oscillation of the rotary cylinder. In addition, though FIG. 4 shows five blades 271, it can be contemplated that the number of the stationary blades can be different from five. The blades may be arranged in a manner distinct from that shown in FIG. 4.
FIGS. 5 and 6 show a meshed configuration of the rotary cylinders 22, 22’ having a bracket 222, 222’ with fingers. A single rotary cylinder may be provided with 3-13, preferably 5-11, more preferably 7-9, most preferably 9 scrapers (as shown in FIG. 5) . The scraper 223 has an isosceles trapezoid shape or a rounded isosceles triangle shape in cross section and has corners subject to a rounding process. The advantage of this design is that granulation efficiency is improved and life time of the mesh 23 can be increased because a sharp scraper or a scraper with a working edge of an oversmall width will increase wear of the mesh during the granulation process. Although the cross section shown in the drawings is in isosceles triangle shape, it can be envisaged that the scraper may have a cross section in other symmetrical shapes.
In a preferred embodiment, the mounting portions 221, 221’ may be configured to comprise two mounting elements each being disposed on an end of the rotary cylinder respectively, e.g. short supporting rods or supporting cylinders (as shown in FIG. 3) or configured as one shaft-like element extending in the axial direction of the rotary cylinder (as shown in FIG. 4) . The mounting portion in the configuration shown in FIG. 3 is preferable, especially in the case of low oscillation speed of the rotary cylinder, this is because highly sticky materials tend to stick easily to any surface existing inside the rotary cylinder and accumulate increasingly to fill the whole internal space of the rotary cylinder during low speed oscillation, thus affecting normal operation of the rotary cylinder.
Further, end (s) of the mounting portion 221, 221’ connected to the gear shaft 121 may have a spline structure, preferably an involute spline structure. The conventional coupling between a mounting portion and a gear shaft is usually done by means of a flat key binding structure. In the present invention, however, a spline structure is adopted, which has more teeth and larger contact area. Therefore, it is able to bear greater load with force being evenly distributed over the contact  area, thus reducing rigid impacts between coupled components and increasing life time of the components and loading capacity of the machine. Preferably, the spline structure has a positioning means for assembling, which, for example, comprises at least one broader or higher tooth than other teeth of the spline structure. The positioning means facilitates the positioning during the mounting of rotary cylinders so as to ensure the two rotary cylinders oscillate in a meshed manner and prevent some scrapers from contacting with other scrapers and brackets in the meshing area during the oscillation of the rotary cylinders. Preferably, end (s) of the mounting portion 221, 221’ connected to the gear shaft may have a chromed surface, which has the advantage of increasing corrosion resistance of the mounting portion.
In a preferred embodiment, the mesh support shaft 25 of the granulation unit 20 is located below the meshing area between two adjacent rotary cylinders, the surface of the mesh preferably being distanced from the running trace of the scrapers in the area of the mesh support shaft by a distance in the range from 1 to 20 mm, more preferably from 2 to 15 mm, more preferably from 4 to 10 mm, most preferably about 7mm. This configuration enables to increase the working area between the mesh and the rotary cylinders (i.e. the area of the mesh adapted for granulation actually is enlarged) , and at the same time prevents creating a larger vacant area where the material stays and accumulates easily from appearing in or under the lower portions of the two meshed rotary cylinders, so that it is possible to ensure that no material accumulation takes place in this area and avoid, to the greatest extent, powdered wet material entering into the region of products directly, thereby ensuring product quality.
In addition, although the two rotary cylinders are disposed in the hopper and cooperate in a meshed manner as shown in FIG. 2, those skilled in the art can envisage providing more meshed rotary cylinders side by side according to real requirements. Further, it can be also envisaged that for a granulator with meshed type rotary cylinders, a single rotary cylinder may be provided with one or more brackets, and the position of brackets in the axial direction of the rotary cylinder may vary according to real requirements. A plurality of brackets of the same rotary cylinder may have different configurations. The adjacent meshed rotary cylinders may have brackets of different structures and in different arrangements. For instance, one of the rotary cylinders has a disc-shaped  bracket located in the middle along the axial direction of the rotary cylinder while the other cylinder has two brackets having fingers, with each bracket being located at one end thereof.
INDUSTRIAL APPLICABILITY
For facilitating understanding of the present invention, the working principle of the granulator will be illustrated in detail below.
As shown in FIG. 1, the motor is started and a powdered mixture having certain degree of wetness is fed to the hopper and into the region of the rotary cylinders. The power of the motor drives the transmission actuator mechanism 12 through the decelerator, which transmission actuator mechanism 12 in turn drives the gear shaft 121 to rotate alternately in opposite directions. A friction between the material and the mesh 23 is generated due to the force applied by the scrapers on the peripheral surface of the rotary cylinders. The wet powdered material is extruded from the mesh through its pores and made into granule products of desired sizes. Meanwhile, one of the rotary cylinders oscillating in a meshed manner have scrapers protruding into scraper gaps of the other cylinder, so that the materials adhered or accumulated inside the rotary cylinders are smashed or broken, thereby preventing accumulation of the materials inside or around the rotary cylinders.
The granulator according to the invention is particularly applicable for highly sticky wet materials. Preferably, the wet material contains crystalline compounds and/or amorphous compounds. The wet material comprises more amorphous compounds than crystalline compounds on a dry weight percent basis, preferably the content of the amorphous compounds being more than 50%. The crystalline compound refers to a substance with an ordered molecule arrangement (with a fixed structure) into which no foreign molecules (such as water) can be incorporated, including for example salt, sugar, monosodium glutamate and so on. Generally, a crystalline formula contains more than 50%of crystalline, preferably more than 70%. The amorphous compound refers to a substance without an ordered molecule arrangement into which foreign molecules can be incorporated, including for example starch, maltodextrin, yeast extract powder, tomato powder and so on. Generally, an amorphous formula contains more than 50%of amorphous compound content.
The wet material may be food, such as soup concentrate, sauce concentrate or seasoning  concentrate.
In the following, a wet granulation-fluidized bed drying process is illustrated by way of an example of highly sticky wet material for tomato soup concentrate, which process comprising the steps of:
a)breaking the bulk raw materials for producing granules such that 75%of the raw materials have a particle size in the range from 150 to 200μm (specifically refer to the following table 1 for the formula) , and mixing these raw materials in proportion by a mixing device, and adding a proper amount of water to the mixture such that the water content is about 10wt%, thus the wet material for tomato soup concentrate is ready for being granulated;
b)forming the wet material obtained in step a) by means of the granulator of the invention to obtain granules of certain size (for example, particle size of 1.4mm) ;
c)subjecting the granules obtained in step b) to a fluidized bed drying process using a fluidized bed dryer (for example, a vibrating fluidized bed) with the drying temperature arrange from 75℃ to 105℃, and cooling down to room temperature to obtain granule products having water content of 1.0-3.0wt%;
d)screening to obtain granules for tomato soup concentrate having desired shape and size; and
e)packaging.
Table 1 formula for granules for tomato soup concentrate
Figure PCTCN2014095857-appb-000001
Figure PCTCN2014095857-appb-000002
The above is only exemplary embodiments of the granulator. The granulator is not limited to the specific embodiments described herein, but rather, each of the components may be utilized independently and separately from other components herein. The terms “an example” , “another example” , “examples” and so on means that a member/element (e.g. feature, structure and/or feature) related to the example (s) is contained in at least one of the examples herein but may or may not be introduced in other examples. In addition, it should be appreciated that more elements of any examples illustrated can be combined in any manner in multiple different examples, unless specified otherwise.
When introducing elements/components/etc. of the granulator described and/or illustrated herein, the articles “a” , “an” , “the” , and “said” are intended to mean that there are one or more of the element (s) /component (s) /etc. The terms “comprising” , “including” , and “having” are intended to be inclusive and mean that there may be additional element (s) /component (s) /etc. other than the listed element (s) /component (s) /etc.
This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal language of the claims.
List of reference numbers
1—granulator
10—driving unit
11—decelerator motor
12—transmission actuator mechanism
121—gear shaft
20—granulation unit
21—hopper
22, 22’ —rotary cylinder
221, 221’ —mounting portion
222, 222’ —bracket
2221, 2221’ —plate-like body
2222, 2222’ —fingers
223, 223’ —scrapers
23—mesh
24, 24’ —mesh fastener
25—mesh support shaft
26—reinforcement
27—stator element
270—base plate element
271—blade

Claims (22)

  1. A granulator (1) , comprising a driving unit (10) and a granulation unit (20) , the granulation unit comprising:
    a hopper (21) ;
    at least two rotary cylinders (22, 22’ ) disposed in the hopper and each comprising: a mounting portion (221, 221’ ) for connecting the rotary cylinder to the driving unit such that the rotary cylinder is able to oscillate around its axis; at least one bracket (222, 222’ ) connected to the mounting portion or forming into one piece with the mounting portion; and a plurality of scrapers (223, 223’ ) attached on the bracket and spaced in the circumferential direction of the rotary cylinder; and
    a mesh (23) located below the rotary cylinders,
    wherein, the rotary cylinders are placed next to each other such that the rotary cylinders oscillate in such a manner that their scrapers are meshed with each other.
  2. The granulator (1) according to claim 1, wherein at least one of the brackets (222, 222’ ) comprises a plate-like element, with the scrapers (223, 223’ ) being attached on the peripheral edge of the plate-like element, preferably the plate-like element comprising a plate-like body (2221, 2221’ ) and fingers (2222, 2222’ ) radially extending outward from the plate-like body, with the scrapers being attached on the outer ends of the fingers.
  3. The granulator (1) according to claim 2, wherein two ends of at least one of the rotary cylinders (22, 22’ ) each are provided with one bracket (222, 222’ ) .
  4. The granulator (1) according to claim 3, wherein the mounting portion (221, 221’ ) comprises two mounting elements each being disposed on one end of the rotary cylinder.
  5. The granulator (1) according to claim 2, wherein at least one of the brackets (222, 222’ ) is located  in the middle position along the axial direction of at least one of the rotary cylinders (22, 22’ ) .
  6. The granulator (1) according to claim 5, wherein two ends of at least one of the rotary cylinders (22, 22’ ) each are provided with one bracket (222, 222’ ) .
  7. The granulator (1) according to any one of claims 1-6, wherein at least one of the rotary cylinders (22, 22’ ) further comprises at least one, preferably annular, reinforcement (26) configured to connect the scrapers (223, 223’ ) in the circumferential direction of the rotary cylinder.
  8. The granulator (1) according to any one of claims 1-6, wherein neighbored scrapers (223, 223’ ) and corresponding portion of the bracket (222, 222’ ) define a U shaped profile.
  9. The granulator (1) according to any one of claims 1-6, wherein the number of the scrapers of the rotary cylinder (22, 22’ ) is from 3 to 13, preferably from 5 to 11, more preferably from 7 to 9, and most preferably 9.
  10. The granulator (1) according to any one of claims 1-6, wherein the scrapers (223, 223’ ) have isosceles trapezoid shapes or rounded isosceles triangle shapes in cross section.
  11. The granulator (1) according to any one of claims 1-6, wherein end (s) of the mounting portion (221, 221’ ) connected to the driving unit (10) having a spline structure, preferably an involute spline structure.
  12. The granulator (1) according to claim 11, wherein the spline structure having a positioning means for assembling, the positioning means preferably comprising at least one broader or higher tooth than other teeth of the spline structure.
  13. The granulator (1) according to any one of claims 1-6, wherein end (s) of the mounting portion  (221, 221’ ) connected to the driving unit (10) having a chromed surface.
  14. The granulator (1) according to any one of claims 1-6, wherein the rotary cylinder (22, 22’ ) comprises a stator element (27) attached onto the hopper (21) and having at least one stationary blade (271) located inside the rotary cylinder with respect to the scrapers.
  15. The granulator (1) according to any one of claims 1-6, wherein the granulator further comprises a mesh support shaft (25) located below the meshing area between two adjacent rotary cylinders, the surface of the mesh preferably being spaced from the running trace of the scrapers in the area of the mesh support shaft by a distance in the range preferably from 1 to 20mm, more preferably from 2 to 15mm, more preferably from 4 to 10mm, and most preferably 7mm.
  16. The granulator (1) according to any one of claims 1-6, wherein the granulator is a twin-head granulator.
  17. Use of the granulator (1) according to any one of claims 1-16 for granulating a wet material into granules.
  18. The use according to claim 17, wherein the wet material is a food product.
  19. The use according to claim 17, wherein the wet material comprises crystalline and/or amorphous compounds.
  20. The use according to claim 19, wherein the wet material comprises more amorphous compounds than crystalline compounds on a dry weight per cent basis, preferably the content of the amorphous compounds being more than 50%.
  21. The use according to any one of claims 18 to 20, wherein the food product is a soup concentrate,  a sauce concentrate or a condiment product.
  22. A method for producing granules comprising a step of using the granulator (1) according to any one of the claims 1-16.
PCT/CN2014/095857 2014-12-31 2014-12-31 Granulator WO2016106664A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
MYUI2017701970A MY185468A (en) 2014-12-31 2014-12-31 Granulator
PCT/CN2014/095857 WO2016106664A1 (en) 2014-12-31 2014-12-31 Granulator
CN201490001626.8U CN207899417U (en) 2014-12-31 2014-12-31 Comminutor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/095857 WO2016106664A1 (en) 2014-12-31 2014-12-31 Granulator

Publications (1)

Publication Number Publication Date
WO2016106664A1 true WO2016106664A1 (en) 2016-07-07

Family

ID=56283938

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/095857 WO2016106664A1 (en) 2014-12-31 2014-12-31 Granulator

Country Status (3)

Country Link
CN (1) CN207899417U (en)
MY (1) MY185468A (en)
WO (1) WO2016106664A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116617941B (en) * 2023-07-26 2023-09-15 山东绿陇生物科技有限公司 Granulating device for producing granular fertilizer

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3583267A (en) * 1966-10-31 1971-06-08 Dow Chemical Co Method and apparatus for pelletizing of plastic materials
SU1368020A1 (en) * 1985-01-02 1988-01-23 Конструкторско-технологическое бюро "Мосоргстройматериалы" Arrangement for moulding pelletized articles of cylindrical shape
CN102205217A (en) * 2011-01-07 2011-10-05 谭定忠 Gear type biomass fuel particle molding machine
CN102658059A (en) * 2012-05-14 2012-09-12 江苏爱能洁机械制造有限公司 Meshed extrusion granulation forming device
CN203139976U (en) * 2013-03-20 2013-08-21 南京同仁堂黄山精制药业有限公司 Granulation machine
JP2014069173A (en) * 2012-10-02 2014-04-21 Masunobu Sonoda Pellet production apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3583267A (en) * 1966-10-31 1971-06-08 Dow Chemical Co Method and apparatus for pelletizing of plastic materials
SU1368020A1 (en) * 1985-01-02 1988-01-23 Конструкторско-технологическое бюро "Мосоргстройматериалы" Arrangement for moulding pelletized articles of cylindrical shape
CN102205217A (en) * 2011-01-07 2011-10-05 谭定忠 Gear type biomass fuel particle molding machine
CN102658059A (en) * 2012-05-14 2012-09-12 江苏爱能洁机械制造有限公司 Meshed extrusion granulation forming device
JP2014069173A (en) * 2012-10-02 2014-04-21 Masunobu Sonoda Pellet production apparatus
CN203139976U (en) * 2013-03-20 2013-08-21 南京同仁堂黄山精制药业有限公司 Granulation machine

Also Published As

Publication number Publication date
CN207899417U (en) 2018-09-25
MY185468A (en) 2021-05-19

Similar Documents

Publication Publication Date Title
WO2016106664A1 (en) Granulator
CN201768629U (en) Improved horizontal type self-discharging centrifugal machine sieve basket
RU2554193C2 (en) Powder pelletizing and pelletizer to this end
CN107983635B (en) Reciprocating turning and throwing type wet sticky grain efficient vibration cleaning device
KR20110105834A (en) Cylindrical sieve and cylindrical sifter
WO2016106665A1 (en) Machine for producing granules
CN202238601U (en) Circulating sieve separation equipment
CN102553491A (en) Double-head oscillating granulator
CN104812542B (en) Decline material road structure device, that there is double cleaning device for the glued particle during production material plate
CN205204139U (en) Feed hopper device of adjustable size, dismouting of being convenient for
CN204097346U (en) Normal superphosphate feed, screening, crushing system
CN204134867U (en) A kind of anti-caking device of chemical fertilizer screening machine
CN211463357U (en) Rubbing crusher is used in production of improved generation calcium oxide
CN209049519U (en) It is used to prepare the rotor and kitchen garbage pulping equipment of kitchen garbage slurry
JP5190357B2 (en) Apparatus and method for grinding agglomerates
CN112757475A (en) High-speed compounding device is used in ceramic production
CN205418623U (en) Can change opening size's feed hopper device
CN208031927U (en) Choline chloride aqueous solution agent production evaporator
CN202366675U (en) Double-ended oscillating granulator
CN210406873U (en) Convex axis face ball rubbing mechanism
CN107597340A (en) A kind of chitin raw material reducing mechanism
CN110586465B (en) Screening device for manufacturing health-care product tablets
CN205203847U (en) Feed hopper convenient to dismouting and unloading
CN207463337U (en) It is a kind of suitable for preparing the ball mill used amino film plastics pellet
CN205204141U (en) Feed hopper convenient to dismouting and unloading

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14909473

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14909473

Country of ref document: EP

Kind code of ref document: A1