WO2016105080A1 - Ferritic stainless steel having excellent surface quality and ridging resistance - Google Patents

Ferritic stainless steel having excellent surface quality and ridging resistance Download PDF

Info

Publication number
WO2016105080A1
WO2016105080A1 PCT/KR2015/014088 KR2015014088W WO2016105080A1 WO 2016105080 A1 WO2016105080 A1 WO 2016105080A1 KR 2015014088 W KR2015014088 W KR 2015014088W WO 2016105080 A1 WO2016105080 A1 WO 2016105080A1
Authority
WO
WIPO (PCT)
Prior art keywords
stainless steel
ferritic stainless
surface quality
tin
weight
Prior art date
Application number
PCT/KR2015/014088
Other languages
French (fr)
Korean (ko)
Inventor
정일찬
강형구
김상석
김지은
신용국
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Publication of WO2016105080A1 publication Critical patent/WO2016105080A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Definitions

  • the present invention relates to a ferritic stainless steel, and more particularly to a ferritic stainless steel having excellent surface quality and leachability by controlling the content of the components constituting the molten steel for producing stainless steel to improve the surface quality and leachability It is about.
  • Stainless steel can be roughly divided into ferritic stainless steel and austenitic stainless steel.
  • ferritic stainless steels are widely used in kitchen appliances, building exterior materials, home appliances, electronic parts, etc., because they are inexpensive and preferentially have surface gloss, drawing properties, and oxidation resistance, compared to austenitic stainless steels.
  • the surface defects in the form of wrinkles are formed parallel to the rolling direction during the molding process for application to the components of the above-mentioned applications. This phenomenon is called ridging.
  • STS430 steel which is one of the ferritic stainless steels, is a steel containing about 16% by weight of chromium (Cr) and is a representative steel of ferritic stainless steel, and is widely used for aquaculture and household appliances.
  • STS430 steel has excellent leachability among other ferritic stainless steels, but still has ridging defects. Therefore, there is a need for continuous leasing reduction ferritic stainless steels in order to reduce polishing cost or reduce mechanical defects caused by leasing.
  • the cast structure when the cast structure remains as a coarse band structure without breaking in the rolling or annealing process, it is expressed as a ridging defect due to the width and thickness deformation behavior different from the surrounding recrystallized structure during tensile processing.
  • 1 is a view for explaining the refinement of the cast structure using TiN in order to improve the leachability.
  • the columnar structure of the slab is subjected to shear deformation during hot rolling so that fracture occurs well in subsequent processes.
  • the slab equiaxed structure is subjected to planar deformation during hot rolling, so that the band structure is not destroyed in subsequent processes.
  • TiN precipitates are generated in the temperature range cast by adding Ti and high N, thereby making the equiaxed crystal structure fine using the TiN pinning effect, thereby fundamentally suppressing coarse band structure formation.
  • ferritic stainless steel sheet and the manufacturing method of the conventional steel composition, rolling conditions, annealing conditions by improving the specific texture of the structure by improving the aging resistance "Ferritic stainless steel sheet with small in-plane anisotropy and excellent ridging resistance and It is known in detail in the manufacturing method (Patent Publication 10-1997-0015775).
  • ferritic stainless steel having an austenite transformation section is required to be subjected to annealing heat treatment for decomposing austenite structure after hot rolling, but for this purpose, the production cost is increased and manufacturing time is increased. As the manufacturing time increases, there is a problem that the productivity is lowered.
  • Patent Document 0001 Published Patent 10-1997-0015775 (1997. 04. 28.)
  • the present invention has been made to solve the above problems, by optimizing the content of the alloying components affecting the improvement of the leachability, it is possible to refine the casting structure, and prevent the occurrence of Scab defects and grain boundary corrosion defects Provides ferritic stainless steel with excellent surface quality and leachability.
  • the ferritic stainless steel having excellent surface quality and lowering property is in weight%, Cr: 12.5-18.5%, C: 0.001-0.025%, N: 0.01-0.05%, Ti: 0.05- 0.4%, Al: 0.01-0.2%, Si: 0.01-0.5%, Mn: 0.01-0.5%, Cu: 0.01-0.5%, Mo: 0.001-0.5%, Nb: 0.01-0.5%, Ni: 0.01-0.5 %,
  • the remaining Fe and impurities and characterized by satisfying the following formula (1).
  • TiN precipitation amount (Vol%) 47N + 102Ti ⁇ N + 10C + 0.39, N, Ti and C means the content (wt%) of each component.
  • the stainless steel can be characterized by satisfying the following formula (2).
  • TiN crystallization temperature (° C.) [-19,755 / ⁇ logN- (7.78 + 0.07Ti-logTi + 0.045Cr) ⁇ ]-275, and N, Ti and Cr are the contents of each component (wt% ).
  • N / C ratio is 1.5 or more and 6 or less by mass ratio of the said stainless steel.
  • the stainless steel can be characterized by satisfying the following formula (3).
  • Ti, C and N means the content (wt%) of each component.
  • the stainless steel may be characterized in that the grain size of the equiaxed crystal structure in the cast state is 2 mm or less.
  • the stainless steel may be characterized in that the ridging height (Wt) in the cold rolled steel sheet state is less than 11 ⁇ m.
  • 1 is a view for explaining the miniaturization of the cast structure using TiN to improve the leachability
  • FIG. 2 is a view showing a correlation between the threshold value of TiN precipitation amount and the refined equiaxed crystal (2 mm or less) according to an embodiment of the present invention
  • FIG. 3 is a graph showing the range of Ti and N amounts in which equiaxed refinement is realized from the threshold value of the minimum TiN derived from FIG.
  • FIG. 4 is a view showing a correlation between the threshold value of TiN crystallization temperature and the occurrence of Scab defects according to an embodiment of the present invention
  • FIG. 5 is a graph showing a range of Ti and N amounts in which Scab defects do not occur from the threshold value of TiN crystallization temperature derived from FIG. 4;
  • FIG. 6 is a view showing the correlation between the threshold value of Ti / (C + N) and grain boundary corrosion defects during HAPL pickling according to an embodiment of the present invention
  • FIG. 7 is a graph showing a range of Ti and N amounts in which grain boundary corrosion does not occur from the threshold value of Ti / (C + N) derived from FIG. 6;
  • the ferritic stainless steel having excellent surface quality and lowering property is in weight%, Cr: 12.5-18.5%, C: 0.001-0.025%, N: 0.01-0.05%, Ti: 0.05- 0.4%, Al: 0.01-0.2%, Si: 0.01-0.5%, Mn: 0.01-0.5%, Cu: 0.01-0.5%, Mo: 0.001-0.5%, Nb: 0.01-0.5%, Ni: 0.01-0.5 %,
  • the remaining Fe and impurities and characterized by satisfying the following formula (1).
  • TiN precipitation amount (Vol%) 47N + 102Ti ⁇ N + 10C + 0.39, N, Ti and C means the content (wt%) of each component.
  • the ferritic stainless steel having excellent surface quality and lowering property is in weight%, Cr: 12.5-18.5%, C: 0.001-0.025%, N: 0.01-0.05%, Ti: 0.05- 0.4%, Al: 0.01-0.2%, Si: 0.01-0.5%, Mn: 0.01-0.5%, Cu: 0.01-0.5%, Mo: 0.001-0.5%, Nb: 0.01-0.5%, Ni: 0.01-0.5 %, The remaining Fe and impurities.
  • the amount of chromium (Cr) is preferably 12.5% by weight to 18.5% by weight.
  • chromium (Cr) is an alloying element added to improve the corrosion resistance of the steel, when chromium (Cr) is contained in less than 12.5% by weight, the corrosion resistance of the ferritic stainless steel is lowered, contained in excess of 18.5% by weight In this case, the manufacturing cost increases unnecessarily.
  • chromium (Cr) in the embodiment according to the present invention is preferably limited to 12.5 ⁇ 18.5% by weight.
  • the amount of carbon (C) is preferably 0.001% to 0.025% by weight.
  • carbon (C) is an austenite stabilizing element of steel, it needs to be limited because it acts to maximize the austenite fraction, and carbon (C) is a solid solution strengthening element, which reduces the elongation when the product exceeds 0.025% by weight. This is because the workability of the resin is lowered, the corrosion resistance is reduced, and when the amount is less than 0.001% by weight, additional refining costs are incurred.
  • the elongation is a term commonly used as one of quality characteristics indicating the processability of the cold rolled product of ferritic stainless steel, and the amount of elongation until the breakage occurs when the cold rolled product of the ferritic stainless steel is uniaxially tensioned. Calculate from length divided by length.
  • the amount of nitrogen (N) is preferably 0.01% by weight to 0.05% by weight.
  • N nitrogen
  • Ti titanium
  • TiN titanium nitride
  • N nitrogen
  • Ti titanium
  • the amount of titanium (Ti) is preferably 0.05% to 0.40% by weight.
  • titanium (Ti) is an element that plays an important role in miniaturizing the equiaxed grain size of the cast steel structure, it is added to 0.05% by weight or more since it plays a role of improving workability by fixing carbon (C), nitrogen (N), etc. .
  • Ti titanium
  • N nitrogen
  • the amount of aluminum (Al) is preferably 0.01% by weight to 0.2% by weight.
  • aluminum (Al) is an element added as a deoxidizer during steelmaking, it is preferably contained at 0.01% by weight or more, but when aluminum (Al) is added in excess of 0.2% by weight, it is present as a non-metallic inclusion and is a cold rolled strip. This is a cause of sleeve defects and causes a decrease in weldability.
  • the amount of silicon (Si) is preferably 0.01% by weight to 0.5% by weight.
  • silicon (Si) is an element added as a deoxidizer during steelmaking, and is a ferrite stabilizing element, it is preferable to be contained in 0.01% by weight or more.
  • the amount of manganese (Mn) is preferably 0.01% by weight to 0.5% by weight.
  • Manganese (Mn) is an impurity inevitably included in steel, but when it is included in a large amount, manganese fume is generated during welding and causes evaporation of MnS phase, thereby lowering elongation.
  • the amount of copper (Cu) is preferably 0.01% by weight to 0.5% by weight.
  • Cu copper
  • Cu is an impurity that is inevitably included in steel and has an effect of improving corrosion resistance by adding 0.01% or more, but has a problem of deterioration in workability when added in excess of 0.5%.
  • the amount of molybdenum (Mo) is preferably 0.001% by weight to 0.5% by weight.
  • molybdenum (Mo) is added to 0.001% or more has the effect of improving the corrosion resistance, in particular, corrosion resistance, but when added in excess of 0.5% as an expensive element has a problem of increasing the manufacturing cost, lowering the workability Because there is.
  • the amount of niobium (Nb) is preferably 0.001% by weight to 0.5% by weight.
  • Nb niobium
  • C solid carbon
  • N nitrogen
  • the amount of nickel (Ni) is preferably 0.01% by weight to 0.5% by weight.
  • Ni nickel
  • austenite stabilization increases and as an expensive element, This is because there is a problem to raise.
  • the other elements are made of iron (Fe) and other unavoidable impurities.
  • the cause of leasing in ferritic stainless steels is that the coarse grains formed during casting are rolled without being removed during hot rolling.
  • the TiN compound formed By forming a fine equiaxed crystal by the TiN compound formed, it is possible to manufacture a ferritic stainless steel slab having a fine structure to produce a ferritic stainless steel having excellent dropping properties.
  • the ferritic stainless steel having excellent surface quality and leachability according to an embodiment of the present invention is more limited in the amount of TiN that affects the refinement of the equiaxed crystal. It is desirable to.
  • TiN precipitation amount (Vol%) 47N + 102Ti ⁇ N + 10C + 0.39, N, Ti and C means the content (wt%) of each component.
  • TiN crystallization temperature (°C) [-19,755 / ⁇ logN- (7.78 + 0.07Ti-logTi + 0.045Cr) ⁇ ]-275, N, Ti and Cr are the content of each component ( Weight percent).
  • N / C ratio it is preferable to manage N / C ratio to 1.5 or more and 6 or less.
  • N is essential for the formation of TiN, which can make the structure fine during casting, and even if N is added in a certain amount, it is difficult for all N to form TiN compounds because of its natural behavior. This is because Ti must be added according to the range of Ti / N ratio of.
  • ferritic stainless steel according to the embodiment of the present invention is characterized in that it does not include austenite phase transformation until the room temperature after casting.
  • the austenite phase transformation is included, especially if the austenitic phase transformation is included in the hot rolling section, such as in the conventional STS 430 steel, after the hot rolling, the annealing phase for thermal decomposition of the austenite phase decomposition and Cr deficiency layer is essential, And because the production time is increased.
  • the present invention omits the annealing heat treatment process as a complete wastelite component system, and thus performs continuous annealing heat treatment. There is an effect that can reduce the production cost, improve the productivity by shortening the production time.
  • the lowering property of the STS 430 steel which is a representative steel of ferritic stainless steel, is relatively superior to other ferritic stainless steels by removing some of the coarse texture formed during casting by including austenite phase transformation in the hot rolling section.
  • the present invention despite being a component system that does not contain austenite phase transformation, it is possible to obtain excellent leachability by casting to the component system to form a fine cast structure.
  • austenite phase is formed can be determined by observing the microstructure by heating and etching the material in the range of 900 °C ⁇ 1,100 °C, and can be determined based on the standard commonly used in materials engineering, so detailed criteria are omitted.
  • Table 1 is a table showing the alloying components of various embodiments and comparative examples of the ferritic stainless steel having excellent surface quality and leachability produced according to an embodiment of the present invention.
  • Table 1 various embodiments of the present invention control the contents of Ti, N, and C.
  • the examples and comparative examples are shown by confirming their components by vacuum dissolving.
  • Table 2 is a table showing the results of confirming the ratio of Ti / N and N / C of the various examples and comparative examples having the composition of Table 1 and the leasing grade for each of the final ferritic stainless steel.
  • the ridging grade representing the lowering property is the ridging height grade (Wt basis) measured after 15% tension of the cold rolled steel sheet, and the 1st grade is less than 11 ⁇ m, the 2nd grade is 11 ⁇ m ⁇ 14 ⁇ m, and the 3rd grade is 14 ⁇ m-18
  • the micrometer and grade 4 represent 18 micrometers or more, where a grade 1 corresponds to the range aimed by this invention.
  • FIG. 2A is a view showing a correlation between the threshold of TiN precipitation amount and the refinement of equiaxed crystals (2 mm or less) according to an embodiment of the present invention
  • FIG. 2B illustrates the refinement of equiaxed crystals from the threshold value of the minimum TiN derived from FIG. 2A. Is a graph showing the range of Ti and N amounts to be implemented.
  • Comparative A group consisting of Comparative Examples 1 to 5 it can be seen that Ti / N does not satisfy 5 to 20, N / C does not satisfy 1.5 to 6 .
  • TiN precipitation amount was less than 1.1 ⁇ 10 ⁇ 3 (vol%), which did not satisfy Equation (1), and the grain size of the equiaxed crystals exceeded 2 mm, resulting in no refinement of equiaxed crystals. It can be seen that it does not meet the target value of the present invention.
  • FIG. 3A is a view showing a correlation between the threshold value of TiN crystallization temperature and the occurrence of Scab defects according to an embodiment of the present invention
  • FIG. 3B is a diagram in which a Scab defect does not occur from the threshold value of the TiN crystallization temperature derived from FIG. 3A. Is a graph showing the range of N amounts.
  • Comparative B group consisting of Comparative Examples 6 to 15 meets the ratio of Ti / N and N / C according to the embodiment of the present invention, the crystallization temperature (Ti) of TiN It can be seen that the formula (2) does not satisfy above 1520 °C.
  • FIG. 4A illustrates a correlation between a threshold value of Ti / (C + N) and grain boundary corrosion defects during HAPL pickling according to an embodiment of the present invention
  • FIG. 4B illustrates Ti / (C + N) derived from FIG. 4A. It is a graph which shows the range of Ti and N amount which grain boundary corrosion does not generate from the threshold value of.
  • Comparative C group consisting of Comparative Examples 16-18 is not only the ratio of Ti / N and N / C according to the embodiment of the present invention, but also the crystallization temperature (° C) of TiN Although managed at 1,520 ° C. or less, it can be seen that the Ti / (C + N) value is less than 5.0, which does not satisfy the above formula (3).
  • 5 is a graph showing the relationship between Scab, grain boundary corrosion and equiaxed crystal refinement according to the content of Ti and N.
  • the grain size of the equiaxed crystal in the cast state is 2 It appears that less than mm, the leaching height (Wt) in the cold-rolled steel sheet state is less than 11 ⁇ m excellent leasing grade, and it is confirmed that the surface quality is improved by preventing defects such as Scab and grain boundary corrosion.
  • the ferritic stainless steel having excellent surface quality and lowering property according to embodiments of the present invention may be applied to kitchen appliances, building exterior materials, home appliances, electronic components, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

The present invention relates to a ferritic stainless steel having excellent ridging resistance, wherein the amounts of components forming molten steel for manufacturing the stainless steel are controlled, thereby improving the ridging resistance. The stainless steel having excellent ridging resistance and formability, according to one embodiment of the present invention, comprises 12.5-18.5 wt% of Cr, 001-0.025 wt% of C, 0.01-0.05 wt% of N, 0.05-0.4 wt% of Ti, 0.01-0.2 wt% of Al, 0.01-0.5 wt% of Si, 0.01-0.5 wt% of Mn, 0.01-0.5 wt% of Cu, 0.001-0.5 wt% of Mo, 0.01-0.5 wt% of Nb, 0.01-0.5 wt% of Ni, and the remainder being Fe and impurities, and satisfies formula (1) below. An amount of precipitated TiN (vol%)>1.1×10-3 - (1). In formula (1), an amount of precipitated TiN (vol%)=47N+102Ti×N+10C+0.39, and N, Ti and C are defined as the amounts (wt%) of each component.

Description

표면품질 및 내리징성이 우수한 페라이트계 스테인리스강Ferritic stainless steel with excellent surface quality and leachability
본 발명은 페라이트계 스테인리스강에 관한 것으로서, 보다 상세하게는 스테인리스강을 제조하기 위한 용강을 이루는 성분의 함량을 조절하여 표면품질 및 내리징성을 향상시킨 표면품질 및 내리징성이 우수한 페라이트계 스테인리스강에 관한 것이다.The present invention relates to a ferritic stainless steel, and more particularly to a ferritic stainless steel having excellent surface quality and leachability by controlling the content of the components constituting the molten steel for producing stainless steel to improve the surface quality and leachability It is about.
스테인리스강은 크게 페라이트계 스테인리스강과 오스테나이트계 스테인리스강으로 나눌 수 있다.Stainless steel can be roughly divided into ferritic stainless steel and austenitic stainless steel.
일반적으로, 페라이트계 스테인리스강은 오스테나이트계 스테인리스강에 비해 우선적으로 가격이 저렴하고 표면광택, 드로잉성 및 내산화성이 양호하여 주방용품, 건축 외장재, 가전제품, 전자부품 등에 널리 사용되고 있다.In general, ferritic stainless steels are widely used in kitchen appliances, building exterior materials, home appliances, electronic parts, etc., because they are inexpensive and preferentially have surface gloss, drawing properties, and oxidation resistance, compared to austenitic stainless steels.
페라이트계 스테인리스강은 상기와 같은 용도의 부품에 적용을 위해 성형가공시 압연방향에 평행하게 주름형태의 표면결함이 발생되는데 이러한 현상을 리징(ridging)이라 한다. In the ferritic stainless steel, the surface defects in the form of wrinkles are formed parallel to the rolling direction during the molding process for application to the components of the above-mentioned applications. This phenomenon is called ridging.
이러한 리징 결함은 제품의 외관을 나쁘게 하기 때문에 성형 후에 리징이 발생한 부분에 추가의 연마공정을 필요로 하여 최종제품의 제조단가를 상승시키는 원인이 된다.Since such ridging defects deteriorate the appearance of the product, an additional polishing process is required at the portion where the ridging occurs after the molding, which causes a rise in the manufacturing cost of the final product.
페라이트계 스테인리스강의 하나인 STS430강은 약 16중량%의 크롬(Cr)을 함유한 강으로 페라이트계 스테인리스강의 대표 강종이며, 양식기 및 가전용으로 널리 사용되고 있다.STS430 steel, which is one of the ferritic stainless steels, is a steel containing about 16% by weight of chromium (Cr) and is a representative steel of ferritic stainless steel, and is widely used for aquaculture and household appliances.
STS430강은 여타 페라이트계 스테인리스강 중에서 내리징성이 우수한 편이나 여전히 리징 결함은 발생하므로 연마 비용 절감 혹은 리징으로 인하여 유발되는 기계적 결함 감소를 위하여 지속적으로 리징 저감 페라이트계 스테인리스강이 요구되고 있는 실정이다.STS430 steel has excellent leachability among other ferritic stainless steels, but still has ridging defects. Therefore, there is a need for continuous leasing reduction ferritic stainless steels in order to reduce polishing cost or reduce mechanical defects caused by leasing.
이러한, 리징이 발생되는 원인은 본질적으로 미파괴된 조대한 주조 조직에 기인한다.The cause of this leasing is inherently due to the coarse cast structure that is undestructed.
즉, 주조조직이 압연 또는 소둔공정에서 파괴되지 않고 조대한 밴드 조직으로 잔류하는 경우 인장가공 시 주변의 재결정 조직과 상이한 폭 및 두께 방향 변형 거동으로 인해 리징 결함으로 표출된다.That is, when the cast structure remains as a coarse band structure without breaking in the rolling or annealing process, it is expressed as a ridging defect due to the width and thickness deformation behavior different from the surrounding recrystallized structure during tensile processing.
도 1은 내리징성을 향상시키기 위하여 TiN을 이용한 주조조직의 미세화를 설명하기 위한 도면이다.1 is a view for explaining the refinement of the cast structure using TiN in order to improve the leachability.
도 1에 도시된 바와 같이, 슬라브의 주상적 조직은 열간 압연시에 전단 변형을 받게되서 이후 공정에서 파괴가 잘 일어난다. 하지만 슬라브의 등축정조직은 열간 압연시에 평면 변형을 받게되서 이후 공정에서 밴드 조직의 파괴가 잘 이루어 지지 않는다.As shown in FIG. 1, the columnar structure of the slab is subjected to shear deformation during hot rolling so that fracture occurs well in subsequent processes. However, the slab equiaxed structure is subjected to planar deformation during hot rolling, so that the band structure is not destroyed in subsequent processes.
이를 해결하기 위해서는 Ti와 고 N을 첨가하여서 주조 되는 온도 구간에서 TiN 석출물을 생성하여서 TiN Pinning 효과를 이용하여 등축정 조직을 미세하게 만들어 근원적으로 조대한 밴드조직 형성을 억제할 수 있다.In order to solve this problem, TiN precipitates are generated in the temperature range cast by adding Ti and high N, thereby making the equiaxed crystal structure fine using the TiN pinning effect, thereby fundamentally suppressing coarse band structure formation.
종래 강의 조성, 압연조건, 소둔조건을 적정화하여 특유의 집합조직이 발달 되도록 제어하여 내리징성을 향상시킨 페라이트계 스테인리스 강판 및 제조방법에 대해서는 "면내이방성이 작고 내 리징성이 우수한 페라이트 계 스테인레스강판 및 그 제조방법(공개특허 10-1997-0015775)" 등에서 구체적으로 공지되어 있다.The ferritic stainless steel sheet and the manufacturing method of the conventional steel composition, rolling conditions, annealing conditions by improving the specific texture of the structure by improving the aging resistance, "Ferritic stainless steel sheet with small in-plane anisotropy and excellent ridging resistance and It is known in detail in the manufacturing method (Patent Publication 10-1997-0015775).
그러나, 오스테나이트 변태 구간을 갖는 페라이트계 스테인리스강은 열간압연 후 오스테나이트 조직 분해를 위한 상소둔 열처리가 필수적이나 이를 위하여 비용이 소모되어 생산비용을 상승시키고, 제조시간이 증대되는 문제점을 가지고 있었으며, 제조시간이 증가함에 따라, 생산성이 저하되는 문제점을 가지고 있었다.However, ferritic stainless steel having an austenite transformation section is required to be subjected to annealing heat treatment for decomposing austenite structure after hot rolling, but for this purpose, the production cost is increased and manufacturing time is increased. As the manufacturing time increases, there is a problem that the productivity is lowered.
또한, Scab 결함 및 입계부식을 방지할 수 있는 구체적인 성분들의 임계범위를 명시하지 못하였다.In addition, it did not specify the critical range of specific components that can prevent Scab defects and intergranular corrosion.
(특허문헌 0001) 공개특허 10-1997-0015775 (1997. 04. 28.)(Patent Document 0001) Published Patent 10-1997-0015775 (1997. 04. 28.)
본 발명은 상기와 같은 문제점을 해결하기 위해 안출된 것으로, 내리징성 향상에 영향을 미치는 합금성분의 함량을 최적화하여, 주조 조직을 미세화하고, Scab 결함 및 입계부식 결함이 발생되는 것을 방지할 수 있는 표면품질 및 내리징성이 우수한 페라이트계 스테인리스강을 제공한다.The present invention has been made to solve the above problems, by optimizing the content of the alloying components affecting the improvement of the leachability, it is possible to refine the casting structure, and prevent the occurrence of Scab defects and grain boundary corrosion defects Provides ferritic stainless steel with excellent surface quality and leachability.
본 발명의 일 실시예에 따른, 표면품질 및 내리징성이 우수한 페라이트계 스테인리스강은 중량%로, Cr: 12.5~18.5%, C: 0.001~0.025%, N: 0.01~0.05%, Ti: 0.05~0.4%, Al: 0.01~0.2%, Si: 0.01~0.5%, Mn: 0.01~0.5%, Cu: 0.01~0.5%, Mo: 0.001~0.5%, Nb: 0.01~0.5%, Ni: 0.01~0.5%, 나머지 Fe 및 불순물을 포함하며, 하기의 식 (1)을 만족하는 것을 특징으로 한다.According to one embodiment of the present invention, the ferritic stainless steel having excellent surface quality and lowering property is in weight%, Cr: 12.5-18.5%, C: 0.001-0.025%, N: 0.01-0.05%, Ti: 0.05- 0.4%, Al: 0.01-0.2%, Si: 0.01-0.5%, Mn: 0.01-0.5%, Cu: 0.01-0.5%, Mo: 0.001-0.5%, Nb: 0.01-0.5%, Ni: 0.01-0.5 %, The remaining Fe and impurities, and characterized by satisfying the following formula (1).
TiN석출량(Vol%) > 1.1×10-3 -------------------------- (1)TiN precipitation (Vol%)> 1.1 × 10 -3 -------------------------- (1)
상기 식 (1)에서 TiN석출량(Vol%) = 47N + 102Ti × N + 10C + 0.39이며, N, Ti 및 C는 각 성분의 함량(중량%)을 의미함.In the formula (1), TiN precipitation amount (Vol%) = 47N + 102Ti × N + 10C + 0.39, N, Ti and C means the content (wt%) of each component.
상기 스테인리스강은, 하기의 식 (2)를 만족하는 것을 특징으로 할 수 있다.The stainless steel can be characterized by satisfying the following formula (2).
TiN정출온도(℃) ≤ 1,520 ------------------------------ (2)TiN crystallization temperature (℃) ≤ 1,520 ------------------------------ (2)
상기 식 (2)에서 TiN정출온도(℃) = [-19,755/{logN-(7.78+0.07Ti-logTi+0.045Cr)}]-275 이며, N, Ti 및 Cr는 각 성분의 함량(중량%)을 의미함.In formula (2), TiN crystallization temperature (° C.) = [-19,755 / {logN- (7.78 + 0.07Ti-logTi + 0.045Cr)}]-275, and N, Ti and Cr are the contents of each component (wt% ).
상기 스테인리스강은, 질량비로 N/C 비가 1.5 이상 6 이하인 것이 바람직하다.It is preferable that N / C ratio is 1.5 or more and 6 or less by mass ratio of the said stainless steel.
상기 스테인리스강은, 하기의 식 (3)를 만족하는 것을 특징으로 할 수 있다.The stainless steel can be characterized by satisfying the following formula (3).
Ti / (C+N) > 5.0 ---------------------------------- (3)Ti / (C + N)> 5.0 ---------------------------------- (3)
상기 식 (3)에서 Ti, C 및 N은 각 성분의 함량(중량%)을 의미함.In the formula (3), Ti, C and N means the content (wt%) of each component.
상기 스테인리스강은, 주편 상태에서 등축정 조직의 결정립 직경은 2㎜ 이하인 것을 특징으로 할 수 있다.The stainless steel may be characterized in that the grain size of the equiaxed crystal structure in the cast state is 2 mm or less.
상기 스테인리스강은, 냉연강판 상태에서 리징 높이(Wt)가 11㎛ 미만인 것을 특징으로 할 수 있다.The stainless steel may be characterized in that the ridging height (Wt) in the cold rolled steel sheet state is less than 11㎛.
본 발명의 실시예에 따르면, Ti, C 및 N의 함량을 최적화하여 TiN석출량을 조절함으로써 내리징성을 향상시키고, 입계부식 결함이 발생되는 것을 최소화할 수 있는 효과가 있다.According to the embodiment of the present invention, by adjusting the amount of TiN precipitation by optimizing the content of Ti, C and N to improve the lagging properties, there is an effect that can minimize the generation of grain boundary corrosion defects.
또한, N, Ti 및 Cr의 함량을 최적화하여 TiN정출온도를 1,520℃ 미만으로 관리함으로써, Scab 결함 발생을 최소화하여 표면품질을 향상시킬 수 있는 효과가 있다.In addition, by optimizing the content of N, Ti and Cr to manage the TiN crystallization temperature below 1,520 ℃, there is an effect that can minimize the occurrence of Scab defects to improve the surface quality.
도 1은 내리징성을 향상시키기 위하여 TiN을 이용한 주조조직의 미세화를 설명하기 위한 도면이고, 1 is a view for explaining the miniaturization of the cast structure using TiN to improve the leachability;
도 2는 본 발명의 실시예에 따른 TiN 석출량의 임계값과 등축정 미세화(2㎜ 이하)의 상관관계를 보여주는 도면이며,2 is a view showing a correlation between the threshold value of TiN precipitation amount and the refined equiaxed crystal (2 mm or less) according to an embodiment of the present invention,
도 3은 도 2에서 도출된 최소 TiN의 임계값으로부터 등축정 미세화가 구현되는 Ti, N양의 범위를 도시한 그래프이고,FIG. 3 is a graph showing the range of Ti and N amounts in which equiaxed refinement is realized from the threshold value of the minimum TiN derived from FIG.
도 4는 본 발명의 실시예에 따른 TiN 정출온도의 임계값과 Scab 결함 발생의 상관관계를 보여주는 도면이며,4 is a view showing a correlation between the threshold value of TiN crystallization temperature and the occurrence of Scab defects according to an embodiment of the present invention,
도 5는 도 4에서 도출된 TiN 정출온도의 임계값으로부터 Scab 결함이 발생하지 않는 Ti, N양의 범위를 나타낸 그래프이고,FIG. 5 is a graph showing a range of Ti and N amounts in which Scab defects do not occur from the threshold value of TiN crystallization temperature derived from FIG. 4;
도 6은 본 발명의 실시예에 따른 Ti/(C+N)의 임계값과 HAPL 산세시 입계부식 결함의 상관관계를 보여주는 도면이며,6 is a view showing the correlation between the threshold value of Ti / (C + N) and grain boundary corrosion defects during HAPL pickling according to an embodiment of the present invention,
도 7은 도 6에서 도출된 Ti/(C+N)의 임계값으로부터 입계 부식이 발생하지 않는 Ti, N양의 범위를 나타낸 그래프이고,FIG. 7 is a graph showing a range of Ti and N amounts in which grain boundary corrosion does not occur from the threshold value of Ti / (C + N) derived from FIG. 6;
도 8은 Ti 및 N의 함량에 따른, Scab, 입계부식 및 등축정 미세화의 관계를 도시한 그래프이다.8 is a graph showing the relationship between Scab, grain boundary corrosion and equiaxed crystal refinement according to the content of Ti and N.
본 발명의 일 실시예에 따른, 표면품질 및 내리징성이 우수한 페라이트계 스테인리스강은 중량%로, Cr: 12.5~18.5%, C: 0.001~0.025%, N: 0.01~0.05%, Ti: 0.05~0.4%, Al: 0.01~0.2%, Si: 0.01~0.5%, Mn: 0.01~0.5%, Cu: 0.01~0.5%, Mo: 0.001~0.5%, Nb: 0.01~0.5%, Ni: 0.01~0.5%, 나머지 Fe 및 불순물을 포함하며, 하기의 식 (1)을 만족하는 것을 특징으로 한다.According to one embodiment of the present invention, the ferritic stainless steel having excellent surface quality and lowering property is in weight%, Cr: 12.5-18.5%, C: 0.001-0.025%, N: 0.01-0.05%, Ti: 0.05- 0.4%, Al: 0.01-0.2%, Si: 0.01-0.5%, Mn: 0.01-0.5%, Cu: 0.01-0.5%, Mo: 0.001-0.5%, Nb: 0.01-0.5%, Ni: 0.01-0.5 %, The remaining Fe and impurities, and characterized by satisfying the following formula (1).
TiN석출량(Vol%) > 1.1×10-3 -------------------------- (1)TiN precipitation (Vol%)> 1.1 × 10 -3 -------------------------- (1)
상기 식 (1)에서 TiN석출량(Vol%) = 47N + 102Ti × N + 10C + 0.39이며, N, Ti 및 C는 각 성분의 함량(중량%)을 의미함.In the formula (1), TiN precipitation amount (Vol%) = 47N + 102Ti × N + 10C + 0.39, N, Ti and C means the content (wt%) of each component.
이하, 첨부된 도면을 참조하여 본 발명의 실시예를 더욱 상세히 설명하기로 한다. 그러나 본 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다. Hereinafter, with reference to the accompanying drawings will be described an embodiment of the present invention in more detail. However, the present invention is not limited to the embodiments disclosed below, but will be implemented in various forms, and only the embodiments are intended to complete the disclosure of the present invention, and to those skilled in the art to the fullest extent. It is provided to inform you.
본 발명의 일 실시예에 따른, 표면품질 및 내리징성이 우수한 페라이트계 스테인리스강은 중량%로, Cr: 12.5~18.5%, C: 0.001~0.025%, N: 0.01~0.05%, Ti: 0.05~0.4%, Al: 0.01~0.2%, Si: 0.01~0.5%, Mn: 0.01~0.5%, Cu: 0.01~0.5%, Mo: 0.001~0.5%, Nb: 0.01~0.5%, Ni: 0.01~0.5%, 나머지 Fe 및 불순물로 이루어지는 것이 바람직하다.According to one embodiment of the present invention, the ferritic stainless steel having excellent surface quality and lowering property is in weight%, Cr: 12.5-18.5%, C: 0.001-0.025%, N: 0.01-0.05%, Ti: 0.05- 0.4%, Al: 0.01-0.2%, Si: 0.01-0.5%, Mn: 0.01-0.5%, Cu: 0.01-0.5%, Mo: 0.001-0.5%, Nb: 0.01-0.5%, Ni: 0.01-0.5 %, The remaining Fe and impurities.
이하, 본 발명에 따른 실시 예에서의 성분 함량의 수치 한정 이유에 대하여 설명하기로 한다. 이하에서는 특별한 언급이 없는 한 단위는 중량%이다.Hereinafter, the reason for numerical limitation of the component content in the embodiment according to the present invention will be described. In the following, the unit is% by weight unless otherwise specified.
Cr: 12.5~18.5%Cr: 12.5-18.5%
크롬(Cr)의 양은 12.5중량% 내지 18.5중량%인 것이 바람직하다.The amount of chromium (Cr) is preferably 12.5% by weight to 18.5% by weight.
왜냐하면, 크롬(Cr)은 강의 내식성을 향상시키기 위해 첨가하는 합금원소로 크롬(Cr)이 12.5중량% 미만으로 포함되는 경우에는, 페라이트계 스테인리스강의 내식성이 저하되고, 18.5중량%를 초과하여 포함되는 경우에는 제조단가 증가를 불필요하게 증가시키기 때문이다.Because chromium (Cr) is an alloying element added to improve the corrosion resistance of the steel, when chromium (Cr) is contained in less than 12.5% by weight, the corrosion resistance of the ferritic stainless steel is lowered, contained in excess of 18.5% by weight In this case, the manufacturing cost increases unnecessarily.
따라서, 본 발명에 따른 실시예에서 크롬(Cr)은 12.5~18.5중량%로 제한하는 것이 바람직하다.Therefore, chromium (Cr) in the embodiment according to the present invention is preferably limited to 12.5 ~ 18.5% by weight.
C: 0.001~0.025%C: 0.001-0.025%
탄소(C)의 양은 0.001중량% 내지 0.025중량%인 것이 바람직하다.The amount of carbon (C) is preferably 0.001% to 0.025% by weight.
왜냐하면, 탄소(C)는 강의 오스테나이트 안정화원소이기 때문에 오스테나이트 분율을 최대화하는 작용을 하기 때문에 제한이 필요하며, 탄소(C)는 고용강화 원소로서 0.025 중량%를 초과하는 경우 연신율을 저하시켜 제품의 가공성을 저하시키고, 내식성을 감소시키며, 0.001중량%를 미만인 경우 추가 정련 비용을 발생시키기 때문이다.Because carbon (C) is an austenite stabilizing element of steel, it needs to be limited because it acts to maximize the austenite fraction, and carbon (C) is a solid solution strengthening element, which reduces the elongation when the product exceeds 0.025% by weight. This is because the workability of the resin is lowered, the corrosion resistance is reduced, and when the amount is less than 0.001% by weight, additional refining costs are incurred.
이때, 상기 연신율은 페라이트계 스테인리스강의 냉연제품의 가공성을 알려 주는 품질특성 중 하나로서 널리 통용되는 용어이며, 상기 페라이트계 스테인리스강의 냉연제품을 1축 인장하였을 때 파단이 일어나는 순간까지 연신된 양을 초기 길이로 나눈 값으로부터 계산한다.In this case, the elongation is a term commonly used as one of quality characteristics indicating the processability of the cold rolled product of ferritic stainless steel, and the amount of elongation until the breakage occurs when the cold rolled product of the ferritic stainless steel is uniaxially tensioned. Calculate from length divided by length.
N: 0.01~0.05%N: 0.01 ~ 0.05%
질소(N)의 양은 0.01중량% 내지 0.05중량%인 것이 바람직하다.The amount of nitrogen (N) is preferably 0.01% by weight to 0.05% by weight.
왜냐하면, 질소(N)는 주조 및 응고시 티타늄(Ti)과 결합하여 티타늄 질화물(TiN)을 형성함으로써 슬라브의 미세조직을 미세화시키는 효과가 있는 중요한 원소로서 0.01중량% 이상으로 첨가하는 반면, 질소(N)가 0.05중량%를 초과하여 첨가되면 가공성을 저해시킬 뿐만 아니라 냉연제품의 스트레처 스트레인(Stretcher Strain)의 원인이 되기 때문이다.This is because nitrogen (N) is an important element having the effect of miniaturizing the microstructure of the slab by combining with titanium (Ti) to form titanium nitride (TiN) during casting and solidification. This is because when N) is added in excess of 0.05% by weight, it not only impairs workability but also causes stretcher strain of cold-rolled products.
좀더 구체적인 질소(N)의 범위는 티타늄(Ti)의 양에 의해 영향을 받으며 추후에 구체적으로 다시 기술한다.The more specific range of nitrogen (N) is influenced by the amount of titanium (Ti) and will be described later in detail.
Ti: 0.05~0.40% Ti: 0.05-0.40%
티타늄(Ti)의 양은 0.05중량% 내지 0.40중량%인 것이 바람직하다.The amount of titanium (Ti) is preferably 0.05% to 0.40% by weight.
왜냐하면, 티타늄(Ti)은 주편 조직의 등축정 입도를 미세화시키는 중요한 역할을 하는 원소로서, 탄소(C), 질소(N) 등을 고정시켜 가공성을 향상시키는 역할을 하므로 0.05중량% 이상으로 첨가한다.Because titanium (Ti) is an element that plays an important role in miniaturizing the equiaxed grain size of the cast steel structure, it is added to 0.05% by weight or more since it plays a role of improving workability by fixing carbon (C), nitrogen (N), etc. .
그러나, 티타늄(Ti)이 0.40중량%을 초과하여 첨가되는 경우, 스테인리스강의 제조단가 증가 및 주편 및 열연 제품 표면에 Scab 결함을 발생시키며 또한 냉연제품의 슬리브(sliver) 결함의 원인이 되기 때문이다.However, when titanium (Ti) is added in excess of 0.40% by weight, the manufacturing cost of stainless steel is increased and Scab defects occur on cast and hot rolled product surfaces and also cause sleeve defects in cold rolled products.
좀더 구체적인 티타늄(Ti)의 범위는 질소(N)의 함량에 의해 영향을 받으며 추후에 구체적으로 다시 기술한다.The more specific range of titanium (Ti) is influenced by the content of nitrogen (N) and will be described later in detail.
Al: 0.01~0.2%Al: 0.01 ~ 0.2%
알루미늄(Al)의 양은 0.01중량% 내지 0.2중량%인 것이 바람직하다.The amount of aluminum (Al) is preferably 0.01% by weight to 0.2% by weight.
왜냐하면, 알루미늄(Al)은 제강 시 탈산제 역할로 첨가되는 원소로서, 0.01중량% 이상으로 함유되는 것이 바람직하나, 알루미늄(Al)이 0.2중량%를 초과하여 첨가되는 경우에는 비금속 개재물로 존재하여 냉연스트립의 슬리브 결함의 원인이 되며 용접성 저하를 일으키기 때문이다.Because aluminum (Al) is an element added as a deoxidizer during steelmaking, it is preferably contained at 0.01% by weight or more, but when aluminum (Al) is added in excess of 0.2% by weight, it is present as a non-metallic inclusion and is a cold rolled strip. This is a cause of sleeve defects and causes a decrease in weldability.
Si: 0.01~0.5%Si: 0.01 ~ 0.5%
실리콘(Si)의 양은 0.01중량% 내지 0.5중량%인 것이 바람직하다.The amount of silicon (Si) is preferably 0.01% by weight to 0.5% by weight.
왜냐하면, 실리콘(Si)은 제강시 탈산제 역할로 첨가되는 원소이며, 페라이트 안정화 원소이므로 0.01중량% 이상으로 함유되는 것이 좋다.Because silicon (Si) is an element added as a deoxidizer during steelmaking, and is a ferrite stabilizing element, it is preferable to be contained in 0.01% by weight or more.
반면, 0.5중량%를 초과하여 다량 함유되면 재질의 경화를 일으켜서 연성을 저하되는 문제점을 갖기 때문에 0.5중량% 이하로 제한하는 것이 바람직하다.On the other hand, if it contains a large amount in excess of 0.5% by weight, it is preferable to limit the content to 0.5% by weight or less because it causes a problem of hardening of the material and lowering the ductility.
Mn: 0.01~0.5%Mn: 0.01 ~ 0.5%
망간(Mn)의 양은 0.01중량% 내지 0.5중량%인 것이 바람직하다. The amount of manganese (Mn) is preferably 0.01% by weight to 0.5% by weight.
왜냐하면, 망간(Mn)은 강중에 불가피하게 포함되는 불순물이지만 다량으로 포함될 경우 용접시 망간계 퓸(fume)이 발생하며 MnS상 석출의 원인이 되어 연신율을 저하시키기 때문이다.This is because manganese (Mn) is an impurity inevitably included in steel, but when it is included in a large amount, manganese fume is generated during welding and causes evaporation of MnS phase, thereby lowering elongation.
Cu: 0.01~0.5%Cu: 0.01 ~ 0.5%
구리(Cu)의 양은 0.01중량% 내지 0.5중량%인 것이 바람직하다.The amount of copper (Cu) is preferably 0.01% by weight to 0.5% by weight.
왜냐하면, 구리(Cu)는 강중에 불가피하게 포함되는 불순물로서, 0.01% 이상 첨가함으로써 내식성이 개선되는 효과를 갖지만, 0.5%를 초과하여 첨가하면 가공성이 저하되는 문제점을 가지고 있기 때문이다.This is because copper (Cu) is an impurity that is inevitably included in steel and has an effect of improving corrosion resistance by adding 0.01% or more, but has a problem of deterioration in workability when added in excess of 0.5%.
Mo: 0.001~0.5%Mo: 0.001-0.5%
몰리브덴(Mo)의 양은 0.001중량% 내지 0.5중량%인 것이 바람직하다.The amount of molybdenum (Mo) is preferably 0.001% by weight to 0.5% by weight.
왜냐하면, 몰리브덴(Mo)는 0.001% 이상이 첨가되어 내식성, 특히 내공식성을 향상시키는 효과가 있으나, 고가의 원소로 0.5%를 초과하여 첨가되는 경우 제조 원가를 상승시키고, 가공성을 저하시키는 문제점을 가지고 있기 때문이다.Because molybdenum (Mo) is added to 0.001% or more has the effect of improving the corrosion resistance, in particular, corrosion resistance, but when added in excess of 0.5% as an expensive element has a problem of increasing the manufacturing cost, lowering the workability Because there is.
Nb: 0.001~0.5%Nb: 0.001-0.5%
나이오븀(Nb)의 양은 0.001중량% 내지 0.5중량%인 것이 바람직하다.The amount of niobium (Nb) is preferably 0.001% by weight to 0.5% by weight.
왜냐하면, 나이오븀(Nb)는 고가의 원소로서, 0.001% 이상이 첨가되어 고용 탄소(C), 질소(N)를 탄질화물로 석출시켜 내식성 개선 및 성형성 향상에 효과를 갖는 반면, 0.5%를 초과하여 다량 첨가하게 되면 개재물에 의한 외관 불량 및 인성이 저하되며, 제조 원가를 상승시키는 문제점을 가지고 있기 때문이다.This is because niobium (Nb) is an expensive element, and 0.001% or more is added to precipitate solid carbon (C) and nitrogen (N) as carbonitrides, thereby improving corrosion resistance and formability, while 0.5% If the amount is added in excess, the appearance defects and toughness due to inclusions are lowered, and the manufacturing cost is increased.
Ni: 0.01~0.5%Ni: 0.01 ~ 0.5%
니켈(Ni)의 양은 0.01중량% 내지 0.5중량%인 것이 바람직하다.The amount of nickel (Ni) is preferably 0.01% by weight to 0.5% by weight.
왜냐하면, 니켈(Ni)은 강중에 불가피하게 포함되는 불순물로서, 0.01%이상이 첨가되어 내식성을 향상시키는 효과를 갖는 반면, 다량 첨가하게 되면 오스테나이트 안정화도가 증가하고 고가의 원소로서, 제조 원가를 상승시키는 문제점을 가지고 있기 때문이다.Because nickel (Ni) is an impurity that is inevitably included in steel, the addition of 0.01% or more has the effect of improving the corrosion resistance, whereas when added in large amounts, austenite stabilization increases and as an expensive element, This is because there is a problem to raise.
전술한 원소들을 제외한 나머지 원소는 철(Fe) 및 기타 불가피한 불순물로 이루어진다.Except for the aforementioned elements, the other elements are made of iron (Fe) and other unavoidable impurities.
일반적으로, 페라이트계 스테인리스강에서 리징을 유발하는 원인으로는 주조 시에 형성되는 조대한 결정립이 열연시에 제거되지 않고 압연되는 것을 들 수 있는데, 본 발명에 따른 일 실시형태에 따르면, 주조시에 형성되는 TiN 화합물에 의하여 미세한 등축정이 형성됨으로써 미세한 조직을 가지는 페라이트계 스테인리스강 슬라브를 제조하여 내리징성이 우수한 페라이트계 스테인리스강의 제조가 가능하다.In general, the cause of leasing in ferritic stainless steels is that the coarse grains formed during casting are rolled without being removed during hot rolling. According to one embodiment of the present invention, By forming a fine equiaxed crystal by the TiN compound formed, it is possible to manufacture a ferritic stainless steel slab having a fine structure to produce a ferritic stainless steel having excellent dropping properties.
따라서, 본 발명의 일 실시예에 따른 표면품질 및 내리징성이 우수한 페라이트계 스테인리스강은 등축정 미세화(2㎜ 이하)를 만족하기 위해서는 등축정 미세화에 영향을 미치는 TiN의 석출량을 보다 한정적으로 제한하는 것이 바람직하다.Therefore, in order to satisfy the equiaxed crystal refinement (2 mm or less), the ferritic stainless steel having excellent surface quality and leachability according to an embodiment of the present invention is more limited in the amount of TiN that affects the refinement of the equiaxed crystal. It is desirable to.
예를 들어, 하기의 식 (1) 및 (2)를 만족하는 성분계로 주조하는 것이 바람직하다.For example, it is preferable to cast by the component system which satisfy | fills following formula (1) and (2).
TiN석출량(Vol%) > 1.1×10-3 -------------------------- (1)TiN precipitation (Vol%)> 1.1 × 10 -3 -------------------------- (1)
이때, 상기 식 (1)에서 TiN석출량(Vol%) = 47N + 102Ti × N + 10C + 0.39이며, N, Ti 및 C는 각 성분의 함량(중량%)을 의미함.At this time, in the formula (1) TiN precipitation amount (Vol%) = 47N + 102Ti × N + 10C + 0.39, N, Ti and C means the content (wt%) of each component.
TiN정출온도(℃) > 1,520 ------------------------------ (2)TiN crystallization temperature (℃)> 1,520 ------------------------------ (2)
이때, 상기 식 (2)에서 TiN정출온도(℃) = [-19,755/{logN-(7.78+0.07Ti-logTi+0.045Cr)}]-275 이며, N, Ti 및 Cr는 각 성분의 함량(중량%)을 의미함.At this time, in the formula (2) TiN crystallization temperature (℃) = [-19,755 / {logN- (7.78 + 0.07Ti-logTi + 0.045Cr)}]-275, N, Ti and Cr are the content of each component ( Weight percent).
한편, 본 발명에서는 N/C 비를 1.5 이상 6 이하로 관리하는 것이 바람직하다.In addition, in this invention, it is preferable to manage N / C ratio to 1.5 or more and 6 or less.
왜냐하면, N의 함량이 상대적으로 많아야 함은 주조 시 조직을 미세하게 만들 수 있는 TiN 형성을 위하여 필수적이며, N이 일정함량 투입되더라도 모든 N이 TiN 화합물을 형성하는 것은 자연적인 거동 상 어려운 일이므로 상기의 Ti/N 비의 범주에 따라 Ti를 투입하여야 하기 때문이다.Because, the relatively high content of N is essential for the formation of TiN, which can make the structure fine during casting, and even if N is added in a certain amount, it is difficult for all N to form TiN compounds because of its natural behavior. This is because Ti must be added according to the range of Ti / N ratio of.
또한, 본 발명의 실시예에 따른 페라이트계 스테인리스강에서는 주조 후 상온에 이르기까지 오스테나이트 상변태를 포함하지 않는 것을 특징으로 한다.In addition, the ferritic stainless steel according to the embodiment of the present invention is characterized in that it does not include austenite phase transformation until the room temperature after casting.
왜냐하면, 오스테나이트 상변태를 포함하면, 특히 통상의 STS 430강과 같이 열간압연 구간에서 오스테나이트 상변태를 포함하면 열간압연 후에, 오스테나이트 상 분해 및 Cr 결핍층 해소를 위한 상소둔 열처리가 필수적이기 때문에 생산비용 및 생산시간이 증가되는 문제점을 가지고 있기 때문이다.This is because, if the austenite phase transformation is included, especially if the austenitic phase transformation is included in the hot rolling section, such as in the conventional STS 430 steel, after the hot rolling, the annealing phase for thermal decomposition of the austenite phase decomposition and Cr deficiency layer is essential, And because the production time is increased.
따라서, 본 발명에서는 완전 폐라이트 성분계로 상소둔 열처리 과정을 생략하고, 연속소둔 열처리를 실시함에 따라. 생산비용을 절감하고, 생산시간을 단축시켜 생산성을 향상시킬 수 있는 효과가 있다.Therefore, the present invention omits the annealing heat treatment process as a complete wastelite component system, and thus performs continuous annealing heat treatment. There is an effect that can reduce the production cost, improve the productivity by shortening the production time.
전술한 바와 같이, 페라이트계 스테인리스강의 대표적인 강종인 STS 430강의 내리징성이 여타 페라이트계 스테인리스강에 비하여 상대적으로 우수한 것은 열간압연 구간에서 오스테나이트 상변태를 포함함으로써 주조 시 형성되는 조대한 조직을 일부 제거함으로써 가능한 반면, 본 발명에서는 오스테나이트 상변태를 포함하지 않는 성분계임에도 불구하고 상기의 성분계로 주조하여 미세한 주조조직을 형성함으로써 우수한 내리징성을 얻을 수 있다.As described above, the lowering property of the STS 430 steel, which is a representative steel of ferritic stainless steel, is relatively superior to other ferritic stainless steels by removing some of the coarse texture formed during casting by including austenite phase transformation in the hot rolling section. On the other hand, in the present invention, despite being a component system that does not contain austenite phase transformation, it is possible to obtain excellent leachability by casting to the component system to form a fine cast structure.
이때, 오스테나이트 상의 형성 여부는 소재를 900℃ ~ 1,100℃ 범위에서 가열 후 에칭하여 미세조직을 관찰하여 판별할 수 있으며, 재료공학에서 통용되는 기준에 의거하여 판별할 수 있으므로 상세한 기준은 생략한다.At this time, whether the austenite phase is formed can be determined by observing the microstructure by heating and etching the material in the range of 900 ℃ ~ 1,100 ℃, and can be determined based on the standard commonly used in materials engineering, so detailed criteria are omitted.
이하에서는 본 발명에 따른 실시예 및 비교예에 대하여 설명한다. Hereinafter, examples and comparative examples according to the present invention will be described.
단, 하기 실시예들은 본 발명의 바람직한 일 실시예일뿐 본 발명의 권리 범위가 하기 실시예들에 의하여 제한되는 것은 아니다.However, the following examples are only preferred embodiments of the present invention and the scope of the present invention is not limited by the following embodiments.
비고Remarks 합금alloy 합금성분(중량%)Alloy component (wt%)
CrCr SiSi AlAl MnMn NiNi CuCu PP SS CC NN TiTi
비교AComparison A #1#One 16.3416.34 0.1740.174 0.0240.024 0.1230.123 0.080.08 0.0180.018 0.0210.021 0.0010.001 0.00680.0068 0.00830.0083 0.170.17
#2#2 16.2416.24 0.1820.182 0.0430.043 0.1560.156 0.050.05 0.0150.015 0.0230.023 0.00090.0009 0.00690.0069 0.00430.0043 0.170.17
#3# 3 16.4116.41 0.1810.181 0.0330.033 0.1420.142 0.060.06 0.0140.014 0.02230.0223 0.00080.0008 0.00720.0072 0.00840.0084 0.20.2
#4#4 16.5216.52 0.1760.176 0.0510.051 0.1360.136 0.070.07 0.0210.021 0.0210.021 0.00090.0009 0.00720.0072 0.00730.0073 0.190.19
#5# 5 16.916.9 0.1770.177 0.030.03 0.1490.149 0.070.07 0.0110.011 0.02340.0234 0.0010.001 0.00730.0073 0.00580.0058 0.2450.245
비교BComparison B #6# 6 16.0316.03 0.1720.172 0.0890.089 0.2570.257 0.160.16 0.0710.071 0.02390.0239 0.00080.0008 0.00830.0083 0.01620.0162 0.2370.237
#7# 7 16.2216.22 0.1890.189 0.0310.031 0.1010.101 0.070.07 0.0230.023 0.01850.0185 0.00130.0013 0.00430.0043 0.01960.0196 0.1740.174
#8#8 16.1216.12 0.1910.191 0.0770.077 0.1150.115 0.070.07 0.0210.021 0.02020.0202 0.00080.0008 0.00420.0042 0.01720.0172 0.2390.239
#9# 9 16.216.2 0.190.19 0.0570.057 0.0980.098 0.060.06 0.0310.031 0.02130.0213 0.00080.0008 0.00770.0077 0.01970.0197 0.2130.213
#10# 10 16.116.1 0.1740.174 0.0370.037 0.0920.092 0.070.07 0.0250.025 0.02170.0217 0.00080.0008 0.00740.0074 0.01870.0187 0.1930.193
#11# 11 16.2616.26 0.0870.087 0.0480.048 0.1810.181 0.190.19 0.0920.092 0.02480.0248 0.00080.0008 0.00960.0096 0.02170.0217 0.1690.169
#12# 12 16.3616.36 0.0810.081 0.1070.107 0.2220.222 0.170.17 0.0780.078 0.02440.0244 0.00130.0013 0.00720.0072 0.01720.0172 0.2220.222
#13# 13 16.1416.14 0.1060.106 0.0490.049 0.2050.205 0.180.18 0.0850.085 0.02570.0257 0.00140.0014 0.00680.0068 0.02080.0208 0.1980.198
#14# 14 16.3116.31 0.2470.247 0.020.02 0.2070.207 0.130.13 0.0690.069 0.02120.0212 0.00090.0009 0.00650.0065 0.02030.0203 0.1820.182
#15# 15 16.0216.02 0.1660.166 0.0630.063 0.1770.177 0.150.15 0.0730.073 0.01940.0194 0.00080.0008 0.00460.0046 0.02070.0207 0.2020.202
비교CComparison C #16# 16 16.0316.03 0.1660.166 0.0440.044 0.0810.081 0.110.11 0.0270.027 0.01950.0195 0.0010.001 0.00680.0068 0.02130.0213 0.1180.118
#17# 17 16.216.2 0.20.2 0.0330.033 0.1150.115 0.110.11 0.0260.026 0.01630.0163 0.00080.0008 0.00610.0061 0.01940.0194 0.1170.117
#18# 18 16.0316.03 0.1830.183 0.0380.038 0.1360.136 0.10.1 0.0280.028 0.0150.015 0.00060.0006 0.00630.0063 0.02180.0218 0.1230.123
발명invent #19# 19 16.2716.27 0.2560.256 0.0270.027 0.1830.183 0.110.11 0.0240.024 0.02240.0224 0.00090.0009 0.00670.0067 0.0180.018 0.1790.179
#20# 20 16.3316.33 0.240.24 0.030.03 0.1880.188 0.120.12 0.020.02 0.02060.0206 0.0010.001 0.0070.007 0.02180.0218 0.1490.149
#21# 21 16.2516.25 0.2970.297 0.0360.036 0.1810.181 0.120.12 0.0210.021 0.01860.0186 0.00090.0009 0.00690.0069 0.01960.0196 0.1760.176
#22# 22 16.116.1 0.1810.181 0.0480.048 0.1310.131 0.080.08 0.0130.013 0.02350.0235 0.00090.0009 0.0070.007 0.01690.0169 0.1750.175
#23# 23 16.2316.23 0.1710.171 0.10.1 0.1350.135 0.080.08 0.0090.009 0.02310.0231 0.00110.0011 0.00610.0061 0.01910.0191 0.1910.191
#24# 24 16.1816.18 0.1570.157 0.0330.033 0.1250.125 0.080.08 0.0070.007 0.02170.0217 0.0010.001 0.00650.0065 0.01710.0171 0.1720.172
#25# 25 16.416.4 0.1760.176 0.0360.036 0.1590.159 0.090.09 0.0230.023 0.01820.0182 0.00050.0005 0.00740.0074 0.01460.0146 0.1430.143
#26# 26 16.2816.28 0.1890.189 0.0410.041 0.1710.171 0.090.09 0.0210.021 0.01920.0192 0.00050.0005 0.00710.0071 0.0150.015 0.160.16
#27# 27 16.2616.26 0.1760.176 0.0480.048 0.170.17 0.090.09 0.0190.019 0.0230.023 0.00050.0005 0.00730.0073 0.01490.0149 0.1820.182
#28# 28 16.216.2 0.2060.206 0.030.03 0.1670.167 0.090.09 0.020.02 0.02560.0256 0.00050.0005 0.00680.0068 0.01380.0138 0.1820.182
#29# 29 16.2716.27 0.1790.179 0.0390.039 0.1070.107 0.070.07 0.0280.028 0.0180.018 0.00120.0012 0.00550.0055 0.01290.0129 0.1720.172
#30# 30 16.0816.08 0.170.17 0.0520.052 0.1070.107 0.070.07 0.0250.025 0.01590.0159 0.00120.0012 0.00440.0044 0.01210.0121 0.1750.175
#31# 31 16.1716.17 0.1720.172 0.070.07 0.1010.101 0.070.07 0.0210.021 0.01650.0165 0.00110.0011 0.00530.0053 0.0140.014 0.1710.171
#32# 32 16.4716.47 0.1340.134 0.040.04 0.1270.127 0.070.07 0.0150.015 0.02590.0259 0.00110.0011 0.00630.0063 0.01260.0126 0.1810.181
#33# 33 16.2216.22 0.1780.178 0.0740.074 0.1350.135 0.160.16 0.0190.019 0.02410.0241 0.0010.001 0.00620.0062 0.01030.0103 0.180.18
#34# 34 16.3216.32 0.20.2 0.0350.035 0.1550.155 0.070.07 0.0120.012 0.02650.0265 0.00110.0011 0.00540.0054 0.01150.0115 0.1610.161
표 1은 본 발명의 일 실시예에 따라 제조된, 표면품질 및 내리징성이 우수한 페라이트계 스테인리스강의 다양한 실시예들 및 비교예들의 합금성분을 나타낸 표이다.Table 1 is a table showing the alloying components of various embodiments and comparative examples of the ferritic stainless steel having excellent surface quality and leachability produced according to an embodiment of the present invention.
표 1에서 본 발명의 다양한 실시예들은 Ti, N, C의 함량을 제어한 것으로, 상기 실시예들 및 비교예들을 진공용해하여 그 성분을 확인하여 나타내었다.In Table 1, various embodiments of the present invention control the contents of Ti, N, and C. The examples and comparative examples are shown by confirming their components by vacuum dissolving.
본 발명에서는 상기 표 1의 조성범위를 따르는 실시예들 및 비교예들을 연속주조하여 주편을 생산하고, 생산된 주편을 압연기를 이용하여 조압연기 및 연속 마무리 압연을 실시하여 페라이트계 스테인리스 열연강판을 제조하고, 연속소둔 및 산세한 후 냉간압연 및 냉연소둔을 실시하여 냉연강판으로, 최종 페라이트계 스테인리스강을 제조하였다.In the present invention, by continuously casting the Examples and Comparative Examples according to the composition range of Table 1 to produce a cast, and the produced cast is subjected to rough rolling mill and continuous finish rolling using a rolling mill to produce a ferritic stainless steel hot rolled steel sheet After the continuous annealing and pickling, cold rolling and cold annealing were performed to produce a final ferritic stainless steel.
비고Remarks 합금alloy TiN석출량(Vol%×103)TiN precipitation (Vol% × 10 3 ) TiN정출온도(℃)TiN crystallization temperature (℃) Ti/(C+N)Ti / (C + N) 등축정미세화 여부Isometric is refined? Scab 미발생 여부No Scab 입계부식 미발생 여부No intergranular corrosion 리징등급Leasing Class
비교AComparison A #1#One 0.990.99 14631463 11.311.3 XX OO OO 22
#2#2 0.690.69 14211421 15.215.2 XX OO OO 22
#3# 3 0.980.98 14741474 12.812.8 XX OO OO 22
#4#4 0.950.95 14611461 13.113.1 XX OO OO 22
#5# 5 0.860.86 14591459 18.718.7 XX OO OO 22
비교BComparison B #6# 6 1.581.58 15341534 9.79.7 OO XX OO 1One
#7# 7 1.741.74 15251525 7.37.3 OO XX OO 1One
#8#8 1.651.65 15381538 11.211.2 OO XX OO 1One
#9# 9 1.791.79 15391539 7.87.8 OO XX OO 1One
#10# 10 1.711.71 15291529 7.47.4 OO XX OO 1One
#11# 11 1.851.85 15301530 5.45.4 OO XX OO 1One
#12# 12 1.651.65 15311531 9.19.1 OO XX OO 1One
#13# 13 1.841.84 15381538 7.27.2 OO XX OO 1One
#14# 14 1.81.8 15301530 6.86.8 OO XX OO 1One
#15# 15 1.841.84 15401540 88 OO XX OO 1One
비교CComparison C #16# 16 1.661.66 15051505 4.24.2 OO OO XX 1One
#17# 17 1.561.56 14971497 4.64.6 OO OO XX 1One
#18# 18 1.741.74 15101510 4.44.4 OO OO XX 1One
발명invent #19# 19 1.641.64 15101510 7.27.2 OO OO OO 1One
#20# 20 1.811.81 15111511 5.25.2 OO OO OO 1One
#21# 21 1.741.74 15161516 6.66.6 OO OO OO 1One
#22# 22 1.571.57 15151515 7.37.3 OO OO OO 1One
#23# 23 1.731.73 15191519 7.67.6 OO OO OO 1One
#24# 24 1.581.58 15151515 7.37.3 OO OO OO 1One
#25# 25 1.371.37 14901490 6.56.5 OO OO OO 1One
#26# 26 1.431.43 15001500 7.27.2 OO OO OO 1One
#27# 27 1.451.45 15081508 8.28.2 OO OO OO 1One
#28# 28 1.381.38 15031503 8.88.8 OO OO OO 1One
#29# 29 1.311.31 14941494 9.39.3 OO OO OO 1One
#30# 30 1.261.26 14921492 10.610.6 OO OO OO 1One
#31# 31 1.381.38 15001500 8.98.9 OO OO OO 1One
#32# 32 1.31.3 14951495 9.69.6 OO OO OO 1One
#33# 33 1.151.15 14821482 10.910.9 OO OO OO 1One
#34# 34 1.21.2 14821482 9.59.5 OO OO OO 1One
표 2는 상기 표 1의 조성을 갖는 다양한 실시예 및 비교예의 Ti/N 및 N/C의 비와 각각의 최종 페라이트 스테인리스강에 대하여 리징 등급을 확인한 결과를 나타낸 표이다.Table 2 is a table showing the results of confirming the ratio of Ti / N and N / C of the various examples and comparative examples having the composition of Table 1 and the leasing grade for each of the final ferritic stainless steel.
이때, 내리징성을 대표하는 리징 등급은 냉연강판을 15% 인장 후 측정한 리징 높이 등급(Wt 기준)으로 1등급은 11㎛ 미만, 2등급은 11㎛~14㎛, 3등급은 14㎛~18㎛, 4등급은 18㎛ 이상을 나타내고, 여기서 1등급이 본 발명에서 목표로 하는 범위에 해당한다. In this case, the ridging grade representing the lowering property is the ridging height grade (Wt basis) measured after 15% tension of the cold rolled steel sheet, and the 1st grade is less than 11㎛, the 2nd grade is 11㎛ ~ 14㎛, and the 3rd grade is 14㎛-18 The micrometer and grade 4 represent 18 micrometers or more, where a grade 1 corresponds to the range aimed by this invention.
도 2a는 본 발명의 실시예에 따른 TiN 석출량의 임계값과 등축정 미세화(2㎜ 이하)의 상관관계를 보여주는 도면이며, 도 2b는 도 2a에서 도출된 최소 TiN의 임계값으로부터 등축정 미세화가 구현되는 Ti, N양의 범위를 도시한 그래프이다.2A is a view showing a correlation between the threshold of TiN precipitation amount and the refinement of equiaxed crystals (2 mm or less) according to an embodiment of the present invention, and FIG. 2B illustrates the refinement of equiaxed crystals from the threshold value of the minimum TiN derived from FIG. 2A. Is a graph showing the range of Ti and N amounts to be implemented.
표 1, 2 및 도 2에 나타난 바와 같이, 비교예 1~5로 구성된 비교A군은 Ti/N이 5 내지 20을 만족하지 못하고, N/C이 1.5 내지 6을 만족하지 못함을 알 수 있다.As shown in Table 1, 2 and Figure 2, Comparative A group consisting of Comparative Examples 1 to 5 it can be seen that Ti / N does not satisfy 5 to 20, N / C does not satisfy 1.5 to 6 .
이에, TiN 석출량이 1.1×10-3(vol%) 미만으로 나타나 상기 식 (1)을 만족시키지 못하여 등축정의 결정립 크기가 2㎜를 초과하여 등축정 미세화가 이루어지지 않아, 리징 등급이 2등급으로 나타나 본 발명의 목표값을 만족시키지 못함을 알 수 있다.Therefore, TiN precipitation amount was less than 1.1 × 10 −3 (vol%), which did not satisfy Equation (1), and the grain size of the equiaxed crystals exceeded 2 mm, resulting in no refinement of equiaxed crystals. It can be seen that it does not meet the target value of the present invention.
도 3a는 본 발명의 실시예에 따른 TiN 정출온도의 임계값과 Scab 결함 발생의 상관관계를 보여주는 도면이며, 도 3b는 도 3a에서 도출된 TiN 정출온도의 임계값으로부터 Scab 결함이 발생하지 않는 Ti, N양의 범위를 나타낸 그래프이다.3A is a view showing a correlation between the threshold value of TiN crystallization temperature and the occurrence of Scab defects according to an embodiment of the present invention, and FIG. 3B is a diagram in which a Scab defect does not occur from the threshold value of the TiN crystallization temperature derived from FIG. 3A. Is a graph showing the range of N amounts.
표 1, 2 및 도 3에 나타난 바와 같이, 비교예 6~15로 구성된 비교B 군은 본 발명의 실시예에 따른 Ti/N 및 N/C의 비를 만족하나, TiN의 정출 온도(℃)가 1520℃ 이상으로 상기 식 (2)를 만족하지 못함을 알 수 있다.As shown in Table 1, 2 and Figure 3, Comparative B group consisting of Comparative Examples 6 to 15 meets the ratio of Ti / N and N / C according to the embodiment of the present invention, the crystallization temperature (Ti) of TiN It can be seen that the formula (2) does not satisfy above 1520 ℃.
이에, Scab 결함이 발생되어 표면 품질을 저하됨을 확인할 수 있다.As a result, it may be confirmed that a Scab defect is generated to lower the surface quality.
도 4a는 본 발명의 실시예에 따른 Ti/(C+N)의 임계값과 HAPL 산세시 입계부식 결함의 상관관계를 보여주는 도면이며, 도 4b는 도 4a에서 도출된 Ti/(C+N)의 임계값으로부터 입계 부식이 발생하지 않는 Ti, N양의 범위를 나타낸 그래프이다.FIG. 4A illustrates a correlation between a threshold value of Ti / (C + N) and grain boundary corrosion defects during HAPL pickling according to an embodiment of the present invention, and FIG. 4B illustrates Ti / (C + N) derived from FIG. 4A. It is a graph which shows the range of Ti and N amount which grain boundary corrosion does not generate from the threshold value of.
표 1, 2 및 도 3에 나타난 바와 같이, 비교예 16~18로 구성된 비교C군은 본 발명의 실시예에 따른 Ti/N 및 N/C의 비뿐만 아니라, TiN의 정출 온도(℃)도 1,520℃ 이하로 관리되나, Ti / (C+N) 값이 5.0 미만으로 상기 식 (3)을 만족시키지 못함을 알 수 있다.As shown in Table 1, 2 and Figure 3, Comparative C group consisting of Comparative Examples 16-18 is not only the ratio of Ti / N and N / C according to the embodiment of the present invention, but also the crystallization temperature (° C) of TiN Although managed at 1,520 ° C. or less, it can be seen that the Ti / (C + N) value is less than 5.0, which does not satisfy the above formula (3).
이에 따라, 입계부식이 발생되어 품질이 저하됨을 알 수 있다.Accordingly, it can be seen that grain boundary corrosion occurs and the quality is degraded.
도 5는 Ti 및 N의 함량에 따른, Scab, 입계부식 및 등축정 미세화의 관계를 도시한 그래프이다.5 is a graph showing the relationship between Scab, grain boundary corrosion and equiaxed crystal refinement according to the content of Ti and N.
표 1, 2 및 도 5에 나타난 바와 같이, 본 발명의 실시예에 따른 조성범위를 만족하면서, 상기 식 (1) 내지 식 (3)을 동시에 만족시키는 경우, 주편 상태에서 등축정의 결정립 크기가 2㎜ 미만이으로 나타나 냉연강판 상태에서 리징 높이(Wt)가 11㎛ 미만으로 리징등급이 우수하고, Scab 및 입계부식 등 결함이 발생되는 것을 방지함으로써 표면 품질이 향상됨을 확인할 수 있다.As shown in Tables 1, 2 and 5, when satisfying the composition range according to the embodiment of the present invention, while satisfying the above formula (1) to formula (3) at the same time, the grain size of the equiaxed crystal in the cast state is 2 It appears that less than mm, the leaching height (Wt) in the cold-rolled steel sheet state is less than 11㎛ excellent leasing grade, and it is confirmed that the surface quality is improved by preventing defects such as Scab and grain boundary corrosion.
본 발명을 첨부 도면과 전술된 바람직한 실시예를 참조하여 설명하였으나, 본 발명은 그에 한정되지 않으며, 후술되는 특허청구범위에 의해 한정된다. 따라서, 본 기술분야의 통상의 지식을 가진 자라면 후술되는 특허청구범위의 기술적 사상에서 벗어나지 않는 범위 내에서 본 발명을 다양하게 변형 및 수정할 수 있다.Although the invention has been described with reference to the accompanying drawings and the preferred embodiments described above, the invention is not limited thereto, but is defined by the claims that follow. Accordingly, one of ordinary skill in the art may variously modify and modify the present invention without departing from the spirit of the following claims.
본 발명의 실시예들에 따른 표면품질 및 내리징성이 우수한 페라이트계 스테인리스강은 주방용품, 건축 외장재, 가전제품, 전자부품 등에 적용 가능하다.The ferritic stainless steel having excellent surface quality and lowering property according to embodiments of the present invention may be applied to kitchen appliances, building exterior materials, home appliances, electronic components, and the like.

Claims (6)

  1. 중량%로, Cr: 12.5~18.5%, C: 0.001~0.025%, N: 0.01~0.05%, Ti: 0.05~0.4%, Al: 0.01~0.2%, Si: 0.01~0.5%, Mn: 0.01~0.5%, Cu: 0.01~0.5%, Mo: 0.001~0.5%, Nb: 0.01~0.5%, Ni: 0.01~0.5%, 나머지 Fe 및 불순물을 포함하며, By weight%, Cr: 12.5-18.5%, C: 0.001-0.025%, N: 0.01-0.05%, Ti: 0.05-0.4%, Al: 0.01-0.2%, Si: 0.01-0.5%, Mn: 0.01- 0.5%, Cu: 0.01-0.5%, Mo: 0.001-0.5%, Nb: 0.01-0.5%, Ni: 0.01-0.5%, including the remaining Fe and impurities,
    하기의 식 (1)을 만족하는, 표면품질 및 내리징성이 우수한 페라이트계 스테인리스강.A ferritic stainless steel having excellent surface quality and lowering property, satisfying the following formula (1).
    TiN석출량(Vol%) > 1.1×10-3 -------------------------- (1)TiN precipitation (Vol%)> 1.1 × 10 -3 -------------------------- (1)
    상기 식 (1)에서 TiN석출량(Vol%) = 47N + 102Ti × N + 10C + 0.39이며, N, Ti 및 C는 각 성분의 함량(중량%)을 의미함.In the formula (1), TiN precipitation amount (Vol%) = 47N + 102Ti × N + 10C + 0.39, N, Ti and C means the content (wt%) of each component.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 스테인리스강은,The stainless steel,
    하기의 식 (2)를 만족하는 것을 특징으로 하는, 표면품질 및 내리징성이 우수한 페라이트계 스테인리스강.A ferritic stainless steel excellent in surface quality and dripping property, characterized by satisfying the following formula (2).
    TiN정출온도(℃) ≤ 1,520 ------------------------------ (2)TiN crystallization temperature (℃) ≤ 1,520 ------------------------------ (2)
    상기 식 (2)에서 TiN정출온도(℃) = [-19,755/{logN-(7.78+0.07Ti- logTi+0.045Cr)}]-275 이며, N, Ti 및 Cr는 각 성분의 함량(중량%)을 의미함.In the formula (2), TiN crystallization temperature (° C.) = [-19,755 / {logN- (7.78 + 0.07Ti-logTi + 0.045Cr)}]-275, and N, Ti and Cr are the contents of each component (wt% ).
  3. 청구항 2에 있어서, The method according to claim 2,
    상기 스테인리스강은, The stainless steel,
    질량비로 N/C 비가 1.5 이상 6 이하인 것을 특징으로 하는, 표면품질 및 내리징성이 우수한 페라이트계 스테인리스강.A ferritic stainless steel having excellent surface quality and lowering property, wherein the N / C ratio is 1.5 to 6 by mass ratio.
  4. 청구항 1에 있어서,The method according to claim 1,
    상기 스테인리스강은,The stainless steel,
    하기의 식 (3)를 만족하는 것을 특징으로 하는, 표면품질 및 내리징성이 우수한 페라이트계 스테인리스강.A ferritic stainless steel excellent in surface quality and leachability, characterized by satisfying the following formula (3).
    Ti / (C+N) > 5.0 ------------------------------------ (3)Ti / (C + N)> 5.0 ------------------------------------ (3)
    상기 식 (3)에서 Ti, C 및 N은 각 성분의 함량(중량%)을 의미함.In the formula (3), Ti, C and N means the content (wt%) of each component.
  5. 청구항 1에 있어서,The method according to claim 1,
    상기 스테인리스강은,The stainless steel,
    주편 상태에서 등축정 조직의 결정립 직경은 2㎜ 이하인 것을 특징으로 하는, 표면품질 및 내리징성이 우수한 페라이트계 스테인리스강.A ferritic stainless steel having excellent surface quality and lowering property, wherein the grain diameter of the equiaxed crystal structure in the cast state is 2 mm or less.
  6. 청구항 1에 있어서,The method according to claim 1,
    상기 스테인리스강은The stainless steel
    냉연강판 상태에서 리징 높이(Wt)가 11㎛ 미만인 것을 특징으로 하는, 표면품질 및 내리징성이 우수한 페라이트계 스테인리스강.A ferritic stainless steel having excellent surface quality and lowering property, which has a ridging height Wt of less than 11 µm in a cold rolled steel sheet.
PCT/KR2015/014088 2014-12-26 2015-12-22 Ferritic stainless steel having excellent surface quality and ridging resistance WO2016105080A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0190494 2014-12-26
KR1020140190494A KR20160079967A (en) 2014-12-26 2014-12-26 Ferritic stainless steel having excellentridging resistance and excellent in surface quality

Publications (1)

Publication Number Publication Date
WO2016105080A1 true WO2016105080A1 (en) 2016-06-30

Family

ID=56151021

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/014088 WO2016105080A1 (en) 2014-12-26 2015-12-22 Ferritic stainless steel having excellent surface quality and ridging resistance

Country Status (2)

Country Link
KR (1) KR20160079967A (en)
WO (1) WO2016105080A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101835021B1 (en) 2016-09-28 2018-03-09 주식회사 포스코 Ferritic stainless steel for exhaust system heat exchanger and method of manufacturing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000192199A (en) * 1998-12-25 2000-07-11 Nippon Steel Corp Ferritic stainless steel excellent in ridging characteristic and workability in weld zone
JP2007211313A (en) * 2006-02-10 2007-08-23 Nippon Metal Ind Co Ltd Ferritic stainless steel having excellent ridging resistance and its production method
KR20130075926A (en) * 2011-12-28 2013-07-08 주식회사 포스코 Ferritic stainless steel with good ridging property and the method of manufacturing the same
KR20140014275A (en) * 2011-06-16 2014-02-05 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 Ferritic stainless-steel sheet with excellent non-ridging property and process for producing same
KR20140083166A (en) * 2012-12-24 2014-07-04 주식회사 포스코 Stainless steel based on ferrite and method for manufacturing the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5851316A (en) 1995-09-26 1998-12-22 Kawasaki Steel Corporation Ferrite stainless steel sheet having less planar anisotropy and excellent anti-ridging characteristics and process for producing same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000192199A (en) * 1998-12-25 2000-07-11 Nippon Steel Corp Ferritic stainless steel excellent in ridging characteristic and workability in weld zone
JP2007211313A (en) * 2006-02-10 2007-08-23 Nippon Metal Ind Co Ltd Ferritic stainless steel having excellent ridging resistance and its production method
KR20140014275A (en) * 2011-06-16 2014-02-05 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 Ferritic stainless-steel sheet with excellent non-ridging property and process for producing same
KR20130075926A (en) * 2011-12-28 2013-07-08 주식회사 포스코 Ferritic stainless steel with good ridging property and the method of manufacturing the same
KR20140083166A (en) * 2012-12-24 2014-07-04 주식회사 포스코 Stainless steel based on ferrite and method for manufacturing the same

Also Published As

Publication number Publication date
KR20160079967A (en) 2016-07-07

Similar Documents

Publication Publication Date Title
WO2019112144A1 (en) Non-magnetic austenitic stainless steel having excellent corrosion resistance and manufacturing method therefor
WO2020101227A1 (en) Nonmagnetic austenitic stainless steel and manufacturing method therefor
WO2016104975A1 (en) High-strength steel material for pressure container having outstanding toughness after pwht, and production method therefor
WO2013100687A1 (en) High strength austenitic stainless steel, and preparation method thereof
WO2018110853A1 (en) High strength dual phase steel having excellent low temperature range burring properties, and method for producing same
WO2016105002A1 (en) Low-temperature steel sheet with excellent surface processing quality and method for manufacturing same
WO2016105094A1 (en) Super duplex stainless steel having excellent yield strength and impact toughness and manufacturing method therefor
WO2015099459A1 (en) Ferritic stainless steel with improved formability and ridging resistance, and manufacturing method therefor
WO2018117477A1 (en) Duplex stainless steel having excellent corrosion resistance and moldability, and manufacturing method therefor
WO2012043984A2 (en) Steel plate for line pipe, having excellent hydrogen induced crack resistance, and preparation method thereof
WO2020111856A2 (en) High-strength steel sheet having excellent ductility and low-temperature toughness and method for manufacturing thereof
WO2022050635A1 (en) Austenitic stainless steel and manufacturing method thereof
WO2017111251A1 (en) Austenitic stainless steel with improved creep-resistant properties and tensile strength and method for producing same
WO2017052005A1 (en) Ferritic stainless steel and manufacturing method therefor
WO2017051998A1 (en) Plated steel plate and manufacturing method thereof
WO2021010599A2 (en) Austenitic stainless steel having improved strength, and method for manufacturing same
WO2021085800A1 (en) Austenitic stainless steel having increased yield ratio and manufacturing method thereof
WO2016105080A1 (en) Ferritic stainless steel having excellent surface quality and ridging resistance
WO2013154254A1 (en) High carbon hot rolled steel sheet having excellent uniformity and method for manufacturing same
WO2019124729A1 (en) Utility ferritic stainless steel having excellent hot workability, and manufacturing method therefor
WO2016105003A1 (en) Structural ultra-thick steel having excellent resistance to brittle crack propagation, and production method therefor
WO2019132226A1 (en) Lean duplex steel having improved bendability and manufacturing method therefor
WO2017111250A1 (en) Lean duplex stainless steel having improved corrosion resistance and machinability, and manufacturing method therefor
WO2017086745A1 (en) High-strength cold rolled steel sheet having excellent shear processability, and manufacturing method therefor
WO2017111303A1 (en) High-strength hot-rolled steel sheet with excellent bending workability and production method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15873607

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15873607

Country of ref document: EP

Kind code of ref document: A1