WO2016105045A1 - Electrostatic dust collector - Google Patents

Electrostatic dust collector Download PDF

Info

Publication number
WO2016105045A1
WO2016105045A1 PCT/KR2015/014012 KR2015014012W WO2016105045A1 WO 2016105045 A1 WO2016105045 A1 WO 2016105045A1 KR 2015014012 W KR2015014012 W KR 2015014012W WO 2016105045 A1 WO2016105045 A1 WO 2016105045A1
Authority
WO
WIPO (PCT)
Prior art keywords
high voltage
electrode
counter electrode
voltage electrode
electrostatic precipitator
Prior art date
Application number
PCT/KR2015/014012
Other languages
French (fr)
Korean (ko)
Inventor
유게세이로
후쿠오카다이스케
타케노시타카즈토시
코치야마야스히코
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015232405A external-priority patent/JP2017013041A/en
Priority claimed from KR1020150180688A external-priority patent/KR102478243B1/en
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to CN201580069946.6A priority Critical patent/CN107107074B/en
Priority to US15/538,881 priority patent/US10766039B2/en
Publication of WO2016105045A1 publication Critical patent/WO2016105045A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/02Plant or installations having external electricity supply
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/41Ionising-electrodes

Definitions

  • the present invention relates to an electrostatic precipitator.
  • Electrical appliances such as an air cleaner and an air conditioner, are equipped with the electric dust collector which charges a floating fine particle using a discharge.
  • the electrostatic precipitator may include a charging unit configured to charge suspended fine particles by discharge; And a dust collecting part for collecting charged suspended fine particles.
  • a high voltage of several kV is applied between the high voltage (discharge) electrode and the counter (ground) electrode to generate discharge.
  • ozone O 3
  • the ozone concentration needs to be less than the environmental standard value (0.05 ppm).
  • Patent Document 1 discloses a dust collecting device comprising ion discharging means for releasing ions without corona discharge and a dust collecting portion formed downstream thereof, wherein one or more linear discharge electrodes of the ion discharging means are formed. Electrode), the ground electrode is formed on both sides of the linear electrode, and the electrode connected to the ground is covered with an insulator or a semiconductor so that the discharge current when the high voltage is applied to the linear electrode is 1 ⁇ A or less per 0.1 m of the linear electrode. It is described.
  • Patent document 2 includes a filter unit having a discharge needle installed to be applied with a high voltage and having an intake grill having a shape in which the center thereof is expanded forward, a ventilated ground electrode formed on the wind side of the discharge needle, and a dust collecting filter.
  • the intake grill is formed by arranging non-conductive ribs made of non-conductive resin and conductive ribs made of conductive in a lattice shape, and connecting the conductive ribs to the ground electrode, thereby eliminating the static electricity charged on the intake grills.
  • An electrostatic precipitating unit is described which prevents dust from adhering to it.
  • Patent Document 3 describes a corona discharge device having a plurality of discharge members, a resistor connected to each of the discharge members, and a voltage source connected to the resistor.
  • Patent document 4 discloses an ion generator having a high voltage generating means for generating a high voltage and an ion generating electrode connected to an output of the high voltage generating means and generating ions in parallel with the ion generating electrode at the output of the high voltage generating means.
  • An ion generator having an ozone generating electrode for generating ozone and an impedance varying means connected in series with the ozone generating electrode, the ion generator controlling the amount of ozone generated from the ozone generating electrode by varying the impedance of the impedance varying means. It is.
  • Non-Patent Document 1 describes a discharge in which one electrode is covered with a high resistance sheet of several M ⁇ / cm instead of a dielectric. Then, when driven by direct current (DC), it is described that a pulse-like discharge that repeats at several 10 kHz with a width of several ⁇ s occurs.
  • DC direct current
  • Patent Document 1 International Publication WO01 / 064349
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2005-021817
  • Patent Document 3 Japanese Patent Application Laid-Open No. 7-5746
  • Patent Document 4 Japanese Patent Application Laid-Open No. 2004-216037
  • Non-Patent Document 1 Monia Laroussi, Igor Alexeff, Paul Richardson, Francis F. Dyer, ⁇ The Resistive Barrier Discharge '', ITriple is an IEEE TRANSACTION ON PLASMA SCIENCE, February 2002, Vol. 30, No. 1, p. 158-159
  • the charging portion When the charging portion is made thinner, the distance between the high voltage electrode and the counter electrode becomes closer, and there is a concern that ozone generation may increase.
  • ultrafine particles such as PM 0.1 having a thickness of 0.1 ⁇ m or less are difficult to charge themselves, and their mass is small, so there is a fear that they cannot be efficiently collected.
  • An object of the present invention is to provide an electrostatic precipitator and the like capable of thinning the charged portion while suppressing ozone generation.
  • the electrostatic precipitator to which the present invention is applied includes a charging unit and a dust collecting unit.
  • the charging unit has a high voltage electrode having a portion where a high voltage is supplied from a high voltage generation circuit and generates at least electric field concentration, a counter electrode formed to face the high voltage electrode and supplied with a reference voltage from the high voltage generation circuit, Discharge is generated between the counter electrodes to charge the suspended fine particles.
  • a dust collecting unit collects the suspended fine particles charged on the downstream side in the ventilation direction of the charging unit and charged by the charging unit.
  • the electrostatic precipitator to which the present invention is applied includes a charging unit and a dust collecting unit.
  • the charging unit includes a high voltage electrode to which a high voltage is supplied from the high voltage generation circuit. It is also provided with a counter electrode formed opposite to the high voltage electrode and supplied with a reference voltage from the high voltage generation circuit. Then, a discharge is generated between the high voltage electrode and the counter electrode to charge the suspended fine particles.
  • a dust collecting unit collects the suspended fine particles charged on the downstream side in the ventilation direction of the charging unit and charged by the charging unit.
  • the counter electrode in the charging portion includes a conductor portion made of a conductive material.
  • the counter electrode covers at least the surface of the side of the conductor portion opposite to the high voltage electrode, and has a volume resistivity of 10 14 Pa ⁇ cm or more and 10 18 Pa, which limits the discharge current between the high voltage electrode and the counter electrode. And a resistor portion that is cm or less.
  • the resistive portion of the counter electrode in the charging portion may have a relative dielectric constant of 3 or more.
  • the high voltage electrode in the charging unit may be in the form of a wire.
  • the high voltage electrode in the charging section may be characterized by having a sawtooth-shaped portion with a sharp tip or a needle-like portion with a sharp tip.
  • a plurality of the serrated portions or a plurality of the needle-like portions intersect with the ventilation direction and are divided into a plurality of rows.
  • the tip of the sawtooth-shaped portion or the tip of the needle-shaped portion in each of the plurality of rows is arranged to be shifted from each other in the column direction between adjacent rows.
  • the distance S between the saw-toothed parts or the tip of the said needle-shaped part between these several rows is 3L or less.
  • the spacing P between the sawtooth portion or the needle-shaped portion in each of the plurality of rows may be 2L or more.
  • the charging portion can be made thinner.
  • a plurality of the serrated portions or a plurality of the needle-like portions intersect with the ventilation direction and are divided into a plurality of rows.
  • the tip of the sawtooth-shaped portion or the tip of the needle-shaped portion in each of the plurality of rows is disposed so as to face between adjacent rows.
  • the distance S of the tip of the said serrated part or the said needle-shaped part between these several rows is 6L or more and 8L or less.
  • the spacing P between the sawtooth portion or the needle-shaped portion in each of the plurality of rows may be 2L or more.
  • the charging portion can be made thinner.
  • the high voltage electrode in the charging unit may be characterized in that the brush shape.
  • the high voltage electrode of the charging unit may include a main high voltage electrode and a vertical high voltage electrode.
  • the main high pressure electrode may be provided with a sawtooth portion or a needle portion, and the vertical high pressure electrode may be in a wire shape.
  • the tip of the serrated portion or the needle-like portion in the main high pressure electrode may face the upstream side of the ventilation direction.
  • the longitudinal high voltage electrode may be formed between the main high voltage electrode and the counter electrode.
  • the voltage of the main high voltage electrode may be set to two times or more and five times or less the voltage of the vertical high voltage electrode.
  • the main high voltage electrode may be set to a predetermined voltage, and the vertical high voltage electrode may be in a floating state in which no voltage is set.
  • the conductor portion of the counter electrode in the charging portion may be composed of a plurality of flat plates arranged at intervals to ensure ventilation.
  • the conductor portion of the counter electrode in the electrification portion may be constituted by a mesh having an opening for ensuring ventilation.
  • the conductor portion of the counter electrode in the charging portion may be made of a punching metal having an opening for ensuring ventilation.
  • the conductor portion of the counter electrode in the charging portion may be made of expanded metal having an opening for ensuring ventilation.
  • the counter electrode in the charging unit may be disposed on an upstream side of the ventilation direction with respect to the high voltage electrode of the charging unit.
  • the electrostatic precipitator to which the present invention is applied includes a charging unit and a dust collecting unit.
  • the charging unit includes a high voltage electrode to which a high voltage is supplied from the high voltage generation circuit. It is also provided with a counter electrode formed opposite to the high voltage electrode and supplied with a reference voltage from the high voltage generation circuit.
  • the dust collecting unit is disposed downstream of the ventilation direction of the charging unit.
  • the dust collector is provided with another high voltage electrode to which a high voltage is supplied from another high voltage generation circuit. It is provided with the other counter electrode formed so as to oppose the said other high voltage electrode and to which the reference voltage is supplied from the said other high voltage generation circuit.
  • the dust collecting part collects the suspended fine particles charged by the charging part.
  • the other high voltage electrode is disposed at a separation distance of 5 mm or more downstream from the end of the member closest to the dust collecting unit at a ventilation direction downstream.
  • the electrostatic precipitator to which the present invention is applied includes a charging unit and a dust collecting unit.
  • the charging unit includes a high voltage electrode to which a high voltage is supplied from the high voltage generation circuit. It is also provided with a counter electrode formed opposite to the high voltage electrode and supplied with a reference voltage from the high voltage generation circuit. Then, a discharge is generated between the high voltage electrode and the counter electrode to charge the suspended fine particles.
  • a dust collecting unit collects the suspended fine particles charged on the downstream side in the ventilation direction of the charging unit and charged by the charging unit.
  • it is provided with the case which consists of a resin material and accommodates the said charging part.
  • the high voltage electrode in the charging section is formed 5 mm or more away from the case.
  • the counter electrode in the charging section includes a conductor portion made of a conductive material and a resistor portion covering the surface of the conductor portion at least opposite to the high voltage electrode.
  • the case accommodating the charging unit may be characterized in that it has an electrical contact that is conducted to the conductor portion of the counter electrode of the charging unit.
  • the counter electrode may include a conductor portion made of a conductive material, a resistor portion covering at least a surface of the conductor portion opposite to the high voltage electrode, and an insulator portion located between the conductor portion and the resistor portion.
  • the electrostatic precipitator to which the present invention is applied includes a charging unit and a dust collecting unit.
  • the charging unit includes a high voltage electrode to which a high voltage is supplied from the high voltage generation circuit. It is also provided with a counter electrode formed opposite to the high voltage electrode and supplied with a reference voltage from the high voltage generation circuit. And a current limiting circuit including an inductor for lowering the potential of the high voltage electrode by a pulsed current in discharge generated between the high voltage electrode and the counter electrode. Then, a discharge is generated between the high voltage electrode and the counter electrode to charge the suspended fine particles.
  • a dust collecting unit collects the suspended fine particles charged on the downstream side in the ventilation direction of the charging unit and charged by the charging unit.
  • the current limiting circuit in the charging section may be constituted by a parallel circuit of the inductor and the diode.
  • the diode of the current limiting circuit in the charging section may be connected in a reverse direction with respect to the high voltage.
  • the current limiting circuit in the charging section includes a junction type FET; And a resistance element connected between the source and the gate of the junction type FET. Junction FETs; And a resistor element connected between the source-gate of the junction type FET; and a circuit connected in series with the inductor and the parallel circuit of the diode.
  • the short circuit current between a high voltage electrode and a counter electrode can be suppressed.
  • the current limiting circuit in the charging section may further include a series circuit of a MOSFET and a resistance element connected in series with the parallel circuit of the inductor and the diode.
  • the short-circuit current between the high voltage electrode and the counter electrode can be suppressed as compared with the case where the series circuit using the MOSFET and the resistance element is not provided.
  • the current limiting circuit in the charging section may be formed on a path from the high voltage generating circuit to the high voltage electrode.
  • the high voltage electrode in the charging unit may be configured of a plurality of sub high voltage electrodes, and the current limiting circuit in the charging unit may be formed for each of the plurality of sub high voltage electrodes. .
  • Each of the plurality of sub-high voltage electrodes of the high voltage electrode in the charging portion includes a plurality of sawtooth portions, and the current limiting circuit in the charging portion is formed for each of the sawtooth portions. It can be characterized by.
  • the current limiting circuit in the charging section may be formed on a path from the high voltage generating circuit to the counter electrode.
  • the counter electrode in the charging unit may be configured of a plurality of sub counter electrodes, and the current limiting circuit may be formed for each of the plurality of sub counter electrodes.
  • the electrostatic precipitator to which the present invention is applied includes a charging unit and a dust collecting unit.
  • the charging unit includes a high voltage electrode to which a high voltage is supplied from the high voltage generation circuit. It is also provided with a counter electrode formed opposite to the high voltage electrode and supplied with a reference voltage from the high voltage generation circuit. Then, a discharge is generated between the high voltage electrode and the counter electrode to charge the suspended fine particles.
  • a dust collecting unit collects the suspended fine particles charged on the downstream side in the ventilation direction of the charging unit and charged by the charging unit.
  • the counter electrode in the charging portion has a conductor portion made of a conductive material, a first member covering the counter electrode side of the conductor portion, and a second member covering the counter electrode side of the first member. In addition, the counter electrode has a contact region in which the second member is in electrical contact with the conductor portion.
  • the high voltage electrode of the charging unit may include a main high voltage electrode and a longitudinal high voltage electrode.
  • the said main high voltage electrode may be provided with the saw tooth-shaped part or the needle-shaped part, and the said longitudinal high voltage electrode can be characterized by being wire-shaped.
  • the tip of the sawtooth-shaped portion or the needle-shaped portion in the main high pressure electrode is directed toward an upstream side of the ventilation direction.
  • the longitudinal high voltage electrode may be formed between the main high voltage electrode and the counter electrode in the high voltage electrode.
  • the voltage of the main high voltage electrode may be characterized by being at least two times and at most five times the voltage of the vertical high voltage electrode.
  • the main high voltage electrode may be set to a predetermined voltage, and the vertical high voltage electrode may be in a floating state in which no voltage is set.
  • the second member of the counter electrode in the charging unit may have a smaller volume resistivity than the first member.
  • the second member of the counter electrode in the charging unit may have a surface resistivity of 1 G ⁇ / cm or more when 5 kV is applied between the high voltage electrode and the counter electrode.
  • the conductor portion of the counter electrode in the charging portion may be composed of a plurality of flat plates arranged at intervals to ensure ventilation.
  • the conductor portion of the counter electrode in the electrification portion may be constituted by a mesh having an opening for ensuring ventilation.
  • the conductor portion of the counter electrode in the charging portion may be made of a punching metal having an opening for ensuring ventilation.
  • the conductor portion of the counter electrode in the charging portion may be made of expanded metal composed of a conductive material having an opening for ensuring ventilation.
  • the breakdown voltage between the high voltage electrode and the counter electrode can be made higher than in the case where the first member is not provided.
  • the electrostatic precipitator to which the present invention is applied includes a charging unit and a dust collecting unit.
  • the charging unit has a high voltage electrode supplied with a high voltage from a high voltage generation circuit, and an opposite electrode formed to face the high voltage electrode and supplied with a reference voltage from the high voltage generation circuit.
  • the charging unit generates a discharge between the high voltage electrode and the counter electrode to charge the suspended fine particles.
  • a dust collecting unit collects the suspended fine particles charged on the downstream side in the ventilation direction of the charging unit and charged by the charging unit.
  • the counter electrode in the electrification portion includes a substrate which sets the shape of the counter electrode, a first member formed on a surface of the substrate that does not oppose the high voltage electrode, and a surface that does not oppose the high voltage electrode on the substrate. It has a conductive 2nd member formed in the.
  • the electrostatic precipitator to which the present invention is applied includes a charging unit and a dust collecting unit.
  • the charging unit has a high voltage electrode supplied with a high voltage from a high voltage generation circuit, and an opposite electrode formed to face the high voltage electrode and supplied with a reference voltage from the high voltage generation circuit.
  • the charging unit generates a discharge between the high voltage electrode and the counter electrode to charge the suspended fine particles.
  • a dust collecting unit collects the suspended fine particles charged on the downstream side in the ventilation direction of the charging unit and charged by the charging unit.
  • the counter electrode in the charging unit includes a substrate for setting the shape of the counter electrode, a first member formed on a surface of the substrate that faces the high voltage electrode, and a surface that does not face the high voltage electrode of the substrate. It has a conductive 2nd member to cover.
  • the electrostatic precipitator to which the present invention is applied includes a charging unit and a dust collecting unit.
  • the charging unit includes a high voltage electrode to which a high voltage is supplied from the high voltage generation circuit. It is also provided with a counter electrode formed opposite to the high voltage electrode and supplied with a reference voltage from the high voltage generation circuit. And a current limiting circuit including an inductor for lowering the potential of the high voltage electrode by a pulsed current in discharge generated between the high voltage electrode and the counter electrode. Then, a discharge is generated between the high voltage electrode and the counter electrode to charge the suspended fine particles.
  • the dust collecting unit is disposed downstream of the ventilation direction of the charging unit. The dust collector is provided with another high voltage electrode to which a high voltage is supplied from another high voltage generation circuit.
  • the dust collector is provided with the other counter electrode formed to face the other high voltage electrode and supplied with a reference voltage from the other high voltage generation circuit.
  • the dust collecting part collects the suspended fine particles charged by the charging part. Moreover, it is comprised from the resin material, and is provided with the case which accommodates the said charging part.
  • the high voltage electrode in the charging section includes a plurality of serrated portions or a plurality of needle-shaped portions each made of a conductive material and each of which has a sharp tip.
  • the saw tooth portion or the needle portion intersect with the ventilation direction, and the plurality of saw tooth portions or the plurality of needle portions are divided into a plurality of rows.
  • the tip of the sawtooth-shaped portion or the tip of the needle-like portion in each of the plurality of rows is arranged to be shifted from each other in the column direction between adjacent rows.
  • the distance S between the sawtooth portion or the tip of the needle-shaped portion between the plurality of rows is 3 L or less with respect to the length L of the sawtooth portion or the needle-shaped portion.
  • the spacing P of the sawtooth-shaped portion or the needle-shaped portion in each of the plurality of rows is 2L or more.
  • the high voltage electrode is formed at least 5 mm away from the case.
  • the counter electrode has a volume resistivity of 10 14 Pa ⁇ cm, covering a conductor portion made of a conductive material and at least a surface of the conductor portion opposite to the high voltage electrode and limiting a discharge current between the high voltage electrode and the counter electrode. And a resistor portion of not less than 10 18 Pa ⁇ cm. Further, among the members constituting the charging unit, the other high voltage electrode is disposed at a separation distance of 5 mm or more downstream from the end of the member closest to the dust collecting unit at a ventilation direction downstream.
  • the electrostatic precipitator to which the present invention is applied includes a charging unit and a dust collecting unit.
  • the charging unit has a high voltage electrode supplied with a high voltage from a high voltage generation circuit, and an opposite electrode formed to face the high voltage electrode and supplied with a reference voltage from the high voltage generation circuit.
  • the charging unit generates a discharge between the high voltage electrode and the counter electrode to charge the suspended fine particles.
  • a dust collecting unit collects the suspended fine particles charged on the downstream side in the ventilation direction of the charging unit and charged by the charging unit.
  • the high voltage electrode has a sawtooth-shaped portion or a needle-shaped portion
  • the counter electrode has a flat sub-counter electrode made of a conductive material.
  • the plurality of serrated or needle-like portions of the high voltage electrode and the sub counter electrode are arranged in the direction crossing in the ventilation direction.
  • a serrated portion or a needle-like portion of the high voltage electrode is disposed in parallel with the surface of the sub counter electrode in a planar shape.
  • the distal end of the serrated portion or the distal end of the needle-like portion of the high voltage electrode in the electrification portion faces the upstream side of the ventilation direction, and the upstream of the ventilation direction of the plate-shaped sub counter electrode. It can be characterized by being located downstream from the stage.
  • the said sub counter electrode in the said electrification part extends at least the length of the said serrated part or needle-shaped part to the downstream side of the said ventilation direction from the tip of the serrated part of the high voltage electrode, or the tip of the needle shaped part. It is characterized by being arranged.
  • the high-voltage electrode of the dust collector is disposed at a separation distance of 5 mm or more downstream from the end of the member closest to the dust collector, among the members constituting the charging unit.
  • the charging unit may include a current limiting circuit including an inductor and lowering a potential of the high voltage electrode by a pulse current in a discharge generated between the high voltage electrode and the counter electrode.
  • an electrostatic precipitator capable of efficiently collecting ultra-fine particles while suppressing ozone generation.
  • FIG. 1 is a diagram illustrating an example of an electric dust collector to which the first embodiment is applied.
  • FIG. 2A and 2B are plan views of the high voltage electrode and the counter electrode of the charging unit, respectively, FIG. 2A is the high voltage electrode, and FIG. 2B is the counter electrode.
  • FIG. 3A and 3B are cross-sectional views illustrating the charging unit in detail
  • FIG. 3A is a charging unit of the electrostatic precipitator to which the first embodiment is applied
  • FIG. 3B is a charging unit of the electrostatic precipitator of the comparative example to which the first embodiment is not applied. .
  • FIG. 4 is a diagram showing a relationship between ozone concentration and dust collection efficiency in the electrostatic precipitator of Example 1 and the electrostatic precipitator of Comparative Example 1.
  • FIG. 4 is a diagram showing a relationship between ozone concentration and dust collection efficiency in the electrostatic precipitator of Example 1 and the electrostatic precipitator of Comparative Example 1.
  • Fig. 5 is a diagram showing the relationship between the material (resistance member material) constituting the resistor portion of the counter electrode, the ion generating voltage (kV) and the ionized water ( ⁇ 10 3 pieces / cm 3 ) in the ozone generating voltage.
  • FIG. 6 is a perspective view of a charging unit of the electrostatic precipitator of the third embodiment.
  • FIG. 7A and 7B are plan views of each of the high voltage electrode and the counter electrode in the electrostatic precipitator of the third embodiment.
  • 7A is a high voltage electrode
  • FIG. 7B is an opposite electrode.
  • FIG. 8 is a diagram showing a relationship between dust collection efficiency and ozone concentration in the electrostatic precipitator of Example 3.
  • FIG. 8 is a diagram showing a relationship between dust collection efficiency and ozone concentration in the electrostatic precipitator of Example 3.
  • FIG. 9 is a perspective view of a charging unit of the electrostatic precipitator of the fourth embodiment.
  • FIG. 10A and 10B are plan views of the high voltage electrode and the counter electrode respectively in the electrostatic precipitator of the fourth embodiment, FIG. 10A is the high voltage electrode, and FIG. 10B is the counter electrode.
  • FIG. 11 is a diagram showing a relationship between dust collection efficiency and ozone concentration in the electrostatic precipitator of Example 4.
  • FIG. 12A to 12C show a modification of the charging unit of the electrostatic precipitator of the fourth embodiment
  • FIG. 12A is a perspective view of the charging unit
  • FIG. 12B is a view of the charging unit viewed from the counter electrode side
  • FIG. 12C is a view of the counter electrode 12. Sectional view on the XIIC-XIIC line.
  • FIG. 13A and 13B are views illustrating a charging unit of the electrostatic precipitator of the fifth embodiment
  • FIG. 13A is a perspective view of the charging unit
  • FIG. 13B is a sectional view taken along the line XIIIB-XIIIB of FIG. 13A.
  • FIG. 14A and 14B are plan views of the high voltage electrode and the counter electrode of the electrostatic precipitator of Example 5, and FIG. 14A is the high voltage electrode, and FIG. 14B is the counter electrode.
  • FIG. 15A and 15B are views showing a modification of the high voltage electrode in the electrification portion of the electrostatic precipitator
  • FIG. 15A is a view in which the teeth are arranged in a different arrangement from FIG. 2A
  • FIG. 15B is a view in which the teeth are configured in a different arrangement from FIG. 10A. Drawing.
  • FIG. 16A and 16B show another modified example of the high voltage electrode in the electrification portion of the electrostatic precipitator
  • FIG. 16A is composed of a plurality of needle rows each having a plurality of needles, and the tip of the needle is adjacent to each other. It is a figure comprised so that it may oppose between needle rows
  • FIG. 16B is a figure comprised from the several needle row provided with a some needle, and the tip of a needle was comprised by the zigzag between adjacent needle rows.
  • FIGS. 21A to 21D are diagrams schematically illustrating the discharge state in the charging section
  • FIG. 21A is a plan view seen from the high voltage electrode side
  • FIG. 21B is a sectional view taken along the line XXIB-XXIB in FIG. 21A.
  • FIG. 23 is a diagram schematically illustrating a discharge state in a charging unit.
  • 25 is an equivalent circuit relating to a charging unit of an electrostatic precipitator.
  • 27 is an equivalent circuit of a charging unit including a current limiting circuit by a resistance.
  • FIG. 28A and 28B are diagrams showing a time change of the inter-electrode voltage in the charging section of each of the electrostatic precipitator of Example 7 and the electrostatic precipitator of Comparative Example 3, and FIG. 28A shows Example 7, and FIG. 28B shows Comparative Example 3; to be.
  • 29 is another equivalent circuit of the charging unit including the current limiting circuit.
  • FIG. 30 is a diagram illustrating an example of a high voltage electrode in which a current limiting circuit is connected for each tooth row in the charging section of the electrostatic precipitator according to the eighth embodiment.
  • FIG. 31 is a diagram showing an example of a high voltage electrode in which a current limiting circuit is connected for each tooth in the charging section of the electrostatic precipitator of Example 9.
  • FIG. 31 is a diagram showing an example of a high voltage electrode in which a current limiting circuit is connected for each tooth in the charging section of the electrostatic precipitator of Example 9.
  • 33 is a diagram illustrating a time change of the inter-electrode voltage in the charging unit of the electrostatic precipitator of the tenth embodiment.
  • 34 is a diagram illustrating a time change of the inter-electrode voltage due to a short circuit in the charging unit of the electrostatic precipitator of the tenth embodiment.
  • 35 is a diagram illustrating an example of a high voltage electrode to which a current limiting circuit is connected.
  • FIG. 36A to 36C are other equivalent circuits of the charging unit including the current limiting circuit
  • FIG. 36A is a case where the connection order of the secondary electron current limiting section and the short circuit current limiting section in the current limiting circuit of FIG. 36b shows a case where the current limiting circuit is connected to the counter electrode
  • FIG. 36c shows a case where a high voltage electrode and a counter electrode are formed between the secondary electron current limiting section and the short-circuit current limiting section in the current limiting circuit.
  • 38A and 38B are diagrams showing the ionized water generated in the charging section of each of the electrostatic precipitator of Example 11 and the electrostatic precipitator of Comparative Example 4, and FIG. 38A shows Example 11 and FIG. 38B shows comparative example 4.
  • FIG. 38A shows Example 11
  • FIG. 38B shows comparative example 4.
  • Fig. 39A and 39B are views for explaining an electrification section in the electrostatic precipitator according to the twelfth embodiment
  • Fig. 39A is a perspective view of the electrification section
  • Fig. 39B is a sectional view taken along the line XXXIXB-XXXIXB of the counter electrode.
  • FIG. 40A and 40B are views for explaining a charging unit in the electrostatic precipitator according to the thirteenth embodiment, FIG. 40A is a perspective view of a charging unit, and FIG. 40B is a sectional view of a part of the counter electrode.
  • 41A and 41B are views for explaining a charging unit in the electrostatic precipitator according to the fourteenth embodiment.
  • FIG. 42A and 42B are views illustrating a charging unit in the electrostatic precipitator of the fifteenth embodiment
  • FIG. 42A is a perspective view of the charging unit
  • FIG. 42B is a sectional view taken along the line XLIIB-XLIIB in FIG. 42A.
  • FIG. 44A and 44B are views for explaining a charging unit in the electrostatic precipitator according to the seventeenth embodiment, FIG. 44A is a perspective view of a charging unit, and FIG. 44B is a sectional view of a part of the counter electrode.
  • FIG. 45A and 45B are views illustrating a charging unit in the electrostatic precipitator according to the eighteenth embodiment, FIG. 45A is a perspective view of the charging unit, and FIG. 45B is a sectional view of the counter electrode in the XLVB-XLVB line in FIG. 45A.
  • FIG. 46A and 46B are views for explaining the charging portion in the electrostatic precipitator according to the nineteenth embodiment, FIG. 46A is a perspective view of the charging portion, and FIG. 46B is a sectional view of the counter electrode in the XLVIB-XLVIB line in FIG. 46A.
  • 48 is a diagram illustrating an example of an electric dust collector to which the eighth embodiment is applied.
  • FIG. 49A to 49C are perspective views of main portions of the charging unit in the electrostatic precipitators according to Example 20 and Comparative Examples 6 and 7, wherein FIG. 49A is Example 20, and FIG. 49B is Comparative Example 6 and FIG. 49C is Comparative Example 7. .
  • Fig. 54 is a sectional view of the charging direction of the electrostatic precipitator according to the twenty-first embodiment, and the ventilation directions of the main parts of the dust collector;
  • FIG. 55A and 55B are perspective views of main parts of the charging unit in the electrostatic precipitator according to Example 21 and Comparative Example 7, and FIG. 55A is Example 21 and FIG. 55B is Comparative Example 7. FIG.
  • FIG. 1 is a figure which shows an example of the electric dust collector 1 to which 1st Embodiment is applied.
  • the case 30 is shown with a broken line, and the structure of the charging part 10 and the dust collector 20 formed in the inside of the case 30 is shown.
  • the electrostatic precipitator 1 is provided with the case 30 which accommodates the charging part 10, the dust collecting part 20, the charging part 10, and the dust collecting part 20. As shown in FIG. That is, the electrostatic precipitator 1 is a two-stage electrostatic precipitating method in which the charging unit 10 and the dust collecting unit 20 are separated.
  • the direction (airflow direction) of the flow of air is set in the direction from the charging section 10 to the dust collecting section 20 (left to right of the paper surface in FIG. 1). Ventilation is performed by a fan (not shown) formed on the downstream side in the ventilation direction of the dust collector 20.
  • the left-right direction orthogonal to an up-down direction and orthogonal to an up-down direction with respect to a ventilation direction is described as left and right as shown in FIG.
  • the electrostatic precipitator 1 may be arrange
  • the charging unit 10 includes a high voltage electrode 11 and a counter electrode 12 that faces the high voltage electrode 11.
  • the high voltage electrode 11 is an electrode to which a high voltage is applied, it is also called a high voltage electrode, and since it is an electrode which generates a discharge, it is also called a discharge electrode.
  • the counter electrode 12 may be grounded (GND), it is also called a ground electrode.
  • a high voltage of direct current (DC) is applied between the high voltage electrode 11 and the counter electrode 12, and a corona discharge (discharge) is generated between the high voltage electrode 11 and the counter electrode 12. As shown in FIG. Then, the suspended fine particles are charged by the generated corona discharge.
  • DC direct current
  • the high voltage electrode 11 has a plurality of tooth rows 113 (see FIG. 1 in FIG. 1) provided with a plurality of toothed portions 111 (hereinafter referred to as teeth 111) each having a sharp tip. 5 rows of 1 to # 5).
  • the longitudinal direction of each tooth row 113 is directed to the left and right directions.
  • the uppermost tooth row 113 (# 1 in FIG. 1) in the up-down direction is provided with a plurality of teeth 111 (10 in FIG. 1) arranged downward.
  • the lowest tooth row 113 (# 5 in FIG. 1) in the up-down direction is provided with a plurality of teeth 111 (10 in FIG. 1) arranged toward the upper side.
  • the tooth rows 113 (# 2 to # 4 in Fig. 1) between are a plurality of teeth 111 (10 in Fig. 1) arranged toward the upper side and a plurality of teeth 111 (arranged toward the lower side) ( In FIG. 1, 10 pieces are provided.
  • the tooth 111 and / or its tip is an example of a site for generating electric field concentration.
  • the number of tooth rows 113 and the number of teeth 111 in the tooth row 113 are set to a predetermined number.
  • each tooth row 113 The plurality of teeth 111 in each tooth row 113 are connected to the connecting portion 112. And the edge part of each connection part 112 is being fixed to the support part 14 which consists of insulating materials.
  • the support part 14 is equipped with the circuit board (printed wiring board (PCB)) provided with wiring. Through the wiring of the circuit board, the tooth row 113 is connected to the anode of the high voltage generating circuit 40 which supplies a high voltage of DC.
  • PCB printed wiring board
  • the support part 14 may be part of the case 30.
  • Each tooth 111 is formed in a direction orthogonal to the ventilation direction.
  • each tooth 111 is arranged so that the ends thereof face each other between adjacent tooth rows 113, for example, between tooth rows 113 (# 1) and tooth rows 113 (# 2). Formed.
  • each tooth 111 may be formed in the inclination direction with respect to the ventilation direction. That is, each tooth 111 is formed in the direction crossing in the ventilation direction.
  • the teeth 111 and the connection portion 112 of the high voltage electrode 11 are integrally formed of a conductive material.
  • the support part 14 may not be a separate member, but may be comprised with the tooth
  • the counter electrode 12 is formed of a member made of a conductive material having a penetrating opening (hole) 124 and a member made of a resistive material formed so as to cover the surface thereof and functioning as a resistance to current. Resistor) (see conductor portion 121 and resistor portion 122 in FIG. 2 described later). The counter electrode 12 is connected to the cathode of the high voltage generating circuit 40.
  • the absence of the resistive material limits the discharge current and suppresses ozone generation. Therefore, characteristics such as volume resistivity for the member of the resistive material are set in consideration of the relationship between the dust collection efficiency and the ozone concentration.
  • the counter electrode 12 is, for example, a wire mesh (mesh) in which the conductor portion 121 is made of a conductive material.
  • the mesh (opening 124) is largely described.
  • the size of the mesh (opening 124) is set in consideration of the discharge occurring between the high voltage electrodes 11.
  • the distance G is between the high voltage electrode 11 and the counter electrode 12.
  • the dust collecting part 20 is provided with the plate-shaped high voltage electrode 21 by which the surface was coat
  • the ventilation direction is between the high voltage electrode 21 and the counter electrode 22.
  • the counter electrode 22 may be grounded (GND), it is also called a ground electrode.
  • a high voltage of direct current (DC) is applied between the high voltage electrode 21 and the counter electrode 22 by the high voltage generation circuit 50. Then, the suspended fine particles charged by the charging unit 10 adhere to the surface of the counter electrode 22 by static electricity. As a result, suspended fine particles are collected.
  • DC direct current
  • polyethylene polyethylene terephthalate (PET), polytetrafluoroethylene (PTFE), or the like can be used for the film of the insulating material covering the surface of the high voltage electrode 21.
  • PET polyethylene terephthalate
  • PTFE polytetrafluoroethylene
  • the dust collecting part 20 is formed on the downstream side of the ventilation direction of the charging part 10.
  • the electrode closest to the charging unit 10 among the high voltage electrode 21 and the counter electrode 22 of the dust collecting unit 20 is the member that is closest to the dust collecting unit 20 among the members constituting the charging unit 10. It may be arranged at a predetermined separation distance on the downstream side in the ventilation direction from the end. This relationship is the same also in other embodiment described below. In this case, the predetermined separation distance may be 5 mm or more.
  • the case 30 accommodates the charging unit 10 and the dust collecting unit 20.
  • a plurality of gratings (grills) 31 are formed on the front surface portion facing the charging unit 10.
  • the grating 31 is preferably formed so that the resistance to the ventilation is small while preventing the user from contacting the charging unit 10.
  • the case 30 is comprised from resin materials, such as ABS (acrylonitrile, butadiene, styrene copolymer), for example.
  • resin materials such as ABS (acrylonitrile, butadiene, styrene copolymer), for example.
  • 2A and 2B are plan views of each of the high voltage electrode 11 and the counter electrode 12 of the charging unit 10.
  • 2A shows the high voltage electrode 11
  • FIG. 2B shows the counter electrode 12.
  • the high voltage electrode 11 is provided with a tooth row 113 (# 1 to # 5 in FIG. 2) in which a plurality of teeth 111 are formed.
  • the tip of each tooth 111 is formed to face (facing each other) between adjacent tooth rows 113.
  • the length from the tip of the tooth 111 to the connection portion 112 is L (length L), and the interval (pitch) between the teeth 111 in the tooth row 113 is P (interval P).
  • the distance between the tips of the teeth 111 in the direction perpendicular to the tooth rows is set to S (distance S).
  • the counter electrode 12 includes, as an example, a conductor portion 121, which is a wire mesh (mesh) made of a conductive material, and a resistor portion 122 covering the surface thereof.
  • the upper and lower end portions constitute the conductor exposed region 123 in which the surface of the conductor portion 121 is exposed.
  • the conductor exposed region 123 may be formed by removing the formed resistor portion 122, and may be formed so as not to form the resistor portion 122 (for example, not to be coated).
  • the formation of the resistor portion 122 in the counter electrode 12 is for limiting the discharge current and suppressing ozone generation. Therefore, as will be described later, the members constituting the resistor portion 122 preferably have a relative dielectric constant of 3 or more and a volume resistivity of 10 14 Pa ⁇ cm or more and 10 18 Pa ⁇ cm or less. On the other hand, the resistance value in the thickness direction changes according to the thickness of the resistor portion 122. Therefore, the value of the discharge current can be set by the thickness of the resistor unit 122.
  • a volume resistivity of 10 14 ⁇ ⁇ cm means that it is in the range of 10 14 ⁇ ⁇ cm. The same applies to the values of other volume resistivity.
  • 3A and 3B are cross-sectional views illustrating the charging unit 10 in detail.
  • 3A is a charging unit 10 of the electrostatic precipitator 1 to which the first embodiment is applied
  • FIG. 3B is a charging unit 10 of the electrostatic precipitator 1 to which the first embodiment is not applied.
  • the high voltage electrode 11 has a plurality of teeth 111. In FIGS. 3A and 3B, each tooth 111 does not appear to be electrically connected. However, as described in FIGS. 1, 2A and 2B, the high voltage electrode 11 is electrically connected.
  • the counter electrode 12 is provided with the conductor part 121 and the resistor part 122 formed so that the surface of the conductor part 121 may be covered. 3A and 3B, the conductor portions 121 do not appear to be electrically connected to each other. However, as described with reference to Figs. 1, 2A and 2B, since the conductor portion 121 is a wire mesh (mesh) made of a conductive material, it is electrically connected.
  • the high voltage electrode 11 is connected to the case 30 through an insulating spacer 32 composed of the insulating member (insulator). Is attached to. Therefore, the high voltage electrode 11 is not in direct contact with the case 30.
  • the support part 14 may be the insulating spacer 32, and the support part 14 may be attached to the case 30 via the insulating spacer 32. As shown in FIG.
  • the insulating spacer 32 any of the above insulating properties may be used, and it is preferable that the insulating spacer 32 is made of ceramics, a resin material, air, or the like.
  • the insulating spacer 32 is an example of an insulating member.
  • the counter electrode 12 is attached to the case 30 such that the conductor exposed region 123 exposing the conductor portion 121 is in electrical contact with the case 30. And it is connected to the ground terminal E in the conductor exposed area
  • the member (resin member) which consists of resin materials, such as the case 30, is not formed in the range of predetermined distance r from the front-end
  • the resin member here is not limited to the member which comprises the case 30, What is formed in the case 30 is included.
  • the edge part of the counter electrode 12 did not expose the conductor part 121.
  • the counter electrode 12 does not have a conductor exposed area
  • the high voltage electrode 11 is attached to the case 30 directly.
  • the counter electrode 12 is attached to contact the case 30 through the resistor portion 122.
  • the counter electrode 12 is connected to the ground terminal E except for the part in contact with the case 30.
  • the ground terminal E may not be grounded.
  • the electrostatic precipitator 1 to which the first embodiment is applied (the electrostatic precipitator 1 of Example 1) and the electrostatic precipitator 1 to which the first embodiment is not applied (the electrostatic precipitator 1 of Comparative Example 1) are applied.
  • the electrostatic precipitator 1 of Example 1 and the electrostatic precipitator 1 to which the first embodiment is not applied (the electrostatic precipitator 1 of Comparative Example 1) are applied.
  • the electrostatic precipitator 1 of Comparative Example 1 Explain the results of measuring dust collection efficiency and ozone concentration.
  • the electrostatic precipitator 1 of Example 1 and the electrostatic precipitator 1 of Comparative Example 1 differ from each other as shown in FIG. However, other configurations are the same.
  • the charging section 10 of the electrostatic precipitator 1 had the size of the support section 14 of the high voltage electrode 11 viewed from the ventilation direction as about 400 mm in the left and right directions and about 300 mm in the vertical direction. And the grating 31 was arrange
  • the teeth 111 and the connection part 112 of the high voltage electrode 11 in the charging part 10 were comprised with plate-shaped stainless steel (SUS) of thickness 0.5mm. And the tooth
  • SUS plate-shaped stainless steel
  • the counter electrode 12 in the charging unit 10 used the conductor portion 121 as a wire mesh (mesh) made of SUS having an opening ratio of 87.1%.
  • the resistor portion 122 covering the surface of the conductor portion 121 was made of polyimide resin having a thickness of about 50 ⁇ m. This polyimide resin had a dielectric constant of 3.3 and a volume resistivity of 10 16 Pa ⁇ cm.
  • the distance G between the high voltage electrode 11 and the counter electrode 12 was about 5 mm.
  • the high voltage electrode 21 and the counter electrode 22 in the dust collector 20 had a width in the ventilation direction of 20 mm and a length in a direction orthogonal to the ventilation direction of about 400 mm. And the space
  • the resin member constituting the case 30 or the like was not formed in the range of about 5 mm (distance r) from the tip of the tooth 111.
  • FIG. 4 is a diagram showing a relationship between dust collection efficiency and ozone concentration in the electrostatic precipitator 1 of Example 1 and the electrostatic precipitator 1 of Comparative Example 1.
  • FIG. The wind speed in the ventilation direction is 1 m / s.
  • ozone concentration was calculated
  • the dust collection efficiency measures the number of suspended particulates in the upstream (before entering the electrostatic precipitator 1) and downstream (after exiting the electrostatic precipitator 1) in the ventilation direction of the electrostatic precipitator 1 by a particle counter. Saved it.
  • the ozone concentration was 2.0 ppb or less. This value is significantly below the environmental standard (0.05 ppm).
  • ozone concentration is suppressed low compared with an environmental reference value. This is considered to be because the counter current 12 of the charging section 10 includes the resistor portion 122 covering the surface of the conductor portion 121, thereby limiting the discharge current.
  • the dust collection efficiency of the electrostatic precipitator 1 of Example 1 and the electrostatic precipitator 1 of Comparative Example 1 is different from that of the electrostatic precipitator 1 of Comparative Example 1, It is considered that 30 is easy to charge with static electricity.
  • the high voltage electrode 11 is in direct contact with the case 30.
  • the high voltage of DC supplied from the high voltage generating circuit 40 is insulated by the resin material constituting the case 30. For this reason, the case 30 is not connected to the ground terminal E.
  • FIG. 1
  • the resin material constituting the case 30 has a high electrical resistivity and is difficult to flow electricity. For this reason, the surface of the case 30 is easy to charge with static electricity. Since the case 30 is not connected to the ground electrode, the charged static electricity cannot escape. That is, it is thought that the charging efficiency of the floating fine particles worsened and the dust collection efficiency fell due to the charging of the case 30, in particular the charging of the case 30 in contact with the high voltage electrode 11.
  • the high voltage electrode 11 is attached to the case 30 via the insulating spacer 32. Therefore, the high voltage electrode 11 and the case 30 do not electrically contact. In addition, since the case 30 is connected to the counter electrode 12, the charged static electricity may escape. In addition, the resin member which comprises the case 30 etc. was not formed in the range of predetermined distance r (5 mm in Example 1) from the tip of the tooth
  • the counter electrode 12 of the charging unit 10 is formed so as to cover the surface of the conductor portion 121 and the conductor portion 121. It consists of one resistor part 122. Therefore, the discharge current is suppressed smaller than that in the case where the resistor portion 122 is not formed, and the ozone concentration is suppressed low.
  • the high voltage electrode 11 of the charging unit 10 is fixed to the case 30 via the insulating spacer 32.
  • the resin member which comprises the case 30 etc. is not formed in the range of predetermined distance r from the tip of the tooth 111 of the high voltage electrode 11.
  • the counter electrode 12 is in electrical contact with the case 30 in the conductor exposed region 123. This suppresses charging of the case 30 by static electricity and improves dust collection efficiency.
  • the high voltage electrode 11 of the charging unit 10 opposes the distal end of each of the teeth 111 between the teeth rows 113, so that the teeth 111 in one direction (for example, the lower side) are not used. Compared with the case where it is not, the area
  • the high voltage electrode 11 and the counter electrode 12 are arranged in the ventilation direction in the charging unit 10. Moreover, the part which generate
  • the high voltage electrode 11 is not formed without forming the resistor portion 122 formed to cover the surface of the conductor portion 121 of the counter electrode 12. Approaching between and the counter electrode 12, the discharge current increases, the ozone generation increases.
  • the counter electrode 12 is composed of a conductor portion 121 and a resistor portion 122 covering the surface of the conductor portion 121.
  • Embodiment 2 the material of the resistor portion 122 covering the surface of the counter electrode 12 will be described.
  • FIG. 5 shows the relationship between the material (resistance member material) constituting the resistor portion 122 of the counter electrode 12 and the ionized water ( ⁇ 10 3 pieces / cm 3 ) in the ozone generating voltage (kV) and the ozone generating voltage.
  • Drawing. 5 the volume resistivity (kcm) and the dielectric constant are shown as a characteristic of the material (resistance material) which comprises the resistor part 122.
  • the distance G (mm) of the high voltage electrode 11 and the counter electrode 12 is shown.
  • the distance G between the high voltage electrode 11 and the counter electrode 12 is fixed at 5 mm.
  • the ozone generation voltage is a voltage at which ozone generation starts to be detected by an ozone concentration meter when the DC voltage applied between the high voltage electrode 11 and the counter electrode 12 is gradually increased (increased).
  • the number of ions generated between the high voltage electrode 11 and the counter electrode 12 when the ozone generation voltage is applied between the high voltage electrode 11 and the counter electrode 12 is measured. ( ⁇ 10 3 pcs / cm 3 ). Ion water was measured with an ion counter.
  • the ozone generating voltage is high and the ion water generated at the ozone generating voltage is large.
  • the electrostatic precipitator 1 shown in FIG. 1 was used here except for the material constituting the resistor portion 122 of the counter electrode 12 in the charging portion 10.
  • the high voltage electrode 11 of the charging portion 10 has a tooth 111, and the counter electrode 12 is a wire mesh (mesh) in which the conductor portion 121 is made of a conductive material.
  • the high voltage electrode 11 is attached to the case 30 via the insulating spacer 32.
  • the counter electrode 12 is attached so that the conductor exposure area 123 is connected to the case 30, and the attached portion is connected to the ground terminal E.
  • the material of the resistor portion 122 is “none”, “alkyd resin”, “acrylic resin”, “polyimide”, “polyester”, “PTFE” (Polytetrafluoroethylene) ”was used.
  • the thickness of the resistor part 122 was about 50 micrometers, respectively.
  • the ozone generating voltage was 3.2 kV, and the ionized water at the ozone generating voltage was 0.
  • the DC voltage between the high voltage electrode 11 and the counter electrode 12 was gradually raised, ozone began to be generated at 3.2 kV.
  • no ions were generated at the ozone generating voltage.
  • the ozone generating voltage was 4.0 kV
  • the ionized water at the ozone generating voltage was 1040 ⁇ 10 3 pieces / cm 3 .
  • the DC voltage between the high voltage electrode 11 and the counter electrode 12 was gradually increased, ozone began to be generated at 4.0 kV.
  • ions began to generate at DC voltages below the ozone generating voltage.
  • the ozone generating voltage was 4.5 kV, and the ionized water at the ozone generating voltage was 1400 ⁇ 10 3 holes / cm 3 .
  • the DC voltage between the high voltage electrode 11 and the counter electrode 12 was gradually raised, ozone began to be generated at 6.0 kV.
  • ions began to generate at DC voltages below the ozone generating voltage.
  • the ozone generating voltage was 6.0 kV
  • the ionized water at the ozone generating voltage was 1600 ⁇ 10 3 pieces / cm 3 .
  • ozone began to be generated at 4.5 kV.
  • ions began to generate at DC voltages below the ozone generating voltage.
  • the resistor part 122 is a polyester resin or PTFE
  • the resistor part 122 is a polyester resin or PTFE
  • ozone does not generate
  • a polyester resin even when a DC voltage between the high voltage electrode 11 and the counter electrode 12 is applied up to 10 kV by forming the conductor exposed region 123, ozone is not generated, but ions can be generated. there was. That is, when the DC voltage between the high voltage electrode 11 and the counter electrode 12 was 10 kV, ionized water was 2000x10 ⁇ 3> / cm ⁇ 3> .
  • the polyimide resin has the highest ozone generation voltage, and the ion water in an ozone generation voltage is large. That is, polyimide resin is most preferable as a material of the resistor portion 122. Next, an acrylic resin and an alkyd resin are preferable in this order. In addition, by forming the conductor exposed region 123, a polyester resin can also be used.
  • the relative dielectric constant is 3 or more, and the volume resistivity is 10 12 Pa ⁇ cm or more and 10 18 Pa ⁇ cm or less.
  • volume resistivity 10 14 Pa.cm or more and 10 18 Pa.cm or less are more preferable.
  • the conductor exposed region 123 when the volume resistivity of the resistor portion 122 exceeds 10 17 Pa ⁇ cm, the resistor portion 122 functions as an insulator and the high voltage electrode 11 and the counter electrode It is thought that the generation
  • Example 3 the relationship between the dust collection efficiency and ozone concentration in the case where the counter electrode 12 in the charging part 10 has the resistor part 122, and does not have is demonstrated.
  • the electrostatic precipitator 1 described here will be referred to as the electrostatic precipitator 1 of the third embodiment.
  • FIG. 6 is a perspective view of the charging unit 10 of the electrostatic precipitator 1 of the third embodiment.
  • the ventilation direction was a direction from right to left in the ground.
  • the ventilation direction is described in the direction from the upper side to the lower side in the ground.
  • the high voltage electrode 11 of the electrostatic precipitator 1 is the structure shown in FIG. That is, a plurality of tooth rows 113 each having a plurality of teeth 111 are provided.
  • the teeth 111 are arranged so that the ends thereof face each other between the teeth rows 113.
  • the conductor portion 121 is made of expanded metal.
  • Expanded metal is a wire mesh-like member in which a rhombus opening 124 is formed by inserting a cutting line into a plate made of a conductive material.
  • FIG. 7A and 7B are plan views of each of the high voltage electrode 11 and the counter electrode 12 in the electrostatic precipitator of the third embodiment.
  • FIG. 7A shows the high voltage electrode 11 and
  • FIG. 7B shows the counter electrode 12.
  • the high voltage electrode 11 shown in FIG. 7A is the same as the high voltage electrode 11 shown in FIG. 2A.
  • the counter electrode 12 shown in FIG. 7B includes a conductor portion 121 made of expanded metal and a resistor portion 122 formed to cover the surface thereof.
  • a part (upper and lower side in the up-down direction) of the conductor portion 121 is a conductor exposed region 123 that does not include the resistor portion 122.
  • the high voltage electrode 11 is attached to the case 30 via the insulating spacer 32.
  • the counter electrode 12 is attached so that the conductor exposed area
  • region 123 is connected to the case 30, and the attached part is connected to the ground terminal E (refer FIG. 3).
  • the size of the support part 14 of the high voltage electrode 11 was made into about 400 mm in the left-right direction, and about 300 mm in the up-down direction.
  • the high voltage electrode 11 was made of SUS having a thickness of 0.5 mm.
  • the distance S between the tips of the teeth 111 between the teeth rows 113 was set to about 30 mm.
  • the high voltage electrode 11 includes five rows of teeth 113 (# 1 to # 5).
  • the conductor part 121 of the counter electrode 12 was comprised with the expanded metal of SUS, and the dimension of the opening 124 was 4 mm x 8 mm.
  • the resistor portion 122 covering the conductor portion 121 of the counter electrode 12 was a polyimide resin having a thickness of 50 ⁇ m.
  • the polyimide resin used as the resistor portion 122 has a dielectric constant of 3.3 and a volume resistivity of 10 16 Pa ⁇ cm.
  • the distance G of the high voltage electrode 11 and the counter electrode 12 was 5 mm.
  • grains were formed in the dust collection part 20 downstream of the ventilation direction, and it was made to air flow through the electrification part 10 and the dust collecting part 20, and the airborne fine particles were removed.
  • FIG. 8 is a diagram showing a relationship between dust collection efficiency and ozone concentration in the electrostatic precipitator 1 of the third embodiment.
  • the electrostatic precipitator 1 by the said structure is shown as Example 3, and the electrostatic precipitator 1 which did not form the resistor part 122 in the counter electrode 12 of the charging part 10 was compared. Represented by.
  • the counter electrode 12 of the charging part 10 is attached so that it may be connected to the case 30, and the attached part is connected to the ground terminal E.
  • the ozone concentration was 3 ppb or less even when operating in a state where nearly 100% dust collecting efficiency was obtained. This value is significantly below the environmental standard (0.05 ppm).
  • the electrostatic precipitator 1 of the third embodiment includes the resistor portion 122 in the counter electrode 12 of the charging portion 10, so that high dust collection efficiency can be obtained while suppressing the ozone concentration low.
  • the electrostatic precipitator 1 described here is referred to as the electrostatic precipitator 1 of the fourth embodiment.
  • FIG. 9 is a perspective view of the charging unit 10 of the electrostatic precipitator 1 of the fourth embodiment. Also in FIG. 9, the ventilation direction is described in the up-down direction.
  • the high voltage electrode 11 of the electrostatic precipitator 1 has a plurality of teeth rows 113 each having a plurality of teeth 111.
  • Each tooth row 113 is provided with the teeth 111 which face an upper direction and a lower direction.
  • the tip ends of the teeth 111 are arranged to be zigzag (stagger) with each other between the teeth rows 113. That is, the tip of the teeth 111 does not oppose each other between the teeth rows 113, and the teeth 111 of the teeth row 113 of the other teeth between the tips of the teeth 111 of the one teeth row 113.
  • the tip is arranged. That is, between the tooth rows 113, the teeth 111 are arranged to be shifted from each other in the column direction.
  • the conductor portion 121 is expanded metal.
  • FIG. 10A and 10B are plan views of each of the high voltage electrode 11 and the counter electrode 12 in the electrostatic precipitator of the fourth embodiment.
  • FIG. 10A shows the high voltage electrode 11 and
  • FIG. 10B shows the counter electrode 12.
  • the number of teeth 111 becomes larger than in the case of the third embodiment.
  • the high voltage electrode 11 is attached to the case 30 via the insulating spacer 32.
  • the counter electrode 12 is attached so that the conductor exposed area
  • region 123 is connected to the case 30, and the attached part is connected to the ground terminal E.
  • the size of the support part 14 of the high voltage electrode 11 was made into about 400 mm in the left-right direction, and about 300 mm in the up-down direction.
  • the high voltage electrode 11 was made of SUS having a thickness of 0.5 mm. The distance S between the tips of the teeth 111 between the teeth rows 113 was 20 mm. The high voltage electrode 11 has five rows of tooth rows 113 (# 1 to # 5).
  • the counter electrode 12 comprised the conductor part 121 from the expanded metal of SUS, and made the dimension of the opening 124 about 4 mm x about 8 mm.
  • the resistor portion 122 covering the surface of the conductor portion 121 of the counter electrode 12 was made of polyimide resin having a thickness of about 50 ⁇ m. This polyimide resin was dielectric constant 3.3 and volume resistivity 10 16 Pa.cm.
  • Example 11 is a diagram showing a relationship between dust collection efficiency and ozone concentration in the electrostatic precipitator 1 of the fourth embodiment.
  • the electrostatic precipitator 1 by the said structure is shown as Example 4 here.
  • the electrostatic precipitator 1 of Example 3 and the electrostatic precipitator 1 of the comparative example 2 are shown together.
  • the ozone concentration was 2 ppb or less even when operating in a state where nearly 100% dust collecting efficiency was obtained. This ozone concentration is lower than the electrostatic precipitator 1 of the third embodiment.
  • the teeth 111 in the tooth row 113 of the high voltage electrode 11 are arranged in a zigzag pattern between the tooth rows 113. That is, the area (range) in which corona discharge is formed between the high voltage electrode 11 and the counter electrode 12 becomes wider than the case where the teeth 111 face each other between the teeth rows 113. I think.
  • the electrostatic precipitator 1 of the fourth embodiment can obtain a high dust collection efficiency while suppressing the ozone concentration lower by changing the shape of the high pressure electrode 11.
  • 12A to 12C are views showing modifications of the charging unit 10 of the electrostatic precipitator 1 of the fourth embodiment.
  • 12A is a perspective view of the charging unit 10
  • FIG. 12B is a view of the charging unit 10 viewed from the counter electrode 12 side
  • FIG. 12C is a cross-sectional view of the counter electrode 12 in the XIIC-XIIC line.
  • the conductor portion 121 of the counter electrode 12 is composed of a plurality of flat plates, and a resistor portion 122 is stacked on the surface of each flat plate constituting the plurality of flat plates.
  • Each plate is arranged to be paired with each tooth row 113.
  • each flat plate is formed in the plane of distance G from the high voltage electrode 11.
  • the width W of the conductor portion 121 is preferably smaller than the distance Q between the tip ends of the teeth 111 in the width direction of the conductor portion 121 in the tooth row 113 facing the conductor portion 121. Do.
  • a part of the conductor portion 121 (rear side with respect to the tooth row 113 side) is a conductor exposed region 123 having no resistor portion 122.
  • the counter electrode 12 is attached so that the conductor exposure area
  • region 123 may be connected with the case 30, and the attached part is connected to the ground terminal E.
  • the conductor exposed region 123 is formed so that discharge does not directly occur between the high voltage electrodes 11. That is, the conductor exposed region 123 of the counter electrode 12 is exposed at a portion that does not cause dielectric breakdown, and the high voltage electrode 11 and the conductor exposed region 123 of the counter electrode 12 are maintained at an insulating distance. have.
  • or 4 the tooth
  • the electrostatic precipitator 1 described here is referred to as the electrostatic precipitator 1 of the fifth embodiment.
  • FIG. 13A and 13B are views for explaining the charging section 10 of the electrostatic precipitator 1 of the fifth embodiment.
  • 13A is a perspective view of the charging unit 10
  • FIG. 13B is a sectional view taken along the line XIIIB-XIIIB in FIG. 13A. Also in FIG. 13A, the ventilation direction is described from the upper side to the lower side in the ground.
  • the high voltage electrode 11 of the charging unit 10 of the electrostatic precipitator 1 includes a plurality of wires 114.
  • the plurality of wires 114 are formed in the left and right directions. And both ends of the plurality of wires 114 are fixed to the support 14.
  • the plurality of wires 114 are supplied with a DC voltage through the wirings formed on the circuit board included in the support 14.
  • the counter electrode 12 of the charging portion 10 is a wire mesh (mesh) in which the conductor portion 121 is made of a conductive material.
  • the counter electrode 12 includes a resistor portion 122 formed to cover the surface of the conductor portion 121 (see FIGS. 14A and 14B described later).
  • the counter electrode 12 is curved in a semi-cylindrical shape having a radius M so as to surround each of the plurality of wires 114.
  • the radius M is set to 1/2 of the distance S between the wires 114.
  • the counter electrode 12 may be comprised in the semicircle shape which surrounds the some wire 114. As shown in FIG.
  • the wire 114 of the high voltage electrode 11 is attached to the case 30 via the insulating spacer 32.
  • the support part 14 may be attached to the case 30 via the insulating spacer 32. As shown in FIG. In addition, the support part 14 may be part of the case 30.
  • 14A and 14B are plan views of each of the high voltage electrode 11 and the counter electrode 12 of the electrostatic precipitator 1 of the fifth embodiment.
  • 14A shows the high voltage electrode 11 and
  • FIG. 14B shows the counter electrode 12.
  • the high voltage electrode 11 shown in FIG. 14A has a plurality of wires 114.
  • the counter electrode 12 shown in FIG. 14B is a wire mesh (mesh) in which the conductor portion 121 is made of a conductive material. And the resistor part 122 which covers the surface of the conductor part 121 is provided.
  • the portion where the counter electrode 12 is in contact with the case 30 has a conductor exposed region (not including the resistor portion 122). 123).
  • the counter electrode 12 of the charging section 10 includes a resistor section 122 covering the surface of the conductor section 121, whereby the discharge current is limited. And by forming the counter electrode 12 in semi-cylindrical shape in each of the some wire 114, it is thought that corona discharge arises in the space which surrounds each wire 114.
  • FIG. 15A and 15B are views showing a modification of the high voltage electrode 11 in the charging section 10 of the electrostatic precipitator 1.
  • FIG. 15A is a diagram in which the teeth 111 are configured in a different arrangement from FIG. 2A
  • FIG. 15B is a diagram in which the teeth 111 are configured in a different arrangement from FIG. 10A.
  • FIG. 15A will be described.
  • connection part 112 of the top and bottom tooth row 113 (# 1, # 5 in FIG. 2) was made to approach or contact the support part 14. In FIG. for this reason, in the uppermost and lowermost tooth row 113 (# 1, # 5 in FIG. 2A), only the tooth
  • connection part 112 of the uppermost and lowest tooth line 113 approaches or contacts the support part 14, Forming.
  • the tooth 111 of either the upper direction or the lower direction was formed.
  • FIG. 16A and 16B show another modified example of the high voltage electrode 11 in the charging unit 10 of the electrostatic precipitator 1.
  • FIG. 16A is a diagram of a plurality of needle rows 117 each provided with a plurality of needles 115, and the tip of the needles 115 are opposed to each other between adjacent needle rows.
  • FIG. 16B is a diagram composed of a plurality of needle rows 117 including a plurality of needles 115, and the tip of the needles 115 are arranged in a zigzag between adjacent needle rows 117.
  • FIG. 16A is a diagram of a plurality of needle rows 117 each provided with a plurality of needles 115, and the tip of the needles 115 are opposed to each other between adjacent needle rows.
  • FIG. 16B is a diagram composed of a plurality of needle rows 117 including a plurality of needles 115, and the tip of the needles 115 are arranged in a zigzag between adjacent needle rows 117.
  • the needle 115 and / or its tip is an example of a site that generates electric field concentration.
  • FIG. 16A replaces the tooth 111 of the high voltage electrode 11 shown in FIG. 2A with the needle 115.
  • the needle 115 is a needle-shaped member having a sharp tip.
  • the connection part 116 which connects the some needle 115 in the needle row 117 is a circuit board in which the wiring was formed, for example, and the some needle 115 and the wiring are connected.
  • FIG. 16B is a case where the teeth 111 of the high voltage electrode 11 shown in FIG. 10A are replaced with the needle 115. Since other configurations are the same as those in FIG. 10A, the description is omitted.
  • the high voltage electrode 11 may be, for example, a brush shape in which conductive carbon wires are bonded instead of the teeth 111 or the needle 115 of the high voltage electrode 11.
  • the brush-shaped part and / or its tip is an example of the site
  • FIG. 17 is a figure explaining the modification of the counter electrode 12 in the electrification part 10 of the electrostatic precipitator 1.
  • the counter electrode 12 shown in FIG. 17 is provided with the conductor part 121 which is a board which consists of electroconductive material in which the some opening 124 was formed, and the resistor part 122 formed in the surface.
  • the opening 124 is formed through the plate that is the conductor portion 121.
  • a part (both ends in the left and right directions) of the conductor portion 121 is a conductor exposed region 123 having no resistor portion 122.
  • the resistor portion 122 is formed to suppress the discharge current between the high voltage electrode 11 and the counter electrode 12. Therefore, at least, it is required that no discharge occurs between the high voltage electrode 11 and the conductor portion 121 of the counter electrode 12. From this, the resistor portion 122 is preferably formed so as to cover at least the surface of the conductor portion 121 (plate) on the side facing the high voltage electrode 11.
  • the high voltage electrode 11 and the counter electrode 12 which were mentioned above may be used in combination, respectively.
  • the high voltage electrode 11 is comprised from the several tooth row 113 which each provided the some tooth 111
  • positioning of the tooth 111 is demonstrated.
  • the tip ends of the teeth 111 are arranged to be offset from each other between the teeth rows 113.
  • the tip of the tooth 111 is arranged in a zigzag between the tooth rows 113.
  • FIG. 18 is a diagram illustrating an example of the electric dust collector 1 to which the first embodiment is applied.
  • the case 30 is shown with a broken line, and the structure of the charging part 10 and the dust collector 20 formed in the inside of the case 30 is shown.
  • the charging unit 10 includes a high voltage electrode 11 and a counter electrode 12 that faces the high voltage electrode 11.
  • the high voltage electrode 11 includes a plurality of teeth rows 113 (five rows of # 1 to # 5 in FIG. 18) each having a plurality of teeth 111 having sharp ends. Between adjoining tooth rows 113, the distal ends of the teeth 111 are alternately formed in the direction of the tooth rows 113. In FIG. 18, between the teeth rows 113 adjacent to each other, the tip of the teeth 111 in one tooth row 113 is disposed at the center of the tip of the teeth 111 in the other tooth row 113. have. That is, the tip of each tooth 111 is arranged in a zigzag between adjacent tooth rows 113.
  • the length from the tip of the tooth 111 to the connection portion 112 is L (length L), and the interval (pitch) between the teeth 111 in the tooth row 113 is P (interval P).
  • the distance between the tips of the teeth 111 in the direction perpendicular to the tooth rows is set to S (distance S).
  • the counter electrode 12 is provided with the conductor part 121 which is an expanded metal comprised from an electroconductive material as an example, and the resistor part 122 which covers the surface.
  • the high voltage electrode 11 and the counter electrode 12 in the electrification part 10 demonstrated in 2nd Embodiment are the same as that of FIG. 10A and 10B in Example 4 demonstrated in 1st Embodiment.
  • the distance G is between the high voltage electrode 11 and the counter electrode 12.
  • the high voltage electrode 11 is attached to the case 30 via an insulating spacer 32 made of an insulating material.
  • the opposite electrode 12 is attached so that the conductor exposed area 123 on which the conductor portion 121 is exposed is electrically connected (conducted) to the case 30, and the attached portion (electrical contact) is connected to the ground terminal E. Is connected to.
  • the electrostatic precipitator 1 described here is referred to as the electrostatic precipitator 1 of the sixth embodiment.
  • the charging section 10 of the electrostatic precipitator 1 made the external shape of the support section 14 of the high voltage electrode 11 viewed in the ventilation direction about 400 mm in the left and right directions and about 300 mm in the vertical direction.
  • the teeth 111 and the connection part 112 of the high voltage electrode 11 in the charging part 10 were comprised with plate-shaped stainless steel (SUS) of thickness 0.5mm. And the length L of the tooth
  • SUS plate-shaped stainless steel
  • the counter electrode 12 in the charging unit 10 was made of an expanded metal composed of SUS having an opening 124 of 4 mm x 8 mm in the conductor portion 121.
  • the resistor portion 122 covering the surface of the conductor portion 121 was made of polyimide resin having a thickness of about 50 ⁇ m. This polyimide resin had a dielectric constant of 3.3 and a volume resistivity of 10 16 Pa ⁇ cm.
  • the distance G of the high voltage electrode 11 and the counter electrode 12 was 5 mm.
  • the high voltage electrode 21 and the counter electrode 22 in the dust collector 20 had a width in the ventilation direction of 20 mm and a length in a direction orthogonal to the ventilation direction of about 400 mm. And the space
  • the resin member which comprises the case 30 etc. was not formed in the range of about 5 mm (distance r) from the distal end of the tooth 111.
  • the wind speed in the ventilation direction is 1 m / s.
  • FIG. 19 is a figure which shows the relationship between the dust collection efficiency of the electrostatic precipitator 1, and ozone concentration with respect to the space
  • the vertical axis on the left side of the figure is dust collection efficiency (%), and the vertical axis on the right side is ozone concentration (ppb).
  • the horizontal axis is the space
  • gear 111 is shown on the horizontal axis.
  • ozone concentration was calculated
  • the dust collection efficiency measures the number of suspended particulates in the upstream (before entering the electrostatic precipitator 1) and downstream (after exiting the electrostatic precipitator 1) in the ventilation direction of the electrostatic precipitator 1 by a particle counter. Saved it.
  • the dust collection efficiency and ozone concentration were measured by making the space P of the teeth 111 in the tooth row 113 into 15 mm (1.5 L), 22.5 mm (2.25 L), and 35 mm (3.5 L).
  • the distance S between the tips of the teeth 111 between the tooth rows 113 was fixed at 20 mm (2 L).
  • the dust collection efficiency increases as the spacing P of the teeth 111 increases. If the space
  • the ozone concentration is smaller as the interval P of the teeth 111 becomes larger.
  • the ozone concentration in the measured range is 10 ppb or less, which is far below the environmental standard value (0.05 ppm).
  • the spacing P of the teeth 111 is 2L or more, the ozone concentration is 5ppb or less detected by the human sense of smell.
  • FIG. 20 is a diagram showing the relationship between the dust collection efficiency and the ozone concentration of the electrostatic precipitator 1 with respect to the distance S between the tooth rows 113.
  • the vertical axis on the left side of the figure is dust collection efficiency (%), and the vertical axis on the right side is ozone concentration (ppb).
  • the horizontal axis is the distance S between the tooth rows 113.
  • the distance S between the tips of the teeth 111 between the tooth rows 113 on the basis of the length L of the teeth 111 is also shown.
  • dust collection efficiency and ozone concentration were measured by setting the distance S between the tip ends of the teeth 111 between the tooth rows 113 to 10 mm (1 L), 20 mm (2 L), 30 mm (3 L), and 40 mm (4 L). .
  • gear row 113 was fixed to 35 mm (3.5L).
  • the ozone concentration hardly depends on the distance S between the tooth rows 113, and the smaller the interval P of the teeth 111 is, the smaller it is. On the other hand, the ozone concentration in the measured range is 5 ppb or less detected by the human sense of smell.
  • 21A to 21D are diagrams schematically illustrating a discharge state in the charging unit 10.
  • 21A is a plan view seen from the high voltage electrode 11 side
  • FIG. 21B is a sectional view taken along the line XXIB-XXIB in FIG. 21A.
  • FIG. 21C shows that when the spacing of the teeth 111 is an interval P ′ which is narrower (smaller) than the spacing P of FIG. 21A
  • FIG. 21D shows that the distance between the teeth rows 113 is larger (greater) than the distance S of FIG. 6A. 'Is the case.
  • the discharge region 13 between the high voltage electrode 11 and the counter electrode 12 extends in a direction far from the tip of the tooth 111 in the high voltage electrode 11. It is thought that the counter electrode 12 faces inclinedly.
  • gear 111 is arrange
  • the spacing P of the teeth 111 in the teeth row 113 is 2L or more, and the teeth row 113 is also present. It is preferable that the distance S between them is 3L or less.
  • the high voltage electrode 11 may be set as the arrangement shown in FIG. 15B different from FIG. 10A.
  • the tooth 111 shown in FIG. 10A may be replaced with the needle 115 as shown in FIG. 16B.
  • the tooth 111 shown in FIG. 15B may be replaced with the needle 115.
  • the ozone concentration can be kept low while obtaining high dust collection efficiency.
  • the counter electrode 12 may be replaced with the one shown so far.
  • the counter electrode 12 of the charging unit 10 is formed so as to cover the surface of the conductor portion 121 and the conductor portion 121. It consists of one resistor part 122. Therefore, the discharge current is suppressed smaller than that in the case where the resistor portion 122 is not formed, and the ozone concentration is suppressed low.
  • the high voltage electrode 11 of the charging unit 10 is fixed to the case 30 via the insulating spacer 32.
  • the resin member which comprises the case 30 etc. is not formed in the range of predetermined distance r from the tip of the tooth 111 of the high voltage electrode 11.
  • the counter electrode 12 is electrically connected to the case 30 in the conductor exposed region 123 (conducting). This suppresses charging of the case 30 by static electricity and improves dust collection efficiency.
  • the high voltage electrode 11 and the counter electrode 12 are arranged in the ventilation direction in the charging section 10. Moreover, the part which generate
  • gear 111 of the high voltage electrode 11 in the charging part 10 was arrange
  • gear 111 of the high voltage electrode 11 in the charging part 10 differs from 2nd Embodiment.
  • the requirements set by the arrangement of the teeth 111 will be described.
  • FIG. 22 is a figure which shows an example of the electrostatic precipitator 1 to which 3rd Embodiment is applied.
  • the case 30 is shown with a broken line, and the structure of the charging part 10 and the dust collecting part 20 formed in the inside of the case 30 is shown.
  • the charging unit 10 includes a high voltage electrode 11 and a counter electrode 12 that faces the high voltage electrode 11.
  • the high voltage electrode 11 has a plurality of teeth rows 113 (# 1 to # 5 in FIG. 22) provided with a plurality of teeth 111.
  • the longitudinal direction of each tooth row 113 is directed to the left and right directions.
  • the uppermost tooth row 113 (# 1 in FIG. 22) is provided with a plurality of teeth 111 (10 in FIG. 22) arranged downward.
  • the lowermost tooth row 113 (# 5 in FIG. 22) includes a plurality of teeth 111 (10 in FIG. 22) arranged toward the upper side.
  • the high voltage electrode 11 is formed so that the tip of each tooth 111 opposes between adjacent tooth rows 113.
  • the high voltage electrode 11 in the electrification part 10 demonstrated in 3rd Embodiment is the same as that of FIG. 2A demonstrated in 1st Embodiment.
  • the counter electrode 12 is the same as that of 2nd Embodiment. That is, the counter electrode 12 in the electrification part 10 demonstrated in 3rd Embodiment is the same as FIG. 10B in Example 4 demonstrated in 1st Embodiment.
  • FIG. 23 is a diagram schematically illustrating a discharge state in the charging unit 10.
  • the tip ends of the teeth 111 face each other between the tooth rows 113.
  • the discharge regions 13 also face each other between the tooth rows 113. For this reason, when the distance S between the tooth rows 113 is shortened (small), the discharge regions 13 overlap each other between the opposing teeth 111.
  • the teeth between the rows of teeth 113 are compared with the case in which the distal ends of the teeth 111 are arranged zigzag between the rows of teeth 113. 111)
  • the distance S between the tips cannot be increased.
  • the teeth 111 and the connecting portion 112 of the high voltage electrode 11 in the charging portion 10 are made of plate-shaped stainless steel (SUS) having a thickness of 0.5 mm. Configured. The length L of the teeth 111 was set to 10 mm. 1 and 2A, five rows of teeth 113 were formed.
  • SUS plate-shaped stainless steel
  • the counter electrode 12 in the charging unit 10 was made of an expanded metal composed of SUS having an opening 124 of about 4 mm x about 8 mm in the conductor portion 121.
  • the resistor portion 122 covering the surface of the conductor portion 121 was made of polyimide resin having a thickness of about 50 ⁇ m. This polyimide resin had a dielectric constant of 3.3 and a volume resistivity of 10 16 Pa ⁇ cm.
  • the distance G of the high voltage electrode 11 and the counter electrode 12 was 5 mm.
  • the wind speed in the ventilation direction is 1 m / s.
  • the dust collection efficiency and ozone concentration are set so that the distance S between the tips of the teeth 111 between the teeth rows 113 is 50 mm (5 L), 60 mm (6 L), 70 mm (7 L), 80 mm (8 L), and 90 mm (9 L).
  • gear row 113 was fixed to 35 mm (3.5L).
  • the distance S between the tip ends of the teeth 111 between the teeth rows 113 is preferably 6L or more and 8L or less. In this range, the dust collection efficiency was 90% or more, and the ozone concentration was 5 ppb or less, which is detected by the human sense of smell.
  • the high voltage electrode 11 may be set as the arrangement shown in FIG. 15A different from FIG. 2A.
  • tooth 111 shown in FIG. 2A may be replaced with the needle 115 as shown in FIG. 16A.
  • tooth 111 shown in FIG. 15A may be replaced with the needle 115.
  • the interval P of the needle 115 in the needle string 117 is 2L or more and the needle 115 between the needle strings 117.
  • the counter electrode 12 may be replaced with the one shown so far.
  • the counter electrode 12 of the charging unit 10 is formed so as to cover the surface of the conductor portion 121 and the conductor portion 121. It consists of one resistor part 122. Therefore, the discharge current is suppressed smaller than that in the case where the resistor portion 122 is not formed, and the ozone concentration is suppressed low.
  • the high voltage electrode 11 of the charging unit 10 is fixed to the case 30 via the insulating spacer 32.
  • the resin member which comprises the case 30 etc. is not formed in the range of predetermined distance r from the tip of the tooth 111 of the high voltage electrode 11.
  • the counter electrode 12 is electrically connected to the case 30 in the conductor exposed region 123 (conducting). This suppresses charging of the case 30 by static electricity and improves dust collection efficiency.
  • the high voltage electrode 11 and the counter electrode 12 are arranged in the ventilation direction in the charging unit 10. Moreover, the part which generate
  • a current limiting circuit for suppressing the generation of a pulsed current resulting from random secondary electron emission or the like from the high voltage electrode will be described. Ozone generation is remarkable due to the generation of a pulsed current resulting from random secondary electron emission or the like from the high voltage electrode.
  • FIG. 24 is a diagram illustrating an example of the electric dust collector 1 to which the fourth embodiment is applied.
  • the case 30 is shown with a broken line, and the structure of the charging part 10 and the dust collector 20 formed in the inside of the case 30 is shown.
  • the charging unit 10 includes a high voltage electrode 11 and a counter electrode 12 that faces the high voltage electrode 11.
  • the high voltage electrode 11 and the counter electrode 12 are arranged to face each other.
  • the high voltage electrode 11 is provided with a plurality of tooth rows 113 (# 1 to # in FIG. 24) each provided with a plurality of tooth-shaped portions 111 (hereinafter referred to as teeth 111) each having a sharp tip. 5) is provided.
  • Each tooth row 113 is directed in the horizontal direction.
  • Each tooth row 113 includes a plurality of teeth 111 arranged upward and a plurality of teeth 111 arranged downward.
  • Each tooth 111 is formed in a direction orthogonal to the ventilation direction.
  • each tooth 111 is arranged so that the distal ends thereof are shifted with respect to the direction of the tooth row 113 between adjacent tooth rows 113, for example, between # 1 and # 2 of the tooth rows 113. It is.
  • the tip of the tooth 111 in one tooth row 113 is disposed between the adjacent tooth rows 113 in the center of the tip of the tooth 111 of the other tooth row 113. It is. That is, the tip of each tooth 111 is arranged in a zigzag between adjacent tooth rows 113.
  • Each tooth 111 may be formed in an inclined direction with respect to the ventilation direction. That is, each tooth 111 is formed in the direction crossing in the ventilation direction.
  • each connection portion 112 is connected to a wiring 17 formed on a circuit board 15 to be described later (see FIG. 26 to be described later).
  • the wiring 17 is connected to a high voltage terminal 18. And the positive electrode (high voltage supply terminal) of the high voltage generation circuit 40.
  • the several teeth 111 and the connection part 112 are comprised integrally with electroconductive material. Therefore, in this case, the plurality of teeth 111 and the connecting portion 112 are collectively referred to as a tooth row 113.
  • the tooth row 113 and the circuit board 15 are fixed to the support 14.
  • the support part 14 may be part of the case 30.
  • the number of tooth rows 113 and the number of teeth 111 in the tooth row 113 are set to a predetermined number.
  • the counter electrode 12 is composed of a member (conductor portion) made of a conductive material having an opening (hole) 124 penetrated to allow ventilation, and a resistive material formed to cover the surface thereof and functioning as a resistance to current. A member (resistor part) is provided. The conductor portion of the counter electrode 12 is connected to the cathode (reference voltage supply terminal) of the high voltage generation circuit 40 of the charging portion 10.
  • the formation of the resistor portion in the counter electrode 12 is for limiting the discharge current and suppressing ozone generation. Therefore, characteristics such as volume resistivity for the resistor portion are set in consideration of the relationship between the dust collection efficiency and the ozone concentration.
  • the members constituting the resistor portion preferably have a relative dielectric constant of 3 or more and a volume resistivity of 10 14 Pa ⁇ cm or more and 10 18 Pa ⁇ cm or less.
  • the resistance value in the thickness direction changes depending on the thickness of the resistor portion. Therefore, the discharge current to be limited can be set by the thickness of the resistor portion.
  • the resistor portion may not be formed.
  • the counter electrode 12 is formed as a plurality of rectangular plate members arranged in parallel as an example. Between the plate members function as the opening 124. On the other hand, the width (size) of the rectangular plate-shaped member and the size of the opening 124 are set in consideration of the discharge generated between the high voltage electrodes 11.
  • the distance G is between the high voltage electrode 11 and the counter electrode 12.
  • the high voltage electrode 11 is attached to the support portion 14 via an insulating spacer (insulation spacer 32 shown in FIG. 3) made of the above insulating material.
  • the support 14 is attached to the case 30.
  • the support part 14 may be part of the case 30.
  • the support part 14 may be an insulating spacer.
  • the counter electrode 12 forms a conductor exposed region exposing the conductor portion, and is attached to the case 30 so that the conductor exposed region is in electrical contact with the case 30 (conducts).
  • Ozone generation is remarkable due to a pulsed current or the like resulting from random secondary electron emission from the high voltage electrode 11.
  • the charging section 10 of the electrostatic precipitator 1 described in the fourth embodiment forms a current limiting circuit 16 for limiting a pulse current. This further suppresses ozone generation.
  • the space (discharge space) in which the discharge between the high voltage electrode 11 and the counter electrode 12 is generated is replaced with the capacitor C.
  • one terminal of the capacitor C is the high voltage electrode 11 and the other terminal is the counter electrode 12.
  • the current limiting circuit 16 is formed on the high voltage electrode 11 side of the capacitor C. As shown in FIG.
  • the high voltage generation circuit 40 includes a voltage source 40A, a resistor R0, and a capacitor C0.
  • the + side of the voltage source 40A is connected to one terminal of the resistor R0.
  • the other terminal of the resistor R0 is connected to one terminal of the capacitor C0.
  • the negative side of the voltage source 40A is connected to one terminal of the capacitor C0.
  • One terminal of the capacitor C0 is the positive electrode 40B of the high voltage generating circuit 40 and the other terminal of the capacitor C0 is the negative electrode 40C.
  • the resistor R0 limits the current from the high voltage generating circuit 40, and the capacitor C0 stabilizes the high voltage (DC voltage) of DC output from the high voltage generating circuit 40.
  • the current limiting circuit 16 includes a parallel circuit of the inductor Ls and the diode Ds. One terminal of the parallel circuit of the inductor Ls and the diode Ds is connected to the positive electrode 40B of the high voltage generator circuit 40, and the other terminal is connected to the negative electrode 40C of the high voltage generator circuit 40. .
  • the diode Ds has an anode connected to the high voltage electrode 11 and a cathode connected to the anode 40B of the high voltage generation circuit 40. That is, in the normal state in which the potential of the positive electrode 40B of the high voltage generator circuit 40 is higher (greater) than the potential of the high voltage electrode 11, the diode Ds is connected in the reverse direction in which no current flows.
  • the voltage (inter-electrode voltage) between the high voltage electrode 11 and the counter electrode 12 changes in accordance with the current flowing between the high voltage electrode 11 and the counter electrode 12.
  • a discharge occurs between the high voltage electrode 11 and the counter electrode 12
  • electrons generated by the discharge collide with the high voltage electrode 11 to emit secondary electrons.
  • the amount of these secondary electrons varies depending on the discharge state. As the number of secondary electrons increases, the discharge current increases and ozone generation increases.
  • the discharge current increasing with this secondary electron emission is a pulse current generated in a pulse shape.
  • the pulsed current contains a high frequency component (high frequency current).
  • the inductor Ls has a high impedance with respect to the high frequency component. Therefore, the high frequency current is limited by the inductor Ls.
  • the charging part 10 of the electric dust collector 1 to which 4th Embodiment is applied is provided with the current limiting circuit 16 which has the inductor Ls.
  • the inductor Ls when the inductor Ls does not flow, the inductor Ls tries to maintain the state in which the current has flowed, and generates counter electromotive force.
  • the counter electromotive force makes the potential of the high voltage electrode 11 higher (greater) than the potential of the anode 40B of the high voltage generating circuit 40. Therefore, the inter-electrode voltage between the high voltage electrode 11 and the counter electrode 12 becomes higher (greater) than the predetermined voltage. As a result, the discharge current increases, and ozone generation increases.
  • the current limiting circuit 16 includes a diode Ds connected in parallel to the inductor Ls. As described above, the diode Ds is connected in the direction in which the current flows (the order direction) with respect to the counter electromotive force generated in the inductor Ls. Therefore, it functions to dissipate the counter electromotive force generated in the inductor Ls.
  • the inductor Ls has a small impedance in a normal state in which a current of DC or low frequency component flows. Therefore, the inductor Ls does not affect the operation of the charging unit 10 in the normal state.
  • the diode Ds when the counter electromotive force is not generated by the inductor Ls, that is, in the normal state in which the potential of the anode 40B of the high voltage generating circuit 40 is higher (greater) than the potential of the high voltage electrode 11, the diode Ds. ) Is a reverse connection. Therefore, the diode Ds does not affect the operation of the charging unit 10 in the normal state.
  • the inductor Ls in the current limiting circuit 16 suppresses the pulsed current generated by the secondary electron emission.
  • the diode Ds connected in parallel with the inductor Ls suppresses the increase in the voltage between electrodes due to the counter electromotive force generated by the inductor Ls. This suppresses the increase in ozone generation by the pulsed current in the charging unit 10.
  • FIG. 26 shows an example of the high voltage electrode 11 to which the current limiting circuit 16 is connected by the parallel circuit of the inductor Ls and the diode Ds.
  • the high voltage generation circuit 40 is also shown.
  • the electric dust collector 1 provided with the high voltage electrode 11 in which the current limiting circuit 16 was formed is shown as Example 7.
  • FIG. 26 shows an example of the high voltage electrode 11 to which the current limiting circuit 16 is connected by the parallel circuit of the inductor Ls and the diode Ds.
  • the high voltage generation circuit 40 is also shown.
  • the electric dust collector 1 provided with the high voltage electrode 11 in which the current limiting circuit 16 was formed is shown as Example 7.
  • the high voltage generation circuit 40 generates a DC voltage of 4-7 kV.
  • the plurality of teeth 111 in the high voltage electrode 11 and the teeth row 113 to which the teeth 111 were connected were made of plate-shaped stainless steel (SUS) having a thickness of 0.5 mm.
  • the current limiting circuit 16 and the wiring 17 were formed on the circuit board 15.
  • the plurality of tooth rows 113 were connected to the wirings 17 on the circuit board 15.
  • One terminal of the parallel circuit of the inductor Ls and the diode Ds constituting the current limiting circuit 16 was connected to the wiring 17.
  • the other terminal of the parallel circuit was connected to the high voltage terminal 18.
  • the high voltage terminal 18 was connected to the positive electrode 40B of the high voltage generation circuit 40.
  • the diode Ds was connected in the direction demonstrated in FIG.
  • the length P from the tip of the tooth 111 to the connection part 112 was 10 mm, and the space P between the teeth 111 in the tooth row 113 was 34.6 mm.
  • the distance S between the tips of the teeth 111 in the direction perpendicular to the tooth rows 113 was set to 30 mm.
  • the inductor Ls in the current limiting circuit 16 was set to 100 ⁇ H or more.
  • the diode Ds had a reverse breakdown voltage of 7 kV or more.
  • the diode Ds may be configured by connecting a plurality of diodes in series so that the reverse breakdown voltage is 7 kV or more.
  • the conductor portions of the plurality of rectangular plate-shaped members of the counter electrode 12 were each composed of SUS having a width of 10 mm.
  • the resistor portion was a polyimide resin having a thickness of 50 ⁇ m.
  • the distance G of the high voltage electrode 11 and the counter electrode 12 was 5 mm.
  • the electrostatic precipitator 1 of the comparative example 3 is equipped with the current limiting circuit 16 comprised from the resistor R1.
  • the charging unit 10 shown in FIG. 27 replaces the parallel circuit of the inductor Ls and the diode Ds with the resistor R1 in the current limiting circuit 16 of the charging unit 10 shown in FIG. . Since other configurations are the same, the same reference numerals are used to omit the description.
  • the resistance R was 1 M ⁇ .
  • the electric dust collector 1 was operated by energizing the charging part 10 and the dust collecting part 20 of each electric dust collector 1 of Example 7 and the comparative example 3, respectively.
  • the current limiting circuit 16 functions, and the increase of ozone by the pulse current is suppressed.
  • FIG. 28A and 28B are diagrams showing a time change of the inter-electrode voltage in the charging unit 10 of each of the electrostatic precipitator 1 of Example 7 and the electrostatic precipitator 1 of Comparative Example 3.
  • FIG. 28A is Example 7
  • FIG. 28B is Comparative Example 3.
  • FIG. The horizontal axis represents time (ns) and the vertical axis represents the inter-electrode voltage (kV).
  • the electrostatic precipitator 1 of the seventh embodiment when a pulse current is generated by secondary electron emission in the vicinity of 100 ns, a voltage drop of about 270 V occurs. That is, the inductor Ls of the current limiting circuit 16 can be made to lower the potential of the high voltage electrode 11. Then, when the pulsed current stops, the high voltage electrode 11 returns to its original voltage within 10 ns.
  • the electrostatic precipitator 1 of the comparative example 3 when the pulse-shaped current by secondary electron emission generate
  • the inductor Ls has a smaller impedance for current of DC or lower frequency than the resistor R1, the time until returning to the original voltage can be shortened (small).
  • the inductor Ls causes a potential drop of 200-300V.
  • 29 is another equivalent circuit of the charging unit 10 including the current limiting circuit 16.
  • the current limiting circuit 16 is connected on the path to the high voltage electrode 11, but in FIG. 29, the current limiting circuit 16 is connected on the path to the counter electrode 12.
  • one current limiting circuit 16 was formed for the high voltage electrode 11.
  • a current limiting circuit 16 is formed for each tooth row 113 of the high voltage electrode 11.
  • FIG. 30 is a figure which shows an example of the high voltage electrode 11 which connected the current limiting circuit 16 for every tooth row 113 in the charging part 10 of the electrostatic precipitator 1 of Example 8.
  • FIG. 30 is a figure which shows an example of the high voltage electrode 11 which connected the current limiting circuit 16 for every tooth row 113 in the charging part 10 of the electrostatic precipitator 1 of Example 8.
  • the high voltage electrode 11 includes a plurality of tooth rows 113.
  • the circuit board 15 is provided with a current limiting circuit 16 by a parallel circuit of the inductor Ls and the diode Ds corresponding to each tooth row 113.
  • Each of the plurality of tooth rows 113 is connected to a corresponding current limiting circuit 16.
  • the plurality of current limiting circuits 16 are connected to a wiring 17 connected to the high voltage terminal 18.
  • the high voltage terminal 18 is connected to the anode 40B of the high voltage generation circuit 40.
  • the high voltage electrode 11 of the charging unit 10 is divided, and the current limiting circuit 16 is formed for each divided portion.
  • the tooth row 113 is an example of the sub high voltage electrode in which the high voltage electrode 11 is divided.
  • the current limiting circuit 16 is formed for each tooth row 113, but the current limiting circuit 16 may be formed for each group using the tooth rows 113 as a group.
  • a current limiting circuit 16 is formed for each of the plurality of tooth rows 113 of the high voltage electrode 11.
  • a current limiting circuit 16 is formed in each of the plurality of teeth 111 in the tooth row 113.
  • FIG. 31 is a figure which shows an example of the high voltage electrode 11 which connected the current limiting circuit 16 for every tooth
  • FIG. 31 is a figure which shows an example of the high voltage electrode 11 which connected the current limiting circuit 16 for every tooth
  • the current limiting circuit 16 is a parallel circuit of the inductor Ls and the diode Ds.
  • the high voltage electrode 11 is provided with a plurality of tooth rows 113 each having a plurality of teeth 111.
  • gear 111 is described with the high voltage electrode 11.
  • each tooth 111 is fixed to the circuit board 15 and connected to the wiring 17 on the circuit board 15.
  • each tooth 111 is connected to a current limiting circuit 16 formed on the circuit board 15, respectively.
  • the current limiting circuit 16 includes a parallel circuit of the inductor Ls and the diode Ds.
  • one end portion of the circuit board 15 is fixed to the high voltage terminal 18.
  • the wiring 17 of the circuit board 15 is connected to the high voltage terminal 18.
  • the high voltage terminal 18 is connected to the positive electrode 40B of the high voltage generation circuit 40.
  • the circuit board 15 is, for example, a base member of a printed wiring board (PCB), and the printed wiring may be the wiring 17.
  • the high voltage terminal 18 is made of a conductive material such as a copper plate.
  • the high voltage electrode 11 of the charging unit 10 is divided, and the current limiting circuit 16 is formed for each divided portion.
  • the tooth 111 is another example of the sub high voltage electrode in which the high voltage electrode 11 is divided.
  • the total length D of the teeth 111 is 10 mm
  • the length L from the tip of the teeth 111 to the circuit board 15 is 5 mm
  • the distance P between the teeth 111 in the teeth row 113 is determined.
  • the distance S between the tips of the teeth 111 between the teeth rows 113 can be 30 mm.
  • the current limiting circuit 16 is formed for each tooth 111, but the current limiting circuit 16 may be formed for each group with the teeth 111 as a group.
  • the high voltage electrode 11 is equipped with the some tooth row 113 provided with the some tooth 111.
  • the high voltage electrode 11 may be a needle with a sharp front instead of the tooth 111.
  • the high-voltage electrode 11 may be a linear wire made of a conductive material instead of the tooth row 113.
  • the counter electrode 12 may be replaced with the one shown so far.
  • the current limiting circuit 16 includes a parallel circuit of the inductor Ls and the diode Ds, and suppresses the generation of the pulsed current caused by random secondary electron emission or the like from the high voltage electrode.
  • the current limiting circuit 16 further includes a circuit for suppressing a short circuit current when the high voltage electrode 11 and the counter electrode 12 are shorted.
  • the high voltage electrode 11 is divided into a plurality of parts (tooth rows 113 and teeth 111), and a current limiting circuit 16 is provided in each of the parts. It was said to correspond to the case where it was formed. For this reason, two current limiting circuits 16 (denoted by current limiting circuits 16-1 and 16-2 in Fig. 32) are indicated. Since the current limiting circuits 16-1 and 16-2 have the same configuration, they are referred to as the current limiting circuit 16 when not distinguishing them.
  • the current limiting circuit 16-1 is connected to the capacitor C1 replacing the space (discharge space) where the discharge is generated, and the current limiting circuit 16-2 replaces the capacitor C2 replacing the other discharge space. Is connected to. Since the structure other than the current limiting circuit 16 is the same as that of description in FIG. 25 of 4th Embodiment, the same code
  • the current limiting circuit 16 will be described by the current limiting circuit 16-1.
  • the current limiting circuit 16 includes a secondary electron current limiting section 16A and a short circuit current limiting section 16B.
  • the secondary electron current limiting portion 16A is a parallel circuit of the inductor Ls and the diode Ds which suppress an increase in the discharge current caused by the pulsed current or the like caused by the secondary electron emission described in the fourth embodiment.
  • the short-circuit current limiter 16B includes a field effect transistor (FET), a resistor (resistive element) Rs, and a capacitor Cs.
  • the drain of the FET is one terminal of the short-circuit current limiting portion 16B.
  • the source of the FET is connected to one terminal of the parallel circuit of the resistor Rs and the capacitor Cs.
  • the gate of the FET is connected to the other terminal of the parallel circuit of the resistor Rs and the capacitor Cs.
  • One terminal of the parallel circuit of the gate and the resistor Rs of the FET and the capacitor Cs is one terminal of the short-circuit current limiting portion 16B.
  • the resistor Rs is connected between the source-gate of the FET.
  • the FET and the resistor Rs constitute a series circuit.
  • the secondary electron current limiting portion 16A and the short circuit current limiting portion 16B are connected in series.
  • one terminal (the anode side on the FET side) of the short-circuit current limiting portion 16B is connected to the anode 40B of the high voltage generation circuit 40.
  • One terminal (the gate side of the FET) of the short-circuit current limiting portion 16B is far from the one terminal (capacitor C1) of the parallel circuit of the inductor Ls and the diode Ds of the short-circuit current limiting portion 16B.
  • the other terminal (far side from the capacitor C1) of the parallel circuit of the inductor Ls and the diode Ds is connected to the high voltage electrode 11.
  • a normally-on n-channel junction type FET JFET
  • a normally-on MOSFET can be used as the FET.
  • a normally on FET current flows between the source and the drain even if the potential (gate voltage) to the source of the gate is the same (the gate voltage is 0V). Then, the conductivity between the source terminal and the drain terminal changes depending on the potential (gate voltage) with respect to the source of the gate. In other words, as the gate voltage is higher (large), the conductivity is increased, and the current flowing between the source and the drain increases.
  • the potential of the gate is lower than the potential of the source (the gate voltage is negative), the current flowing between the source and the drain decreases.
  • the secondary electron current limiting portion 16A has been described in the fourth embodiment. Therefore, the short-circuit current limiting portion 16B will be described.
  • the gate of the FET is slightly lower than the potential of the source due to the potential drop of the resistor Rs.
  • the potential drop in the resistance Rs is small.
  • the discharge current continues to flow.
  • the pulsed current due to secondary electron emission and the like contain a high frequency component
  • the high voltage electrode 11 is supplied via the FET, the capacitor Cs, and the inductor Ls. Flow. Therefore, the resistance Rs does not affect the pulsed current. That is, the secondary electron current limiting portion 16A operates without being affected by the short circuit current limiting portion 16B.
  • the resistor Rs causes a potential drop by the current flowing in the short circuit, and controls the conductivity of the FET. Therefore, you may set the value of the resistance Rs corresponding to the electric current which can flow at the time of a short circuit.
  • FIG. 33 is a diagram illustrating a time change of the inter-electrode voltage in the charging unit 10 of the electrostatic precipitator 1 of the tenth embodiment.
  • the horizontal axis represents time ( ⁇ s), and the vertical axis represents inter-electrode voltage (kV).
  • the time change of the voltage between electrodes in the charging section 10 was obtained by simulation.
  • FIG. 34 is a diagram illustrating a time change of the inter-electrode voltage due to a short circuit in the charging unit 10 of the electrostatic precipitator 1.
  • the horizontal axis represents time ( ⁇ s), and the vertical axis represents inter-electrode voltage (kV).
  • the time change of the voltage between electrodes in the charging section 10 was obtained by simulation.
  • 35 is a diagram illustrating an example of the high voltage electrode 11 to which the current limiting circuit 16 is connected. In FIG. 35, the high voltage generating circuit 40 is also shown.
  • the high voltage electrode 11 includes a plurality of tooth rows 113 each having a plurality of teeth 111.
  • the circuit board 15 is provided with a plurality of current limiting circuits 16 corresponding to the plurality of tooth rows 113.
  • the other structure except the current limiting circuit 16 is the same as that of Example 8 in 4th Embodiment, it abbreviate
  • the current limiting circuit 16 includes a secondary electron current limiting portion 16A having an inductor Ls and a diode Ds; And a short-circuit current limiting portion 16B including a FET, a resistor Rs, and a capacitor Cs.
  • 36A to 36C are other equivalent circuits of the charging unit 10 including the current limiting circuit 16.
  • 36A is a case where the order of connection of the secondary electron current limiting portion 16A and the short circuit current limiting portion 16B in the current limiting circuit 16 of FIG. 32 is reversed.
  • 36B shows the case where the current limiting circuit 16 is connected to the counter electrode 12.
  • 36C shows the case where the high voltage electrode 11 and the counter electrode 12 are formed between the secondary electron current limiting portion 16A and the short circuit current limiting portion 16B in the current limiting circuit 16.
  • each rectangular plate-shaped member is an example of a sub counter electrode.
  • the high voltage electrode 11 and the counter electrode 12 are formed between the secondary electron current limiting portion 16A and the short circuit current limiting portion 16B in the current limiting circuit 16.
  • Fig. 32 also operates in the same manner as described in Fig. 32. At this time, the secondary electron current limiting portion 16A and the short circuit current limiting portion 16B may be replaced with each other.
  • the high pressure electrode 11 may be a needle having a sharp front instead of the teeth 111.
  • the high-voltage electrode 11 may be a linear wire made of a conductive material instead of the tooth row 113.
  • the counter electrode 12 includes the conductor portion 121 and the resistor portion 122 in the electrification portion 10 of the electrostatic precipitator 1.
  • the resistor portion 122 was formed so as to cover at least the conductor portion 121 facing the high voltage electrode 11. Thereby, the discharge current between the high voltage electrode 11 and the counter electrode 12 was restrict
  • the counter electrode 12 in the sixth embodiment further includes an insulator portion 125 between the conductor portion 121 and the resistor portion 122.
  • the resistor portion 122 which is an example of the second member, has a smaller volume resistivity than the insulator portion 125, which is an example of the first member.
  • FIG. 37 is a schematic diagram for demonstrating the charging part 10 of the electrostatic precipitator 1 to which 6th Embodiment is applied.
  • the charging unit 10 includes a high voltage electrode 11 and a counter electrode 12 that faces the high voltage electrode 11.
  • the high voltage electrode 11 is represented by the teeth 111 with the tip facing the counter electrode 12 side (downward in the drawing plane).
  • the high voltage electrode 11 is connected to the anode of the high voltage generation circuit 40.
  • the high voltage electrode 11 may be a wire having a conductor or a needle having a sharp tip, in addition to the teeth 111.
  • the teeth 111 and the needle may be arranged so that the distal end faces the counter electrode 12, and may be arranged so as to face the direction parallel to the counter electrode 12.
  • the counter electrode 12 is configured by stacking the conductor portion 121, the insulator portion 125, and the resistor portion 122 in this order. On the other hand, the conductor portion 121 and the resistor portion 122 are in direct contact with the predetermined contact region 126.
  • the resistor portion 122 side faces the high voltage electrode 11.
  • the conductor portion 121 is connected to the cathode of the high voltage generation circuit 40.
  • the discharge which arises between the high voltage electrode 11 and the counter electrode 12 is demonstrated.
  • the voltage between the high voltage electrode 11 and the counter electrode 12 is increased by the high voltage generation circuit 40, corona discharge is generated from the vicinity of the tip of the high voltage electrode 11. At this time, light emission may be seen in the corona region 131 near the tip of the high voltage electrode 11.
  • Corona discharge occurs when an uneven electric field is generated around the sharp tip of the high voltage electrode 11. That is, when the voltage applied to the high voltage electrode 11 becomes high, electrons (denoted by-in the drawing) are emitted from the pointed tip of the high voltage electrode 11. The emitted electrons are accelerated and impinge on the air molecules around the tip. Air molecules are then ionized to generate positive ions.
  • the current flowing between the high voltage electrode 11 and the counter electrode 12 is determined by the movement of the positive ions generated by ionizing the air molecules, the electrons neutralizing the cations, and the secondary electrons generated by the cation colliding.
  • the current I flowing through the resistor portion 122 causes a voltage drop. Then, the voltage applied to the space between the high voltage electrode 11 and the counter electrode 12 drops (drops). As a result, the current (discharge current) of the corona discharge is limited, and the transition from the corona discharge to the arc discharge (spark) is suppressed.
  • the current I is determined by the resistance in the transverse direction of the resistor unit 122.
  • the resistor portion 122 has a dimension (length) from the left end in the lateral direction to the contact area 126 in the right end being set to 100 to 1000 times larger than the dimension (thickness) in the longitudinal direction. It is. Therefore, when the insulator portion 125 is not formed between the high voltage electrode 11 and the conductor portion 121 of the counter electrode 12 by forming the resistor having a predetermined resistance value by the resistor portion 122. In comparison with this, a material having a small volume resistivity can be selected. In other words, when the insulator portion 125 is formed, the range of choice of materials constituting the resistor portion 122 is widened.
  • produces in the horizontal direction at the paper surface of FIG. Therefore, the electric field generated in the transverse direction on the surface of the resistor portion 122 is smaller than the electric field generated in the thickness direction of the resistor portion 122 when the insulator portion 125 is not formed. Therefore, when the insulator portion 125 is formed, dielectric breakdown in the resistor portion 122 is less likely to occur than when the insulator portion 125 is not formed.
  • the discharge between the high voltage electrode 11 and the counter electrode 12 may be stopped by the voltage drop of the resistor portion 122 in the counter electrode 12. However, when the voltage applied to the space between the high voltage electrode 11 and the counter electrode 12 recovers, the discharge resumes. Thereafter, the discharge may be stopped again due to the voltage drop of the resistor portion 122 of the counter electrode 12. In this manner, the discharge is stopped and resumed. That is, although the high voltage generation circuit 40 supplies a DC voltage between the high voltage electrode 11 and the counter electrode 12, discharge can be stopped and resumed AC by AC.
  • the counter electrode 12 of the charging unit 10 includes a conductor portion 121, an insulator portion 125 covering the conductor portion 121, and a resistor portion 122 covering the insulator portion 125.
  • the effect of electrically contacting (conducting) the conductor portion 121 and the resistor portion 122 will be described.
  • the electrostatic precipitator 1 having the counter electrode 12 in which the conductor portion 121 and the resistor portion 122 are in electrical contact is referred to as the electrostatic precipitator 1 of the eleventh embodiment.
  • the electrostatic precipitator 1 having the counter electrode 12 which does not electrically contact the conductor portion 121 and the resistor portion 122 is referred to as the electrostatic precipitator 1 of Comparative Example 4.
  • FIG. 38A and 38B are diagrams showing the ionized water generated in the charging section 10 of each of the electrostatic precipitator 1 of Example 11 and the electrostatic precipitator 1 of Comparative Example 4.
  • FIG. 38A is Example 11 and FIG. 38B is Comparative Example 4.
  • FIG. The horizontal axis represents time (s) and the vertical axis represents ionized water ( ⁇ 10 3 pieces / cm 3 ).
  • 39A and 39B are views for explaining the charging section 10 in the electrostatic precipitator 1 according to the twelfth embodiment.
  • 39A is a perspective view of the charging unit 10
  • FIG. 39B is a sectional view taken along the line XXXIXB-XXXIXB of the counter electrode 12.
  • the high voltage electrode 11 is comprised by the wire 114.
  • the conductor portion 121 of the counter electrode 12 is a plate-shaped member (punching metal) made of a conductive material in which a plurality of openings 124 are formed in a zigzag.
  • the insulator portion 125 and the resistor portion 122 are sequentially formed on the surface of the conductor portion 121.
  • a portion of the conductor portion 121 is provided with a contact region 126 which makes the conductor portion 121 and the resistor portion 122 contact with each other without forming the insulator portion 125.
  • a conductor exposed region 123 exposing the conductor portion 121 is formed at an end portion of the conductor portion 121.
  • the conductor exposed region 123 is connected to the cathode of the high voltage generating circuit 40.
  • the wire 114 is an example of the site
  • the wire 114 which is the high voltage electrode 11 was comprised with SUS of 0.2 mm in diameter.
  • the conductor part 121 is made into the aluminum plate of 30 mm in width, and the circular opening 124 whose planar shape is 3 mm in inner diameter is arranged in zigzag.
  • the aluminum of the conductor portion 121 was anodized (armite treatment) to form an insulator portion 125 made of aluminum oxide on the surface.
  • the resistor portion 122 was formed by covering the insulator portion 125 with a polyimide resin having a thickness of 50 ⁇ m.
  • the high voltage electrode 11 is attached to the case 30 via an insulating spacer 32 made of an insulating material.
  • the counter electrode 12 is attached by the conductor exposed region 123 on which the conductor portion 121 is exposed so as to be electrically connected to the case 30 (conducting). In this way, the case 30 is suppressed from being charged by static electricity.
  • 40A and 40B are views for explaining the charging section 10 in the electrostatic precipitator 1 according to the thirteenth embodiment.
  • 40A is a perspective view of the charging unit 10
  • FIG. 40B is a sectional view of a part of the counter electrode 12. As shown in FIG.
  • the high voltage electrode 11 is comprised by the wire 114 similarly to Example 11. As shown in FIG. 40A, in the electrification part 10 in the electrostatic precipitator 1 of Example 13, the high voltage electrode 11 is comprised by the wire 114 similarly to Example 11. As shown in FIG. 40A, in the electrification part 10 in the electrostatic precipitator 1 of Example 13, the high voltage electrode 11 is comprised by the wire 114 similarly to Example 11. As shown in FIG. 40A, in the electrification part 10 in the electrostatic precipitator 1 of Example 13, the high voltage electrode 11 is comprised by the wire 114 similarly to Example 11. As shown in FIG. 40A, in the electrification part 10 in the electrostatic precipitator 1 of Example 13, the high voltage electrode 11 is comprised by the wire 114 similarly to Example 11. As shown in FIG. 40A, in the electrification part 10 in the electrostatic precipitator 1 of Example 13, the high voltage electrode 11 is comprised by the wire 114 similarly to Example 11. As shown in FIG. 40A, in the electrification part 10 in the electrostatic precipitator 1 of Example 13, the high
  • the conductor portion 121 of the counter electrode 12 is a wire mesh (mesh) made of a conductive material.
  • the counter electrode 12 is a wire mesh of square SUS304 having an outer shape of the conductor portion 121 of 100 mm on one side.
  • a cross-sectional view of a part of the counter electrode 12 illustrated in FIG. 40B illustrates a cross section of one line (wire) portion of the wire mesh (mesh) constituting the conductor portion 121 of the counter electrode 12.
  • the polyimide resin coated to cover the conductor portion 121 was used as the insulator portion 125
  • the acrylic resin coated so as to cover the insulator portion 125 was used as the resistor portion 122.
  • a portion of the counter electrode 12 is caulked to serve as an electrical contact 127.
  • the electrical contact 127 is connected to the cathode of the high voltage generating circuit 40.
  • the insulator portion 125 and the resistor portion 122 applied to the conductor portion 121 are broken, and the resistor portion 122 is electrically connected to the conductor portion 121.
  • a part of the conductor portion 121 is exposed. That is, in the twelfth embodiment, the contact region 126 and the conductor exposed region 123 shown in FIGS. 39A and 39B are collectively formed by caulking.
  • 41A and 41B are views for explaining the charging section 10 in the electrostatic precipitator 1 according to the fourteenth embodiment.
  • 41A is a perspective view of the charging unit 10
  • FIG. 41B is a sectional view of a part of the counter electrode 12. As shown in FIG.
  • the high voltage electrode 11 is comprised by the wire 114 similarly to Example 12, 13.
  • the conductor portion 121 of the counter electrode 12 is an expanded metal in which the conductor portion 121 is made of a conductive material.
  • the counter electrode 12 is made of expanded metal composed of square aluminum whose outer side of the conductor portion 121 is 100 mm on one side.
  • a cross-sectional view of a part of the counter electrode 12 shown in FIG. 41B shows a cross section of one line of the expanded metal constituting the counter electrode 12.
  • aluminum oxide obtained by anodizing the conductor portion 121 made of expanded metal was used as the insulator portion 125, and a polyimide resin was applied to cover the insulator portion 125 to form the resistor portion 122.
  • a portion of the counter electrode 12 is caulked to serve as an electrical contact 127.
  • the electrical contact 127 is connected to the cathode of the high voltage generating circuit 40.
  • the insulator portion 125 and the resistor portion 122 applied to the conductor portion 121 are broken, and the resistor portion 122 is electrically connected to the conductor portion 121.
  • a part of the conductor portion 121 is exposed. That is, in the twelfth embodiment, the contact region 126 and the conductor exposed region 123 shown in FIGS. 39A and 39B are collectively formed by caulking.
  • 42A and 42B are views for explaining the charging section 10 in the electrostatic precipitator 1 according to the fifteenth embodiment.
  • 42A is a perspective view of the charging unit 10
  • FIG. 42B is a sectional view taken along the line XLIIB-XLIIB in FIG. 42A.
  • the high voltage electrode 11 is composed of a plurality of tooth rows 113 including a plurality of teeth 111. It is.
  • the tooth row 113 of the high voltage electrode 11 was made of SUS having a thickness of 0.5 mm. And each tooth 111 of the tooth row 113 was arrange
  • the counter electrode 12 is a member (punching metal) in which the conductor portion 121 is made of a plate-like conductive material in which a plurality of openings 124 are zigzag.
  • the conductor part 121 of the counter electrode 12 was comprised from the aluminum plate of 200 mm x 400 mm in planar shape by which the circular opening 124 whose planar shape is 3 mm in internal diameter is arranged in zigzag.
  • the aluminum of the conductor portion 121 was anodized (armite treatment) to form an insulator portion 125 made of aluminum oxide on the surface.
  • the resistor portion 122 was formed by covering the insulator portion 125 with a polyimide resin.
  • the contact region 126 which electrically connects (conducts) the conductor portion 121 and the resistor portion 122 to a portion corresponding to the rear surface side of the conductor portion 121 with respect to the high voltage electrode 11. Formed.
  • the conductor exposed region 123 was formed without exposing the conductor portion 121 to the insulator portion 125 and the resistor portion 122.
  • the conductor exposed region 123 is connected to the cathode of the high voltage generating circuit 40.
  • FIG. 43 illustrates the relationship between the inter-electrode voltage (kV) applied between the high voltage electrode 11 and the conductor portion 121 of the counter electrode 12 and the amount of ozone generation ( ⁇ g / h) per tooth 111.
  • the electrostatic precipitator 1 of the fifteenth embodiment and the counter electrode 12 of the charging portion 10 do not include the insulator portion 125 of aluminum oxide and the resistor portion 122 of the polyimide resin.
  • the electrostatic precipitator 1 is shown by the electrostatic precipitator 1 of the comparative example 5.
  • the counter electrode 12 is comprised from the punching metal of aluminum.
  • Example 15 even if the electrode-to-electrode voltage was 7 kV, ozone generation amount is almost zero. On the other hand, in the comparative example 5, the amount of ozone generation increases with the increase of the voltage between electrodes.
  • the amount of ozone generated is suppressed by configuring the counter electrode 12 with the conductor portion 121, the insulator portion 125, and the resistor portion 122.
  • the surface resistivity of the resistor portion 122 is preferably 1 G? / Cm or more when the voltage (inter-electrode voltage) applied between the high voltage electrode 11 and the counter electrode 12 is 5 kV. In this case, ozone generation amount can be suppressed to 1 microgram / h or less. On the other hand, since the surface resistivity of the resistor portion 122 varies with the inter-electrode voltage, it is shown here as the surface resistivity of the resistor portion 122 at a voltage of 5 kV between electrodes.
  • Table 1 is a table showing a comparison of the dielectric breakdown voltage.
  • the dielectric breakdown voltage is a voltage that transitions from corona discharge to arc discharge.
  • Example 15 Comparative Example 5, and Example 16 are shown.
  • Example 15 and the comparative example 5 were demonstrated above.
  • the conductor portion 121 of the counter electrode 12 in the charging portion 10 is made of a punching metal of aluminum, and a polyimide resin is coated on the surface of the resistor portion 122.
  • the dielectric breakdown voltage of the electrification part 10 in the electrostatic precipitator 1 of Example 15 is 10 kV or more. Also in the electrostatic precipitator 1 of the sixteenth embodiment without the insulator portion 125, the dielectric breakdown voltage is 8 kV.
  • the dielectric breakdown voltage is as low as 5.5 kV.
  • the insulation breakdown voltage increases because the counter electrode 12 includes the resistor portion 122, and the insulation breakdown voltage further increases by providing the insulator portion 125.
  • 44A and 44B are views for explaining the charging section 10 in the electrostatic precipitator 1 according to the seventeenth embodiment.
  • 44A is a perspective view of the charging unit 10
  • FIG. 44B is a sectional view of a part of the counter electrode 12. As shown in FIG.
  • the high voltage electrode 11 is provided with a plurality of teeth having a plurality of teeth 111, similarly to the fifteenth embodiment. It consists of a row 113. Therefore, detailed description is omitted.
  • the counter electrode 12 is a wire mesh (mesh) in which the conductor portion 121 is made of a conductive material.
  • the counter electrode 12 was made of a wire mesh of square SUS304 having an outer shape of the conductor portion 121 of 100 mm in the same way as in the thirteenth embodiment. Therefore, detailed description is omitted.
  • 45A and 45B are views for explaining the charging section 10 in the electrostatic precipitator 1 according to the eighteenth embodiment.
  • 45A is a perspective view of the charging unit 10
  • FIG. 45B is a sectional view of the counter electrode 12 taken along the line XLVB-XLVB in FIG. 45A.
  • the high voltage electrode 11 is provided with a plurality of teeth having a plurality of teeth 111, similarly to the fifteenth embodiment. It consists of a row 113.
  • the tooth row 113 of the high voltage electrode 11 was made of SUS having a thickness of 0.5 mm. And the teeth 111 of each tooth row 113 were arrange
  • the counter electrode 12 is comprised from the member (punching board) of the plate-shaped resin material in which the resistor part 122 was formed in the several opening 124 in zigzag form.
  • the resistor portion 122 of the counter electrode 12 was a plate of acrylic resin having a planar shape of 200 mm x 400 mm and a thickness of 2 mm.
  • a circular opening 124 having an inner diameter of 3 mm in a planar shape is arranged in a zigzag pattern in the acrylic resin plate that is the resistor portion 122 of the counter electrode 12.
  • the electroconductive film which has a 20-micrometer-thick adhesive layer and the conductive layer which consisted of an electrically conductive material on the back surface side of the acrylic resin plate which is the resistor part 122 of the counter electrode 12 was adhere
  • the conductive layer of the conductive film is the conductor portion 121.
  • the adhesive layer of the conductive film is the insulator portion 125. Therefore, the conductive layer of the conductive film which is the conductor part 121 is connected to the anode of the high voltage generation circuit 40.
  • the resistor part 122 is an example of a base material
  • the insulator part 125 is an example of a 1st member
  • the conductor part 121 is an example of a 2nd member.
  • an opening having a diameter (for example, 3.5 mm) larger than the opening 124 formed in the acrylic resin plate is formed to face the opening 124 formed in the acrylic resin plate. That is, as shown in FIG. 45B, the pressure-sensitive adhesive layer and the conductive layer of the conductive film do not protrude from the opening formed in the acrylic resin as viewed from the high voltage electrode 11 side.
  • 46A and 46B are views for explaining the charging section 10 in the electrostatic precipitator 1 according to the nineteenth embodiment.
  • 46A is a perspective view of the charging unit 10
  • FIG. 46B is a cross-sectional view of the counter electrode 12 in the XLVIB-XLVIB line in FIG. 46A.
  • the high voltage electrode 11 is provided with a plurality of teeth having a plurality of teeth 111, similarly to the fifteenth embodiment. It consists of a row 113.
  • the tooth row 113 of the high voltage electrode 11 was made of SUS having a thickness of 0.5 mm. And the teeth 111 of each tooth row 113 were arrange
  • the counter electrode 12 is a member (punching board) in which the insulator portion 125 is formed of the plate-like insulating material in which a plurality of openings 124 are zigzag.
  • the insulator portion 125 of the counter electrode 12 is a ceramic plate having a planar shape of 200 mm x 400 mm and a thickness of 2 mm.
  • circular openings 124 having an inner diameter of 3 mm are arranged in a zigzag pattern.
  • the conductor part 121 comprised from the electroconductive material of the copper plate was adhere
  • the opening was formed corresponding to the opening 124 formed in the ceramic plate which is the insulator part 125.
  • the resistor portion 122 of the polyimide resin is formed so as to cover the copper plate and the opening 124 which are the conductor portions 121. That is, except for the conductor exposed region 123 of the conductor portion 121, the surface of the counter electrode 12 is covered with the resistor portion 122 of the polyimide resin.
  • the insulator part 125 is an example of a base material
  • the resistor part 122 is an example of a 1st member
  • the conductor part 121 is an example of a 2nd member.
  • one of the conductor portion 121, the insulator portion 125, and the resistor portion 122 is a hard member (base member), and the other is a film or a film (layer) adhered to the base member. ) May be.
  • a plurality of conductor parts 121, insulator parts 125, and resistor parts 122 are hard members (base members), and these may be laminated.
  • the conductor portion 121 may be made of a conductive material, that is, a good conductor.
  • the insulator portion 125 may be configured to suppress the flow of electrons (current) in the resistor portion 122 so as not to directly face the conductor portion 121.
  • the resistor unit 122 may be any one capable of suppressing ozone generation by limiting the discharge current.
  • the high pressure electrode 11 is disposed upstream and the counter electrode 12 is disposed downstream of the ventilation direction. there was.
  • the high voltage electrode 11 and the counter electrode 12 may be arranged opposite to the ventilation direction.
  • the high voltage electrode 11 and the counter electrode 12 in the charging part 10 of the electrostatic precipitator 1 shown in FIG. 1 are arrange
  • the electrostatic precipitator 1 operates similarly to having demonstrated in 1st Embodiment.
  • the high voltage electrode 11 and the counter electrode 12 are arranged in the ventilation direction in the charging unit 10.
  • gear 111 in the upstream of the ventilation direction, and the counter electrode 12 were formed in the downstream side.
  • the high voltage electrode 11 and the counter electrode 12 are arrange
  • the high voltage electrode 11 is equipped with the main high voltage electrode 11A and the vertical high voltage electrode 11B.
  • 48 is a diagram illustrating an example of the electric dust collector 1 to which the eighth embodiment is applied.
  • the high voltage electrode 11 in the charging unit 10 includes a plurality of main high voltage electrodes 11A and a plurality of vertical high voltage electrodes 11B.
  • the counter electrode 12 includes a plurality of sub counter electrodes 12A. And the high voltage electrode 11 and the counter electrode 12 are arrange
  • the dust collector 20 is similar to the electric dust collector 1 to which the first to seventh embodiments are applied. Therefore, description of the dust collector 20 is omitted.
  • the electrostatic precipitator 1 is not limited to the arrangement
  • the main high pressure electrode 11A in the high voltage electrode 11 is provided with a plurality of teeth 111, for example, as shown in FIG.
  • each of the plurality of teeth 111 is connected to the connecting portion 112 and constitutes a tooth row 113.
  • the vertical high voltage electrode 11B in the high voltage electrode 11 is provided with the wire 114, for example, as shown in FIG.
  • each of the counter electrodes 12 is not shown, for example, the counter electrode 12 of the electrification part 10 in the electrostatic precipitator 1 to which the sixth embodiment is applied, Similarly, a plate-shaped conductor portion, an insulator portion formed to cover both surfaces of the conductor portion, and a resistor portion formed to cover the surface of the insulator portion are provided. That is, in the sub counter electrode 12A, the insulator portion and the resistor portion are formed on the surface of the conductor portion in this order.
  • the sub counter electrode 12A has a plate shape.
  • the counter electrodes 12 are formed side by side in a direction intersecting (orthogonal in FIG. 48) in the ventilation direction such that the plurality of sub counter electrodes 12A are along the ventilation direction.
  • the surface of the counter electrode 12 may not be parallel with respect to the ventilation direction, and may be inclined with respect to the ventilation direction as long as predetermined ventilation can be obtained.
  • the main high pressure electrode 11A in the high voltage electrode 11 is disposed between two adjacent sub counter electrodes 12A, and is arranged between the main high voltage electrode 11A and the sub counter electrode 12A.
  • a longitudinal high voltage electrode 11B is disposed.
  • the surface of the sub counter electrode 12A which does not face the main high voltage electrode 11A and the vertical high voltage electrode 11B may not be covered with an insulator portion and / or a resistor portion. .
  • the teeth 111 of the main high voltage electrode 11A are disposed so that the tip thereof faces the ventilation direction (toward the downstream side in the ventilation direction).
  • the wire 114 which is the longitudinal high voltage electrode 11B is formed so that the tooth row 113 which the teeth 111 in 11 A of main high voltage electrodes comprise may be formed.
  • the wire 114 which is the longitudinal high voltage electrode 11B may be formed along the tooth row 113 in the vicinity of the tip end of the tooth 111 in the main high voltage electrode 11A.
  • the electrostatic precipitator 1 shown in FIG. 48 in the charging unit 10, two main high voltage electrodes 11A of the high voltage electrode 11 and the vertical high voltage electrode 11B are provided. Although the case where there are four sub counter electrodes 12A of four and the counter electrode 12 is shown, it is not limited to this number.
  • FIG. 49A to 49C are perspective views of main parts of the charging unit 10 in the electrostatic precipitator 1 according to Example 20 and Comparative Examples 6 and 7.
  • FIG. 49A is Example 20
  • FIG. 49B is Comparative Example 6
  • FIG. 49C is Comparative Example 7.
  • FIG. 49A is Example 20
  • FIG. 49B is Comparative Example 6
  • FIG. 49C is Comparative Example 7.
  • one main high voltage electrode 11A and two sub counter electrodes 12A formed to face the main high voltage electrode 11A are shown.
  • the electrostatic precipitator 1 which concerns on Example 20 is the electrostatic precipitator 1 to which 8th Embodiment is applied, as shown to FIG. 49A.
  • the vertical high voltage electrode 11B is provided between the sub counter electrode 12A and the main high voltage electrode 11A.
  • the main high voltage electrode 11A is equipped with the tooth row 113 comprised by the tooth
  • the longitudinal high voltage electrode 11B is a wire 114.
  • a tungsten (W) wire having a diameter of 0.2 mm was used.
  • the sub counter electrode 12A is a laminate in which an insulator portion and a resistor portion are formed in this order on the surface of the conductor portion.
  • the distance between the main high voltage electrode 11A and the sub counter electrode 12A was set to 20 mm.
  • the vertical high voltage electrode 11B was in a state in which no voltage was applied, that is, in a floating (floating) state.
  • the electrostatic precipitator 1 which concerns on the comparative example 6 is a structure remove
  • the electrostatic precipitator 1 according to the comparative example 7 has a tooth row 113 which is the main high voltage electrode 11A (high pressure electrode 11) in the comparative example 6 of FIG. 49B.
  • the wire 114 is used.
  • the sub counter electrode 12A is a conductor portion that does not include an insulator portion and a resistor portion.
  • the conductor part is made Al. Therefore, "(Al)" was written on the sub counter electrode 12A.
  • the distance between the main high pressure electrode 11A (high pressure electrode 11) and the counter electrode 12A was set to 20 mm.
  • Example 20 and the comparative example 6 the sub counter electrode 12A was described as "(laminated body)."
  • the electrostatic precipitator 1 was installed in the test wind tunnel, the wind speed was set to 1 m / s by the fan, and the wind passed through the dust collector 20 from the charging section 10 once (one pass).
  • the dust collection efficiency is calculated by forming sampling ports on the upstream and downstream sides of the test wind tunnel, and measuring the number of suspended particles by particle size using a scanning nano particle diameter distribution meter (SMPS) through the sampling port. did.
  • SMPS scanning nano particle diameter distribution meter
  • the ozone concentration was determined from the difference between the ozone concentrations on the upstream side and the downstream side measured using an ozone concentration meter through sampling ports formed on the upstream side and the downstream side of the test wind tunnel.
  • Example 20 in which the longitudinal high voltage electrode 11B is formed, when 8.0 kV to 8.2 kV is applied to the main high voltage electrode 11A, the floating high voltage electrode 11B is suspended. A voltage of 1.8 kV to 2.5 kV was generated.
  • the ozone concentration was 9.2 ppb even when 300 ⁇ A was flowed through the main high pressure electrode 11A.
  • dust collection efficiency was 97% or more in 20 nm of particle diameters, and 99% or more in other particle diameters (50 nm, 100 nm, 300 nm).
  • Comparative Example 7 in which the main high pressure electrode 11A is made of the wire 114 and the sub counter electrode 12A is made of Al, it flows into the wire 114 of the main high pressure electrode 11A.
  • the collection efficiency is improved regardless of the particle diameter.
  • the dust collection efficiency of the ultrafine particles having a particle diameter of 20 nm increases from 75% to 93% when the current is 440 ⁇ A. That is, the dust collection efficiency is 90% or more.
  • the ozone concentration is greatly increased from 9.2 ppb to 190 ppb when the current is 440 ⁇ A.
  • the ozone concentration is kept low and The dust collection efficiency of the ultrafine particle of 0.1 micrometer or less of particle diameters can be improved.
  • FIG. 51 is a diagram illustrating an operation of the vertical high voltage electrode 11B.
  • the positions of the voltage on the vertical axis and the main high voltage electrode 11A, the vertical high voltage electrode 11B, and the sub counter electrode 12A are schematically illustrated on the horizontal axis.
  • a voltage of 8.0 kV to 8.2 kV is applied to the main high voltage electrode 11A
  • a voltage of 1.8 kV to 2.5 kV is caused to the floating high voltage electrode 11B.
  • the potential gradient from the main high pressure electrode 11A toward the sub counter electrode 12A becomes two steps without becoming uniform. That is, a high potential gradient region ⁇ having a potential difference from the main high voltage electrode 11A to the longitudinal high voltage electrode 11B of 5.7 kV to 6.2 kV and sub-opposed from the longitudinal high voltage electrode 11B.
  • a low potential gradient region ⁇ having a potential difference of 1.8 kV to 2.5 kV toward the electrode 12A is generated.
  • the reason why the ultrafine particles having a particle diameter of 0.1 ⁇ m or less is effectively charged is because the discharge space is enlarged (extended) by generating discharge step by step through the longitudinal high-voltage electrode 11B. That is, the potential gradient in the high potential gradient region ⁇ is larger than the potential gradient (potential gradient indicated by broken lines as Comparative Example 6) when the longitudinal high voltage electrode 11B is not used. As a result, discharge is likely to be initiated. This discharge causes a discharge between the vertical high voltage electrode 11B and the sub counter electrode 12A. In this way, the discharge space is expanded (expanded) by causing the discharge in stages.
  • the reason why the ozone concentration can be suppressed is estimated to be that the resistance (space resistance) of the discharge space is high and that the electric field concentration on the sub counter electrode 12A (the counter electrode 12) is relaxed. That is, when the sub counter electrode 12A is a laminate in which the insulator portion and the resistor portion are formed on the surface of the conductor portion in this order, the surface resistance is increased and the resistance (space resistance) of the discharge space is increased.
  • the vertical high voltage electrode 11B electric field concentration between the vertical high voltage electrode 11B and the sub counter electrode 12A (the counter electrode 12) is alleviated. It is thought that the ratio which balances supply and annihilation of electric charge by ionization increased by this, and the generation amount of the electron which becomes the origin of ozone generation was suppressed.
  • the high-voltage electrode 11B is formed, and the dust collection efficiency of the ultrafine particles is improved by forming regions (regions ⁇ and ⁇ in FIG. 51) having different potential gradients. Therefore, the main high pressure electrode 11A may have a needle portion instead of the sawtooth portion, and may have other shapes such as a wire shape or a brush shape. Similarly, the longitudinal high voltage electrode 11B is not limited to the wire 114, and may be an electrode provided with a serrated portion or a needle-shaped portion.
  • the region in which the electric potential gradient is different is not limited to two as shown in FIG.
  • another vertical high voltage electrode may be formed between the main high voltage electrode 11A and the vertical high voltage electrode 11B, and three or more regions having different potential gradients may be used.
  • the counter electrode 12 may be a structure in which an insulator portion is formed on the surface of the conductor portion instead of a laminate formed on the surface of the conductor portion and the resistor portion in this order.
  • FIG 52 is a diagram showing a modification of the electrostatic precipitator 1 to which the eighth embodiment is applied.
  • the tip of the teeth 111 of the main high voltage electrode 11A in the high pressure electrode of the charging unit 10 was directed downstream of the ventilation direction.
  • the tip of the teeth 111 of the main high voltage electrode 11A in the high voltage electrode of the charging unit 10 is directed upstream of the ventilation direction. .
  • the vertical high voltage electrode 11B was placed in a floating state without applying a voltage.
  • a voltage may be applied to the vertical high voltage electrode 11B.
  • the ozone concentration may be suppressed to 1/2 or less of the voltage applied to the main high pressure electrode 11A.
  • the voltage applied to the main high voltage electrode 11A may be twice or more the voltage applied to the vertical high voltage electrode 11B.
  • the voltage applied to the main high voltage electrode 11A is more preferably two times or more and five times or less the voltage applied to the vertical high voltage electrode 11B.
  • the discharge can be made more stable as compared with the case where the floating state is set.
  • 53 is a diagram illustrating an example of the electric dust collector 1 to which the ninth embodiment is applied.
  • the high voltage electrode 11 in the charging unit 10 includes a plurality of teeth 111 (sawtooth-shaped portions), for example.
  • Each of the plurality of teeth 111 is connected to the connecting portion 112, and constitutes a plurality of tooth rows 113.
  • the high voltage electrode 11 is comprised by the tooth row 113, it denotes 11 (113) in FIG.
  • the counter electrode 12 is provided with the some sub counter electrode 12A similarly to 8th Embodiment.
  • the sub counter electrode 12A has a flat plate shape and is made of a conductive material.
  • the tooth 111 (sawtooth part) of the high voltage electrode 11 is formed to be parallel to the plane of the sub counter electrode 12A.
  • the teeth 111 (sawtoothed portion) of the high voltage electrode 11 and the sub counter electrode 12A are arranged in a direction crossing (orthogonal in Fig. 53) in the ventilation direction.
  • the tip of the tooth 111 faces the upstream side in the ventilation direction.
  • the tip of the tooth 111 is located downstream from the upstream end in the ventilation direction of the plate-shaped sub counter electrode 12A.
  • the sub counter electrode 12A is formed over at least the length (distance) from the tip of the saw tooth 111 (sawtooth part) to the connection portion 112.
  • the dust collector 20 is similar to the electric dust collector 1 to which the first to eighth embodiments are applied. Therefore, description of the dust collector 20 is omitted.
  • the high voltage electrode 21 of the dust collecting unit 20 is formed at a predetermined separation distance downstream from the end of the member closest to the dust collecting unit in the ventilation direction.
  • the predetermined separation distance may be 5 mm or more.
  • the electrostatic precipitator 1 is not limited to the arrangement shown in Fig. 53, and may be arranged in any direction as long as ventilation is secured.
  • the charging unit 10 includes an inductor Ls shown in the fourth embodiment or the fifth embodiment, and a pulse current in discharge generated between the high voltage electrode 11 and the counter electrode 12.
  • the current limiting circuit 16 may be provided to lower the potential of the high voltage electrode 11.
  • two tooth rows 113 of the high voltage electrode 11 and three sub counter electrodes 12A of the counter electrode 12 are 3. Although an individual case is shown, it is not limited to this number.
  • the tooth 111 which is a tooth-shaped part may be a needle-like part or a brush-shaped part.
  • FIG. 54 is a cross-sectional view of the ventilation direction of the main part of the charging unit 10 and the dust collecting unit 20 in the electrostatic precipitator 1 according to the twenty-first embodiment.
  • the charging unit 10 includes a counter electrode 22 having a high voltage electrode 11 and a plurality of sub counter electrodes 12A made of a plate-like conductive material. .
  • the high voltage electrode 11 is provided with the tooth row 113 provided with the some teeth 111 with which the tip was directed in the upstream of the ventilation direction.
  • the tooth row 113 of the high voltage electrode 11 is made of stainless steel, and the sub counter electrode 12A is made of aluminum.
  • the distance G between the high voltage electrode 11 and the sub counter electrode 12A is 15 mm.
  • the length L from the tip of the tooth 111 to the connection part 112 in the high voltage electrode 11 is 3 mm.
  • the tip of the tooth 111 is located 2 mm downstream from the end on the upstream side of the sub counter electrode 12A in the ventilation direction (distance indicated by T1 in FIG. 54). Moreover, it is 5 mm from the front-end
  • a plurality of gratings (grills) 31 of the case 30 made of a resin material are placed at a position (distance indicated by T3 in FIG. 54) of the sub counter electrode 12A on the upstream side of the ventilation direction.
  • the provided case 30 is formed.
  • the dust collector 20 has a structure in which a high voltage electrode 21 made of a nonconductive material and an opposing electrode 22 made of a conductive material are alternately stacked.
  • FIG. 55A and 55B are perspective views of main parts of the charging unit 10 in the electrostatic precipitator 1 according to Example 21 and Comparative Example 7.
  • FIG. 55A is Example 21 and FIG. 55B is Comparative Example 7.
  • FIG. 55C the comparative example 7 is the same as the electrostatic precipitator 1 which concerns on the comparative example 7 demonstrated by 8th Embodiment (refer FIG. 49C). That is, the electrostatic precipitator 1 according to the comparative example 7 shown in FIG. 55B has the tooth row 113 which is the high voltage electrode 11 in the electrostatic precipitator 1 which concerns on Example 21 of FIG. The wire 114 of tungsten (W) is used.
  • the sub counter electrode 12A is made Al. Therefore, in FIG. 55A and FIG. 55B, "(Al)" was described on the sub counter electrode 12A.
  • FIG. 55A the arrangement
  • FIG. 55B arrangement
  • FIG. 56 is a diagram illustrating dust collection efficiency obtained for each ozone concentration and particle diameter in the electrostatic precipitator 1 according to Example 21 and Comparative Example 7.
  • FIG. 56 is a diagram illustrating dust collection efficiency obtained for each ozone concentration and particle diameter in the electrostatic precipitator 1 according to Example 21 and Comparative Example 7.
  • the electric dust collector 1 was installed in the test wind tunnel, the wind speed was set to 1 m / s by the fan, and the wind was passed through the dust collector 20 from the charging section 10 once (one pass).
  • Dust collection efficiency was computed by forming the sampling port in the upstream and downstream of a test wind tunnel, and measuring the number of suspended particles by particle diameter with the scanning nanoparticle diameter distribution analyzer (SMPS) through a sampling port.
  • SMPS scanning nanoparticle diameter distribution analyzer
  • the ozone concentration was determined from the difference between the ozone concentrations on the upstream side and the downstream side measured using an ozone concentration meter through sampling ports formed on the upstream side and the downstream side of the test wind tunnel.
  • the current of the high voltage electrode 11 (the main high voltage electrode) of Comparative Example 7 in FIG. 50 is 440 ⁇ A and 5000 ⁇ A.
  • the factor of the improved dust collection efficiency is to direct the tip of the tooth 111 to the upstream side of the ventilation direction and optimize the position of the tip of the tooth 111 and the sub counter electrode 12A so that the ions generated from the tip of the tooth 111 are high pressure. It is thought to be due to the easy diffusion of the electrode 11 (tooth rows 113) and the sub counter electrode 12A, the charging effect is improved, and the charging efficiency of ultrafine particles of 0.1 ⁇ m or less is improved.
  • the factor in which the ozone concentration is suppressed is that the space resistance at the time of discharge is increased by taking the distance between the tooth 111 and the sub counter electrode 12A while increasing the electric field concentration by using the high voltage electrode 11 as the tooth 111. This is considered to be attributable to the fact that the amount of electrons which is the starting point of ozone generation is suppressed even in the discharge conditions in which the increase in the generation of high-density ions is obtained.
  • the ozone concentration is 60 times or more as compared with Example 21. That is, in the electrostatic precipitator 1 according to Comparative Example 7, which uses the wire 114 for the high voltage electrode 11, when the ion density is increased (when the current is increased) to charge the small particles having the particle diameter, the ozone concentration increases. do.
  • the electrostatic precipitator 1 (the electrostatic precipitator 1 according to Example 21) to which the ninth embodiment is applied, the ozone concentration is suppressed even in a state where the ion density is high (dissociation and excitation of oxygen molecules are suppressed).
  • the discharge which can be formed is formed.

Landscapes

  • Electrostatic Separation (AREA)

Abstract

The present invention provides an electrostatic dust collector and the like which inhibit ozone generation and have a thin charging unit. An electrostatic dust collector (1), according to the present invention, comprises: a charging unit (10) having a high voltage electrode (11), to which a high voltage is supplied from a high voltage generating circuit (40), and an opposing electrode (12), which is formed opposite from the high voltage electrode (11) and to which a reference voltage is supplied from the high voltage generating circuit (40), generating discharging between the high voltage electrode (11) and the opposing electrode (12), and thus charging floating fine particles; and a dust collecting unit (20) disposed on the lower side in the ventilation direction of the charging unit (10) and for collecting the fine particles that have been charged by means of the charging unit (10).

Description

전기 집진기Electric dust collector
본 발명은 전기 집진기에 관한 것이다.The present invention relates to an electrostatic precipitator.
공기 청정기나 에어컨 등의 전기 제품 등에는 방전을 이용하여 부유 미립자를 대전시키는 전기 집진기가 구비되어 있다.Electrical appliances, such as an air cleaner and an air conditioner, are equipped with the electric dust collector which charges a floating fine particle using a discharge.
이러한 전기 집진기는 방전에 의해 부유 미립자를 대전시키는 대전부; 및 대전시킨 부유 미립자를 집진하는 집진부;를 구비하고 있다. 전기 집진기의 대전부에 있어서는, 고압(방전) 전극과 대향(접지) 전극 사이에 방전 발생을 위하여 수 kV의 고전압이 인가된다.The electrostatic precipitator may include a charging unit configured to charge suspended fine particles by discharge; And a dust collecting part for collecting charged suspended fine particles. In the charging section of the electrostatic precipitator, a high voltage of several kV is applied between the high voltage (discharge) electrode and the counter (ground) electrode to generate discharge.
높은 집진 효율을 얻기 위해, 고압 전극과 대향 전극 사이를 흐르는 방전 전류를 크게 하면, 방전에 수반하여 오존(O3)이 발생하기 쉬워진다. 오존은 독특한 악취를 갖기 때문에, 실내에 방출하는 경우, 오존 농도는 환경기준치(0.05ppm) 이하로 할 필요가 있다.In order to obtain high dust collection efficiency, when the discharge current flowing between the high voltage electrode and the counter electrode is increased, ozone (O 3 ) is likely to be generated along with the discharge. Since ozone has a unique odor, when it is released indoors, the ozone concentration needs to be less than the environmental standard value (0.05 ppm).
특허 문헌 1에는 코로나 방전을 시키지 않고 이온을 방출하는 이온 방출 수단과, 그 하류 측에 형성된 집진부로 구성되는 집진 장치로서, 이온 방출 수단의 방전 전극을 1개 또는 복수개의 선상(
Figure PCTKR2015014012-appb-I000001
) 전극으로 하고, 선상 전극의 양측에 접지 전극을 형성하고, 선상 전극에 고전압을 인가했을 때의 방전 전류가 선상 전극 0.1m 당 1μA 이하가 되도록 접지에 접속된 전극을 절연체 또는 반도체로 피복하는 것이 기재되어 있다.
Patent Document 1 discloses a dust collecting device comprising ion discharging means for releasing ions without corona discharge and a dust collecting portion formed downstream thereof, wherein one or more linear discharge electrodes of the ion discharging means are formed.
Figure PCTKR2015014012-appb-I000001
Electrode), the ground electrode is formed on both sides of the linear electrode, and the electrode connected to the ground is covered with an insulator or a semiconductor so that the discharge current when the high voltage is applied to the linear electrode is 1 μA or less per 0.1 m of the linear electrode. It is described.
특허 문헌 2에는 고전압이 인가되도록 설치된 방전침을 가지며 중앙이 전방으로 팽출된 형상의 흡기 그릴과, 방전침의 풍하(風下) 측에 형성되는 통풍 가능한 접지 전극 및 집진 필터를 설치한 필터 유닛을 구비하고, 흡기 그릴을 비도전성 수지로 이루어지는 비도전 리브와, 도전성으로 이루어지는 도전 리브를 격자 형상으로 배치하여 형성하고, 도전 리브를 접지 전극에 접속함으로써, 흡기 그릴에 대전하는 정전기가 빠져나가서, 흡기 그릴에 분진이 부착되는 것을 방지하는 전기 집진 유닛이 기재되어 있다. Patent document 2 includes a filter unit having a discharge needle installed to be applied with a high voltage and having an intake grill having a shape in which the center thereof is expanded forward, a ventilated ground electrode formed on the wind side of the discharge needle, and a dust collecting filter. The intake grill is formed by arranging non-conductive ribs made of non-conductive resin and conductive ribs made of conductive in a lattice shape, and connecting the conductive ribs to the ground electrode, thereby eliminating the static electricity charged on the intake grills. An electrostatic precipitating unit is described which prevents dust from adhering to it.
특허 문헌 3에는 복수개의 방전 부재와, 상기 방전 부재에 각각 접속된 저항체, 및 상기 저항체에 접속된 전압원을 갖는 코로나 방전 장치가 기재되어 있다. Patent Document 3 describes a corona discharge device having a plurality of discharge members, a resistor connected to each of the discharge members, and a voltage source connected to the resistor.
특허 문헌 4에는 고전압을 발생하는 고전압 발생 수단, 및 상기 고전압 발생 수단의 출력에 접속되고 이온을 발생하는 이온 발생 전극을 갖는 이온 발생기에 있어서, 상기 고전압 발생 수단의 출력에 상기 이온 발생 전극과 병렬로 접속된 오존을 발생하는 오존 발생 전극과, 상기 오존 발생 전극과 직렬로 접속된 임피던스 가변 수단을 가지며, 상기 임피던스 가변 수단의 임피던스를 변화시킴으로써 상기 오존 발생 전극으로부터 발생하는 오존량을 제어하는 이온 발생기가 기재되어 있다. Patent document 4 discloses an ion generator having a high voltage generating means for generating a high voltage and an ion generating electrode connected to an output of the high voltage generating means and generating ions in parallel with the ion generating electrode at the output of the high voltage generating means. An ion generator having an ozone generating electrode for generating ozone and an impedance varying means connected in series with the ozone generating electrode, the ion generator controlling the amount of ozone generated from the ozone generating electrode by varying the impedance of the impedance varying means. It is.
비특허 문헌 1에는 유전체 대신에, 전극의 한쪽을 수 MΩ/cm의 고저항 시트로 덮은 방전이 기재되어 있다. 그리고, 직류(DC)로 구동하면, 수 μs의 폭으로 수 10kHz로 반복하는 펄스형상의 방전이 발생하는 것이 기재되어 있다.Non-Patent Document 1 describes a discharge in which one electrode is covered with a high resistance sheet of several M 의 / cm instead of a dielectric. Then, when driven by direct current (DC), it is described that a pulse-like discharge that repeats at several 10 kHz with a width of several μs occurs.
[선행기술문헌][Preceding technical literature]
[특허문헌][Patent Documents]
특허문헌 1: 국제 공개 WO01/064349호Patent Document 1: International Publication WO01 / 064349
특허 문헌 2: 일본 특허공개 2005-021817호 공보Patent Document 2: Japanese Patent Application Laid-Open No. 2005-021817
특허 문헌 3: 일본 특허공개 평7-5746호 공보Patent Document 3: Japanese Patent Application Laid-Open No. 7-5746
특허 문헌 4: 일본 특허공개 2004-216037호 공보Patent Document 4: Japanese Patent Application Laid-Open No. 2004-216037
[비특허문헌][Non-Patent Documents]
비특허문헌 1: 모니아 라롯시(MounirLaroussi), 이고르 알렉세프(Igor Alexeff), 폴 리처드슨(Paul Richardson), 프랜시스 에프 다이어(Francis F. Dyer), 「저항 배리어 방전(The Resistive Barrier Discharge)」, 아이트리플이 플라즈마 사이언스 트랜잭션(IEEE TRANSACTION ON PLASMA SCIENCE), 2002년 2월, 제30권, 제1호, p. 158-159[Non-Patent Document 1] Monia Laroussi, Igor Alexeff, Paul Richardson, Francis F. Dyer, `` The Resistive Barrier Discharge '', ITriple is an IEEE TRANSACTION ON PLASMA SCIENCE, February 2002, Vol. 30, No. 1, p. 158-159
그런데, 여러 가지 전기 제품에 조립하기 쉽게 하기 위해 전기 집진기의 소형화가 요구되어 있다. 소망하는 집진 성능을 확보하기 위해서는, 집진부는 얇게 하기 어렵다. 따라서, 대전부를 얇게 하는 것이 요구되고 있다.By the way, miniaturization of the electric dust collector is required in order to make it easy to assemble in various electrical products. In order to secure the desired dust collecting performance, it is difficult to thin the dust collecting unit. Therefore, it is desired to make the charging portion thin.
대전부를 얇게 하면, 고압 전극과 대향 전극의 거리가 가까워지기 때문에, 오존 발생이 증가할 우려가 있다.When the charging portion is made thinner, the distance between the high voltage electrode and the counter electrode becomes closer, and there is a concern that ozone generation may increase.
또한, 0.1㎛ 이하의 PM 0.1 등의 초미립자는 대전시키는 것 자체가 어려운 데다가 질량이 작기 때문에, 효율적으로 포집할 수 없을 우려가 있다.In addition, ultrafine particles such as PM 0.1 having a thickness of 0.1 μm or less are difficult to charge themselves, and their mass is small, so there is a fear that they cannot be efficiently collected.
본 발명의 목적은 오존 발생을 억제하면서 대전부를 얇게 할 수 있는 전기 집진기 등을 제공한다.SUMMARY OF THE INVENTION An object of the present invention is to provide an electrostatic precipitator and the like capable of thinning the charged portion while suppressing ozone generation.
또한, 본 발명의 목적은 오존 발생을 억제하면서 초미립자를 효율적으로 포집할 수 있는 전기 집진기를 제공한다.It is also an object of the present invention to provide an electrostatic precipitator capable of efficiently collecting ultrafine particles while suppressing ozone generation.
이러한 목적 하에, 본 발명이 적용되는 전기 집진기는 대전부와 집진부를 구비한다. 대전부는 고전압 발생 회로로부터 고전압이 공급되고 적어도 전계 집중을 발생시키는 부위를 갖는 고압 전극과, 상기 고압 전극에 대향하여 형성되고 상기 고전압 발생 회로로부터 기준 전압이 공급되는 대향 전극을 가지며, 상기 고압 전극과 상기 대향 전극 사이에 방전을 발생시켜서 부유 미립자를 대전시킨다. 집진부는 상기 대전부의 통풍 방향의 하류 측에 배치되고 상기 대전부에서 대전시킨 상기 부유 미립자를 모은다.Under this object, the electrostatic precipitator to which the present invention is applied includes a charging unit and a dust collecting unit. The charging unit has a high voltage electrode having a portion where a high voltage is supplied from a high voltage generation circuit and generates at least electric field concentration, a counter electrode formed to face the high voltage electrode and supplied with a reference voltage from the high voltage generation circuit, Discharge is generated between the counter electrodes to charge the suspended fine particles. A dust collecting unit collects the suspended fine particles charged on the downstream side in the ventilation direction of the charging unit and charged by the charging unit.
또한, 이러한 목적 하에, 본 발명이 적용되는 전기 집진기는 대전부와 집진부를 구비한다. 대전부는 고전압 발생 회로로부터 고전압이 공급되는 고압 전극을 구비한다. 또한, 상기 고압 전극에 대향하여 형성되고 상기 고전압 발생 회로로부터 기준 전압이 공급되는 대향 전극을 구비한다. 그리고, 상기 고압 전극과 상기 대향 전극 사이에 방전을 발생시켜서 부유 미립자를 대전시킨다. 집진부는 상기 대전부의 통풍 방향의 하류 측에 배치되고 상기 대전부에서 대전시킨 상기 부유 미립자를 모은다. 상기 대전부에 있어서의 상기 대향 전극은 도전성 재료로 구성된 도체부를 구비한다. 또한, 상기 대향 전극은 상기 도체부의 적어도 상기 고압 전극에 대향하는 측의 표면을 덮고, 상기 고압 전극과 상기 대향 전극 사이의 방전 전류를 제한하는, 체적 저항율이 1014Ω·cm 이상 및 1018Ω·cm 이하인 저항체부를 구비한다.Also for this purpose, the electrostatic precipitator to which the present invention is applied includes a charging unit and a dust collecting unit. The charging unit includes a high voltage electrode to which a high voltage is supplied from the high voltage generation circuit. It is also provided with a counter electrode formed opposite to the high voltage electrode and supplied with a reference voltage from the high voltage generation circuit. Then, a discharge is generated between the high voltage electrode and the counter electrode to charge the suspended fine particles. A dust collecting unit collects the suspended fine particles charged on the downstream side in the ventilation direction of the charging unit and charged by the charging unit. The counter electrode in the charging portion includes a conductor portion made of a conductive material. In addition, the counter electrode covers at least the surface of the side of the conductor portion opposite to the high voltage electrode, and has a volume resistivity of 10 14 Pa · cm or more and 10 18 Pa, which limits the discharge current between the high voltage electrode and the counter electrode. And a resistor portion that is cm or less.
이러한 전기 집진기에 있어서, 상기 대전부에 있어서의 상기 대향 전극의 상기 저항체부는 비유전율이 3 이상인 것을 특징으로 할 수 있다.In such an electrostatic precipitator, the resistive portion of the counter electrode in the charging portion may have a relative dielectric constant of 3 or more.
이러한 전기 집진기에 있어서, 상기 대전부에 있어서의 상기 고압 전극은 와이어 형상인 것을 특징으로 할 수 있다.In such an electrostatic precipitator, the high voltage electrode in the charging unit may be in the form of a wire.
또한, 상기 대전부에 있어서의 상기 고압 전극은 선단이 뾰족한 톱니 형상 부분 또는 선단이 뾰족한 바늘 형상 부분을 구비하는 것을 특징으로 할 수 있다.In addition, the high voltage electrode in the charging section may be characterized by having a sawtooth-shaped portion with a sharp tip or a needle-like portion with a sharp tip.
또한, 복수개의 상기 톱니 형상 부분 또는 복수개의 상기 바늘 형상 부분이, 상기 통풍 방향에 대하여 교차함과 아울러, 복수개의 열로 나누어져 있다. 그리고, 상기 복수개의 열 각각에 있어서의 상기 톱니 형상 부분의 선단 또는 상기 바늘 형상 부분의 선단이, 인접하는 열의 사이에 열 방향으로 서로 어긋나게 배치되어 있다. 또한, 상기 톱니 형상 부분 또는 상기 바늘 형상 부분의 길이 L에 대하여, 상기 복수개의 열 사이에서의 상기 톱니 형상 부분 또는 상기 바늘 형상 부분의 선단 간의 거리 S가 3L 이하이다. 또한, 상기 복수개의 열 각각에 있어서의 상기 톱니 형상 부분 또는 상기 바늘 형상 부분의 간격 P가 2L 이상인 것을 특징으로 할 수 있다.In addition, a plurality of the serrated portions or a plurality of the needle-like portions intersect with the ventilation direction and are divided into a plurality of rows. And the tip of the sawtooth-shaped portion or the tip of the needle-shaped portion in each of the plurality of rows is arranged to be shifted from each other in the column direction between adjacent rows. Moreover, with respect to the length L of the said serrated part or the said needle-shaped part, the distance S between the saw-toothed parts or the tip of the said needle-shaped part between these several rows is 3L or less. The spacing P between the sawtooth portion or the needle-shaped portion in each of the plurality of rows may be 2L or more.
이에 따라, 톱니 형상 또는 바늘 형상 부분이 통풍 방향으로 평행하게 배치된 경우에 비해, 또 고압 전극과 대향 전극이 통풍 방향에 대하여 수직인 방향으로 배치된 경우에 비해, 대전부를 보다 얇게 구성할 수 있다.Thereby, compared with the case where the serrated or needle-shaped portions are arranged in parallel in the ventilation direction, and the case where the high voltage electrode and the counter electrode are arranged in the direction perpendicular to the ventilation direction, the charging portion can be made thinner. .
또한, 복수개의 상기 톱니 형상 부분 또는 복수개의 상기 바늘 형상 부분이, 상기 통풍 방향에 대하여 교차함과 아울러, 복수개의 열로 나누어져 있다. 그리고, 상기 복수개의 열 각각에 있어서의 상기 톱니 형상 부분의 선단 또는 상기 바늘 형상 부분의 선단이, 인접하는 열의 사이에 있어서 대향하도록 배치되어 있다. 또한, 상기 톱니 형상 부분 또는 상기 바늘 형상 부분의 길이 L에 대하여, 상기 복수개의 열 사이에서의 상기 톱니 형상 부분 또는 상기 바늘 형상 부분의 선단의 거리 S가 6L 이상 및 8L 이하이다. 또한, 상기 복수개의 열 각각에 있어서의 상기 톱니 형상 부분 또는 상기 바늘 형상 부분의 간격 P가 2L 이상인 것을 특징으로 할 수 있다.In addition, a plurality of the serrated portions or a plurality of the needle-like portions intersect with the ventilation direction and are divided into a plurality of rows. And the tip of the sawtooth-shaped portion or the tip of the needle-shaped portion in each of the plurality of rows is disposed so as to face between adjacent rows. Moreover, with respect to the length L of the said serrated part or the said needle-shaped part, the distance S of the tip of the said serrated part or the said needle-shaped part between these several rows is 6L or more and 8L or less. The spacing P between the sawtooth portion or the needle-shaped portion in each of the plurality of rows may be 2L or more.
이에 따라, 톱니 형상 또는 바늘 형상 부분이 통풍 방향으로 평행하게 배치된 경우에 비해, 또 고압 전극과 대향 전극이 통풍 방향에 대하여 수직인 방향으로 배치된 경우에 비해, 대전부를 보다 얇게 구성할 수 있다.Thereby, compared with the case where the serrated or needle-shaped portions are arranged in parallel in the ventilation direction, and the case where the high voltage electrode and the counter electrode are arranged in the direction perpendicular to the ventilation direction, the charging portion can be made thinner. .
또한, 상기 대전부에 있어서의 상기 고압 전극은 브러시 형상인 것을 특징으로 할 수 있다.In addition, the high voltage electrode in the charging unit may be characterized in that the brush shape.
또한, 상기 대전부의 상기 고압 전극은 주(主) 고압 전극과 종(從) 고압 전극을 구비하는 것을 특징으로 할 수 있다.The high voltage electrode of the charging unit may include a main high voltage electrode and a vertical high voltage electrode.
그리고, 상기 고압 전극에 있어서, 상기 주(主) 고압 전극이 톱니 형상 부분 또는 바늘 형상 부분을 구비하고, 상기 종(從) 고압 전극이 와이어 형상인 것을 특징으로 할 수 있다.In the above high pressure electrode, the main high pressure electrode may be provided with a sawtooth portion or a needle portion, and the vertical high pressure electrode may be in a wire shape.
또한, 상기 주(主) 고압 전극에 있어서의 톱니 형상 부분 또는 바늘 형상 부분의 선단이 상기 통풍 방향의 상류 측을 향해 있는 것을 특징으로 할 수 있다.Further, the tip of the serrated portion or the needle-like portion in the main high pressure electrode may face the upstream side of the ventilation direction.
또한, 상기 주(主) 고압 전극과 상기 대향 전극 사이에 상기 종(從) 고압 전극이 형성되어 있는 것을 특징으로 할 수 있다.In addition, the longitudinal high voltage electrode may be formed between the main high voltage electrode and the counter electrode.
또한, 상기 주(主) 고압 전극의 전압은 상기 종(從) 고압 전극의 전압의 2배 이상 및 5배 이하로 설정되는 것을 특징으로 할 수 있다.In addition, the voltage of the main high voltage electrode may be set to two times or more and five times or less the voltage of the vertical high voltage electrode.
그리고, 상기 주(主) 고압 전극은 미리 정해진 전압으로 설정되고, 상기 종(從) 고압 전극은 전압이 설정되지 않은 부유 상태인 것을 특징으로 할 수 있다.The main high voltage electrode may be set to a predetermined voltage, and the vertical high voltage electrode may be in a floating state in which no voltage is set.
또한, 상기 대전부에 있어서의 상기 대향 전극의 상기 도체부는 통풍을 확보하기 위하여 간격을 두어 배치된 복수개의 평판으로 구성되어 있는 것을 특징으로 할 수 있다.The conductor portion of the counter electrode in the charging portion may be composed of a plurality of flat plates arranged at intervals to ensure ventilation.
그리고, 상기 대전부에 있어서의 상기 대향 전극의 상기 도체부는 통풍을 확보하기 위한 개구를 갖는 망(網)으로 구성되어 있는 것을 특징으로 할 수 있다.The conductor portion of the counter electrode in the electrification portion may be constituted by a mesh having an opening for ensuring ventilation.
또한, 상기 대전부에 있어서의 상기 대향 전극의 상기 도체부는 통풍을 확보하기 위한 개구를 갖는 펀칭 메탈로 구성되어 있는 것을 특징으로 할 수 있다.The conductor portion of the counter electrode in the charging portion may be made of a punching metal having an opening for ensuring ventilation.
또한, 상기 대전부에 있어서의 상기 대향 전극의 상기 도체부는 통풍을 확보하기 위한 개구를 갖는 익스펜디드 메탈로 구성되어 있는 것을 특징으로 할 수 있다.The conductor portion of the counter electrode in the charging portion may be made of expanded metal having an opening for ensuring ventilation.
또한, 상기 대전부에 있어서의 상기 대향 전극은 상기 대전부의 상기 고압 전극에 대하여, 상기 통풍 방향의 상류 측에 배치되어 있는 것을 특징으로 할 수 있다.The counter electrode in the charging unit may be disposed on an upstream side of the ventilation direction with respect to the high voltage electrode of the charging unit.
또한, 이러한 목적 하에, 본 발명이 적용되는 전기 집진기는 대전부와 집진부를 구비한다. 대전부는 고전압 발생 회로로부터 고전압이 공급되는 고압 전극을 구비한다. 또한, 상기 고압 전극에 대향하여 형성되고 상기 고전압 발생 회로로부터 기준 전압이 공급되는 대향 전극을 구비한다. 집진부는 상기 대전부의 통풍 방향의 하류 측에 배치된다. 그리고, 해당 집진부는 다른 고전압 발생 회로로부터 고전압이 공급되는 다른 고압 전극을 구비한다. 또한, 상기 다른 고압 전극에 대향하여 형성되고, 상기 다른 고전압 발생 회로로부터 기준 전압이 공급되는 다른 대향 전극을 구비한다. 그리고, 해당 집진부는 상기 대전부에서 대전시킨 상기 부유 미립자를 모은다. 또한, 상기 대전부를 구성하는 부재 중, 가장 상기 집진부에 가까운 부재의 단부로부터 통풍 방향 하류에 5mm 이상의 이간 거리를 가지고 해당 집진부의 상기 다른 고압 전극이 배치되어 있다.Also for this purpose, the electrostatic precipitator to which the present invention is applied includes a charging unit and a dust collecting unit. The charging unit includes a high voltage electrode to which a high voltage is supplied from the high voltage generation circuit. It is also provided with a counter electrode formed opposite to the high voltage electrode and supplied with a reference voltage from the high voltage generation circuit. The dust collecting unit is disposed downstream of the ventilation direction of the charging unit. The dust collector is provided with another high voltage electrode to which a high voltage is supplied from another high voltage generation circuit. It is provided with the other counter electrode formed so as to oppose the said other high voltage electrode and to which the reference voltage is supplied from the said other high voltage generation circuit. The dust collecting part collects the suspended fine particles charged by the charging part. Further, among the members constituting the charging unit, the other high voltage electrode is disposed at a separation distance of 5 mm or more downstream from the end of the member closest to the dust collecting unit at a ventilation direction downstream.
또한, 이러한 목적 하에, 본 발명이 적용되는 전기 집진기는 대전부와 집진부를 구비한다. 대전부는 고전압 발생 회로로부터 고전압이 공급되는 고압 전극을 구비한다. 또한, 상기 고압 전극에 대향하여 형성되고 상기 고전압 발생 회로로부터 기준 전압이 공급되는 대향 전극을 구비한다. 그리고, 상기 고압 전극과 상기 대향 전극 사이에 방전을 발생시켜서 부유 미립자를 대전시킨다. 집진부는 상기 대전부의 통풍 방향의 하류 측에 배치되고 상기 대전부에서 대전시킨 상기 부유 미립자를 모은다. 또한, 수지 재료로 구성되고 상기 대전부를 수납하는 케이스를 구비한다. 그리고, 상기 대전부에 있어서의 상기 고압 전극은 상기 케이스로부터 5mm 이상 떨어져 형성되어 있다.Also for this purpose, the electrostatic precipitator to which the present invention is applied includes a charging unit and a dust collecting unit. The charging unit includes a high voltage electrode to which a high voltage is supplied from the high voltage generation circuit. It is also provided with a counter electrode formed opposite to the high voltage electrode and supplied with a reference voltage from the high voltage generation circuit. Then, a discharge is generated between the high voltage electrode and the counter electrode to charge the suspended fine particles. A dust collecting unit collects the suspended fine particles charged on the downstream side in the ventilation direction of the charging unit and charged by the charging unit. Moreover, it is provided with the case which consists of a resin material and accommodates the said charging part. The high voltage electrode in the charging section is formed 5 mm or more away from the case.
이러한 전기 집진기에 있어서, 상기 대전부에 있어서의 상기 대향 전극은 도전성 재료로 구성된 도체부와, 상기 도체부의 적어도 상기 고압 전극에 대향하는 측의 표면을 덮는 저항체부를 구비한다. 그리고, 상기 대전부를 수납하는 상기 케이스는 상기 대전부의 상기 대향 전극의 상기 도체부에 대하여, 도통하는 전기적 접촉을 갖는 것을 특징으로 할 수 있다.In such an electrostatic precipitator, the counter electrode in the charging section includes a conductor portion made of a conductive material and a resistor portion covering the surface of the conductor portion at least opposite to the high voltage electrode. In addition, the case accommodating the charging unit may be characterized in that it has an electrical contact that is conducted to the conductor portion of the counter electrode of the charging unit.
이에 따라, 대향 전극이 노출 영역에 있어서 케이스와 접속되지 않는 경우에 비해, 케이스의 정전기에 의한 대전을 더욱 억제할 수 있다.Thereby, compared with the case where a counter electrode is not connected with a case in an exposure area | region, charging by the static electricity of a case can be suppressed further.
또한, 상기 대향 전극은 도전성 재료로 구성된 도체부와, 상기 도체부의 적어도 상기 고압 전극에 대향하는 측의 표면을 덮는 저항체부와, 상기 도체부와 상기 저항체부 사이에 위치하는 절연체부를 구비할 수 있다.The counter electrode may include a conductor portion made of a conductive material, a resistor portion covering at least a surface of the conductor portion opposite to the high voltage electrode, and an insulator portion located between the conductor portion and the resistor portion. .
또한, 이러한 목적 하에, 본 발명이 적용되는 전기 집진기는 대전부와 집진부를 구비한다. 대전부는 고전압 발생 회로로부터 고전압이 공급되는 고압 전극을 구비한다. 또한, 상기 고압 전극에 대향하여 형성되고 상기 고전압 발생 회로로부터 기준 전압이 공급되는 대향 전극을 구비한다. 또한, 인덕터를 포함하고 상기 고압 전극과 상기 대향 전극 사이에 발생하는 방전에서의 펄스형상 전류에 의해 상기 고압 전극의 전위를 저하시키는 전류 제한 회로를 구비한다. 그리고, 상기 고압 전극과 상기 대향 전극 사이에 방전을 발생시켜서 부유 미립자를 대전시킨다. 집진부는 상기 대전부의 통풍 방향의 하류 측에 배치되고 상기 대전부에서 대전시킨 상기 부유 미립자를 모은다.Also for this purpose, the electrostatic precipitator to which the present invention is applied includes a charging unit and a dust collecting unit. The charging unit includes a high voltage electrode to which a high voltage is supplied from the high voltage generation circuit. It is also provided with a counter electrode formed opposite to the high voltage electrode and supplied with a reference voltage from the high voltage generation circuit. And a current limiting circuit including an inductor for lowering the potential of the high voltage electrode by a pulsed current in discharge generated between the high voltage electrode and the counter electrode. Then, a discharge is generated between the high voltage electrode and the counter electrode to charge the suspended fine particles. A dust collecting unit collects the suspended fine particles charged on the downstream side in the ventilation direction of the charging unit and charged by the charging unit.
이에 따라, 전류 제한 회로를 구비하지 않는 경우에 비해, 2차 전자 방출에 수반되는 펄스형상 전류에 의한 오존 발생의 증가를 더욱 억제할 수 있다.As a result, compared with the case where no current limiting circuit is provided, the increase in ozone generation due to the pulsed current accompanying secondary electron emission can be further suppressed.
이러한 전기 집진기에 있어서, 상기 대전부에 있어서의 상기 전류 제한 회로는 상기 인덕터와 다이오드의 병렬 회로로 구성되는 것을 특징으로 할 수 있다.In such an electrostatic precipitator, the current limiting circuit in the charging section may be constituted by a parallel circuit of the inductor and the diode.
그리고, 상기 대전부에 있어서의 상기 전류 제한 회로의 상기 다이오드는 상기 고전압에 대하여 역방향으로 접속되는 것을 특징으로 할 수 있다.The diode of the current limiting circuit in the charging section may be connected in a reverse direction with respect to the high voltage.
또한, 상기 대전부에 있어서의 상기 전류 제한 회로는 접합형 FET; 및 상기 접합형 FET의 소스-게이트 간에 접속된 저항 소자;를 갖는 회로를 더 구비하는 것을 특징으로 할 수 있다. 접합형 FET; 및 상기 접합형 FET의 소스-게이트 간에 접속된 저항 소자;를 갖는 회로는 상기 인덕터와 상기 다이오드의 상기 병렬 회로에 직렬 접속된다.Further, the current limiting circuit in the charging section includes a junction type FET; And a resistance element connected between the source and the gate of the junction type FET. Junction FETs; And a resistor element connected between the source-gate of the junction type FET; and a circuit connected in series with the inductor and the parallel circuit of the diode.
이에 따라, 접합형 FET와 저항 소자를 갖는 회로를 구비하지 않는 경우에 비해, 고압 전극과 대향 전극 사이의 단락 전류를 억제할 수 있다.Thereby, compared with the case where the circuit which has a junction type FET and a resistance element is not provided, the short circuit current between a high voltage electrode and a counter electrode can be suppressed.
그리고, 상기 대전부에 있어서의 상기 전류 제한 회로는 상기 인덕터와 상기 다이오드의 상기 병렬 회로에 직렬 접속되는, MOSFET와 저항 소자의 직렬 회로를 더 구비하는 것을 특징으로 할 수 있다.The current limiting circuit in the charging section may further include a series circuit of a MOSFET and a resistance element connected in series with the parallel circuit of the inductor and the diode.
이에 따라, MOSFET와 저항 소자를 이용한 직렬 회로를 구비하지 않는 경우에 비해, 고압 전극과 대향 전극 사이의 단락 전류를 억제할 수 있다.As a result, the short-circuit current between the high voltage electrode and the counter electrode can be suppressed as compared with the case where the series circuit using the MOSFET and the resistance element is not provided.
또한, 상기 대전부에 있어서의 상기 전류 제한 회로는 상기 고전압 발생 회로로부터 상기 고압 전극으로의 경로 상에 형성되어 있는 것을 특징으로 할 수 있다.The current limiting circuit in the charging section may be formed on a path from the high voltage generating circuit to the high voltage electrode.
또한, 상기 대전부에 있어서의 상기 고압 전극은 복수개의 서브 고압 전극으로 구성되고, 상기 대전부에 있어서의 상기 전류 제한 회로는 상기 복수개의 서브 고압 전극 각각에 대하여 형성되어 있는 것을 특징으로 할 수 있다.The high voltage electrode in the charging unit may be configured of a plurality of sub high voltage electrodes, and the current limiting circuit in the charging unit may be formed for each of the plurality of sub high voltage electrodes. .
그리고, 상기 대전부에 있어서의 상기 고압 전극의 상기 복수개의 서브 고압 전극 각각은 복수개의 톱니 형상 부분을 구비하고, 상기 대전부에 있어서의 상기 전류 제한 회로는 상기 톱니 형상 부분의 각각에 대하여 형성되어 있는 것을 특징으로 할 수 있다.Each of the plurality of sub-high voltage electrodes of the high voltage electrode in the charging portion includes a plurality of sawtooth portions, and the current limiting circuit in the charging portion is formed for each of the sawtooth portions. It can be characterized by.
이에 따라, 복수개의 서브 고압 전극 각각에 대하여 전류 제한 회로를 형성하지 않는 경우에 비해, 집진 효율의 저하를 억제할 수 있다.Thereby, the fall of dust collection efficiency can be suppressed compared with the case where a current limiting circuit is not formed in each of a some sub high voltage electrode.
또한, 이러한 전기 집진기에 있어서, 상기 대전부에 있어서의 상기 전류 제한 회로는 상기 고전압 발생 회로로부터 상기 대향 전극으로의 경로 상에 형성되어 있는 것을 특징으로 할 수 있다.Further, in such an electrostatic precipitator, the current limiting circuit in the charging section may be formed on a path from the high voltage generating circuit to the counter electrode.
그리고, 상기 대전부에 있어서의 상기 대향 전극은 복수개의 서브 대향 전극으로 구성되고, 상기 전류 제한 회로는 상기 복수개의 서브 대향 전극 각각에 대하여 형성되어 있는 것을 특징으로 할 수 있다.The counter electrode in the charging unit may be configured of a plurality of sub counter electrodes, and the current limiting circuit may be formed for each of the plurality of sub counter electrodes.
또한, 이러한 목적 하에, 본 발명이 적용되는 전기 집진기는 대전부와 집진부를 구비한다. 대전부는 고전압 발생 회로로부터 고전압이 공급되는 고압 전극을 구비한다. 또한, 상기 고압 전극에 대향하여 형성되고 상기 고전압 발생 회로로부터 기준 전압이 공급되는 대향 전극을 구비한다. 그리고, 상기 고압 전극과 상기 대향 전극 사이에 방전을 발생시켜서 부유 미립자를 대전시킨다. 집진부는 상기 대전부의 통풍 방향의 하류 측에 배치되고 상기 대전부에서 대전시킨 상기 부유 미립자를 모은다. 상기 대전부에 있어서의 상기 대향 전극은 도전성 재료로 구성된 도체부와, 상기 도체부의 대향 전극측을 덮는 제1 부재, 및 상기 제1 부재의 대향 전극측을 덮는 제2 부재를 갖는다. 또한, 상기 대향 전극은 상기 제2 부재가 상기 도체부와 전기적으로 접촉하는 접촉 영역을 갖는다.Also for this purpose, the electrostatic precipitator to which the present invention is applied includes a charging unit and a dust collecting unit. The charging unit includes a high voltage electrode to which a high voltage is supplied from the high voltage generation circuit. It is also provided with a counter electrode formed opposite to the high voltage electrode and supplied with a reference voltage from the high voltage generation circuit. Then, a discharge is generated between the high voltage electrode and the counter electrode to charge the suspended fine particles. A dust collecting unit collects the suspended fine particles charged on the downstream side in the ventilation direction of the charging unit and charged by the charging unit. The counter electrode in the charging portion has a conductor portion made of a conductive material, a first member covering the counter electrode side of the conductor portion, and a second member covering the counter electrode side of the first member. In addition, the counter electrode has a contact region in which the second member is in electrical contact with the conductor portion.
이러한 전기 집진기에 있어서, 상기 대전부의 상기 고압 전극은 주(主) 고압 전극과 종(從) 고압 전극을 구비하는 것을 특징으로 할 수 있다.In such an electrostatic precipitator, the high voltage electrode of the charging unit may include a main high voltage electrode and a longitudinal high voltage electrode.
또한, 상기 고압 전극에 있어서, 상기 주(主) 고압 전극이 톱니 형상 부분 또는 바늘 형상 부분을 구비하고, 상기 종(從) 고압 전극이 와이어 형상인 것을 특징으로 할 수 있다.Moreover, in the said high voltage electrode, the said main high voltage electrode may be provided with the saw tooth-shaped part or the needle-shaped part, and the said longitudinal high voltage electrode can be characterized by being wire-shaped.
그리고, 상기 주(主) 고압 전극에 있어서의 상기 톱니 형상 부분 또는 상기 바늘 형상 부분의 선단이 상기 통풍 방향의 상류 측을 향해 있는 것을 특징으로 한다.The tip of the sawtooth-shaped portion or the needle-shaped portion in the main high pressure electrode is directed toward an upstream side of the ventilation direction.
또한, 상기 고압 전극에 있어서의 상기 주(主) 고압 전극과 상기 대향 전극 사이에 상기 종(從) 고압 전극이 형성되어 있는 것을 특징으로 할 수 있다.In addition, the longitudinal high voltage electrode may be formed between the main high voltage electrode and the counter electrode in the high voltage electrode.
또한, 상기 주(主) 고압 전극의 전압은 상기 종(從) 고압 전극의 전압의 2배 이상 및 5배 이하인 것을 특징으로 할 수 있다.In addition, the voltage of the main high voltage electrode may be characterized by being at least two times and at most five times the voltage of the vertical high voltage electrode.
또한, 상기 주(主) 고압 전극은 미리 정해진 전압으로 설정되고, 상기 종(從) 고압 전극은 전압이 설정되지 않은 부유 상태인 것을 특징으로 할 수 있다.The main high voltage electrode may be set to a predetermined voltage, and the vertical high voltage electrode may be in a floating state in which no voltage is set.
이러한 전기 집진기에 있어서, 상기 대전부에 있어서의 상기 대향 전극의 상기 제2 부재는 상기 제1 부재에 비해, 체적 저항율이 작은 것을 특징으로 할 수 있다.In such an electrostatic precipitator, the second member of the counter electrode in the charging unit may have a smaller volume resistivity than the first member.
또한, 상기 대전부에 있어서의 상기 대향 전극의 상기 제2 부재는 상기 고압 전극과 상기 대향 전극 사이에 5kV를 인가했을 때에, 표면 저항율이 1GΩ/cm 이상인 것을 특징으로 할 수 있다.The second member of the counter electrode in the charging unit may have a surface resistivity of 1 GΩ / cm or more when 5 kV is applied between the high voltage electrode and the counter electrode.
그리고, 상기 대전부에 있어서의 상기 대향 전극의 상기 도체부는 통풍을 확보하기 위하여 간격을 두어 배치된 복수개의 평판으로 구성되어 있는 것을 특징으로 할 수 있다.The conductor portion of the counter electrode in the charging portion may be composed of a plurality of flat plates arranged at intervals to ensure ventilation.
또한, 상기 대전부에 있어서의 상기 대향 전극의 상기 도체부는 통풍을 확보하기 위한 개구를 갖는 망(網)으로 구성되어 있는 것을 특징으로 할 수 있다.The conductor portion of the counter electrode in the electrification portion may be constituted by a mesh having an opening for ensuring ventilation.
또한, 상기 대전부에 있어서의 상기 대향 전극의 상기 도체부는 통풍을 확보하기 위한 개구를 갖는 펀칭 메탈로 구성되어 있는 것을 특징으로 할 수 있다.The conductor portion of the counter electrode in the charging portion may be made of a punching metal having an opening for ensuring ventilation.
또한, 상기 대전부에 있어서의 상기 대향 전극의 상기 도체부는 통풍을 확보하기 위한 개구를 갖는 도전성 재료로 구성된 익스펜디드 메탈로 구성되어 있는 것을 특징으로 할 수 있다.The conductor portion of the counter electrode in the charging portion may be made of expanded metal composed of a conductive material having an opening for ensuring ventilation.
이에 따라, 제1 부재를 구비하지 않는 경우에 비해, 고압 전극과 대향 전극 사이의 파괴 전압을 더욱 높게 할 수 있다.Thereby, the breakdown voltage between the high voltage electrode and the counter electrode can be made higher than in the case where the first member is not provided.
또한, 이러한 목적 하에, 본 발명이 적용되는 전기 집진기는 대전부와 집진부를 구비한다. 대전부는 고전압 발생 회로로부터 고전압이 공급되는 고압 전극과, 상기 고압 전극에 대향하여 형성되고 상기 고전압 발생 회로로부터 기준 전압이 공급되는 대향 전극을 가지고 있다. 대전부는 상기 고압 전극과 상기 대향 전극 사이에 방전을 발생시켜서 부유 미립자를 대전시킨다. 집진부는 상기 대전부의 통풍 방향의 하류 측에 배치되고 상기 대전부에서 대전시킨 상기 부유 미립자를 모은다. 상기 대전부에 있어서의 상기 대향 전극은 상기 대향 전극의 형상을 설정하는 기재와, 상기 기재의 상기 고압 전극에 대향하지 않는 면에 형성된 제1 부재, 및 상기 기재 상의 상기 고압 전극에 대향하지 않는 면에 형성된 도전성의 제2 부재를 갖는다.Also for this purpose, the electrostatic precipitator to which the present invention is applied includes a charging unit and a dust collecting unit. The charging unit has a high voltage electrode supplied with a high voltage from a high voltage generation circuit, and an opposite electrode formed to face the high voltage electrode and supplied with a reference voltage from the high voltage generation circuit. The charging unit generates a discharge between the high voltage electrode and the counter electrode to charge the suspended fine particles. A dust collecting unit collects the suspended fine particles charged on the downstream side in the ventilation direction of the charging unit and charged by the charging unit. The counter electrode in the electrification portion includes a substrate which sets the shape of the counter electrode, a first member formed on a surface of the substrate that does not oppose the high voltage electrode, and a surface that does not oppose the high voltage electrode on the substrate. It has a conductive 2nd member formed in the.
그리고, 이러한 목적 하에, 본 발명이 적용되는 전기 집진기는 대전부와 집진부를 구비한다. 대전부는 고전압 발생 회로로부터 고전압이 공급되는 고압 전극과, 상기 고압 전극에 대향하여 형성되고 상기 고전압 발생 회로로부터 기준 전압이 공급되는 대향 전극을 가지고 있다. 대전부는 상기 고압 전극과 상기 대향 전극 사이에 방전을 발생시켜서 부유 미립자를 대전시킨다. 집진부는 상기 대전부의 통풍 방향의 하류 측에 배치되고 상기 대전부에서 대전시킨 상기 부유 미립자를 모은다. 상기 대전부에 있어서의 상기 대향 전극은 상기 대향 전극의 형상을 설정하는 기재와, 상기 기재의 상기 고압 전극에 대향하는 면에 형성된 제1 부재, 및 상기 기재의 상기 고압 전극에 대향하지 않는 면을 덮는 도전성의 제2 부재를 갖는다.For this purpose, the electrostatic precipitator to which the present invention is applied includes a charging unit and a dust collecting unit. The charging unit has a high voltage electrode supplied with a high voltage from a high voltage generation circuit, and an opposite electrode formed to face the high voltage electrode and supplied with a reference voltage from the high voltage generation circuit. The charging unit generates a discharge between the high voltage electrode and the counter electrode to charge the suspended fine particles. A dust collecting unit collects the suspended fine particles charged on the downstream side in the ventilation direction of the charging unit and charged by the charging unit. The counter electrode in the charging unit includes a substrate for setting the shape of the counter electrode, a first member formed on a surface of the substrate that faces the high voltage electrode, and a surface that does not face the high voltage electrode of the substrate. It has a conductive 2nd member to cover.
또한, 이러한 목적 하에, 본 발명이 적용되는 전기 집진기는 대전부와 집진부를 구비한다. 대전부는 고전압 발생 회로로부터 고전압이 공급되는 고압 전극을 구비한다. 또한, 상기 고압 전극에 대향하여 형성되고 상기 고전압 발생 회로로부터 기준 전압이 공급되는 대향 전극을 구비한다. 또한, 인덕터를 포함하고 상기 고압 전극과 상기 대향 전극 사이에 발생하는 방전에서의 펄스형상 전류에 의해 상기 고압 전극의 전위를 저하시키는 전류 제한 회로를 구비한다. 그리고, 상기 고압 전극과 상기 대향 전극 사이에 방전을 발생시켜서 부유 미립자를 대전시킨다. 집진부는 상기 대전부의 통풍 방향의 하류 측에 배치된다. 그리고, 해당 집진부는 다른 고전압 발생 회로로부터 고전압이 공급되는 다른 고압 전극을 구비한다. 그리고, 해당 집진부는 상기 다른 고압 전극에 대향하여 형성되고 상기 다른 고전압 발생 회로로부터 기준 전압이 공급되는 다른 대향 전극을 구비한다. 그리고, 상기 집진부는 상기 대전부에서 대전시킨 상기 부유 미립자를 모은다. 또한, 수지 재료로 구성되고, 상기 대전부를 수납하는 케이스를 구비한다. 그리고, 상기 대전부에 있어서의 상기 고압 전극은 도전성 재료로 구성되고 각각의 선단이 뾰족한 복수개의 톱니 형상 부분 또는 복수개의 바늘 형상 부분을 갖는다. 상기 톱니 형상 부분 또는 상기 바늘 형상 부분이, 상기 통풍 방향에 대하여 교차함과 아울러, 상기 복수개의 톱니 형상 부분 또는 상기 복수개의 바늘 형상 부분은 복수개의 열로 나누어져 있다. 상기 복수개의 열 각각에 있어서의 상기 톱니 형상 부분의 선단 또는 상기 바늘 형상 부분의 선단이, 인접하는 열의 사이에 열 방향으로 서로 어긋나게 배치되어 있다. 상기 톱니 형상 부분 또는 상기 바늘 형상 부분의 길이 L에 대하여, 상기 복수개의 열 사이에서의 상기 톱니 형상 부분 또는 상기 바늘 형상 부분의 선단 간의 거리 S가 3L 이하이다. 한편, 상기 복수개의 열 각각에 있어서의 상기 톱니 형상 부분 또는 상기 바늘 형상 부분의 간격 P가 2L 이상이다. 그리고, 상기 고압 전극은 상기 케이스로부터 5mm 이상 떨어져 형성되어 있다. 상기 대향 전극은 도전성 재료로 구성된 도체부와, 상기 도체부의 적어도 상기 고압 전극에 대향하는 측의 표면을 덮고 상기 고압 전극과 상기 대향 전극 사이의 방전 전류를 제한하는, 체적 저항율이 1014Ω·cm 이상 및 1018Ω·cm 이하인 저항체부를 갖는다. 또한, 상기 대전부를 구성하는 부재 중, 가장 상기 집진부에 가까운 부재의 단부로부터 통풍 방향 하류에 5mm 이상의 이간 거리를 가지고 해당 집진부의 상기 다른 고압 전극이 배치되어 있다.Also for this purpose, the electrostatic precipitator to which the present invention is applied includes a charging unit and a dust collecting unit. The charging unit includes a high voltage electrode to which a high voltage is supplied from the high voltage generation circuit. It is also provided with a counter electrode formed opposite to the high voltage electrode and supplied with a reference voltage from the high voltage generation circuit. And a current limiting circuit including an inductor for lowering the potential of the high voltage electrode by a pulsed current in discharge generated between the high voltage electrode and the counter electrode. Then, a discharge is generated between the high voltage electrode and the counter electrode to charge the suspended fine particles. The dust collecting unit is disposed downstream of the ventilation direction of the charging unit. The dust collector is provided with another high voltage electrode to which a high voltage is supplied from another high voltage generation circuit. The dust collector is provided with the other counter electrode formed to face the other high voltage electrode and supplied with a reference voltage from the other high voltage generation circuit. The dust collecting part collects the suspended fine particles charged by the charging part. Moreover, it is comprised from the resin material, and is provided with the case which accommodates the said charging part. The high voltage electrode in the charging section includes a plurality of serrated portions or a plurality of needle-shaped portions each made of a conductive material and each of which has a sharp tip. The saw tooth portion or the needle portion intersect with the ventilation direction, and the plurality of saw tooth portions or the plurality of needle portions are divided into a plurality of rows. The tip of the sawtooth-shaped portion or the tip of the needle-like portion in each of the plurality of rows is arranged to be shifted from each other in the column direction between adjacent rows. The distance S between the sawtooth portion or the tip of the needle-shaped portion between the plurality of rows is 3 L or less with respect to the length L of the sawtooth portion or the needle-shaped portion. On the other hand, the spacing P of the sawtooth-shaped portion or the needle-shaped portion in each of the plurality of rows is 2L or more. The high voltage electrode is formed at least 5 mm away from the case. The counter electrode has a volume resistivity of 10 14 Pa · cm, covering a conductor portion made of a conductive material and at least a surface of the conductor portion opposite to the high voltage electrode and limiting a discharge current between the high voltage electrode and the counter electrode. And a resistor portion of not less than 10 18 Pa · cm. Further, among the members constituting the charging unit, the other high voltage electrode is disposed at a separation distance of 5 mm or more downstream from the end of the member closest to the dust collecting unit at a ventilation direction downstream.
또한, 이러한 목적 하에, 본 발명이 적용되는 전기 집진기는 대전부와 집진부를 구비한다. 대전부는 고전압 발생 회로로부터 고전압이 공급되는 고압 전극과, 상기 고압 전극에 대향하여 형성되고 상기 고전압 발생 회로로부터 기준 전압이 공급되는 대향 전극을 가지고 있다. 대전부는 상기 고압 전극과 상기 대향 전극 사이에 방전을 발생시켜서 부유 미립자를 대전시킨다. 집진부는 상기 대전부의 통풍 방향의 하류 측에 배치되고 상기 대전부에서 대전시킨 상기 부유 미립자를 모은다. 상기 대전부에 있어서, 상기 고압 전극은 톱니 형상 부분 또는 바늘 형상 부분을 가지고, 상기 대향 전극은 도전성 재료로 구성된 평판형상의 서브 대향 전극을 갖는다. 상기 고압 전극의 복수개의 톱니 형상 부분 또는 바늘 형상 부분과 상기 서브 대향 전극은 상기 통풍 방향으로 교차하는 방향으로 배치된다. 상기 고압 전극의 톱니 형상 부분 또는 바늘 형상 부분이 평면형상의 상기 서브 대향 전극의 표면에 대하여 평행하게 배치된다.Also for this purpose, the electrostatic precipitator to which the present invention is applied includes a charging unit and a dust collecting unit. The charging unit has a high voltage electrode supplied with a high voltage from a high voltage generation circuit, and an opposite electrode formed to face the high voltage electrode and supplied with a reference voltage from the high voltage generation circuit. The charging unit generates a discharge between the high voltage electrode and the counter electrode to charge the suspended fine particles. A dust collecting unit collects the suspended fine particles charged on the downstream side in the ventilation direction of the charging unit and charged by the charging unit. In the charging section, the high voltage electrode has a sawtooth-shaped portion or a needle-shaped portion, and the counter electrode has a flat sub-counter electrode made of a conductive material. The plurality of serrated or needle-like portions of the high voltage electrode and the sub counter electrode are arranged in the direction crossing in the ventilation direction. A serrated portion or a needle-like portion of the high voltage electrode is disposed in parallel with the surface of the sub counter electrode in a planar shape.
이러한 전기 집진기에 있어서, 상기 대전부에 있어서의 상기 고압 전극의 톱니 형상 부분의 선단 또는 바늘 형상 부분의 선단은 상기 통풍 방향의 상류 측을 향하고, 평판형상의 상기 서브 대향 전극의 상기 통풍 방향의 상류단보다도 하류 측에 위치하는 것을 특징으로 할 수 있다.In such an electrostatic precipitator, the distal end of the serrated portion or the distal end of the needle-like portion of the high voltage electrode in the electrification portion faces the upstream side of the ventilation direction, and the upstream of the ventilation direction of the plate-shaped sub counter electrode. It can be characterized by being located downstream from the stage.
또한, 상기 대전부에 있어서의 상기 서브 대향 전극은 상기 고압 전극의 톱니 형상 부분의 선단 또는 바늘 형상 부분의 선단으로부터 상기 통풍 방향의 하류 측에, 적어도 상기 톱니 형상 부분 또는 바늘 형상 부분의 길이에 걸쳐서 배치되어 있는 것을 특징으로 할 수 있다.Moreover, the said sub counter electrode in the said electrification part extends at least the length of the said serrated part or needle-shaped part to the downstream side of the said ventilation direction from the tip of the serrated part of the high voltage electrode, or the tip of the needle shaped part. It is characterized by being arranged.
그리고, 상기 대전부를 구성하는 부재 중, 가장 상기 집진부에 가까운 부재의 단부로부터 통풍 방향 하류에 5mm 이상의 이간 거리를 가지고 상기 집진부의 고압 전극이 배치되어 있는 것을 특징으로 할 수 있다.The high-voltage electrode of the dust collector is disposed at a separation distance of 5 mm or more downstream from the end of the member closest to the dust collector, among the members constituting the charging unit.
또한, 상기 대전부는 인덕터를 포함하고 상기 고압 전극과 상기 대향 전극 사이에 발생하는 방전에서의 펄스형상 전류에 의해 상기 고압 전극의 전위를 저하시키는 전류 제한 회로를 구비하는 것을 특징으로 할 수 있다.The charging unit may include a current limiting circuit including an inductor and lowering a potential of the high voltage electrode by a pulse current in a discharge generated between the high voltage electrode and the counter electrode.
본 발명에 의하면, 오존 발생을 억제하면서 대전부를 얇게 할 수 있는 전기 집진기 등을 제공할 수 있다.According to the present invention, it is possible to provide an electrostatic precipitator and the like which can reduce the charge portion while suppressing ozone generation.
또한, 본 발명에 의하면, 오존 발생을 억제하면서 초미립자를 효율적으로 포집할 수 있는 전기 집진기를 제공할 수 있다.In addition, according to the present invention, it is possible to provide an electrostatic precipitator capable of efficiently collecting ultra-fine particles while suppressing ozone generation.
도 1은 제1 실시형태가 적용되는 전기 집진기의 일례를 나타낸 도면이다.1 is a diagram illustrating an example of an electric dust collector to which the first embodiment is applied.
도 2a 및 도 2b는 대전부의 고압 전극 및 대향 전극 각각의 평면도이며, 도 2a는 고압 전극, 도 2b는 대향 전극이다.2A and 2B are plan views of the high voltage electrode and the counter electrode of the charging unit, respectively, FIG. 2A is the high voltage electrode, and FIG. 2B is the counter electrode.
도 3a 및 도 3b는 대전부를 상세하게 설명하는 단면도이며, 도 3a는 제1 실시형태가 적용되는 전기 집진기의 대전부, 도 3b는 제1 실시형태가 적용되지 않는 비교예의 전기 집진기의 대전부이다.3A and 3B are cross-sectional views illustrating the charging unit in detail, FIG. 3A is a charging unit of the electrostatic precipitator to which the first embodiment is applied, and FIG. 3B is a charging unit of the electrostatic precipitator of the comparative example to which the first embodiment is not applied. .
도 4는 실시예 1의 전기 집진기 및 비교예 1의 전기 집진기에 있어서의 오존 농도와 집진 효율의 관계를 나타낸 도면이다.4 is a diagram showing a relationship between ozone concentration and dust collection efficiency in the electrostatic precipitator of Example 1 and the electrostatic precipitator of Comparative Example 1. FIG.
도 5는 대향 전극의 저항체부를 구성하는 재료(저항체 부재료)와 오존 발생 전압(kV) 및 오존 발생 전압에 있어서의 이온수(×103개/cm3)의 관계를 나타낸 도면이다.Fig. 5 is a diagram showing the relationship between the material (resistance member material) constituting the resistor portion of the counter electrode, the ion generating voltage (kV) and the ionized water (× 10 3 pieces / cm 3 ) in the ozone generating voltage.
도 6은 실시예 3의 전기 집진기의 대전부의 사시도이다.6 is a perspective view of a charging unit of the electrostatic precipitator of the third embodiment.
도 7a 및 도 7b는 실시예 3의 전기 집진기에 있어서의 고압 전극 및 대향 전극 각각의 평면도이다. 도 7a는 고압 전극, 도 7b는 대향 전극이다.7A and 7B are plan views of each of the high voltage electrode and the counter electrode in the electrostatic precipitator of the third embodiment. 7A is a high voltage electrode, and FIG. 7B is an opposite electrode.
도 8은 실시예 3의 전기 집진기에 있어서의 집진 효율과 오존 농도의 관계를 나타낸 도면이다.8 is a diagram showing a relationship between dust collection efficiency and ozone concentration in the electrostatic precipitator of Example 3. FIG.
도 9는 실시예 4의 전기 집진기의 대전부의 사시도이다.9 is a perspective view of a charging unit of the electrostatic precipitator of the fourth embodiment.
도 10a 및 10b는 실시예 4의 전기 집진기에 있어서의 고압 전극 및 대향 전극 각각의 평면도이며, 도 10a는 고압 전극, 도 10b는 대향 전극이다.10A and 10B are plan views of the high voltage electrode and the counter electrode respectively in the electrostatic precipitator of the fourth embodiment, FIG. 10A is the high voltage electrode, and FIG. 10B is the counter electrode.
도 11은 실시예 4의 전기 집진기에 있어서의 집진 효율과 오존 농도의 관계를 나타낸 도면이다.FIG. 11 is a diagram showing a relationship between dust collection efficiency and ozone concentration in the electrostatic precipitator of Example 4. FIG.
도 12a 내지 도 12c는 실시예 4의 전기 집진기의 대전부의 변형예를 나타낸 도면이며, 도 12a는 대전부의 사시도, 도 12b는 대전부를 대향 전극측에서 본 도면, 도 12c는 대향 전극(12)의 XIIC-XIIC 선에서의 단면도이다.12A to 12C show a modification of the charging unit of the electrostatic precipitator of the fourth embodiment, FIG. 12A is a perspective view of the charging unit, FIG. 12B is a view of the charging unit viewed from the counter electrode side, and FIG. 12C is a view of the counter electrode 12. Sectional view on the XIIC-XIIC line.
도 13a 및 도 13b는 실시예 5의 전기 집진기의 대전부를 설명하는 도면이며, 도 13a는 대전부의 사시도, 도 13b는 도 13a의 XIIIB-XIIIB 선에서의 단면도이다.13A and 13B are views illustrating a charging unit of the electrostatic precipitator of the fifth embodiment, FIG. 13A is a perspective view of the charging unit, and FIG. 13B is a sectional view taken along the line XIIIB-XIIIB of FIG. 13A.
도 14a 및 도 14b는 실시예 5의 전기 집진기의 고압 전극 및 대향 전극 각각의 평면도이며 도 14a는 고압 전극, 도 14b는 대향 전극이다.14A and 14B are plan views of the high voltage electrode and the counter electrode of the electrostatic precipitator of Example 5, and FIG. 14A is the high voltage electrode, and FIG. 14B is the counter electrode.
도 15a 및 도 15b는 전기 집진기의 대전부에 있어서의 고압 전극의 변형예를 나타낸 도면이며, 도 15a는 톱니를 도 2a와 상이한 배열로 구성한 도면, 도 15b는 톱니를 도 10a와 상이한 배열로 구성한 도면이다.15A and 15B are views showing a modification of the high voltage electrode in the electrification portion of the electrostatic precipitator, FIG. 15A is a view in which the teeth are arranged in a different arrangement from FIG. 2A, and FIG. 15B is a view in which the teeth are configured in a different arrangement from FIG. 10A. Drawing.
도 16a 및 도 16b는 전기 집진기의 대전부에 있어서의 고압 전극의 다른 변형예를 나타낸 도면이며, 도 16a는 각각이 복수개의 바늘을 구비하는 복수개의 바늘열로 구성되고, 바늘의 선단이 인접하는 바늘열 사이에서 대향시켜 구성한 도면이고, 도 16b는 복수개의 바늘을 구비하는 복수개의 바늘열로 구성되고, 바늘의 선단이 인접하는 바늘열 사이에서 지그재그로 하여 구성한 도면이다.16A and 16B show another modified example of the high voltage electrode in the electrification portion of the electrostatic precipitator, and FIG. 16A is composed of a plurality of needle rows each having a plurality of needles, and the tip of the needle is adjacent to each other. It is a figure comprised so that it may oppose between needle rows, and FIG. 16B is a figure comprised from the several needle row provided with a some needle, and the tip of a needle was comprised by the zigzag between adjacent needle rows.
도 17은 전기 집진기의 대전부에 있어서의 대향 전극의 변형예를 설명하는 도면이다.It is a figure explaining the modification of the counter electrode in the electrification part of an electrostatic precipitator.
도 18은 제2 실시형태가 적용되는 전기 집진기의 일례를 나타낸 도면이다.It is a figure which shows an example of the electric dust collector to which 2nd Embodiment is applied.
도 19는 톱니열에 있어서의 톱니의 간격 P에 대한, 전기 집진기의 집진 효율 및 오존 농도의 관계를 나타낸 도면이다.It is a figure which shows the relationship of the dust collection efficiency of an electrostatic precipitator, and ozone concentration with respect to the spacing P of the tooth in a tooth row.
도 20은 톱니열 사이의 거리 S에 대한, 전기 집진기의 집진 효율 및 오존 농도의 관계를 나타낸 도면이다.It is a figure which shows the relationship of the dust collection efficiency and ozone concentration of an electrostatic precipitator with respect to the distance S between tooth rows.
도 21a 내지 도 21d는 대전부에 있어서의 방전 모습을 모식적으로 설명하는 도면이며, 도 21a는 고압 전극측에서 본 평면도, 도 21b는 도 21a의 XXIB-XXIB 선에서의 단면도이다.21A to 21D are diagrams schematically illustrating the discharge state in the charging section, FIG. 21A is a plan view seen from the high voltage electrode side, and FIG. 21B is a sectional view taken along the line XXIB-XXIB in FIG. 21A.
도 22는 제3 실시형태가 적용되는 전기 집진기의 일례를 나타낸 도면이다.It is a figure which shows an example of the electric dust collector to which 3rd Embodiment is applied.
도 23은 대전부에 있어서의 방전 모습을 모식적으로 설명하는 도면이다.23 is a diagram schematically illustrating a discharge state in a charging unit.
도 24는 제4 실시형태가 적용되는 전기 집진기의 일례를 나타낸 도면이다.It is a figure which shows an example of the electrical dust collector to which 4th Embodiment is applied.
도 25는 전기 집진기의 대전부에 관한 등가 회로이다.25 is an equivalent circuit relating to a charging unit of an electrostatic precipitator.
도 26은 인덕터와 다이오드의 병렬 회로에 의한 전류 제한 회로가 접속된 고압 전극의 일례를 나타낸 도면이다.It is a figure which shows an example of the high voltage electrode with which the current limiting circuit by the parallel circuit of an inductor and a diode was connected.
도 27은 저항에 의한 전류 제한 회로를 포함한 대전부의 등가 회로이다.27 is an equivalent circuit of a charging unit including a current limiting circuit by a resistance.
도 28a 및 도 28b는 실시예 7의 전기 집진기 및 비교예 3의 전기 집진기 각각의 대전부에 있어서의 전극간 전압의 시간 변화를 나타낸 도면이며, 도 28a는 실시예 7, 도 28b는 비교예 3이다.28A and 28B are diagrams showing a time change of the inter-electrode voltage in the charging section of each of the electrostatic precipitator of Example 7 and the electrostatic precipitator of Comparative Example 3, and FIG. 28A shows Example 7, and FIG. 28B shows Comparative Example 3; to be.
도 29는 전류 제한 회로를 포함한 대전부의 다른 등가 회로이다.29 is another equivalent circuit of the charging unit including the current limiting circuit.
도 30은 실시예 8의 전기 집진기의 대전부에 있어서의, 톱니열마다 전류 제한 회로를 접속한 고압 전극의 일례를 나타낸 도면이다.30 is a diagram illustrating an example of a high voltage electrode in which a current limiting circuit is connected for each tooth row in the charging section of the electrostatic precipitator according to the eighth embodiment.
도 31은 실시예 9의 전기 집진기의 대전부에 있어서의, 톱니마다 전류 제한 회로를 접속한 고압 전극의 일례를 나타낸 도면이다.FIG. 31 is a diagram showing an example of a high voltage electrode in which a current limiting circuit is connected for each tooth in the charging section of the electrostatic precipitator of Example 9. FIG.
도 32는 제5 실시형태가 적용되는 전기 집진기에 있어서의 대전부 등가 회로이다.32 is a charging unit equivalent circuit in the electrostatic precipitator to which the fifth embodiment is applied.
도 33은 실시예 10의 전기 집진기의 대전부에 있어서의 전극간 전압의 시간 변화를 설명하는 도면이다.33 is a diagram illustrating a time change of the inter-electrode voltage in the charging unit of the electrostatic precipitator of the tenth embodiment.
도 34는 실시예 10의 전기 집진기의 대전부에 있어서의, 단락에 의한 전극간 전압의 시간 변화를 설명하는 도면이다.34 is a diagram illustrating a time change of the inter-electrode voltage due to a short circuit in the charging unit of the electrostatic precipitator of the tenth embodiment.
도 35는 전류 제한 회로를 접속한 고압 전극의 일례를 나타낸 도면이다.35 is a diagram illustrating an example of a high voltage electrode to which a current limiting circuit is connected.
도 36a 내지 도 36c는 전류 제한 회로를 포함한 대전부의 다른 등가 회로이며, 도 36a는 도 32의 전류 제한 회로에 있어서의 2차 전자 전류 제한부와 단락 전류 제한부의 접속 순서를 교체한 경우이며, 도 36b는 전류 제한 회로를 대향 전극에 접속한 경우이며, 도 36c는 전류 제한 회로에 있어서의 2차 전자 전류 제한부와 단락 전류 제한부 사이에 고압 전극과 대향 전극을 형성한 경우이다.36A to 36C are other equivalent circuits of the charging unit including the current limiting circuit, and FIG. 36A is a case where the connection order of the secondary electron current limiting section and the short circuit current limiting section in the current limiting circuit of FIG. 36b shows a case where the current limiting circuit is connected to the counter electrode, and FIG. 36c shows a case where a high voltage electrode and a counter electrode are formed between the secondary electron current limiting section and the short-circuit current limiting section in the current limiting circuit.
도 37은 제6 실시형태가 적용되는 전기 집진기의 대전부를 설명하기 위한 모식도이다.It is a schematic diagram for demonstrating the charging part of the electric dust collector to which 6th Embodiment is applied.
도 38a 및 도 38b는 실시예 11의 전기 집진기 및 비교예 4의 전기 집진기 각각의 대전부에 있어서 발생하는 이온수를 나타낸 도면이며, 도 38a는 실시예 11, 도 38b는 비교예 4이다.38A and 38B are diagrams showing the ionized water generated in the charging section of each of the electrostatic precipitator of Example 11 and the electrostatic precipitator of Comparative Example 4, and FIG. 38A shows Example 11 and FIG. 38B shows comparative example 4. FIG.
도 39a 및 도 39b는 실시예 12에 따른 전기 집진기에 있어서의 대전부를 설명하는 도면이며, 도 39a는 대전부의 사시도, 도 39b는 대향 전극의 XXXIXB-XXXIXB 선에서의 단면도이다.39A and 39B are views for explaining an electrification section in the electrostatic precipitator according to the twelfth embodiment, Fig. 39A is a perspective view of the electrification section, and Fig. 39B is a sectional view taken along the line XXXIXB-XXXIXB of the counter electrode.
도 40a 및 도 40b는 실시예 13에 따른 전기 집진기에 있어서의 대전부를 설명하는 도면이며, 도 40a는 대전부의 사시도, 도 40b는 대향 전극의 일부의 단면도이다.40A and 40B are views for explaining a charging unit in the electrostatic precipitator according to the thirteenth embodiment, FIG. 40A is a perspective view of a charging unit, and FIG. 40B is a sectional view of a part of the counter electrode.
도 41a 및 도 41b는 실시예 14에 따른 전기 집진기에 있어서의 대전부를 설명하는 도면이다.41A and 41B are views for explaining a charging unit in the electrostatic precipitator according to the fourteenth embodiment.
도 42a 및 도 42b는 실시예 15의 전기 집진기에 있어서의 대전부를 설명하는 도면이며, 도 42a는 대전부의 사시도, 도 42b는 도 42a의 XLIIB-XLIIB 선에서의 단면도이다.42A and 42B are views illustrating a charging unit in the electrostatic precipitator of the fifteenth embodiment, FIG. 42A is a perspective view of the charging unit, and FIG. 42B is a sectional view taken along the line XLIIB-XLIIB in FIG. 42A.
도 43은 고압 전극과 대향 전극의 도체부 사이에 인가된 전극간 전압(kV)과 톱니의 1개 당의 오존 발생량(μg/h)의 관계를 설명하는 도면이다.It is a figure explaining the relationship between the inter-electrode voltage (kV) applied between the high voltage electrode and the conductor part of a counter electrode, and the ozone generation amount (microgram / h) per tooth.
도 44a 및 도 44b는 실시예 17에 따른 전기 집진기에 있어서의 대전부를 설명하는 도면이며, 도 44a는 대전부의 사시도, 도 44b는 대향 전극의 일부의 단면도이다.44A and 44B are views for explaining a charging unit in the electrostatic precipitator according to the seventeenth embodiment, FIG. 44A is a perspective view of a charging unit, and FIG. 44B is a sectional view of a part of the counter electrode.
도 45a 및 도 45b는 실시예 18에 따른 전기 집진기에 있어서의 대전부를 설명하는 도면이며, 도 45a는 대전부의 사시도, 도 45b는 도 45a의 XLVB-XLVB 선에서의 대향 전극의 단면도이다.45A and 45B are views illustrating a charging unit in the electrostatic precipitator according to the eighteenth embodiment, FIG. 45A is a perspective view of the charging unit, and FIG. 45B is a sectional view of the counter electrode in the XLVB-XLVB line in FIG. 45A.
도 46a 및 도 46b는 실시예 19에 따른 전기 집진기에 있어서의 대전부를 설명하는 도면이며, 도 46a는 대전부의 사시도, 도 46b는 도 46a의 XLVIB-XLVIB 선에서의 대향 전극의 단면도이다.46A and 46B are views for explaining the charging portion in the electrostatic precipitator according to the nineteenth embodiment, FIG. 46A is a perspective view of the charging portion, and FIG. 46B is a sectional view of the counter electrode in the XLVIB-XLVIB line in FIG. 46A.
도 47은 제7 실시형태가 적용되는 전기 집진기의 일례를 나타낸 도면이다.It is a figure which shows an example of the electrical dust collector to which 7th Embodiment is applied.
도 48은 제8 실시형태가 적용되는 전기 집진기의 일례를 나타낸 도면이다.48 is a diagram illustrating an example of an electric dust collector to which the eighth embodiment is applied.
도 49a 내지 도 49c는 실시예 20, 비교예 6, 7에 따른 전기 집진기에 있어서의 대전부의 주요부의 사시도이며, 도 49a는 실시예 20, 도 49b는 비교예 6, 도 49c는 비교예 7이다.49A to 49C are perspective views of main portions of the charging unit in the electrostatic precipitators according to Example 20 and Comparative Examples 6 and 7, wherein FIG. 49A is Example 20, and FIG. 49B is Comparative Example 6 and FIG. 49C is Comparative Example 7. .
도 50은 실시예 20, 비교예 6, 7에 따른 전기 집진기에 있어서의 오존 농도 및 입자 직경마다 구한 집진 효율을 설명하는 도면이다.It is a figure explaining the dust collection efficiency calculated | required for every ozone concentration and particle diameter in the electrostatic precipitator which concerns on Example 20, the comparative examples 6 and 7. FIG.
도 51은 종(從) 고압 전극의 작용을 설명하는 도면이다.It is a figure explaining the operation | movement of a longitudinal high voltage electrode.
도 52는 제8 실시형태가 적용되는 전기 집진기의 변형예를 나타낸 도면이다.It is a figure which shows the modified example of the electrostatic precipitator to which 8th Embodiment is applied.
도 53은 제9 실시형태가 적용되는 전기 집진기의 변형예를 나타낸 도면이다.It is a figure which shows the modification of the electric dust collector to which the 9th Embodiment is applied.
도 54는 실시예 21에 따른 전기 집진기에 있어서의 대전부 및 집진부의 주요부의 통풍 방향에 대한 단면도이다.Fig. 54 is a sectional view of the charging direction of the electrostatic precipitator according to the twenty-first embodiment, and the ventilation directions of the main parts of the dust collector;
도 55a 및 도 55b는 실시예 21 및 비교예 7에 따른 전기 집진기에 있어서의 대전부의 주요부의 사시도이며, 도 55a는 실시예 21, 도 55b는 비교예 7이다.55A and 55B are perspective views of main parts of the charging unit in the electrostatic precipitator according to Example 21 and Comparative Example 7, and FIG. 55A is Example 21 and FIG. 55B is Comparative Example 7. FIG.
도 56은 실시예 21, 비교예 7에 따른 전기 집진기에 있어서의 오존 농도 및 입자 직경마다 구한 집진 효율을 설명하는 도면이다.It is a figure explaining the dust collection efficiency calculated | required for every ozone concentration and particle diameter in the electrostatic precipitator which concerns on Example 21 and the comparative example 7. FIG.
이하, 첨부 도면을 참조하여, 본 발명의 실시형태에 대하여 상세하게 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, embodiment of this invention is described in detail with reference to an accompanying drawing.
[제1 실시형태][First Embodiment]
도 1은 제1 실시형태가 적용되는 전기 집진기(1)의 일례를 나타낸 도면이다. 여기에서는 케이스(30)를 파선으로 나타내고, 케이스(30)의 내부에 형성된 대전부(10) 및 집진부(20)의 구성이 보이도록 하고 있다.FIG. 1: is a figure which shows an example of the electric dust collector 1 to which 1st Embodiment is applied. Here, the case 30 is shown with a broken line, and the structure of the charging part 10 and the dust collector 20 formed in the inside of the case 30 is shown.
전기 집진기(1)는 대전부(10), 집진부(20), 대전부(10) 및 집진부(20)를 수용하는 케이스(30)를 구비하고 있다. 즉, 전기 집진기(1)는 대전부(10)와 집진부(20)가 분리된 2단 전기 집진 방식이다.The electrostatic precipitator 1 is provided with the case 30 which accommodates the charging part 10, the dust collecting part 20, the charging part 10, and the dust collecting part 20. As shown in FIG. That is, the electrostatic precipitator 1 is a two-stage electrostatic precipitating method in which the charging unit 10 and the dust collecting unit 20 are separated.
여기서, 공기의 흐름(통풍)의 방향(통풍 방향)은 대전부(10)로부터 집진부(20)를 향하는 방향으로 설정되어 있다(도 1의 지면의 좌측에서 우측). 통풍은 집진부(20)의 통풍 방향 하류 측에 형성된 팬(도시하지 않음)에 의해 행해진다.Here, the direction (airflow direction) of the flow of air (ventilation) is set in the direction from the charging section 10 to the dust collecting section 20 (left to right of the paper surface in FIG. 1). Ventilation is performed by a fan (not shown) formed on the downstream side in the ventilation direction of the dust collector 20.
그리고, 설명의 편의상, 도 1에 나타낸 바와 같이, 지면의 상하 방향을 상측 및 하측, 통풍 방향에 대하여 상하 방향과 직교하는 좌우 방향을 좌측 및 우측이라고 표기한다.And for convenience of explanation, as shown in FIG. 1, the left-right direction orthogonal to an up-down direction and orthogonal to an up-down direction with respect to a ventilation direction is described as left and right as shown in FIG.
한편, 통풍이 저해되지 않는 한, 전기 집진기(1)는 어떠한 방향으로 배치되어 있어도 무방하다.On the other hand, as long as ventilation is not impaired, the electrostatic precipitator 1 may be arrange | positioned in what direction.
(대전부(10))(The front part (10))
대전부(10)는 고압 전극(11)과, 고압 전극(11)에 대향하는 대향 전극(12)을 구비하고 있다. 한편, 고압 전극(11)은 고전압이 인가되는 전극이므로, 고전압 전극이라고도 불리며, 방전을 발생하는 전극이므로, 방전 전극이라고도 불리기도 한다. 또한, 대향 전극(12)은 접지(GND)되는 경우가 있기 때문에, 접지 전극으로 불리기도 한다.The charging unit 10 includes a high voltage electrode 11 and a counter electrode 12 that faces the high voltage electrode 11. On the other hand, since the high voltage electrode 11 is an electrode to which a high voltage is applied, it is also called a high voltage electrode, and since it is an electrode which generates a discharge, it is also called a discharge electrode. In addition, since the counter electrode 12 may be grounded (GND), it is also called a ground electrode.
그리고, 고압 전극(11)과 대향 전극(12) 사이에 직류(DC)의 고전압이 인가됨으로써, 고압 전극(11)과 대향 전극(12) 사이에 코로나 방전(방전)이 발생한다. 그리고, 발생한 코로나 방전에 의해 부유 미립자를 대전시킨다.And a high voltage of direct current (DC) is applied between the high voltage electrode 11 and the counter electrode 12, and a corona discharge (discharge) is generated between the high voltage electrode 11 and the counter electrode 12. As shown in FIG. Then, the suspended fine particles are charged by the generated corona discharge.
고압 전극(11)은 예를 들면, 각각이 뾰족한 선단을 갖는 톱니 형상 부분 (111)(이하에서는 톱니(111)로 표기한다.)을 복수개 구비한 복수개의 톱니열 (113)(도 1에서는 #1~#5의 5열)을 구비하고 있다. 각각의 톱니열(113)의 길이 방향은 좌우 방향을 향해 있다. 도 1에서는, 상하 방향에 있어서의 가장 상측의 톱니열(113)(도 1에서는 #1)은 하측을 향하여 배열된 복수개의 톱니(111)(도 1에서는 10개)를 구비하고 있다. 상하 방향에 있어서의 가장 하측의 톱니열(113)(도 1에서는 #5)은 상측을 향해 배열된 복수개의 톱니(111)(도 1에서는 10개)를 구비하고 있다. 사이의 톱니열(113)(도 1에서는 #2~#4)은 상측을 향해 배열된 복수개의 톱니 (111)(도 1에서는 10개)와, 하측을 향해 배열된 복수개의 톱니(111)(도 1에서는 10개)를 구비하고 있다.For example, the high voltage electrode 11 has a plurality of tooth rows 113 (see FIG. 1 in FIG. 1) provided with a plurality of toothed portions 111 (hereinafter referred to as teeth 111) each having a sharp tip. 5 rows of 1 to # 5). The longitudinal direction of each tooth row 113 is directed to the left and right directions. In FIG. 1, the uppermost tooth row 113 (# 1 in FIG. 1) in the up-down direction is provided with a plurality of teeth 111 (10 in FIG. 1) arranged downward. The lowest tooth row 113 (# 5 in FIG. 1) in the up-down direction is provided with a plurality of teeth 111 (10 in FIG. 1) arranged toward the upper side. The tooth rows 113 (# 2 to # 4 in Fig. 1) between are a plurality of teeth 111 (10 in Fig. 1) arranged toward the upper side and a plurality of teeth 111 (arranged toward the lower side) ( In FIG. 1, 10 pieces are provided.
한편, 톱니(111) 및/또는 그 선단은 전계 집중을 발생시키는 부위의 일례이다.On the other hand, the tooth 111 and / or its tip is an example of a site for generating electric field concentration.
한편, 톱니열(113)의 수 및 톱니열(113)에 있어서의 톱니(111)의 수는 미리 정해진 수로 설정된다.On the other hand, the number of tooth rows 113 and the number of teeth 111 in the tooth row 113 are set to a predetermined number.
각각의 톱니열(113)에 있어서의 복수개의 톱니(111)는 접속부(112)에 접속되어 있다. 그리고, 각각의 접속부(112)의 단부는 절연성 재료로 구성된 지지부(14)에 고정되어 있다. 지지부(14)는 배선을 구비하는 회로 기판(인쇄 배선판(PCB))을 구비하고 있다. 회로 기판의 배선을 통하여, 톱니열(113)이 DC의 고전압을 공급하는 고전압 발생 회로(40)의 양극에 접속되어 있다.The plurality of teeth 111 in each tooth row 113 are connected to the connecting portion 112. And the edge part of each connection part 112 is being fixed to the support part 14 which consists of insulating materials. The support part 14 is equipped with the circuit board (printed wiring board (PCB)) provided with wiring. Through the wiring of the circuit board, the tooth row 113 is connected to the anode of the high voltage generating circuit 40 which supplies a high voltage of DC.
한편, 지지부(14)는 케이스(30)의 일부이어도 무방하다.In addition, the support part 14 may be part of the case 30.
각각의 톱니(111)는 통풍 방향에 대하여 직교하는 방향으로 형성되어 있다. 또한, 각각의 톱니(111)는 인접하는 톱니열(113)의 사이, 예를 들면 톱니열(113)(#1)과 톱니열(113)(#2) 사이에 있어서, 선단이 서로 대향하도록 형성되어 있다.Each tooth 111 is formed in a direction orthogonal to the ventilation direction. In addition, each tooth 111 is arranged so that the ends thereof face each other between adjacent tooth rows 113, for example, between tooth rows 113 (# 1) and tooth rows 113 (# 2). Formed.
한편, 각각의 톱니(111)는 통풍 방향에 대하여 경사 방향으로 형성되어도 무방하다. 즉, 각각의 톱니(111)는 통풍 방향으로 교차하는 방향으로 형성되어 있다.In addition, each tooth 111 may be formed in the inclination direction with respect to the ventilation direction. That is, each tooth 111 is formed in the direction crossing in the ventilation direction.
고압 전극(11)의 톱니(111)와 접속부(112)는 도전성 재료로 일체로 구성되어 있다. 한편, 지지부(14)는 별개 부재로 하지 않고, 톱니(111), 접속부(112)와 일체로, 도전성 재료로 구성되어도 무방하다.The teeth 111 and the connection portion 112 of the high voltage electrode 11 are integrally formed of a conductive material. In addition, the support part 14 may not be a separate member, but may be comprised with the tooth | gear 111 and the connection part 112, and may be comprised with a conductive material.
대향 전극(12)은 통풍을 확보하기 위하여, 관통한 개구(구멍)(124)를 갖는 도전성 재료로 구성된 부재와, 그 표면을 덮도록 형성되고 전류에 대하여 저항으로서 기능하는 저항성 재료로 구성된 부재(저항체)를 구비하고 있다(후술하는 도 2의 도체부(121) 및 저항체부(122) 참조). 그리고, 대향 전극(12)은 고전압 발생 회로(40)의 음극에 접속되어 있다.The counter electrode 12 is formed of a member made of a conductive material having a penetrating opening (hole) 124 and a member made of a resistive material formed so as to cover the surface thereof and functioning as a resistance to current. Resistor) (see conductor portion 121 and resistor portion 122 in FIG. 2 described later). The counter electrode 12 is connected to the cathode of the high voltage generating circuit 40.
한편, 저항성 재료의 부재는 방전 전류를 제한하고 오존 발생을 억제한다. 따라서, 저항성 재료의 부재에 대한 체적 저항율 등의 특성은 집진 효율과 오존 농도의 관계를 고려하여 설정된다.On the other hand, the absence of the resistive material limits the discharge current and suppresses ozone generation. Therefore, characteristics such as volume resistivity for the member of the resistive material are set in consideration of the relationship between the dust collection efficiency and the ozone concentration.
도 1에서는, 대향 전극(12)은 일례로서 도체부(121)가 도전성 재료로 구성된 철망(메시)이다. 한편, 도 1(후술하는 도 2b도 마찬가지)에서는, 망목(개구 (124))를 크게 표기하고 있다. 그러나, 망목(개구(124))의 크기는 고압 전극(11) 사이에 발생하는 방전을 고려하여 설정된다.In FIG. 1, the counter electrode 12 is, for example, a wire mesh (mesh) in which the conductor portion 121 is made of a conductive material. In addition, in FIG. 1 (also FIG. 2B mentioned later), the mesh (opening 124) is largely described. However, the size of the mesh (opening 124) is set in consideration of the discharge occurring between the high voltage electrodes 11.
고압 전극(11)과 대향 전극(12) 사이는 거리 G이다.The distance G is between the high voltage electrode 11 and the counter electrode 12.
(집진부(20))(Dust collecting part 20)
집진부(20)는 번갈아 적층된, 표면이 절연성 재료의 막으로 피복된 평판형상의 고압 전극(21)과, 평판형상의 대향 전극(22)을 구비하고 있다. 고압 전극(21)과 대향 전극(22) 사이가 통풍 방향이 된다. 한편, 대향 전극(22)은 접지(GND)되는 경우가 있기 때문에 접지 전극으로 불리기도 한다.The dust collecting part 20 is provided with the plate-shaped high voltage electrode 21 by which the surface was coat | covered by the film | membrane of insulating material, and the counter electrode 22 which were laminated alternately. The ventilation direction is between the high voltage electrode 21 and the counter electrode 22. On the other hand, since the counter electrode 22 may be grounded (GND), it is also called a ground electrode.
고압 전극(21)과 대향 전극(22) 사이에 고전압 발생 회로(50)에 의해 직류(DC)의 고전압이 인가된다. 그러면, 대전부(10)에서 대전한 부유 미립자가 정전기에 의해 대향 전극(22)의 표면에 부착된다. 이에 따라, 부유 미립자가 집진된다.A high voltage of direct current (DC) is applied between the high voltage electrode 21 and the counter electrode 22 by the high voltage generation circuit 50. Then, the suspended fine particles charged by the charging unit 10 adhere to the surface of the counter electrode 22 by static electricity. As a result, suspended fine particles are collected.
한편, 고압 전극(21)의 표면을 덮는 절연성 재료의 막에는 폴리에틸렌, 폴리에틸렌테레프탈레이트(PET), 폴리테트라플루오르에틸렌(PTFE) 등을 이용할 수 있다.On the other hand, polyethylene, polyethylene terephthalate (PET), polytetrafluoroethylene (PTFE), or the like can be used for the film of the insulating material covering the surface of the high voltage electrode 21.
집진부(20)는 대전부(10)의 통풍 방향의 하류 측에 형성되어 있다. 그리고, 집진부(20)의 고압 전극(21)과 대향 전극(22) 중, 대전부(10)에 가장 가까운 전극은 대전부(10)를 구성하는 부재 중, 집진부(20)에 가장 가까운 부재의 단부로부터 통풍 방향의 하류 측에 기 설정된 이간 거리로 배치되어 있어도 무방하다. 이러한 관계는 이하에 기술하는 다른 실시형태에 있어서도 마찬가지이다. 이때, 기 설정된 이간 거리는 5mm 이상일 수 있다.The dust collecting part 20 is formed on the downstream side of the ventilation direction of the charging part 10. The electrode closest to the charging unit 10 among the high voltage electrode 21 and the counter electrode 22 of the dust collecting unit 20 is the member that is closest to the dust collecting unit 20 among the members constituting the charging unit 10. It may be arranged at a predetermined separation distance on the downstream side in the ventilation direction from the end. This relationship is the same also in other embodiment described below. In this case, the predetermined separation distance may be 5 mm or more.
(케이스(30))(Case (30))
케이스(30)는 대전부(10)와 집진부(20)를 수납한다. 그리고, 대전부(10)에 대향하는 전면 부분에는 복수개의 격자(그릴)(31)이 형성되어 있다. 한편, 격자(31)는 사용자가 대전부(10)에 접촉하는 것을 방지하면서, 통풍에 대한 저항이 작도록 형성되는 것이 바람직하다.The case 30 accommodates the charging unit 10 and the dust collecting unit 20. In addition, a plurality of gratings (grills) 31 are formed on the front surface portion facing the charging unit 10. On the other hand, the grating 31 is preferably formed so that the resistance to the ventilation is small while preventing the user from contacting the charging unit 10.
케이스(30)는 예를 들면, ABS(아크릴로니트릴, 부타디엔, 스티렌 공중합체)등의 수지 재료로 구성되어 있다.The case 30 is comprised from resin materials, such as ABS (acrylonitrile, butadiene, styrene copolymer), for example.
도 2a 및 도 2b는 대전부(10)의 고압 전극(11) 및 대향 전극(12) 각각의 평면도이다. 도 2a는 고압 전극(11), 도 2b는 대향 전극(12)이다.2A and 2B are plan views of each of the high voltage electrode 11 and the counter electrode 12 of the charging unit 10. 2A shows the high voltage electrode 11 and FIG. 2B shows the counter electrode 12.
도 2a에 나타낸 바와 같이, 고압 전극(11)은 각각 톱니(111)가 복수개 형성된 톱니열(113)(도 2에서는 #1~#5)을 구비하고 있다. 그리고, 인접하는 톱니열(113) 사이에서, 각각의 톱니(111) 선단이 대향하도록(서로 마주보도록) 형성되어 있다.As shown in FIG. 2A, the high voltage electrode 11 is provided with a tooth row 113 (# 1 to # 5 in FIG. 2) in which a plurality of teeth 111 are formed. The tip of each tooth 111 is formed to face (facing each other) between adjacent tooth rows 113.
그리고, 톱니(111) 선단으로부터 접속부(112)까지의 길이를 L(길이 L), 톱니열(113)에 있어서의 톱니(111) 간의 간격(피치)을 P(간격 P)로 한다. 또한, 인접하는 톱니열(113) 사이에 있어서, 톱니열에 수직인 방향의 톱니(111) 선단 간의 거리를 S(거리 S)로 한다.The length from the tip of the tooth 111 to the connection portion 112 is L (length L), and the interval (pitch) between the teeth 111 in the tooth row 113 is P (interval P). In addition, between adjacent tooth rows 113, the distance between the tips of the teeth 111 in the direction perpendicular to the tooth rows is set to S (distance S).
도 2b에 나타낸 바와 같이, 대향 전극(12)은 일례로서 도전성 재료로 구성된 철망(메시)인 도체부(121)와, 그 표면을 덮는 저항체부(122)를 구비하고 있다. 그리고, 상측과 하측의 단부가, 도체부(121)의 표면을 노출시킨 도체 노출 영역(123)으로 되어 있다. 한편, 좌우측의 단부에도 도체부(121)의 표면을 노출시킨 도체 노출 영역(123)을 형성해도 무방하다.As shown in FIG. 2B, the counter electrode 12 includes, as an example, a conductor portion 121, which is a wire mesh (mesh) made of a conductive material, and a resistor portion 122 covering the surface thereof. The upper and lower end portions constitute the conductor exposed region 123 in which the surface of the conductor portion 121 is exposed. In addition, you may form the conductor exposure area | region 123 which exposed the surface of the conductor part 121 also in the left-right side edge part.
한편, 대향 전극(12)의 일부의 단부에만, 도체부(121)의 표면을 노출시킨 도체 노출 영역(123)을 형성해도 무방하다.In addition, you may form the conductor exposure area | region 123 which exposed the surface of the conductor part 121 only in the edge part of the counter electrode 12. As shown in FIG.
도체 노출 영역(123)은 형성된 저항체부(122)를 제거하여 형성해도 무방하고, 저항체부(122)를 형성하지 않도록(예를 들면, 도포하지 않도록) 형성해도 무방하다.The conductor exposed region 123 may be formed by removing the formed resistor portion 122, and may be formed so as not to form the resistor portion 122 (for example, not to be coated).
대향 전극(12)에, 저항체부(122)를 형성하는 것은 방전 전류를 제한하고 오존 발생을 억제하기 위함이다. 따라서, 후술하는 바와 같이, 저항체부(122)를 구성하는 부재는 비유전율이 3 이상이고, 체적 저항율이 1014Ω·cm 이상 및 1018Ω·cm 이하인 것이 바람직하다. 한편, 저항체부(122)의 두께에 따라서 두께 방향의 저항값이 변화한다. 따라서, 저항체부(122)의 두께에 의해 방전 전류의 값을 설정할 수 있다.The formation of the resistor portion 122 in the counter electrode 12 is for limiting the discharge current and suppressing ozone generation. Therefore, as will be described later, the members constituting the resistor portion 122 preferably have a relative dielectric constant of 3 or more and a volume resistivity of 10 14 Pa · cm or more and 10 18 Pa · cm or less. On the other hand, the resistance value in the thickness direction changes according to the thickness of the resistor portion 122. Therefore, the value of the discharge current can be set by the thickness of the resistor unit 122.
한편, 체적 저항율이 1014Ω·cm 이라는 것은 1014Ω·cm 대인 것을 의미한다. 다른 체적 저항율의 값에 대해서도 마찬가지이다.On the other hand, a volume resistivity of 10 14 Ω · cm means that it is in the range of 10 14 Ω · cm. The same applies to the values of other volume resistivity.
도 3a 및 도 3b는 대전부(10)를 상세하게 설명하는 단면도이다. 도 3a는 제1 실시형태가 적용되는 전기 집진기(1)의 대전부(10), 도 3b는 제1 실시형태가 적용되지 않는 전기 집진기(1)의 대전부(10)이다.3A and 3B are cross-sectional views illustrating the charging unit 10 in detail. 3A is a charging unit 10 of the electrostatic precipitator 1 to which the first embodiment is applied, and FIG. 3B is a charging unit 10 of the electrostatic precipitator 1 to which the first embodiment is not applied.
고압 전극(11)은 복수개의 톱니(111)를 구비하고 있다. 도 3a 및 도 3b에서는, 각각의 톱니(111)는 전기적으로 연결되지 않은 것처럼 보인다. 그러나, 도 1, 도 2a 및 도 2b에서 설명한 바와 같이, 고압 전극(11)은 전기적으로 연결되어 있다.The high voltage electrode 11 has a plurality of teeth 111. In FIGS. 3A and 3B, each tooth 111 does not appear to be electrically connected. However, as described in FIGS. 1, 2A and 2B, the high voltage electrode 11 is electrically connected.
대향 전극(12)은 도체부(121)와 도체부(121)의 표면을 덮도록 형성된 저항체부(122)를 구비하고 있다. 한편, 도 3a 및 도 3b에서는, 도체부(121)는 서로 전기적으로 연결되지 않은 것처럼 보인다. 그러나, 도 1, 도 2a 및 도 2b에서 설명한 바와 같이, 도체부(121)는 도전성 재료로 구성된 철망(메시)이므로, 전기적으로 연결되어 있다.The counter electrode 12 is provided with the conductor part 121 and the resistor part 122 formed so that the surface of the conductor part 121 may be covered. 3A and 3B, the conductor portions 121 do not appear to be electrically connected to each other. However, as described with reference to Figs. 1, 2A and 2B, since the conductor portion 121 is a wire mesh (mesh) made of a conductive material, it is electrically connected.
도 3a에 나타낸 제1 실시형태가 적용되는 전기 집진기(1)의 대전부(10)에서는, 고압 전극(11)은 상기 절연성의 부재(절연체)로 구성된 절연 스페이서(32)를 통하여 케이스(30)에 부착되어 있다. 따라서, 고압 전극(11)은 케이스(30)에 직접 접촉되어 있지 않다. 한편, 지지부(14)가 절연 스페이서(32)이어도 무방하고, 지지부(14)가 절연 스페이서(32)를 통하여 케이스(30)에 부착되어도 무방하다.In the charging portion 10 of the electrostatic precipitator 1 to which the first embodiment shown in FIG. 3A is applied, the high voltage electrode 11 is connected to the case 30 through an insulating spacer 32 composed of the insulating member (insulator). Is attached to. Therefore, the high voltage electrode 11 is not in direct contact with the case 30. In addition, the support part 14 may be the insulating spacer 32, and the support part 14 may be attached to the case 30 via the insulating spacer 32. As shown in FIG.
절연 스페이서(32)로서는, 상기 절연성이 높은 것이면 무방하고, 세라믹스, 수지 재료, 공기 등으로 구성되어 있는 것이 바람직하다.As the insulating spacer 32, any of the above insulating properties may be used, and it is preferable that the insulating spacer 32 is made of ceramics, a resin material, air, or the like.
한편, 절연 스페이서(32)는 절연 부재의 일례이다.On the other hand, the insulating spacer 32 is an example of an insulating member.
한편, 대향 전극(12)은 도체부(121)를 노출시킨 도체 노출 영역(123)이 케이스(30)와 전기적으로 접촉하도록 케이스(30)에 부착되어 있다. 그리고, 그 도체 노출 영역(123)에서 접지 단자(E)에 접속되어 있다. 한편, 접지 단자(E)는 접지되지 않아도 무방하다.On the other hand, the counter electrode 12 is attached to the case 30 such that the conductor exposed region 123 exposing the conductor portion 121 is in electrical contact with the case 30. And it is connected to the ground terminal E in the conductor exposed area | region 123. As shown in FIG. On the other hand, the ground terminal E may not be grounded.
또한, 케이스(30) 등의 수지 재료로 구성된 부재(수지 부재)는 톱니(111) 선단으로부터, 미리 정해진 거리 r의 범위에 형성되어 있지 않다. 여기에서의 수지 부재는 케이스(30)를 구성하는 부재에 한정하지 않고, 케이스(30) 내에 형성되는 것을 포함한다.In addition, the member (resin member) which consists of resin materials, such as the case 30, is not formed in the range of predetermined distance r from the front-end | tip of the tooth | gear 111. As shown in FIG. The resin member here is not limited to the member which comprises the case 30, What is formed in the case 30 is included.
한편, 도 3b에 나타낸 비교예 1의 전기 집진기(1)에 있어서의 대전부(10)에서는, 대향 전극(12)의 단부는 도체부(121)를 노출시키지 않았다. 즉, 비교예 1의 전기 집진기(1)에서는, 대향 전극(12)은 도체 노출 영역을 구비하지 않는다.On the other hand, in the electrification part 10 in the electrostatic precipitator 1 of the comparative example 1 shown in FIG. 3B, the edge part of the counter electrode 12 did not expose the conductor part 121. FIG. That is, in the electrostatic precipitator 1 of the comparative example 1, the counter electrode 12 does not have a conductor exposed area | region.
그리고, 고압 전극(11)은 케이스(30)에 직접 접촉하도록 부착되어 있다.The high voltage electrode 11 is attached to the case 30 directly.
한편, 대향 전극(12)은 저항체부(122)를 통하여, 케이스(30)와 접촉하도록 부착되어 있다. 그리고, 대향 전극(12)은 케이스(30)와 접하는 부분 이외에 있어서, 접지 단자(E)에 접속되어 있다. 한편, 접지 단자(E)는 접지되지 않아도 무방하다.On the other hand, the counter electrode 12 is attached to contact the case 30 through the resistor portion 122. The counter electrode 12 is connected to the ground terminal E except for the part in contact with the case 30. On the other hand, the ground terminal E may not be grounded.
(실시예 1)(Example 1)
다음으로, 제1 실시형태가 적용되는 전기 집진기(1)(실시예 1의 전기 집진기(1)) 및 제1 실시형태가 적용되지 않는 전기 집진기(1)(비교예 1의 전기 집진기(1))의 집진 효율과 오존 농도를 측정한 결과를 설명한다.Next, the electrostatic precipitator 1 to which the first embodiment is applied (the electrostatic precipitator 1 of Example 1) and the electrostatic precipitator 1 to which the first embodiment is not applied (the electrostatic precipitator 1 of Comparative Example 1) are applied. Explain the results of measuring dust collection efficiency and ozone concentration.
실시예 1의 전기 집진기(1) 및 비교예 1의 전기 집진기(1)는 각각의 대전부(10)가 도 3에 나타낸 바와 같이 상이하다. 그러나, 다른 구성은 동일하다.The electrostatic precipitator 1 of Example 1 and the electrostatic precipitator 1 of Comparative Example 1 differ from each other as shown in FIG. However, other configurations are the same.
전기 집진기(1)의 대전부(10)는 통풍 방향에서 본 고압 전극(11)의 지지부(14)의 크기를, 좌우 방향으로 약 400mm, 상하 방향으로 약 300mm로 했다. 그리고, 케이스(30) 표면에는 40mm×125mm의 개구부가 복수개 형성되도록 격자(31)를 배치했다.The charging section 10 of the electrostatic precipitator 1 had the size of the support section 14 of the high voltage electrode 11 viewed from the ventilation direction as about 400 mm in the left and right directions and about 300 mm in the vertical direction. And the grating 31 was arrange | positioned so that the some opening part of 40 mm x 125 mm may be formed in the case 30 surface.
대전부(10)에 있어서의 고압 전극(11)의 톱니(111) 및 접속부(112)는 두께 0.5mm의 판형상의 스테인레스 스틸(SUS)로 구성했다. 그리고, 톱니(111)는 선단으로부터 접속부(112)까지의 길이를 약 10mm로 했다. 그리고, 톱니열(113) 사이의 톱니(111) 선단 간의 거리 S를 약 30mm로 했다.The teeth 111 and the connection part 112 of the high voltage electrode 11 in the charging part 10 were comprised with plate-shaped stainless steel (SUS) of thickness 0.5mm. And the tooth | gear 111 made the length from the tip to the connection part 112 about 10 mm. The distance S between the tips of the teeth 111 between the teeth rows 113 was set to about 30 mm.
대전부(10)에 있어서의 대향 전극(12)은 도체부(121)를 개구율 87.1%의 SUS로 구성된 철망(메시)으로 했다. 도체부(121)의 표면을 덮는 저항체부(122)는 두께 약 50㎛의 폴리이미드 수지로 했다. 이 폴리이미드 수지는 비유전율이 3.3, 체적 저항율이 1016Ω·cm였다.The counter electrode 12 in the charging unit 10 used the conductor portion 121 as a wire mesh (mesh) made of SUS having an opening ratio of 87.1%. The resistor portion 122 covering the surface of the conductor portion 121 was made of polyimide resin having a thickness of about 50 μm. This polyimide resin had a dielectric constant of 3.3 and a volume resistivity of 10 16 Pa · cm.
고압 전극(11)과 대향 전극(12)의 거리 G는 약 5mm로 했다.The distance G between the high voltage electrode 11 and the counter electrode 12 was about 5 mm.
그리고, 고압 전극(11)과 대향 전극 사이에, 약 4kV의 DC 전압을 인가하여 코로나 방전을 발생시켰다.Then, a DC voltage of about 4 kV was applied between the high voltage electrode 11 and the counter electrode to generate corona discharge.
집진부(20)에 있어서의 고압 전극(21) 및 대향 전극(22)은 통풍 방향의 폭이 20mm, 통풍 방향과 직교하는 방향의 길이가 약 400mm로 했다. 그리고, 고압 전극(21)과 대향 전극(22)의 간격은 약 1.5mm로 했다. 그리고, 고압 전극(21)과 대향 전극(22) 사이에 약 6kV의 DC 전압을 인가했다.The high voltage electrode 21 and the counter electrode 22 in the dust collector 20 had a width in the ventilation direction of 20 mm and a length in a direction orthogonal to the ventilation direction of about 400 mm. And the space | interval of the high voltage electrode 21 and the counter electrode 22 was about 1.5 mm. Then, a DC voltage of about 6 kV was applied between the high voltage electrode 21 and the counter electrode 22.
그리고, 실시예 1의 전기 집진기(1)에서는, 케이스(30) 등을 구성하는 수지 부재를, 톱니(111) 선단으로부터 약 5mm(거리 r)의 범위에 형성하지 않도록 했다.In the electrostatic precipitator 1 of Example 1, the resin member constituting the case 30 or the like was not formed in the range of about 5 mm (distance r) from the tip of the tooth 111.
도 4는 실시예 1의 전기 집진기(1) 및 비교예 1의 전기 집진기(1)에 있어서의 집진 효율과 오존 농도의 관계를 나타낸 도면이다. 통풍 방향의 풍속은 1m/s이다.4 is a diagram showing a relationship between dust collection efficiency and ozone concentration in the electrostatic precipitator 1 of Example 1 and the electrostatic precipitator 1 of Comparative Example 1. FIG. The wind speed in the ventilation direction is 1 m / s.
여기서, 오존 농도는 오존 농도계를 이용하여 오존 농도계가 계측하는 오존량과 오존 농도계가 취입하는 공기의 양으로부터 구했다. 또한, 집진 효율은 전기 집진기(1)의 통풍 방향의 상류(전기 집진기(1)에 들어가기 전)와 하류(전기 집진기(1)로부터 나온 후)에 있어서, 부유 미립자의 수를 파티클 카운터에 의해 계측하여 구했다.Here, ozone concentration was calculated | required from the amount of ozone which the ozone concentration meter measures, and the amount of air blown in by an ozone concentration meter using an ozone concentration meter. In addition, the dust collection efficiency measures the number of suspended particulates in the upstream (before entering the electrostatic precipitator 1) and downstream (after exiting the electrostatic precipitator 1) in the ventilation direction of the electrostatic precipitator 1 by a particle counter. Saved it.
도 4로부터 알 수 있는 바와 같이, 실시예 1의 전기 집진기(1)는 거의 100%의 집진 효율이 얻어지는 상태로 동작시켜도, 오존 농도가 2.0ppb 이하였다. 이 값은 환경기준치(0.05ppm)를 크게 밑돈다.As can be seen from FIG. 4, even when the electrostatic precipitator 1 of Example 1 was operated in a state where nearly 100% dust collection efficiency was obtained, the ozone concentration was 2.0 ppb or less. This value is significantly below the environmental standard (0.05 ppm).
한편, 비교예 1의 전기 집진기(1)에서는, 집진 효율이 약 50%로 포화했다. 그리고, 집진 효율이 약 50%임에도 불구하고, 오존 농도가 실시예 1의 전기 집진기(1)에 비해 크다. 한편, 비교예 1의 전기 집진기(1)에 있어서도, 측정 범위에 있어서의 최대의 오존 농도는 2.0ppb이며, 환경기준치(0.05ppm)를 밑돈다.On the other hand, in the electrostatic precipitator 1 of the comparative example 1, dust collection efficiency was saturated at about 50%. And although the dust collection efficiency is about 50%, ozone concentration is large compared with the electrostatic precipitator 1 of Example 1. FIG. On the other hand, also in the electrostatic precipitator 1 of the comparative example 1, the maximum ozone concentration in a measurement range is 2.0 ppb, and is less than an environmental reference value (0.05 ppm).
실시예 1의 전기 집진기(1) 및 비교예 1의 전기 집진기(1)는 오존 농도가 환경기준치에 비해 낮게 억제되어 있다. 이것은 대전부(10)의 대향 전극(12)이, 도체부(121)의 표면을 덮는 저항체부(122)를 구비함으로써, 방전 전류가 제한되었기 때문이라고 생각된다.In the electrostatic precipitator 1 of Example 1 and the electrostatic precipitator 1 of the comparative example 1, ozone concentration is suppressed low compared with an environmental reference value. This is considered to be because the counter current 12 of the charging section 10 includes the resistor portion 122 covering the surface of the conductor portion 121, thereby limiting the discharge current.
한편, 실시예 1의 전기 집진기(1)와 비교예 1의 전기 집진기(1)에서 집진 효율이 상이한 것은 비교예 1의 전기 집진기(1)는 실시예 1의 전기 집진기(1)에 비해, 케이스(30)가 정전기로 대전하기 쉽기 때문이라고 생각된다.On the other hand, the dust collection efficiency of the electrostatic precipitator 1 of Example 1 and the electrostatic precipitator 1 of Comparative Example 1 is different from that of the electrostatic precipitator 1 of Comparative Example 1, It is considered that 30 is easy to charge with static electricity.
비교예 1의 전기 집진기(1)에서는, 고압 전극(11)이 케이스(30)에 직접 접촉해 있다. 그리고, 케이스(30)를 구성하는 수지 재료에 의해, 고전압 발생 회로(40)로부터 공급되는 DC의 고전압이 절연되어 있다. 이 때문에, 케이스(30)는 접지 단자(E)에 접속되어 있지 않다.In the electrostatic precipitator 1 of Comparative Example 1, the high voltage electrode 11 is in direct contact with the case 30. The high voltage of DC supplied from the high voltage generating circuit 40 is insulated by the resin material constituting the case 30. For this reason, the case 30 is not connected to the ground terminal E. FIG.
케이스(30)를 구성하는 수지 재료는 전기 저항율이 높아 전기를 흘리기 어렵다. 이 때문에, 케이스(30)의 표면은 정전기로 대전하기 쉽다. 케이스(30)가 접지 전극에 접속되어 있지 않기 때문에, 대전한 정전기는 빠져나가지 못한다. 즉, 케이스(30)의 대전, 특히 고압 전극(11)과 접하는 근방의 케이스(30)의 대전에 의해, 부유 미립자의 대전 효율이 나빠지고, 집진 효율이 저하했다고 생각된다.The resin material constituting the case 30 has a high electrical resistivity and is difficult to flow electricity. For this reason, the surface of the case 30 is easy to charge with static electricity. Since the case 30 is not connected to the ground electrode, the charged static electricity cannot escape. That is, it is thought that the charging efficiency of the floating fine particles worsened and the dust collection efficiency fell due to the charging of the case 30, in particular the charging of the case 30 in contact with the high voltage electrode 11.
한편, 실시예 1의 전기 집진기(1)에서는, 절연 스페이서(32)를 통하여 고압 전극(11)을 케이스(30)에 부착하고 있다. 따라서, 고압 전극(11)과 케이스(30)는 전기적으로 접촉하지 않는다. 또한, 케이스(30)가 대향 전극(12)에 접속되어 있기 때문에, 대전한 정전기가 빠져나갈 수 있다. 또한, 고압 전극(11)인 톱니(111) 선단으로부터 미리 정해진 거리 r(실시예 1에서는 5mm)의 범위에, 케이스(30) 등을 구성하는 수지 부재를 형성하지 않았다.On the other hand, in the electrostatic precipitator 1 of the first embodiment, the high voltage electrode 11 is attached to the case 30 via the insulating spacer 32. Therefore, the high voltage electrode 11 and the case 30 do not electrically contact. In addition, since the case 30 is connected to the counter electrode 12, the charged static electricity may escape. In addition, the resin member which comprises the case 30 etc. was not formed in the range of predetermined distance r (5 mm in Example 1) from the tip of the tooth | gear 111 which is the high voltage electrode 11. As shown in FIG.
따라서, 케이스(30)이 정전기로 대전하는 것이 억제되어, 부유 미립자의 대전이 저해되기 어려워지고, 집진 효율이 높아졌다고 생각된다.Therefore, it is considered that the charging of the case 30 by static electricity is suppressed, the charging of the suspended fine particles is less likely to be inhibited, and the dust collection efficiency is increased.
이상 설명한 바와 같이, 제1 실시형태가 적용되는 전기 집진기(1)에서는, 대전부(10)의 대향 전극(12)을, 도체부(121)와, 도체부(121)의 표면을 덮도록 형성한 저항체부(122)로 구성하고 있다. 따라서, 방전 전류가, 저항체부(122)를 형성하지 않는 경우에 비해 작게 억제되고, 오존 농도가 낮게 억제된다.As described above, in the electrostatic precipitator 1 to which the first embodiment is applied, the counter electrode 12 of the charging unit 10 is formed so as to cover the surface of the conductor portion 121 and the conductor portion 121. It consists of one resistor part 122. Therefore, the discharge current is suppressed smaller than that in the case where the resistor portion 122 is not formed, and the ozone concentration is suppressed low.
그리고, 대전부(10)의 고압 전극(11)은 절연 스페이서(32)를 통하여 케이스(30)에 고정되어 있다. 또한, 고압 전극(11)의 톱니(111) 선단으로부터 미리 정해진 거리 r의 범위에, 케이스(30) 등을 구성하는 수지 부재가 형성되어 있지 않다. 또한, 대향 전극(12)은 도체 노출 영역(123)에 있어서 케이스(30)와 도통하도록 전기적으로 접촉시키고 있다. 이에 따라, 케이스(30)가 정전기로 대전하는 것을 억제하고, 집진 효율을 향상시키고 있다.The high voltage electrode 11 of the charging unit 10 is fixed to the case 30 via the insulating spacer 32. In addition, the resin member which comprises the case 30 etc. is not formed in the range of predetermined distance r from the tip of the tooth 111 of the high voltage electrode 11. In addition, the counter electrode 12 is in electrical contact with the case 30 in the conductor exposed region 123. This suppresses charging of the case 30 by static electricity and improves dust collection efficiency.
또한, 대전부(10)의 고압 전극(11)은 톱니열(113) 사이에 톱니(111) 각각의 선단을 대향시키고 있으므로, 한쪽의 방향(예를 들면 하측)의 톱니(111)를 이용하지 않는 경우에 비해, 방전이 발생하는 영역이 넓게 되어 있다.In addition, the high voltage electrode 11 of the charging unit 10 opposes the distal end of each of the teeth 111 between the teeth rows 113, so that the teeth 111 in one direction (for example, the lower side) are not used. Compared with the case where it is not, the area | region where discharge generate | occur | produces is large.
제1 실시형태가 적용되는 전기 집진기(1)에서는, 대전부(10)에 있어서, 고압 전극(11)과 대향 전극(12)을 통풍 방향으로 배치하고 있다. 또한, 고압 전극(11)의 방전을 발생시키는 부분을 톱니(111)로 하고, 톱니(111)를 통풍 방향에 대하여 직교하거나 또는 기울게 하여 배치하고 있다. 따라서, 고압 전극(11)과 대향 전극(12)의 거리 G를, 예를 들면 5mm로 짧게 설정할 수 있다. 이에 따라, 전기 집진기(1)를 소형화할 수 있다.In the electrostatic precipitator 1 to which the first embodiment is applied, the high voltage electrode 11 and the counter electrode 12 are arranged in the ventilation direction in the charging unit 10. Moreover, the part which generate | occur | produces the discharge of the high voltage electrode 11 is set to the tooth | gear 111, and the tooth | gear 111 is arrange | positioned orthogonally or inclined with respect to a ventilation direction. Therefore, the distance G of the high voltage electrode 11 and the counter electrode 12 can be set short, for example to 5 mm. Thereby, the electrostatic precipitator 1 can be miniaturized.
또한, 제1 실시형태가 적용되는 전기 집진기(1)와 달리, 대향 전극(12)의 도체부(121)의 표면을 덮도록 형성하는 저항체부(122)를 형성하지 않고, 고압 전극(11)과 대향 전극(12)의 사이를 접근시켜 가면, 방전 전류가 증가하여, 오존 발생이 증가하게 된다.In addition, unlike the electrostatic precipitator 1 to which the first embodiment is applied, the high voltage electrode 11 is not formed without forming the resistor portion 122 formed to cover the surface of the conductor portion 121 of the counter electrode 12. Approaching between and the counter electrode 12, the discharge current increases, the ozone generation increases.
(실시예 2)(Example 2)
상술한 바와 같이, 대향 전극(12)은 도체부(121)와, 도체부(121)의 표면을 덮는 저항체부(122)로 구성되어 있다.As described above, the counter electrode 12 is composed of a conductor portion 121 and a resistor portion 122 covering the surface of the conductor portion 121.
실시예 2에서는, 대향 전극(12)의 표면을 덮는 저항체부(122)의 재료에 대하여 설명한다.In Embodiment 2, the material of the resistor portion 122 covering the surface of the counter electrode 12 will be described.
도 5는 대향 전극(12)의 저항체부(122)를 구성하는 재료(저항체 부재료)와 오존 발생 전압(kV) 및 오존 발생 전압에 있어서의 이온수(×103개/cm3)의 관계를 나타낸 도면이다. 한편, 도 5에서는, 저항체부(122)를 구성하는 재료(저항체 부재료)의 특성으로서 체적 저항율(Ω·cm) 및 비유전율을 나타내고 있다. 또한, 도 5에서는, 고압 전극(11)과 대향 전극(12)의 거리 G(mm)를 나타내고 있다. 여기에서는 고압 전극(11)과 대향 전극(12)의 거리 G는 5mm로 고정되어 있다.FIG. 5 shows the relationship between the material (resistance member material) constituting the resistor portion 122 of the counter electrode 12 and the ionized water (× 10 3 pieces / cm 3 ) in the ozone generating voltage (kV) and the ozone generating voltage. Drawing. 5, the volume resistivity (kcm) and the dielectric constant are shown as a characteristic of the material (resistance material) which comprises the resistor part 122. As shown in FIG. 5, the distance G (mm) of the high voltage electrode 11 and the counter electrode 12 is shown. Here, the distance G between the high voltage electrode 11 and the counter electrode 12 is fixed at 5 mm.
상기 오존 발생 전압은 고압 전극(11)과 대향 전극(12) 사이에 인가한 DC 전압을 서서히 올린(증가시킨) 경우에, 오존 농도계에 의해 오존 발생이 검출되기 시작하는 전압이다.The ozone generation voltage is a voltage at which ozone generation starts to be detected by an ozone concentration meter when the DC voltage applied between the high voltage electrode 11 and the counter electrode 12 is gradually increased (increased).
또한, 오존 발생 전압에 있어서의 이온수는 고압 전극(11)과 대향 전극(12) 사이에 오존 발생 전압을 인가한 경우에, 고압 전극(11)과 대향 전극(12) 사이에 발생하는 이온의 개수(×103개/cm3)이다. 이온수는 이온 카운터에서 계측했다.In addition, the number of ions generated between the high voltage electrode 11 and the counter electrode 12 when the ozone generation voltage is applied between the high voltage electrode 11 and the counter electrode 12 is measured. (× 10 3 pcs / cm 3 ). Ion water was measured with an ion counter.
전기 집진기(1)에서는, 오존 발생 전압이 높고, 아울러 오존 발생 전압에 있어서 발생하는 이온수가 큰 것이 바람직하다.In the electrostatic precipitator 1, it is preferable that the ozone generating voltage is high and the ion water generated at the ozone generating voltage is large.
여기에서는 대전부(10)에 있어서의 대향 전극(12)의 저항체부(122)를 구성하는 재료를 제외하고, 도 1에 나타낸 전기 집진기(1)를 이용했다. 대전부(10)의 고압 전극(11)은 톱니(111)를 가지며, 대향 전극(12)은 도체부(121)가 도전성 재료로 구성된 철망(메시)이다.The electrostatic precipitator 1 shown in FIG. 1 was used here except for the material constituting the resistor portion 122 of the counter electrode 12 in the charging portion 10. The high voltage electrode 11 of the charging portion 10 has a tooth 111, and the counter electrode 12 is a wire mesh (mesh) in which the conductor portion 121 is made of a conductive material.
그리고, 고압 전극(11)은 절연 스페이서(32)를 통하여 케이스(30)에 부착되어 있다. 대향 전극(12)은 도체 노출 영역(123)이 케이스(30)와 접속되도록 부착되고 부착된 부분이 접지 단자(E)에 접속되어 있다.The high voltage electrode 11 is attached to the case 30 via the insulating spacer 32. The counter electrode 12 is attached so that the conductor exposure area 123 is connected to the case 30, and the attached portion is connected to the ground terminal E. FIG.
저항체부(122)의 재료에는 “없음”, “알키드 수지(Alkyd resin)”, “아크릴 수지(Acrylic resin)”, “폴리이미드 수지(Polyimide)”, “폴리에스테르 수지(Polyester)”, “PTFE(폴리테트라플루오로에틸렌(polytetrafluoroethylene))”을 이용했다.The material of the resistor portion 122 is "none", "alkyd resin", "acrylic resin", "polyimide", "polyester", "PTFE" (Polytetrafluoroethylene) ”was used.
저항체부(122)의 두께는 각각 약 50㎛로 했다.The thickness of the resistor part 122 was about 50 micrometers, respectively.
저항체부(122)가 “없음”인 경우에는 오존 발생 전압이 3.2kV로, 오존 발생 전압에 있어서의 이온수는 0개였다. 즉, 고압 전극(11)과 대향 전극(12) 사이의 DC 전압을 서서히 올려가면, 3.2kV일 때에, 오존이 발생하기 시작했다. 그러나, 오존 발생 전압에서는 이온은 발생하지 않았다.When the resistor portion 122 was "none", the ozone generating voltage was 3.2 kV, and the ionized water at the ozone generating voltage was 0. In other words, when the DC voltage between the high voltage electrode 11 and the counter electrode 12 was gradually raised, ozone began to be generated at 3.2 kV. However, no ions were generated at the ozone generating voltage.
저항체부(122)가 알키드 수지인 경우에는 오존 발생 전압이 4.0kV로, 오존 발생 전압에 있어서의 이온수는 1040×103개/cm3였다. 즉, 고압 전극(11)과 대향 전극(12) 사이의 DC 전압을 서서히 증가시켜 가면, 4.0kV일 때에, 오존이 발생하기 시작했다. 그러나, 이온은 오존 발생 전압 미만의 DC 전압에서 발생하기 시작하고 있었다.When the resistor portion 122 was an alkyd resin, the ozone generating voltage was 4.0 kV, and the ionized water at the ozone generating voltage was 1040 × 10 3 pieces / cm 3 . In other words, when the DC voltage between the high voltage electrode 11 and the counter electrode 12 was gradually increased, ozone began to be generated at 4.0 kV. However, ions began to generate at DC voltages below the ozone generating voltage.
저항체부(122)가 아크릴 수지인 경우에는 오존 발생 전압이 4.5kV로, 오존 발생 전압에 있어서의 이온수는 1400×103개/cm3였다. 즉, 고압 전극(11)과 대향 전극(12) 사이의 DC 전압을 서서히 올려 가면, 6.0kV일 때에, 오존이 발생하기 시작했다. 그러나, 이온은 오존 발생 전압 미만의 DC 전압에서 발생하기 시작하고 있었다.When the resistor portion 122 was an acrylic resin, the ozone generating voltage was 4.5 kV, and the ionized water at the ozone generating voltage was 1400 × 10 3 holes / cm 3 . In other words, when the DC voltage between the high voltage electrode 11 and the counter electrode 12 was gradually raised, ozone began to be generated at 6.0 kV. However, ions began to generate at DC voltages below the ozone generating voltage.
저항체부(122)가 폴리이미드 수지인 경우에는 오존 발생 전압이 6.0kV로, 오존 발생 전압에 있어서의 이온수는 1600×103개/cm3였다. 즉, 고압 전극(11)과 대향 전극(12) 사이의 DC 전압을 서서히 올려 가면, 4.5kV일 때에, 오존이 발생하기 시작했다. 그러나, 이온은 오존 발생 전압 미만의 DC 전압에서 발생하기 시작하고 있었다.When the resistor portion 122 was a polyimide resin, the ozone generating voltage was 6.0 kV, and the ionized water at the ozone generating voltage was 1600 × 10 3 pieces / cm 3 . In other words, when the DC voltage between the high voltage electrode 11 and the counter electrode 12 was gradually raised, ozone began to be generated at 4.5 kV. However, ions began to generate at DC voltages below the ozone generating voltage.
그리고, 저항체부(122)가 폴리에스테르 수지 또는 PTFE인 경우에는 고압 전극(11)과 대향 전극(12) 사이의 DC 전압을 10 kV까지 인가해도, 오존은 발생하지 않고, 이온도 발생하지 않았다. 한편, 폴리에스테르 수지의 경우, 도체 노출 영역(123)을 형성함으로써, 고압 전극(11)과 대향 전극(12) 사이의 DC 전압을 10kV까지 인가해도, 오존은 발생하지 않지만, 이온은 발생시킬 수 있었다. 즉, 고압 전극(11)과 대향 전극(12) 사이의 DC 전압을 10kV로 한 경우, 이온수는 2000×103개/cm3였다.And when the resistor part 122 is a polyester resin or PTFE, even if the DC voltage between the high voltage electrode 11 and the counter electrode 12 is applied to 10 kV, ozone does not generate | occur | produce and neither ion generate | occur | produced. On the other hand, in the case of a polyester resin, even when a DC voltage between the high voltage electrode 11 and the counter electrode 12 is applied up to 10 kV by forming the conductor exposed region 123, ozone is not generated, but ions can be generated. there was. That is, when the DC voltage between the high voltage electrode 11 and the counter electrode 12 was 10 kV, ionized water was 2000x10 <3> / cm <3> .
이상으로부터, 도 5에 나타낸 저항체부(122)의 재료(저항체 부재료)로서, 폴리이미드 수지가 가장 오존 발생 전압이 높고, 아울러 오존 발생 전압에 있어서의 이온수가 크다. 즉, 폴리이미드 수지가 저항체부(122)의 재료로서는 가장 바람직하다. 다음으로, 아크릴 수지, 알키드 수지가 이 순서로 바람직하다. 또한, 도체 노출 영역(123)을 형성함으로써, 폴리에스테르 수지도 이용할 수 있다.As mentioned above, as a material (resistance material) of the resistor part 122 shown in FIG. 5, the polyimide resin has the highest ozone generation voltage, and the ion water in an ozone generation voltage is large. That is, polyimide resin is most preferable as a material of the resistor portion 122. Next, an acrylic resin and an alkyd resin are preferable in this order. In addition, by forming the conductor exposed region 123, a polyester resin can also be used.
또한, 특성에서 보면, 비유전율이 3 이상이며, 체적 저항율이 1012Ω·cm 이상 및 1018Ω·cm 이하인 것이 바람직하다. 체적 저항율에 대해서는 1014Ω·cm 이상 및 1018Ω·cm 이하가 보다 바람직하다.From the characteristics, it is preferable that the relative dielectric constant is 3 or more, and the volume resistivity is 10 12 Pa · cm or more and 10 18 Pa · cm or less. As for volume resistivity, 10 14 Pa.cm or more and 10 18 Pa.cm or less are more preferable.
한편, 도체 노출 영역(123)을 구비하지 않는 경우에는 저항체부(122)의 체적 저항율이 1017Ω·cm를 넘으면, 저항체부(122)는 절연체로서 기능하고, 고압 전극(11)과 대향 전극(12) 사이에서의 방전의 발생을 저해한다고 생각된다. 따라서, 이 경우에는 도체 노출 영역(123)을 형성하는 것이 필요하다.On the other hand, in the case where the conductor exposed region 123 is not provided, when the volume resistivity of the resistor portion 122 exceeds 10 17 Pa · cm, the resistor portion 122 functions as an insulator and the high voltage electrode 11 and the counter electrode It is thought that the generation | occurrence | production of the discharge between (12) is inhibited. In this case, therefore, it is necessary to form the conductor exposed region 123.
(실시예 3)(Example 3)
실시예 3에서는, 대전부(10)에 있어서의 대향 전극(12)이 저항체부(122)를 갖는 경우와 갖지 않는 경우의 집진 효율과 오존 농도의 관계를 설명한다. 여기서 설명하는 전기 집진기(1)를 실시예 3의 전기 집진기(1)로 표기한다.In Example 3, the relationship between the dust collection efficiency and ozone concentration in the case where the counter electrode 12 in the charging part 10 has the resistor part 122, and does not have is demonstrated. The electrostatic precipitator 1 described here will be referred to as the electrostatic precipitator 1 of the third embodiment.
도 6은 실시예 3의 전기 집진기(1)의 대전부(10)의 사시도이다. 도 1에 나타낸 전기 집진기(1)에서는, 통풍 방향이 지면에 있어서 우측에서 좌측을 향하는 방향이었다. 그러나, 도 6에서는, 통풍 방향을, 지면에 있어서 상측에서 하측으로 향하는 방향으로 기재하고 있다.6 is a perspective view of the charging unit 10 of the electrostatic precipitator 1 of the third embodiment. In the electrostatic precipitator 1 shown in FIG. 1, the ventilation direction was a direction from right to left in the ground. However, in FIG. 6, the ventilation direction is described in the direction from the upper side to the lower side in the ground.
그리고, 전기 집진기(1)의 고압 전극(11)은 도 1, 도 2에 나타낸 구성이다. 즉, 각각이 복수개의 톱니(111)를 구비한 복수개의 톱니열(113)을 구비하고 있다. 톱니(111)는 톱니열(113) 사이에 선단이 서로 대향하도록 배열되어 있다.In addition, the high voltage electrode 11 of the electrostatic precipitator 1 is the structure shown in FIG. That is, a plurality of tooth rows 113 each having a plurality of teeth 111 are provided. The teeth 111 are arranged so that the ends thereof face each other between the teeth rows 113.
한편, 전기 집진기(1)의 대향 전극(12)은 도체부(121)가 익스펜디드 메탈로 구성되어 있다. 익스펜디드 메탈은 도전성 재료로 구성된 판에 절단선을 넣고 늘림으로써 마름모형의 개구(124)가 형성되는 철망형상의 부재이다.On the other hand, in the counter electrode 12 of the electrostatic precipitator 1, the conductor portion 121 is made of expanded metal. Expanded metal is a wire mesh-like member in which a rhombus opening 124 is formed by inserting a cutting line into a plate made of a conductive material.
도 7a 및 도 7b는 실시예 3의 전기 집진기에 있어서의 고압 전극(11) 및 대향 전극(12) 각각의 평면도이다. 도 7a는 고압 전극(11), 도 7b는 대향 전극(12)이다.7A and 7B are plan views of each of the high voltage electrode 11 and the counter electrode 12 in the electrostatic precipitator of the third embodiment. FIG. 7A shows the high voltage electrode 11 and FIG. 7B shows the counter electrode 12.
도 7a에 나타낸 고압 전극(11)은 도 2a에 나타낸 고압 전극(11)과 동일하다.The high voltage electrode 11 shown in FIG. 7A is the same as the high voltage electrode 11 shown in FIG. 2A.
도 7b에 나타낸 대향 전극(12)은 익스펜디드 메탈로 구성된 도체부(121)와, 그 표면을 덮도록 형성된 저항체부(122)를 구비하고 있다. 한편, 도체부(121)의 일부(상하 방향의 상측 및 하측)는 저항체부(122)를 구비하지 않는 도체 노출 영역(123)으로 되어 있다.The counter electrode 12 shown in FIG. 7B includes a conductor portion 121 made of expanded metal and a resistor portion 122 formed to cover the surface thereof. On the other hand, a part (upper and lower side in the up-down direction) of the conductor portion 121 is a conductor exposed region 123 that does not include the resistor portion 122.
그리고, 고압 전극(11)은 절연 스페이서(32)를 통하여 케이스(30)에 부착되어 있다. 대향 전극(12)은 도체 노출 영역(123)이 케이스(30)에 접속되도록 부착되고, 부착된 부분이 접지 단자(E)에 접속되어 있다(도 3 참조).The high voltage electrode 11 is attached to the case 30 via the insulating spacer 32. The counter electrode 12 is attached so that the conductor exposed area | region 123 is connected to the case 30, and the attached part is connected to the ground terminal E (refer FIG. 3).
고압 전극(11)의 지지부(14)의 크기를, 좌우 방향으로 약 400mm, 상하 방향으로 약 300mm로 했다.The size of the support part 14 of the high voltage electrode 11 was made into about 400 mm in the left-right direction, and about 300 mm in the up-down direction.
그리고, 고압 전극(11)은 두께 0.5mm의 SUS로 구성했다. 톱니열(113) 사이에서의 톱니(111) 선단 간의 거리 S를, 약 30mm로 했다. 그리고, 고압 전극(11)은 5열의 톱니열(113)(#1~#5)을 구비하고 있다.The high voltage electrode 11 was made of SUS having a thickness of 0.5 mm. The distance S between the tips of the teeth 111 between the teeth rows 113 was set to about 30 mm. The high voltage electrode 11 includes five rows of teeth 113 (# 1 to # 5).
대향 전극(12)의 도체부(121)는 SUS의 익스펜디드 메탈로 구성하고, 개구(124)의 치수를 4mm×8mm로 했다.The conductor part 121 of the counter electrode 12 was comprised with the expanded metal of SUS, and the dimension of the opening 124 was 4 mm x 8 mm.
대향 전극(12)의 도체부(121)를 덮는 저항체부(122)는 두께 50㎛의 폴리이미드 수지로 했다.The resistor portion 122 covering the conductor portion 121 of the counter electrode 12 was a polyimide resin having a thickness of 50 μm.
한편, 저항체부(122)로서 이용한 폴리이미드 수지는 유전율 3.3, 체적 저항율 1016Ω·cm이다.On the other hand, the polyimide resin used as the resistor portion 122 has a dielectric constant of 3.3 and a volume resistivity of 10 16 Pa · cm.
고압 전극(11)과 대향 전극(12)의 거리 G는 5mm로 했다.The distance G of the high voltage electrode 11 and the counter electrode 12 was 5 mm.
고압 전극(11)과 대향 전극(12) 사이에 약 4kV의 DC 전압을 인가하면, 이온이 발생하기 시작하여, 부유 미립자의 대전이 가능하게 되었다.When a DC voltage of about 4 kV was applied between the high voltage electrode 11 and the counter electrode 12, ions began to be generated and charging of the fine particles became possible.
그리고, 도 1에 나타낸 바와 같이, 통풍 방향의 하류 측에 집진부(20)를 형성하고, 대전부(10) 및 집진부(20)에 통전하면서 통풍시킴으로써, 공기 중의 부유 미립자를 제거했다.And as shown in FIG. 1, the airborne particle | grains were formed in the dust collection part 20 downstream of the ventilation direction, and it was made to air flow through the electrification part 10 and the dust collecting part 20, and the airborne fine particles were removed.
도 8은 실시예 3의 전기 집진기(1)에 있어서의 집진 효율과 오존 농도의 관계를 나타낸 도면이다. 도 8에서는, 상기 구성에 의한 전기 집진기(1)를 실시예 3으로 나타내고, 대전부(10)의 대향 전극(12)에 저항체부(122)를 형성하지 않은 전기 집진기(1)를 비교예 2로 나타내었다. 한편, 비교예 2의 전기 집진기(1)에서도, 대전부(10)의 대향 전극(12)은 케이스(30)에 접속되도록 부착되고, 부착된 부분이 접지 단자(E)에 접속되어 있다.8 is a diagram showing a relationship between dust collection efficiency and ozone concentration in the electrostatic precipitator 1 of the third embodiment. In FIG. 8, the electrostatic precipitator 1 by the said structure is shown as Example 3, and the electrostatic precipitator 1 which did not form the resistor part 122 in the counter electrode 12 of the charging part 10 was compared. Represented by. On the other hand, also in the electrostatic precipitator 1 of the comparative example 2, the counter electrode 12 of the charging part 10 is attached so that it may be connected to the case 30, and the attached part is connected to the ground terminal E. FIG.
실시예 3의 전기 집진기(1)에서는, 거의 100%의 집진 효율이 얻어지는 상태로 동작시켜도, 오존 농도가 3ppb 이하였다. 이 값은 환경기준치(0.05ppm)를 크게 밑돈다.In the electrostatic precipitator 1 of Example 3, the ozone concentration was 3 ppb or less even when operating in a state where nearly 100% dust collecting efficiency was obtained. This value is significantly below the environmental standard (0.05 ppm).
한편, 비교예 2의 전기 집진기(1)에서는, 거의 100%의 집진 효율이 얻어지는 상태로 동작시키면, 오존 농도가 7ppb를 넘는다. 이 값은 환경기준치(0.05 ppm)를 밑돌지만, 실시예 3의 전기 집진기(1)의 2배 이상이다.On the other hand, in the electrostatic precipitator 1 of the comparative example 2, when it operates in the state which nearly 100% dust collection efficiency is obtained, an ozone concentration exceeds 7 ppb. This value is less than the environmental standard value (0.05 ppm), but is twice or more that of the electrostatic precipitator 1 of the third embodiment.
이상 설명한 바와 같이, 실시예 3의 전기 집진기(1)는 대전부(10)의 대향 전극(12)에 저항체부(122)를 구비함으로써, 오존 농도를 낮게 억제하면서 높은 집진 효율을 얻을 수 있다.As described above, the electrostatic precipitator 1 of the third embodiment includes the resistor portion 122 in the counter electrode 12 of the charging portion 10, so that high dust collection efficiency can be obtained while suppressing the ozone concentration low.
(실시예 4)(Example 4)
여기에서는 전기 집진기(1)와 대전부(10)의 고압 전극(11)의 형상이 상이한 경우의 집진 효율과 오존 농도의 관계에 대해 설명한다. 여기서 설명하는 전기 집진기(1)를 실시예 4의 전기 집진기(1)로 표기한다.Here, the relationship between the dust collection efficiency and ozone concentration in the case where the shape of the high voltage electrode 11 of the electrostatic precipitator 1 and the charging part 10 differs is demonstrated. The electrostatic precipitator 1 described here is referred to as the electrostatic precipitator 1 of the fourth embodiment.
도 9는 실시예 4의 전기 집진기(1)의 대전부(10)의 사시도이다. 도 9에서도, 통풍 방향을 상하 방향으로 기재하고 있다.9 is a perspective view of the charging unit 10 of the electrostatic precipitator 1 of the fourth embodiment. Also in FIG. 9, the ventilation direction is described in the up-down direction.
전기 집진기(1)의 고압 전극(11)은 각각이 복수개의 톱니(111)를 구비한 복수개의 톱니열(113)을 구비하고 있다. 각각의 톱니열(113)은 상측 방향과 하측 방향을 향하는 톱니(111)를 구비하고 있다. 톱니(111) 선단은 톱니열(113) 사이에서 서로 지그재그(스태거)가 되도록 배열되어 있다. 즉, 톱니(111) 선단은 톱니열(113) 사이에 서로 대향하지 않고, 한쪽의 톱니열(113)의 톱니(111) 선단의 사이에, 다른쪽의 톱니열(113)의 톱니(111) 선단이 배열되어 있다. 즉, 톱니열(113) 사이에 있어서, 톱니(111)가 열 방향으로 서로 어긋나게 배치되어 있다.The high voltage electrode 11 of the electrostatic precipitator 1 has a plurality of teeth rows 113 each having a plurality of teeth 111. Each tooth row 113 is provided with the teeth 111 which face an upper direction and a lower direction. The tip ends of the teeth 111 are arranged to be zigzag (stagger) with each other between the teeth rows 113. That is, the tip of the teeth 111 does not oppose each other between the teeth rows 113, and the teeth 111 of the teeth row 113 of the other teeth between the tips of the teeth 111 of the one teeth row 113. The tip is arranged. That is, between the tooth rows 113, the teeth 111 are arranged to be shifted from each other in the column direction.
한편, 전기 집진기(1)의 대향 전극(12)은 실시예 3과 마찬가지로, 도체부(121)가 익스펜디드 메탈이다.On the other hand, in the counter electrode 12 of the electrostatic precipitator 1, as in the third embodiment, the conductor portion 121 is expanded metal.
도 10a 및 도 10b는 실시예 4의 전기 집진기에 있어서의 고압 전극(11) 및 대향 전극(12) 각각의 평면도이다. 도 10a는 고압 전극(11), 도 10b는 대향 전극(12)이다.10A and 10B are plan views of each of the high voltage electrode 11 and the counter electrode 12 in the electrostatic precipitator of the fourth embodiment. FIG. 10A shows the high voltage electrode 11 and FIG. 10B shows the counter electrode 12.
도 10a에 나타낸 바와 같이, 모든 톱니열(113)의 상하 방향으로 톱니(111)를 형성함으로써, 톱니(111)의 수가 실시예 3의 경우보다 많게 되어 있다.As shown in FIG. 10A, by forming the teeth 111 in the vertical direction of all the teeth rows 113, the number of teeth 111 becomes larger than in the case of the third embodiment.
그리고, 고압 전극(11)은 절연 스페이서(32)를 통하여 케이스(30)에 부착되어 있다. 대향 전극(12)은 도체 노출 영역(123)이 케이스(30)에 접속되도록 부착되고, 부착된 부분이 접지 단자(E)에 접속되어 있다.The high voltage electrode 11 is attached to the case 30 via the insulating spacer 32. The counter electrode 12 is attached so that the conductor exposed area | region 123 is connected to the case 30, and the attached part is connected to the ground terminal E. FIG.
고압 전극(11)의 지지부(14)의 크기를, 좌우 방향으로 약 400mm, 상하 방향으로 약 300mm로 했다.The size of the support part 14 of the high voltage electrode 11 was made into about 400 mm in the left-right direction, and about 300 mm in the up-down direction.
그리고, 고압 전극(11)은 두께 0.5mm의 SUS로 구성했다. 톱니열(113) 사이의 톱니(111) 선단 간의 거리 S는 20mm로 했다. 고압 전극(11)은 5열의 톱니열(113)(#1~#5)을 구비한다.The high voltage electrode 11 was made of SUS having a thickness of 0.5 mm. The distance S between the tips of the teeth 111 between the teeth rows 113 was 20 mm. The high voltage electrode 11 has five rows of tooth rows 113 (# 1 to # 5).
대향 전극(12)은 도체부(121)를 SUS의 익스펜디드 메탈로 구성하고, 개구(124)의 치수를 약 4mm×약 8mm로 했다. 그리고, 대향 전극(12)의 도체부(121)의 표면을 덮는 저항체부(122)는 두께 약 50㎛의 폴리이미드 수지로 했다. 이 폴리이미드 수지는 유전율 3.3, 체적 저항율 1016Ω·cm였다.The counter electrode 12 comprised the conductor part 121 from the expanded metal of SUS, and made the dimension of the opening 124 about 4 mm x about 8 mm. The resistor portion 122 covering the surface of the conductor portion 121 of the counter electrode 12 was made of polyimide resin having a thickness of about 50 μm. This polyimide resin was dielectric constant 3.3 and volume resistivity 10 16 Pa.cm.
도 11은 실시예 4의 전기 집진기(1)에 있어서의 집진 효율과 오존 농도의 관계를 나타낸 도면이다. 한편, 여기에서는 상기 구성에 의한 전기 집진기(1)를 실시예 4로 나타내고 있다. 또한, 실시예 3의 전기 집진기(1) 및 비교예 2의 전기 집진기(1)를 함께 나타내고 있다.11 is a diagram showing a relationship between dust collection efficiency and ozone concentration in the electrostatic precipitator 1 of the fourth embodiment. In addition, the electrostatic precipitator 1 by the said structure is shown as Example 4 here. Moreover, the electrostatic precipitator 1 of Example 3 and the electrostatic precipitator 1 of the comparative example 2 are shown together.
도 11로부터 알 수 있는 바와 같이, 실시예 4의 전기 집진기(1)에서는, 거의100%의 집진 효율이 얻어지는 상태로 동작시켜도, 오존 농도가 2ppb 이하였다. 이 오존 농도는 실시예 3의 전기 집진기(1)보다 낮다.As can be seen from FIG. 11, in the electrostatic precipitator 1 of Example 4, the ozone concentration was 2 ppb or less even when operating in a state where nearly 100% dust collecting efficiency was obtained. This ozone concentration is lower than the electrostatic precipitator 1 of the third embodiment.
이것은 고압 전극(11)의 톱니열(113)에 있어서의 톱니(111)를, 톱니열(113)사이에 있어서, 서로 지그재그로 배열한 것에 따른다고 생각된다. 즉, 고압 전극(11)과 대향 전극(12) 사이에 있어서, 코로나 방전이 형성되는 영역(범위)이, 톱니열(113) 사이에서 톱니(111)를 서로 대향시킨 경우에 비해, 넓어지기 때문이라고 생각된다.It is considered that this is because the teeth 111 in the tooth row 113 of the high voltage electrode 11 are arranged in a zigzag pattern between the tooth rows 113. That is, the area (range) in which corona discharge is formed between the high voltage electrode 11 and the counter electrode 12 becomes wider than the case where the teeth 111 face each other between the teeth rows 113. I think.
이상 설명한 바와 같이, 실시예 4의 전기 집진기(1)는 고압 전극(11)의 형상을 바꿈으로써, 오존 농도를 보다 낮게 억제하면서 높은 집진 효율을 얻을 수 있다.As described above, the electrostatic precipitator 1 of the fourth embodiment can obtain a high dust collection efficiency while suppressing the ozone concentration lower by changing the shape of the high pressure electrode 11.
도 12a 내지 도 12c는 실시예 4의 전기 집진기(1)의 대전부(10)의 변형예를 나타낸 도면이다. 도 12a는 대전부(10)의 사시도, 도 12b는 대전부(10)를 대향 전극(12) 측에서 본 도면, 도 12c는 대향 전극(12)의 XIIC-XIIC 선에서의 단면도이다.12A to 12C are views showing modifications of the charging unit 10 of the electrostatic precipitator 1 of the fourth embodiment. 12A is a perspective view of the charging unit 10, FIG. 12B is a view of the charging unit 10 viewed from the counter electrode 12 side, and FIG. 12C is a cross-sectional view of the counter electrode 12 in the XIIC-XIIC line.
대향 전극(12)의 도체부(121)는 복수개의 평판으로 구성되고, 복수개의 평판을 구성하는 각 평판의 표면에 저항체부(122)가 적층되어 있다. 그리고, 각 평판은 각 톱니열(113)과 쌍이 되도록 배치되어 있다. 또한, 각 평판은 고압 전극(11)으로부터 거리 G의 평면 내에 형성되어 있다. 이 때, 도체부(121)의 폭 W는 도체부(121)와 대향하는 톱니열(113)에 있어서, 도체부(121)의 폭 방향에서의 톱니(111) 선단 간의 거리 Q보다 작은 것이 바람직하다.The conductor portion 121 of the counter electrode 12 is composed of a plurality of flat plates, and a resistor portion 122 is stacked on the surface of each flat plate constituting the plurality of flat plates. Each plate is arranged to be paired with each tooth row 113. In addition, each flat plate is formed in the plane of distance G from the high voltage electrode 11. At this time, the width W of the conductor portion 121 is preferably smaller than the distance Q between the tip ends of the teeth 111 in the width direction of the conductor portion 121 in the tooth row 113 facing the conductor portion 121. Do.
한편, 도체부(121)의 일부(톱니열(113) 측에 대하여 이면측)는 저항체부(122)를 구비하지 않는 도체 노출 영역(123)으로 되어 있다. 그리고, 대향 전극(12)은 도체 노출 영역(123)이 케이스(30)와 접속되도록 부착되고, 부착된 부분이 접지 단자(E)에 접속되어 있다. 한편, 도체 노출 영역(123)은 고압 전극(11) 사이에 방전이 직접 생기지 않도록 형성되어 있다. 즉, 대향 전극(12)의 도체 노출 영역(123)은 절연 파괴를 일으키지 않는 부분에서 노출시키고 있으며, 고압 전극(11)과 대향 전극(12)의 도체 노출 영역(123)은 절연 거리가 유지되어 있다.On the other hand, a part of the conductor portion 121 (rear side with respect to the tooth row 113 side) is a conductor exposed region 123 having no resistor portion 122. And the counter electrode 12 is attached so that the conductor exposure area | region 123 may be connected with the case 30, and the attached part is connected to the ground terminal E. FIG. On the other hand, the conductor exposed region 123 is formed so that discharge does not directly occur between the high voltage electrodes 11. That is, the conductor exposed region 123 of the counter electrode 12 is exposed at a portion that does not cause dielectric breakdown, and the high voltage electrode 11 and the conductor exposed region 123 of the counter electrode 12 are maintained at an insulating distance. have.
(실시예 5)(Example 5)
실시예 1 내지 실시예 4에서는, 전기 집진기(1)의 대전부(10)에 있어서의 고압 전극(11)에 톱니(111)를 사용했다.In Example 1 thru | or 4, the tooth | gear 111 was used for the high voltage electrode 11 in the charging part 10 of the electrostatic precipitator 1. As shown in FIG.
다음으로, 전기 집진기(1)의 대전부(10)에 있어서의 고압 전극(11)에 와이어(114)를 이용한 경우를 설명한다. 여기서 설명하는 전기 집진기(1)를 실시예 5의 전기 집진기(1)로 표기한다.Next, the case where the wire 114 is used for the high voltage electrode 11 in the charging part 10 of the electrostatic precipitator 1 is demonstrated. The electrostatic precipitator 1 described here is referred to as the electrostatic precipitator 1 of the fifth embodiment.
도 13a 및 도 13b는 실시예 5의 전기 집진기(1)의 대전부(10)를 설명하는 도면이다. 도 13a는 대전부(10)의 사시도, 도 13b는 도 13a의 XIIIB-XIIIB 선에서의 단면도이다. 도 13a에서도, 통풍 방향을 지면에 있어서 상측에서 하측의 방향으로 기재하고 있다.13A and 13B are views for explaining the charging section 10 of the electrostatic precipitator 1 of the fifth embodiment. 13A is a perspective view of the charging unit 10, and FIG. 13B is a sectional view taken along the line XIIIB-XIIIB in FIG. 13A. Also in FIG. 13A, the ventilation direction is described from the upper side to the lower side in the ground.
도 13a에 나타낸 바와 같이, 전기 집진기(1)의 대전부(10)의 고압 전극(11)은 복수개의 와이어(114)를 구비하고 있다. 복수개의 와이어(114)는 좌우 방향으로 형성되어 있다. 그리고, 복수개의 와이어(114)의 양단부가 지지부(14)에 고정되어 있다. 그리고, 복수개의 와이어(114)는 지지부(14)가 구비하는 회로 기판에 형성된 배선을 통하여 DC 전압이 급전된다.As shown in FIG. 13A, the high voltage electrode 11 of the charging unit 10 of the electrostatic precipitator 1 includes a plurality of wires 114. The plurality of wires 114 are formed in the left and right directions. And both ends of the plurality of wires 114 are fixed to the support 14. The plurality of wires 114 are supplied with a DC voltage through the wirings formed on the circuit board included in the support 14.
대전부(10)의 대향 전극(12)은 도체부(121)가 도전성 재료로 구성된 철망(메시)이다. 그리고, 대향 전극(12)은 도체부(121)의 표면을 덮도록 형성된 저항체부(122)를 구비하고 있다(후술하는 도 14a 및 도 14b 참조).The counter electrode 12 of the charging portion 10 is a wire mesh (mesh) in which the conductor portion 121 is made of a conductive material. The counter electrode 12 includes a resistor portion 122 formed to cover the surface of the conductor portion 121 (see FIGS. 14A and 14B described later).
도 13b의 단면도에 나타낸 바와 같이, 대향 전극(12)은 복수개의 와이어(114)를 각각 둘러싸도록, 반경 M의 반원통 형상으로 만곡되어 있다. 여기에서는 반경 M은 와이어(114) 사이의 거리 S의 1/2으로 설정되어 있다. 한편, 대향 전극(12)은 복수개의 와이어(114)를 둘러싸는 반원형 형상으로 구성되어 있어도 무방하다.As shown in the cross-sectional view of FIG. 13B, the counter electrode 12 is curved in a semi-cylindrical shape having a radius M so as to surround each of the plurality of wires 114. Here, the radius M is set to 1/2 of the distance S between the wires 114. On the other hand, the counter electrode 12 may be comprised in the semicircle shape which surrounds the some wire 114. As shown in FIG.
그리고, 고압 전극(11)의 와이어(114)는 절연 스페이서(32)를 통하여 케이스(30)에 부착되어 있다. 한편, 지지부(14)가 절연 스페이서(32)를 통하여 케이스(30)에 부착되어도 무방하다. 또한, 지지부(14)가 케이스(30)의 일부이어도 무방하다.The wire 114 of the high voltage electrode 11 is attached to the case 30 via the insulating spacer 32. In addition, the support part 14 may be attached to the case 30 via the insulating spacer 32. As shown in FIG. In addition, the support part 14 may be part of the case 30.
한편, 대향 전극(12)은 도체 노출 영역(123)이 케이스(30)와 접속되도록 부착되고, 부착된 부분이 접지 단자(E)에 접속되어 있다.On the other hand, the counter electrode 12 is attached so that the conductor exposed area | region 123 is connected with the case 30, and the attached part is connected to the ground terminal E. FIG.
도 14a 및 도 14b는 실시예 5의 전기 집진기(1)의 고압 전극(11) 및 대향 전극(12) 각각의 평면도이다. 도 14a는 고압 전극(11), 도 14b는 대향 전극(12)이다.14A and 14B are plan views of each of the high voltage electrode 11 and the counter electrode 12 of the electrostatic precipitator 1 of the fifth embodiment. 14A shows the high voltage electrode 11 and FIG. 14B shows the counter electrode 12.
도 14a에 나타낸 고압 전극(11)은 복수개의 와이어(114)를 구비하고 있다.The high voltage electrode 11 shown in FIG. 14A has a plurality of wires 114.
도 14b에 나타낸 대향 전극(12)은 도체부(121)가 도전성 재료로 구성된 철망(메시)이다. 그리고, 도체부(121)의 표면을 덮는 저항체부(122)를 구비하고 있다. 한편, 도 13b에 나타낸 바와 같이, 대향 전극(12)을 반원통 형상으로 했을 때, 대향 전극(12)이 케이스(30)와 접촉하는 부분은 저항체부(122)를 구비하지 않는 도체 노출 영역(123)으로 되어 있다.The counter electrode 12 shown in FIG. 14B is a wire mesh (mesh) in which the conductor portion 121 is made of a conductive material. And the resistor part 122 which covers the surface of the conductor part 121 is provided. On the other hand, as shown in FIG. 13B, when the counter electrode 12 is semi-cylindrical, the portion where the counter electrode 12 is in contact with the case 30 has a conductor exposed region (not including the resistor portion 122). 123).
실시예 5의 전기 집진기(1)에 있어서도, 오존 농도를 낮게 억제하면서 높은 집진 효율을 얻을 수 있었다.Also in the electrostatic precipitator 1 of Example 5, high dust collection efficiency was obtained, suppressing ozone concentration low.
이것은 대전부(10)의 대향 전극(12)가, 도체부(121)의 표면을 덮는 저항체부(122)를 구비함으로써, 방전 전류가 제한된 것에 따른다. 그리고, 복수개의 와이어(114) 각각에 반원통 형상으로 대향 전극(12)을 형성함으로써, 코로나 방전이 각각의 와이어(114)를 둘러싸는 공간에서 발생하고 있는 것에 따른다고 생각된다.This is because the counter electrode 12 of the charging section 10 includes a resistor section 122 covering the surface of the conductor section 121, whereby the discharge current is limited. And by forming the counter electrode 12 in semi-cylindrical shape in each of the some wire 114, it is thought that corona discharge arises in the space which surrounds each wire 114. FIG.
(대전부(10)에 있어서의 고압 전극(11)의 변형예)(Modified example of the high voltage electrode 11 in the charging unit 10)
도 15a 및 도 15b는 전기 집진기(1)의 대전부(10)에 있어서의 고압 전극(11)의 변형예를 나타낸 도면이다. 도 15a는 톱니(111)를 도 2a와 상이한 배열로 구성한 도면, 도 15b는 톱니(111)를 도 10a과 상이한 배열로 구성한 도면이다.15A and 15B are views showing a modification of the high voltage electrode 11 in the charging section 10 of the electrostatic precipitator 1. FIG. 15A is a diagram in which the teeth 111 are configured in a different arrangement from FIG. 2A, and FIG. 15B is a diagram in which the teeth 111 are configured in a different arrangement from FIG. 10A.
먼저, 도 15a를 설명한다.First, FIG. 15A will be described.
도 2a에서는, 가장 상측 및 가장 하측의 톱니열(113)(도 2에서는 #1, #5)의 접속부(112)를 지지부(14)에 접근 또는 접촉시켜서 형성했다. 이 때문에, 가장 상측 및 가장 하측의 톱니열(113)(도 2a에서는 #1, #5)에서는, 상측 방향 또는 하측 방향 중의 어느 한쪽의 톱니(111) 밖에 형성하지 않았다.In FIG. 2A, the connection part 112 of the top and bottom tooth row 113 (# 1, # 5 in FIG. 2) was made to approach or contact the support part 14. In FIG. For this reason, in the uppermost and lowermost tooth row 113 (# 1, # 5 in FIG. 2A), only the tooth | gear 111 of either the upper direction or the lower direction was formed.
이에 비하여, 도 15a에 나타낸 고압 전극(11)에서는, 모든 톱니열(113)이 상측 방향 및 하측 방향 양쪽의 톱니(111)를 구비하고 있다.On the other hand, in the high voltage electrode 11 shown to FIG. 15A, all the tooth rows 113 are equipped with the tooth | gear 111 of both the upper direction and the lower direction.
다음으로, 도 15b를 설명한다.Next, Fig. 15B will be described.
도 10a에서는, 모든 톱니열(113)이 상측 방향 및 하측 방향 양쪽의 톱니(111)를 구비하고 있었다.In FIG. 10A, all the tooth rows 113 were provided with teeth 111 in both the upward direction and the downward direction.
이에 비하여, 도 15b에 나타낸 고압 전극(11)에서는, 가장 상측 및 가장 하측의 톱니열(113)(도 15b에서는 #1, #6)의 접속부(112)를 지지부(14)에 접근 또는 접촉시켜서 형성하고 있다. 이 때문에, 가장 상측 및 가장 하측의 톱니열(113)(도 15b에서는 #1, #6)에서는, 상측 방향 또는 하측 방향 중 어느 한쪽의 톱니(111) 밖에 형성하지 않았다.On the other hand, in the high voltage electrode 11 shown in FIG. 15B, the connection part 112 of the uppermost and lowest tooth line 113 (# 1, # 6 in FIG. 15B) approaches or contacts the support part 14, Forming. For this reason, in the uppermost and lowermost tooth row 113 (# 1, # 6 in FIG. 15B), only the tooth 111 of either the upper direction or the lower direction was formed.
이러한 고압 전극(11)을 실시예 1, 실시예 3, 실시예 4 각각의 전기 집진기(1)에 적용해도, 오존 농도를 낮게 억제하면서 높은 집진 효율을 얻을 수 있다.Even when such a high voltage electrode 11 is applied to each of the electrostatic precipitators 1 of the first, third and fourth embodiments, high dust collection efficiency can be obtained while suppressing the ozone concentration low.
도 16a 및 도 16b는 전기 집진기(1)의 대전부(10)에 있어서의 고압 전극(11)의 다른 변형예를 나타낸 도면이다. 도 16a는 각각이 복수개의 바늘(115)을 구비하는 복수개의 바늘열(117)로 구성되고, 바늘(115)의 선단이 인접하는 바늘열 사이에 대향시켜 구성한 도면이다. 도 16b는 복수개의 바늘(115)를 구비하는 복수개의 바늘열(117)로 구성되고, 바늘(115)의 선단이 인접하는 바늘열(117) 사이에서 지그재그로 하여 구성한 도면이다.16A and 16B show another modified example of the high voltage electrode 11 in the charging unit 10 of the electrostatic precipitator 1. FIG. 16A is a diagram of a plurality of needle rows 117 each provided with a plurality of needles 115, and the tip of the needles 115 are opposed to each other between adjacent needle rows. FIG. 16B is a diagram composed of a plurality of needle rows 117 including a plurality of needles 115, and the tip of the needles 115 are arranged in a zigzag between adjacent needle rows 117. FIG.
바늘(115) 및/또는 그 선단은 전계 집중을 발생시키는 부위의 일례이다.The needle 115 and / or its tip is an example of a site that generates electric field concentration.
도 16a는 도 2a에 나타낸 고압 전극(11)의 톱니(111)를, 바늘(115)로 치환한 것이다. 한편, 바늘(115)은 선단이 뾰족한 바늘 형상의 부재이다. 그리고, 바늘열(117)에 있어서 복수개의 바늘(115)을 접속하는 접속부(116)는 예를 들면, 배선이 형성된 회로 기판이며, 복수개의 바늘(115)과 배선이 접속되어 있다.FIG. 16A replaces the tooth 111 of the high voltage electrode 11 shown in FIG. 2A with the needle 115. On the other hand, the needle 115 is a needle-shaped member having a sharp tip. And the connection part 116 which connects the some needle 115 in the needle row 117 is a circuit board in which the wiring was formed, for example, and the some needle 115 and the wiring are connected.
도 16b는 도 10a에 나타낸 고압 전극(11)의 톱니(111)를 바늘(115)로 치환한 것이다. 다른 구성은 도 10a과 마찬가지이므로 설명을 생략한다.FIG. 16B is a case where the teeth 111 of the high voltage electrode 11 shown in FIG. 10A are replaced with the needle 115. Since other configurations are the same as those in FIG. 10A, the description is omitted.
이들 고압 전극(11)을 실시예 1, 실시예 3, 실시예 4 각각의 전기 집진기(1)에 적용해도, 오존 농도를 낮게 억제하면서 높은 집진 효율을 얻을 수 있다.Even when these high voltage electrodes 11 are applied to each of the electrostatic precipitators 1 of the first, third and fourth embodiments, high dust collection efficiency can be obtained while suppressing the ozone concentration low.
한편, 도 16a, 도 16b에 나타낸 바늘(115)의 배열을, 각각 도 15a, 도 15b에 나타낸 톱니(111)의 배열로 변경해도 무방하다.In addition, you may change the arrangement | positioning of the needle 115 shown to FIG. 16A and FIG. 16B to the arrangement of the tooth | gear 111 shown to FIG. 15A and FIG. 15B, respectively.
또한, 고압 전극(11)은 고압 전극(11)의 톱니(111) 또는 바늘(115) 대신에, 예를 들면, 도전성의 카본선을 결합한 브러시(brush) 형상이어도 무방하다. 한편, 브러시(brush) 형상 부분 및/또는 그 선단은 전계 집중을 발생시키는 부위의 일례이다.The high voltage electrode 11 may be, for example, a brush shape in which conductive carbon wires are bonded instead of the teeth 111 or the needle 115 of the high voltage electrode 11. On the other hand, the brush-shaped part and / or its tip is an example of the site | part which produces electric field concentration.
(대전부(10)에 있어서의 대향 전극(12)의 변형예)(Modified example of the counter electrode 12 in the charging unit 10)
도 17은 전기 집진기(1)의 대전부(10)에 있어서의 대향 전극(12)의 변형예를 설명하는 도면이다.FIG. 17: is a figure explaining the modification of the counter electrode 12 in the electrification part 10 of the electrostatic precipitator 1. FIG.
도 17에 나타낸 대향 전극(12)은 복수개의 개구(124)를 형성한 도전성 재료로 구성된 판인 도체부(121)와, 그 표면에 형성된 저항체부(122)를 구비하고 있다. 개구(124)는 도체부(121)인 판을 관통하여 형성되어 있다. 한편, 도체부(121)의 일부(좌우 방향의 양단부)는 저항체부(122)를 구비하지 않는 도체 노출 영역(123)으로 되어 있다.The counter electrode 12 shown in FIG. 17 is provided with the conductor part 121 which is a board which consists of electroconductive material in which the some opening 124 was formed, and the resistor part 122 formed in the surface. The opening 124 is formed through the plate that is the conductor portion 121. On the other hand, a part (both ends in the left and right directions) of the conductor portion 121 is a conductor exposed region 123 having no resistor portion 122.
그리고, 대향 전극(12)은 도체 노출 영역(123)이 케이스(30)에 접속되도록 부착되고, 부착된 부분이 접지 단자(E)에 접속된다.And the counter electrode 12 is attached so that the conductor exposure area | region 123 may be connected to the case 30, and the attached part is connected to the ground terminal E. FIG.
한편, 저항체부(122)는 고압 전극(11)과 대향 전극(12) 사이의 방전 전류를 억제하기 위하여 형성되어 있다. 따라서, 적어도, 고압 전극(11)과 대향 전극(12)의 도체부(121) 사이에 방전이 발생하지 않는 것이 요구된다. 이로부터, 저항체부(122)는 적어도 고압 전극(11)과 서로 마주보는 측의 도체부(121)(판)의 표면을 덮도록 형성되어 있는 것이 바람직하다.On the other hand, the resistor portion 122 is formed to suppress the discharge current between the high voltage electrode 11 and the counter electrode 12. Therefore, at least, it is required that no discharge occurs between the high voltage electrode 11 and the conductor portion 121 of the counter electrode 12. From this, the resistor portion 122 is preferably formed so as to cover at least the surface of the conductor portion 121 (plate) on the side facing the high voltage electrode 11.
상기에서 설명한 고압 전극(11)과 대향 전극(12)을, 각각 조합하여 이용해도 무방하다.The high voltage electrode 11 and the counter electrode 12 which were mentioned above may be used in combination, respectively.
또한, 실시예 1 내지 5에 나타낸 수치는 일례이며, 이것들에 한정되지 않는 것은 분명하다.In addition, the numerical value shown in Examples 1-5 is an example, It is clear that it is not limited to these.
[제2 실시형태]Second Embodiment
제2 실시형태에서는 고압 전극(11)이 복수개의 톱니(111)를 각각이 구비한 복수개의 톱니열(113)로 구성되어 있다고 하여, 톱니(111)의 배치로 설정되는 요건에 대하여 설명한다. 여기에서는 톱니열(113) 사이에 있어서, 톱니(111) 선단이 서로 어긋나게 배치되어 있다고 한다. 예를 들면, 톱니열(113) 사이에 있어서, 톱니(111) 선단이 지그재그로 배치되어 있다.In 2nd Embodiment, suppose that the high voltage electrode 11 is comprised from the several tooth row 113 which each provided the some tooth 111, The requirement set by the arrangement | positioning of the tooth 111 is demonstrated. Here, it is assumed that the tip ends of the teeth 111 are arranged to be offset from each other between the teeth rows 113. For example, the tip of the tooth 111 is arranged in a zigzag between the tooth rows 113.
도 18은 제1 실시형태가 적용되는 전기 집진기(1)의 일례를 나타낸 도면이다. 여기에서는 케이스(30)를 파선으로 나타내고, 케이스(30)의 내부에 형성된 대전부(10) 및 집진부(20)의 구성이 보이도록 하고 있다.18 is a diagram illustrating an example of the electric dust collector 1 to which the first embodiment is applied. Here, the case 30 is shown with a broken line, and the structure of the charging part 10 and the dust collector 20 formed in the inside of the case 30 is shown.
전기 집진기(1)의 구성은 제1 실시형태에서 설명한 것과 마찬가지의 부분은 동일한 부호를 붙여 설명을 생략하고, 상이한 부분을 설명한다.In the structure of the electrostatic precipitator 1, the same part as what was demonstrated in 1st Embodiment attaches | subjects the same code | symbol, abbreviate | omits description, and demonstrates a different part.
(대전부(10))(The front part (10))
대전부(10)는 고압 전극(11)과, 고압 전극(11)에 대향하는 대향 전극(12)을 구비하고 있다.The charging unit 10 includes a high voltage electrode 11 and a counter electrode 12 that faces the high voltage electrode 11.
고압 전극(11)은 각각이 뾰족한 선단을 갖는 톱니(111)를 복수개 구비한 복수개의 톱니열(113)(도 18에서는 #1~#5의 5열)을 구비하고 있다. 인접하는 톱니열(113) 사이에서, 톱니열(113)의 방향에 있어서, 각각의 톱니(111) 선단이 어긋나게 형성되어 있다. 도 18에서는, 인접하는 톱니열(113) 사이에서, 한쪽의 톱니열(113)에 있어서의 톱니(111) 선단이, 다른쪽의 톱니열(113)의 톱니(111) 선단의 중앙에 배치되어 있다. 즉, 인접하는 톱니열(113) 사이에서, 각각의 톱니(111) 선단이 지그재그로 배치되어 있다.The high voltage electrode 11 includes a plurality of teeth rows 113 (five rows of # 1 to # 5 in FIG. 18) each having a plurality of teeth 111 having sharp ends. Between adjoining tooth rows 113, the distal ends of the teeth 111 are alternately formed in the direction of the tooth rows 113. In FIG. 18, between the teeth rows 113 adjacent to each other, the tip of the teeth 111 in one tooth row 113 is disposed at the center of the tip of the teeth 111 in the other tooth row 113. have. That is, the tip of each tooth 111 is arranged in a zigzag between adjacent tooth rows 113.
그리고, 톱니(111) 선단으로부터 접속부(112)까지의 길이를 L(길이 L), 톱니열(113)에 있어서의 톱니(111) 간의 간격(피치)을 P(간격 P)로 한다. 또한, 인접하는 톱니열(113) 사이에 있어서, 톱니열에 수직인 방향의 톱니(111) 선단 간의 거리를 S(거리 S)로 한다.The length from the tip of the tooth 111 to the connection portion 112 is L (length L), and the interval (pitch) between the teeth 111 in the tooth row 113 is P (interval P). In addition, between adjacent tooth rows 113, the distance between the tips of the teeth 111 in the direction perpendicular to the tooth rows is set to S (distance S).
대향 전극(12)은 일례로서 도전성 재료로 구성된 익스펜디드 메탈인 도체부(121)와, 그 표면을 덮는 저항체부(122)를 구비하고 있다.The counter electrode 12 is provided with the conductor part 121 which is an expanded metal comprised from an electroconductive material as an example, and the resistor part 122 which covers the surface.
즉, 제2 실시형태에서 설명하는 대전부(10)에 있어서의 고압 전극(11) 및 대향 전극(12)은 제1 실시형태에서 설명한 실시예 4에 있어서의 도 10a 및 도 10b와 마찬가지이다.That is, the high voltage electrode 11 and the counter electrode 12 in the electrification part 10 demonstrated in 2nd Embodiment are the same as that of FIG. 10A and 10B in Example 4 demonstrated in 1st Embodiment.
고압 전극(11)과 대향 전극(12) 사이는 거리 G이다.The distance G is between the high voltage electrode 11 and the counter electrode 12.
그리고, 도 3a에 나타낸 바와 같이, 고압 전극(11)은 절연성 재료로 구성된 절연 스페이서(32)를 통하여 케이스(30)에 부착되어 있다. 대향 전극(12)은 도체부(121)가 노출된 도체 노출 영역(123)이 케이스(30)에 전기적으로 접속하도록(도통하도록) 부착되고, 부착된 부분(전기적 접촉)이 접지 단자(E)에 접속되어 있다.3A, the high voltage electrode 11 is attached to the case 30 via an insulating spacer 32 made of an insulating material. The opposite electrode 12 is attached so that the conductor exposed area 123 on which the conductor portion 121 is exposed is electrically connected (conducted) to the case 30, and the attached portion (electrical contact) is connected to the ground terminal E. Is connected to.
(집진 효율과 오존 농도)(Dust collection efficiency and ozone concentration)
다음으로, 제1 형태가 적용되는 전기 집진기(1)에 있어서, 집진 효율과 오존 농도를 측정한 결과를 설명한다. 여기서 설명하는 전기 집진기(1)를 실시예 6의 전기 집진기(1)로 표기한다.Next, the result of having measured the dust collection efficiency and ozone concentration in the electrostatic precipitator 1 to which a 1st form is applied is demonstrated. The electrostatic precipitator 1 described here is referred to as the electrostatic precipitator 1 of the sixth embodiment.
(실시예 6)(Example 6)
전기 집진기(1)의 대전부(10)는 통풍 방향에서 본 고압 전극(11)의 지지부(14)의 외형을, 좌우 방향에서 약 400mm, 상하 방향에서 약 300mm로 했다.The charging section 10 of the electrostatic precipitator 1 made the external shape of the support section 14 of the high voltage electrode 11 viewed in the ventilation direction about 400 mm in the left and right directions and about 300 mm in the vertical direction.
대전부(10)에 있어서의 고압 전극(11)의 톱니(111) 및 접속부(112)는 두께 0.5mm의 판형상의 스테인레스 스틸(SUS)로 구성했다. 그리고, 톱니(111)의 길이 L를 10mm로 했다. 그리고, 도 10a 및 도 10b, 도 18과 마찬가지로, 5열의 톱니열(113)을 형성했다.The teeth 111 and the connection part 112 of the high voltage electrode 11 in the charging part 10 were comprised with plate-shaped stainless steel (SUS) of thickness 0.5mm. And the length L of the tooth | gear 111 was made into 10 mm. Then, as in FIGS. 10A, 10B, and 18, five rows of teeth 113 were formed.
대전부(10)에 있어서의 대향 전극(12)은 도체부(121)를 개구(124)가 4mm×8mm인 SUS로 구성된 익스펜디드 메탈로 했다. 도체부(121)의 표면을 덮는 저항체부(122)는 두께 약 50㎛의 폴리이미드 수지로 했다. 이 폴리이미드 수지는 비유전율이 3.3, 체적 저항율이 1016Ω·cm였다.The counter electrode 12 in the charging unit 10 was made of an expanded metal composed of SUS having an opening 124 of 4 mm x 8 mm in the conductor portion 121. The resistor portion 122 covering the surface of the conductor portion 121 was made of polyimide resin having a thickness of about 50 μm. This polyimide resin had a dielectric constant of 3.3 and a volume resistivity of 10 16 Pa · cm.
고압 전극(11)과 대향 전극(12)의 거리 G를 5mm로 했다.The distance G of the high voltage electrode 11 and the counter electrode 12 was 5 mm.
집진부(20)에 있어서의 고압 전극(21) 및 대향 전극(22)은 통풍 방향의 폭이 20mm, 통풍 방향과 직교하는 방향의 길이가 약 400mm로 했다. 그리고, 고압 전극(21)과 대향 전극(22)의 간격은 약 1.5mm로 했다. 그리고, 고압 전극(21)과 대향 전극(22) 사이에 약 6kV의 DC 전압을 인가했다.The high voltage electrode 21 and the counter electrode 22 in the dust collector 20 had a width in the ventilation direction of 20 mm and a length in a direction orthogonal to the ventilation direction of about 400 mm. And the space | interval of the high voltage electrode 21 and the counter electrode 22 was about 1.5 mm. Then, a DC voltage of about 6 kV was applied between the high voltage electrode 21 and the counter electrode 22.
또한, 실시예 6의 전기 집진기(1)에서는, 케이스(30) 등을 구성하는 수지 부재를, 톱니(111) 선단으로부터 약 5mm(거리 r)의 범위에 형성하지 않도록 했다.In addition, in the electrostatic precipitator 1 of Example 6, the resin member which comprises the case 30 etc. was not formed in the range of about 5 mm (distance r) from the distal end of the tooth 111.
그리고, 대전부(10) 및 집진부(20)에 통전하여, 공기를 흘렸다. 통풍 방향의 풍속은 1m/s이다.Then, the electrification section 10 and the dust collection section 20 were energized to flow air. The wind speed in the ventilation direction is 1 m / s.
이 상태에서, 대전부(10)에 있어서의 고압 전극(11)과 대향 전극 사이에, 약 4kV의 DC 전압을 인가하면, 이온이 발생하기 시작하여 부유 미립자의 대전이 가능하게 되었다.In this state, when a DC voltage of about 4 kV is applied between the high voltage electrode 11 and the counter electrode in the charging section 10, ions start to be generated and charging of the fine particles becomes possible.
도 19는 톱니열(113)에 있어서의 톱니(111)의 간격 P에 대한, 전기 집진기(1)의 집진 효율 및 오존 농도의 관계를 나타낸 도면이다. 도면의 좌측의 세로축이 집진 효율(%), 우측의 세로축이 오존 농도(ppb)이다. 또한, 가로축은 톱니(111)의 간격 P이다. 한편, 가로축에는 톱니(111)의 길이 L를 기준으로 한 톱니(111)의 간격 P를 함께 나타내고 있다.FIG. 19: is a figure which shows the relationship between the dust collection efficiency of the electrostatic precipitator 1, and ozone concentration with respect to the space | interval P of the tooth | gear 111 in the tooth row 113. As shown in FIG. The vertical axis on the left side of the figure is dust collection efficiency (%), and the vertical axis on the right side is ozone concentration (ppb). In addition, the horizontal axis is the space | interval P of the tooth | gear 111. As shown in FIG. In addition, the space | interval P of the tooth | gear 111 based on the length L of the tooth | gear 111 is shown on the horizontal axis.
여기서, 오존 농도는 오존 농도계를 이용하여 오존 농도계가 계측하는 오존량과 오존 농도계가 취입하는 공기의 양으로부터 구했다. 또한, 집진 효율은 전기 집진기(1)의 통풍 방향의 상류(전기 집진기(1)에 들어가기 전)와 하류(전기 집진기(1)로부터 나온 후)에 있어서, 부유 미립자의 수를 파티클 카운터에 의해 계측하여 구했다.Here, ozone concentration was calculated | required from the amount of ozone which the ozone concentration meter measures, and the amount of air blown in by an ozone concentration meter using an ozone concentration meter. In addition, the dust collection efficiency measures the number of suspended particulates in the upstream (before entering the electrostatic precipitator 1) and downstream (after exiting the electrostatic precipitator 1) in the ventilation direction of the electrostatic precipitator 1 by a particle counter. Saved it.
여기에서는 톱니열(113)에 있어서의 톱니(111)의 간격 P를, 15mm(1.5L), 22.5mm(2.25L), 35mm(3.5L)로 하여, 집진 효율 및 오존 농도를 측정했다. 한편, 톱니열(113) 사이에서의 톱니(111) 선단 간의 거리 S를 20mm(2L)로 고정했다.Here, the dust collection efficiency and ozone concentration were measured by making the space P of the teeth 111 in the tooth row 113 into 15 mm (1.5 L), 22.5 mm (2.25 L), and 35 mm (3.5 L). On the other hand, the distance S between the tips of the teeth 111 between the tooth rows 113 was fixed at 20 mm (2 L).
도 19로부터 알 수 있는 바와 같이, 집진 효율은 톱니(111)의 간격 P가 클수록 높아진다. 톱니(111)의 간격 P가 2L 이상이면, 집진 효율이 90% 이상이 된다.As can be seen from FIG. 19, the dust collection efficiency increases as the spacing P of the teeth 111 increases. If the space | interval P of the tooth | gear 111 is 2L or more, dust collection efficiency will be 90% or more.
또한, 오존 농도는 톱니(111)의 간격 P가 클수록 작다. 한편, 측정한 범위에 있어서의 오존 농도는 10ppb 이하이며, 환경기준치(0.05ppm)를 크게 밑돈다. 그리고, 톱니(111)의 간격 P가 2L 이상이면, 오존 농도는 사람의 후각으로 감지되는 5ppb 이하이다.In addition, the ozone concentration is smaller as the interval P of the teeth 111 becomes larger. On the other hand, the ozone concentration in the measured range is 10 ppb or less, which is far below the environmental standard value (0.05 ppm). And, if the spacing P of the teeth 111 is 2L or more, the ozone concentration is 5ppb or less detected by the human sense of smell.
도 20은 톱니열(113) 사이의 거리 S에 대한, 전기 집진기(1)의 집진 효율 및 오존 농도의 관계를 나타낸 도면이다. 도면의 좌측의 세로축이 집진 효율(%), 우측의 세로축이 오존 농도(ppb)이다. 또한, 가로축은 톱니열(113) 사이의 거리 S이다. 한편, 가로축에는 톱니(111)의 길이 L을 기준으로 한 톱니열(113) 사이에서의 톱니(111) 선단 간의 거리 S를 함께 나타내고 있다.FIG. 20 is a diagram showing the relationship between the dust collection efficiency and the ozone concentration of the electrostatic precipitator 1 with respect to the distance S between the tooth rows 113. The vertical axis on the left side of the figure is dust collection efficiency (%), and the vertical axis on the right side is ozone concentration (ppb). In addition, the horizontal axis is the distance S between the tooth rows 113. On the other hand, on the horizontal axis, the distance S between the tips of the teeth 111 between the tooth rows 113 on the basis of the length L of the teeth 111 is also shown.
여기에서는 톱니열(113) 사이에서의 톱니(111) 선단 간의 거리 S를, 10mm(1L), 20mm(2L), 30mm(3L), 40mm(4L)로 하여, 집진 효율 및 오존 농도를 측정했다. 한편, 톱니열(113)에 있어서의 톱니(111)의 간격 P는 35mm(3.5L)로 고정했다.Here, dust collection efficiency and ozone concentration were measured by setting the distance S between the tip ends of the teeth 111 between the tooth rows 113 to 10 mm (1 L), 20 mm (2 L), 30 mm (3 L), and 40 mm (4 L). . In addition, the space | interval P of the tooth | gear 111 in the tooth | gear row 113 was fixed to 35 mm (3.5L).
도 20으로부터 알 수 있는 바와 같이, 톱니열(113) 사이의 거리 S가 3L 이하이면, 집진 효율이 90% 이상이 된다. 그러나, 톱니열(113) 사이의 거리 S가 3L를 넘으면, 집진 효율이 저하한다.As can be seen from FIG. 20, when the distance S between the tooth rows 113 is 3L or less, the dust collection efficiency is 90% or more. However, when the distance S between the tooth rows 113 exceeds 3L, dust collection efficiency will fall.
오존 농도는 톱니열(113) 사이의 거리 S에 거의 의존하지 않고, 톱니(111)의 간격 P가 클수록 작다. 한편, 측정한 범위에 있어서의 오존 농도는 사람의 후각으로 감지되는 5ppb 이하이다.The ozone concentration hardly depends on the distance S between the tooth rows 113, and the smaller the interval P of the teeth 111 is, the smaller it is. On the other hand, the ozone concentration in the measured range is 5 ppb or less detected by the human sense of smell.
(방전 영역(13))(Discharge area 13)
도 21a 내지 도 21d는 대전부(10)에 있어서의 방전 모습을 모식적으로 설명하는 도면이다. 도 21a는 고압 전극(11) 측에서 본 평면도, 도 21b는 도 21a의 XXIB-XXIB 선에서의 단면도이다. 도 21c는 톱니(111)의 간격이 도 21a의 간격 P보다 좁은(작은) 간격 P'인 경우, 도 21d는 톱니열(113) 사이의 거리가 도 6a의 거리 S보다 넓은(큰) 거리 S'인 경우이다.21A to 21D are diagrams schematically illustrating a discharge state in the charging unit 10. 21A is a plan view seen from the high voltage electrode 11 side, and FIG. 21B is a sectional view taken along the line XXIB-XXIB in FIG. 21A. FIG. 21C shows that when the spacing of the teeth 111 is an interval P ′ which is narrower (smaller) than the spacing P of FIG. 21A, FIG. 21D shows that the distance between the teeth rows 113 is larger (greater) than the distance S of FIG. 6A. 'Is the case.
도 21a, 도 21b에 나타낸 바와 같이, 고압 전극(11)과 대향 전극(12) 사이의 방전 영역(13)은 고압 전극(11)에 있어서의 톱니(111) 선단으로부터, 먼 방향을 향해 넓어지면서, 대향 전극(12)을 경사지게 향한다고 생각된다.As shown in FIGS. 21A and 21B, the discharge region 13 between the high voltage electrode 11 and the counter electrode 12 extends in a direction far from the tip of the tooth 111 in the high voltage electrode 11. It is thought that the counter electrode 12 faces inclinedly.
여기에서는 도 18에 나타낸 바와 같이, 톱니(111)는 통풍 방향(대향 전극(12))에 대하여 직교 또는 경사 방향으로 배치되어 있다. 이 때문에, 톱니(111) 선단으로부터의 전기력선은 톱니(111) 선단으로부터 대향 전극(12)을 수직으로 향할 수 없다. 즉, 전기력선은 톱니(111) 선단으로부터, 선단으로부터 먼 방향을 향해 넓어지면서, 대향 전극(12)을 경사지게 향하게 된다.Here, as shown in FIG. 18, the tooth | gear 111 is arrange | positioned in the orthogonal or inclined direction with respect to the ventilation direction (opposing electrode 12). For this reason, the electric line of force from the distal end of the tooth 111 cannot vertically face the counter electrode 12 from the distal end of the tooth 111. That is, the electric line of force extends from the distal end of the tooth 111 toward the direction away from the distal end, and faces the opposite electrode 12 inclinedly.
따라서, 도 21c에 나타낸 바와 같이, 톱니열(113)에 있어서의 톱니(111)의 간격을, 도 21a의 간격 P보다 좁은(작은) 간격 P'로 하면, 톱니열(113)에 있어서 인접하는 톱니(111)의 방전 영역(13)이 서로 겹쳐서 간섭이 발생한다. 이에 따라, 도 19에 나타낸 바와 같이, 톱니(111)의 간격 P가 작아지면, 집진 효율이 저하함과 동시에, 오존 농도가 높아진다고 생각된다.Therefore, as shown in FIG. 21C, when the distance of the teeth 111 in the tooth row 113 is set to the interval P 'which is narrower (smaller) than the interval P in FIG. 21A, it is adjacent in the tooth row 113. The discharge regions 13 of the teeth 111 overlap each other, and interference occurs. As a result, as shown in FIG. 19, when the spacing P of the teeth 111 decreases, it is considered that dust collection efficiency decreases and ozone concentration increases.
한편, 도 21d에 나타낸 바와 같이, 톱니열(113) 사이에서의 톱니(111) 선단 간의 거리를, 도 21a의 거리 S보다 넓은(큰) 거리 S'로 하면, 고압 전극(11)의 면적(통풍 방향으로 직교하는 방향에 있어서의 면적)에 있어서, 방전 영역(13)이 차지하는 비율이 작아진다. 이 때문에, 도 20에 나타낸 바와 같이, 톱니열(113) 사이의 거리 S가 커지면, 집진 효율이 저하한다고 생각된다.On the other hand, as shown in FIG. 21D, when the distance between the tip ends of the teeth 111 between the tooth rows 113 is a distance S 'which is wider (greater) than the distance S of FIG. 21A, the area of the high voltage electrode 11 ( Area in the direction orthogonal to the ventilation direction), the proportion of the discharge region 13 is small. For this reason, as shown in FIG. 20, when the distance S between the tooth rows 113 becomes large, it is thought that dust collection efficiency falls.
이상 설명한 바와 같이, 톱니(111) 선단을 톱니열(113)의 방향에 있어서 어긋나게 배치하는 경우, 톱니열(113)에 있어서의 톱니(111)의 간격 P가 2L 이상, 아울러 톱니열(113) 사이의 거리 S가 3L 이하인 것이 바람직하다.As described above, in the case where the distal ends of the teeth 111 are arranged in the direction of the teeth row 113, the spacing P of the teeth 111 in the teeth row 113 is 2L or more, and the teeth row 113 is also present. It is preferable that the distance S between them is 3L or less.
한편, 고압 전극(11)은 톱니(111)의 배열을 도 10a과 상이한 도 15b에 나타낸 배열로 해도 무방하다.In addition, the high voltage electrode 11 may be set as the arrangement shown in FIG. 15B different from FIG. 10A.
또한, 도 10a에 나타낸 톱니(111)를, 도 16b에 나타낸 바와 같이 바늘(115)로 치환해도 무방하다. 또한, 도 15b에 나타낸 톱니(111)를 바늘(115)로 치환해도 무방하다.The tooth 111 shown in FIG. 10A may be replaced with the needle 115 as shown in FIG. 16B. In addition, the tooth 111 shown in FIG. 15B may be replaced with the needle 115.
이러한 경우이더라도, 바늘(115)의 길이를 L(길이 L)로 한 경우, 바늘열(117)에 있어서의 바늘(115)의 간격 P를 2L 이상, 아울러 바늘열(117) 사이에서의 바늘(115)의 선단 간의 거리 S를 3L 이하로 함으로써, 높은 집진 효율을 얻으면서, 오존 농도를 낮게 억제할 수 있다.Even in such a case, when the length of the needle 115 is set to L (length L), the interval P between the needles 115 in the needle rows 117 is 2L or more and the needles between the needle rows 117 ( By setting the distance S between the tips of 115) to 3L or less, the ozone concentration can be kept low while obtaining high dust collection efficiency.
그리고, 대향 전극(12)은 지금까지 나타낸 것과 치환해도 무방하다.The counter electrode 12 may be replaced with the one shown so far.
이상 설명한 바와 같이, 제2 실시형태가 적용되는 전기 집진기(1)에서는, 대전부(10)의 대향 전극(12)을, 도체부(121)와, 도체부(121)의 표면을 덮도록 형성한 저항체부(122)로 구성하고 있다. 따라서, 방전 전류가, 저항체부(122)를 형성하지 않는 경우에 비해 작게 억제되고, 오존 농도가 낮게 억제된다.As described above, in the electrostatic precipitator 1 to which the second embodiment is applied, the counter electrode 12 of the charging unit 10 is formed so as to cover the surface of the conductor portion 121 and the conductor portion 121. It consists of one resistor part 122. Therefore, the discharge current is suppressed smaller than that in the case where the resistor portion 122 is not formed, and the ozone concentration is suppressed low.
그리고, 대전부(10)의 고압 전극(11)은 절연 스페이서(32)를 통하여 케이스(30)에 고정되어 있다. 또한, 고압 전극(11)의 톱니(111) 선단으로부터 미리 정해진 거리 r의 범위에, 케이스(30) 등을 구성하는 수지 부재가 형성되어 있지 않다. 또한, 대향 전극(12)은 도체 노출 영역(123)에 있어서 케이스(30)와 전기적으로 접속되어 있다(도통시키고 있다). 이에 따라, 케이스(30)가 정전기로 대전하는 것을 억제하여, 집진 효율을 향상시키고 있다.The high voltage electrode 11 of the charging unit 10 is fixed to the case 30 via the insulating spacer 32. In addition, the resin member which comprises the case 30 etc. is not formed in the range of predetermined distance r from the tip of the tooth 111 of the high voltage electrode 11. In addition, the counter electrode 12 is electrically connected to the case 30 in the conductor exposed region 123 (conducting). This suppresses charging of the case 30 by static electricity and improves dust collection efficiency.
제2 실시형태가 적용되는 전기 집진기(1)에서는, 대전부(10)에 있어서, 고압 전극(11)과 대향 전극(12)을 통풍 방향으로 배치하고 있다. 또한, 고압 전극(11)의 방전을 발생시키는 부분을 톱니(111)로 하고, 톱니(111)를 통풍 방향에 대하여 직교하거나 또는 기울게 하여(교차시켜서) 배치하고 있다. 따라서, 고압 전극(11)과 대향 전극(12)의 거리 G를, 예를 들면 5mm로 짧게 설정할 수 있다. 이에 따라, 전기 집진기(1)를 소형화할 수 있다.In the electrostatic precipitator 1 to which the second embodiment is applied, the high voltage electrode 11 and the counter electrode 12 are arranged in the ventilation direction in the charging section 10. Moreover, the part which generate | occur | produces the discharge of the high voltage electrode 11 is set as the tooth | gear 111, and the tooth | gear 111 is arrange | positioned orthogonally or inclined (intersected) with respect to a ventilation direction. Therefore, the distance G of the high voltage electrode 11 and the counter electrode 12 can be set short, for example to 5 mm. Thereby, the electrostatic precipitator 1 can be miniaturized.
또한, 제2 실시형태에서 나타낸 수치는 일례이며, 이들에 한정되지 않는 것은 분명하다.In addition, the numerical value shown in 2nd Embodiment is an example, It is clear that it is not limited to these.
[제3 실시형태][Third Embodiment]
제2 실시형태에서는 대전부(10)에 있어서의 고압 전극(11)의 톱니(111)는 톱니열(113) 사이에 있어서, 톱니열(113)의 방향에 대하여 서로 어긋나게 배치되어 있었다.In 2nd Embodiment, the tooth | gear 111 of the high voltage electrode 11 in the charging part 10 was arrange | positioned mutually shift | deviated with respect to the direction of the tooth | column row 113 between tooth rows 113. As shown in FIG.
제3 실시형태에서는, 대전부(10)에 있어서의 고압 전극(11)의 톱니(111)의 톱니열(113) 사이에서의 배치가, 제2 실시형태와 상이하다. 이 경우에 있어서, 톱니(111)의 배치로 설정되는 요건에 대하여 설명한다.In 3rd Embodiment, arrangement | positioning between the tooth rows 113 of the tooth | gear 111 of the high voltage electrode 11 in the charging part 10 differs from 2nd Embodiment. In this case, the requirements set by the arrangement of the teeth 111 will be described.
도 22는 제3 실시형태가 적용되는 전기 집진기(1)의 일례를 나타낸 도면이다. 여기에서는 케이스(30)을 파선으로 나타내고, 케이스(30)의 내부에 형성된 대전부(10) 및 집진부(20)의 구성이 보이도록 하고 있다.FIG. 22: is a figure which shows an example of the electrostatic precipitator 1 to which 3rd Embodiment is applied. Here, the case 30 is shown with a broken line, and the structure of the charging part 10 and the dust collecting part 20 formed in the inside of the case 30 is shown.
전기 집진기(1)의 구성은 제1 실시형태 및 제2 실시형태에서 설명한 것과 마찬가지의 부분은 동일한 부호를 붙여 설명을 생략하고, 상이한 부분을 설명한다.In the configuration of the electrostatic precipitator 1, the same parts as those described in the first and second embodiments are denoted by the same reference numerals, and the description thereof is omitted, and different parts are described.
(대전부(10))(The front part (10))
대전부(10)는 고압 전극(11)과, 고압 전극(11)에 대향하는 대향 전극(12)을 구비하고 있다.The charging unit 10 includes a high voltage electrode 11 and a counter electrode 12 that faces the high voltage electrode 11.
고압 전극(11)은 톱니(111)를 복수개 구비한 복수개의 톱니열(113)(도 22에서는 #1~#5)을 구비하고 있다. 각각의 톱니열(113)의 길이 방향은 좌우 방향을 향해 있다. 가장 상측의 톱니열(113)(도 22에서는 #1)은 하측을 향해 배열된 복수개의 톱니(111)(도 22에서는 10개)를 구비하고 있다. 가장 하측의 톱니열(113)(도 22에서는 #5)은 상측을 향해 배열된 복수개의 톱니(111)(도 22에서는 10개)를 구비하고 있다. 그리고, 사이의 톱니열(113)(도 22에서는 #2~#4)은 상측을 향해 배열된 복수개의 톱니(111)(도 22에서는 10개)와, 하측을 향해 배열된 복수개의 톱니(111)(도 22에서는 10개)를 구비하고 있다.The high voltage electrode 11 has a plurality of teeth rows 113 (# 1 to # 5 in FIG. 22) provided with a plurality of teeth 111. The longitudinal direction of each tooth row 113 is directed to the left and right directions. The uppermost tooth row 113 (# 1 in FIG. 22) is provided with a plurality of teeth 111 (10 in FIG. 22) arranged downward. The lowermost tooth row 113 (# 5 in FIG. 22) includes a plurality of teeth 111 (10 in FIG. 22) arranged toward the upper side. The tooth rows 113 (# 2 to # 4 in FIG. 22) between the plurality of teeth 111 (10 in FIG. 22) arranged upward and a plurality of teeth 111 arranged downward. (10 in FIG. 22).
고압 전극(11)은 인접하는 톱니열(113) 사이에서, 각각의 톱니(111) 선단이 대향하도록 형성되어 있다.The high voltage electrode 11 is formed so that the tip of each tooth 111 opposes between adjacent tooth rows 113.
즉, 제3 실시형태에서 설명하는 대전부(10)에 있어서의 고압 전극(11)은 제1 실시형태에서 설명한 도 2a와 마찬가지이다.That is, the high voltage electrode 11 in the electrification part 10 demonstrated in 3rd Embodiment is the same as that of FIG. 2A demonstrated in 1st Embodiment.
대향 전극(12)은 제2 실시형태와 마찬가지이다. 즉, 제3 실시형태에서 설명하는 대전부(10)에 있어서의 대향 전극(12)은 제1 실시형태에서 설명한 실시예 4에 있어서의 도 10b과 같다.The counter electrode 12 is the same as that of 2nd Embodiment. That is, the counter electrode 12 in the electrification part 10 demonstrated in 3rd Embodiment is the same as FIG. 10B in Example 4 demonstrated in 1st Embodiment.
(방전 영역(13))(Discharge area 13)
도 23은 대전부(10)에 있어서의 방전 모습을 모식적으로 설명하는 도면이다.23 is a diagram schematically illustrating a discharge state in the charging unit 10.
제3 실시형태에 있어서의 대전부(10)의 고압 전극(11)에서는, 톱니열(113) 사이에 톱니(111) 선단이 서로 대향한다. 따라서, 방전 영역(13)도 톱니열(113) 사이에서 서로 대향한다. 이 때문에, 톱니열(113) 사이의 거리 S를 짧게(작게) 하면, 방전 영역(13)이, 대향하는 톱니(111) 사이에서 서로 겹쳐지게 된다.In the high voltage electrode 11 of the charging unit 10 according to the third embodiment, the tip ends of the teeth 111 face each other between the tooth rows 113. Thus, the discharge regions 13 also face each other between the tooth rows 113. For this reason, when the distance S between the tooth rows 113 is shortened (small), the discharge regions 13 overlap each other between the opposing teeth 111.
따라서, 톱니열(113) 사이에 톱니(111) 선단을 서로 대향시키는 경우는 톱니열(113) 사이에서 톱니(111) 선단을 지그재그로 배치시키는 경우에 비해, 톱니열(113) 사이의 톱니(111) 선단 간의 거리 S를 크게 하지 않을 수 없다.Therefore, in the case where the distal ends of the teeth 111 are opposed to each other between the rows of teeth 113, the teeth between the rows of teeth 113 are compared with the case in which the distal ends of the teeth 111 are arranged zigzag between the rows of teeth 113. 111) The distance S between the tips cannot be increased.
(집진 효율과 오존 농도)(Dust collection efficiency and ozone concentration)
제2 실시형태에서 나타낸 전기 집진기(1)과 마찬가지로, 대전부(10)에 있어서의 고압 전극(11)의 톱니(111) 및 접속부(112)는 두께 0.5mm의 판형상 스테인레스 스틸(SUS)로 구성했다. 그리고, 톱니(111)의 길이 L을 10mm로 했다. 그리고, 도 1, 도 2a에 나타낸 바와 같이, 5열의 톱니열(113)을 형성했다.Similar to the electrostatic precipitator 1 shown in the second embodiment, the teeth 111 and the connecting portion 112 of the high voltage electrode 11 in the charging portion 10 are made of plate-shaped stainless steel (SUS) having a thickness of 0.5 mm. Configured. The length L of the teeth 111 was set to 10 mm. 1 and 2A, five rows of teeth 113 were formed.
대전부(10)에 있어서의 대향 전극(12)은 도체부(121)를 개구(124)가 약 4mm×약8mm인 SUS로 구성된 익스펜디드 메탈로 했다. 도체부(121)의 표면을 덮는 저항체부(122)는 두께 약 50㎛의 폴리이미드 수지로 했다. 이 폴리이미드 수지는 비유전율이 3.3, 체적 저항율이 1016Ω·cm였다.The counter electrode 12 in the charging unit 10 was made of an expanded metal composed of SUS having an opening 124 of about 4 mm x about 8 mm in the conductor portion 121. The resistor portion 122 covering the surface of the conductor portion 121 was made of polyimide resin having a thickness of about 50 μm. This polyimide resin had a dielectric constant of 3.3 and a volume resistivity of 10 16 Pa · cm.
고압 전극(11)과 대향 전극(12)의 거리 G는 5mm로 했다.The distance G of the high voltage electrode 11 and the counter electrode 12 was 5 mm.
집진부(20)에 대해서는 제1 실시형태와 마찬가지로 하였다.About the dust collector 20, it carried out similarly to 1st Embodiment.
그리고, 대전부(10) 및 집진부(20)에 통전하여, 공기를 흘렸다. 통풍 방향의 풍속은 1m/s이다.Then, the electrification section 10 and the dust collection section 20 were energized to flow air. The wind speed in the ventilation direction is 1 m / s.
그러면, 대전부(10)에 있어서의 고압 전극(11)과 대향 전극 사이에, 약 4kV의 DC 전압을 인가하면, 이온이 발생하기 시작하여 부유 미립자의 대전이 가능하게 되었다.Then, when a DC voltage of about 4 kV is applied between the high voltage electrode 11 and the counter electrode in the charging section 10, ions start to be generated and charging of the fine particles becomes possible.
톱니열(113) 사이에서의 톱니(111) 선단 간의 거리 S를, 50mm(5L), 60mm(6L), 70mm(7L), 80mm(8L), 90mm(9L)로 하여, 집진 효율 및 오존 농도를 측정했다. 한편, 톱니열(113)에 있어서의 톱니(111)의 간격 P는 35mm(3.5L)로 고정했다.The dust collection efficiency and ozone concentration are set so that the distance S between the tips of the teeth 111 between the teeth rows 113 is 50 mm (5 L), 60 mm (6 L), 70 mm (7 L), 80 mm (8 L), and 90 mm (9 L). Was measured. In addition, the space | interval P of the tooth | gear 111 in the tooth | gear row 113 was fixed to 35 mm (3.5L).
톱니열(113) 사이에 톱니(111)를 대향시키는 경우에는 톱니열(113) 사이에서의 톱니(111) 선단 간의 거리 S는 6L 이상 및 8L 이하로 하는 것이 바람직하다. 이 범위에 있어서, 집진 효율은 90% 이상, 오존 농도는 사람의 후각으로 감지되는 5ppb 이하였다.In the case where the teeth 111 are opposed between the teeth rows 113, the distance S between the tip ends of the teeth 111 between the teeth rows 113 is preferably 6L or more and 8L or less. In this range, the dust collection efficiency was 90% or more, and the ozone concentration was 5 ppb or less, which is detected by the human sense of smell.
한편, 톱니열(113) 사이에서의 톱니(111) 선단 간의 거리 S가 6L 미만에서는, 대향하는 톱니(111) 사이에서 전계가 서로 간섭하여, 방전 전류가 흐르기 쉬워진다. 따라서, 오존 농도가 증가했다.On the other hand, when the distance S between the tips of the teeth 111 between the teeth rows 113 is less than 6L, the electric fields interfere with each other between the teeth 111, and the discharge current easily flows. Thus, the ozone concentration increased.
한편, 톱니열(113) 사이에서의 톱니(111) 선단 간의 거리 S가 8L를 넘으면, 고압 전극(11)에 차지하는 방전 영역(13)의 비율이 낮아지고, 집진 효율이 저하했다.On the other hand, when the distance S between the tips of the teeth 111 between the tooth rows 113 exceeds 8L, the ratio of the discharge region 13 to the high voltage electrode 11 was lowered, and the dust collection efficiency was lowered.
한편, 톱니열(113)에 따른 방향의 톱니(111)의 간격 P에 대해서는 제1 실시형태와 마찬가지이다.In addition, about the space | interval P of the tooth | gear 111 of the direction which concerns on the tooth | gear row 113, it is the same as that of 1st Embodiment.
한편, 고압 전극(11)은 톱니(111)의 배열을 도 2a와 상이한 도 15a에 나타낸 배열로 해도 무방하다.In addition, the high voltage electrode 11 may be set as the arrangement shown in FIG. 15A different from FIG. 2A.
또한, 도 2a에 나타낸 톱니(111)를, 도 16a에 나타낸 바와 같이 바늘(115)로 치환해도 무방하다. 또한, 도 15a에 나타낸 톱니(111)를 바늘(115)로 치환해도 무방하다.In addition, the tooth 111 shown in FIG. 2A may be replaced with the needle 115 as shown in FIG. 16A. In addition, the tooth 111 shown in FIG. 15A may be replaced with the needle 115.
이러한 경우이더라도, 바늘(115)의 길이를 L(길이 L)로 한 경우, 바늘열(117)에 있어서의 바늘(115)의 간격 P를 2L 이상, 아울러 바늘열(117) 사이의 바늘(115)의 선단 간의 거리 S를 6L 이상 및 8L 이하로 함으로써, 높은 집진 효율을 얻으면서, 오존 농도를 낮게 억제할 수 있다.Even in such a case, when the length of the needle 115 is set to L (length L), the interval P of the needle 115 in the needle string 117 is 2L or more and the needle 115 between the needle strings 117. By setting the distance S between the ends of the tip to 6L or more and 8L or less, the ozone concentration can be kept low while obtaining high dust collection efficiency.
그리고, 대향 전극(12)은 지금까지 나타낸 것과 치환해도 무방하다.The counter electrode 12 may be replaced with the one shown so far.
이상 설명한 바와 같이, 제3 실시형태가 적용되는 전기 집진기(1)에서는, 대전부(10)의 대향 전극(12)을, 도체부(121)와, 도체부(121)의 표면을 덮도록 형성한 저항체부(122)로 구성하고 있다. 따라서, 방전 전류가, 저항체부(122)를 형성하지 않는 경우에 비해 작게 억제되고, 오존 농도가 낮게 억제된다.As described above, in the electrostatic precipitator 1 to which the third embodiment is applied, the counter electrode 12 of the charging unit 10 is formed so as to cover the surface of the conductor portion 121 and the conductor portion 121. It consists of one resistor part 122. Therefore, the discharge current is suppressed smaller than that in the case where the resistor portion 122 is not formed, and the ozone concentration is suppressed low.
그리고, 대전부(10)의 고압 전극(11)은 절연 스페이서(32)를 통하여 케이스(30)에 고정되어 있다. 또한, 고압 전극(11)의 톱니(111) 선단으로부터 미리 정해진 거리 r의 범위에, 케이스(30) 등을 구성하는 수지 부재가 형성되어 있지 않다. 또한, 대향 전극(12)은 도체 노출 영역(123)에 있어서 케이스(30)와 전기적으로 접속되어 있다(도통시키고 있다). 이에 따라, 케이스(30)가 정전기로 대전하는 것을 억제하고, 집진 효율을 향상시키고 있다.The high voltage electrode 11 of the charging unit 10 is fixed to the case 30 via the insulating spacer 32. In addition, the resin member which comprises the case 30 etc. is not formed in the range of predetermined distance r from the tip of the tooth 111 of the high voltage electrode 11. In addition, the counter electrode 12 is electrically connected to the case 30 in the conductor exposed region 123 (conducting). This suppresses charging of the case 30 by static electricity and improves dust collection efficiency.
제3 실시형태가 적용되는 전기 집진기(1)에서는, 대전부(10)에 있어서, 고압 전극(11)과 대향 전극(12)을 통풍 방향으로 배치하고 있다. 또한, 고압 전극(11)의 방전을 발생시키는 부분을 톱니(111)로 하고, 톱니(111)를 통풍 방향에 대하여 직교하거나 또는 기울게 하여(교차시켜서) 배치하고 있다. 따라서, 고압 전극(11)과 대향 전극(12)의 거리 G를, 예를 들면 5mm로 짧게 설정할 수 있다. 이에 따라, 전기 집진기(1)를 소형화할 수 있다.In the electrostatic precipitator 1 to which the third embodiment is applied, the high voltage electrode 11 and the counter electrode 12 are arranged in the ventilation direction in the charging unit 10. Moreover, the part which generate | occur | produces the discharge of the high voltage electrode 11 is set as the tooth | gear 111, and the tooth | gear 111 is arrange | positioned orthogonally or inclined (intersected) with respect to a ventilation direction. Therefore, the distance G of the high voltage electrode 11 and the counter electrode 12 can be set short, for example to 5 mm. Thereby, the electrostatic precipitator 1 can be miniaturized.
또한, 제3 실시형태에서 나타낸 수치는 일례이며, 이것들에 한정되지 않는 것은 분명하다.In addition, the numerical value shown in 3rd Embodiment is an example, It is clear that it is not limited to these.
[제4 실시형태]Fourth Embodiment
제4 실시형태에서는 고압 전극으로부터의 랜덤 2차 전자 방출 등에 기인하는 펄스형상 전류의 발생을 억제하는 전류 제한 회로에 대하여 설명한다. 오존 발생은 고압 전극으로부터의 랜덤 2차 전자 방출 등에 기인하는 펄스형상 전류의 발생에 의해 현저하게 된다.In the fourth embodiment, a current limiting circuit for suppressing the generation of a pulsed current resulting from random secondary electron emission or the like from the high voltage electrode will be described. Ozone generation is remarkable due to the generation of a pulsed current resulting from random secondary electron emission or the like from the high voltage electrode.
도 24는 제4 실시형태가 적용되는 전기 집진기(1)의 일례를 나타낸 도면이다. 여기에서는 케이스(30)를 파선으로 나타내고, 케이스(30)의 내부에 형성된 대전부(10) 및 집진부(20)의 구성이 보이도록 하고 있다.FIG. 24 is a diagram illustrating an example of the electric dust collector 1 to which the fourth embodiment is applied. Here, the case 30 is shown with a broken line, and the structure of the charging part 10 and the dust collector 20 formed in the inside of the case 30 is shown.
전기 집진기(1)의 구성은 제1 실시형태 내지 제3 실시형태에서 설명한 것과 마찬가지의 부분은 동일한 부호를 붙여 설명을 생략하고, 상이한 부분을 설명한다.In the configuration of the electrostatic precipitator 1, the same parts as those described in the first to third embodiments are denoted by the same reference numerals, and the description thereof is omitted, and different parts are described.
(대전부(10))(The front part (10))
대전부(10)는 고압 전극(11)과, 고압 전극(11)에 대향하는 대향 전극(12)을 구비하고 있다. 고압 전극(11)과 대향 전극(12)은 서로 대향하도록 배치되어 있다.The charging unit 10 includes a high voltage electrode 11 and a counter electrode 12 that faces the high voltage electrode 11. The high voltage electrode 11 and the counter electrode 12 are arranged to face each other.
고압 전극(11)은 일례로서 각각이 뾰족한 선단을 갖는 톱니 형상 부분 (111)(이하에서는 톱니(111)로 표기함)을 복수개 구비한 복수개의 톱니열(113)(도 24에서는 #1~#5)을 구비하고 있다. 각각의 톱니열(113)은 좌우 방향을 향해 있다. 그리고, 각각의 톱니열(113)은 상측을 향해 배열된 복수개의 톱니(111)와, 하측을 향해 배열된 복수개의 톱니(111)를 구비하고 있다.As an example, the high voltage electrode 11 is provided with a plurality of tooth rows 113 (# 1 to # in FIG. 24) each provided with a plurality of tooth-shaped portions 111 (hereinafter referred to as teeth 111) each having a sharp tip. 5) is provided. Each tooth row 113 is directed in the horizontal direction. Each tooth row 113 includes a plurality of teeth 111 arranged upward and a plurality of teeth 111 arranged downward.
각각의 톱니(111)는 통풍 방향에 대하여 직교하는 방향으로 형성되어 있다. 또한, 각각의 톱니(111)는 인접하는 톱니열(113) 사이, 예를 들면 톱니열(113)의 #1과 #2 사이에서, 톱니열(113)의 방향에 대하여, 선단이 서로 어긋나게 배치되어 있다.Each tooth 111 is formed in a direction orthogonal to the ventilation direction. In addition, each tooth 111 is arranged so that the distal ends thereof are shifted with respect to the direction of the tooth row 113 between adjacent tooth rows 113, for example, between # 1 and # 2 of the tooth rows 113. It is.
한편, 도 24에서는 인접하는 톱니열(113) 사이에서, 한쪽의 톱니열(113)에 있어서의 톱니(111) 선단이, 다른쪽의 톱니열(113)의 톱니(111) 선단의 중앙에 배치되어 있다. 즉, 인접하는 톱니열(113) 사이에서, 각각의 톱니(111) 선단이 지그재그로 배치되어 있다.On the other hand, in FIG. 24, the tip of the tooth 111 in one tooth row 113 is disposed between the adjacent tooth rows 113 in the center of the tip of the tooth 111 of the other tooth row 113. It is. That is, the tip of each tooth 111 is arranged in a zigzag between adjacent tooth rows 113.
각각의 톱니(111)는 통풍 방향에 대하여, 경사 방향으로 형성되어도 무방하다. 즉, 각각의 톱니(111)는 통풍 방향으로 교차하는 방향으로 형성되어 있다.Each tooth 111 may be formed in an inclined direction with respect to the ventilation direction. That is, each tooth 111 is formed in the direction crossing in the ventilation direction.
각각의 톱니열(113)에 있어서의 복수개의 톱니(111)는 접속부(112)에 접속되어 있다. 각각의 접속부(112)의 한쪽의 단부는 후술하는 회로 기판(15)에 형성된 배선(17)에 접속되어 있다(후술하는 도 26 참조.) 이 배선(17)은 고전압 단자(18)에 접속되고, 고전압 발생 회로(40)의 양극(고전압 공급 단자)에 접속된다.The plurality of teeth 111 in each tooth row 113 are connected to the connecting portion 112. One end of each connection portion 112 is connected to a wiring 17 formed on a circuit board 15 to be described later (see FIG. 26 to be described later). The wiring 17 is connected to a high voltage terminal 18. And the positive electrode (high voltage supply terminal) of the high voltage generation circuit 40.
복수개의 톱니(111)와 접속부(112)는 도전성 재료로 일체적으로 구성되어 있다. 따라서, 여기에서는 복수개의 톱니(111)와 접속부(112)를 통합하여 톱니열(113)로 표기한다.The several teeth 111 and the connection part 112 are comprised integrally with electroconductive material. Therefore, in this case, the plurality of teeth 111 and the connecting portion 112 are collectively referred to as a tooth row 113.
그리고, 톱니열(113) 및 회로 기판(15)은 지지부(14)에 고정되어 있다. 한편, 지지부(14)는 케이스(30)의 일부이어도 무방하다.The tooth row 113 and the circuit board 15 are fixed to the support 14. In addition, the support part 14 may be part of the case 30.
한편, 톱니열(113)의 수 및 톱니열(113)에 있어서의 톱니(111)의 수는 미리 정해진 수로 설정된다.On the other hand, the number of tooth rows 113 and the number of teeth 111 in the tooth row 113 are set to a predetermined number.
대향 전극(12)은 통풍이 가능하도록 관통한 개구(구멍)(124)를 갖는 도전성 재료로 구성된 부재(도체부)와, 그 표면을 덮도록 형성되고 전류에 대하여 저항으로서 기능하는 저항성 재료로 구성된 부재(저항체부)를 구비하고 있다. 그리고, 대향 전극(12)의 도체부는 대전부(10)의 고전압 발생 회로(40)의 음극(기준 전압 공급 단자)에 접속되어 있다.The counter electrode 12 is composed of a member (conductor portion) made of a conductive material having an opening (hole) 124 penetrated to allow ventilation, and a resistive material formed to cover the surface thereof and functioning as a resistance to current. A member (resistor part) is provided. The conductor portion of the counter electrode 12 is connected to the cathode (reference voltage supply terminal) of the high voltage generation circuit 40 of the charging portion 10.
대향 전극(12)에 저항체부를 형성하는 것은 방전 전류를 제한하고 오존 발생을 억제하기 위함이다. 따라서, 저항체부에 대한 체적 저항율 등의 특성은 집진 효율과 오존 농도의 관계를 고려하여 설정된다. 예를 들면, 저항체부를 구성하는 부재는 비유전율이 3 이상으로, 체적 저항율이 1014Ω·cm 이상 및 1018Ω·cm 이하인 것이 바람직하다. 한편, 저항체부의 두께에 따라서 두께 방향의 저항값이 변화한다. 따라서, 저항체부의 두께에 의해, 제한하는 방전 전류를 설정할 수 있다.The formation of the resistor portion in the counter electrode 12 is for limiting the discharge current and suppressing ozone generation. Therefore, characteristics such as volume resistivity for the resistor portion are set in consideration of the relationship between the dust collection efficiency and the ozone concentration. For example, the members constituting the resistor portion preferably have a relative dielectric constant of 3 or more and a volume resistivity of 10 14 Pa · cm or more and 10 18 Pa · cm or less. On the other hand, the resistance value in the thickness direction changes depending on the thickness of the resistor portion. Therefore, the discharge current to be limited can be set by the thickness of the resistor portion.
한편, 저항체부를 형성하지 않아도 무방하다.On the other hand, the resistor portion may not be formed.
도 24에서는, 대향 전극(12)은 일례로서 병렬시킨 복수개의 장방형의 판형상 부재로 했다. 판형상 부재의 사이가, 개구(124)로서 기능한다. 한편, 장방형의 판형상 부재의 폭(크기), 개구(124)의 크기는 고압 전극(11) 사이에 발생하는 방전을 고려하여 설정된다.In FIG. 24, the counter electrode 12 is formed as a plurality of rectangular plate members arranged in parallel as an example. Between the plate members function as the opening 124. On the other hand, the width (size) of the rectangular plate-shaped member and the size of the opening 124 are set in consideration of the discharge generated between the high voltage electrodes 11.
고압 전극(11)과 대향 전극(12) 사이는 거리 G이다.The distance G is between the high voltage electrode 11 and the counter electrode 12.
전기 집진기(1)의 대전부(10)에 있어서, 고압 전극(11)은 상기 절연성 재료로 구성된 절연 스페이서(도 3에 나타낸 절연 스페이서(32))를 통하여 지지부(14)에 부착되어 있다. 그리고, 지지부(14)가 케이스(30)에 부착되어 있다. 한편, 지지부(14)가 케이스(30)의 일부이어도 무방하다. 또한, 지지부(14)가 절연 스페이서이어도 무방하다.In the charging portion 10 of the electrostatic precipitator 1, the high voltage electrode 11 is attached to the support portion 14 via an insulating spacer (insulation spacer 32 shown in FIG. 3) made of the above insulating material. The support 14 is attached to the case 30. In addition, the support part 14 may be part of the case 30. In addition, the support part 14 may be an insulating spacer.
한편, 대향 전극(12)은 도체부를 노출시킨 도체 노출 영역을 형성하고, 도체 노출 영역이 케이스(30)에 전기적으로 접촉하도록(도통하도록) 케이스(30)에 부착되어 있다.On the other hand, the counter electrode 12 forms a conductor exposed region exposing the conductor portion, and is attached to the case 30 so that the conductor exposed region is in electrical contact with the case 30 (conducts).
(전류 제한 회로(16))(Current limiting circuit 16)
오존 발생은 고압 전극(11)으로부터의 랜덤 2차 전자 방출에 기인하는 펄스형상의 전류 등에 의해 현저하게 된다.Ozone generation is remarkable due to a pulsed current or the like resulting from random secondary electron emission from the high voltage electrode 11.
제4 실시형태에서 설명하는 전기 집진기(1)의 대전부(10)는 펄스형상의 전류를 제한하는 전류 제한 회로(16)를 형성하고 있다. 이에 따라, 오존 발생을 더욱 억제한다.The charging section 10 of the electrostatic precipitator 1 described in the fourth embodiment forms a current limiting circuit 16 for limiting a pulse current. This further suppresses ozone generation.
도 25는 전기 집진기(1)의 대전부(10)에 관한 등가 회로이다.25 is an equivalent circuit relating to the charging unit 10 of the electrostatic precipitator 1.
여기에서는, 고압 전극(11)과 대향 전극(12) 사이의 방전이 생성되는 공간(방전 공간)을 콘덴서(C)로 치환하고 있다. 즉, 콘덴서(C)의 한쪽 단자가 고압 전극(11), 다른쪽 단자가 대향 전극(12)으로 되어 있다.Here, the space (discharge space) in which the discharge between the high voltage electrode 11 and the counter electrode 12 is generated is replaced with the capacitor C. As shown in FIG. That is, one terminal of the capacitor C is the high voltage electrode 11 and the other terminal is the counter electrode 12.
그리고, 전류 제한 회로(16)는 콘덴서(C)의 고압 전극(11) 측에 형성되어 있다.The current limiting circuit 16 is formed on the high voltage electrode 11 side of the capacitor C. As shown in FIG.
고전압 발생 회로(40)는 전압원(40A), 저항(R0), 콘덴서(C0)를 구비하고 있다.The high voltage generation circuit 40 includes a voltage source 40A, a resistor R0, and a capacitor C0.
전압원(40A)의 +측은 저항(R0)의 한쪽 단자에 접속되어 있다. 저항(R0)의 다른쪽 단자는 콘덴서(C0)의 한쪽 단자에 접속되어 있다. 전압원(40A)의 -측은 콘덴서(C0)의 한쪽 단자에 접속되어 있다. 그리고, 콘덴서(C0)의 한쪽 단자가 고전압 발생 회로(40)의 양극(40B), 콘덴서(C0)의 다른쪽 단자가 음극(40C)으로 되어 있다.The + side of the voltage source 40A is connected to one terminal of the resistor R0. The other terminal of the resistor R0 is connected to one terminal of the capacitor C0. The negative side of the voltage source 40A is connected to one terminal of the capacitor C0. One terminal of the capacitor C0 is the positive electrode 40B of the high voltage generating circuit 40 and the other terminal of the capacitor C0 is the negative electrode 40C.
여기서, 저항(R0)은 고전압 발생 회로(40)로부터의 전류를 제한하고, 콘덴서(C0)는 고전압 발생 회로(40)로부터 출력되는 DC의 고전압(DC 전압)을 안정시킨다.Here, the resistor R0 limits the current from the high voltage generating circuit 40, and the capacitor C0 stabilizes the high voltage (DC voltage) of DC output from the high voltage generating circuit 40.
전류 제한 회로(16)는 인덕터(Ls)와 다이오드(Ds)의 병렬 회로를 구비하고 있다. 인덕터(Ls)와 다이오드(Ds)의 병렬 회로의 한쪽 단자가, 고전압 발생 회로(40)의 양극(40B)에, 다른쪽 단자가, 고전압 발생 회로(40)의 음극(40C)에 접속되어 있다.The current limiting circuit 16 includes a parallel circuit of the inductor Ls and the diode Ds. One terminal of the parallel circuit of the inductor Ls and the diode Ds is connected to the positive electrode 40B of the high voltage generator circuit 40, and the other terminal is connected to the negative electrode 40C of the high voltage generator circuit 40. .
다이오드(Ds)는 애노드가 고압 전극(11)에 접속되고 캐소드가 고전압 발생 회로(40)의 양극(40B)에 접속되어 있다. 즉, 고전압 발생 회로(40)의 양극(40B)의 전위가 고압 전극(11)의 전위보다 높은(큰) 통상 상태의 경우에는, 다이오드(Ds)에 전류가 흐르지 않는 역방향으로 접속되어 있다.The diode Ds has an anode connected to the high voltage electrode 11 and a cathode connected to the anode 40B of the high voltage generation circuit 40. That is, in the normal state in which the potential of the positive electrode 40B of the high voltage generator circuit 40 is higher (greater) than the potential of the high voltage electrode 11, the diode Ds is connected in the reverse direction in which no current flows.
전류 제한 회로(16)의 동작에 대하여 설명한다.The operation of the current limiting circuit 16 will be described.
고압 전극(11)과 대향 전극(12) 사이의 전압(전극간 전압)은 고압 전극(11)과 대향 전극(12) 사이에 흐르는 전류에 따라서 변동한다. 고압 전극(11)과 대향 전극(12) 사이에 방전이 발생하면, 방전으로 발생한 전자가 고압 전극(11)에 충돌하여, 2차 전자를 방출한다. 이 2차 전자의 양은 방전 상태에 따라서 변동한다. 2차 전자가 많아지면, 방전 전류가 많아지고 오존 발생이 많아진다.The voltage (inter-electrode voltage) between the high voltage electrode 11 and the counter electrode 12 changes in accordance with the current flowing between the high voltage electrode 11 and the counter electrode 12. When a discharge occurs between the high voltage electrode 11 and the counter electrode 12, electrons generated by the discharge collide with the high voltage electrode 11 to emit secondary electrons. The amount of these secondary electrons varies depending on the discharge state. As the number of secondary electrons increases, the discharge current increases and ozone generation increases.
따라서, 오존 발생을 억제하기 위해서는, 2차 전자 방출에 따라 증가하는 방전 전류를 제한하는 것이 필요하다. 이 때문에, 방전 전류가 증가했을 때에, 고압 전극(11)의 전위를 낮추고 방전 전류를 감소시키는 것이 유효하다. 이 2차 전자 방출에 따라 증가하는 방전 전류는 펄스형상으로 발생하는 펄스형상 전류이다. 펄스형상 전류는 고주파 성분(고주파 전류)을 포함하고 있다.Therefore, in order to suppress ozone generation, it is necessary to limit the discharge current which increases with secondary electron emission. For this reason, when the discharge current increases, it is effective to lower the potential of the high voltage electrode 11 and decrease the discharge current. The discharge current increasing with this secondary electron emission is a pulse current generated in a pulse shape. The pulsed current contains a high frequency component (high frequency current).
인덕터(Ls)는 고주파 성분에 대하여 임피던스가 높아진다. 따라서, 고주파 전류는 인덕터(Ls)에 의해 제한된다.The inductor Ls has a high impedance with respect to the high frequency component. Therefore, the high frequency current is limited by the inductor Ls.
따라서, 제4 실시형태가 적용되는 전기 집진기(1)의 대전부(10)는 인덕터(Ls)를 갖는 전류 제한 회로(16)를 구비하고 있다.Therefore, the charging part 10 of the electric dust collector 1 to which 4th Embodiment is applied is provided with the current limiting circuit 16 which has the inductor Ls.
한편, 인덕터(Ls)는 전류가 흐르지 않게 되면, 전류가 흐르고 있던 상태를 유지하려고 하고, 역기전력을 발생한다. 역기전력은 고압 전극(11)의 전위를 고전압 발생 회로(40)의 양극(40B)의 전위보다 높게(크게) 한다. 따라서, 고압 전극(11)과 대향 전극(12) 사이의 전극간 전압이 미리 정해진 전압보다 높게(크게) 된다. 그러면, 방전 전류가 커지고, 오존 발생이 많아지게 된다.On the other hand, when the inductor Ls does not flow, the inductor Ls tries to maintain the state in which the current has flowed, and generates counter electromotive force. The counter electromotive force makes the potential of the high voltage electrode 11 higher (greater) than the potential of the anode 40B of the high voltage generating circuit 40. Therefore, the inter-electrode voltage between the high voltage electrode 11 and the counter electrode 12 becomes higher (greater) than the predetermined voltage. As a result, the discharge current increases, and ozone generation increases.
따라서, 전류 제한 회로(16)은 인덕터(Ls)에 병렬로 접속된 다이오드(Ds)를 구비하고 있다. 다이오드(Ds)는 상술한 바와 같이, 인덕터(Ls)에 발생한 역기전력에 대하여 전류가 흐르는 방향(순서 방향)으로 접속되어 있다. 따라서, 인덕터(Ls)에 발생한 역기전력을 소멸하도록 기능한다.Therefore, the current limiting circuit 16 includes a diode Ds connected in parallel to the inductor Ls. As described above, the diode Ds is connected in the direction in which the current flows (the order direction) with respect to the counter electromotive force generated in the inductor Ls. Therefore, it functions to dissipate the counter electromotive force generated in the inductor Ls.
한편, 인덕터(Ls)는 DC 또는 저주파 성분의 전류가 흐르는 통상 상태에서는 임피던스가 작다. 따라서, 인덕터(Ls)는 통상 상태에 있어서의 대전부(10)의 동작에 영향을 주지 않는다.On the other hand, the inductor Ls has a small impedance in a normal state in which a current of DC or low frequency component flows. Therefore, the inductor Ls does not affect the operation of the charging unit 10 in the normal state.
또한, 인덕터(Ls)에 의해 역기전력이 발생하지 않는 경우, 즉, 고전압 발생 회로(40)의 양극(40B)의 전위가 고압 전극(11)의 전위보다 높은(큰) 통상 상태에서는, 다이오드(Ds)는 역방향 접속으로 되어 있다. 따라서, 다이오드(Ds)는 통상 상태에 있어서의 대전부(10)의 동작에 영향을 주지 않는다.In addition, when the counter electromotive force is not generated by the inductor Ls, that is, in the normal state in which the potential of the anode 40B of the high voltage generating circuit 40 is higher (greater) than the potential of the high voltage electrode 11, the diode Ds. ) Is a reverse connection. Therefore, the diode Ds does not affect the operation of the charging unit 10 in the normal state.
이상 설명한 바와 같이, 전류 제한 회로(16)에 있어서의 인덕터(Ls)는 2차 전자 방출에 따라 발생하는 펄스형상 전류를 억제한다. 그리고, 인덕터(Ls)에 병렬 접속된 다이오드(Ds)는 인덕터(Ls)가 발생하는 역기전력에 의한 전극간 전압의 상승을 억제한다. 이에 따라, 대전부(10)에 있어서, 펄스형상 전류에 의해 오존 발생이 증가하는 것을 억제하고 있다.As described above, the inductor Ls in the current limiting circuit 16 suppresses the pulsed current generated by the secondary electron emission. The diode Ds connected in parallel with the inductor Ls suppresses the increase in the voltage between electrodes due to the counter electromotive force generated by the inductor Ls. This suppresses the increase in ozone generation by the pulsed current in the charging unit 10.
다음으로, 전류 제한 회로(16)의 구체적인 동작에 대하여 설명한다.Next, a specific operation of the current limiting circuit 16 will be described.
(실시예 7)(Example 7)
도 26은 인덕터(Ls)와 다이오드(Ds)의 병렬 회로에 의한 전류 제한 회로(16)가 접속된 고압 전극(11)의 일례를 나타낸 도면이다. 도 26에서는 고전압 발생 회로(40)도 함께 나타내고 있다. 여기서, 전류 제한 회로(16)를 형성한 고압 전극(11)을 구비하는 전기 집진기(1)를 실시예 7로 표기한다.FIG. 26 shows an example of the high voltage electrode 11 to which the current limiting circuit 16 is connected by the parallel circuit of the inductor Ls and the diode Ds. In FIG. 26, the high voltage generation circuit 40 is also shown. Here, the electric dust collector 1 provided with the high voltage electrode 11 in which the current limiting circuit 16 was formed is shown as Example 7. FIG.
한편, 톱니(111)의 수, 톱니열(113)의 수를 간략화하여 표기하고 있다.In addition, the number of the teeth 111 and the number of the teeth rows 113 are simplified and described.
고전압 발생 회로(40)는 4~7kV의 DC 전압을 발생시킨다.The high voltage generation circuit 40 generates a DC voltage of 4-7 kV.
고압 전극(11)에 있어서의 복수개의 톱니(111)와 이들 톱니(111)가 접속된 톱니열(113)을, 두께 0.5mm의 판형상 스테인레스 스틸(SUS)로 구성했다.The plurality of teeth 111 in the high voltage electrode 11 and the teeth row 113 to which the teeth 111 were connected were made of plate-shaped stainless steel (SUS) having a thickness of 0.5 mm.
회로 기판(15) 상에, 전류 제한 회로(16) 및 배선(17)을 형성했다. 그리고, 복수개의 톱니열(113)을, 회로 기판(15) 상의 배선(17)으로 접속했다. 배선(17)에 전류 제한 회로(16)를 구성하는 인덕터(Ls)와 다이오드(Ds)의 병렬 회로의 한쪽 단자를 접속했다. 병렬 회로의 다른쪽 단자를 고전압 단자(18)에 접속했다. 고전압 단자(18)를 고전압 발생 회로(40)의 양극(40B)에 접속했다. 한편, 다이오드(Ds)는 도 25에서 설명한 방향으로 접속했다.On the circuit board 15, the current limiting circuit 16 and the wiring 17 were formed. The plurality of tooth rows 113 were connected to the wirings 17 on the circuit board 15. One terminal of the parallel circuit of the inductor Ls and the diode Ds constituting the current limiting circuit 16 was connected to the wiring 17. The other terminal of the parallel circuit was connected to the high voltage terminal 18. The high voltage terminal 18 was connected to the positive electrode 40B of the high voltage generation circuit 40. In addition, the diode Ds was connected in the direction demonstrated in FIG.
여기에서는, 톱니(111) 선단으로부터 접속부(112)까지의 길이 L을 10mm, 톱니열(113)에 있어서의 톱니(111) 사이의 간격 P를 34.6mm로 했다. 또한, 인접하는 톱니열(113) 사이에서, 톱니열(113)에 수직인 방향의 톱니(111) 선단 간의 거리 S를 30mm로 했다.Here, the length P from the tip of the tooth 111 to the connection part 112 was 10 mm, and the space P between the teeth 111 in the tooth row 113 was 34.6 mm. In addition, between adjacent tooth rows 113, the distance S between the tips of the teeth 111 in the direction perpendicular to the tooth rows 113 was set to 30 mm.
전류 제한 회로(16)에 있어서의 인덕터(Ls)는 100μH 이상으로 했다. 다이오드(Ds)는 역내압이 7kV 이상으로 했다. 한편, 다이오드(Ds)는 역내압이 7kV 이상이 되도록, 복수개의 다이오드를 직렬 접속하여 구성해도 무방하다.The inductor Ls in the current limiting circuit 16 was set to 100 µH or more. The diode Ds had a reverse breakdown voltage of 7 kV or more. On the other hand, the diode Ds may be configured by connecting a plurality of diodes in series so that the reverse breakdown voltage is 7 kV or more.
대향 전극(12)의 복수개의 장방형의 판형상 부재의 도체부는 각각을 폭 10mm의 SUS로 구성했다. 한편, 저항체부는 두께 50㎛의 폴리이미드 수지로 했다.The conductor portions of the plurality of rectangular plate-shaped members of the counter electrode 12 were each composed of SUS having a width of 10 mm. On the other hand, the resistor portion was a polyimide resin having a thickness of 50 µm.
고압 전극(11)과 대향 전극(12)의 거리 G는 5mm로 했다.The distance G of the high voltage electrode 11 and the counter electrode 12 was 5 mm.
(비교예 3)(Comparative Example 3)
여기서, 제4 실시형태가 적용되지 않는 비교예 3의 전기 집진기(1)에 대하여 설명한다.Here, the electrostatic precipitator 1 of the comparative example 3 to which 4th embodiment is not applied is demonstrated.
비교예 3의 전기 집진기(1)는 저항(R1)으로 구성된 전류 제한 회로(16)를 구비하고 있다.The electrostatic precipitator 1 of the comparative example 3 is equipped with the current limiting circuit 16 comprised from the resistor R1.
도 27은 저항에 의한 전류 제한 회로(16)을 포함한 대전부(10)의 등가 회로이다.27 is an equivalent circuit of the charging unit 10 including the current limiting circuit 16 by the resistor.
도 27에 나타낸 대전부(10)는 도 25에 나타낸 대전부(10)의 전류 제한 회로(16)에 있어서, 인덕터(Ls)와 다이오드(Ds)의 병렬 회로를 저항(R1)로 치환한 것이다. 다른 구성은 마찬가지이므로, 동일한 부호를 붙여 설명을 생략한다.The charging unit 10 shown in FIG. 27 replaces the parallel circuit of the inductor Ls and the diode Ds with the resistor R1 in the current limiting circuit 16 of the charging unit 10 shown in FIG. . Since other configurations are the same, the same reference numerals are used to omit the description.
한편, 저항 R는 1MΩ로 했다.On the other hand, the resistance R was 1 MΩ.
(실시예 7과 비교예 3의 비교)(Comparison of Example 7 and Comparative Example 3)
실시예 7 및 비교예 3 각각의 전기 집진기(1)의 대전부(10) 및 집진부(20)에 통전하여, 전기 집진기(1)를 동작시켰다.The electric dust collector 1 was operated by energizing the charging part 10 and the dust collecting part 20 of each electric dust collector 1 of Example 7 and the comparative example 3, respectively.
고전압 발생 회로(40)로부터, 약 4kV의 DC 전압을 대전부(10)에 인가하면, 이온이 발생하기 시작하여 부유 미립자의 대전이 가능하게 되었다.When a DC voltage of about 4 kV is applied to the charging unit 10 from the high voltage generating circuit 40, ions start to be generated and charging of the fine particles becomes possible.
고전압 발생 회로(40)로부터, 5kV 이상의 DC 전압을 대전부(10)에 인가하면, 2차 전자 방출에 수반되는 랜덤인 펄스형상 전류가 발생하게 되었다.When a DC voltage of 5 kV or more is applied from the high voltage generating circuit 40 to the charging section 10, a random pulse current accompanying the secondary electron emission is generated.
그러나, 실시예 7 및 비교예 3의 어느 전기 집진기(1)에 있어서도, 전류 제한 회로(16)가 기능하여, 펄스형상 전류에 의한 오존의 증가가 억제되었다.However, also in any of the electrostatic precipitators 1 of Example 7 and Comparative Example 3, the current limiting circuit 16 functions, and the increase of ozone by the pulse current is suppressed.
도 28a 및 도 28b는 실시예 7의 전기 집진기(1) 및 비교예 3의 전기 집진기(1) 각각의 대전부(10)에 있어서의 전극간 전압의 시간 변화를 나타낸 도면이다. 도 28a는 실시예 7, 도 28b는 비교예 3이다. 가로축이 시간(ns), 세로축이 전극간 전압(kV)이다.28A and 28B are diagrams showing a time change of the inter-electrode voltage in the charging unit 10 of each of the electrostatic precipitator 1 of Example 7 and the electrostatic precipitator 1 of Comparative Example 3. FIG. 28A is Example 7, FIG. 28B is Comparative Example 3. FIG. The horizontal axis represents time (ns) and the vertical axis represents the inter-electrode voltage (kV).
실시예 7의 전기 집진기(1)에서는, 100ns 부근에 있어서, 2차 전자 방출에 의한 펄스형상 전류가 발생하면, 약 270V의 전압 강하가 발생한다. 즉, 전류 제한 회로(16)의 인덕터(Ls)가 가능하여, 고압 전극(11)의 전위를 저하시킨다. 그리고, 펄스형상 전류가 정지하면, 고압 전극(11)은 10ns 이내에서 원래의 전압으로 돌아오고 있다.In the electrostatic precipitator 1 of the seventh embodiment, when a pulse current is generated by secondary electron emission in the vicinity of 100 ns, a voltage drop of about 270 V occurs. That is, the inductor Ls of the current limiting circuit 16 can be made to lower the potential of the high voltage electrode 11. Then, when the pulsed current stops, the high voltage electrode 11 returns to its original voltage within 10 ns.
그리고, 전극간 전압에는 인덕터(Ls)의 역기전력에 의한 고전압측으로의 과전압의 발생(오버슈트)은 보이지 않는다. 이것은 다이오드(Ds)에 의해, 역기전력이 소멸되어 있기 때문이다.In the inter-electrode voltage, occurrence of overvoltage (overshoot) to the high voltage side due to the counter electromotive force of the inductor Ls is not seen. This is because the counter electromotive force is dissipated by the diode Ds.
한편, 비교예 3의 전기 집진기(1)에서도, 100ns 부근에서, 2차 전자 방출에 의한 펄스형상 전류가 발생하면, 약 270V의 전압 강하가 발생한다. 즉, 전류 제한 회로(16)의 저항(R1)이 기능하여, 고압 전극(11)의 전위를 저하시킨다. 그러나, 펄스형상 전류가 정지하면, 고압 전극(11)은 50ns 이상 걸려서 원래 전압으로 돌아오고 있다. 이것은 고압 전극(11)과 대향 전극(12) 사이에서 구성되는 콘덴서(도 25에 있어서의 콘덴서(C))와 저항(R1)에 의한 시정수가 크기 때문이다.On the other hand, even in the electrostatic precipitator 1 of the comparative example 3, when the pulse-shaped current by secondary electron emission generate | occur | produces in the vicinity of 100 ns, the voltage drop of about 270V will generate | occur | produce. That is, the resistance R1 of the current limiting circuit 16 functions to lower the potential of the high voltage electrode 11. However, when the pulsed current stops, the high voltage electrode 11 takes over 50 ns and returns to the original voltage. This is because the time constant due to the capacitor R (condenser C in FIG. 25) and the resistor R1 constituted between the high voltage electrode 11 and the counter electrode 12 is large.
즉, 인덕터(Ls)는 저항(R1)에 비해, DC 또는 저주파수의 전류에 대한 임피던스가 작기 때문에, 원래 전압으로 돌아올 때까지의 시간을 짧게(작게) 할 수 있다.That is, since the inductor Ls has a smaller impedance for current of DC or lower frequency than the resistor R1, the time until returning to the original voltage can be shortened (small).
이에 따라, 전기 집진기(1)가 집진 기능을 발휘하는 기간의 비율이 커지게 되고, 집진 효율이 저하하는 것이 억제된다.Thereby, the ratio of the period in which the electrostatic precipitator 1 exerts a dust collecting function becomes large, and it is suppressed that the dust collection efficiency falls.
한편, 고전압 발생 회로(40)가 4~7kV의 DC 전압을 공급하는 경우, 인덕터(Ls)는 200~300V의 전위 강하를 일으키게 하는 것인 것이 바람직하다.On the other hand, when the high voltage generation circuit 40 supplies a DC voltage of 4-7 kV, it is preferable that the inductor Ls causes a potential drop of 200-300V.
도 29는 전류 제한 회로(16)를 포함한 대전부(10)의 다른 등가 회로이다.29 is another equivalent circuit of the charging unit 10 including the current limiting circuit 16.
도 25에서는, 전류 제한 회로(16)를 고압 전극(11)로의 경로 상에 있어서 접속했지만, 도 29에서는 전류 제한 회로(16)을 대향 전극(12)로의 경로 상에 있어서 접속하고 있다.In FIG. 25, the current limiting circuit 16 is connected on the path to the high voltage electrode 11, but in FIG. 29, the current limiting circuit 16 is connected on the path to the counter electrode 12.
이와 같이 하더라도, 도 25의 경우와 마찬가지로 동작한다.Even in this case, the same operation as in the case of FIG.
(실시예 8)(Example 8)
실시예 7의 전기 집진기(1)에 있어서의 대전부(10)에서는, 전류 제한 회로(16)를 고압 전극(11)에 대하여 1개 형성하고 있었다. 실시예 8에 따른 전기 집진기(1)의 대전부(10)에서는, 고압 전극(11)의 톱니열(113)마다 전류 제한 회로(16)를 형성하고 있다.In the charging unit 10 in the electrostatic precipitator 1 of the seventh embodiment, one current limiting circuit 16 was formed for the high voltage electrode 11. In the charging unit 10 of the electrostatic precipitator 1 according to the eighth embodiment, a current limiting circuit 16 is formed for each tooth row 113 of the high voltage electrode 11.
도 30은 실시예 8의 전기 집진기(1)의 대전부(10)에 있어서의, 톱니열(113)마다 전류 제한 회로(16)를 접속한 고압 전극(11)의 일례를 나타낸 도면이다.FIG. 30: is a figure which shows an example of the high voltage electrode 11 which connected the current limiting circuit 16 for every tooth row 113 in the charging part 10 of the electrostatic precipitator 1 of Example 8. FIG.
여기에서는, 고압 전극(11)은 복수개의 톱니열(113)을 구비하고 있다. 그리고, 회로 기판(15)에는 각각의 톱니열(113)에 대응하여, 인덕터(Ls)와 다이오드(Ds)의 병렬 회로에 의한 전류 제한 회로(16)가 형성되어 있다. 그리고, 복수개의 톱니열(113)의 각각이 대응하는 전류 제한 회로(16)에 접속되어 있다. 복수개의 전류 제한 회로(16)는 고전압 단자(18)에 접속된 배선(17)에 접속되어 있다. 고전압 단자(18)는 고전압 발생 회로(40)의 양극(40B)에 접속되어 있다.Here, the high voltage electrode 11 includes a plurality of tooth rows 113. The circuit board 15 is provided with a current limiting circuit 16 by a parallel circuit of the inductor Ls and the diode Ds corresponding to each tooth row 113. Each of the plurality of tooth rows 113 is connected to a corresponding current limiting circuit 16. The plurality of current limiting circuits 16 are connected to a wiring 17 connected to the high voltage terminal 18. The high voltage terminal 18 is connected to the anode 40B of the high voltage generation circuit 40.
즉, 실시예 8의 전기 집진기(1)에서는, 대전부(10)의 고압 전극(11)이 분할되고, 분할된 부분마다 전류 제한 회로(16)가 형성되어 있다. 여기에서는 톱니열(113)이 고압 전극(11)이 분할된 서브 고압 전극의 일례이다.That is, in the electrostatic precipitator 1 of the eighth embodiment, the high voltage electrode 11 of the charging unit 10 is divided, and the current limiting circuit 16 is formed for each divided portion. Here, the tooth row 113 is an example of the sub high voltage electrode in which the high voltage electrode 11 is divided.
이와 같이 함으로써, 하나의 톱니열(113)에 있어서, 2차 전자 방출에 의한 펄스형상 전류 등에 기인하여 전위 강하가 발생해도, 다른 톱니열(113)에서는 전위 강하가 발생하지 않는다.By doing in this way, even if a potential drop generate | occur | produces in one tooth row 113 by the pulsed current etc. by secondary electron emission, the potential drop does not generate | occur | produce in the other tooth row 113. FIG.
즉, 도 28a에 나타낸 전극간 전압의 저하(전위 강하)는 전류 제한 회로(16)의 인덕터(Ls)에서 발생하기 때문에, 고전압 발생 회로(40)의 양극(40B)의 전위에 영향을 주지 않는다. 따라서, 다른 톱니열(113)은 통상 상태를 유지한다. 이에 따라, 전기 집진기(1)의 집진 효율의 저하가 억제된다.That is, since the drop (potential drop) of the inter-electrode voltage shown in FIG. 28A occurs in the inductor Ls of the current limiting circuit 16, it does not affect the potential of the anode 40B of the high voltage generating circuit 40. . Therefore, the other tooth row 113 maintains a normal state. Thereby, the fall of the dust collection efficiency of the electrostatic precipitator 1 is suppressed.
한편, 도 30에서는, 톱니열(113)마다 전류 제한 회로(16)를 형성했지만, 톱니열(113)을 그룹으로 하여 그룹마다 전류 제한 회로(16)를 형성해도 무방하다.In FIG. 30, the current limiting circuit 16 is formed for each tooth row 113, but the current limiting circuit 16 may be formed for each group using the tooth rows 113 as a group.
(실시예 9)(Example 9)
실시예 8의 전기 집진기(1)에 있어서의 대전부(10)에서는, 고압 전극(11)의 복수개의 톱니열(113) 각각에 대하여 전류 제한 회로(16)가 형성되어 있었다. 실시예 9에 따른 전기 집진기(1)의 대전부(10)에서는, 톱니열(113)에 있어서의 복수개의 톱니(111) 각각에 전류 제한 회로(16)를 형성하고 있다.In the charging unit 10 in the electrostatic precipitator 1 of the eighth embodiment, a current limiting circuit 16 is formed for each of the plurality of tooth rows 113 of the high voltage electrode 11. In the charging unit 10 of the electrostatic precipitator 1 according to the ninth embodiment, a current limiting circuit 16 is formed in each of the plurality of teeth 111 in the tooth row 113.
도 31은 실시예 9의 전기 집진기(1)의 대전부(10)에 있어서의, 톱니(111) 마다 전류 제한 회로(16)를 접속한 고압 전극(11)의 일례를 나타낸 도면이다.FIG. 31: is a figure which shows an example of the high voltage electrode 11 which connected the current limiting circuit 16 for every tooth | gear 111 in the charging part 10 of the electrostatic precipitator 1 of Example 9. FIG.
전류 제한 회로(16)는 인덕터(Ls)와 다이오드(Ds)의 병렬 회로이다.The current limiting circuit 16 is a parallel circuit of the inductor Ls and the diode Ds.
도 31에 나타낸 바와 같이, 고압 전극(11)은 각각이 복수개의 톱니(111)를 구비한 복수개의 톱니열(113)을 구비하고 있다. 여기에서는 톱니(111)의 부분을 고압 전극(11)으로 표기한다.As shown in FIG. 31, the high voltage electrode 11 is provided with a plurality of tooth rows 113 each having a plurality of teeth 111. Here, the part of the tooth | gear 111 is described with the high voltage electrode 11. As shown in FIG.
톱니열(113)에 있어서, 복수개의 톱니(111)는 회로 기판(15)에 고정됨과 아울러, 회로 기판(15) 상의 배선(17)에 접속되어 있다. 또한, 각각의 톱니(111)에는 회로 기판(15) 상에 구성된 전류 제한 회로(16)가 각각 접속되어 있다. 전류 제한 회로(16)는 인덕터(Ls)와 다이오드(Ds)의 병렬 회로를 구비하고 있다.In the tooth row 113, the plurality of teeth 111 is fixed to the circuit board 15 and connected to the wiring 17 on the circuit board 15. In addition, each tooth 111 is connected to a current limiting circuit 16 formed on the circuit board 15, respectively. The current limiting circuit 16 includes a parallel circuit of the inductor Ls and the diode Ds.
복수개의 톱니열(113)은 회로 기판(15)의 한쪽의 단부가, 고전압 단자(18)에 고정되어 있다. 그리고, 회로 기판(15)의 배선(17)이 고전압 단자(18)에 접속되어 있다. 그리고, 고전압 단자(18)가 고전압 발생 회로(40)의 양극(40B)에 접속되어 있다.In the plurality of tooth rows 113, one end portion of the circuit board 15 is fixed to the high voltage terminal 18. The wiring 17 of the circuit board 15 is connected to the high voltage terminal 18. The high voltage terminal 18 is connected to the positive electrode 40B of the high voltage generation circuit 40.
회로 기판(15)은 예를 들면, 인쇄 배선판(PCB)의 베이스 부재이며, 인쇄된 배선을 배선(17)으로 해도 무방하다. 또한, 고전압 단자(18)는 동판 등 도전성 재료로 구성되어 있다.The circuit board 15 is, for example, a base member of a printed wiring board (PCB), and the printed wiring may be the wiring 17. The high voltage terminal 18 is made of a conductive material such as a copper plate.
이와 같이 함으로써, 하나의 톱니(111)에 있어서, 2차 전자 방출에 의한 펄스형상 전류 등에 기인하여 전위 강하가 발생해도, 다른 톱니(111)에서는 전위 강하가 발생하지 않는다. 따라서, 다른 톱니(111)는 통상 상태를 유지한다. 이에 따라, 전기 집진기(1)의 집진 효율의 저하가 더욱 억제된다.By doing in this way, even if a potential drop generate | occur | produces in one tooth | gear 111 by pulse shape current etc. by secondary electron emission, the potential drop does not generate | occur | produce in another tooth | gear 111. Therefore, the other tooth 111 maintains a normal state. Thereby, the fall of the dust collection efficiency of the electrostatic precipitator 1 is further suppressed.
즉, 실시예 9의 전기 집진기(1)에서도, 대전부(10)의 고압 전극(11)이 분할되고, 분할된 부분마다 전류 제한 회로(16)가 형성되어 있다. 여기에서는 톱니(111)가 고압 전극(11)이 분할된 서브 고압 전극의 다른 일례이다.That is, also in the electrostatic precipitator 1 of the ninth embodiment, the high voltage electrode 11 of the charging unit 10 is divided, and the current limiting circuit 16 is formed for each divided portion. Here, the tooth 111 is another example of the sub high voltage electrode in which the high voltage electrode 11 is divided.
예를 들면, 톱니(111)의 전체 길이 D를 10mm, 톱니(111) 선단으로부터 회로 기판(15)까지의 길이 L을 5mm, 톱니열(113)에 있어서의 톱니(111) 사이의 간격 P를 30mm로 할 수 있다. 그리고, 톱니열(113) 사이에서의 톱니(111) 선단 간의 거리 S를 30mm로 할 수 있다.For example, the total length D of the teeth 111 is 10 mm, the length L from the tip of the teeth 111 to the circuit board 15 is 5 mm, and the distance P between the teeth 111 in the teeth row 113 is determined. Can be 30mm. The distance S between the tips of the teeth 111 between the teeth rows 113 can be 30 mm.
한편, 도 31에서는 톱니(111)마다 전류 제한 회로(16)를 형성했지만, 톱니(111)를 그룹으로 하여 그룹마다 전류 제한 회로(16)를 형성해도 무방하다.In FIG. 31, the current limiting circuit 16 is formed for each tooth 111, but the current limiting circuit 16 may be formed for each group with the teeth 111 as a group.
제4 실시형태에서는, 고압 전극(11)은 복수개의 톱니(111)를 구비한 복수개의 톱니열(113)을 구비하고 있다고 했다. 고압 전극(11)은 톱니(111) 대신에, 앞이 뽀죡한 바늘이어도 무방하다. 또한, 고압 전극(11)은 톱니열(113) 대신에, 도전성 재료로 구성된 선상의 와이어이어도 무방하다.In 4th Embodiment, it was said that the high voltage electrode 11 is equipped with the some tooth row 113 provided with the some tooth 111. As shown in FIG. The high voltage electrode 11 may be a needle with a sharp front instead of the tooth 111. In addition, the high-voltage electrode 11 may be a linear wire made of a conductive material instead of the tooth row 113.
그리고, 대향 전극(12)은 지금까지 나타낸 것과 치환해도 무방하다.The counter electrode 12 may be replaced with the one shown so far.
그리고, 제4 실시형태에서 나타낸 수치는 일례이며, 이것들에 한정되지 않는 것은 분명하다.In addition, the numerical value shown in 4th Embodiment is an example, It is clear that it is not limited to these.
[제5 실시형태][Fifth Embodiment]
제4 실시형태에서는 전류 제한 회로(16)는 인덕터(Ls)와 다이오드(Ds)의 병렬 회로를 구비하고, 고압 전극으로부터의 랜덤 2차 전자 방출 등에 기인하는 펄스형상 전류의 발생을 억제했다.In the fourth embodiment, the current limiting circuit 16 includes a parallel circuit of the inductor Ls and the diode Ds, and suppresses the generation of the pulsed current caused by random secondary electron emission or the like from the high voltage electrode.
제5 실시형태에서는, 전류 제한 회로(16)는 고압 전극(11)과 대향 전극(12)가 단락된 경우에 단락 전류를 억제하는 회로를 더 구비하고 있다.In the fifth embodiment, the current limiting circuit 16 further includes a circuit for suppressing a short circuit current when the high voltage electrode 11 and the counter electrode 12 are shorted.
다른 구성은 제4 실시형태와 마찬가지이므로, 설명을 생략한다.Since the other structure is the same as that of 4th Embodiment, description is abbreviate | omitted.
도 32는 제5 실시형태가 적용되는 전기 집진기(1)에 있어서의 대전부(10)의 등가 회로이다.32 is an equivalent circuit of the charging unit 10 in the electrostatic precipitator 1 to which the fifth embodiment is applied.
여기에서는 실시예 8 또는 실시예 9에 나타낸 바와 같이, 고압 전극(11)이 복수개의 부분(톱니열(113), 톱니(111))으로 분할되고, 각각의 부분에 전류 제한 회로(16)가 형성되어 있는 경우에 대응한다고 했다. 이 때문에, 2개의 전류 제한 회로(16)(도 32에서는 전류 제한 회로(16-1, 16-2)로 표기함)를 표기하고 있다. 전류 제한 회로(16-1, 16-2)는 동일한 구성이므로, 구별하지 않을 때는 전류 제한 회로(16)로 표기한다.Here, as shown in the eighth embodiment or the ninth embodiment, the high voltage electrode 11 is divided into a plurality of parts (tooth rows 113 and teeth 111), and a current limiting circuit 16 is provided in each of the parts. It was said to correspond to the case where it was formed. For this reason, two current limiting circuits 16 (denoted by current limiting circuits 16-1 and 16-2 in Fig. 32) are indicated. Since the current limiting circuits 16-1 and 16-2 have the same configuration, they are referred to as the current limiting circuit 16 when not distinguishing them.
즉, 전류 제한 회로(16-1)는 방전이 생성되는 공간(방전 공간)을 치환한 콘덴서(C1)에 접속되고, 전류 제한 회로(16-2)는 다른 방전 공간을 치환한 콘덴서(C2)에 접속되어 있다. 전류 제한 회로(16) 이외의 구성은 제4 실시형태의 도 25에 있어서의 설명과 마찬가지이므로, 동일한 부호를 붙여, 설명을 생략한다.That is, the current limiting circuit 16-1 is connected to the capacitor C1 replacing the space (discharge space) where the discharge is generated, and the current limiting circuit 16-2 replaces the capacitor C2 replacing the other discharge space. Is connected to. Since the structure other than the current limiting circuit 16 is the same as that of description in FIG. 25 of 4th Embodiment, the same code | symbol is attached | subjected and description is abbreviate | omitted.
전류 제한 회로(16-1)에 의해 전류 제한 회로(16)을 설명한다.The current limiting circuit 16 will be described by the current limiting circuit 16-1.
전류 제한 회로(16)는 2차 전자 전류 제한부(16A)와 단락 전류 제한부(16B)를 구비하고 있다. 2차 전자 전류 제한부(16A)는 제4 실시형태에서 설명한 2차 전자 방출에 의한 펄스형상 전류 등에 의한 방전 전류의 증가를 억제하는 인덕터(Ls)와 다이오드(Ds)의 병렬 회로이다.The current limiting circuit 16 includes a secondary electron current limiting section 16A and a short circuit current limiting section 16B. The secondary electron current limiting portion 16A is a parallel circuit of the inductor Ls and the diode Ds which suppress an increase in the discharge current caused by the pulsed current or the like caused by the secondary electron emission described in the fourth embodiment.
단락 전류 제한부(16B)는 전계 효과 트랜지스터(FET), 저항(저항 소자)(Rs), 콘덴서(Cs)를 구비하고 있다. 그리고, FET의 드레인이 단락 전류 제한부(16B)의 한쪽 단자로 되어 있다. FET의 소스는 저항(Rs)과 콘덴서(Cs)의 병렬 회로의 한쪽 단자에 접속되어 있다. 또한, FET의 게이트는 저항(Rs)와 콘덴서(Cs)의 병렬 회로의 다른쪽 단자에 접속되어 있다. FET의 게이트 및 저항(Rs)과 콘덴서(Cs)의 병렬 회로의 한쪽 단자가, 단락 전류 제한부(16B)의 한쪽 단자로 되어 있다. 저항(Rs)은 FET의 소스-게이트 사이에 접속되어 있다.The short-circuit current limiter 16B includes a field effect transistor (FET), a resistor (resistive element) Rs, and a capacitor Cs. The drain of the FET is one terminal of the short-circuit current limiting portion 16B. The source of the FET is connected to one terminal of the parallel circuit of the resistor Rs and the capacitor Cs. The gate of the FET is connected to the other terminal of the parallel circuit of the resistor Rs and the capacitor Cs. One terminal of the parallel circuit of the gate and the resistor Rs of the FET and the capacitor Cs is one terminal of the short-circuit current limiting portion 16B. The resistor Rs is connected between the source-gate of the FET.
즉, 단락 전류 제한부(16B)에 있어서, FET와 저항(Rs)은 직렬 회로를 구성하고 있다.That is, in the short-circuit current limiting section 16B, the FET and the resistor Rs constitute a series circuit.
2차 전자 전류 제한부(16A)와 단락 전류 제한부(16B)는 직렬 접속되어 있다. 도 32에서는 단락 전류 제한부(16B)의 한쪽 단자(FET측의 애노드측)가, 고전압 발생 회로(40)의 양극(40B)에 접속되어 있다. 그리고, 단락 전류 제한부(16B)의 한쪽 단자(FET의 게이트측)가 단락 전류 제한부(16B)의 인덕터(Ls)와 다이오드(Ds)의 병렬 회로의 한쪽 단자(콘덴서(C1)로부터 먼 쪽)에 접속되어 있다. 인덕터(Ls)와 다이오드(Ds)의 병렬 회로의 다른쪽 단자(콘덴서(C1)로부터 먼 쪽)는 고압 전극(11)에 접속되어 있다.The secondary electron current limiting portion 16A and the short circuit current limiting portion 16B are connected in series. In FIG. 32, one terminal (the anode side on the FET side) of the short-circuit current limiting portion 16B is connected to the anode 40B of the high voltage generation circuit 40. One terminal (the gate side of the FET) of the short-circuit current limiting portion 16B is far from the one terminal (capacitor C1) of the parallel circuit of the inductor Ls and the diode Ds of the short-circuit current limiting portion 16B. ) The other terminal (far side from the capacitor C1) of the parallel circuit of the inductor Ls and the diode Ds is connected to the high voltage electrode 11.
여기서, FET로서 노멀리 온(normally on)의 n 채널형의 접합형 FET(JFET) 또는 노멀리 온(normally on)의 MOSFET를 사용할 수 있다. 노멀리 온(normally on)의 FET는 게이트의 소스에 대한 전위(게이트 전압)를 동일하게(게이트 전압을 0V로) 하더라도, 소스와 드레인 사이에 전류가 흐른다. 그리고, 게이트의 소스에 대한 전위(게이트 전압)에 의해, 소스 단자와 드레인 단자 사이의 전도도가 변화한다. 즉, 게이트 전압이 높을(클) 수록 전도도가 커지고, 소스와 드레인 사이를 흐르는 전류가 증가한다. 그리고, 노멀리 온(normally on)의 FET에서는, 게이트의 전위를 소스의 전위보다 낮게(게이트 전압을 음(-)로) 해 가면, 소스와 드레인 사이를 흐르는 전류가 감소한다.Here, a normally-on n-channel junction type FET (JFET) or a normally-on MOSFET can be used as the FET. In a normally on FET, current flows between the source and the drain even if the potential (gate voltage) to the source of the gate is the same (the gate voltage is 0V). Then, the conductivity between the source terminal and the drain terminal changes depending on the potential (gate voltage) with respect to the source of the gate. In other words, as the gate voltage is higher (large), the conductivity is increased, and the current flowing between the source and the drain increases. In a normally on FET, when the potential of the gate is lower than the potential of the source (the gate voltage is negative), the current flowing between the source and the drain decreases.
여기서, 전류 제한 회로(16)의 동작을 설명한다.Here, the operation of the current limiting circuit 16 will be described.
2차 전자 전류 제한부(16A)에 대해서는 제4 실시형태에서 설명했다. 따라서, 단락 전류 제한부(16B)에 대하여 설명한다.The secondary electron current limiting portion 16A has been described in the fourth embodiment. Therefore, the short-circuit current limiting portion 16B will be described.
고압 전극(11)과 대향 전극(12) 사이에 단락이 생기지 않는 경우를 통상 상태로 한다. 이 통상 상태에서는, 방전 전류는 고전압 발생 회로(40)의 양극(40B)으로부터, 고압 전극(11), 콘덴서(C)(방전 공간), 대향 전극(12)을 경유하여, 고전압 발생 회로(40)의 음극(40C)에 흐른다.The case where a short circuit does not generate | occur | produce between the high voltage | voltage electrode 11 and the counter electrode 12 is made into a normal state. In this normal state, the discharge current is transmitted from the anode 40B of the high voltage generating circuit 40 to the high voltage generating circuit 40 via the high voltage electrode 11, the capacitor C (discharge space), and the counter electrode 12. Flows through the cathode 40C.
이 때, FET의 게이트는 저항(Rs)의 전위 강하에 의해, 소스의 전위보다 약간 낮은 값이 된다. 그러나, 전류값이 작기 때문에, 저항(Rs)에서의 전위 강하는 작다. 따라서, 방전 전류가 계속하여 흐른다.At this time, the gate of the FET is slightly lower than the potential of the source due to the potential drop of the resistor Rs. However, since the current value is small, the potential drop in the resistance Rs is small. Thus, the discharge current continues to flow.
다음으로, 고압 전극(11)과 대향 전극(12) 사이에 단락이 생긴 경우, 즉, 통상 상태의 방전 전류보다 큰 단락 전류가 흐르면, 저항(Rs)에 의해 큰 전위 강하가 발생한다. 이 때문에, FET의 게이트의 전위는 소스의 전위보다 낮은 측으로 이동한다. 이에 따라, FET의 전도도가 작아지고 FET를 흐르는 전류가 적게 된다. 따라서, 단락 전류가 제한된다.Next, when a short circuit occurs between the high voltage electrode 11 and the counter electrode 12, that is, when a short circuit current larger than the discharge current in the normal state flows, a large potential drop occurs due to the resistance Rs. For this reason, the potential of the gate of the FET moves to the side lower than the potential of the source. As a result, the conductivity of the FET decreases and the current flowing through the FET decreases. Thus, short circuit current is limited.
이 때, 콘덴서(Cs)에는 저항(Rs)에 의한 전위 강하에 대응한 전압으로 전하가 축적된다. 즉, 콘덴서(Cs)는 게이트의 전위를 유지한다.At this time, charges are stored in the capacitor Cs at a voltage corresponding to the potential drop caused by the resistor Rs. That is, the capacitor Cs maintains the potential of the gate.
단락이 해소되지 않는 동안은 이 상태가 유지된다.This state remains as long as the short is not resolved.
그런데, 단락이 해소되면, 저항(Rs)에 흐르는 전류가 적어지게 되고, 저항(Rs)에 의한 전위 강하가 작아진다. 이에 따라, 병렬로 접속된 콘덴서(Cs)에 축적된 전하가 저항(Rs)에 의해 소비되고, FET의 게이트의 전위가 소스의 전위에 가까워진다. 이에 따라, FET의 소스와 드레인 사이의 전도도가 높아지고(커지고), 고압 전극(11)의 전위가 고전압 발생 회로(40)의 양극(40B)의 값을 향해 상승한다.However, when the short circuit is eliminated, the current flowing through the resistor Rs decreases, and the potential drop caused by the resistor Rs decreases. As a result, electric charges accumulated in the capacitors Cs connected in parallel are consumed by the resistor Rs, and the potential of the gate of the FET approaches the potential of the source. As a result, the conductivity between the source and the drain of the FET increases (larger), and the potential of the high voltage electrode 11 rises toward the value of the anode 40B of the high voltage generating circuit 40.
한편, 2차 전자 방출에 의한 펄스형상 전류 등은 고주파 성분을 포함하기 때문에, 전류 제한 회로(16)에 있어서, FET, 콘덴서(Cs), 인덕터(Ls)를 경유하여, 고압 전극(11)에 흐른다. 따라서, 저항(Rs)은 펄스형상 전류에 대하여 영향을 미치지 않는다. 즉, 2차 전자 전류 제한부(16A)는 단락 전류 제한부(16B)의 영향을 받지 않고 동작한다.On the other hand, since the pulsed current due to secondary electron emission and the like contain a high frequency component, in the current limiting circuit 16, the high voltage electrode 11 is supplied via the FET, the capacitor Cs, and the inductor Ls. Flow. Therefore, the resistance Rs does not affect the pulsed current. That is, the secondary electron current limiting portion 16A operates without being affected by the short circuit current limiting portion 16B.
또한, 저항(Rs)은 단락시에 흐르는 전류에 의해 전위 강하를 일으키고, FET의 도전율을 제어한다. 따라서, 단락 시에 흘릴 수 있는 전류에 대응하여, 저항(Rs)의 값을 설정해도 무방하다.In addition, the resistor Rs causes a potential drop by the current flowing in the short circuit, and controls the conductivity of the FET. Therefore, you may set the value of the resistance Rs corresponding to the electric current which can flow at the time of a short circuit.
도 32의 등가 회로로 나타낸 전류 제한 회로(16)를 갖는 대전부(10)를 구비한 전기 집진기(1)(실시예 10의 전기 집진기(1))에 대하여 전극간 전압의 변화를 설명한다.The change of the inter-electrode voltage with respect to the electrostatic precipitator 1 (the electrostatic precipitator 1 of the tenth embodiment) provided with the charging unit 10 having the current limiting circuit 16 represented by the equivalent circuit of FIG.
도 33은 실시예 10의 전기 집진기(1)의 대전부(10)에 있어서의 전극간 전압의 시간 변화를 설명하는 도면이다. 가로축은 시간(μs), 세로축은 전극간 전압(kV)이다. 대전부(10)에 있어서의 전극간 전압의 시간 변화는 시뮬레이션에 의해 구했다.FIG. 33 is a diagram illustrating a time change of the inter-electrode voltage in the charging unit 10 of the electrostatic precipitator 1 of the tenth embodiment. The horizontal axis represents time (μs), and the vertical axis represents inter-electrode voltage (kV). The time change of the voltage between electrodes in the charging section 10 was obtained by simulation.
여기에서는 한쪽의 방전 공간(콘덴서(C1)에 대응)에 있어서, 2차 전자 방출에 의한 펄스형상 전류가 발생했다고 한다. 그러면, 도 33 중에 “C1”으로 나타낸 바와 같이, 전극간 전압은 전류 제한 회로(16)의 인덕터(Ls)에 의해, 약 270V 저하한다.Here, in one discharge space (corresponding to capacitor C1), a pulse-like current due to secondary electron emission is generated. Then, as shown by "C1" in FIG. 33, the inter-electrode voltage decreases about 270V by the inductor Ls of the current limiting circuit 16. As shown in FIG.
그러나, 다른쪽의 방전 공간(콘덴서(C2)에 대응)에서는, 도 33 중에 “C2”로 나타낸 바와 같이, 전극간 전압에 변동이 없다.However, in the other discharge space (corresponding to capacitor C2), there is no change in the voltage between the electrodes, as indicated by "C2" in FIG.
즉, 하나의 방전 공간에서 2차 전자 방출 등에 의한 펄스형상 전류가 발생하더라도, 그 영향은 다른 방전 공간에 미치지 않는다. 따라서, 펄스형상 전류의 발생에 의해 전기 집진기(1)의 집진 효율이 저하하는 것이 억제된다.In other words, even if a pulse current is generated by secondary electron emission or the like in one discharge space, the influence does not extend to the other discharge space. Therefore, the fall of the dust collection efficiency of the electrostatic precipitator 1 is suppressed by generation | occurrence | production of a pulse-shaped current.
도 34는 전기 집진기(1)의 대전부(10)에 있어서의, 단락에 의한 전극간 전압의 시간 변화를 설명하는 도면이다. 가로축은 시간(μs), 세로축은 전극간 전압(kV)이다. 대전부(10)에 있어서의 전극간 전압의 시간 변화는 시뮬레이션에 의해 구했다.34 is a diagram illustrating a time change of the inter-electrode voltage due to a short circuit in the charging unit 10 of the electrostatic precipitator 1. The horizontal axis represents time (μs), and the vertical axis represents inter-electrode voltage (kV). The time change of the voltage between electrodes in the charging section 10 was obtained by simulation.
여기에서는 한쪽의 방전 공간(콘덴서(C1)에 대응)에 있어서, 고압 전극(11)과 대향 전극(12) 사이에 단락이 발생했다고 한다. 그러면, 도 34 중에 “C2”로 나타낸 바와 같이, 이 방전 공간에 있어서의 전극간 전압이 0V로 저하한다.Here, in one discharge space (corresponding to capacitor C1), a short circuit occurs between the high voltage electrode 11 and the counter electrode 12. Then, as shown by "C2" in FIG. 34, the voltage between electrodes in this discharge space falls to 0V.
그러나, 다른쪽의 방전 공간(콘덴서(C)2에 대응)에서는, 도 34 중에 “C2”로 나타낸 바와 같이, 전극간 전압에 변동이 없다.However, in the other discharge space (corresponding to capacitor C), as shown by "C2" in Fig. 34, there is no change in the voltage between the electrodes.
즉, 하나의 방전 공간에서 단락이 발생해도, 그 영향은 다른 방전 공간에 미치지 않는다. 따라서, 하나의 방전 공간에 단락이 생겨도 전기 집진기(1)를 사용할 수 없게 되는 것이 억제된다.That is, even if a short circuit occurs in one discharge space, the influence does not extend to the other discharge space. Therefore, even if a short circuit occurs in one discharge space, the electrostatic precipitator 1 cannot be used.
도 35는 전류 제한 회로(16)를 접속한 고압 전극(11)의 일례를 나타낸 도면이다. 도 35에서는, 고전압 발생 회로(40)도 함께 나타내고 있다.35 is a diagram illustrating an example of the high voltage electrode 11 to which the current limiting circuit 16 is connected. In FIG. 35, the high voltage generating circuit 40 is also shown.
도 35에 나타낸 바와 같이, 고압 전극(11)은 각각이 복수개의 톱니(111)를 갖는 복수개의 톱니열(113)을 구비하고 있다.As shown in FIG. 35, the high voltage electrode 11 includes a plurality of tooth rows 113 each having a plurality of teeth 111.
회로 기판(15)에는 제4 실시형태에서의 실시예 8과 마찬가지로, 복수개의 톱니열(113)에 대응한, 복수개의 전류 제한 회로(16)가 형성되어 있다. 한편, 전류 제한 회로(16)를 제외한, 다른 구성은 제4 실시형태에서의 실시예 8과 마찬가지이므로 설명을 생략한다.Similarly to the eighth embodiment in the fourth embodiment, the circuit board 15 is provided with a plurality of current limiting circuits 16 corresponding to the plurality of tooth rows 113. In addition, since the other structure except the current limiting circuit 16 is the same as that of Example 8 in 4th Embodiment, it abbreviate | omits description.
전류 제한 회로(16)는 인덕터(Ls)와 다이오드(Ds)를 구비하는 2차 전자 전류 제한부(16A); 및 FET, 저항(Rs), 콘덴서(Cs)를 구비하는 단락 전류 제한부(16B);를 구비하고 있다.The current limiting circuit 16 includes a secondary electron current limiting portion 16A having an inductor Ls and a diode Ds; And a short-circuit current limiting portion 16B including a FET, a resistor Rs, and a capacitor Cs.
이와 같이 함으로써, 2차 전자 방출 등에 수반하는 펄스형상 전류에 의한 오존 발생의 증가를 억제함과 아울러, 고압 전극(11)과 대향 전극(12) 사이에 단락이 발생해도, 전기 집진기(1)의 동작을 계속할 수 있다. 또한, 고압 전극(11)과 대향 전극(12) 사이의 단락이 일시적인 것인 경우, 단락 상태가 해소되면, 자동적으로 원래 상태로 복귀하고, 전기 집진기(1)의 동작이 계속된다.By doing in this way, while suppressing the increase of ozone generation by the pulse-shaped current accompanying secondary electron emission etc., even if a short circuit occurs between the high voltage electrode 11 and the counter electrode 12, the electrostatic precipitator 1 The operation can continue. In addition, when a short circuit between the high voltage electrode 11 and the counter electrode 12 is temporary, when a short circuit condition is canceled, it will return to an original state automatically, and the operation | movement of the electric dust collector 1 will continue.
도 36a 내지 도 36c는 전류 제한 회로(16)를 포함한 대전부(10)의 다른 등가 회로이다. 도 36a는 도 32의 전류 제한 회로(16)에 있어서의 2차 전자 전류 제한부(16A)와 단락 전류 제한부(16B)의 접속 순서를 교체한 경우이다. 도 36b는 전류 제한 회로(16)를 대향 전극(12)에 접속한 경우이다. 도 36c는 전류 제한 회로(16)에 있어서의 2차 전자 전류 제한부(16A)와 단락 전류 제한부(16B) 사이에 고압 전극(11)과 대향 전극(12)을 형성한 경우이다.36A to 36C are other equivalent circuits of the charging unit 10 including the current limiting circuit 16. 36A is a case where the order of connection of the secondary electron current limiting portion 16A and the short circuit current limiting portion 16B in the current limiting circuit 16 of FIG. 32 is reversed. 36B shows the case where the current limiting circuit 16 is connected to the counter electrode 12. 36C shows the case where the high voltage electrode 11 and the counter electrode 12 are formed between the secondary electron current limiting portion 16A and the short circuit current limiting portion 16B in the current limiting circuit 16.
한편, 도 36a, 도 36b 및 도 36c에서는, 고전압 발생 회로(40)의 기재를 생략함과 아울러, 방전 공간은 1개로 했다.In addition, in FIG. 36A, 36B, and 36C, description of the high voltage generation circuit 40 was abbreviate | omitted and discharge space was made into one.
도 36a에 나타낸 바와 같이, 도 32의 전류 제한 회로(16)에 있어서의 2차 전자 전류 제한부(16A)와 단락 전류 제한부(16B)의 접속 순서를 교체해도, 도 32에서 설명한 바와 마찬가지로 동작한다.As shown in FIG. 36A, even if the connection order of the secondary electron current limiting portion 16A and the short-circuit current limiting portion 16B in the current limiting circuit 16 of FIG. do.
또한, 도 36b에 나타낸 바와 같이, 전류 제한 회로(16)를 대향 전극(12)과 접속해도, 도 32에서 설명한 것과 마찬가지로 동작한다. 이 때, 2차 전자 전류 제한부(16A)와 단락 전류 제한부(16B)를 교체하여 형성해도 무방하다.In addition, as shown in FIG. 36B, even if the current limiting circuit 16 is connected to the counter electrode 12, it operates in the same manner as described with reference to FIG. At this time, the secondary electron current limiting portion 16A and the short circuit current limiting portion 16B may be replaced with each other.
또한, 도 24에 나타낸 바와 같이 대향 전극(12)이 복수개의 장방형의 판형상 부재로 구성되어 있는 경우, 전류 제한 회로(16)를 각각의 장방형의 판형상 부재에 대하여 형성해도 무방하다. 한편, 각각의 장방형의 판형상 부재는 서브 대향 전극의 일례이다.In addition, as shown in FIG. 24, when the counter electrode 12 is comprised by the some rectangular plate-shaped member, you may form the current limiting circuit 16 with respect to each rectangular plate-shaped member. On the other hand, each rectangular plate-shaped member is an example of a sub counter electrode.
그리고, 도 36c에 나타낸 바와 같이, 전류 제한 회로(16)에 있어서의 2차 전자 전류 제한부(16A)와 단락 전류 제한부(16B) 사이에 고압 전극(11)과 대향 전극(12)을 형성해도, 도 32에서 설명한 것과 마찬가지로 동작한다. 이 때, 2차 전자 전류 제한부(16A)와 단락 전류 제한부(16B)를 교체하여 형성해도 무방하다.36C, the high voltage electrode 11 and the counter electrode 12 are formed between the secondary electron current limiting portion 16A and the short circuit current limiting portion 16B in the current limiting circuit 16. Fig. 32 also operates in the same manner as described in Fig. 32. At this time, the secondary electron current limiting portion 16A and the short circuit current limiting portion 16B may be replaced with each other.
이상, 제5 실시형태에서도, 고압 전극(11)은 톱니(111) 대신에, 앞이 뾰족한 바늘이어도 무방하다. 또한, 고압 전극(11)은 톱니열(113) 대신에, 도전성 재료로 구성된 선상의 와이어이어도 무방하다.As described above, also in the fifth embodiment, the high pressure electrode 11 may be a needle having a sharp front instead of the teeth 111. In addition, the high-voltage electrode 11 may be a linear wire made of a conductive material instead of the tooth row 113.
또한, 대향 전극(12)에는 지금까지 설명한 대향 전극(12)을 이용할 수 있다.In addition, the counter electrode 12 demonstrated so far can be used for the counter electrode 12.
[제6 실시형태][Sixth Embodiment]
제1 실시형태 내지 제5 실시형태에서는, 전기 집진기(1)에 있어서의 대전부(10)는 대향 전극(12)이, 도체부(121)와 저항체부(122)를 구비하고 있었다. 저항체부(122)는 적어도 고압 전극(11)에 대향하는 도체부(121)를 덮도록 형성되어 있었다. 이에 따라, 고압 전극(11)과 대향 전극(12) 사이의 방전 전류를 제한하여, 오존 발생을 억제하고 있었다.In the first to fifth embodiments, the counter electrode 12 includes the conductor portion 121 and the resistor portion 122 in the electrification portion 10 of the electrostatic precipitator 1. The resistor portion 122 was formed so as to cover at least the conductor portion 121 facing the high voltage electrode 11. Thereby, the discharge current between the high voltage electrode 11 and the counter electrode 12 was restrict | limited, and ozone generation was suppressed.
제6 실시형태에 있어서의 대향 전극(12)은 도체부(121)와 저항체부(122) 사이에 절연체부(125)를 더 구비하고 있다.The counter electrode 12 in the sixth embodiment further includes an insulator portion 125 between the conductor portion 121 and the resistor portion 122.
한편, 제2 부재의 일례인 저항체부(122)는 제1 부재의 일례인 절연체부(125)에 비해 체적 저항율이 작다.On the other hand, the resistor portion 122, which is an example of the second member, has a smaller volume resistivity than the insulator portion 125, which is an example of the first member.
도 37은 제6 실시형태가 적용되는 전기 집진기(1)의 대전부(10)를 설명하기 위한 모식도이다. 대전부(10)는 고압 전극(11)과 고압 전극(11)에 대향하는 대향 전극(12)을 구비하고 있다.FIG. 37: is a schematic diagram for demonstrating the charging part 10 of the electrostatic precipitator 1 to which 6th Embodiment is applied. The charging unit 10 includes a high voltage electrode 11 and a counter electrode 12 that faces the high voltage electrode 11.
여기에서는 고압 전극(11)을, 일례로서, 선단이 대향 전극(12) 측을 향한(도면의 지면에 있어서 하향) 톱니(111)로 나타내고 있다. 고압 전극(11)은 고전압 발생 회로(40)의 양극에 접속되어 있다.Here, as an example, the high voltage electrode 11 is represented by the teeth 111 with the tip facing the counter electrode 12 side (downward in the drawing plane). The high voltage electrode 11 is connected to the anode of the high voltage generation circuit 40.
한편, 고압 전극(11)은 톱니(111) 외에, 도전체로 구성된 와이어나 선단이 뾰족한 바늘이어도 무방하다. 이 때, 톱니(111) 및 바늘은 선단이 대향 전극(12)을 향하도록 배치되어도 무방하고, 대향 전극(12)과 평행한 방향을 향하도록 배치되어도 무방하다.On the other hand, the high voltage electrode 11 may be a wire having a conductor or a needle having a sharp tip, in addition to the teeth 111. At this time, the teeth 111 and the needle may be arranged so that the distal end faces the counter electrode 12, and may be arranged so as to face the direction parallel to the counter electrode 12.
대향 전극(12)은 도체부(121), 절연체부(125), 및 저항체부(122)가 순서대로 적층되어 구성되어 있다. 한편, 도체부(121)와 저항체부(122)는 미리 정해진 접촉 영역(126)에서 직접 접촉하도록 되어 있다.The counter electrode 12 is configured by stacking the conductor portion 121, the insulator portion 125, and the resistor portion 122 in this order. On the other hand, the conductor portion 121 and the resistor portion 122 are in direct contact with the predetermined contact region 126.
대향 전극(12)은 저항체부(122)측이 고압 전극(11)에 대향하고 있다. 그리고, 도체부(121)가 고전압 발생 회로(40)의 음극에 접속되어 있다.In the counter electrode 12, the resistor portion 122 side faces the high voltage electrode 11. The conductor portion 121 is connected to the cathode of the high voltage generation circuit 40.
도 37에 의해, 고압 전극(11)과 대향 전극(12) 사이에 발생하는 방전을 설명한다. 고전압 발생 회로(40)에 의해, 고압 전극(11)과 대향 전극(12) 사이의 전압을 증가시켜 가면, 고압 전극(11)의 선단 근방으로부터 코로나 방전이 발생한다. 이 때, 고압 전극(11)의 선단 근방의 코로나 영역(131)에 있어서, 발광이 보여지는 경우가 있다.37, the discharge which arises between the high voltage electrode 11 and the counter electrode 12 is demonstrated. When the voltage between the high voltage electrode 11 and the counter electrode 12 is increased by the high voltage generation circuit 40, corona discharge is generated from the vicinity of the tip of the high voltage electrode 11. At this time, light emission may be seen in the corona region 131 near the tip of the high voltage electrode 11.
코로나 방전은 고압 전극(11)의 뾰족한 선단의 주위에 불균일한 전계가 생김으로써 발생한다. 즉, 고압 전극(11)에 인가된 전압이 높아지면, 고압 전극(11)의 뾰족한 선단으로부터 전자(도면에서 -로 표기)가 방출된다. 방출된 전자는 가속되어, 선단 주위의 공기 분자에 충돌한다. 그러면, 공기 분자가 전리(電離)되어, 양음 이온이 발생한다.Corona discharge occurs when an uneven electric field is generated around the sharp tip of the high voltage electrode 11. That is, when the voltage applied to the high voltage electrode 11 becomes high, electrons (denoted by-in the drawing) are emitted from the pointed tip of the high voltage electrode 11. The emitted electrons are accelerated and impinge on the air molecules around the tip. Air molecules are then ionized to generate positive ions.
한편, 이러한 양음 이온은 부유 미립자에 부착되어, 부유 미립자를 대전시킨다.On the other hand, these positive ions adhere to the suspended fine particles, thereby charging the suspended fine particles.
그런데, 양이온은 대향 전극(12) 측으로 끌어당겨지고, 대향 전극(12)에 충돌한다. 이 때, 양이온을 중화하는 전자는 저항체부(122)를 통하여 공급된다. 또한, 대향 전극(12)은 양이온이 충돌하면 2차 전자를 방출한다.However, positive ions are attracted to the opposite electrode 12 side and collide with the opposite electrode 12. At this time, electrons that neutralize the cation are supplied through the resistor unit 122. In addition, the counter electrode 12 emits secondary electrons when cations collide.
즉, 고압 전극(11)과 대향 전극(12) 사이에 흐르는 전류는 공기 분자가 전리되어 생성된 양음 이온의 이동과 양이온을 중화하는 전자와 양이온이 충돌하여 생성된 2차 전자에 의해 정해진다.That is, the current flowing between the high voltage electrode 11 and the counter electrode 12 is determined by the movement of the positive ions generated by ionizing the air molecules, the electrons neutralizing the cations, and the secondary electrons generated by the cation colliding.
제6 실시형태에서는, 양이온을 중화하는 전자 및 양이온이 충돌하여 생성된 2차 전자는 대향 전극(12)의 저항체부(122)를 흐른다(전류(I)). 그러나, 대향 전극(12)이 절연체부(125)를 구비하고 있기 때문에, 전류(I)는 저항체부(122)의 두께방향인 수직방향으로 흐르지 않고, 도 37 중에 화살표로 나타낸 바와 같이, 저항체부(122)를 횡방향(도면의 지면에 있어서 우측 방향)으로 흐른다. 그리고, 전류(I)는 접촉 영역(126)을 통하여 도체부(121)에 흐른다.In the sixth embodiment, electrons neutralizing cations and secondary electrons generated by collision of cations flow through the resistor portion 122 of the counter electrode 12 (current I). However, since the counter electrode 12 includes the insulator portion 125, the current I does not flow in the vertical direction in the thickness direction of the resistor portion 122, and as shown by an arrow in FIG. 37, the resistor portion 122 flows in the horizontal direction (the right direction in the drawing plane). The current I then flows to the conductor portion 121 through the contact region 126.
저항체부(122)를 흐르는 전류(I)는 전압 강하를 일으키게 한다. 그리고, 고압 전극(11)과 대향 전극(12) 사이의 공간에 인가된 전압이 저하(강하)한다. 이에 따라, 코로나 방전의 전류(방전 전류)가 제한되고, 코로나 방전으로부터 아크 방전(스파크)으로 이행하는 것이 억제된다.The current I flowing through the resistor portion 122 causes a voltage drop. Then, the voltage applied to the space between the high voltage electrode 11 and the counter electrode 12 drops (drops). As a result, the current (discharge current) of the corona discharge is limited, and the transition from the corona discharge to the arc discharge (spark) is suppressed.
또한, 방전 전류가 제한되기 때문에, 오존 발생이 억제된다. 즉, 도체부(121)와 저항체부(122) 사이에 절연체부(125)가 배치됨에 따라 오존 발생을 최소화하는 것이다.In addition, since the discharge current is limited, ozone generation is suppressed. That is, as the insulator portion 125 is disposed between the conductor portion 121 and the resistor portion 122, ozone generation is minimized.
또한, 전류(I)는 저항체부(122)의 횡방향의 저항으로 결정된다. 저항체부(122)는 도 37의 지면에 있어서, 횡방향의 좌단으로부터 우단의 접촉 영역(126)까지의 치수(길이)가, 세로 방향의 치수(두께)에 비해, 100배에서 1000배 크게 설정되어 있다. 따라서, 고압 전극(11)과 대향 전극(12)의 도체부(121) 사이에, 저항체부(122)에 의해 미리 정해진 저항값의 저항을 형성할 때, 절연체부(125)를 형성하지 않는 경우에 비해, 체적 저항율이 작은 재료를 선택할 수 있다. 즉, 절연체부(125)를 형성하면, 저항체부(122)를 구성하는 재료의 선택의 폭이 넓어진다.In addition, the current I is determined by the resistance in the transverse direction of the resistor unit 122. In the sheet of FIG. 37, the resistor portion 122 has a dimension (length) from the left end in the lateral direction to the contact area 126 in the right end being set to 100 to 1000 times larger than the dimension (thickness) in the longitudinal direction. It is. Therefore, when the insulator portion 125 is not formed between the high voltage electrode 11 and the conductor portion 121 of the counter electrode 12 by forming the resistor having a predetermined resistance value by the resistor portion 122. In comparison with this, a material having a small volume resistivity can be selected. In other words, when the insulator portion 125 is formed, the range of choice of materials constituting the resistor portion 122 is widened.
또한, 대향 전극(12)에 있어서의 저항체부(122)에서 생기는 전압 강하는 도 1의 지면에서 횡방향으로 발생한다. 따라서, 저항체부(122)의 표면에서 횡방향에 발생하는 전계는 절연체부(125)를 형성하지 않는 경우에 저항체부(122)의 두께 방향으로 발생하는 전계에 비해 작다. 따라서, 절연체부(125)를 형성하면, 절연체부(125)를 형성하지 않는 경우에 비해, 저항체부(122)에 있어서의 절연 파괴가 발생하기 어렵다.Moreover, the voltage drop which arises in the resistor part 122 in the counter electrode 12 generate | occur | produces in the horizontal direction at the paper surface of FIG. Therefore, the electric field generated in the transverse direction on the surface of the resistor portion 122 is smaller than the electric field generated in the thickness direction of the resistor portion 122 when the insulator portion 125 is not formed. Therefore, when the insulator portion 125 is formed, dielectric breakdown in the resistor portion 122 is less likely to occur than when the insulator portion 125 is not formed.
또한, 대향 전극(12)에 있어서의 저항체부(122)의 전압 강하에 의해, 고압 전극(11)과 대향 전극(12) 사이의 방전이 정지하는 경우가 있다. 그러나, 고압 전극(11)과 대향 전극(12) 사이의 공간에 인가되는 전압이 회복하면, 방전이 재개된다. 그 후, 다시, 대향 전극(12)의 저항체부(122)의 전압 강하에 의해, 방전이 정지하는 경우가 있다. 이와 같이 하여, 방전이 정지, 재개를 반복한다. 즉, 고전압 발생 회로(40)는 고압 전극(11)과 대향 전극(12) 사이에 DC 전압을 공급하지만, 방전은 AC적으로 정지·재개를 반복할 수 있다.In addition, the discharge between the high voltage electrode 11 and the counter electrode 12 may be stopped by the voltage drop of the resistor portion 122 in the counter electrode 12. However, when the voltage applied to the space between the high voltage electrode 11 and the counter electrode 12 recovers, the discharge resumes. Thereafter, the discharge may be stopped again due to the voltage drop of the resistor portion 122 of the counter electrode 12. In this manner, the discharge is stopped and resumed. That is, although the high voltage generation circuit 40 supplies a DC voltage between the high voltage electrode 11 and the counter electrode 12, discharge can be stopped and resumed AC by AC.
한편, 저항체부(122)에 전하가 서서히 축적되어 가면, 방전이 서서히 약해지고, 마침내 방전이 정지한다. 따라서, 저항체부(122)에 전하가 축적되지 않도록, 저항체부(122)로부터 도체부(121)에 전류(I)를 흘리는 것이 필요하다.On the other hand, when charge gradually accumulates in the resistor portion 122, the discharge gradually weakens, and the discharge finally stops. Therefore, it is necessary to flow the current I from the resistor portion 122 to the conductor portion 121 so that electric charges do not accumulate in the resistor portion 122.
(실시예 11)(Example 11)
대전부(10)의 대향 전극(12)이, 도체부(121), 도체부(121)를 덮는 절연체부(125), 절연체부(125)를 덮는 저항체부(122)를 구비하고 있는 경우에, 도체부(121)와 저항체부(122)를 전기적으로 접촉시키는(도통시키는) 효과를 설명한다.In the case where the counter electrode 12 of the charging unit 10 includes a conductor portion 121, an insulator portion 125 covering the conductor portion 121, and a resistor portion 122 covering the insulator portion 125. Next, the effect of electrically contacting (conducting) the conductor portion 121 and the resistor portion 122 will be described.
여기에서는, 도체부(121)와 저항체부(122)를 전기적으로 접촉시킨 대향 전극(12)을 갖는 전기 집진기(1)를 실시예 11의 전기 집진기(1)로 표기한다. 도체부(121)와 저항체부(122)를 전기적으로 접촉시키지 않는 대향 전극(12)을 갖는 전기 집진기(1)를 비교예 4의 전기 집진기(1)로 표기한다.Here, the electrostatic precipitator 1 having the counter electrode 12 in which the conductor portion 121 and the resistor portion 122 are in electrical contact is referred to as the electrostatic precipitator 1 of the eleventh embodiment. The electrostatic precipitator 1 having the counter electrode 12 which does not electrically contact the conductor portion 121 and the resistor portion 122 is referred to as the electrostatic precipitator 1 of Comparative Example 4. FIG.
도 38a 및 도 38b는 실시예 11의 전기 집진기(1) 및 비교예 4의 전기 집진기(1) 각각의 대전부(10)에 있어서 발생하는 이온수를 나타낸 도면이다. 도 38a는 실시예 11, 도 38b는 비교예 4이다. 가로축은 시간(s), 세로축은 이온수(×103개/cm3)이다.38A and 38B are diagrams showing the ionized water generated in the charging section 10 of each of the electrostatic precipitator 1 of Example 11 and the electrostatic precipitator 1 of Comparative Example 4. FIG. 38A is Example 11 and FIG. 38B is Comparative Example 4. FIG. The horizontal axis represents time (s) and the vertical axis represents ionized water (× 10 3 pieces / cm 3 ).
도 38a에 나타낸 바와 같이, 대향 전극(12)의 단부에 있어서, 도체부(121)와 저항체부(122)를 접촉 영역(126)에 있어서 접촉시킨 경우, 약 2.4s의 시점에서 이온이 발생하기 시작하고, 그 후, 계속하여 이온의 발생이 보여졌다.As shown in FIG. 38A, when the conductor portion 121 and the resistor portion 122 are brought into contact with each other in the contact region 126 at the end of the counter electrode 12, ions are generated at a time point of about 2.4 s. Onset, and then on, generation of ions was observed.
이것은 도체부(121)와 저항체부(122)를 전기적으로 접촉시키고 있기 때문에, 저항체부(122)에 전하가 축적하지 않는 것에 따른다. 즉, 고압 전극(11)과 대향 전극(12) 사이의 공간에 작용하는 전압이 유지되고, 방전이 지속된다.This is because the conductor portion 121 and the resistor portion 122 are in electrical contact with each other, so that electric charges do not accumulate in the resistor portion 122. That is, the voltage acting on the space between the high voltage electrode 11 and the counter electrode 12 is maintained, and the discharge is continued.
한편, 도 38b에 나타낸 바와 같이, 대향 전극(12)에 있어서, 도체부(121)와 저항체부(122)를 접촉시키지 않는 경우, 약 2.8s의 시점에서 이온이 발생하기 시작되지만, 약 8s 후부터, 이온수가 감소하고, 약 28s 시점 이후 이온의 발생이 보이지 않게 된다.On the other hand, as shown in FIG. 38B, in the counter electrode 12, when the conductor portion 121 and the resistor portion 122 are not contacted, ions start to be generated at a time of about 2.8 s, but after about 8 s The number of ions decreases, and ions do not appear after about 28 s.
이것은 도체부(121)와 저항체부(122)가 전기적으로 접촉하고 있지 않기 때문에, 저항체부(122)에 전하가 축적된 것에 따른다. 즉, 고압 전극(11)과 대향 전극(12) 사이의 공간에 작용하는 전압이 저하하여, 방전이 정지하게 된다.This is due to the accumulation of electric charges in the resistor portion 122 because the conductor portion 121 and the resistor portion 122 are not in electrical contact with each other. That is, the voltage acting on the space between the high voltage electrode 11 and the counter electrode 12 decreases, and the discharge stops.
(실시예 12)(Example 12)
도 39a 및 도 39b는 실시예 12에 따른 전기 집진기(1)에 있어서의 대전부(10)를 설명하는 도면이다. 도 39a는 대전부(10)의 사시도, 도 39b는 대향 전극(12)의 XXXIXB-XXXIXB 선에서의 단면도이다.39A and 39B are views for explaining the charging section 10 in the electrostatic precipitator 1 according to the twelfth embodiment. 39A is a perspective view of the charging unit 10, and FIG. 39B is a sectional view taken along the line XXXIXB-XXXIXB of the counter electrode 12. FIG.
도 39a에 나타낸 바와 같이, 실시예 12의 전기 집진기(1)에 있어서의 대전부(10)에서는, 고압 전극(11)이 와이어(114)로 구성되어 있다. 그리고, 대향 전극(12)의 도체부(121)가, 복수개의 개구(124)가 지그재그로 형성된 도전성 재료로 구성된 판형상 부재(펀칭 메탈)이다. 그리고, 도체부(121)의 표면에 절연체부(125)와 저항체부(122)가 순서대로 형성되어 있다. 한편, 도체부(121)의 일부에는 절연체부(125)를 형성하지 않고, 도체부(121)와 저항체부(122)를 접촉시키는 접촉 영역(126)이 형성되어 있다. 또한, 도체부(121)의 단부에는 도체부(121)를 노출시킨 도체 노출 영역(123)이 형성되어 있다. 도체 노출 영역(123)이 고전압 발생 회로(40)의 음극에 접속되어 있다.As shown in FIG. 39A, in the electrification part 10 in the electrostatic precipitator 1 of Example 12, the high voltage electrode 11 is comprised by the wire 114. As shown in FIG. The conductor portion 121 of the counter electrode 12 is a plate-shaped member (punching metal) made of a conductive material in which a plurality of openings 124 are formed in a zigzag. The insulator portion 125 and the resistor portion 122 are sequentially formed on the surface of the conductor portion 121. On the other hand, a portion of the conductor portion 121 is provided with a contact region 126 which makes the conductor portion 121 and the resistor portion 122 contact with each other without forming the insulator portion 125. In addition, a conductor exposed region 123 exposing the conductor portion 121 is formed at an end portion of the conductor portion 121. The conductor exposed region 123 is connected to the cathode of the high voltage generating circuit 40.
와이어(114)는 전계 집중을 발생시키는 부위의 일례이다.The wire 114 is an example of the site | part which produces electric field concentration.
여기에서는 고압 전극(11)인 와이어(114)는 직경 0.2mm의 SUS로 구성했다.Here, the wire 114 which is the high voltage electrode 11 was comprised with SUS of 0.2 mm in diameter.
한편, 대향 전극(12)은 도체부(121)를 폭 30mm의 알루미늄 판으로 하고, 평면 형상이 내경 3mm인 원형 개구(124)가 지그재그로 배열되어 있다. 그리고, 도체부(121)의 알루미늄을 양극 화성(아르마이트 처리)하여, 표면에 산화 알루미늄으로 구성된 절연체부(125)를 형성했다. 또한, 절연체부(125) 상을 두께 50㎛의 폴리이미드 수지로 피복하여 저항체부(122)를 형성했다.On the other hand, in the counter electrode 12, the conductor part 121 is made into the aluminum plate of 30 mm in width, and the circular opening 124 whose planar shape is 3 mm in inner diameter is arranged in zigzag. The aluminum of the conductor portion 121 was anodized (armite treatment) to form an insulator portion 125 made of aluminum oxide on the surface. The resistor portion 122 was formed by covering the insulator portion 125 with a polyimide resin having a thickness of 50 μm.
그리고, 고압 전극(11)은 절연성 재료로 구성된 절연 스페이서(32)를 통하여, 케이스(30)에 부착되어 있다. 대향 전극(12)은 도체부(121)가 노출된 도체 노출 영역(123)에 의해, 케이스(30)에 전기적으로 접속하도록(도통하도록) 부착되어 있다. 이와 같이 함으로써, 케이스(30)가 정전기에 의해 대전하는 것을 억제하고 있다.The high voltage electrode 11 is attached to the case 30 via an insulating spacer 32 made of an insulating material. The counter electrode 12 is attached by the conductor exposed region 123 on which the conductor portion 121 is exposed so as to be electrically connected to the case 30 (conducting). In this way, the case 30 is suppressed from being charged by static electricity.
(실시예 13)(Example 13)
도 40a 및 도 40b는 실시예 13에 따른 전기 집진기(1)에 있어서의 대전부(10)를 설명하는 도면이다. 도 40a는 대전부(10)의 사시도, 도 40b는 대향 전극(12)의 일부의 단면도이다.40A and 40B are views for explaining the charging section 10 in the electrostatic precipitator 1 according to the thirteenth embodiment. 40A is a perspective view of the charging unit 10, and FIG. 40B is a sectional view of a part of the counter electrode 12. As shown in FIG.
도 40a에 나타낸 바와 같이, 실시예 13의 전기 집진기(1)에 있어서의 대전부(10)에서는, 실시예 11과 마찬가지로, 고압 전극(11)이 와이어(114)로 구성되어 있다.As shown in FIG. 40A, in the electrification part 10 in the electrostatic precipitator 1 of Example 13, the high voltage electrode 11 is comprised by the wire 114 similarly to Example 11. As shown in FIG.
대향 전극(12)의 도체부(121)는 도전성 재료로 구성된 철망(메시)이다. 여기에서는 대향 전극(12)은 도체부(121)의 외형이 한 변이 100mm인 정방형의 SUS304의 철망으로 했다.The conductor portion 121 of the counter electrode 12 is a wire mesh (mesh) made of a conductive material. In this case, the counter electrode 12 is a wire mesh of square SUS304 having an outer shape of the conductor portion 121 of 100 mm on one side.
그리고, 도 40b에 나타낸 대향 전극(12)의 일부의 단면도는 대향 전극(12)의 도체부(121)를 구성하는 철망(메시)의 한 개의 선(와이어) 부분의 단면을 나타내고 있다. 여기에서는 도체부(121)를 덮도록 도포한 폴리이미드 수지를 절연체부(125)로 하고, 절연체부(125)를 덮도록 도포한 아크릴 수지를 저항체부(122)로 했다.Incidentally, a cross-sectional view of a part of the counter electrode 12 illustrated in FIG. 40B illustrates a cross section of one line (wire) portion of the wire mesh (mesh) constituting the conductor portion 121 of the counter electrode 12. Here, the polyimide resin coated to cover the conductor portion 121 was used as the insulator portion 125, and the acrylic resin coated so as to cover the insulator portion 125 was used as the resistor portion 122.
대향 전극(12)의 일부를 코킹하여, 전기 접점(127)으로 하고 있다. 그리고, 전기 접점(127)이 고전압 발생 회로(40)의 음극에 접속되어 있다.A portion of the counter electrode 12 is caulked to serve as an electrical contact 127. The electrical contact 127 is connected to the cathode of the high voltage generating circuit 40.
대향 전극(12)의 일부를 코킹함으로써, 도체부(121)에 도포한 절연체부(125)및 저항체부(122)가 파괴되고, 저항체부(122)가 도체부(121)와 전기적으로 접속됨(도통함)과 아울러, 도체부(121)의 일부가 노출한다. 즉, 실시예 12에 있어서 도 39a, 도 39b에 나타낸 접촉 영역(126) 및 도체 노출 영역(123)이, 코킹에 의해 일괄적으로 형성된다.By caulking a part of the counter electrode 12, the insulator portion 125 and the resistor portion 122 applied to the conductor portion 121 are broken, and the resistor portion 122 is electrically connected to the conductor portion 121. In addition to the conduction, a part of the conductor portion 121 is exposed. That is, in the twelfth embodiment, the contact region 126 and the conductor exposed region 123 shown in FIGS. 39A and 39B are collectively formed by caulking.
(실시예 14)(Example 14)
도 41a 및 도 41b는 실시예 14에 따른 전기 집진기(1)에 있어서의 대전부(10)를 설명하는 도면이다. 도 41a는 대전부(10)의 사시도, 도 41b는 대향 전극(12)의 일부의 단면도이다.41A and 41B are views for explaining the charging section 10 in the electrostatic precipitator 1 according to the fourteenth embodiment. 41A is a perspective view of the charging unit 10, and FIG. 41B is a sectional view of a part of the counter electrode 12. As shown in FIG.
도 41a에 나타낸 바와 같이, 실시예 14의 전기 집진기(1)에 있어서의 대전부(10)에서는, 실시예 12, 13과 마찬가지로, 고압 전극(11)이 와이어(114)로 구성되어 있다.As shown in FIG. 41A, in the electrification part 10 in the electrostatic precipitator 1 of Example 14, the high voltage electrode 11 is comprised by the wire 114 similarly to Example 12, 13.
대향 전극(12)의 도체부(121)는 도체부(121)이 도전성 재료로 구성된 익스펜디드 메탈이다. 여기에서는 대향 전극(12)은 도체부(121)의 외형이 한 변이 100mm인 정방형의 알루미늄으로 구성된 익스펜디드 메탈로 했다.The conductor portion 121 of the counter electrode 12 is an expanded metal in which the conductor portion 121 is made of a conductive material. In this case, the counter electrode 12 is made of expanded metal composed of square aluminum whose outer side of the conductor portion 121 is 100 mm on one side.
그리고, 도 41b에 나타낸 대향 전극(12)의 일부의 단면도는 대향 전극(12)을 구성하는 익스펜디드 메탈의 한 개의 선의 부분의 단면을 나타내고 있다. 여기에서는 익스펜디드 메탈로 구성된 도체부(121)를 양극 화성한 산화 알루미늄을 절연체부(125)로 하고, 절연체부(125)를 덮도록 폴리이미드 수지를 도포하여 저항체부(122)로 했다.Incidentally, a cross-sectional view of a part of the counter electrode 12 shown in FIG. 41B shows a cross section of one line of the expanded metal constituting the counter electrode 12. Here, aluminum oxide obtained by anodizing the conductor portion 121 made of expanded metal was used as the insulator portion 125, and a polyimide resin was applied to cover the insulator portion 125 to form the resistor portion 122.
대향 전극(12)의 일부를 코킹하여, 전기 접점(127)으로 하고 있다. 그리고, 전기 접점(127)이 고전압 발생 회로(40)의 음극에 접속되어 있다.A portion of the counter electrode 12 is caulked to serve as an electrical contact 127. The electrical contact 127 is connected to the cathode of the high voltage generating circuit 40.
대향 전극(12)의 일부를 코킹함으로써, 도체부(121)에 도포한 절연체부(125)및 저항체부(122)가 파괴되고, 저항체부(122)가 도체부(121)와 전기적으로 접속됨(도통시킴)과 아울러, 도체부(121)의 일부가 노출된다. 즉, 실시예 12에 있어서 도 39a, 도 39b에 나타낸 접촉 영역(126) 및 도체 노출 영역(123)이, 코킹에 의해 일괄적으로 형성된다.By caulking a part of the counter electrode 12, the insulator portion 125 and the resistor portion 122 applied to the conductor portion 121 are broken, and the resistor portion 122 is electrically connected to the conductor portion 121. In addition to the conduction, a part of the conductor portion 121 is exposed. That is, in the twelfth embodiment, the contact region 126 and the conductor exposed region 123 shown in FIGS. 39A and 39B are collectively formed by caulking.
(실시예 15)(Example 15)
도 42a 및 도 42b는 실시예 15에 따른 전기 집진기(1)에 있어서의 대전부(10)를 설명하는 도면이다. 도 42a는 대전부(10)의 사시도, 도 42b는 도 42a의 XLIIB-XLIIB 선에서의 단면도이다.42A and 42B are views for explaining the charging section 10 in the electrostatic precipitator 1 according to the fifteenth embodiment. 42A is a perspective view of the charging unit 10, and FIG. 42B is a sectional view taken along the line XLIIB-XLIIB in FIG. 42A.
도 42a에 나타낸 바와 같이, 실시예 15의 전기 집진기(1)에 있어서의 대전부(10)에서는, 고압 전극(11)은 복수개의 톱니(111)를 구비하는 복수개의 톱니열(113)로 구성되어 있다. 여기에서는 고압 전극(11)의 톱니열(113)은 두께 0.5mm의 SUS로 구성했다. 그리고, 톱니열(113)의 각각의 톱니(111)는 통풍 방향에 대하여 직교하는 방향으로 배치했다.As shown in FIG. 42A, in the charging unit 10 of the electrostatic precipitator 1 of the fifteenth embodiment, the high voltage electrode 11 is composed of a plurality of tooth rows 113 including a plurality of teeth 111. It is. Here, the tooth row 113 of the high voltage electrode 11 was made of SUS having a thickness of 0.5 mm. And each tooth 111 of the tooth row 113 was arrange | positioned in the direction orthogonal to a ventilation direction.
대향 전극(12)은 도체부(121)가, 복수개의 개구(124)가 지그재그로 형성된 판형상의 도전성 재료로 구성된 부재(펀칭 메탈)이다. 여기에서는 대향 전극(12)의 도체부(121)는 평면 형상이 내경 3mm인 원형 개구(124)가 지그재그로 배열된, 평면 형상이 200mm×400mm인 알루미늄 판으로 구성했다. 그리고, 도체부(121)의 알루미늄을 양극 화성(아르마이트 처리)하여, 표면에 산화 알루미늄으로 구성된 절연체부(125)를 형성했다. 또한, 절연체부(125) 상을 폴리이미드 수지로 피복하여 저항체부(122)를 형성했다.The counter electrode 12 is a member (punching metal) in which the conductor portion 121 is made of a plate-like conductive material in which a plurality of openings 124 are zigzag. Here, the conductor part 121 of the counter electrode 12 was comprised from the aluminum plate of 200 mm x 400 mm in planar shape by which the circular opening 124 whose planar shape is 3 mm in internal diameter is arranged in zigzag. The aluminum of the conductor portion 121 was anodized (armite treatment) to form an insulator portion 125 made of aluminum oxide on the surface. Further, the resistor portion 122 was formed by covering the insulator portion 125 with a polyimide resin.
한편, 고압 전극(11)에 대하여, 도체부(121)의 이면측에 해당하는 부분에, 도체부(121)와 저항체부(122)를 전기적으로 접촉시키는(도통시키는) 접촉 영역(126)을 형성했다.On the other hand, the contact region 126 which electrically connects (conducts) the conductor portion 121 and the resistor portion 122 to a portion corresponding to the rear surface side of the conductor portion 121 with respect to the high voltage electrode 11. Formed.
또한, 도체부(121)의 단부에, 절연체부(125) 및 저항체부(122)를 형성하지 않고, 도체부(121)를 노출시킨 도체 노출 영역(123)을 형성했다. 그리고, 도체 노출 영역(123)이 고전압 발생 회로(40)의 음극에 접속되어 있다.Further, at the end of the conductor portion 121, the conductor exposed region 123 was formed without exposing the conductor portion 121 to the insulator portion 125 and the resistor portion 122. The conductor exposed region 123 is connected to the cathode of the high voltage generating circuit 40.
그리고, 고압 전극(11)과 대향 전극(12)의 거리 G는 5mm로 했다.And the distance G of the high voltage electrode 11 and the counter electrode 12 was 5 mm.
도 43은 고압 전극(11)과 대향 전극(12)의 도체부(121) 사이에 인가된 전극간 전압(kV)과 톱니(111) 1개 당의 오존 발생량(μg/h)의 관계를 설명하는 도면이다. 도 43에서는, 상기의 실시예 15의 전기 집진기(1)과 대전부(10)의 대향 전극(12)이 산화 알루미늄의 절연체부(125) 및 폴리이미드 수지의 저항체부(122)를 구비하지 않는 전기 집진기(1)를 비교예 5의 전기 집진기(1)로 나타내고 있다. 한편, 비교예 5에서는, 대향 전극(12)이, 알루미늄의 펀칭 메탈로 구성되어 있다.FIG. 43 illustrates the relationship between the inter-electrode voltage (kV) applied between the high voltage electrode 11 and the conductor portion 121 of the counter electrode 12 and the amount of ozone generation (μg / h) per tooth 111. Drawing. In Fig. 43, the electrostatic precipitator 1 of the fifteenth embodiment and the counter electrode 12 of the charging portion 10 do not include the insulator portion 125 of aluminum oxide and the resistor portion 122 of the polyimide resin. The electrostatic precipitator 1 is shown by the electrostatic precipitator 1 of the comparative example 5. As shown in FIG. On the other hand, in the comparative example 5, the counter electrode 12 is comprised from the punching metal of aluminum.
도 43에 나타낸 바와 같이, 실시예 15에서는 전극간 전압을 7kV로 해도, 오존 발생량은 거의 0이다. 한편, 비교예 5에서는, 전극간 전압의 증가와 함께, 오존 발생량이 증가한다.As shown in FIG. 43, in Example 15, even if the electrode-to-electrode voltage was 7 kV, ozone generation amount is almost zero. On the other hand, in the comparative example 5, the amount of ozone generation increases with the increase of the voltage between electrodes.
즉, 대향 전극(12)을, 도체부(121), 절연체부(125), 저항체부(122)로 구성함으로써, 오존 발생량이 억제된다.That is, the amount of ozone generated is suppressed by configuring the counter electrode 12 with the conductor portion 121, the insulator portion 125, and the resistor portion 122.
저항체부(122)의 표면 저항율은 고압 전극(11)과 대향 전극(12) 사이에 인가하는 전압(전극간 전압)을 5kV로 한 경우, 1GΩ/cm 이상인 것이 바람직하다. 이 경우, 오존 발생량은 1μg/h 이하로 억제할 수 있다. 한편, 저항체부(122)의 표면 저항율은 전극간 전압에 의해 변화하기 때문에, 여기에서는 전극간 전압 5kV에 있어서의 저항체부(122)의 표면 저항율로 나타내고 있다.The surface resistivity of the resistor portion 122 is preferably 1 G? / Cm or more when the voltage (inter-electrode voltage) applied between the high voltage electrode 11 and the counter electrode 12 is 5 kV. In this case, ozone generation amount can be suppressed to 1 microgram / h or less. On the other hand, since the surface resistivity of the resistor portion 122 varies with the inter-electrode voltage, it is shown here as the surface resistivity of the resistor portion 122 at a voltage of 5 kV between electrodes.
표 1은 절연 파괴 전압의 비교를 나타낸 표이다. 절연 파괴 전압이란, 코로나 방전으로부터 아크 방전으로 이행하는 전압이다.Table 1 is a table showing a comparison of the dielectric breakdown voltage. The dielectric breakdown voltage is a voltage that transitions from corona discharge to arc discharge.
표 1에는 실시예 15, 비교예 5 및 실시예 16을 나타내고 있다. 실시예 15, 비교예 5에 대해서는 상기에서 설명했다. 실시예 16의 전기 집진기(1)는 대전부(10)에 있어서의 대향 전극(12)의 도체부(121)를 알루미늄의 펀칭 메탈로 하고, 그 표면에 폴리이미드 수지를 도포하여 저항체부(122)로 한 전기 집진기(1)이다. 즉, 제1 실시형태에서 설명한 전기 집진기(1)이다.In Table 1, Example 15, Comparative Example 5, and Example 16 are shown. Example 15 and the comparative example 5 were demonstrated above. In the electrostatic precipitator 1 of the sixteenth embodiment, the conductor portion 121 of the counter electrode 12 in the charging portion 10 is made of a punching metal of aluminum, and a polyimide resin is coated on the surface of the resistor portion 122. Is an electrostatic precipitator (1). That is, it is the electrostatic precipitator 1 demonstrated in 1st Embodiment.
표 1에 나타낸 바와 같이, 실시예 15의 전기 집진기(1)에 있어서의 대전부(10)는 절연 파괴 전압은 10kV 이상이다. 절연체부(125)를 구비하지 않는 실시예 16의 전기 집진기(1)에 있어서도, 절연 파괴 전압은 8kV이다.As shown in Table 1, the dielectric breakdown voltage of the electrification part 10 in the electrostatic precipitator 1 of Example 15 is 10 kV or more. Also in the electrostatic precipitator 1 of the sixteenth embodiment without the insulator portion 125, the dielectric breakdown voltage is 8 kV.
그러나, 저항체부(122) 및 절연체부(125)를 구비하지 않는 비교예 5의 전기 집진기(1)에 있어서는 절연 파괴 전압은 5.5kV로 낮다.However, in the electrostatic precipitator 1 of Comparative Example 5 not having the resistor portion 122 and the insulator portion 125, the dielectric breakdown voltage is as low as 5.5 kV.
즉, 대향 전극(12)이 저항체부(122)를 구비함으로써 절연 파괴 전압이 상승하고, 또 절연체부(125)를 구비함으로써 절연 파괴 전압이 더욱 상승한다.That is, the insulation breakdown voltage increases because the counter electrode 12 includes the resistor portion 122, and the insulation breakdown voltage further increases by providing the insulator portion 125.
Figure PCTKR2015014012-appb-T000001
Figure PCTKR2015014012-appb-T000001
(실시예 17)(Example 17)
도 44a 및 도 44b는 실시예 17에 따른 전기 집진기(1)에 있어서의 대전부(10)를 설명하는 도면이다. 도 44a는 대전부(10)의 사시도, 도 44b는 대향 전극(12) 일부의 단면도이다.44A and 44B are views for explaining the charging section 10 in the electrostatic precipitator 1 according to the seventeenth embodiment. 44A is a perspective view of the charging unit 10, and FIG. 44B is a sectional view of a part of the counter electrode 12. As shown in FIG.
도 44a에 나타낸 바와 같이, 실시예 17의 전기 집진기(1)에 있어서의 대전부(10)에서는, 고압 전극(11)은 실시예 15와 마찬가지로, 복수개의 톱니(111)를 구비하는 복수개의 톱니열(113)로 구성되어 있다. 따라서, 상세한 설명을 생략한다.As shown in FIG. 44A, in the charging unit 10 in the electrostatic precipitator 1 of the seventeenth embodiment, the high voltage electrode 11 is provided with a plurality of teeth having a plurality of teeth 111, similarly to the fifteenth embodiment. It consists of a row 113. Therefore, detailed description is omitted.
대향 전극(12)은 도체부(121)가, 도전성 재료로 구성된 철망(메시)이다. 여기에서는 대향 전극(12)은 실시예 13과 마찬가지로, 도체부(121)의 외형이 한 변이 100mm인 정방형의 SUS304의 철망으로 했다. 따라서, 상세한 설명을 생략한다.The counter electrode 12 is a wire mesh (mesh) in which the conductor portion 121 is made of a conductive material. Here, the counter electrode 12 was made of a wire mesh of square SUS304 having an outer shape of the conductor portion 121 of 100 mm in the same way as in the thirteenth embodiment. Therefore, detailed description is omitted.
(실시예 18)(Example 18)
도 45a 및 도 45b는 실시예 18에 따른 전기 집진기(1)에 있어서의 대전부(10)를 설명하는 도면이다. 도 45a는 대전부(10)의 사시도, 도 45b는 도 45a의 XLVB-XLVB선에서의 대향 전극(12)의 단면도이다.45A and 45B are views for explaining the charging section 10 in the electrostatic precipitator 1 according to the eighteenth embodiment. 45A is a perspective view of the charging unit 10, and FIG. 45B is a sectional view of the counter electrode 12 taken along the line XLVB-XLVB in FIG. 45A.
도 45a에 나타낸 바와 같이, 실시예 18의 전기 집진기(1)에 있어서의 대전부(10)에서는, 고압 전극(11)은 실시예 15와 마찬가지로, 복수개의 톱니(111)를 구비하는 복수개의 톱니열(113)로 구성되어 있다. 여기에서는 고압 전극(11)의 톱니열(113)은 두께 0.5mm의 SUS로 구성했다. 그리고, 톱니열(113) 각각의 톱니(111)는 통풍 방향에 대하여, 직교하는 방향으로 배치했다.As shown in FIG. 45A, in the charging unit 10 of the electrostatic precipitator 1 of the eighteenth embodiment, the high voltage electrode 11 is provided with a plurality of teeth having a plurality of teeth 111, similarly to the fifteenth embodiment. It consists of a row 113. Here, the tooth row 113 of the high voltage electrode 11 was made of SUS having a thickness of 0.5 mm. And the teeth 111 of each tooth row 113 were arrange | positioned in the direction orthogonal to a ventilation direction.
대향 전극(12)은 저항체부(122)가, 복수개의 개구(124)가 지그재그로 형성된 판형상의 수지 재료의 부재(펀칭 보드)로 구성되어 있다. 여기에서는 대향 전극(12)의 저항체부(122)는 평면 형상이 200mm×400mm, 두께가 2mm인 아크릴 수지의 판으로 했다. 그리고, 대향 전극(12)의 저항체부(122)인 아크릴 수지 판에는 평면 형상이 내경 3mm인 원형 개구(124)가 지그재그로 배열되어 있다. 그리고, 대향 전극(12)의 저항체부(122)인 아크릴 수지 판의, 고압 전극(11)에 대하여 이면측에, 두께 20㎛의 점착층과 도전성 재료로 구성된 도전층을 갖는 도전성 필름을 점착하였다.The counter electrode 12 is comprised from the member (punching board) of the plate-shaped resin material in which the resistor part 122 was formed in the several opening 124 in zigzag form. Here, the resistor portion 122 of the counter electrode 12 was a plate of acrylic resin having a planar shape of 200 mm x 400 mm and a thickness of 2 mm. A circular opening 124 having an inner diameter of 3 mm in a planar shape is arranged in a zigzag pattern in the acrylic resin plate that is the resistor portion 122 of the counter electrode 12. And the electroconductive film which has a 20-micrometer-thick adhesive layer and the conductive layer which consisted of an electrically conductive material on the back surface side of the acrylic resin plate which is the resistor part 122 of the counter electrode 12 was adhere | attached. .
도전성 필름의 도전층이 도체부(121)이다. 그리고, 도전성 필름의 점착층이 절연체부(125)이다. 따라서, 도체부(121)인 도전성 필름의 도전층이 고전압 발생 회로(40)의 양극에 접속되어 있다.The conductive layer of the conductive film is the conductor portion 121. The adhesive layer of the conductive film is the insulator portion 125. Therefore, the conductive layer of the conductive film which is the conductor part 121 is connected to the anode of the high voltage generation circuit 40.
여기에서는 저항체부(122)가 기재의 일례, 절연체부(125)가 제1 부재의 일례, 및, 도체부(121)이 제2 부재의 일례이다.Here, the resistor part 122 is an example of a base material, the insulator part 125 is an example of a 1st member, and the conductor part 121 is an example of a 2nd member.
한편, 도전성 필름에는 아크릴 수지 판에 형성된 개구(124)보다 큰 직경(예를 들면 3.5mm)의 개구가, 아크릴 수지 판에 형성된 개구(124)에 대향하여 형성되어 있다. 즉, 도 45b에 나타낸 바와 같이, 고압 전극(11) 측에서 보아, 아크릴 수지에 형성된 개구에, 도전성 필름의 점착층 및 도전층이 돌출하지 않도록 되어 있다.On the other hand, in the conductive film, an opening having a diameter (for example, 3.5 mm) larger than the opening 124 formed in the acrylic resin plate is formed to face the opening 124 formed in the acrylic resin plate. That is, as shown in FIG. 45B, the pressure-sensitive adhesive layer and the conductive layer of the conductive film do not protrude from the opening formed in the acrylic resin as viewed from the high voltage electrode 11 side.
도전성 필름의 도전층이 저항체부(122)의 개구(124)의 내측으로 돌출되면, 고압 전극(11)과 도전성 필름의 도전층 사이에 방전이 생겨, 저항체부(122)의 방전 전류를 제한하는 기능이 상실되게 된다.When the conductive layer of the conductive film protrudes into the opening 124 of the resistor portion 122, a discharge occurs between the high voltage electrode 11 and the conductive layer of the conductive film to limit the discharge current of the resistor portion 122. The function will be lost.
(실시예 19)(Example 19)
도 46a 및 도 46b는 실시예 19에 따른 전기 집진기(1)에 있어서의 대전부(10)를 설명하는 도면이다. 도 46a는 대전부(10)의 사시도, 도 46b는 도 46a의 XLVIB-XLVIB 선에서의 대향 전극(12)의 단면도이다.46A and 46B are views for explaining the charging section 10 in the electrostatic precipitator 1 according to the nineteenth embodiment. 46A is a perspective view of the charging unit 10, and FIG. 46B is a cross-sectional view of the counter electrode 12 in the XLVIB-XLVIB line in FIG. 46A.
도 46a에 나타낸 바와 같이, 실시예 19의 전기 집진기(1)에 있어서의 대전부(10)에서는, 고압 전극(11)은 실시예 15와 마찬가지로, 복수개의 톱니(111)를 구비하는 복수개의 톱니열(113)로 구성되어 있다. 여기에서는 고압 전극(11)의 톱니열(113)은 두께 0.5mm의 SUS로 구성했다. 그리고, 톱니열(113) 각각의 톱니(111)는 통풍 방향에 대하여, 직교하는 방향으로 배치했다.As shown in FIG. 46A, in the charging unit 10 in the electrostatic precipitator 1 of the nineteenth embodiment, the high voltage electrode 11 is provided with a plurality of teeth having a plurality of teeth 111, similarly to the fifteenth embodiment. It consists of a row 113. Here, the tooth row 113 of the high voltage electrode 11 was made of SUS having a thickness of 0.5 mm. And the teeth 111 of each tooth row 113 were arrange | positioned in the direction orthogonal to a ventilation direction.
대향 전극(12)은 절연체부(125)가, 복수개의 개구(124)가 지그재그로 형성된 판형상의 상기 절연성 재료로 구성된 부재(펀칭 보드)이다. 여기에서는 대향 전극(12)의 절연체부(125)는 평면 형상이 200mm×400mm, 두께가 2mm인 세라믹스 판으로 했다. 그리고, 대향 전극(12)의 절연체부(125)인 세라믹스 판에는 평면 형상이 내경 3mm인 원형 개구(124)가 지그재그로 배열되어 있다.The counter electrode 12 is a member (punching board) in which the insulator portion 125 is formed of the plate-like insulating material in which a plurality of openings 124 are zigzag. Here, the insulator portion 125 of the counter electrode 12 is a ceramic plate having a planar shape of 200 mm x 400 mm and a thickness of 2 mm. In the ceramic plate, which is the insulator portion 125 of the counter electrode 12, circular openings 124 having an inner diameter of 3 mm are arranged in a zigzag pattern.
또한, 대향 전극(12)의 절연체부(125)인 세라믹스 판의, 고압 전극(11)에 대하여 이면측에, 동판의 도전성 재료로 구성된 도체부(121)를 점착하였다. 한편, 도체부(121)인 동판에는 절연체부(125)인 세라믹스 판에 형성된 개구(124)에 대응하여, 개구를 형성했다.Moreover, the conductor part 121 comprised from the electroconductive material of the copper plate was adhere | attached on the back surface side with respect to the high voltage electrode 11 of the ceramic plate which is the insulator part 125 of the counter electrode 12. As shown in FIG. On the other hand, in the copper plate which is the conductor part 121, the opening was formed corresponding to the opening 124 formed in the ceramic plate which is the insulator part 125. FIG.
그리고, 절연체부(125)인 세라믹스 판의 주위를 폴리이미드 수지로 피복하여, 저항체부(122)를 형성했다. 한편, 폴리이미드 수지의 저항체부(122)는 도체부(121)인 동판 및 개구(124)를 덮도록 형성되어 있다. 즉, 도체부(121)의 도체 노출 영역(123)을 제외하고, 대향 전극(12)의 표면은 폴리이미드 수지의 저항체부(122)로 덮여 있다.And the circumference | surroundings of the ceramic plate which is the insulator part 125 were covered with the polyimide resin, and the resistor part 122 was formed. On the other hand, the resistor portion 122 of the polyimide resin is formed so as to cover the copper plate and the opening 124 which are the conductor portions 121. That is, except for the conductor exposed region 123 of the conductor portion 121, the surface of the counter electrode 12 is covered with the resistor portion 122 of the polyimide resin.
여기에서는 절연체부(125)가 기재의 일례, 저항체부(122)가 제1 부재의 일례, 및, 도체부(121)가 제2 부재의 일례이다.Here, the insulator part 125 is an example of a base material, the resistor part 122 is an example of a 1st member, and the conductor part 121 is an example of a 2nd member.
이상 설명한 바와 같이, 도체부(121), 절연체부(125), 저항체부(122)는 어느하나가 딱딱한 부재(베이스 부재)이며, 다른 것이 그 베이스 부재 상에 점착된 필름 또는 도포된 막(층)이어도 무방하다. 또한, 도체부(121), 절연체부(125), 저항체부(122) 중의 복수개가, 딱딱한 부재(베이스 부재)이며, 이것들이 적층되어도 무방하다.As described above, one of the conductor portion 121, the insulator portion 125, and the resistor portion 122 is a hard member (base member), and the other is a film or a film (layer) adhered to the base member. ) May be. In addition, a plurality of conductor parts 121, insulator parts 125, and resistor parts 122 are hard members (base members), and these may be laminated.
또한, 도체부(121)는 도전성 재료, 즉 양도체(良導體)로 구성되어 있으면 무방하다. 절연체부(125)는 저항체부(122)에 있어서의 전자의 흐름(전류)이, 직접 도체부(121)를 향하지 않도록 억제하는 것이면 무방하다. 또한, 저항체부(122)는 방전 전류를 제한하여, 오존 발생을 억제할 수 있는 것이면 무방하다.The conductor portion 121 may be made of a conductive material, that is, a good conductor. The insulator portion 125 may be configured to suppress the flow of electrons (current) in the resistor portion 122 so as not to directly face the conductor portion 121. In addition, the resistor unit 122 may be any one capable of suppressing ozone generation by limiting the discharge current.
[제7 실시형태][Seventh Embodiment]
제1 실시형태 내지 제6 실시형태에서는, 전기 집진기(1)의 대전부(10)에 있어서, 통풍 방향에 대하여, 고압 전극(11)이 상류측, 대향 전극(12)가 하류 측에 배치되어 있었다.In the first to sixth embodiments, in the charging unit 10 of the electrostatic precipitator 1, the high pressure electrode 11 is disposed upstream and the counter electrode 12 is disposed downstream of the ventilation direction. there was.
고압 전극(11)과 대향 전극(12)은 통풍 방향에 대하여 반대로 배치되어도 무방하다.The high voltage electrode 11 and the counter electrode 12 may be arranged opposite to the ventilation direction.
도 47은 제7 실시형태가 적용되는 전기 집진기의 일례를 나타낸 도면이다.It is a figure which shows an example of the electrical dust collector to which 7th Embodiment is applied.
여기에서는 도 1에 나타낸 전기 집진기(1)의 대전부(10)에 있어서의 고압 전극(11) 및 대향 전극(12)이, 통풍 방향에 대하여 반대로 배치되어 있다. 즉, 통풍 방향에 대하여, 대향 전극(12)이 상류측, 고압 전극(11)이 하류 측에 배치되어 있다.Here, the high voltage electrode 11 and the counter electrode 12 in the charging part 10 of the electrostatic precipitator 1 shown in FIG. 1 are arrange | positioned in reverse with respect to a ventilation direction. That is, with respect to the ventilation direction, the counter electrode 12 is arrange | positioned upstream and the high voltage electrode 11 is arrange | positioned downstream.
다른 구성은 제1 실시형태와 마찬가지이므로, 동일한 부호를 붙여 설명을 생략한다.Since the other structure is the same as that of 1st Embodiment, the same code | symbol is attached | subjected and description is abbreviate | omitted.
그리고, 이와 같이 대전부(10)에 있어서의 고압 전극(11) 및 대향 전극(12)을 배치해도, 전기 집진기(1)는 제1 실시형태에 있어서 설명한 것과 마찬가지로 동작한다.And even if the high voltage electrode 11 and the counter electrode 12 in the charging part 10 are arrange | positioned in this way, the electrostatic precipitator 1 operates similarly to having demonstrated in 1st Embodiment.
[제8 실시형태][Eighth Embodiment]
제1 실시형태 내지 제7 실시형태가 적용되는 전기 집진기(1)에서는, 대전부(10)에 있어서, 고압 전극(11)과 대향 전극(12)이 통풍 방향으로 배치되어 있었다.In the electrostatic precipitator 1 to which the first to seventh embodiments are applied, the high voltage electrode 11 and the counter electrode 12 are arranged in the ventilation direction in the charging unit 10.
예를 들면, 도 1에 나타낸 제1 실시형태에서는, 통풍 방향의 상류 측에 톱니(111)를 구비한 고압 전극(11), 하류 측에 대향 전극(12)이 형성되어 있었다.For example, in 1st Embodiment shown in FIG. 1, the high voltage electrode 11 provided with the tooth | gear 111 in the upstream of the ventilation direction, and the counter electrode 12 were formed in the downstream side.
이에 비하여, 제8 실시형태의 전기 집진기(1)에서는, 대전부(10)에 있어서, 고압 전극(11)과 대향 전극(12)이, 통풍 방향에 대하여 교차하도록 배치되어 있다.On the other hand, in the electrostatic precipitator 1 of 8th Embodiment, in the charging part 10, the high voltage electrode 11 and the counter electrode 12 are arrange | positioned so that it may cross | intersect with the ventilation direction.
또한, 고압 전극(11)이 주(主) 고압 전극(11A)과 종(從) 고압 전극(11B)을 구비하고 있다.Moreover, the high voltage electrode 11 is equipped with the main high voltage electrode 11A and the vertical high voltage electrode 11B.
도 48은 제8 실시형태가 적용되는 전기 집진기(1)의 일례를 나타낸 도면이다.48 is a diagram illustrating an example of the electric dust collector 1 to which the eighth embodiment is applied.
대전부(10)에 있어서의 고압 전극(11)은 복수개의 주(主) 고압 전극(11A)과 복수개의 종(從) 고압 전극(11B)을 구비하고 있다. 또한, 대향 전극(12)은 복수개의 서브 대향 전극(12A)을 구비하고 있다. 그리고, 고압 전극(11)과 대향 전극(12)이, 통풍 방향으로 교차(도 48에서는 직교)하도록 배치되어 있다.The high voltage electrode 11 in the charging unit 10 includes a plurality of main high voltage electrodes 11A and a plurality of vertical high voltage electrodes 11B. In addition, the counter electrode 12 includes a plurality of sub counter electrodes 12A. And the high voltage electrode 11 and the counter electrode 12 are arrange | positioned so that it may cross | intersect (orthogonally in FIG. 48) in a ventilation direction.
집진부(20)는 제1 실시형태 내지 제7 실시형태가 적용되는 전기 집진기(1)와 마찬가지이다. 따라서, 집진부(20)에 대한 설명을 생략한다.The dust collector 20 is similar to the electric dust collector 1 to which the first to seventh embodiments are applied. Therefore, description of the dust collector 20 is omitted.
한편, 전기 집진기(1)는 도 48에 나타낸 배치에 한정되지 않고, 통풍이 확보되면 어떤 방향으로 배치되어도 무방하다.In addition, the electrostatic precipitator 1 is not limited to the arrangement | positioning shown in FIG. 48, and may be arrange | positioned in any direction as long as ventilation is ensured.
고압 전극(11)에 있어서의 주(主) 고압 전극(11A)은 예를 들면, 도 48에 나타낸 바와 같이, 복수개의 톱니(111)를 구비하고 있다. 그리고, 복수개의 톱니(111)는 각각이 접속부(112)에 접속되고 톱니열(113)을 구성하고 있다. 고압 전극(11)에 있어서의 종(從) 고압 전극(11B)은 예를 들면, 도 48에 나타낸 바와 같이, 와이어(114)를 구비하고 있다.The main high pressure electrode 11A in the high voltage electrode 11 is provided with a plurality of teeth 111, for example, as shown in FIG. In addition, each of the plurality of teeth 111 is connected to the connecting portion 112 and constitutes a tooth row 113. The vertical high voltage electrode 11B in the high voltage electrode 11 is provided with the wire 114, for example, as shown in FIG.
대향 전극(12) 각각의 서브 대향 전극(12A)은 도시를 생략하지만, 예를 들면, 제6 실시형태가 적용되는 전기 집진기(1)에 있어서의 대전부(10)의 대향 전극(12)과 마찬가지이고, 판형상의 도체부와, 도체부의 양면을 덮도록 형성된 절연체부와, 절연체부의 표면을 덮도록 형성된 저항체부를 구비하고 있다. 즉, 서브 대향 전극(12A)은 도체부의 표면에, 절연체부와 저항체부가 이 순서로 형성되어 있다. 그리고, 서브 대향 전극(12A)의 형상은 판형상이다.Although the sub counter electrode 12A of each of the counter electrodes 12 is not shown, for example, the counter electrode 12 of the electrification part 10 in the electrostatic precipitator 1 to which the sixth embodiment is applied, Similarly, a plate-shaped conductor portion, an insulator portion formed to cover both surfaces of the conductor portion, and a resistor portion formed to cover the surface of the insulator portion are provided. That is, in the sub counter electrode 12A, the insulator portion and the resistor portion are formed on the surface of the conductor portion in this order. The sub counter electrode 12A has a plate shape.
대향 전극(12)은 도 48에 나타낸 바와 같이, 복수개의 서브 대향 전극(12A)이, 각각의 표면이 통풍 방향을 따르도록, 통풍 방향으로 교차(도 48에서는 직교)하는 방향으로 나란히 형성되어 있다. 한편, 대향 전극(12)의 표면은 통풍 방향에 대하여 평행이 아니어도 무방하고, 미리 정해진 통풍을 얻을 수 있으면, 통풍 방향에 대하여 경사지게 되어 있어도 무방하다.As shown in FIG. 48, the counter electrodes 12 are formed side by side in a direction intersecting (orthogonal in FIG. 48) in the ventilation direction such that the plurality of sub counter electrodes 12A are along the ventilation direction. . On the other hand, the surface of the counter electrode 12 may not be parallel with respect to the ventilation direction, and may be inclined with respect to the ventilation direction as long as predetermined ventilation can be obtained.
고압 전극(11)에 있어서의 주(主) 고압 전극(11A)은 인접하는 2개의 서브 대향 전극(12A) 사이에 배치되고, 주(主) 고압 전극(11A)와 서브 대향 전극(12A) 사이에 종(從) 고압 전극(11B)이 배치되어 있다.The main high pressure electrode 11A in the high voltage electrode 11 is disposed between two adjacent sub counter electrodes 12A, and is arranged between the main high voltage electrode 11A and the sub counter electrode 12A. A longitudinal high voltage electrode 11B is disposed.
한편, 서브 대향 전극(12A)의 주(主) 고압 전극(11A) 및 종(從) 고압 전극(11B)에 대향하지 않는 면은 도체부의 표면이 절연체부 및/또는 저항체부로 덮이지 않아도 무방하다.On the other hand, the surface of the sub counter electrode 12A which does not face the main high voltage electrode 11A and the vertical high voltage electrode 11B may not be covered with an insulator portion and / or a resistor portion. .
주(主) 고압 전극(11A)의 톱니(111)는 선단이 통풍 방향을 향하도록(통풍 방향의 하류측을 향하도록) 배치되어 있다.The teeth 111 of the main high voltage electrode 11A are disposed so that the tip thereof faces the ventilation direction (toward the downstream side in the ventilation direction).
그리고, 종(從) 고압 전극(11B)인 와이어(114)는 주(主) 고압 전극(11A)에 있어서의 톱니(111)가 구성하는 톱니열(113)을 따르도록 형성되어 있다. 한편, 종(從) 고압 전극(11B)인 와이어(114)는 주(主) 고압 전극(11A)에 있어서의 톱니(111) 선단 근방에, 톱니열(113)을 따라서 형성되는 것이 무방하다.And the wire 114 which is the longitudinal high voltage electrode 11B is formed so that the tooth row 113 which the teeth 111 in 11 A of main high voltage electrodes comprise may be formed. On the other hand, the wire 114 which is the longitudinal high voltage electrode 11B may be formed along the tooth row 113 in the vicinity of the tip end of the tooth 111 in the main high voltage electrode 11A.
한편, 도 48에 나타낸 전기 집진기(1)에서는, 대전부(10)에 있어서, 고압 전극(11)의 주(主) 고압 전극(11A)이 2개, 종(從) 고압 전극(11B)이 4개, 대향 전극(12)의 서브 대향 전극(12A)이 3개인 경우를 나타내고 있지만, 이 수에 한정되지 않는다.On the other hand, in the electrostatic precipitator 1 shown in FIG. 48, in the charging unit 10, two main high voltage electrodes 11A of the high voltage electrode 11 and the vertical high voltage electrode 11B are provided. Although the case where there are four sub counter electrodes 12A of four and the counter electrode 12 is shown, it is not limited to this number.
도 49a 내지 도 49c는 실시예 20, 비교예 6, 7에 따른 전기 집진기(1)에 있어서의 대전부(10)의 주요부의 사시도이다. 도 49a는 실시예 20, 도 49b는 비교예 6, 도 49c는 비교예 7이다.49A to 49C are perspective views of main parts of the charging unit 10 in the electrostatic precipitator 1 according to Example 20 and Comparative Examples 6 and 7. FIG. FIG. 49A is Example 20, FIG. 49B is Comparative Example 6, and FIG. 49C is Comparative Example 7. FIG.
여기에서는 1개의 주(主) 고압 전극(11A)과, 주(主) 고압 전극(11A)에 대향하여 형성된 2개의 서브 대향 전극(12A)을 나타내고 있다.Here, one main high voltage electrode 11A and two sub counter electrodes 12A formed to face the main high voltage electrode 11A are shown.
실시예 20에 따른 전기 집진기(1)는 도 49a에 나타낸 바와 같이, 제8 실시형태가 적용되는 전기 집진기(1)이다. 실시예 20에서는, 서브 대향 전극(12A)과 주(主) 고압 전극(11A) 사이에 종(從) 고압 전극(11B)을 구비하고 있다.The electrostatic precipitator 1 which concerns on Example 20 is the electrostatic precipitator 1 to which 8th Embodiment is applied, as shown to FIG. 49A. In Example 20, the vertical high voltage electrode 11B is provided between the sub counter electrode 12A and the main high voltage electrode 11A.
그리고, 상술한 바와 같이, 주(主) 고압 전극(11A)은 톱니(111)가 접속부(112)에 접속되어 구성된 톱니열(113)을 구비하고 있다. 그리고, 톱니(111) 선단은 통풍 방향의 하류측을 향하도록 배치되어 있다.And as mentioned above, the main high voltage electrode 11A is equipped with the tooth row 113 comprised by the tooth | gear 111 connected to the connection part 112. As shown in FIG. The tip of the tooth 111 is arranged to face the downstream side of the ventilation direction.
한편, 종(從) 고압 전극(11B)은 와이어(114)이다. 여기에서는 일례로서 직경 0.2mm의 텅스텐(W) 선으로 했다.On the other hand, the longitudinal high voltage electrode 11B is a wire 114. Here, as an example, a tungsten (W) wire having a diameter of 0.2 mm was used.
그리고, 서브 대향 전극(12A)은 도체부의 표면에, 절연체부와 저항체부가 이 순서로 형성된 적층체이다.The sub counter electrode 12A is a laminate in which an insulator portion and a resistor portion are formed in this order on the surface of the conductor portion.
주(主) 고압 전극(11A)과 서브 대향 전극(12A)의 간격을 20mm로 했다.The distance between the main high voltage electrode 11A and the sub counter electrode 12A was set to 20 mm.
한편, 종(從) 고압 전극(11B)은 전압을 인가하지 않은 상태, 즉 부유(플로팅) 상태로 했다.On the other hand, the vertical high voltage electrode 11B was in a state in which no voltage was applied, that is, in a floating (floating) state.
비교예 6에 따른 전기 집진기(1)는 도 49b에 나타낸 바와 같이, 실시예 20에 있어서, 종(從) 고압 전극(11B)를 제외한 구성이다. 즉, 톱니열(113)을 주(主) 고압 전극(11A)(고압 전극(11))으로 하는 구성이다. 이 경우도, 주(主) 고압 전극(11A)(고압 전극(11))과 서브 대향 전극(12A)의 간격을 20mm로 했다.The electrostatic precipitator 1 which concerns on the comparative example 6 is a structure remove | excluding the vertical high voltage electrode 11B in Example 20 as shown in FIG. 49B. That is, it is the structure which makes the saw tooth row 113 into the main high pressure electrode 11A (high voltage electrode 11). Also in this case, the distance between the main high pressure electrode 11A (high voltage electrode 11) and the sub counter electrode 12A was set to 20 mm.
그리고, 도 49a, 도 49b에 있어서의 서브 대향 전극(12A) 상에 “(적층체)”로 표기했다.In addition, it described with "(laminated body)" on the sub counter electrode 12A in FIG. 49A, 49B.
비교예 7에 따른 전기 집진기(1)는 도 49c에 나타낸 바와 같이, 도 49b의 비교예 6에 있어서의 주(主) 고압 전극(11A)(고압 전극(11))인 톱니열(113)을 와이어(114)로 하고 있다. 그리고, 서브 대향 전극(12A)을, 절연체부와 저항체부를 구비하지 않는 도체부로 하고 있다. 한편, 도체부를 Al로 하고 있다. 따라서, 서브 대향 전극(12A) 상에 “(Al)”로 표기했다.As shown in FIG. 49C, the electrostatic precipitator 1 according to the comparative example 7 has a tooth row 113 which is the main high voltage electrode 11A (high pressure electrode 11) in the comparative example 6 of FIG. 49B. The wire 114 is used. The sub counter electrode 12A is a conductor portion that does not include an insulator portion and a resistor portion. On the other hand, the conductor part is made Al. Therefore, "(Al)" was written on the sub counter electrode 12A.
이 경우도, 주(主) 고압 전극(11A)(고압 전극(11))과 대향 전극(12A)의 간격을 20mm로 했다.Also in this case, the distance between the main high pressure electrode 11A (high pressure electrode 11) and the counter electrode 12A was set to 20 mm.
도 50은 실시예 20, 비교예 6, 7에 따른 전기 집진기(1)에 있어서의 오존 농도 및 입자 직경마다 구한 집진 효율을 설명하는 도면이다. 한편, 도 50에 있어서, 실시예 20 및 비교예 6에 있어서, 서브 대향 전극(12A)을 “(적층체)”로 표기했다.It is a figure explaining the dust collection efficiency calculated | required for every ozone density | concentration and particle diameter in the electrostatic precipitator 1 which concerns on Example 20, Comparative Examples 6 and 7. FIG. In addition, in FIG. 50, in Example 20 and the comparative example 6, the sub counter electrode 12A was described as "(laminated body)."
또한, 비교예 7에 있어서, 서브 대향 전극(12A)을 “Al”로 표기했다.In Comparative Example 7, the sub counter electrode 12A was designated as "Al".
여기에서는 전기 집진기(1)를, 시험 풍동에 설치하고, 팬에 의해 풍속을 1m/s로 설정하고, 대전부(10)로부터 집진부(20)에 바람을 1회(원 패스) 통과시켰다.Here, the electrostatic precipitator 1 was installed in the test wind tunnel, the wind speed was set to 1 m / s by the fan, and the wind passed through the dust collector 20 from the charging section 10 once (one pass).
집진 효율은 시험 풍동의 상류측과 하류측에 샘플링 포트를 형성하고, 샘플링 포트를 통하여, 주사형 나노 입자 직경 분포 측정기(SMPS:Scanning Mobility Particle Sizer)에 의해 부유 입자의 개수를 입경별로 측정하여 산출했다.The dust collection efficiency is calculated by forming sampling ports on the upstream and downstream sides of the test wind tunnel, and measuring the number of suspended particles by particle size using a scanning nano particle diameter distribution meter (SMPS) through the sampling port. did.
오존 농도는 시험 풍동의 상류측과 하류측에 형성한 샘플링 포트를 통하여, 오존 농도계를 이용하여 측정한 상류측과 하류측의 오존 농도의 차로부터 구했다.The ozone concentration was determined from the difference between the ozone concentrations on the upstream side and the downstream side measured using an ozone concentration meter through sampling ports formed on the upstream side and the downstream side of the test wind tunnel.
종(從) 고압 전극(11B)을 형성한 실시예 20에서는, 주(主) 고압 전극(11A)에 8.0kV~8.2kV를 인가하면, 부유 상태의 종(從) 고압 전극(11B)에, 1.8kV~2.5kV의 전압이 발생하였다.In Example 20 in which the longitudinal high voltage electrode 11B is formed, when 8.0 kV to 8.2 kV is applied to the main high voltage electrode 11A, the floating high voltage electrode 11B is suspended. A voltage of 1.8 kV to 2.5 kV was generated.
그리고, 오존 농도는 주(主) 고압 전극(11A)에 300μA를 흘린 경우이더라도, 9.2ppb였다. 이 경우, 집진 효율은 입자 직경 20nm에 있어서 97%, 다른 입자 직경(50nm, 100nm, 300nm)에 있어서 99% 이상이었다.The ozone concentration was 9.2 ppb even when 300 μA was flowed through the main high pressure electrode 11A. In this case, dust collection efficiency was 97% or more in 20 nm of particle diameters, and 99% or more in other particle diameters (50 nm, 100 nm, 300 nm).
실시예 20으로부터 종(從) 고압 전극(11B)을 제외한 비교예 6에서는, 실시예 20과 마찬가지로 주(主) 고압 전극(11A)에 300μA를 흘린 경우, 오존 농도는 22.9ppb였다. 또한, 집진 효율은 입자 직경 20nm에 있어서 76%, 다른 입자 직경(50nm, 100nm, 300nm)에 있어서 80%대였다.In Comparative Example 6, except for the vertical high voltage electrode 11B from Example 20, when 300 µA was flowed into the main high pressure electrode 11A as in Example 20, the ozone concentration was 22.9 ppb. In addition, dust collection efficiency was 76% in 20 nm of particle diameters, and 80% in other particle diameters (50 nm, 100 nm, 300 nm).
즉 종(從) 고압 전극(11B)을 이용하지 않는 경우(비교예 6), 오존 농도가 커짐과 아울러, 집진 효율이 저하한다. 특히, 작은 입자 직경의 초미립자의 집진 효율이 저하한다.That is, when the vertical high voltage electrode 11B is not used (comparative example 6), ozone concentration becomes large and dust collection efficiency falls. In particular, the dust collection efficiency of the ultrafine particle of small particle diameter falls.
주(主) 고압 전극(11A)을 와이어(114)로 함과 아울러, 서브 대향 전극(12A)을 Al로 한 비교예 7에서는, 주(主) 고압 전극(11A)의 와이어(114)에 흘리는 전류를 크게 함으로써, 입자 직경에 따르지 않고 집진 효율이 향상한다. 예를 들면, 주(主) 고압 전극(11A)에 흘리는 전류를 5000μA로 하면, 입자 직경 20nm인 초미립자의 집진 효율은 전류가 440μA인 경우의 75%에서 93%로 향상한다. 즉 90% 이상의 집진 효율이 된다. 한편, 오존 농도는 전류가 440μA인 경우의 9.2ppb에서 190ppb로 대폭 증가하게 된다.In Comparative Example 7 in which the main high pressure electrode 11A is made of the wire 114 and the sub counter electrode 12A is made of Al, it flows into the wire 114 of the main high pressure electrode 11A. By increasing the current, the collection efficiency is improved regardless of the particle diameter. For example, when the current flowing through the main high voltage electrode 11A is 5000 µA, the dust collection efficiency of the ultrafine particles having a particle diameter of 20 nm increases from 75% to 93% when the current is 440 µA. That is, the dust collection efficiency is 90% or more. On the other hand, the ozone concentration is greatly increased from 9.2 ppb to 190 ppb when the current is 440 μA.
이상 설명한 바와 같이, 종(從) 고압 전극(11B)을 사용하여 서브 대향 전극(12A)을 도체부의 표면에, 절연체부와 저항체부가 이 순서로 형성된 적층체로 함으로써, 오존 농도를 낮게 억제하고, 아울러 입자 직경 0.1㎛ 이하의 초미립자의 집진 효율을 향상시킬 수 있다.As described above, by using the vertical high voltage electrode 11B as a laminate in which the sub counter electrode 12A is formed on the surface of the conductor portion in this order, the ozone concentration is kept low and The dust collection efficiency of the ultrafine particle of 0.1 micrometer or less of particle diameters can be improved.
도 51은 종(從) 고압 전극(11B)의 작용을 설명하는 도면이다. 여기에서는 세로축에 전압, 가로축에 주(主) 고압 전극(11A), 종(從) 고압 전극(11B), 서브 대향 전극(12A)의 위치를 모식적으로 나타내고 있다.FIG. 51 is a diagram illustrating an operation of the vertical high voltage electrode 11B. Here, the positions of the voltage on the vertical axis and the main high voltage electrode 11A, the vertical high voltage electrode 11B, and the sub counter electrode 12A are schematically illustrated on the horizontal axis.
상술한 바와 같이, 주(主) 고압 전극(11A)에 8.0kV~8.2kV의 전압을 인가하면, 부유 상태의 종(從) 고압 전극(11B)에 1.8kV~2.5kV의 전압이 야기된다. 이에 따라, 주(主) 고압 전극(11A)으로부터 서브 대향 전극(12A)을 향하는 전위 구배가, 균일하게 되지 않고 2단계가 된다. 즉, 주(主) 고압 전극(11A)으로부터 종(從) 고압 전극(11B)을 향하는 전위차가 5.7kV~6.2kV인 높은 전위 구배 영역 α와, 종(從) 고압 전극(11B)으로부터 서브 대향 전극(12A)을 향하는 전위차가 1.8kV~2.5kV인 낮은 전위 구배 영역 β가 생긴다.As described above, when a voltage of 8.0 kV to 8.2 kV is applied to the main high voltage electrode 11A, a voltage of 1.8 kV to 2.5 kV is caused to the floating high voltage electrode 11B. As a result, the potential gradient from the main high pressure electrode 11A toward the sub counter electrode 12A becomes two steps without becoming uniform. That is, a high potential gradient region α having a potential difference from the main high voltage electrode 11A to the longitudinal high voltage electrode 11B of 5.7 kV to 6.2 kV and sub-opposed from the longitudinal high voltage electrode 11B. A low potential gradient region β having a potential difference of 1.8 kV to 2.5 kV toward the electrode 12A is generated.
그리고, 입자 직경 0.1㎛ 이하의 초미립자가 효율적으로 대전하게 된 이유는 종(從) 고압 전극(11B)을 통하여, 단계적으로 방전이 생김으로써, 방전 공간이 넓어진(신장한) 때문이라 추정된다. 즉, 높은 전위 구배 영역 α에 있어서의 전위 구배는 종(從) 고압 전극(11B)을 이용하지 않는 경우의 전위 구배(비교예 6으로서 파선으로 나타낸 전위 구배)에 비해 크다. 이에 따라, 방전이 개시되기 쉽다. 이 방전에 의해, 종(從) 고압 전극(11B)과 서브 대향 전극(12A) 사이에 방전이 생긴다. 이와 같이, 단계적으로 방전을 일으키게 함으로써, 방전 공간을 넓히고 있다(신장시키고 있다).The reason why the ultrafine particles having a particle diameter of 0.1 µm or less is effectively charged is because the discharge space is enlarged (extended) by generating discharge step by step through the longitudinal high-voltage electrode 11B. That is, the potential gradient in the high potential gradient region α is larger than the potential gradient (potential gradient indicated by broken lines as Comparative Example 6) when the longitudinal high voltage electrode 11B is not used. As a result, discharge is likely to be initiated. This discharge causes a discharge between the vertical high voltage electrode 11B and the sub counter electrode 12A. In this way, the discharge space is expanded (expanded) by causing the discharge in stages.
또한, 오존 농도를 억제할 수 있는 이유는 방전 공간의 저항(공간 저항)이 높은 것과 서브 대향 전극(12A)(대향 전극(12))에 대한 전계 집중이 완화된 것에 따른다고 추정된다. 즉, 서브 대향 전극(12A)을, 도체부의 표면에, 절연체부와 저항체부가 이 순서로 형성된 적층체로 함으로써, 표면 저항이 높아지고 방전 공간의 저항(공간 저항)이 높아지고 있다. 또한, 종(從) 고압 전극(11B)을 형성함으로써, 종(從) 고압 전극(11B)과 서브 대향 전극(12A)(대향 전극(12)) 사이에서의 전계 집중이 완화되고 있다. 이에 따라, 전리에 의한 전하의 공급과 소멸이 균형되는 비율이 증가하고, 오존 발생의 기점이 되는 전자의 발생량이 억제되었다고 생각된다.The reason why the ozone concentration can be suppressed is estimated to be that the resistance (space resistance) of the discharge space is high and that the electric field concentration on the sub counter electrode 12A (the counter electrode 12) is relaxed. That is, when the sub counter electrode 12A is a laminate in which the insulator portion and the resistor portion are formed on the surface of the conductor portion in this order, the surface resistance is increased and the resistance (space resistance) of the discharge space is increased. In addition, by forming the vertical high voltage electrode 11B, electric field concentration between the vertical high voltage electrode 11B and the sub counter electrode 12A (the counter electrode 12) is alleviated. It is thought that the ratio which balances supply and annihilation of electric charge by ionization increased by this, and the generation amount of the electron which becomes the origin of ozone generation was suppressed.
이상 설명한 바와 같이, 종(從) 고압 전극(11B)을 형성하고, 전위 구배가 상이한 영역(도 51의 영역 α, β)을 형성함으로써, 초미립자의 집진 효율을 향상시키고 있다. 따라서, 주(主) 고압 전극(11A)은 톱니 형상 부분 대신에, 바늘 형상 부분을 구비해도 무방하고, 와이어 형상이나 브러시 형상 등의 다른 형상이어도 무방하다. 마찬가지로, 종(從) 고압 전극(11B)은 와이어(114)에 한정되지 않고, 톱니 형상 부분 또는 바늘 형상 부분을 구비한 전극이어도 무방하다.As described above, the high-voltage electrode 11B is formed, and the dust collection efficiency of the ultrafine particles is improved by forming regions (regions α and β in FIG. 51) having different potential gradients. Therefore, the main high pressure electrode 11A may have a needle portion instead of the sawtooth portion, and may have other shapes such as a wire shape or a brush shape. Similarly, the longitudinal high voltage electrode 11B is not limited to the wire 114, and may be an electrode provided with a serrated portion or a needle-shaped portion.
한편, 전위 구배가 상이한 영역은 도 51에 나타낸 바와 같이 2개에 한정되지 않는다. 예를 들면, 주(主) 고압 전극(11A)과 종(從) 고압 전극(11B) 사이에 다른 종(從) 고압 전극을 형성하고, 전위 구배가 상이한 영역을 3개 이상으로 해도 무방하다.On the other hand, the region in which the electric potential gradient is different is not limited to two as shown in FIG. For example, another vertical high voltage electrode may be formed between the main high voltage electrode 11A and the vertical high voltage electrode 11B, and three or more regions having different potential gradients may be used.
또한, 방전 공간의 저항(공간 저항)을 높이고, 대향 전극(12)(서브 대향 전극(12A))에 대한 전계 집중을 완화함으로써, 오존 농도를 억제하고 있다. 따라서, 대향 전극(12)(서브 대향 전극(12A))은 도체부의 표면에 절연체부와 저항체부를 이 순서로 형성한 적층체로 하는 대신에, 도체부의 표면에 절연체부를 형성한 구성으로 해도 무방하다.In addition, the ozone concentration is suppressed by increasing the resistance (space resistance) of the discharge space and reducing the concentration of the electric field on the counter electrode 12 (sub counter electrode 12A). Therefore, the counter electrode 12 (sub counter electrode 12A) may be a structure in which an insulator portion is formed on the surface of the conductor portion instead of a laminate formed on the surface of the conductor portion and the resistor portion in this order.
다음으로, 제8 실시형태가 적용되는 전기 집진기(1)의 변형예를 설명한다.Next, a modification of the electrostatic precipitator 1 to which the eighth embodiment is applied will be described.
도 52는 제8 실시형태가 적용되는 전기 집진기(1)의 변형예를 나타낸 도면이다.52 is a diagram showing a modification of the electrostatic precipitator 1 to which the eighth embodiment is applied.
도 48에 나타낸 전기 집진기(1)에서는, 대전부(10)의 고압 전극에 있어서의 주(主) 고압 전극(11A)의 톱니(111) 선단이 통풍 방향의 하류 측을 향해 있었다. 도 52에 나타낸 변형예로서 나타낸 전기 집진기(1)에서는, 대전부(10)의 고압 전극에 있어서의 주(主) 고압 전극(11A)의 톱니(111) 선단이 통풍 방향의 상류 측을 향해 있다.In the electrostatic precipitator 1 shown in FIG. 48, the tip of the teeth 111 of the main high voltage electrode 11A in the high pressure electrode of the charging unit 10 was directed downstream of the ventilation direction. In the electrostatic precipitator 1 shown as a modification shown in FIG. 52, the tip of the teeth 111 of the main high voltage electrode 11A in the high voltage electrode of the charging unit 10 is directed upstream of the ventilation direction. .
이 경우이더라도, 도 50에 나타낸 실시예 20과 마찬가지의 결과를 얻을 수 있었다.Even in this case, the same results as in Example 20 shown in FIG. 50 were obtained.
상기의 제8 실시형태가 적용되는 전기 집진기(1)에서는, 실시예 20에서 설명한 바와 같이, 종(從) 고압 전극(11B)은 전압을 인가하지 않고, 부유 상태로 했다.In the electrostatic precipitator 1 to which the eighth embodiment described above is applied, as described in Example 20, the vertical high voltage electrode 11B was placed in a floating state without applying a voltage.
그러나, 종(從) 고압 전극(11B)에 전압을 인가해도 무방하다. 이 경우, 오존 농도의 억제에는 주(主) 고압 전극(11A)에 인가하는 전압의 1/2 이하로 해도 무방하다. 즉, 주(主) 고압 전극(11A)에 인가하는 전압은 종(從) 고압 전극(11B)에 인가하는 전압의 2배 이상으로 하는 것이 무방하다. 한편, 주(主) 고압 전극(11A)에 인가하는 전압은 종(從) 고압 전극(11B)에 인가하는 전압의 2배 이상 및 5배 이하인 것이 보다 바람직하다.However, a voltage may be applied to the vertical high voltage electrode 11B. In this case, the ozone concentration may be suppressed to 1/2 or less of the voltage applied to the main high pressure electrode 11A. In other words, the voltage applied to the main high voltage electrode 11A may be twice or more the voltage applied to the vertical high voltage electrode 11B. On the other hand, the voltage applied to the main high voltage electrode 11A is more preferably two times or more and five times or less the voltage applied to the vertical high voltage electrode 11B.
종(從) 고압 전극(11B)에 전압을 인가한 경우는 부유 상태로 한 경우에 비해, 방전을 보다 안정되게 할 수 있다.When a voltage is applied to the vertical high voltage electrode 11B, the discharge can be made more stable as compared with the case where the floating state is set.
[제9 실시형태][Ninth Embodiment]
도 53은 제9 실시형태가 적용되는 전기 집진기(1)의 일례를 나타낸 도면이다.53 is a diagram illustrating an example of the electric dust collector 1 to which the ninth embodiment is applied.
대전부(10)에 있어서의 고압 전극(11)은 예를 들면, 복수개의 톱니(111)(톱니 형상 부분)을 구비하고 있다. 그리고, 복수개의 톱니(111)는 각각이 접속부(112)에 접속되고, 복수개의 톱니열(113)을 구성하고 있다. 한편, 고압 전극(11)이 톱니열(113)로 구성되기 때문에, 도 53에서는 11(113)로 표기한다.The high voltage electrode 11 in the charging unit 10 includes a plurality of teeth 111 (sawtooth-shaped portions), for example. Each of the plurality of teeth 111 is connected to the connecting portion 112, and constitutes a plurality of tooth rows 113. In addition, since the high voltage electrode 11 is comprised by the tooth row 113, it denotes 11 (113) in FIG.
대향 전극(12)은 제8 실시형태와 마찬가지로, 복수개의 서브 대향 전극(12A)을 구비하고 있다. 서브 대향 전극(12A)은 평판형상이며, 도전성 재료로 구성되어 있다.The counter electrode 12 is provided with the some sub counter electrode 12A similarly to 8th Embodiment. The sub counter electrode 12A has a flat plate shape and is made of a conductive material.
고압 전극(11)의 톱니(111)(톱니 형상 부분)는 서브 대향 전극(12A)의 평면과 평행하게 되도록 형성되어 있다. 그리고, 고압 전극(11)의 톱니(111)(톱니 형상 부분)와 서브 대향 전극(12A)은 통풍 방향으로 교차(도 53에서는 직교)하는 방향으로 배치되어 있다.The tooth 111 (sawtooth part) of the high voltage electrode 11 is formed to be parallel to the plane of the sub counter electrode 12A. The teeth 111 (sawtoothed portion) of the high voltage electrode 11 and the sub counter electrode 12A are arranged in a direction crossing (orthogonal in Fig. 53) in the ventilation direction.
또한, 톱니(111) 선단은 통풍 방향의 상류 측을 향하고 있다. 그리고, 톱니(111) 선단은 평판형상의 서브 대향 전극(12A)의 통풍 방향의 상류단보다 하류 측에 위치하고 있다. 또한, 서브 대향 전극(12A)은 적어도 톱니(111)(톱니 형상 부분)의 선단으로부터 접속부(112)까지의 길이(거리)에 걸쳐서 형성되어 있다.In addition, the tip of the tooth 111 faces the upstream side in the ventilation direction. The tip of the tooth 111 is located downstream from the upstream end in the ventilation direction of the plate-shaped sub counter electrode 12A. In addition, the sub counter electrode 12A is formed over at least the length (distance) from the tip of the saw tooth 111 (sawtooth part) to the connection portion 112.
집진부(20)은 제1 실시형태 내지 제8 실시형태가 적용되는 전기 집진기(1)와 마찬가지이다. 따라서, 집진부(20)에 대한 설명을 생략한다.The dust collector 20 is similar to the electric dust collector 1 to which the first to eighth embodiments are applied. Therefore, description of the dust collector 20 is omitted.
한편, 대전부(10)를 구성하는 부재 중, 가장 집진부에 가까운 부재의 단부로부터 통풍 방향 하류에 기 설정된 이간 거리를 가지고 집진부(20)의 고압 전극(21)이 형성되어 있다. 이때, 기 설정된 이간 거리는 5mm 이상일 수 있다.On the other hand, among the members constituting the charging unit 10, the high voltage electrode 21 of the dust collecting unit 20 is formed at a predetermined separation distance downstream from the end of the member closest to the dust collecting unit in the ventilation direction. In this case, the predetermined separation distance may be 5 mm or more.
전기 집진기(1)는 도 53에 나타낸 배치에 한정하지 않고, 통풍이 확보되면 어떤 방향으로 배치되어도 무방하다.The electrostatic precipitator 1 is not limited to the arrangement shown in Fig. 53, and may be arranged in any direction as long as ventilation is secured.
또한, 대전부(10)는 제4 실시형태 또는 제5 실시형태에서 나타낸, 인덕터(Ls)를 포함하고, 고압 전극(11)과 대향 전극(12) 사이에 발생하는 방전에 있어서의 펄스형상 전류에 의해 고압 전극(11)의 전위를 저하시키는 전류 제한 회로(16)를 구비하고 있어도 무방하다.In addition, the charging unit 10 includes an inductor Ls shown in the fourth embodiment or the fifth embodiment, and a pulse current in discharge generated between the high voltage electrode 11 and the counter electrode 12. The current limiting circuit 16 may be provided to lower the potential of the high voltage electrode 11.
이에 따라, 오존 발생이 더욱 억제된다.As a result, ozone generation is further suppressed.
한편, 도 53에 나타낸 전기 집진기(1)에서는, 대전부(10)에 있어서, 고압 전극(11)의 톱니열(113)이 2개, 대향 전극(12)의 서브 대향 전극(12A)가 3개인 경우를 나타내고 있지만, 이 수에 한정되지 않는다.On the other hand, in the electrostatic precipitator 1 shown in FIG. 53, in the charging section 10, two tooth rows 113 of the high voltage electrode 11 and three sub counter electrodes 12A of the counter electrode 12 are 3. Although an individual case is shown, it is not limited to this number.
또한, 톱니 형상 부분인 톱니(111)는 바늘 형상 부분이나 브러시 형상 부분이어도 무방하다.In addition, the tooth 111 which is a tooth-shaped part may be a needle-like part or a brush-shaped part.
도 54는 실시예 21에 따른 전기 집진기(1)에 있어서의 대전부(10) 및 집진부(20)의 주요부의 통풍 방향에 대한 단면도이다.54 is a cross-sectional view of the ventilation direction of the main part of the charging unit 10 and the dust collecting unit 20 in the electrostatic precipitator 1 according to the twenty-first embodiment.
실시예 21에 따른 전기 집진기(1)에 있어서, 대전부(10)는 고압 전극(11)과 평판상의 도전성 재료로 구성된 복수개의 서브 대향 전극(12A)을 갖는 대향 전극(22)을 구비하고 있다. 고압 전극(11)은 통풍 방향의 상류 측에 선단이 향한 복수개의 톱니(111)를 구비한 톱니열(113)을 구비하고 있다.In the electrostatic precipitator 1 according to the twenty-first embodiment, the charging unit 10 includes a counter electrode 22 having a high voltage electrode 11 and a plurality of sub counter electrodes 12A made of a plate-like conductive material. . The high voltage electrode 11 is provided with the tooth row 113 provided with the some teeth 111 with which the tip was directed in the upstream of the ventilation direction.
고압 전극(11)에 있어서의 톱니열(113)은 스테인리스강, 서브 대향 전극(12A)은 알루미늄이다. 고압 전극(11)과 서브 대향 전극(12A) 사이의 거리 G는 15mm이다. 고압 전극(11)에 있어서의 톱니(111) 선단으로부터 접속부(112)까지의 길이 L는 3mm이다. 그리고, 톱니(111) 선단은 서브 대향 전극(12A)의 통풍 방향 상류측의 단부로부터 하류측 2mm에 위치해 있다(도 54에서, T1로 나타낸 거리). 또한, 톱니(111) 선단으로부터 서브 대향 전극(12A)의 통풍 방향 하류 측의 단부까지는 5mm이다(도 54에서, T2로 나타낸 거리).The tooth row 113 of the high voltage electrode 11 is made of stainless steel, and the sub counter electrode 12A is made of aluminum. The distance G between the high voltage electrode 11 and the sub counter electrode 12A is 15 mm. The length L from the tip of the tooth 111 to the connection part 112 in the high voltage electrode 11 is 3 mm. The tip of the tooth 111 is located 2 mm downstream from the end on the upstream side of the sub counter electrode 12A in the ventilation direction (distance indicated by T1 in FIG. 54). Moreover, it is 5 mm from the front-end | tip of the tooth | tip 111 to the edge part of the downstream side of the ventilation direction of 12 A of sub opposing electrodes (distance shown by T2 in FIG. 54).
또한, 서브 대향 전극(12A)의 통풍 방향 상류측의 단부로부터 3mm의 위치(도 54에서, T3으로 나타낸 거리)에, 수지 재료로 구성된 케이스(30)의 복수개의 격자(그릴)(31)을 구비한 케이스(30)가 형성되어 있다. 격자(그릴)(31)는 고압 전극(11)의 톱니(111)와 서브 대향 전극(12A)에 대하여, 도 54에 나타낸 상하 방향에 대하여 대향하는 위치에 배치되면, 사용자가 대전부(10)에 접촉하는 것이 억제되므로 바람직하다.Further, a plurality of gratings (grills) 31 of the case 30 made of a resin material are placed at a position (distance indicated by T3 in FIG. 54) of the sub counter electrode 12A on the upstream side of the ventilation direction. The provided case 30 is formed. When the grating (grill) 31 is disposed at a position facing the teeth 111 and the sub counter electrode 12A of the high voltage electrode 11 with respect to the up-down direction shown in FIG. 54, the user is charged with the charging unit 10. Since contact to is suppressed, it is preferable.
한편, 집진부(20)는 비전도성 재료로 구성된 고압 전극(21)과 전도성 재료로 구성된 대향 전극(22)을 번갈아 적층한 구조를 구비하고 있다.On the other hand, the dust collector 20 has a structure in which a high voltage electrode 21 made of a nonconductive material and an opposing electrode 22 made of a conductive material are alternately stacked.
도 55a 및 도 55b는 실시예 21 및 비교예 7에 따른 전기 집진기(1)에 있어서의 대전부(10)의 주요부의 사시도이다. 도 55a는 실시예 21, 도 55b는 비교예 7이다. 한편, 비교예 7은 제8 실시형태에서 설명한 비교예 7에 따른 전기 집진기(1)과 마찬가지이다(도 49c 참조). 즉, 도 55b에 나타낸 비교예 7에 따른 전기 집진기(1)는 도 55a의 실시예 21에 따른 전기 집진기(1)에 있어서의 고압 전극(11)인 톱니열(113)을, 직경 0.2mm의 텅스텐(W)의 와이어(114)로 하고 있다.55A and 55B are perspective views of main parts of the charging unit 10 in the electrostatic precipitator 1 according to Example 21 and Comparative Example 7. FIG. 55A is Example 21 and FIG. 55B is Comparative Example 7. FIG. On the other hand, the comparative example 7 is the same as the electrostatic precipitator 1 which concerns on the comparative example 7 demonstrated by 8th Embodiment (refer FIG. 49C). That is, the electrostatic precipitator 1 according to the comparative example 7 shown in FIG. 55B has the tooth row 113 which is the high voltage electrode 11 in the electrostatic precipitator 1 which concerns on Example 21 of FIG. The wire 114 of tungsten (W) is used.
한편, 실시예 21 및 비교예 7에 따른 전기 집진기(1)에 있어서, 서브 대향 전극(12A)를 Al로 하고 있다. 따라서, 도 55a, 도 55b에 있어서, 서브 대향 전극(12A) 상에 “(Al)”로 표기했다.On the other hand, in the electrostatic precipitator 1 according to Example 21 and Comparative Example 7, the sub counter electrode 12A is made Al. Therefore, in FIG. 55A and FIG. 55B, "(Al)" was described on the sub counter electrode 12A.
또한, 도 55a에서는, 도 53, 도 54에 있어서의 고압 전극(11)의 톱니열(113)과 대향 전극(12)의 서브 대향 전극(12A)의 배열을, 90° 회전시켜서 나타내고 있다. 또한, 도 55b에서는, 도 49c에 있어서의 와이어(114)와 서브 대향 전극(12A)의 배치를, 90° 회전시켜서 나타내고 있다.In addition, in FIG. 55A, the arrangement | positioning of the tooth row 113 of the high voltage electrode 11 and the sub counter electrode 12A of the counter electrode 12 in FIG. 53, FIG. 54 is shown by rotating 90 degrees. In addition, in FIG. 55B, arrangement | positioning of the wire 114 and 12 A of sub counter electrodes in FIG. 49C is shown by rotating 90 degrees.
도 56은 실시예 21, 비교예 7에 따른 전기 집진기(1)에 있어서의 오존 농도 및 입자 직경마다 구한 집진 효율을 설명하는 도면이다.56 is a diagram illustrating dust collection efficiency obtained for each ozone concentration and particle diameter in the electrostatic precipitator 1 according to Example 21 and Comparative Example 7. FIG.
여기에서도, 전기 집진기(1)를, 시험 풍동에 설치하고, 팬에 의해 풍속을 1m/s로 설정하고, 대전부(10)로부터 집진부(20)에 바람을 1회(원 패스) 통과시켰다.Here, the electric dust collector 1 was installed in the test wind tunnel, the wind speed was set to 1 m / s by the fan, and the wind was passed through the dust collector 20 from the charging section 10 once (one pass).
집진 효율은 시험 풍동의 상류측과 하류측에 샘플링 포트를 형성하고 샘플링 포트를 통하여, 주사형 나노 입자 직경 분포 측정기(SMPS)에 의해 부유 입자의 개수를 입경별로 측정하여 산출했다.Dust collection efficiency was computed by forming the sampling port in the upstream and downstream of a test wind tunnel, and measuring the number of suspended particles by particle diameter with the scanning nanoparticle diameter distribution analyzer (SMPS) through a sampling port.
오존 농도는 시험 풍동의 상류측과 하류측에 형성한 샘플링 포트를 통하여, 오존 농도계를 이용하여 측정한 상류측과 하류측의 오존 농도의 차로부터 구했다.The ozone concentration was determined from the difference between the ozone concentrations on the upstream side and the downstream side measured using an ozone concentration meter through sampling ports formed on the upstream side and the downstream side of the test wind tunnel.
도 56에 있어서의 비교예 7은 도 50에 있어서의 비교예 7의 고압 전극(11)(주(主) 고압 전극)의 전류가 440μA와 5000μA인 경우이다.In Comparative Example 7 in FIG. 56, the current of the high voltage electrode 11 (the main high voltage electrode) of Comparative Example 7 in FIG. 50 is 440 µA and 5000 µA.
도 56에 나타낸 바와 같이, 실시예 21에 따른 전기 집진기(1)에서는, 비교예 7에 비해, 오존 농도가 3.0ppb로 억제됨과 아울러, 집진 효율이 입자 직경에 따르지 않고 90% 이상으로 향상된다.As shown in FIG. 56, compared with the comparative example 7, in the electrostatic precipitator 1 which concerns on Example 21, while ozone concentration is suppressed to 3.0 ppb, dust collection efficiency improves to 90% or more regardless of particle diameter.
집진 효율이 향상된 요인은 톱니(111) 선단을 통풍 방향 상류 측에 향하게 하고, 아울러 톱니(111) 선단과 서브 대향 전극(12A)의 위치를 최적화함으로써, 톱니(111) 선단으로부터 발생하는 이온이 고압 전극(11)(톱니열(113))과 서브 대향 전극(12A) 사이로 확산되기 쉬워지고, 대전 효과가 향상하여 0.1㎛ 이하의 초미립자의 대전 효율이 개선된 것에 기인한다고 생각된다.The factor of the improved dust collection efficiency is to direct the tip of the tooth 111 to the upstream side of the ventilation direction and optimize the position of the tip of the tooth 111 and the sub counter electrode 12A so that the ions generated from the tip of the tooth 111 are high pressure. It is thought to be due to the easy diffusion of the electrode 11 (tooth rows 113) and the sub counter electrode 12A, the charging effect is improved, and the charging efficiency of ultrafine particles of 0.1 µm or less is improved.
또한, 오존 농도가 억제된 요인은 고압 전극(11)을 톱니(111)로 하여 전계 집중을 높이면서, 톱니(111)와 서브 대향 전극(12A)의 거리를 크게 취함으로써, 방전시의 공간 저항이 커지고, 고밀도의 이온의 발생이 얻어지는 방전 조건에 있어서도, 오존 발생의 기점이 되는 전자량이 억제된 것에 기인한다고 생각된다.Further, the factor in which the ozone concentration is suppressed is that the space resistance at the time of discharge is increased by taking the distance between the tooth 111 and the sub counter electrode 12A while increasing the electric field concentration by using the high voltage electrode 11 as the tooth 111. This is considered to be attributable to the fact that the amount of electrons which is the starting point of ozone generation is suppressed even in the discharge conditions in which the increase in the generation of high-density ions is obtained.
한편, 비교예 7에 있어서도 전류(방전 전류)를 크게(예를 들면, 5000μA로) 하면, 집진 효율을 입자 직경에 따르지 않고 높게 할 수 있다. 그러나, 오존 농도는 실시예 21에 비해, 60배 이상이 된다. 즉, 고압 전극(11)에 와이어(114)를 이용한, 비교예 7에 따른 전기 집진기(1)에서는, 입자 직경의 작은 입자를 대전시키기 위하여 이온 밀도를 높이면(전류를 높게 하면) 오존 농도가 증대된다.On the other hand, also in the comparative example 7, when current (discharge current) is made large (for example, 5000 microamperes), dust collection efficiency can be made high regardless of a particle diameter. However, the ozone concentration is 60 times or more as compared with Example 21. That is, in the electrostatic precipitator 1 according to Comparative Example 7, which uses the wire 114 for the high voltage electrode 11, when the ion density is increased (when the current is increased) to charge the small particles having the particle diameter, the ozone concentration increases. do.
이에 비하여, 제9 실시형태가 적용되는 전기 집진기(1)(실시예 21에 따른 전기 집진기(1))에서는, 이온 밀도가 높은 상태에서도, 오존 농도를 억제(산소 분자의 해리와 여기를 억제)할 수 있는 방전이 형성된다.In contrast, in the electrostatic precipitator 1 (the electrostatic precipitator 1 according to Example 21) to which the ninth embodiment is applied, the ozone concentration is suppressed even in a state where the ion density is high (dissociation and excitation of oxygen molecules are suppressed). The discharge which can be formed is formed.
또한, 제9 실시형태가 적용되는 전기 집진기(1)에서는, 대향 전극(12)(서브 대향 전극(12A))을 절연체부로 피복하는 것을 필요로 하지 않기 때문에, 코스트, 생산성 등의 면에 있어서 메리트가 있다.In addition, in the electrostatic precipitator 1 to which the ninth embodiment is applied, it is not necessary to cover the counter electrode 12 (sub counter electrode 12A) with an insulator portion, and therefore, there are advantages in terms of cost and productivity. There is.
제1 실시형태 내지 제9 실시형태에서 나타낸 수치는 일례이며, 이것들에 한정되지 않는 것은 분명하다.The numerical values shown in the first to ninth embodiments are examples, and it is obvious that the numerical values are not limited to these.
그 밖에, 본 발명의 취지에 반하지 않는 한, 여러 가지 조합이나 변형을 실시해도 무방하다.In addition, various combinations and modifications may be made unless it contradicts the spirit of the present invention.

Claims (20)

  1. 고전압 발생 회로로부터 고전압이 공급되는 고압 전극과, 상기 고압 전극에 대향하여 형성되고 상기 고전압 발생 회로로부터 기준 전압이 공급되는 대향 전극을 가지며, 상기 고압 전극과 상기 대향 전극 사이에 방전을 발생시켜서서 부유 미립자를 대전시키는 대전부; 및A high voltage electrode supplied with a high voltage from a high voltage generator circuit, and a counter electrode formed opposite the high voltage electrode and supplied with a reference voltage from the high voltage generator circuit, and floating by generating a discharge between the high voltage electrode and the counter electrode. A charging unit for charging the fine particles; And
    상기 대전부의 통풍 방향의 하류 측에 배치되고 상기 대전부에서 대전시킨 상기 부유 미립자를 모으는 집진부를 구비하는 전기 집진기.An electrostatic precipitator including a dust collector disposed on a downstream side of the charging direction of the charging unit and collecting the suspended fine particles charged by the charging unit.
  2. 제1항에 있어서,The method of claim 1,
    상기 대향 전극은 도전성 재료로 구성된 도체부와, 상기 도체부의 적어도 상기 고압 전극에 대향하는 측의 표면을 덮고, 상기 고압 전극과 상기 대향 전극 사이의 방전 전류를 제한하는, 체적 저항율이 1014Ω·cm 이상 및 1018Ω·cm 이하인 저항체부를 구비하는 전기 집진기.The counter electrode covers a conductor portion made of a conductive material and a surface of at least the side of the conductor portion opposite to the high voltage electrode, and has a volume resistivity of 10 14 Pa · which limits the discharge current between the high voltage electrode and the counter electrode. An electrostatic precipitator comprising a resistor unit portion of at least cm and less than 10 18 Pa · cm.
  3. 제1항에 있어서,The method of claim 1,
    상기 고압 전극은 와이어 형상 또는 브러시 형상인 전기 집진기.The high pressure electrode is an electric precipitator having a wire shape or a brush shape.
  4. 제1항에 있어서,The method of claim 1,
    상기 고압 전극은 선단이 뾰족한 톱니 형상 부분 또는 선단이 뾰족한 바늘 형상 부분을 구비하는 전기 집진기.The high voltage electrode is an electrostatic precipitator having a sawtooth-shaped portion having a pointed tip or a needle-shaped portion having a pointed tip.
  5. 제4항에 있어서,The method of claim 4, wherein
    복수개의 상기 톱니 형상 부분 또는 복수개의 상기 바늘 형상 부분이, 상기 통풍 방향에 대하여 교차함과 아울러, 복수개의 열로 나누어지고, 상기 복수개의 열 각각에 있어서의 상기 톱니 형상 부분의 선단 또는 상기 바늘 형상 부분의 선단이, 인접하는 열의 사이에서 열 방향으로 서로 어긋나게 배치되거나, 또는 대향하도록 배치되는 전기 집진기.A plurality of the serrated portions or a plurality of the needle-like portions intersect with the ventilation direction, are divided into a plurality of rows, and the tip of the serrated portion or the needle-shaped portion in each of the plurality of rows. The electric dust collector which is arrange | positioned so that the front-end | tip of may be mutually offset or oppose to each other in the column direction between adjacent rows.
  6. 제1항에 있어서,The method of claim 1,
    상기 고압 전극은 주(主) 고압 전극과 종(從) 고압 전극을 구비하는 것을 특징으로 하는 전기 집진기.And said high voltage electrode comprises a main high voltage electrode and a longitudinal high voltage electrode.
  7. 제6항에 있어서,The method of claim 6,
    상기 고압 전극에 있어서, 상기 주(主) 고압 전극이 톱니 형상 부분 또는 바늘 형상 부분을 구비하고, 상기 종(從) 고압 전극이 와이어 형상인 것을 특징으로 하는 전기 집진기.The said high voltage electrode WHEREIN: The said main high voltage electrode is provided with the sawtooth-shaped part or the needle-shaped part, and the said longitudinal high voltage electrode is a wire-shaped dust collector characterized by the above-mentioned.
  8. 제1항에 있어서,The method of claim 1,
    상기 대전부에 있어서의 상기 대향 전극의 상기 도체부는 통풍을 확보하기 위하여 간격을 두어 배치된 복수개의 평판, 개구를 갖는 망(網), 개구를 갖는 펀칭 메탈 또는 개구를 갖는 익스펜디드 메탈로 구성되는 전기 집진기.The conductor portion of the counter electrode in the electrification portion is composed of a plurality of flat plates arranged at intervals to ensure ventilation, a mesh having an opening, a punching metal having an opening, or an expanded metal having an opening. Electric dust collector.
  9. 제1항에 있어서,The method of claim 1,
    상기 대전부에 있어서의 상기 대향 전극은 상기 대전부의 상기 고압 전극에 대하여 상기 통풍 방향의 상류 측에 배치되어 있는 것을 특징으로 하는 전기 집진기.The counter electrode in the charging unit is disposed on an upstream side of the ventilation direction with respect to the high voltage electrode in the charging unit.
  10. 제1항에 있어서,The method of claim 1,
    수지 재료로 구성되고 상기 대전부를 수납하는 케이스;를 더 구비하고,상기 대전부에 있어서의 상기 대향 전극은 도전성 재료로 구성된 도체부와, 상기 도체부의 적어도 상기 고압 전극에 대향하는 측의 표면을 덮는 저항체부를 구비하고,And a case configured to contain the charging unit, wherein the counter electrode in the charging unit covers a conductor portion made of a conductive material and a surface of the conductor portion that faces at least the high voltage electrode. With a resistor body,
    상기 대전부를 수납하는 상기 케이스는 상기 대전부의 상기 대향 전극의 상기 도체부에 대하여, 도통하는 전기적 접촉을 갖는 전기 집진기.The case for accommodating the charging unit has an electrical dust collector having electrical contact with the conductor portion of the counter electrode of the charging unit.
  11. 제1항에 있어서,The method of claim 1,
    상기 대향 전극은 도전성 재료로 구성된 도체부와, 상기 도체부의 상기 고압 전극 측을 덮는 제1 부재, 및 상기 제1 부재의 상기 고압 전극 측을 덮는 제2 부재를 더 가지며,The counter electrode further includes a conductor portion made of a conductive material, a first member covering the high voltage electrode side of the conductor portion, and a second member covering the high voltage electrode side of the first member,
    상기 대향 전극은 상기 제2 부재가 상기 도체부와 전기적으로 접촉하는 접촉 영역을 갖는 전기 집진기.And the counter electrode has a contact region in which the second member is in electrical contact with the conductor portion.
  12. 제1항에 있어서,The method of claim 1,
    상기 대향 전극은 상기 대향 전극의 형상을 설정하는 기재와, 상기 기재의 상기 고압 전극에 대향하지 않는 면에 형성된 제1 부재, 및 상기 기재 상에 형성된 도전성의 제2 부재를 갖는 전기 집진기.The counter electrode has an electrostatic precipitator including a substrate for setting the shape of the counter electrode, a first member formed on a surface of the substrate that does not face the high voltage electrode, and a conductive second member formed on the substrate.
  13. 제1항에 있어서,The method of claim 1,
    상기 대향 전극은 상기 대향 전극의 형상을 설정하는 기재와, 상기 기재의 상기 고압 전극에 대향하는 면에 형성된 제1 부재, 및 상기 기재의 상기 고압 전극에 대향하지 않는 면에 형성된 도전성의 제2 부재를 갖는 전기 집진기.The counter electrode includes a substrate for setting the shape of the counter electrode, a first member formed on a surface of the substrate that opposes the high voltage electrode, and a conductive second member formed on a surface of the substrate that does not oppose the high voltage electrode of the substrate. Electrostatic precipitator having a.
  14. 제1항에 있어서,The method of claim 1,
    상기 고압 전극은 톱니 형상 부분 또는 바늘 형상 부분을 가지며, 상기 대향 전극은 도전성 재료로 구성된 평판형상의 서브 대향 전극을 가지며, 상기 고압 전극의 복수개의 톱니 형상 부분 또는 바늘 형상 부분과 상기 서브 대향 전극은 상기 통풍 방향으로 교차하는 방향으로 배치됨과 아울러, 상기 고압 전극의 톱니 형상 부분 또는 바늘 형상 부분이 평면형상의 상기 서브 대향 전극의 표면에 대하여 평행하게 배치되는 전기 집진기.The high voltage electrode has a serrated portion or a needle shaped portion, the counter electrode has a flat sub counter electrode made of a conductive material, and the plurality of serrated portions or the needle shaped portion and the sub counter electrode of the high voltage electrode The electrostatic precipitator is disposed in a direction crossing with the ventilation direction, and the sawtooth-shaped portion or the needle-like portion of the high voltage electrode is disposed parallel to the surface of the planar sub counter electrode.
  15. 제14항에 있어서,The method of claim 14,
    상기 고압 전극의 톱니 형상 부분의 선단 또는 바늘 형상 부분의 선단은 상기 통풍 방향의 상류 측을 향하고, 평판형상의 상기 서브 대향 전극의 상기 통풍 방향의 상류단보다도 하류 측에 위치하는 전기 집진기.The tip of the sawtooth-shaped portion or the tip of the needle-like portion of the high-voltage electrode is directed to the upstream side of the ventilation direction, the electrostatic precipitator is located downstream from the upstream end of the ventilation direction of the plate-shaped sub counter electrode.
  16. 제14항에 있어서,The method of claim 14,
    상기 서브 대향 전극은 상기 고압 전극의 톱니 형상 부분의 선단 또는 바늘 형상 부분의 선단으로부터 상기 통풍 방향의 하류 측에, 적어도 상기 톱니 형상 부분 또는 바늘 형상 부분의 길이에 걸쳐서 배치되는 전기 집진기.And said sub counter electrode is disposed at least over the length of the sawtooth portion or the needle-like portion on the downstream side of the ventilation direction from the tip of the sawtooth portion or the tip of the needle-shaped portion of the high pressure electrode.
  17. 제1항에 있어서,The method of claim 1,
    상기 대향 전극은 도전성 재료로 구성된 도체부와, 상기 도체부의 적어도 상기 고압 전극에 대향하는 측의 표면을 덮는 저항체부와, 상기 도체부와 상기 저항체부 사이에 위치하는 절연체부를 구비하는 전기 집진기.And the counter electrode comprises a conductor portion made of a conductive material, a resistor portion covering at least a surface of the conductor portion opposite to the high voltage electrode, and an insulator portion located between the conductor portion and the resistor portion.
  18. 고전압 발생 회로로부터 고전압이 공급되는 고압 전극과, 상기 고압 전극에 대향하여 형성되고 상기 고전압 발생 회로로부터 기준 전압이 공급되는 대향 전극을 가지며, 상기 고압 전극과 상기 대향 전극 사이에 방전을 발생시켜서 부유 미립자를 대전시키는 대전부; 및And a high voltage electrode supplied with a high voltage from a high voltage generation circuit, and a counter electrode formed to face the high voltage electrode and supplied with a reference voltage from the high voltage generation circuit, to generate a discharge between the high voltage electrode and the counter electrode to generate floating fine particles. Charging unit for charging; And
    상기 대전부의 통풍 방향의 하류 측에 배치되고 다른 고전압 발생 회로로부터 고전압이 공급되는 다른 고압 전극과, 상기 다른 고압 전극에 대향하여 형성되고 상기 다른 고전압 발생 회로로부터 기준 전압이 공급되는 다른 대향 전극을 가지며, 상기 대전부에서 대전시킨 상기 부유 미립자를 모으는 집진부;를 구비하고,Another high voltage electrode disposed on a downstream side of the ventilation direction of the charging unit and supplied with a high voltage from another high voltage generator circuit, and another counter electrode formed to face the other high voltage electrode and supplied with a reference voltage from the other high voltage generator circuit; And a dust collecting unit collecting the suspended fine particles charged by the charging unit.
    상기 대전부를 구성하는 부재 중, 가장 상기 집진부에 가까운 부재의 단부로부터 통풍 방향 하류에 기 설정된 이간 거리를 가지고 해당 집진부의 상기 다른 고압 전극이 배치되어 있는 것을 특징으로 하는 전기 집진기.And said other high voltage electrode of said dust collector is arranged with a predetermined separation distance downstream from the end of the member which is closest to said dust collector to the said dust collection part among the members which comprise the said electrification part.
  19. 고전압 발생 회로로부터 고전압이 공급되는 고압 전극과, 상기 고압 전극에 대향하여 형성되고 상기 고전압 발생 회로로부터 기준 전압이 공급되는 대향 전극과, 인덕터를 포함하고 상기 고압 전극과 상기 대향 전극 사이에 발생하는 방전에 있어서의 펄스형상 전류에 의해 상기 고압 전극의 전위를 저하시키는 전류 제한 회로를 가지며, 상기 고압 전극과 상기 대향 전극 사이에 방전을 발생시켜서 부유 미립자를 대전시키는 대전부; 및A discharge generated between the high voltage electrode and the counter electrode, including a high voltage electrode supplied with a high voltage from a high voltage generation circuit, a counter electrode formed to face the high voltage electrode and supplied with a reference voltage from the high voltage generation circuit, and an inductor; A charging section that has a current limiting circuit for lowering the potential of the high voltage electrode by a pulse current in the cell, and generates a discharge between the high voltage electrode and the counter electrode to charge floating fine particles; And
    상기 대전부의 통풍 방향의 하류 측에 배치되고 상기 대전부에서 대전시킨 상기 부유 미립자를 모으는 집진부;를 구비하는 전기 집진기.And a dust collecting unit disposed on a downstream side of the charging direction of the charging unit and collecting the suspended fine particles charged by the charging unit.
  20. 제19항에 있어서,The method of claim 19,
    상기 전류 제한 회로는 상기 인덕터와 다이오드의 병렬 회로로 구성되는 전기 집진기.And said current limiting circuit comprises a parallel circuit of said inductor and diode.
PCT/KR2015/014012 2014-12-22 2015-12-21 Electrostatic dust collector WO2016105045A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580069946.6A CN107107074B (en) 2014-12-22 2015-12-21 Electrostatic dust collector
US15/538,881 US10766039B2 (en) 2014-12-22 2015-12-21 Electrostatic precipitator

Applications Claiming Priority (16)

Application Number Priority Date Filing Date Title
JP2014259431 2014-12-22
JP2014259430 2014-12-22
JP2014-259430 2014-12-22
JP2014-259432 2014-12-22
JP2014-259431 2014-12-22
JP2014259429 2014-12-22
JP2014-259429 2014-12-22
JP2014259432 2014-12-22
JP2015013500 2015-01-27
JP2015-013500 2015-01-27
JP2015136771 2015-07-08
JP2015-136771 2015-07-08
JP2015232405A JP2017013041A (en) 2014-12-22 2015-11-27 Electrostatic precipitator
JP2015-232405 2015-11-27
KR1020150180688A KR102478243B1 (en) 2014-12-22 2015-12-17 Electrostatic precipitator
KR10-2015-0180688 2015-12-17

Publications (1)

Publication Number Publication Date
WO2016105045A1 true WO2016105045A1 (en) 2016-06-30

Family

ID=56150993

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/014012 WO2016105045A1 (en) 2014-12-22 2015-12-21 Electrostatic dust collector

Country Status (1)

Country Link
WO (1) WO2016105045A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190388904A1 (en) * 2016-12-05 2019-12-26 Samsung Electronics Co., Ltd. Air clean filter, hybrid air clean filter and air cleaner
US10766039B2 (en) 2014-12-22 2020-09-08 Samsung Electronics Co., Ltd. Electrostatic precipitator
TWI722567B (en) * 2019-04-24 2021-03-21 日商三菱動力環保股份有限公司 Electric dust collector

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100191681B1 (en) * 1995-04-05 1999-06-15 이달우 Deodoring method and deodoring device by sawtooth wave corona discharge
KR100205392B1 (en) * 1996-02-01 1999-07-01 구자홍 Electrostatic precipitator
JP2001321692A (en) * 2000-05-17 2001-11-20 Mitsubishi Electric Corp Air cleaner
JP2006281135A (en) * 2005-04-01 2006-10-19 Denso Corp Dust collector
JP2009112938A (en) * 2007-11-06 2009-05-28 Panasonic Corp Electric dust collector

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100191681B1 (en) * 1995-04-05 1999-06-15 이달우 Deodoring method and deodoring device by sawtooth wave corona discharge
KR100205392B1 (en) * 1996-02-01 1999-07-01 구자홍 Electrostatic precipitator
JP2001321692A (en) * 2000-05-17 2001-11-20 Mitsubishi Electric Corp Air cleaner
JP2006281135A (en) * 2005-04-01 2006-10-19 Denso Corp Dust collector
JP2009112938A (en) * 2007-11-06 2009-05-28 Panasonic Corp Electric dust collector

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10766039B2 (en) 2014-12-22 2020-09-08 Samsung Electronics Co., Ltd. Electrostatic precipitator
US20190388904A1 (en) * 2016-12-05 2019-12-26 Samsung Electronics Co., Ltd. Air clean filter, hybrid air clean filter and air cleaner
TWI722567B (en) * 2019-04-24 2021-03-21 日商三菱動力環保股份有限公司 Electric dust collector

Similar Documents

Publication Publication Date Title
WO2016105045A1 (en) Electrostatic dust collector
WO2015072722A1 (en) Touch input sensing method for reducing influence of parasitic capacitance and device therefor
EP3551334A1 (en) Electronic dust collecting apparatus and method of manufacturing dust collector
CN101523529A (en) Electrical device
WO2021006414A1 (en) Arc path forming part and direct-current relay comprising same
WO2017074144A2 (en) Electric dust-collecting device and method for manufacturing same
WO2010137921A2 (en) Led driver
WO2014088206A1 (en) Means and method for detecting capacitance connected to ac power
WO2021182788A2 (en) Air circuit breaker
WO2015093787A1 (en) Oil detection device, compressor having the same and method of controlling the compressor
WO2020256263A1 (en) Direct current relay
WO2010134706A9 (en) Compact camera module
WO2018105819A1 (en) Electric dust collector and humidifying air purifier comprising same
WO2021182786A1 (en) Arc extinguishing unit and air circuit breaker comprising same
WO2021125760A1 (en) Louver assembly capable of having mounted thereon solar cell panel
WO2011002151A2 (en) Image-capturing apparatus with a function for compensating for shaking
WO2018043922A1 (en) Method for manufacturing far infrared heating wire and far infrared heating wire manufactured thereby
WO2020197334A1 (en) Stand-alone active emi filter module
WO2021182789A2 (en) Air circuit breaker
WO2018124713A1 (en) Insect trap
WO2018093014A1 (en) Silver nanowire film and manufacturing method therefor, and touch screen panel and manufacturing method therefor
WO2018194236A1 (en) Environment purifying device
WO2021112343A1 (en) Arc path formation unit and direct current relay including same
WO2020235812A1 (en) Device and method for managing fine particle concentration
WO2022240032A1 (en) Arc extinguishing unit, interruption unit, and air circuit breaker comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15873572

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15538881

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 15873572

Country of ref document: EP

Kind code of ref document: A1