WO2016104986A1 - Modified conjugated diene-based polymer and composition containing same - Google Patents

Modified conjugated diene-based polymer and composition containing same Download PDF

Info

Publication number
WO2016104986A1
WO2016104986A1 PCT/KR2015/013198 KR2015013198W WO2016104986A1 WO 2016104986 A1 WO2016104986 A1 WO 2016104986A1 KR 2015013198 W KR2015013198 W KR 2015013198W WO 2016104986 A1 WO2016104986 A1 WO 2016104986A1
Authority
WO
WIPO (PCT)
Prior art keywords
conjugated diene
polymer
modified conjugated
based polymer
monomer
Prior art date
Application number
PCT/KR2015/013198
Other languages
French (fr)
Korean (ko)
Inventor
박대호
이도훈
현재용
최준걸
Original Assignee
한화토탈 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한화토탈 주식회사 filed Critical 한화토탈 주식회사
Publication of WO2016104986A1 publication Critical patent/WO2016104986A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/28Reaction with compounds containing carbon-to-carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/30Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule
    • C08C19/34Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule reacting with oxygen or oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/46Reaction with unsaturated dicarboxylic acids or anhydrides thereof, e.g. maleinisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L15/00Compositions of rubber derivatives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S524/00Synthetic resins or natural rubbers -- part of the class 520 series
    • Y10S524/901Electrodepositable compositions

Definitions

  • the present invention relates to a modified conjugated diene-based polymer and a composition comprising the same, and more particularly, at least one of the start end and the end end of the polymer chain are hydrolyzed under a heat or acid catalyst so that the ester group is carboxyl group or anhydride.
  • the present invention relates to a modified conjugated diene-based polymer having excellent storage stability and excellent affinity with a polar inorganic additive such as silica, and a composition comprising the same.
  • modified conjugated diene-based polymer materials incorporating functional chemicals into diene-based polymers have been used in various applications.
  • the application of such modified conjugated diene-based polymers to automobile tires is increasing the demand for the development of material technology that can improve braking performance and fuel economy.
  • ESBR styrene-butadiene rubber
  • an additive such as carbon black and sulfur, which are inorganic additives, is used for blending and vulcanizing to increase elastic modulus.
  • ESBR styrene-butadiene rubber
  • carbon black and sulfur which are inorganic additives
  • SSBR styrene butadiene rubber
  • an organometallic catalyst such as butyl lithium having carbon anionicity is generally used as an initiator, and the molecular weight and molecular weight distribution are characteristic of the polymerization method called anion polymerization.
  • anion polymerization not only the polymer micro-structure but also the macro-structure can be freely controlled, so that it is possible to design a rubber material that can improve braking performance and reduce fuel consumption when used in a tire tread.
  • US Pat. No. 7,279,531 discloses a method of improving the dispersibility and affinity for carbon black by introducing a tin (Sn) -based compound into a conjugated diene-based polymer as a modified compound.
  • a tin (Sn) -based compound into a conjugated diene-based polymer as a modified compound.
  • an inorganic additive such as silica having a polar group on the surface.
  • hexachlorodisiloxane was used as a modified compound to increase the compatibility with silica.
  • the modified conjugated diene-based polymer prepared by using the compound is mixed with silica, fuel economy may be increased compared to the conjugated diene-based polymer which is not modified by the combination of silica, but due to strong toxicity, there is a limit to the production.
  • the dispersion of silica is not sufficient and there is a limit in improving fuel efficiency when used in a tire.
  • an alkoxysilane containing a glycidyl group is used as a modified compound for compatibility with silica and strengthening bonds.
  • the modified conjugated diene-based polymer into which the compound is introduced is mixed with silica, fuel economy may be increased compared to the unmodified conjugated diene-based polymer.
  • the modified conjugated conjugate may be used for a long time after polymerization
  • the pattern viscosity of the diene polymer may increase, and functional groups capable of bonding with the silica may be consumed by the coupling reaction, resulting in insufficient dispersion of the silica.
  • carboxylic acid functional groups are introduced via post-reaction after polymerization of styrenebutadiene rubber.
  • the modified conjugated diene-based polymer is blended with silica, the running performance and braking performance may be improved compared to the unmodified conjugated diene-based polymer.
  • the peroxide added for the post-reaction reaction results in the use of styrenebutadiene rubber.
  • the double bond of a 4-4-butadiene unit may decompose
  • the present invention has been made to solve the problems of the above-described prior arts, and an object of the present invention is to hydrolyze under a thermal or acid catalyst upon polymerization of a conjugated diene-based polymer so that an ester group is converted into a carboxyl group or anhydride.
  • an object of the present invention is to hydrolyze under a thermal or acid catalyst upon polymerization of a conjugated diene-based polymer so that an ester group is converted into a carboxyl group or anhydride.
  • Another object of the present invention is to provide a composition comprising the modified conjugated diene-based polymer of the present invention and an inorganic filler, the composition of the present invention improves the dispersibility of the inorganic additive and rubber, low hysteresis when applied to a tire material
  • the balance between the loss property and the wet skid property, that is, the rotation resistance / braking property is excellent, and the storage stability is excellent.
  • the present invention includes a functional monomer in which at least one of the start end and end end of the polymer chain is hydrolyzed under a heat or acid catalyst to convert the ester group into a carboxyl group or anhydride. It provides a modified conjugated diene-based polymer.
  • the functional monomer is a monomer represented by the following formula (1).
  • R 1 is hydrogen or an alkyl group having 1 to 20 carbon atoms, or an aryl group having 6 to 20 carbon atoms
  • R 2 is an alkyl group having 4 to 20 carbon atoms including a tertiary carbon, or an aryl group having 6 to 20 carbon atoms.
  • an alkylsilyl group having 3 to 20 carbon atoms and 1 to 10 silicon atoms, or an arylsilyl group having 6 to 20 carbon atoms and 1 to 10 silicon atoms, and R 2 is separated by a thermal or acid catalyst to obtain an ester of the monomer. The group is converted to a carboxylic acid group or an anhydride.
  • R 1 examples include hydrogen, methyl, ethyl, and the like
  • R 2 include tertiary-butyl ester group, trimethylsilyl ester group, triethylsilyl ester group, and tertiary-.
  • a butoxyphenyl group, a trimethyl siloxy phenyl group, a triethyl siloxy phenyl group, etc. are mentioned.
  • the functional monomer is selected from the group selected from tert-butyl acrylate, tert-butyl methacrylate, trimethylsilyl acrylate, trimethylsilyl methacrylate, triethylsilyl acrylate and triethylsilyl methacrylate
  • tert-butyl acrylate tert-butyl methacrylate
  • trimethylsilyl acrylate trimethylsilyl methacrylate
  • triethylsilyl acrylate and triethylsilyl methacrylate triethylsilyl methacrylate
  • the modified conjugated diene type polymer of this invention contains the said functional monomer in the range of 1 or more and 100 or less in the terminal.
  • the functional monomer is not introduced, the balance and storage stability of the low hysteresis loss and wet skid properties of the present invention are not improved, and when more than 100 of the functional monomers are introduced, the low fuel efficiency is not improved. Not.
  • the functional monomer may be included in the polymer in an oligomeric block structure.
  • the conjugated diene polymer refers to a conjugated diene homopolymer obtained by polymerizing a diene monomer alone, or a conjugated diene copolymer obtained by copolymerizing two or more kinds of diene monomers, or a form different from a diene monomer. It may be a copolymer copolymerized together with a vinyl monomer of.
  • the modified conjugated diene-based polymer of the present invention may be subjected to (co) polymerization of one or more diene monomers or to copolymerization of diene monomers and vinyl aromatic monomers in the presence of an organometallic catalyst such as organolithium and a hydrocarbon solvent.
  • the polymerization may be performed by adding the functional monomer to carry out the polymerization, and a polar additive may be further added as necessary during the polymerization.
  • diene monomer examples include one or more selected from 1,3-butadiene and isoprene, but are not limited thereto.
  • vinyl aromatic monomers examples include, but are not limited to, one or more selected from styrene and alpha methyl styrene.
  • the organometallic catalyst usable in the preparation of the modified conjugated diene-based polymer of the present invention is a form in which an alkali metal or an alkali earth metal is combined with a hydrocarbon anion, and examples of the alkali metal or alkali earth metal include lithium, sodium, potassium, and the like. May be, but is not limited to these.
  • Preferred organometallic catalysts are organolithium catalysts, and non-limiting examples of organolithium catalysts include n-butyllithium, sec-butyllithium, tert-butyllithium, n-hexyllithium and isopropyllithium having one anion.
  • an organolithium catalyst having an anion may also be used, such as divinylbenzene lithium, dipropenylbenzene lithium, or lithium pyrollidide. It can be used as a species or mixture of 2 or more types. In some cases, one or more types of organolithium catalysts having one anion and organolithium catalysts having both anions may be used.
  • a polar additive may be further used to control the microstructure of the polymer, to improve the polymerization rate, or to control the reactivity.
  • the amount of added may vary depending on the purpose or type of the additive.
  • Non-limiting examples of such polar additives include N, N, N ', N'-tetramethylethylenediamine (TMEDA), tetrahydrofuran (THF), diethyl ether, cycloamalether, dipropyl ether, ethylene glycol, tri Ethylamine, ethylbutyl ether, crown ether, ditetrahydrofurylpropane, ethyltetrahydrofuryl ether, triethylamine, and derivatives thereof.
  • TEDA tetramethylethylenediamine
  • THF tetrahydrofuran
  • diethyl ether diethyl ether
  • cycloamalether dipropyl ether, ethylene glycol, tri Ethylamine, ethylbutyl ether, crown ether, ditetrahydrofurylpropane, ethyltetrahydrofuryl ether, triethylamine, and derivatives thereof.
  • usable hydrocarbon solvents include n-hexane, n-heptane, cyclohexane, isooctane, methylcyclopentane, benzene, toluene, xylene, and the like. It can mix and use 2 or more types.
  • the monomers are added to within 50% by weight in the hydrocarbon solvent, preferably at a level of 15 to 35% by weight. If the total content of the monomer exceeds 50% by weight, the viscosity of the solution rises, making it difficult to control the molecular weight or the heat of reaction or uniform stirring during the polymerization.
  • the polymerization temperature may vary depending on the solvent, and in general, polymerization is possible at 10 to 160 ° C.
  • the microstructure may vary depending on the polymerization temperature, and the polymerization temperature may be adjusted according to the purpose.
  • the coupling agent may be added at the time of superposition
  • the coupling agent any one generally used in the art can be used, and when the functional group of the coupling agent is 2, a linear polymer obtained by doubling the molecular weight is obtained, and when the functional group of the coupling agent is 3 or more
  • the star-polymer (star-polymer) can be obtained.
  • the coupling agent tin series, alkoxysilane series or halosilane series may be used, and a coupling agent containing a glycidyl group may be used.
  • Non-limiting examples of coupling agents, tin-based coupling agents include diphenyltin dichloride, dibutyltin dichloride, dihexyltin dichloride, dioctyltin dichloride, phenyltin trichloride, butyltin trichloride, octyl Tin trichloride, tetrachloro tin, tetra methoxytin, tetra ethoxytin, tetrapropoxytin and the like can be used, and the alkoxysilane series is dimethyldimethoxy silane, diethyldimethoxy silane, dipropyldimethoxysilane, di Butyldimethoxysilane, methyltrimethoxysilane, ethyltrimethoxysilane, propyltrimethoxysilane, butyltrimethoxy silane, methyltriethoxysilane, e
  • the halosilane series is diphenyldichlorosilane, dihexyldichlorosilane, dioctyldichlorosilane, dibutyldichlorosilane, dimethyldichlorosilane, methyltrichlorosilane, phenyltrichlorosilane, hexyltrichlorosilane, octyltrichlorosilane, butyl trichloro Rosilane, methyltrichlorosilane, tetrachlorosilane and the like can be used.
  • Coupling agents containing glycidyl groups include 4,4'-methylenebis (N, N-diglycidylaniline), N, N-diglycidyl-4-glycidoxycyanine, N, N-di Glycidylaniline, N, N, N ', N'-tetraglycidyl-3,3'-diethyl-4,4'-diaminodiphenylmethane and the like can be used.
  • the above-mentioned coupling agents may be used alone or in combination of two or more thereof. Illustrating the coupling agent is not intended to limit the structure, and any type can be used as long as it can react with active ends such as tin series, alkoxysilane series, halosilane series, glycidyl series.
  • the conversion of the ester group of the functional monomer to carboxylic acid or anhydride through hydrolysis can be sufficiently hydrolyzed even through heat, but It is preferred to carry out under acid catalyst in order to induce hydrolysis more efficiently during the time.
  • various acids such as hydrochloric acid, acetic acid, nitric acid and para-toluenesulfonic acid series may be applied.
  • the present invention also provides a composition comprising the modified conjugated diene-based polymer of the present invention described above.
  • the composition of the present invention is characterized in that it comprises 0.1 to 200 parts by weight of the inorganic filler with respect to 100 parts by weight of the modified conjugated diene-based polymer of the present invention.
  • carbon black, a silica, etc. can be used individually or in mixture of 2 or more types.
  • the performance of the modified conjugated diene-based polymer of the present invention can be further improved.
  • the inorganic filler preferably has a pH of 3 to 7 when dispersed in a 4% aqueous solution in order to efficiently induce hydrolysis of the ester group or phenylether group of the functional monomer.
  • the pH is less than 3, corrosion of the processing equipment may occur during the mixing of the inorganic filler and the conjugated diene-based polymer, and if the pH is greater than 7, the hydrolysis rate of the ester group or the phenylether group of the functional monomer may be slow. Can be.
  • compositions of the present invention are typically suitable for use for tire materials, in particular for tire treads, and thus may further comprise, in usual amounts, conventional additives that can be formulated into the composition for tires.
  • the modified diene polymer of the present invention is excellent in affinity with polar inorganic additives such as silica, and the composition obtained by incorporating inorganic or metal oxide particles alone or in combination of two or more thereof by using the same is not only improved in physical properties but also tire materials.
  • polar inorganic additives such as silica
  • the balance between low hysteresis loss and wet skid property is excellent, and low fuel efficiency and braking property are improved, and storage stability is excellent.
  • the present invention may be modified in various ways and may have various embodiments, but the present invention is provided below in order to help the understanding of the present invention, but the following examples are only for illustrating the present invention and the scope of the present invention. Is not limited to the following examples.
  • microstructure of the polymerized polymer was confirmed using Bruker's 400 MHz 1 H-NMR.
  • Molecular weight was measured by connecting two polystyrene 5 ⁇ m mixed-C columns of PLgel in series and using THF as a solvent together with a polystyrene reference sample (molecular weight 5000 g / mol) and a polymerized polymer.
  • the detector used a refractive index detector (RI).
  • the ester group hydrolysis conversion to carboxylic acid after hydrolysis was confirmed through the peak area of hydrogen of carboxylic acid of ⁇ 12.3 ppm, and the alkoxyphenyl group hydrolysis (conversion to phenol group after hydrolysis) of 7.9 ppm of phenol group It was confirmed through the peak area of hydrogen.
  • the conversion ratio was calculated in consideration of the ratio of the input amount of butadiene and functional monomer and the relative area ratio with respect to the peak area of butadiene units (4.3-6.1 ppm) in 1 H-NMR.
  • A1 total peak area of the sample (excluding polystyrene reference sample peak area) when the area of all peaks obtained from the styrene gel column is 100;
  • A3 When the area of all peaks obtained by a silica gel column is 100, the sample peak area which is not adsorbed by a silica gel,
  • Peak area of the polystyrene reference sample when the area of all peaks obtained in the silica gel column is 100.
  • the vulcanized test piece was prepared by c-type dumbbell, and measured using a universal testing machine (LLOYD UTM) according to the ASTM 412 tensile test method.
  • the viscoelastic properties of the vulcanized test specimens, tan ⁇ were measured with a temperature sweep at 10 Hz and 0.1% strain using a DMTA instrument.
  • a high tan ⁇ value at 0 ° C. is excellent in wet skidability as a braking property, and a low tan ⁇ value at 60 ° C. indicates low hysteresis and excellent fuel economy.
  • the dispersibility of the modified conjugated diene-based polymer and the inorganic particles was confirmed by Payne effect using Alpha Technology's RPA2000 as a sample before blending with Hakke and before vulcanization.
  • the Payne effect was expressed as a difference between 0.2% and 40% of deformation at 0.1Hz and 60 ° C. The smaller the value, the better the dispersibility of the inorganic particles.
  • the pattern viscosity of the modified conjugated diene-based polymer itself was measured based on ML (1 + 4) at 100 °C using the Mooney viscometer of Alpha technology.
  • Storage stability analysis measured the amount of flow for 1 minute at a pressure of 3.5 psi through a 1/4 inch orifice at a temperature of 50 ° C.
  • a polymer piece having a width of 3 cm / length 3 cm / height 3 cm was placed on a glass plate inclined at an angle of 30 ° at room temperature, and compared with a phenomenon in which the length of the specimen was increased by flow after one day.
  • Example 2 The same procedure as in Example 1 was carried out except that t-butyl methacrylate was not used.
  • Kneading is the first kneading, 75% by weight, polymer, filler (silica), oil, zinc oxide (ZnO), stearic acid, silane coupling agent (Si-69), 6 at a rotor speed of 60 rpm -PPD was added to control the temperature to obtain a primary composition at 160 °C.
  • the compound obtained in the first kneading is cooled to room temperature, and sulfur, diphenyl guanidine (DPG: Diphenyl Guanidine) and N-cyclohexyl-2-benzothiazole sulfonamide are cooled to 100 ° C. or lower.
  • DPG Diphenyl Guanidine
  • CBS N-cyclohexyl-2-benzothiazole sulfonamide
  • Vinyl content is the proportion of vinyl groups produced by 1,2-bonds in all butadiene monomers.
  • Examples 1 to 3 according to the present invention the hydrolysis rate, denaturation compared to Comparative Examples 1 to 2 by converting the ester group of the functional monomer introduced into the polymer by the hydrolysis of the carboxylic acid group It has high dispersion rate, high tensile strength and 300% modulus, and shows excellent dispersibility when blended with filler.Because of high tan ⁇ at 0 ° C when used as a tire tread, it has excellent braking property on wet roads and tan ⁇ at 60 ° C. It showed the characteristics of modified diene rubber material with excellent fuel efficiency with low road resistance.
  • Comparative Example 1 is a case in which the functional monomer of the present invention is not used, the silica dispersibility is low, and as a result, the tensile strength and 300% modulus are very low compared to Examples 1 to 3, Comparative Example 2
  • a methacrylate-based monomer similar to the functional monomer of the invention since it is composed of a methyl ester group that is not hydrolyzed well, the polarity improvement is not achieved as in the case of introducing the functional monomer of the invention.
  • Properties such as acidity, tensile strength, 300% modulus, etc. were inferior to Examples 1 to 3, but methyl methacrylate monomer was superior to Comparative Example 1 because of its higher polarity than SBR.
  • Examples 1 to 3 and Comparative Example 2 confirmed that the storage stability (cold flow) is improved compared to Comparative Example 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The present invention provides a modified diene-based polymer in which a functional monomer for converting an ester group into carboxylic acid or anhydride under heat or an acid catalyst is introduced to an end of a vinyl aromatic-conjugated diene-based copolymer, thereby enhancing compatibility and binding force with a hydroxyl group on a surface of an inorganic filler, leading to excellent affinity to the inorganic filler. The application of the modified conjugated diene-based copolymer, according to the present invention, to a tire material improves affinity with in the inorganic filler, thereby obtaining a low hysteresis loss, excellent wet skid balance, and favorable storage stability, which are characteristics required for a tire.

Description

변성 공액디엔계 중합체 및 그를 포함하는 조성물Modified conjugated diene-based polymer and composition comprising the same
본 발명은 변성 공액디엔계 중합체 및 이를 포함하는 조성물에 관한 것으로, 보다 상세하게는, 중합체 사슬의 시작 말단 및 끝 말단의 적어도 하나에, 열 또는 산 촉매 하에 가수분해되어 에스테르기가 카르복시기 또는 무수물(anhydride)로 전환될 수 있는 기능성 단량체가 도입되어, 저장안정성이 우수하고, 실리카와 같은 극성무기 첨가제와의 친화성이 우수한 변성 공액디엔계 중합체 및 그를 포함하는 조성물에 관한 것이다.The present invention relates to a modified conjugated diene-based polymer and a composition comprising the same, and more particularly, at least one of the start end and the end end of the polymer chain are hydrolyzed under a heat or acid catalyst so that the ester group is carboxyl group or anhydride. The present invention relates to a modified conjugated diene-based polymer having excellent storage stability and excellent affinity with a polar inorganic additive such as silica, and a composition comprising the same.
최근 친환경 소재 및 에너지 절감 소재에 대한 관심이 높아짐에 따라 디엔계 고분자에 기능성 화학 물질을 도입한 변성 공액디엔계 중합체 소재를 여러 용도에 다양하게 이용하고 있다. 특히, 이러한 변성 공액디엔계 중합체를 자동차 타이어에 적용하여 제동성과 연비를 향상시킬 수 있는 소재 기술 개발에 대한 요구가 증대되고 있다. 기존에는 타이어 트레드에 사용되는 소재로 유화 중합에서 얻어진 스티렌-부타디엔 고무(ESBR)를 사용하여 여기에 무기 첨가제인 카본블랙과 황 등의 첨가제를 블렌딩 및 가황 공정을 통해 탄성율을 높인 소재를 사용하였다. 하지만, ESBR 소재의 경우 중합 과정에서 분자량과 분자량 분포를 제어하기 어려울 뿐만이 아니라 고분자 미세 구조를 제어하는데 한계를 가지고 있어 보다 광범위한 타이어 소재 물성과 성능을 발현할 수가 없었다.Recently, with increasing interest in eco-friendly materials and energy-saving materials, modified conjugated diene-based polymer materials incorporating functional chemicals into diene-based polymers have been used in various applications. In particular, the application of such modified conjugated diene-based polymers to automobile tires is increasing the demand for the development of material technology that can improve braking performance and fuel economy. Conventionally, styrene-butadiene rubber (ESBR) obtained from emulsion polymerization is used as a material used for tire tread, and an additive such as carbon black and sulfur, which are inorganic additives, is used for blending and vulcanizing to increase elastic modulus. However, in the case of ESBR material, it is difficult to control the molecular weight and molecular weight distribution during the polymerization process, and also has limitations in controlling the microstructure of the polymer.
반면, 용액 중합을 이용하여 얻어진 스티렌 부타디엔 고무(SSBR)의 경우는 일반적으로 카본 음이온성을 가지는 부틸 리튬과 같은 유기 금속 촉매를 개시제로 사용하고, 음이온 중합이라는 중합법의 특징으로 분자량과 분자량 분포는 물론 고분자 미세 구조(micro-structure)뿐만이 아니라 거대 구조(macro-structure)도 자유롭게 조절할 수 있어 타이어 트레드에 사용시 제동성 향상 및 연비를 절감할 수 있는 고무 소재를 디자인할 수 있다. 여기서, 보다 성능을 향상시키기 위해 카본블랙 대신 실리카와 같은 입자 표면에 화학적으로 상호작용할 극성기를 갖는 무기물 입자의 사용이 점차 늘어나고 있고, 이러한 무기물 입자와 결합하거나 상호작용을 할 수 있는 관능기를 중합체 말단에 도입한 변성 공액디엔계 중합체를 사용함으로써 타이어 성능을 보다 향상시킬 수 있는 것으로 알려져 있다.On the other hand, in the case of styrene butadiene rubber (SSBR) obtained by solution polymerization, an organometallic catalyst such as butyl lithium having carbon anionicity is generally used as an initiator, and the molecular weight and molecular weight distribution are characteristic of the polymerization method called anion polymerization. Of course, not only the polymer micro-structure but also the macro-structure can be freely controlled, so that it is possible to design a rubber material that can improve braking performance and reduce fuel consumption when used in a tire tread. Here, in order to further improve performance, the use of inorganic particles having a polar group to chemically interact with the surface of particles such as silica instead of carbon black is increasing, and functional groups capable of binding or interacting with these inorganic particles to the polymer ends. It is known that tire performance can be improved further by using the modified conjugated diene type polymer which introduce | transduced.
그러나, 용액중합을 통해 얻어지는 스티렌부타디엔 고무의 경우, 일반적으로 무기물 입자 혹은 금속산화물 입자 등의 충전제와 함께 배합 시, 상용성이 좋지 않아 충전제 입자들의 분산성이 저하되고, 이에 의해 물성이 낮을 뿐만 아니라 가황 후 타이어 소재로 적용시 타이어 성능이 저하되게 된다. However, in the case of styrene-butadiene rubber obtained through solution polymerization, in general, when mixed with fillers such as inorganic particles or metal oxide particles, the compatibility is poor, so that the dispersibility of the filler particles is lowered, thereby not only lowering physical properties. When applied as a tire material after vulcanization, the tire performance is reduced.
미국 특허 7,279,531호에서는, 변성화합물로서 주석(Sn)계열의 화합물을 공액디엔계 중합체에 도입하여, 카본블랙에 대한 분산성과 친화성을 향상시키는 방법을 제시하였다. 그러나, 표면에 극성기를 가지는 실리카와 같은 무기첨가제와의 결합 및 분산성을 효과적으로 향상시키는 데는 한계가 있다. US Pat. No. 7,279,531 discloses a method of improving the dispersibility and affinity for carbon black by introducing a tin (Sn) -based compound into a conjugated diene-based polymer as a modified compound. However, there is a limit to effectively improving the binding and dispersibility with an inorganic additive such as silica having a polar group on the surface.
미국 특허 7,335,706호에서는, 실리카와의 상용성을 증가시키기 위해 변성화합물로 헥사클로로디실록산(hexachlorodisiloxane)을 이용하였다. 이 화합물을 이용하여 제조된 변성 공액디엔계 중합체를 실리카와 배합시, 실리카와의 결합을 이용해 변성하지 않은 공액디엔계 중합체 대비 연비가 증가될 수 있지만, 강한 독성으로 인해 생산하는 데는 한계가 있을 뿐만이 아니라 실리카의 분산이 충분하지 않고, 타이어에 이용시 연비향상에 한계가 있다. In US Pat. No. 7,335,706, hexachlorodisiloxane was used as a modified compound to increase the compatibility with silica. When the modified conjugated diene-based polymer prepared by using the compound is mixed with silica, fuel economy may be increased compared to the conjugated diene-based polymer which is not modified by the combination of silica, but due to strong toxicity, there is a limit to the production. However, the dispersion of silica is not sufficient and there is a limit in improving fuel efficiency when used in a tire.
일본 공개특허 평8-337614호에서는, 실리카와의 상용성 및 결합 강화를 위하여 변성화합물로 글리시딜기를 포함하는 알콕시실란을 이용하였다. 이 화합물이 도입된 변성 공액디엔계 중합체를 실리카와 배합 시, 변성하지 않은 공액디엔계 중합체 대비 연비가 증가될 수 있지만, 알콕시실란기 간의 커플링 반응에 의해, 중합 후 장시간이 지남에 따라 변성 공액디엔계 중합체의 무늬 점도가 증가하고, 실리카와 결합할 수 있는 기능기가 커플링 반응에 의해 소모되어 실리카의 분산이 충분하지 않을 수 있다.In Japanese Patent Laid-Open No. 8-337614, an alkoxysilane containing a glycidyl group is used as a modified compound for compatibility with silica and strengthening bonds. When the modified conjugated diene-based polymer into which the compound is introduced is mixed with silica, fuel economy may be increased compared to the unmodified conjugated diene-based polymer.However, due to the coupling reaction between the alkoxysilane groups, the modified conjugated conjugate may be used for a long time after polymerization The pattern viscosity of the diene polymer may increase, and functional groups capable of bonding with the silica may be consumed by the coupling reaction, resulting in insufficient dispersion of the silica.
대한민국 공개특허 10-2010-0078817호에서는, 메타크릴레이트와 폴리에틸렌글리콜이 결합된 커플링제를 사용함으로써 실리카와의 친화성을 향상시켜 젖은 노면에 대한 제동성과 연비를 동시에 향상시키고자 하였으나, 폴리에틸렌글리콜 부분의 에테르기와 실리카 표면의 실라놀기 사이에 상호작용이 강하지 않기 때문에 실리카의 분산이 충분하지 않을 수 있고, 주행성능의 개선에 한계가 있다.In Republic of Korea Patent Publication No. 10-2010-0078817, by using a coupling agent combined with methacrylate and polyethylene glycol to improve the affinity with silica to improve the braking and fuel efficiency on wet road surface, but the polyethylene glycol part Since the interaction between the ether group and the silanol group on the silica surface is not strong, the dispersion of silica may not be sufficient, and there is a limit to the improvement in running performance.
미국 특허 6,365,668호에서는, 스티렌부타디엔 고무를 중합한 후에 후반응(post-reaction)을 통하여 카르복시산 기능기를 도입하였다. 이 변성공액디엔계 중합체를 실리카와 배합할 경우, 변성하지 않은 공액디엔계 중합체 대비 주행성능 및 제동성능이 개선될 수 있지만, 후반응을 위해 투입한 과산화물에 의해, 장기적으로는 스티렌부타디엔 고무의 1,4-부타디엔 단위체의 이중결합이 분해되어, 주행성능이 저하될 우려가 있다.In US Pat. No. 6,365,668, carboxylic acid functional groups are introduced via post-reaction after polymerization of styrenebutadiene rubber. When the modified conjugated diene-based polymer is blended with silica, the running performance and braking performance may be improved compared to the unmodified conjugated diene-based polymer. However, in the long term, the peroxide added for the post-reaction reaction results in the use of styrenebutadiene rubber. There exists a possibility that the double bond of a 4-4-butadiene unit may decompose | disassemble and a running performance may fall.
본 발명은 상기에 기술한 종래기술들의 문제를 해결하기 위하여 안출된 것으로서, 본 발명의 목적은 공액디엔계 중합체의 중합시, 열 또는 산 촉매 하에 가수분해되어 에스테르기가 카르복시기 또는 무수물(anhydride)로 전환될 수 있는 기능성 단량체를 도입하므로써, 무기물 또는 금속산화물 입자 등과 같은 첨가제와 배합시, 이들 입자의 분산성을 향상시켜, 극성무기 첨가제와의 친화성이 우수한 변성 공액디엔계 중합체를 제공하는 것이다.The present invention has been made to solve the problems of the above-described prior arts, and an object of the present invention is to hydrolyze under a thermal or acid catalyst upon polymerization of a conjugated diene-based polymer so that an ester group is converted into a carboxyl group or anhydride. By introducing a functional monomer which can be used, the modified conjugated diene-based polymer having excellent affinity with polar inorganic additives is improved by blending with additives such as inorganic or metal oxide particles and the like.
본 발명의 다른 목적은 본 발명의 변성 공액디엔계 중합체와 무기 충전제를 포함하는 조성물을 제공하는 것으로, 본 발명의 조성물은 무기 첨가제와 고무와의 분산성을 향상시켜, 타이어 소재로 적용시 낮은 히스테리시스로스성과 웨트 스키드성의 밸런스 즉, 회전저항성/제동성의 발란스가 우수하며, 저장 안정성이 우수한 효과를 나타낸다. Another object of the present invention is to provide a composition comprising the modified conjugated diene-based polymer of the present invention and an inorganic filler, the composition of the present invention improves the dispersibility of the inorganic additive and rubber, low hysteresis when applied to a tire material The balance between the loss property and the wet skid property, that is, the rotation resistance / braking property is excellent, and the storage stability is excellent.
상기와 같은 과제를 해결하기 위하여, 본 발명은 중합체 사슬의 시작 말단 및 끝 말단의 적어도 하나에, 열 또는 산 촉매 하에 가수분해되어 에스테르기가 카르복시기 또는 무수물(anhydride)로 전환될 수 있는 기능성 단량체를 포함하는 변성 공액디엔계 중합체를 제공한다.In order to solve the above problems, the present invention includes a functional monomer in which at least one of the start end and end end of the polymer chain is hydrolyzed under a heat or acid catalyst to convert the ester group into a carboxyl group or anhydride. It provides a modified conjugated diene-based polymer.
본 발명의 바람직한 구체예에서, 상기 기능성 단량체는 하기 화학식 1로 표시되는 단량체이다.In a preferred embodiment of the present invention, the functional monomer is a monomer represented by the following formula (1).
[화학식 1][Formula 1]
Figure PCTKR2015013198-appb-I000001
Figure PCTKR2015013198-appb-I000001
여기서, R1은 수소, 또는 탄소수 1~20의 알킬기, 또는 탄소수 6~20의 아릴기이고, R2는 터셔리-카본이 포함된 탄소수 4~20의 알킬기, 또는 탄소수 6~20의 아릴기, 또는 탄소수 3~20이고 규소수 1~10의 알킬실릴기, 또는 탄소수 6~20이고 규소수 1~10의 아릴실릴기이고, 열 또는 산 촉매에 의해 R2가 분리되어, 상기 단량체의 에스테르기가 카르복시산기 또는 무수물로 전환된다.Here, R 1 is hydrogen or an alkyl group having 1 to 20 carbon atoms, or an aryl group having 6 to 20 carbon atoms, and R 2 is an alkyl group having 4 to 20 carbon atoms including a tertiary carbon, or an aryl group having 6 to 20 carbon atoms. Or an alkylsilyl group having 3 to 20 carbon atoms and 1 to 10 silicon atoms, or an arylsilyl group having 6 to 20 carbon atoms and 1 to 10 silicon atoms, and R 2 is separated by a thermal or acid catalyst to obtain an ester of the monomer. The group is converted to a carboxylic acid group or an anhydride.
상기 화학식 1에서, 상기 R1의 바람직한 예로는 수소, 메틸, 에틸기 등을 들 수 있고, R2의 바람직한 예로는 터셔리-부틸 에스테르기, 트리메틸실릴 에스테르기, 트리에틸실릴 에스테르기, 터셔리-부톡시페닐기, 트리메틸실록시페닐기, 트리에틸실록시페닐기 등을 들 수 있다. In Formula 1, preferred examples of R 1 include hydrogen, methyl, ethyl, and the like, and preferred examples of R 2 include tertiary-butyl ester group, trimethylsilyl ester group, triethylsilyl ester group, and tertiary-. A butoxyphenyl group, a trimethyl siloxy phenyl group, a triethyl siloxy phenyl group, etc. are mentioned.
상기 기능성 단량체로는, 터셔리-부틸 아크릴레이트, 터셔리-부틸 메타크릴레이트, 트리메틸실릴 아크릴레이트, 트리메틸실릴 메타크릴레이트, 트리에틸실릴 아크릴레이트 및 트리에틸실릴 메타크릴레이트 중에서 선택되는 중에서 선택되는 1종 또는 2종 이상의 화합물을 사용할 수 있으나, 이들에 제한되는 것은 아니다. The functional monomer is selected from the group selected from tert-butyl acrylate, tert-butyl methacrylate, trimethylsilyl acrylate, trimethylsilyl methacrylate, triethylsilyl acrylate and triethylsilyl methacrylate One or two or more compounds may be used, but the present invention is not limited thereto.
본 발명의 변성 공액디엔계 중합체는, 그 말단에 상기 기능성 단량체를 1개 이상 100개 이하의 범위로 포함하는 것이 바람직하다. 상기 기능성 단량체가 도입되지 않은 경우에는, 본 발명의 목적인 저히스테리시스로스성 및 웨트스키드성의 밸런스와 저장 안정성이 개선되지 않으며, 상기 기능성 단량체가 100개 초과하여 도입된 경우는 저연비성이 개선되지 않으므로 바람직하지 않다. It is preferable that the modified conjugated diene type polymer of this invention contains the said functional monomer in the range of 1 or more and 100 or less in the terminal. In the case where the functional monomer is not introduced, the balance and storage stability of the low hysteresis loss and wet skid properties of the present invention are not improved, and when more than 100 of the functional monomers are introduced, the low fuel efficiency is not improved. Not.
본 발명의 변성 공액디엔계 중합체에 있어서, 상기 기능성 단량체는 올리고머형 블록 구조로 중합체에 포함될 수도 있다.In the modified conjugated diene-based polymer of the present invention, the functional monomer may be included in the polymer in an oligomeric block structure.
본 발명에 있어서, 공액디엔계 중합체라 함은 디엔계 단량체를 단독으로 중합하여 얻어지는 공액디엔계 단독 중합체, 또는 디엔계 단량체 2종 이상을 공중합한 공액디엔계 공중합체, 또는 디엔계 단량체와 다른 형태의 비닐 단량체를 함께 공중합시킨 공중합체일 수 있다. In the present invention, the conjugated diene polymer refers to a conjugated diene homopolymer obtained by polymerizing a diene monomer alone, or a conjugated diene copolymer obtained by copolymerizing two or more kinds of diene monomers, or a form different from a diene monomer. It may be a copolymer copolymerized together with a vinyl monomer of.
따라서, 본 발명의 변성 공액디엔계 중합체는, 유기리튬과 같은 유기금속 촉매 및 탄화수소 용매의 존재 하에서, 디엔계 단량체를 1종 이상 (공)중합하거나, 또는 디엔계 단량체와 비닐 방향족 단량체를 공중합할 때, 상기 기능성 단량체를 추가하여 중합을 실시하므로써 제조될 수 있고, 상기 중합시 필요에 따라 극성 첨가제를 더 첨가할 수도 있다. Accordingly, the modified conjugated diene-based polymer of the present invention may be subjected to (co) polymerization of one or more diene monomers or to copolymerization of diene monomers and vinyl aromatic monomers in the presence of an organometallic catalyst such as organolithium and a hydrocarbon solvent. At this time, the polymerization may be performed by adding the functional monomer to carry out the polymerization, and a polar additive may be further added as necessary during the polymerization.
상기 디엔계 단량체로는, 1,3-부타디엔 및 이소프렌 중에서 선택되는 1종 이상을 들 수 있으나, 이들에 제한되는 것은 아니다.Examples of the diene monomer include one or more selected from 1,3-butadiene and isoprene, but are not limited thereto.
상기 비닐 방향족 단량체로는, 스티렌 및 알파 메틸스티렌 중에서 선택되는 1종 이상을 들 수 있으나, 이들에 제한되는 것은 아니다. Examples of the vinyl aromatic monomers include, but are not limited to, one or more selected from styrene and alpha methyl styrene.
본 발명의 변성 공액디엔계 중합체의 제조에 사용가능한 상기 유기금속 촉매는, 알카리금속 또는 알카리토금속이 탄화수소 음이온과 결합되어진 형태로, 상기 알카리금속 또는 알카리토금속의 예로는 리튬, 나트륨, 칼륨 등을 들 수 있으나, 이들에 제한되는 것은 아니다. 바람직한 유기금속 촉매로는 유기리튬 촉매가 바람직하고, 유기리튬 촉매의 비제한적인 예로는, 한쪽 음이온을 가진 n-부틸리튬, sec-부틸리튬, tert-부틸리튬, n-헥실리튬, 이소프로필리튬, 옥틸리튬, 벤질리튬, 페닐리튬, 나프틸리튬 및 이들의 유도체를 들 수 있으며, 이들 중 1종 혹은 2종 이상의 혼합물을 사용할 수 있다. 또한 양쪽 음이온을 가진 유기 리튬 촉매도 이용될 수 있으며, 예로는 디비닐벤젠리튬(divinylbenzene lithium), 디프로페닐벤젠리튬 (dipropenylbenzene lithium), 피롤리다이드리튬 (lithium pyrollidide) 등이 있으며, 이를 1종 혹은 2종 이상의 혼합물로 사용할 수 있다. 경우에 따라서는 한쪽 음이온을 가진 유기리튬 촉매와 양쪽 음이온을 가진 유기리튬 촉매를 각각 1종 이상 혼합하여 사용할 수 있다. The organometallic catalyst usable in the preparation of the modified conjugated diene-based polymer of the present invention is a form in which an alkali metal or an alkali earth metal is combined with a hydrocarbon anion, and examples of the alkali metal or alkali earth metal include lithium, sodium, potassium, and the like. May be, but is not limited to these. Preferred organometallic catalysts are organolithium catalysts, and non-limiting examples of organolithium catalysts include n-butyllithium, sec-butyllithium, tert-butyllithium, n-hexyllithium and isopropyllithium having one anion. , Octylithium, benzyllithium, phenyllithium, naphthyl lithium, and derivatives thereof, and one or a mixture of two or more thereof can be used. In addition, an organolithium catalyst having an anion may also be used, such as divinylbenzene lithium, dipropenylbenzene lithium, or lithium pyrollidide. It can be used as a species or mixture of 2 or more types. In some cases, one or more types of organolithium catalysts having one anion and organolithium catalysts having both anions may be used.
본 발명의 변성 공액디엔계 중합체의 중합 시, 상기 유기금속 촉매에 추가하여, 중합체의 미세구조의 제어나 중합속도를 향상시키기 위해 또는 반응성을 조절하기 위해 극성 첨가제를 추가로 사용할 수 있으며, 극성 첨가제의 첨가량은 첨가제의 목적이나 종류에 따라 달라질 수 있다. 그러한 극성 첨가제의 비제한적인 예로서는, N,N,N',N'-테트라메틸에틸렌디아민(TMEDA), 테트라하이드로퓨란(THF), 디에틸에테르, 시클로아말에테르, 디프로필에테르, 에틸렌글리콜, 트리에틸아민, 에틸부틸 에테르, 크라운에테르, 디테트라하이드로퓨릴프로판, 에틸테트라하이드로퓨릴 에테르, 트리에틸아민, 및 이들의 유도체 등을 들 수 있다. 이러한 극성 첨가제에 의해 중합체의 랜덤구조와 비닐그룹의 함량들이 목적에 따라 조절될 수 있으며, 또한 중합반응 속도를 향상시킬 수도 있다. In the polymerization of the modified conjugated diene-based polymer of the present invention, in addition to the organometallic catalyst, a polar additive may be further used to control the microstructure of the polymer, to improve the polymerization rate, or to control the reactivity. The amount of added may vary depending on the purpose or type of the additive. Non-limiting examples of such polar additives include N, N, N ', N'-tetramethylethylenediamine (TMEDA), tetrahydrofuran (THF), diethyl ether, cycloamalether, dipropyl ether, ethylene glycol, tri Ethylamine, ethylbutyl ether, crown ether, ditetrahydrofurylpropane, ethyltetrahydrofuryl ether, triethylamine, and derivatives thereof. By such a polar additive, the random structure of the polymer and the contents of the vinyl group can be adjusted according to the purpose, and also improve the polymerization rate.
본 발명의 변성 공액디엔계 중합체의 중합 시, 사용가능한 탄화수소 용매로는, n-헥산, n-헵탄, 시클로헥산, 이소옥탄, 메틸시클로펜탄, 벤젠, 톨루엔, 크실렌 등을 들 수 있으며, 이들을 단독 혹은 2종 이상 혼합하여 사용할 수 있다. 중합시, 단량체들은 상기 탄화수소 용매 내에서 50중량% 이내가 되도록 첨가하고, 바람직하게는 15~35중량% 수준으로 첨가한다. 단량체의 총 함량이 50중량%를 초과할 경우에는, 용액의 점도가 상승하여 분자량이나 반응열을 제어하기 어렵거나 중합시 균일한 교반이 어렵다. In the polymerization of the modified conjugated diene polymer of the present invention, usable hydrocarbon solvents include n-hexane, n-heptane, cyclohexane, isooctane, methylcyclopentane, benzene, toluene, xylene, and the like. It can mix and use 2 or more types. In the polymerization, the monomers are added to within 50% by weight in the hydrocarbon solvent, preferably at a level of 15 to 35% by weight. If the total content of the monomer exceeds 50% by weight, the viscosity of the solution rises, making it difficult to control the molecular weight or the heat of reaction or uniform stirring during the polymerization.
본 발명의 변성 공액디엔계 중합체의 중합시, 중합온도는 용매에 따라 달라질 수 있으며, 일반적으로 10~160℃에서 중합이 가능하다. 중합온도에 따라 미세구조가 달라질 수 있으며, 목적에 따라 중합온도를 조절할 수 있다. In the polymerization of the modified conjugated diene-based polymer of the present invention, the polymerization temperature may vary depending on the solvent, and in general, polymerization is possible at 10 to 160 ° C. The microstructure may vary depending on the polymerization temperature, and the polymerization temperature may be adjusted according to the purpose.
본 발명의 변성 공액디엔계 중합체의 중합시에 커플링제를 첨가할 수도 있는데, 상기 커플링제로는 리빙음이온과 반응할 수 있는 관능기가 2개 이상인 것을 사용하는 것이 바람직하다. 상기 커플링제로는 당분야에서 일반적으로 사용할 수 있는 어떤 것이든 사용가능하며, 커플링제의 관능기가 2개인 경우에는 분자량이 2배 증가된 선형 중합체가 얻어지고, 커플링제의 관능기가 3개 이상인 경우에는 스타형태의 중합체(star-polymer)를 얻을 수 있다. 상기 커플링제로는, 일반적으로 주석계열이나 알콕시실란 계열 또는 할로실란 계열을 사용할 수 있으며, 글리시딜기가 포함된 커플링제도 사용될 수 있다. 커플링제의 비제한적인 예로, 주석 계열의 커플링제로는 디페닐주석 디클로라이드, 디부틸주석 디클로라이드, 디헥실주석 디클로라이드, 디옥틸주석 디클로라이드, 페닐주석 트리클로라이드, 부틸주석 트리클로라이드, 옥틸주석 트리클로라이드, 테트라클로로 주석, 테트라 메톡시주석, 테트라 에톡시주석, 테트라프로폭시주석 등이 사용될 수 있으며, 알콕시실란 계열은 디메틸디메톡시 실란, 디에틸디메톡시 실란, 디프로필디메톡시실란, 디부틸디메톡시실란, 메틸트리메톡시실란, 에틸트리메톡시실란, 프로필트리메톡시실란, 부틸트리메톡시 실란, 메틸트리에톡시실란, 에틸트리에톡시실란, 프로필트리에톡시실란, 부틸트리에톡시실란, 테트라메톡시실란, 테트라에톡시실란 등이 사용될 수 있다. 할로실란 계열은 디페닐디클로로실란, 디헥실디클로로실란, 디옥틸디클로로실란, 디부틸디클로로실란, 디메틸디클로로실란, 메틸트리클로로실란, 페닐트리클로로실란, 헥실트리클로로실란, 옥틸트리클로로실란, 부틸트리클로로실란, 메틸트리클로로실란, 테트라클로로실란 등이 이용될 수 있다. 글리시딜기가 포함된 커플링제로는 4,4'-메틸렌비스(N,N-디글리시딜아닐린), N,N-디글리시딜-4-글리시독시아닐린, N,N-디글리시딜아닐린, N,N,N',N'-테트라글리시딜-3,3'-디에틸-4,4'-디아미노디페닐메탄 등이 이용될 수 있다. 상기 예시한 커플링제는 단독 혹은 2종 이상 혼합하여 사용될 수 있다. 커플링제를 예시하는 것은 구조를 한정하고자 하는 것은 아니며, 주석 계열, 알콕시실란 계열, 할로실란 계열, 글리시딜 계열과 같이 활성을 가진 끝말단과 반응할 수 있는 것이면 어떤 것이든 사용가능하다. Although the coupling agent may be added at the time of superposition | polymerization of the modified conjugated diene type polymer of this invention, it is preferable to use what is two or more functional groups which can react with a living anion as said coupling agent. As the coupling agent, any one generally used in the art can be used, and when the functional group of the coupling agent is 2, a linear polymer obtained by doubling the molecular weight is obtained, and when the functional group of the coupling agent is 3 or more The star-polymer (star-polymer) can be obtained. Generally as the coupling agent, tin series, alkoxysilane series or halosilane series may be used, and a coupling agent containing a glycidyl group may be used. Non-limiting examples of coupling agents, tin-based coupling agents include diphenyltin dichloride, dibutyltin dichloride, dihexyltin dichloride, dioctyltin dichloride, phenyltin trichloride, butyltin trichloride, octyl Tin trichloride, tetrachloro tin, tetra methoxytin, tetra ethoxytin, tetrapropoxytin and the like can be used, and the alkoxysilane series is dimethyldimethoxy silane, diethyldimethoxy silane, dipropyldimethoxysilane, di Butyldimethoxysilane, methyltrimethoxysilane, ethyltrimethoxysilane, propyltrimethoxysilane, butyltrimethoxy silane, methyltriethoxysilane, ethyltriethoxysilane, propyltriethoxysilane, butyltrier Methoxysilane, tetramethoxysilane, tetraethoxysilane and the like can be used. The halosilane series is diphenyldichlorosilane, dihexyldichlorosilane, dioctyldichlorosilane, dibutyldichlorosilane, dimethyldichlorosilane, methyltrichlorosilane, phenyltrichlorosilane, hexyltrichlorosilane, octyltrichlorosilane, butyl trichloro Rosilane, methyltrichlorosilane, tetrachlorosilane and the like can be used. Coupling agents containing glycidyl groups include 4,4'-methylenebis (N, N-diglycidylaniline), N, N-diglycidyl-4-glycidoxycyanine, N, N-di Glycidylaniline, N, N, N ', N'-tetraglycidyl-3,3'-diethyl-4,4'-diaminodiphenylmethane and the like can be used. The above-mentioned coupling agents may be used alone or in combination of two or more thereof. Illustrating the coupling agent is not intended to limit the structure, and any type can be used as long as it can react with active ends such as tin series, alkoxysilane series, halosilane series, glycidyl series.
본 발명의 변성 공액디엔계 중합체에 있어서, 공액디엔계 중합체에 기능성 단량체를 도입 후, 기능성 단량체의 에스테르기를 가수분해를 통해 카르복시산 또는 무수물로 전환하는 것은 열을 통해서도 충분히 가수분해가 이루어질 수 있으나, 짧은 시간 동안 더 효율적으로 가수분해를 유도하기 위하여 산 촉매 하에서 실시하는 것이 바람직하다. 이를 위하여 염산, 아세트산, 질산, 파라-톨루엔설폰산 계열 등의 다양한 산을 적용할 수 있다. In the modified conjugated diene-based polymer of the present invention, after the introduction of the functional monomer into the conjugated diene-based polymer, the conversion of the ester group of the functional monomer to carboxylic acid or anhydride through hydrolysis can be sufficiently hydrolyzed even through heat, but It is preferred to carry out under acid catalyst in order to induce hydrolysis more efficiently during the time. For this purpose, various acids such as hydrochloric acid, acetic acid, nitric acid and para-toluenesulfonic acid series may be applied.
본 발명은 또한 상기한 본 발명의 변성 공액디엔계 중합체를 포함하는 조성물을 제공한다. 본 발명의 조성물은 본 발명의 변성 공액디엔계 중합체 100중량부에 대하여 무기 충전제 0.1~200중량부를 포함하는 것을 특징으로 한다.The present invention also provides a composition comprising the modified conjugated diene-based polymer of the present invention described above. The composition of the present invention is characterized in that it comprises 0.1 to 200 parts by weight of the inorganic filler with respect to 100 parts by weight of the modified conjugated diene-based polymer of the present invention.
본 발명의 조성물에 포함되는 상기 무기 충전제로는 카본블랙, 실리카 등을 단독 혹은 2종 이상 배합하여 사용할 수 있다. 특히, 실리카와 같이 무기입자 표면에 기능성기가 다수 존재하는 무기 충전제를 배합할 경우, 본 발명의 변성 공액디엔계 중합체의 성능이 더욱 향상될 수 있다. 상기 무기충전제는 상기 기능성 단량체의 에스테르기 또는 페닐에테르기에 대해 가수분해를 효율적으로 유도하기 위해, 4% 수용액으로 분산하였을 경우의 pH가 3 이상 7 이하인 것이 바람직하다. 만약 pH가 3 미만인 경우, 무기 충전제와 공액디엔계 중합체의 배합 과정에서 가공 기기의 부식이 일어날 수 있으며, pH가 7 초과인 경우에는, 기능성 단량체의 에스테르기 또는 페닐에테르기의 가수분해 속도가 느릴 수 있다. As said inorganic filler contained in the composition of this invention, carbon black, a silica, etc. can be used individually or in mixture of 2 or more types. In particular, when blending an inorganic filler having a large number of functional groups on the surface of the inorganic particles such as silica, the performance of the modified conjugated diene-based polymer of the present invention can be further improved. The inorganic filler preferably has a pH of 3 to 7 when dispersed in a 4% aqueous solution in order to efficiently induce hydrolysis of the ester group or phenylether group of the functional monomer. If the pH is less than 3, corrosion of the processing equipment may occur during the mixing of the inorganic filler and the conjugated diene-based polymer, and if the pH is greater than 7, the hydrolysis rate of the ester group or the phenylether group of the functional monomer may be slow. Can be.
본 발명의 조성물은 통상적으로 타이어용 소재, 특히 타이어 트레드용으로 사용되기에 적합하며, 따라서 통상적으로 타이어용 조성물에 배합될 수 있는 통상의 첨가제들을 통상의 사용량으로 더 포함할 수 있다. The compositions of the present invention are typically suitable for use for tire materials, in particular for tire treads, and thus may further comprise, in usual amounts, conventional additives that can be formulated into the composition for tires.
본 발명의 변성 디엔계 중합체는 실리카와 같은 극성무기 첨가제와의 친화성이 우수하여, 이를 이용하여 무기물 혹은 금속산화물 입자를 단독 혹은 2종 이상 컴파운딩하여 얻어지는 조성물은, 물성의 향상뿐 아니라 타이어 소재, 특히 타이어 트레드에 적용시, 저히스테리시스로스성과 웨트 스키드성의 밸런스가 우수하여, 저연비성과 제동성이 향상되고, 저장 안정성이 우수한 효과를 나타낸다.The modified diene polymer of the present invention is excellent in affinity with polar inorganic additives such as silica, and the composition obtained by incorporating inorganic or metal oxide particles alone or in combination of two or more thereof by using the same is not only improved in physical properties but also tire materials. In particular, when applied to a tire tread, the balance between low hysteresis loss and wet skid property is excellent, and low fuel efficiency and braking property are improved, and storage stability is excellent.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 본 발명의 이해를 돕기 위하여 하기에서 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다.The present invention may be modified in various ways and may have various embodiments, but the present invention is provided below in order to help the understanding of the present invention, but the following examples are only for illustrating the present invention and the scope of the present invention. Is not limited to the following examples.
[실시예]EXAMPLE
실험 방법Experiment method
1. 고분자 미세 구조 분석1. Polymer microstructure analysis
중합된 중합체의 미세구조는 Bruker사의 400MHz 1H-NMR을 사용하여 확인하였다.The microstructure of the polymerized polymer was confirmed using Bruker's 400 MHz 1 H-NMR.
2. 분자량 측정 2. Molecular Weight Measurement
분자량 측정은 PLgel사의 폴리스티렌 5μm mixed-C column 두 개를 직렬로 연결하여, 폴리스티렌 기준샘플(분자량 5000g/mol) 및 중합된 중합체와 함께 용매로서 THF를 이용하여 측정하였다. 검출기는 굴절율 검출기(RI)를 이용하였다.Molecular weight was measured by connecting two polystyrene 5 μm mixed-C columns of PLgel in series and using THF as a solvent together with a polystyrene reference sample (molecular weight 5000 g / mol) and a polymerized polymer. The detector used a refractive index detector (RI).
3. 가수분해율 측정3. Hydrolysis rate measurement
가수분해율은 산화방지제인 I-1076을 0.2중량부 도입한 공액디엔계 중합체에 대해, 4% 수용액으로 분산하였을 경우의 pH가 5인 실리카 50phr을 도입하고, Thermo Scientific사의 Haake Polylab OS Rheodrive(범버리 로터)를 이용하여 150℃에서 3분 동안 혼련 후 냉각하고, 이를 테트라하이드로퓨란(THF)에 녹인 후 필터로 여과하고, 여과액에서 용매를 제거 후 1H-NMR을 이용하여 측정하였다. 에스테르기 가수분해는(가수분해 후 카르복시산으로 전환) ~12.3ppm의 카르복시산의 수소의 피크(peak) 면적을 통해 확인하였고, 알콕시페닐기 가수분해는(가수분해 후 페놀기로 전환) ~7.9ppm의 페놀기의 수소의 피크 면적을 통해 확인하였다. 전환 비율은 부타디엔과 기능성 단량체의 투입량 비율과, 1H-NMR에서 부타디엔 단위체(4.3~6.1ppm)의 피크 면적에 대한 상대적인 면적비를 감안하여 계산하였다. The hydrolysis rate of the conjugated diene-based polymer in which 0.2 parts by weight of I-1076, an antioxidant, was introduced, 50 phr of silica having a pH of 5 when dispersed in a 4% aqueous solution was introduced, and Thermo Scientific's Haake Polylab OS Rheodrive (Bumbury Rotor, kneaded at 150 ° C. for 3 minutes, cooled, dissolved in tetrahydrofuran (THF), filtered through a filter, and the solvent was removed from the filtrate, and then measured by 1 H-NMR. The ester group hydrolysis (conversion to carboxylic acid after hydrolysis) was confirmed through the peak area of hydrogen of carboxylic acid of ˜12.3 ppm, and the alkoxyphenyl group hydrolysis (conversion to phenol group after hydrolysis) of 7.9 ppm of phenol group It was confirmed through the peak area of hydrogen. The conversion ratio was calculated in consideration of the ratio of the input amount of butadiene and functional monomer and the relative area ratio with respect to the peak area of butadiene units (4.3-6.1 ppm) in 1 H-NMR.
4. 변성율 측정 4. Denaturation rate measurement
실리카계 겔(Zorbax PSM)이 충전된 두 개의 컬럼을 직렬로 연결하고, 용매로는 THF를 이용하여, 굴절율 검출기(RI)로 측정하였다. 폴리스티렌 기준 샘플(분자량 5000g/mol)을 중합체와 함께 용매에 녹인 후 컬럼에 주입하여 측정을 하였다. 변성율은 하기 식에 의해 계산하였다.Two columns filled with silica gel (Zorbax PSM) were connected in series and measured with a refractive index detector (RI) using THF as a solvent. The polystyrene reference sample (molecular weight 5000g / mol) was dissolved in a solvent with a polymer and then injected into the column to measure. The modification rate was calculated by the following formula.
변성율(%)= [1-(A2×A3)/(A1×A4)]×100% Denaturation = [1- (A2 × A3) / (A1 × A4)] × 100
A1: 스타이렌겔 컬럼에서 얻어지는 전체 피크의 면적을 100으로 했을 때, 샘플의 총 피크면적(폴리스티렌 기준샘플 피크면적 제외), A1: total peak area of the sample (excluding polystyrene reference sample peak area) when the area of all peaks obtained from the styrene gel column is 100;
A2: 스타이렌겔 컬럼에서 얻어지는 전체 피크의 면적을 100으로 했을 때, 폴리스티렌 기준샘플의 피크면적,A2: When the area of all the peaks obtained from the styrene gel column is 100, the peak area of the polystyrene reference sample,
A3: 실리카계겔 컬럼에서 얻어지는 전체 피크의 면적을 100으로 했을 때, 실리카계겔에 흡착되지 않은 샘플 피크면적,A3: When the area of all peaks obtained by a silica gel column is 100, the sample peak area which is not adsorbed by a silica gel,
A4: 실리카계겔 컬럼에서 얻어지는 전체 피크의 면적을 100으로 했을 때, 폴리스티렌 기준샘플의 피크면적.A4: Peak area of the polystyrene reference sample when the area of all peaks obtained in the silica gel column is 100.
5. 인장 실험5. Tensile Experiment
가황된 시험편을 c-type 덤벨을 제작하여, ASTM 412 인장시험법에 준하여 만능시험기(LLOYD UTM)을 이용하여 측정하였다. The vulcanized test piece was prepared by c-type dumbbell, and measured using a universal testing machine (LLOYD UTM) according to the ASTM 412 tensile test method.
6. 점탄성 특성6. Viscoelastic properties
가황된 시험편의 점탄성 특성인 tanδ는 DMTA 장비를 이용하여 10Hz, 0.1% 변형 조건에서 온도변화를 주면서(temperature sweep) 측정하였다. 0℃에서의 tanδ값이 높으면 제동성인 웨트스키드성이 우수하고, 60℃에서의 tanδ값이 낮으면 저히스테리시스성이 발현되어 연비가 우수한 것을 의미한다. The viscoelastic properties of the vulcanized test specimens, tanδ, were measured with a temperature sweep at 10 Hz and 0.1% strain using a DMTA instrument. A high tan δ value at 0 ° C. is excellent in wet skidability as a braking property, and a low tan δ value at 60 ° C. indicates low hysteresis and excellent fuel economy.
7. 무기물 입자 분산성7. Inorganic particle dispersibility
변성 공액디엔계 중합체와 무기물 입자의 분산성은, Hakke로 블렌드 후 가황하기 전 샘플로 Alpha Technology사의 RPA2000을 이용하여 페이니(Payne) 효과로 확인하였다. 페이니 효과는 0.1Hz, 60℃에서 변형 0.2%와 40%에서의 차이로 나타내었으며, 값이 작을수록 무기물 입자의 분산성이 좋은 것을 의미한다. The dispersibility of the modified conjugated diene-based polymer and the inorganic particles was confirmed by Payne effect using Alpha Technology's RPA2000 as a sample before blending with Hakke and before vulcanization. The Payne effect was expressed as a difference between 0.2% and 40% of deformation at 0.1Hz and 60 ° C. The smaller the value, the better the dispersibility of the inorganic particles.
8. 무늬 점도8. Pattern viscosity
변성 공액디엔계 중합체 자체의 무늬점도는 Alpha technology사의 Mooney viscometer를 이용하여, 100℃에서 ML(1+4)를 기준으로 측정하였다.The pattern viscosity of the modified conjugated diene-based polymer itself was measured based on ML (1 + 4) at 100 ℃ using the Mooney viscometer of Alpha technology.
9. 저장 안정성(cold flow)9. Cold flow
저장 안정성 분석은, 온도 50℃에서 1/4인치 오리피스(orifice)를 통하여 3.5psi의 압력에 의해 1분 동안 흐른 양을 측정하였다. 상온에서 30°의 각도로 경사진 유리판 위에 가로 3cm/세로 3cm/높이 3cm의 중합체 조각을 놓고, 1일 경과 후 흐름에 의해 시편의 길이가 증가되는 현상을 통해 비교하였다.Storage stability analysis measured the amount of flow for 1 minute at a pressure of 3.5 psi through a 1/4 inch orifice at a temperature of 50 ° C. A polymer piece having a width of 3 cm / length 3 cm / height 3 cm was placed on a glass plate inclined at an angle of 30 ° at room temperature, and compared with a phenomenon in which the length of the specimen was increased by flow after one day.
실시예 1Example 1
2L 오토크레이브 반응기에 스티렌 34g, 1,3-부타디엔 126g, 헥산 830g을 넣고 테트라메틸에틸렌디아민(TMEDA) 0.9ml를 투입하고, 질소 분위기에서 교반기로 돌리면서 반응기 온도를 40℃로 승온하였다. 반응기 온도가 설정온도에 도달하면 0.3M 농도의 부틸리튬(n-BuLi)을 5.6mL 투입하여 중합반응을 실시하였다. 반응온도가 최고온도에 도달하고 10분이 경과한 후에, t-부틸메타크릴레이트(t-butyl methacrylate) 80mmol을 투입하여 추가 중합하고, 커플링을 위해 트리메틸올프로판 트리글리시딜에테르(Trimethylolpropane triglycidyl ether) 3mmol을 투입하고, 추가 10분 경과 후 에탄올을 첨가하여 중합을 중지시키고, 중합체 용액을 반응기에서 배출한 후 산화방지제 Irganox-1076을 중합체 100중량부에 대해 0.2중량부가 되도록 첨가하였다. 중합체의 용매인 헥산을 제거하기 위해, 제조된 중합체를 가열된 온수에 넣고, 교반하여 용매를 제거한 다음, 롤 건조하여 잔류 용매를 제거하였다. 34g of styrene, 126g of 1,3-butadiene, and 830g of hexane were added to a 2L autoclave reactor, 0.9ml of tetramethylethylenediamine (TMEDA) was added thereto, and the reactor temperature was raised to 40 ° C. while being turned into a stirrer in a nitrogen atmosphere. When the reactor temperature reached the set temperature, 5.6 mL of 0.3 M butyl lithium (n-BuLi) was added to carry out the polymerization reaction. 10 minutes after the reaction temperature reached the maximum temperature, 80 mmol of t-butyl methacrylate was added to further polymerize and trimethylolpropane triglycidyl ether for coupling. 3 mmol was added, and after an additional 10 minutes, ethanol was added to stop the polymerization, and the polymer solution was discharged from the reactor, and the antioxidant Irganox-1076 was added to 0.2 parts by weight based on 100 parts by weight of the polymer. In order to remove hexane, which is a solvent of the polymer, the prepared polymer was placed in heated hot water, stirred to remove the solvent, and then roll dried to remove residual solvent.
실시예 2Example 2
t-부틸메타크릴레이트 대신 t-부틸아크릴레이트(t-butyl acrylate)를 사용한 것을 제외하고는, 상기 실시예 1과 동일하게 실시하였다.Except for using t-butyl acrylate (t-butyl acrylate) instead of t- butyl methacrylate, it was carried out in the same manner as in Example 1.
실시예 3Example 3
t-부틸메타크릴레이트 대신 트리메틸실릴 메타크릴레이트(trimethylsilyl methacrylate)를 사용한 것을 제외하고는, 상기 실시예 1과 동일하게 실시하였다.Except for using trimethylsilyl methacrylate (trimethylsilyl methacrylate) instead of t- butyl methacrylate was carried out in the same manner as in Example 1.
비교예 1Comparative Example 1
t-부틸메타크릴레이트를 사용하지 않은 것을 제외하고는, 상기 실시예 1과 동일하게 실시하였다.The same procedure as in Example 1 was carried out except that t-butyl methacrylate was not used.
비교예 2Comparative Example 2
t-부틸메타크릴레이트 대신 메틸 메타크릴레이트(methyl methacrylate)를 사용한 것을 제외하고는, 상기 실시예 1과 동일하게 실시하였다.Except for using methyl methacrylate (methyl methacrylate) instead of t-butyl methacrylate was carried out in the same manner as in Example 1.
실험예: 중합체와 무기물과의 혼련 및 물성측정실험Experimental Example: Kneading of Polymers and Inorganic Materials and Measurement of Physical Properties
상기 실시예 및 비교예에서 얻어진 중합체들 각각을 하기 [표 1]에 나타낸 조성으로 배합하여 조성물을 제조하였다. 중합체 조성물의 혼련방법은 Thermo Scientific사의 Haake Polylab OS Rheodrive를 이용하였으며, 범버리 로터를 사용하였다. Each of the polymers obtained in the above Examples and Comparative Examples was combined with the composition shown in Table 1 to prepare a composition. The kneading method of the polymer composition was made using Thermo Scientific's Haake Polylab OS Rheodrive, and a Bumberry rotor was used.
배합은 2단계로 진행하였다. 혼련은 제 1혼련으로서 75중량% 충전하고, 로터 회전수를 60rpm 조건으로 중합체, 충전제(실리카), 오일, 산화아연(ZnO), 스테아린산(stearic acid), 실란커플링제(Si-69), 6-PPD를 넣어 온도를 제어하여 160℃에서 1차 조성물을 얻었다. 제 2혼련으로는, 상기 제 1혼련에서 얻어진 배합물을 실온까지 냉각하고, 100℃이하에서 황(sulfur)과 디페닐구아니딘(DPG: Diphenyl Guanidine), N-시클로헥실-2-벤조티아졸 설폰아미드(CBS: N-cyclohexyl-2-benzothiazole sulfonamide)를 첨가하여 5분간 혼련하였다. 배합된 조성물을 170℃에서 T90+5min 프레스에서 가황하여 가황된 고무시편을 제조하였다.Blending proceeded in two steps. Kneading is the first kneading, 75% by weight, polymer, filler (silica), oil, zinc oxide (ZnO), stearic acid, silane coupling agent (Si-69), 6 at a rotor speed of 60 rpm -PPD was added to control the temperature to obtain a primary composition at 160 ℃. In the second kneading, the compound obtained in the first kneading is cooled to room temperature, and sulfur, diphenyl guanidine (DPG: Diphenyl Guanidine) and N-cyclohexyl-2-benzothiazole sulfonamide are cooled to 100 ° C. or lower. (CBS: N-cyclohexyl-2-benzothiazole sulfonamide) was added and kneaded for 5 minutes. The blended composition was vulcanized at 170 ° C. in a T90 + 5 min press to produce vulcanized rubber specimens.
[표 1]TABLE 1
Figure PCTKR2015013198-appb-I000002
Figure PCTKR2015013198-appb-I000002
본 발명에 따라 제조된 중합체 및 중합체 조성물의 물성 분석과 성능을 평가하여, 각각 하기 [표 2] 및 [표 3]에 나타내었다. Physical property analysis and performance of the polymer and polymer composition prepared according to the present invention were evaluated, and are shown in the following [Table 2] and [Table 3], respectively.
[표 2]TABLE 2
Figure PCTKR2015013198-appb-I000003
Figure PCTKR2015013198-appb-I000003
* 스티렌함량, 비닐함량은 H-NMR로 계산한 결과임.* Styrene content and vinyl content are the result calculated by H-NMR.
* 비닐 함량은 전체 부타디엔 단량체 중 1,2-결합에 의해 생성된 비닐기의 비율임.* Vinyl content is the proportion of vinyl groups produced by 1,2-bonds in all butadiene monomers.
[표 3]TABLE 3
Figure PCTKR2015013198-appb-I000004
Figure PCTKR2015013198-appb-I000004
상기 표 2와 표 3에 나타난 바와 같이, 본 발명에 따른 실시예 1~3은 중합체에 도입된 기능성 단량체의 에스테르기가 가수분해에 의해 카르복시산기로 전환되므로써, 비교예 1~2 대비해서 가수분해율, 변성율, 인장강도와 300% 모듈러스가 높으면서 충전제와의 배합시 분산성이 우수함을 확인하였고, 타이어 트레드로 사용 시 0℃에서의 Tanδ가 높아 젖은 노면에서의 제동성이 우수하고, 60℃에서의 Tanδ가 낮아 노면저항이 낮은 연비가 우수한 변성 디엔계 고무 소재의 특징을 보여주었다. As shown in Table 2 and Table 3, Examples 1 to 3 according to the present invention, the hydrolysis rate, denaturation compared to Comparative Examples 1 to 2 by converting the ester group of the functional monomer introduced into the polymer by the hydrolysis of the carboxylic acid group It has high dispersion rate, high tensile strength and 300% modulus, and shows excellent dispersibility when blended with filler.Because of high tanδ at 0 ° C when used as a tire tread, it has excellent braking property on wet roads and tanδ at 60 ° C. It showed the characteristics of modified diene rubber material with excellent fuel efficiency with low road resistance.
반면에, 비교예 1은 본 발명의 기능성 단량체를 사용하지 않은 경우로, 실리카 분산성이 낮았고, 결과적으로 인장강도와 300% 모듈러스가 실시예 1~3에 비해 매우 낮았으며, 비교예 2는 본 발명의 기능성 단량체와 유사한 메타크릴레이트 계열의 단량체를 사용한 경우로, 가수분해가 잘 이루어지지 않는 메틸 에스테르기로 이루어져 있기 때문에, 본 발명의 기능성 단량체를 도입한 경우와 같은 극성 향상이 이루어지지 않아서 실리카 분산성, 인장강도, 300% 모듈러스 등의 특성이 실시예 1~3에 비해 열세였으나, 메틸 메타크릴레이트 단량체가 SBR에 비해 극성이 더 높은 특징 때문에 비교예 1보다는 더 우수했다. 실시예 1~3 및 비교예 2는 비교예 1에 비해 저장안정성(cold flow)이 개선되었음을 확인하였다.On the other hand, Comparative Example 1 is a case in which the functional monomer of the present invention is not used, the silica dispersibility is low, and as a result, the tensile strength and 300% modulus are very low compared to Examples 1 to 3, Comparative Example 2 In the case of using a methacrylate-based monomer similar to the functional monomer of the invention, since it is composed of a methyl ester group that is not hydrolyzed well, the polarity improvement is not achieved as in the case of introducing the functional monomer of the invention. Properties such as acidity, tensile strength, 300% modulus, etc. were inferior to Examples 1 to 3, but methyl methacrylate monomer was superior to Comparative Example 1 because of its higher polarity than SBR. Examples 1 to 3 and Comparative Example 2 confirmed that the storage stability (cold flow) is improved compared to Comparative Example 1.

Claims (10)

  1. 중합체 사슬의 시작 말단 및 끝 말단 중 적어도 하나에 하기 화학식 1로 표시되는 기능성 단량체를 포함하는 변성 공액디엔계 중합체:Modified conjugated diene-based polymer comprising a functional monomer represented by the following formula (1) at least one of the start end and end end of the polymer chain:
    [화학식 1][Formula 1]
    Figure PCTKR2015013198-appb-I000005
    Figure PCTKR2015013198-appb-I000005
    여기서, R1은 수소, 또는 탄소수 1~20의 알킬기, 또는 탄소수 6~20의 아릴기이고, R2는 터셔리-카본이 포함된 탄소수 4~20의 알킬기, 또는 탄소수 6~20의 아릴기, 또는 탄소수 3~20이고 규소수 1~10의 알킬실릴기, 또는 탄소수 6~20이고 규소수 1~10의 아릴실릴기이고, 열 또는 산 촉매에 의해 R2가 분리되어, 상기 단량체의 에스테르기가 카르복시산기 또는 무수물로 전환된다.Here, R 1 is hydrogen or an alkyl group having 1 to 20 carbon atoms, or an aryl group having 6 to 20 carbon atoms, and R 2 is an alkyl group having 4 to 20 carbon atoms including a tertiary carbon, or an aryl group having 6 to 20 carbon atoms. Or an alkylsilyl group having 3 to 20 carbon atoms and 1 to 10 silicon atoms, or an arylsilyl group having 6 to 20 carbon atoms and 1 to 10 silicon atoms, and R 2 is separated by a thermal or acid catalyst to obtain an ester of the monomer. The group is converted to a carboxylic acid group or an anhydride.
  2. 제 1항에 있어서, 상기 기능성 단량체는, 터셔리-부틸 아크릴레이트, 터셔리-부틸 메타크릴레이트, 트리메틸실릴 아크릴레이트, 트리메틸실릴 메타크릴레이트, 트리에틸실릴 아크릴레이트 및 트리에틸실릴 메타크릴레이트 중에서 선택되는 1종 또는 2종 이상의 화합물인 것을 특징으로 하는 변성 공액디엔계 중합체.The method of claim 1, wherein the functional monomer is selected from tert-butyl acrylate, tert-butyl methacrylate, trimethylsilyl acrylate, trimethylsilyl methacrylate, triethylsilyl acrylate, and triethylsilyl methacrylate. Modified conjugated diene-based polymer, characterized in that one or two or more compounds selected.
  3. 제 1항에 있어서, 상기 중합체 중에 상기 기능성 단량체가 1~100개 포함되는 것을 특징으로 하는 변성 공액디엔계 중합체.The modified conjugated diene-based polymer according to claim 1, wherein the polymer contains 1 to 100 functional monomers.
  4. 제 1항에 있어서, 상기 중합체 중에 상기 기능성 단량체가 올리고머형 블록 구조로 포함되는 것을 특징으로 하는 변성 공액디엔계 중합체.The modified conjugated diene-based polymer according to claim 1, wherein the functional monomer is included in an oligomeric block structure in the polymer.
  5. 제 1항에 있어서, 상기 중합체는, 디엔계 단량체 1종 이상을 (공)중합하거나, 또는 디엔계 단량체와 비닐 방향족 단량체를 공중합 시, 상기 기능성 단량체를 추가하여 중합을 실시하여 제조되는 것을 특징으로 하는 변성 공액디엔계 중합체.The polymer is prepared by (co) polymerizing at least one diene monomer or copolymerizing a diene monomer and a vinyl aromatic monomer, and adding the functional monomer to polymerize the polymer. Modified conjugated diene polymer.
  6. 제 5항에 있어서, 상기 디엔계 단량체는, 1,3-부타디엔 및 이소프렌 중에서 선택되는 1종 이상이고, 상기 비닐 방향족 단량체는 스티렌 및 알파 메틸스티렌 중에서 선택되는 1종 이상인 것을 특징으로 하는 변성 공액디엔계 중합체.The modified conjugated diene according to claim 5, wherein the diene monomer is at least one selected from 1,3-butadiene and isoprene, and the vinyl aromatic monomer is at least one selected from styrene and alpha methylstyrene. System polymers.
  7. 제 1항 내지 제 6항 중 어느 한 항의 변성 공액디엔계 중합체 100중량부에 대하여 무기 충전제 0.1~200중량부를 포함하는 조성물.A composition comprising 0.1 to 200 parts by weight of the inorganic filler with respect to 100 parts by weight of the modified conjugated diene-based polymer according to any one of claims 1 to 6.
  8. 제 7항에 있어서, 상기 무기 충전제는 카본블랙계 충전제, 실리카계 충전제 또는 이들의 혼합물인 것을 특징으로 하는 조성물.8. The composition of claim 7, wherein the inorganic filler is a carbon black filler, a silica filler, or a mixture thereof.
  9. 제 7항에 있어서, 상기 무기 충전제는 4% 수용액으로 분산하였을 경우의 pH가 3 이상 7 이하 인것을 특징으로 하는 조성물.8. The composition of claim 7, wherein the inorganic filler has a pH of 3 to 7 when dispersed in a 4% aqueous solution.
  10. 제 7항에 있어서, 상기 조성물은 타이어 소재용 조성물인 것을 특징으로 하는 조성물.The composition according to claim 7, wherein the composition is a composition for a tire material.
PCT/KR2015/013198 2014-12-22 2015-12-04 Modified conjugated diene-based polymer and composition containing same WO2016104986A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0186219 2014-12-22
KR1020140186219A KR101700012B1 (en) 2014-12-22 2014-12-22 Modified diene polymer and composition comprising the same

Publications (1)

Publication Number Publication Date
WO2016104986A1 true WO2016104986A1 (en) 2016-06-30

Family

ID=56150956

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/013198 WO2016104986A1 (en) 2014-12-22 2015-12-04 Modified conjugated diene-based polymer and composition containing same

Country Status (2)

Country Link
KR (1) KR101700012B1 (en)
WO (1) WO2016104986A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102122469B1 (en) * 2016-11-01 2020-06-12 주식회사 엘지화학 Modified diene polymer and preparation method thereof
WO2018084512A1 (en) * 2016-11-01 2018-05-11 주식회사 엘지화학 Denatured conjugated diene-based polymer and production method thereof
WO2020130738A1 (en) * 2018-12-21 2020-06-25 주식회사 엘지화학 Modified conjugated diene-based polymer and preparation method therefor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110018333A (en) * 2008-04-30 2011-02-23 가부시키가이샤 브리지스톤 Process for production of modified conjugated diene copolymer, modified conjugated diene copolymer produced by the process, rubber composition, and tire
KR20120101560A (en) * 2009-12-23 2012-09-13 미쉐린 러쉐르슈 에 떼크니크 에스.에이. Inflatable article provided with a gastight layer based on a blend of a thermoplastic elastomer and of a partially crosslinked butyl rubber
KR20130132272A (en) * 2012-05-25 2013-12-04 주식회사 엘지화학 Modified conjugated-diene polymer, method of preparing the same and modified conjugated-diene polymer composition comprising the same
KR20130139992A (en) * 2010-12-01 2013-12-23 제이에스알 가부시끼가이샤 Method for producing modified conjugated diene rubber, modified conjugated diene rubber, and rubber composition
KR20140127749A (en) * 2013-04-25 2014-11-04 주식회사 엘지화학 Modified conjugated diene polymer, method of preparing the same and modified conjugated diene polymer composition comprising the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4415448A1 (en) * 1994-05-03 1995-11-09 Basf Ag Adhesives based on anionically polymerized styrene / butadiene copolymers
KR101345217B1 (en) * 2012-04-27 2013-12-27 부산대학교 산학협력단 Novel hydrophilic chain transfer agent and end-modified styrene-butadiene copolymer using them

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110018333A (en) * 2008-04-30 2011-02-23 가부시키가이샤 브리지스톤 Process for production of modified conjugated diene copolymer, modified conjugated diene copolymer produced by the process, rubber composition, and tire
KR20120101560A (en) * 2009-12-23 2012-09-13 미쉐린 러쉐르슈 에 떼크니크 에스.에이. Inflatable article provided with a gastight layer based on a blend of a thermoplastic elastomer and of a partially crosslinked butyl rubber
KR20130139992A (en) * 2010-12-01 2013-12-23 제이에스알 가부시끼가이샤 Method for producing modified conjugated diene rubber, modified conjugated diene rubber, and rubber composition
KR20130132272A (en) * 2012-05-25 2013-12-04 주식회사 엘지화학 Modified conjugated-diene polymer, method of preparing the same and modified conjugated-diene polymer composition comprising the same
KR20140127749A (en) * 2013-04-25 2014-11-04 주식회사 엘지화학 Modified conjugated diene polymer, method of preparing the same and modified conjugated diene polymer composition comprising the same

Also Published As

Publication number Publication date
KR20160076248A (en) 2016-06-30
KR101700012B1 (en) 2017-01-25

Similar Documents

Publication Publication Date Title
EP3059258B1 (en) Modified conjugated diene-based polymer, method for preparing same, and rubber composition comprising same
US8569409B2 (en) Vulcanized elastomeric compositions
US10253158B2 (en) Method for continuously preparing modified conjugated diene polymers, polymers obtained from the method, and rubber composition comprising the same
EP3059260B1 (en) End-functionalized conjugated diene-based polymer and process for producing same
US8022159B2 (en) Terminating compounds, polymers, and their uses in rubber compositions and tires
JP6343655B2 (en) Process for producing modified conjugated diene polymer and rubber composition using polymer produced by this process
US20090203826A1 (en) Methods of making siloxy-imine functionalized rubbery polymers and uses thereof in rubber compositions for tires
JPH09165471A (en) Rubber composition based on silica and functional diene polymer having terminal silanol group
US10023661B2 (en) End-functional conjugated diene-based polymer and method of preparing same
WO2015016405A1 (en) Modified conjugated diene-based polymer and preparation method therefor
EP3280745A1 (en) Initiators for the copolymerisation of diene monomers and vinyl aromatic monomers
JP6615739B2 (en) Modified conjugated diene polymer and tire rubber composition using the same
KR20160079323A (en) Modified conjugated diene polymer and composition comprising the same
CN107567474B (en) Method for preparing rubber composition using aminosilane-based end modifier having introduced functional group and rubber composition prepared therefrom
JP2022542814A (en) 1-amino-3-(oxyalkylalkoxysilyl)-2-propanol-terminated diene rubber
US9834620B2 (en) Modified conjugated diene-based polymer, preparation method therefor, and rubber composition containing same
WO2015034110A1 (en) Modified conjugated diene polymer, method for preparing modified conjugated diene polymer, and rubber composition containing modified conjugated diene polymer
US10266614B2 (en) Modified conjugated diene polymer, modified rubber composition comprising same, and method for preparing modified conjugated diene polymer
JP2000204129A (en) Conjugated diolefin copolymerization rubber and rubber composition
WO2016104986A1 (en) Modified conjugated diene-based polymer and composition containing same
CN110121513A (en) Modified conjugated diene quasi polymer and rubber composition comprising it
KR20150131465A (en) Modified conjugated diene polymer and Composition comprising the same
CN109563186B (en) Method for producing modified conjugated diene polymer and method for producing polymer composition
KR101705947B1 (en) Polymerization of modified conjugated diene polymer using silyl anion initiator
CN109415539B (en) Aminosilane compound, method for producing same, and modified conjugated diene polymer containing compound

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15873513

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15873513

Country of ref document: EP

Kind code of ref document: A1