WO2016104794A1 - Braf変異検出によるegfr阻害剤の効果予測 - Google Patents

Braf変異検出によるegfr阻害剤の効果予測 Download PDF

Info

Publication number
WO2016104794A1
WO2016104794A1 PCT/JP2015/086420 JP2015086420W WO2016104794A1 WO 2016104794 A1 WO2016104794 A1 WO 2016104794A1 JP 2015086420 W JP2015086420 W JP 2015086420W WO 2016104794 A1 WO2016104794 A1 WO 2016104794A1
Authority
WO
WIPO (PCT)
Prior art keywords
braf
amino acid
seq
mutation
human
Prior art date
Application number
PCT/JP2015/086420
Other languages
English (en)
French (fr)
Inventor
一哉 土原
孝之 吉野
竹春 山中
尚吾 野村
幸代 三牧
鈴木 穣
岡田 英樹
智嘉子 中井
Original Assignee
国立研究開発法人国立がん研究センター
静岡県
G&Gサイエンス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人国立がん研究センター, 静岡県, G&Gサイエンス株式会社 filed Critical 国立研究開発法人国立がん研究センター
Priority to JP2016566575A priority Critical patent/JP6858563B2/ja
Publication of WO2016104794A1 publication Critical patent/WO2016104794A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/82Translation products from oncogenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/71Receptors; Cell surface antigens; Cell surface determinants for growth factors; for growth regulators
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/24Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against cytokines, lymphokines or interferons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2863Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against receptors for growth factors, growth regulators
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/11Protein-serine/threonine kinases (2.7.11)
    • C12Y207/11025Mitogen-activated protein kinase kinase kinase (2.7.11.25), i.e. MAPKKK or MAP3K
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57407Specifically defined cancers
    • G01N33/57419Specifically defined cancers of colon
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/40Fusion polypeptide containing a tag for immunodetection, or an epitope for immunisation
    • C07K2319/43Fusion polypeptide containing a tag for immunodetection, or an epitope for immunisation containing a FLAG-tag
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/106Pharmacogenomics, i.e. genetic variability in individual responses to drugs and drug metabolism
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/52Predicting or monitoring the response to treatment, e.g. for selection of therapy based on assay results in personalised medicine; Prognosis

Definitions

  • the present invention relates to a method for predicting the efficacy of a cancer therapeutic agent. Specifically, the present invention relates to a method for detecting a novel anti-EGFR antibody drug therapeutic effect prediction marker for BRAF mutation that is not suitable for an anti-EGFR antibody drug, and a test kit thereof.
  • Non-patent Document 1 a monoclonal antibody preparation specific for EGF (epidermal growth factor) receptor (EGFR) (hereinafter referred to as “anti-EGFR antibody drug”) by irinotecan, oxaliplatin (oxaliplatin). , L-OHP) and the like.
  • EGFR antibody drug a monoclonal antibody preparation specific for EGF (epidermal growth factor) receptor (EGFR)
  • irinotecan oxaliplatin
  • oxaliplatin oxaliplatin
  • L-OHP L-OHP
  • Known anti-EGFR antibody drugs include cetuximab and panitumumab.
  • cetuximab is a chimeric antibody obtained by partially substituting the mouse monoclonal antibody 225 against human EGFR with a human antibody gene by genetic engineering.
  • Panitumumab is a monoclonal antibody prepared using a transgenic mouse into which chromosomal DNA of the human antibody locus has been introduced.
  • Irinotecan inhibits DNA replication by topoisomerase I inhibitory activity.
  • Oxaliplatin binds to DNA in a platinum preparation and inhibits cancer cell DNA replication and transcription.
  • the anti-EGFR antibody drug may be used in combination with a synthetic compound preparation such as fluorouracil, irinotecan, and oxaliplatin, and may also be used in combination with an antibody preparation for vascular endothelial growth factor (VEGF) such as bevacizumab. is there.
  • VEGF vascular endothelial growth factor
  • the antibody preparation against the vascular endothelial growth factor (VEGF) inhibits the function of VEGF, and even in cancer cells that do not express VEGF, it suppresses angiogenesis and reduces blood supply to cancer tissues. Can inhibit the growth of cancer.
  • the anti-EGFR antibody drug inhibits EGF binding to EGFR, thereby inhibiting signal transmission from EGFR to the downstream, thereby suppressing the growth of cancer cells and shrinking the cancer tissue.
  • anti-EGFR antibody drugs do not show medicinal effects when somatic mutations are present in genes such as KRAS and BRAF in cancer cells (Patent Documents 1 and 2, Non-Patent Document 2).
  • KRAS somatic mutations in which the amino acid residues at positions 12, 13, 59, 61, 117, or 146 of the KRAS protein substitute constitutively activate the function of the KRAS protein.
  • the KRAS protein belongs to the transduction pathway of cell proliferation-promoting signals beginning with EGF binding to EGFR.
  • KRAS mutants inhibit the efficacy of anti-EGFR antibody drugs.
  • NRAS belonging to the same gene family as KRAS is also expressed. Therefore, even if KRAS is a wild type, in the case of a somatic mutation in which amino acid residues at positions 12, 13, 59, 61, 117, or 146 of NRAS are substituted, the efficacy of the anti-EGFR antibody is not effective. Be inhibited.
  • a tumor in which somatic mutation is not detected in either KRAS or NRAS is called RAS wild type, and the amino acid residue at position 12, 13, 59, 61, 117, or 146 is A tumor in which a somatic mutation to be substituted is detected in at least one of KRAS and NRAS is called a RAS variant.
  • the package insert when the anti-EGFR antibody drug cetuximab (Arbitux (registered trademark)) is marketed in Japan includes "EGFR positive, unresectable, progressive, recurrent colon, ⁇ When using this drug for rectal cancer, consider the presence or absence of KRAS gene mutation and select patients for indication.
  • the package insert when the anti-EGFR antibody drug panitumumab (Vectibix (registered trademark)) is marketed in Japan states that “KRAS gene wild type unresectable progression / recurrent colon, Rectal cancer ”is described, and as precautions related to its efficacy and effects,“ effectiveness in patients with KRAS gene mutation has not been established ”is described.
  • cetuximab and panitumumab are restricted to allow RAS to be applied to wild-type colorectal cancer.
  • V600E valine at position 600 of BRAF protein is replaced with glutamic acid
  • V600E repeated somatic mutations in which amino acid residues at positions 12, 13, 59, 61, 117, or 146 of the KRAS or NRAS protein are substituted are anti-EGFR antibody effect prediction markers
  • CYSTAL and OPUS trials analysis of data from large clinical trials (CRYSTAL and OPUS trials) is a marker that predicts that BRAF V600E mutation has a poor prognosis
  • the number of BRAF mutant cases is too small, it is concluded that the results cannot be analyzed as prognostic markers or effect prediction markers (Non-patent Document 3).
  • Non-patent Document 3 BRAF differs from KRAS, and in colon cancer, the frequency of mutations other than V600E mutation is relatively high, and V600E mutation is dominant. It has become clear that it is not appropriate.
  • the D594 mutation is a mutation that is known to be frequently found in colorectal cancer, although it is significantly less frequent than the V600E mutation.
  • the aspartic acid residue at position 594 is included in the DFG motif, and the oxygen atom of the carboxyl group of the aspartic acid residue is known to be involved in the chelation of Mg 2+ ions at the catalytic site and the stabilization of ATP binding. Yes.
  • D594A or D594V mutant BRAF binds to wild-type CRAF only in the presence of the mutant RAS, despite the loss of its own kinase activity, and exhibits CRAF kinase activity. There is a report that it is enhanced (Non-patent Document 5). On the other hand, there is a report that D594G mutant BRAF does not correlate with the efficacy of cetuximab (Non-patent Document 6). Therefore, whether the D594 mutation is a marker for predicting the effect of an EGFR inhibitor such as an anti-EGFR antibody drug differs depending on the substituted amino acid residue.
  • the present invention provides a method for detecting a human BRAF mutation that predicts the therapeutic effect of an anti-EGFR antibody drug.
  • the method for detecting a somatic mutation of human BRAF of the present invention comprises using a patient biological sample, from the group consisting of G469, L485, Q524, L525, D594 and V600 in the amino acid sequence of the human BRAF protein of SEQ ID NO: 1. Detecting a mutation in human BRAF that causes substitution of at least one selected amino acid residue, wherein the tumor in which the mutation in the gene is detected is treated with a signal transduction system inhibitor mediated by the BRAF. Not suitable.
  • the step of detecting a human BRAF mutation comprises at least one amino acid residue selected from the group consisting of G469A, L485F, Q524L, L525R, D594G and V600R. There may be a step of detecting a mutation in human BRAF that causes a substitution.
  • the BRAF-mediated signal transduction system inhibitor may be an EGFR inhibitor.
  • the BRAF-mediated signal transduction system inhibitor may be an anti-EGFR antibody drug.
  • the BRAF-mediated signal transduction system inhibitor may be used in combination with a chemotherapeutic agent other than the inhibitor, for example, irinotecan, FOLFOX, or FOLFIRI. .
  • the biological sample of the patient may be at least one sample selected from the group consisting of a tumor tissue sample, a body fluid sample, a secretion sample, and a waste sample. .
  • the step of detecting the mutation of human BRAF comprises the step of detecting at least one amino acid residue of the human BRAF gene in a nucleotide sequence of a nucleic acid extracted from a biological sample of a patient. It may include determining the base sequence of the oligonucleotide encoding the group substitution.
  • the step of detecting the human BRAF mutation comprises substituting the at least one amino acid residue of the human BRAF gene among nucleic acids extracted from a biological sample of a patient. Specifically amplifying a polynucleotide that encodes.
  • the method for detecting a mutation of human BRAF of the present invention comprises (a) isolating DNA from a biological sample of a patient; and (b) G469, L485, Q524, L525, D594 in the nucleotide sequence of SEQ ID NO: 2 and Hybridizing the isolated DNA with a pair of primers sandwiching a base sequence encoding at least one amino acid residue selected from the group consisting of V600, and (c) the isolated DNA and primer Amplifying BRAF gene DNA having a base sequence encoding at least one amino acid residue selected from the group consisting of G469, L485, Q524, L525, D594 and V600 in the base sequence of SEQ ID NO: 2; (D) the amplified BRAF gene DNA is immobilized on a solid phase. Or a step of contacting a probe in the liquid phase, which may include the steps of detecting (e) a probe of the amplified BRAF gene DNA hybridized to the solid phase which is fixed to the or liquid phase.
  • the step of detecting the human BRAF mutation detects a peptide comprising a substitution of the at least one amino acid residue of the human BRAF protein from a biological sample of a patient. May include doing.
  • the tumor may be colon cancer.
  • the present invention provides a kit for detecting a human BRAF mutation that predicts the therapeutic effect of an EGFR inhibitor.
  • the kit of the present invention comprises a mutation of the human BRAF gene that causes substitution of at least one amino acid residue selected from the group consisting of G469, L485, Q524, L525, D594 and V600 in the base sequence of SEQ ID NO: 2.
  • a primer or probe oligonucleotide for specifically detecting the base sequence is included.
  • the kit of the present invention includes a forward primer and a reverse primer designed to amplify DNA containing G469, L485, Q524, L525, D594 and V600 in the BRAF gene, and may detect mutations in the BRAF gene. is there.
  • the primer oligonucleotide encodes a substitution of at least one amino acid residue selected from the group consisting of G469, L485, Q524, L525, D594 and V600 in the base sequence of SEQ ID NO: 2.
  • Mutation of the human BRAF gene causing substitution of at least one amino acid residue selected from the group consisting of G469, L485, Q524, L525, D594 and V600 in the base sequence of SEQ ID NO: 2 by determining the base sequence of May be detected.
  • the primer oligonucleotide is a human BRAF gene that causes substitution of at least one amino acid residue selected from the group consisting of G469, L485, Q524, L525, D594 and V600 in the base sequence of SEQ ID NO: 2.
  • the base sequence of SEQ ID NO: 2 from G469, L485, Q524, L525, D594 and V600 A mutation in the human BRAF gene that causes substitution of at least one amino acid residue selected from the group may be detected.
  • the primer oligonucleotide may consist of at least one sequence selected from the group consisting of SEQ ID NOs: 3 to 40.
  • the primer oligonucleotide may contain at least one sequence selected from the group consisting of SEQ ID NOs: 3-40.
  • the primer oligonucleotide may consist of 10 to 50 nucleotides, alternatively 15 to 40, alternatively 18 to 30 nucleotides.
  • the primer oligonucleotide comprises a primer oligonucleotide consisting of any one sequence of SEQ ID NOs: 3 to 9 and a primer oligonucleotide consisting of any one sequence of SEQ ID NOs: 10 to 14.
  • a pair of a primer oligonucleotide consisting of any one of SEQ ID NOs: 15 to 18, a primer oligonucleotide consisting of any one of the SEQ ID NOs: 19 to 22, and any one of SEQ ID NOs: 23 to 26 A primer oligonucleotide consisting of any one sequence of SEQ ID NOs: 27 to 30, a primer oligonucleotide consisting of any one sequence of SEQ ID NOs: 27 to 30, a primer oligonucleotide consisting of any one sequence of SEQ ID NOs: 31 to 35, and SEQ ID NO: 36 Primer consisting of any one of ⁇ 40 sequences In some cases at least one pair of the pairs of primer oligonucleotides comprising a pair of rubber nucleotides.
  • the primer oligonucleotide may contain at least one sequence selected from the group consisting of SEQ ID NOs: 3-40.
  • the primer oligonucleotide may consist of 10 to 50 nucleotides, alternatively 15 to 40, alternatively 18 to 30 nucleotides.
  • the primer oligonucleotide includes a pair of a primer oligonucleotide containing any one of SEQ ID NOs: 3 to 9, a primer oligonucleotide containing any one of SEQ ID NOs: 10 to 14, and SEQ ID NOs: 15 to 18.
  • a primer oligonucleotide comprising any one sequence of SEQ ID NO: 19-22, a primer oligonucleotide comprising any one sequence of SEQ ID NO: 19-22, and a primer oligo comprising any one sequence of SEQ ID NO: 23-26
  • a primer oligonucleotide pair comprising any nucleotide and any one sequence of SEQ ID NOs: 27 to 30, a primer oligonucleotide comprising any one sequence of SEQ ID NOs: 31 to 35, and any one of SEQ ID NOs: 36 to 40
  • a primer oligonucleotide consisting of a pair of primer oligonucleotides containing a sequence of In some cases at least one pair of the pairs of rubber nucleotides.
  • the probe oligonucleotide is a human BRAF that causes substitution of at least one amino acid residue selected from the group consisting of G469, L485, Q524, L525, D594 and V600 in the base sequence of SEQ ID NO: 2. At least selected from the group consisting of G469, L485, Q524, L525, D594 and V600 in the base sequence of SEQ ID NO: 2 by hybridizing with RNA and / or DNA having a base sequence, including mutated bases of the gene A mutation in the human BRAF gene that causes a substitution of one amino acid residue may be detected.
  • the probe oligonucleotide may be immobilized on a solid phase.
  • the primer or probe oligonucleotide is a substitution of at least one amino acid residue selected from the group consisting of G469A, L485, Q524, L525, D594 and V600 in the base sequence of SEQ ID NO: 2. It may contain a base sequence containing a mutated base of the human BRAF gene to be raised or its complementary sequence.
  • the probe oligonucleotide may be at least one sequence selected from the group consisting of SEQ ID NOs: 41 to 98.
  • the probe oligonucleotide may contain at least one sequence selected from the group consisting of SEQ ID NOs: 41-98.
  • the probe oligonucleotide may consist of 10 to 50 nucleotides, alternatively 15 to 40, alternatively 18 to 30 nucleotides.
  • the human BRAF gene mutation is a mutation of the human BRAF gene that causes substitution of at least one amino acid residue selected from the group consisting of G469A, L485F, Q524L, L525R, D594G and V600R. There is a case.
  • the primer oligonucleotide includes a ribonuclease enzyme recognition site between its 5 ′ end and 3 ′ end, and the ribonuclease enzyme recognition site is a continuous sequence of RNA, and the amino acid residue
  • the ribonuclease enzyme recognition site is paired with a DNA having a complementary base sequence to form a heteroduplex, it may be specifically cleaved by heat-resistant RNaseH. is there.
  • the primer or probe oligonucleotide may contain a nucleic acid analog at least in a mutated base that causes substitution of the amino acid residue.
  • Nucleic acid analogs may include, but are not limited to, 2 ', 4'-BNA (Bicyclic Nucleoside), PNA (Peptide Nucleic Acid), ENA (Ethylene Nucleoside Acid) or LNA (Locked Nucleoside Acid).
  • the kit of the present invention includes an enzyme reaction substrate such as dNTP, an enzyme such as DNA polymerase and ribonuclease, a solution such as an enzyme reaction solution, a hybridization buffer solution, and a washing buffer solution. It may contain at least one selected from the group consisting of the solid composition for preparing a solution, a solid phase for immobilizing a nucleic acid such as a nitrocellulose membrane and a nylon membrane, and a booklet.
  • the present invention relates to an isolated human BRAF body comprising a substitution of at least one amino acid residue selected from the group consisting of G469, L485, Q524, L525, D594 and V600 in the amino acid sequence of the human BRAF protein of SEQ ID NO: 1.
  • a cellular mutein or an isolated peptide fragment of human BRAF somatic mutein comprising a substitution of at least one amino acid residue selected from the group consisting of G469, L485, Q524, L525, D594 and V600 .
  • the present invention relates to an antibody that binds to a somatic mutein of isolated human BRAF or an isolated peptide fragment of human BRAF somatic mutein of the present invention, but does not bind to wild-type human BRAF protein or an isolated peptide thereof Alternatively, antibody fragments are provided.
  • the present invention provides a host cell that expresses an isolated human BRAF somatic mutein or an isolated peptide fragment of human BRAF somatic mutein of the present invention.
  • a host cell of the present invention comprises an expression vector comprising a polynucleotide encoding a somatic mutein of isolated human BRAF or an isolated peptide fragment of human BRAF somatic mutein of the invention, said expression vector comprising said A control region that allows expression of the gene in a host cell is included, and the control region is operably linked to the polynucleotide.
  • the present invention provides a method for predicting the therapeutic effect of BRAF-mediated signal transduction system inhibitors on human BRAF somatic mutations.
  • the method for predicting the therapeutic effect of the present invention comprises the steps of exposing the host cell of the present invention to a BRAF-mediated signal transduction system inhibitor and examining the effect of the inhibitor on the growth of the host cell.
  • the amino acid residue substitution cell suddenly contained in the human BRAF protein or an isolated peptide fragment thereof
  • the inhibitor has a therapeutic effect on mutation, or when the growth of the host cell is not suppressed in the presence of the inhibitor compared to the absence of the inhibitor, the human BRAF protein or its single
  • the inhibitor is predicted to have no therapeutic effect against amino acid residue-substituted somatic mutations contained in isolated peptide fragments.
  • the present invention provides a method for expressing an isolated human BRAF protein or an isolated peptide fragment thereof.
  • the method for expressing an isolated human BRAF protein of the present invention or an isolated peptide fragment thereof comprises the steps of introducing an expression vector comprising a polynucleotide encoding the isolated human BRAF protein of the present invention or an isolated peptide fragment thereof into a host cell. And expressing the isolated human BRAF protein or isolated peptide fragment thereof in the host cell, wherein the expression vector contains a control region that allows expression of the gene in the host cell, The control region is operably linked to the polynucleotide.
  • the present invention provides a reference protein composition for detecting a mutant protein of human BRAF that predicts the therapeutic effect of a BRAF-mediated signal transduction system inhibitor.
  • the reference protein composition of the present invention includes a substitution of at least one amino acid residue selected from the group consisting of G469, L485, Q524, L525, D594 and V600 in the amino acid sequence of the human BRAF protein of SEQ ID NO: 1.
  • a isolated human BRAF protein or an isolated peptide fragment of human BRAF protein comprising a substitution of at least one amino acid residue selected from the group consisting of G469, L485, Q524, L525, D594 and V600.
  • the present invention includes a mutant base of the human BRAF gene that causes substitution of at least one amino acid residue selected from the group consisting of G469A, L485F, Q524L, L525R, D594G and V600R among the base sequence of SEQ ID NO: 2.
  • a polynucleotide comprising a mutated human BRAF cDNA base sequence is provided.
  • the present invention provides a probe oligonucleotide for detecting at least one mutation selected from the group consisting of G469A, L485F, Q524L, L525R, D594G and V600R in the base sequence of SEQ ID NO: 2.
  • the probe oligonucleotide may contain at least one sequence selected from the group consisting of SEQ ID NOs: 41-98.
  • the probe oligonucleotide may be at least one sequence selected from the group consisting of SEQ ID NOs: 41-98.
  • the probe oligonucleotide may consist of 10 to 50 nucleotides, alternatively 15 to 40, alternatively 18 to 30 nucleotides.
  • the present invention provides a primer oligonucleotide for detecting at least one mutation selected from the group consisting of G469A, L485F, Q524L, L525R, D594G and V600R in the base sequence of SEQ ID NO: 2.
  • the primer oligonucleotide includes a mutant base of the human BRAF gene that causes substitution of at least one amino acid residue selected from the group consisting of G469, L485, Q524, L525, D594 and V600 in the base sequence of SEQ ID NO: 2.
  • the base sequence of SEQ ID NO: 2 is selected from the group consisting of G469, L485, Q524, L525, D594 and V600 A mutation in the human BRAF gene that causes a substitution of at least one amino acid residue may be detected.
  • the primer oligonucleotide may consist of at least one sequence selected from the group consisting of SEQ ID NOs: 3-40.
  • the primer oligonucleotide may contain at least one sequence selected from the group consisting of SEQ ID NOs: 3-40.
  • the primer oligonucleotide may consist of 10 to 50 nucleotides, alternatively 15 to 40, alternatively 18 to 30 nucleotides.
  • the primer oligonucleotide includes a primer oligonucleotide consisting of any one of SEQ ID NOs: 3 to 9, a primer oligonucleotide consisting of any one of SEQ ID NOs: 10 to 14, and SEQ ID NOs: 15 to 18.
  • a primer oligonucleotide pair consisting of a nucleotide and any one sequence of SEQ ID NOs: 27 to 30, a primer oligonucleotide consisting of any one sequence of SEQ ID NOs: 31 to 35, and any one of SEQ ID NOs: 36 to 40 From a pair of primer oligonucleotides consisting of a sequence of books That there is a case at least one pair of a pair of primer oligonucleotides.
  • the primer oligonucleotide may contain at least one sequence selected from the group consisting of SEQ ID NOs: 3-40.
  • the primer oligonucleotide may consist of 10 to 50 nucleotides, alternatively 15 to 40, alternatively 18 to 30 nucleotides.
  • the primer oligonucleotide includes a pair of a primer oligonucleotide containing any one of SEQ ID NOs: 3 to 9, a primer oligonucleotide containing any one of SEQ ID NOs: 10 to 14, and SEQ ID NOs: 15 to 18.
  • a primer oligonucleotide comprising any one sequence of SEQ ID NO: 19-22, a primer oligonucleotide comprising any one sequence of SEQ ID NO: 19-22, and a primer oligo comprising any one sequence of SEQ ID NO: 23-26
  • a primer oligonucleotide pair comprising any nucleotide and any one sequence of SEQ ID NOs: 27 to 30, a primer oligonucleotide comprising any one sequence of SEQ ID NOs: 31 to 35, and any one of SEQ ID NOs: 36 to 40
  • a primer oligonucleotide consisting of a pair of primer oligonucleotides containing a sequence of In some cases at least one pair of the pairs of rubber nucleotides.
  • the primer oligonucleotide includes a ribonuclease enzyme recognition site between its 5 ′ end and 3 ′ end, and the ribonuclease enzyme recognition site is a continuous sequence of RNA that causes substitution of the amino acid residue.
  • the ribonuclease enzyme recognition site containing a base may be specifically cleaved by thermostable RNase H when paired with DNA having a complementary base sequence to form a heteroduplex.
  • the present invention provides a method for treating a tumor.
  • the method for treating tumor of the present invention uses at least one selected from the group consisting of G469, L485, Q524, L525, D594 and V600 in the amino acid sequence of human BRAF protein of SEQ ID NO: 1 using a biological sample of a patient.
  • Detecting a human BRAF mutation causing an amino acid residue substitution, and a patient in which the human BRAF mutation has been detected includes a BRAF-mediated signal transduction system inhibitor and a signal transduction system other than EGFR
  • Administering a formulation comprising the inhibitor includes a BRAF-mediated signal transduction system inhibitor and a signal transduction system other than EGFR Administering a formulation comprising the inhibitor.
  • the BRAF-mediated signal transduction system inhibitor other than EGFR may be at least one of BRAF inhibitor, MEK inhibitor, and PI3K inhibitor.
  • the signal transduction system inhibitor mediated by BRAF and a signal transduction system inhibitor other than EGFR may include at least a BRAF inhibitor.
  • the prescription is a single-agent treatment of a signal transduction inhibitor other than EGFR that is mediated by the BRAF, or a signal transduction inhibitor other than EGFR that is a signal transduction inhibitor that is mediated by the BRAF.
  • at least one chemotherapeutic agent selected from the group consisting of fluorouracil, irinotecan, folinic acid, oxaliplatin, capecitabine, leucovorin, tegafur uracil, gimeracil, oteracil potassium and trifluridine tipiracil (TAS-102)
  • TAS-102 trifluridine tipiracil
  • the formulation further comprises a VEGF inhibitor, an immune checkpoint inhibitor such as an antibody, recombinant protein or small molecule that inhibits the activity of bevacizumab, aflibercept, ramcilmab, PD-1, PD-L1, CTLA-4 May be combined with drugs.
  • the formulation may further include an EGFR inhibitor.
  • the step of detecting a mutation in human BRAF comprises the substitution of at least one amino acid residue selected from the group consisting of G469A, L485F, Q524L, L525R, D594G and V600R. It may be a step of detecting a gene mutation.
  • the tumor treatment method of the present invention at least one selected from the group consisting of G469, L485, Q524, L525, D594 and V600 in the amino acid sequence of the human BRAF protein of SEQ ID NO: 1 using the patient biological sample.
  • the step of detecting a human BRAF mutation causing a substitution of two amino acid residues is performed by the method for detecting a human BRAF mutation of the present invention.
  • the patient biological sample may be a tumor tissue sample, a blood sample, a secretion sample, or a waste sample.
  • the step of detecting a mutation of human BRAF encodes a substitution of the at least one amino acid residue of the human BRAF gene among nucleic acid base sequences extracted from a biological sample of a patient. Determining the base sequence of the oligonucleotide to be treated.
  • the step of detecting a mutation of human BRAF specifically amplifies a polynucleotide encoding a substitution of the at least one amino acid residue of the human BRAF gene in a nucleotide sequence extracted from a biological sample of a patient. May include that.
  • the step of detecting a mutation of human BRAF includes detecting a peptide comprising a substitution of the at least one amino acid residue of human BRAF protein from a biological sample of a patient.
  • the tumor may be colon cancer.
  • Kaplan-Meier curve of progression-free survival PFS
  • Kaplan-Meier curve of overall survival OS
  • Kaplan-Meier curve comparing PFS and OS of RAS wild type versus RAS variant (RAS W / M).
  • Kaplan-Meier curve comparing PFS and OS of RAS wild type and BRAF position 600 wild type versus RAS wild type and BRAF V600E mutant (RAS / BRAF V600E W / M).
  • Kaplan-Meier curve comparing PFS and OS of RAS wild type and BRAF wild type versus RAS wild type and BRAF mutant RAS / BRAF W / M).
  • FIG. 4 is a Western blotting diagram showing the results of detection of membranes separated by SDS-PAGE and transferred by Western blotting with Flag antibody (FLAG), anti-ERK antibody and anti-phosphorylated ERK antibody (ERK and pERK). .
  • FLAG Flag antibody
  • ERK and pERK the band part of the BRAF protein fused with the Flag tag
  • FIG. 4 the band part of the ERK protein was enlarged.
  • FIG. 5 shows transfection of an empty vector (Vector) and a vector expressing wild type human BRAF (WT), a known BRAF mutant (V600E) and a BRAF mutant of the present invention (Q524L and L525R). Then, cell lysates of HEK293 cells cultured in media supplemented with different concentrations (0, 0.5 and 5.0 ⁇ g / mL) of cetuximab were separated by SDS-PAGE, and membranes transferred by Western blotting were treated with Flag. It is a western blotting figure of the result detected by the antibody (FLAG), the anti-ERK antibody, and the anti- phosphorylated ERK antibody (ERK and pERK). In the upper part of FIG.
  • FIG. 6 shows an empty vector (pQCXIP), wild type human BRAF (WT), known BRAF mutant (V600E) and BRAF mutant of the present invention (Q524L, L525R, G464V, G466V, G469A, G469V, L485F).
  • FIG. 7 shows empty vectors (Vector) and vectors expressing wild type human BRAF (WT), known BRAF mutant (V600E) and BRAF mutants of the present invention (G466V, D594N, D594G and G596R).
  • the cell lysates of HEK293 cells cultured in media supplemented with different concentrations (0 and 5.0 ⁇ g / mL) of cetuximab were separated by SDS-PAGE, and membranes transferred by Western blotting were treated with Flag. It is a western blotting figure of the result detected by the antibody (FLAG), the anti-ERK antibody, and the anti- phosphorylated ERK antibody (ERK and pERK).
  • FLAG the anti-ERK antibody
  • ERK and pERK anti- phosphorylated ERK
  • amino acid sequence of human wild-type BRAF protein is described as SEQ ID NO: 1
  • base sequence of human wild-type BRAF cDNA is described as SEQ ID NO: 2.
  • amino acid residue of a protein is represented by the combination of the one-letter code of an amino acid and the position of the amino acid residue from the amino terminus of the protein.
  • V600 represents that the amino acid residue at position 600 (600th from the amino terminus) is valine.
  • Amino acid substitution mutation of protein is represented by a combination of a single letter code of amino acid in wild type protein, a position of amino acid residue from the amino terminus of protein, and a single letter code of amino acid substituted by mutant protein. Is done.
  • V600E represents a mutation in which the amino acid residue at position 600 was valine in the wild type but was replaced with glutamic acid.
  • the primary structure of human BRAF protein an error was found in the specification of the translation start position in the first half of the 2000s, and the position of one amino acid residue was shifted to the carboxyl terminus. Therefore, it should be noted that V600E is described as V599E in the old literature.
  • a tumor in this specification is any cancer, malignant tumor, malignant neoplasm, sarcoma or tumor that expresses BRAF.
  • the cancer targeted by the method or kit of the present invention may be lung cancer, stomach cancer, colon cancer (rectal / colon cancer) or melanoma, but is not limited thereto.
  • the therapeutic agent in the present specification refers to all therapeutic agents whose therapeutic effects can be predicted by detecting mutations in human BRAF, including BRAF-mediated signal transduction system inhibitors, ie, EGFR inhibitors, MEKs Inhibitors, PI3K inhibitors, VEGF inhibitors, BRAF inhibitors and any combination thereof are included.
  • EGFR inhibitors include, but are not limited to, cetuximab, panitumumab, anti-EGFR antibody drugs, gefitinib, erlotinib, lapatinib, afatinib, and afatinib EGFR tyrosine kinase inhibitory antibodies, recombinant proteins, or small molecule compounds include but are not limited to these.
  • MEK (MAPK / ERK kinase) inhibitors include antibodies, recombinant proteins, or low molecular compounds that have kinase inhibitory activity of MEK, including but not limited to trametinib, selumetinib, and MEK162. It is.
  • PI3K (phosphoinositide 3-kinase) inhibitors include antibodies, recombinant proteins, or low molecular weight compounds having phosphoinositide 3-kinase inhibitory activity, including but not limited to perifosine, Idelalisib, BYL719. included.
  • VEGF inhibitors include antibodies, recombinant proteins, or small molecule compounds that have VEGF inhibitory activity, including but not limited to Bevacizumab.
  • BRAF inhibitors include antibodies, recombinant proteins, or small molecule compounds that have BRAF kinase inhibitory activity, including but not limited to Vemurafenib, Dabrafenib, Encorafenib (LGX-818) It is.
  • the BRAF inhibitor may inhibit ARAF and / or CRAF in addition to BRAF.
  • Chemotherapeutic agents that may be used in combination with EGFR inhibitors and / or BRAF-mediated signal transduction inhibitors other than EGFR inhibitors include fluorouracil, irinotecan, folinic acid, oxaliplatin, capecitabine, leucovorin, tegafur Includes, but is not limited to, uracil, gimeracil, oteracil potassium and trifluridine tipiracil (TAS-102).
  • BRAF-mediated signal transduction system inhibitors and / or chemotherapeutic agents other than EGFR inhibitors further inhibit the activity of immune checkpoint inhibitors such as PD-1, PD-L1, CTLA-4 It may be used in combination with antibodies, recombinant proteins, or low molecular weight compounds.
  • MEK inhibitors may be actively administered not only to melanoma activated by the BRAFV600 mutation but also to colorectal cancer. This is because it is expected to stop survival signaling by inhibiting MEK downstream of BRAF.
  • administration of a MEK inhibitor is effective for BRAF mutant cancers in which positions other than 600 such as 524, 525, 486, and 594 are substituted.
  • BRAF mutant cancer is administered in combination with an EGFR inhibitor and a BRAF inhibitor in combination with a PI3K inhibitor or a MEK inhibitor, and its safety and effectiveness are reported.
  • a PI3K inhibitor or MEK inhibitor is used in combination with an EGFR inhibitor and a BRAF inhibitor. It is thought that the therapeutic effect was improved.
  • a combination therapy of a MEK inhibitor and an EGFR inhibitor may be applied to a tumor having a human BRAF somatic mutation provided by the present invention.
  • the patient biological sample may be at least one sample selected from the group consisting of a tumor tissue sample, a body fluid sample, a secretion sample, and a waste sample.
  • the tumor tissue sample includes, but is not limited to, fresh cancer tissue excised from a patient by surgery or biopsy and a specimen obtained by cryopreserving the fresh cancer tissue. Samples fixed with 10% formalin fixative diluted 10 times with purified water or 10% phosphate buffered formalin fixative diluted 10 times with purified water. It may be. After formalin fixation, it may be embedded in paraffin according to conventional methods. Briefly, formalin-fixed cancer tissues are dehydrated by sequentially immersing them in a 50-100% ethanol aqueous solution series.
  • the body fluid sample includes, but is not limited to, a sample of body fluid such as whole blood, serum, blood clot, blood sediment, plasma, lymph fluid, tissue fluid collected from a patient.
  • Secretion samples include, but are not limited to, sweat gland, lacrimal gland, mammary gland, salivary gland and other exocrine gland secretions and gastric juice, bile and other digestive gland secretions.
  • Excrement samples include, but are not limited to, manure, nasal discharge, sputum, and other excrement.
  • the presence or absence of a BRAF mutation can be confirmed by confirming the presence or absence of a base or amino acid substitution in DNA, RNA, and / or BRAF protein encoding BRAF.
  • RNA FFPE kit (Agilent Technology Co., Ltd.), NucleoSpin (registered trademark) DNA FFPE XS (MACHEREY-NAGEL GmbH, Takara Bio Inc.), WaxFree (trademark) ) Operate according to the manufacturer's instructions using Paraffin Sample DNA Extraction Kit (TrimGen Corporation, Funakoshi Co., Ltd.), DNA Isolator PS-Rapid Reagent (Wako Pure Chemical Industries, Ltd.) and other commercially available kits
  • the present invention is not limited to this, but can provide a method capable of obtaining a DNA of sufficient quality for DNA analysis.
  • paraffin-embedded sliced specimens are treated with a deparaffinizing agent such as xylene and d-limonene to dissolve and remove the paraffin, and the deparaffinizing agent is washed with ethanol and then nucleic acid is digested with proteinase K. Solubilize.
  • nucleic acids are solubilized directly from paraffin-embedded slices with a surfactant. Thereafter, the protein is denatured with a protein denaturant such as phenol or guanidine thiocyanate and removed from the aqueous phase, and the nucleic acid remaining in the aqueous phase is adsorbed and separated with silica or resin.
  • RNA extraction from a biological sample may be subjected to a DNA degrading enzyme treatment such as DNase (deoxyribonuclease) I.
  • the protein from the tumor can be detected for mutation by fluorescent in situ hybridization using an antibody that specifically binds to BRAF substituted at position 524 or the like.
  • mutations in BRAF G469, L485, Q524, L525, D594 and V600 are substituted with different amino acid residues as compared with the amino acid residues at respective positions in the amino acid sequence of wild-type BRAF of SEQ ID NO: 1.
  • the terms G469, L485, Q524, Q524, L525, D594 and V600 include G469A, L485F, Q524L, L525R, D594G and V600R, respectively.
  • the mutant base of the human BRAF gene that causes substitution of amino acid residues is the mutant base sequence that causes substitution of the amino acid residues of wild-type BRAF of SEQ ID NO: 1.
  • a base different from the base sequence of type BRAF In order to detect the presence or absence of substitution of a certain amino acid residue, it is necessary to determine the base sequence of at least one, preferably two or three oligonucleotides containing the mutated base.
  • the amino acid residue substitution detected by mutation of the human BRAF gene in the present invention is preferably G469A, L485F, Q524L, L525R, D594G.
  • Detection of a mutation in the human BRAF gene in the present invention is based on the condition that it can detect whether there is a substitution mutation of an amino acid residue selected from the group consisting of G469, L485, Q524, L525, D594 and V600. As such, it can be done in any way.
  • the extracted DNA may be concentrated as a template for sequence analysis. For DNA enrichment, SureSelect XT Auto Custom Capture Library (Agilent Technology Co., Ltd.) or other kits may be used.
  • Detection of a mutation in the human BRAF gene encodes a nucleotide sequence of an oligonucleotide encoding a substitution of at least one amino acid residue of the human BRAF gene or encodes a substitution of at least one amino acid residue of the human BRAF gene This may be done by specific amplification of the polynucleotide or by detection of a peptide comprising a substitution of said at least one amino acid residue of human BRAF protein.
  • Another aspect of the present invention is a reagent comprising a forward primer and a reverse primer designed to amplify DNA containing the base sites of G469, L485, Q524, L525, D594 and V600 in the BRAF gene.
  • the length of the primer is usually 10 bp to 100 bp, preferably 15 bp to 35 bp, more preferably 19 bp to 31 bp.
  • the primer is not particularly limited as long as it can amplify at least a part of the BRAF gene including the polymorphic portion.
  • the probe is not particularly limited as long as it can detect a polymorphism of the BRAF gene. That is, the probe is, for example, a probe that specifically hybridizes with a wild type BRAF gene or a BRAF gene having mutations in G469, L485, Q524, L525, D594, and V600.
  • the length of the probe is usually 10 bp to 100 bp, preferably 15 bp to 30 bp, more preferably 18 bp to 24 bp. If specific hybridization is possible, the nucleotide probe need not be completely complementary to the DNA containing the BRAF gene to be detected or to the BRAF gene having the mutation.
  • the conventional nucleic acid sequencing method by the Sanger method is used.
  • Next generation sequencing systems may be used.
  • the template DNA extracted and purified from the cancer tissue specimen is treated with a reagent kit prepared by each manufacturer according to the manufacturer's instructions, and mounted on a sequencing apparatus.
  • Detection of mutations in the human BRAF gene by determining the nucleotide sequence has the advantage that all amino acid substitution mutations in the entire protein can be detected, but the proportion of cells with specific somatic mutations in the cancer tissue There is a problem of detection sensitivity that it cannot be detected if there is little.
  • RNA-dependent RNA synthetase or RNA-dependent DNA synthase reverse transcriptase
  • DNA-dependent DNA synthase or DNA-dependent RNA synthase is used.
  • the sequence of the detection oligonucleotide may include an oligonucleotide encoding the substituted amino acid, or may be selected from the base sequence of SEQ ID NO: 2 so that a pair of primers are sandwiched between the oligonucleotides.
  • the oligonucleotide When detecting the mutation of the human BRAF gene by amplifying all or a part of the polynucleotide encoding the substitution of at least one amino acid residue of the human BRAF gene and detecting it by a probe oligonucleotide, the oligonucleotide There is a case where the nucleotide sequence of SEQ ID NO: 2 is selected so that a pair of primers are sandwiched.
  • the oligonucleotide for detection includes any natural nucleotide or nucleotide analogue of any length, provided that it specifically hybridizes with DNA or RNA in the biological sample of the patient of the present invention. It doesn't matter.
  • the detection oligonucleotide may be at least 12, 13, 14, 15, 16, 17, or 18 nucleotides in length. Alternatively, the detection may be performed by a method having higher detection sensitivity than the case where the determination is performed by determining the base sequence. Pyrosequencing method, SURVEYOR assay, BEAMing technology, real-time PCR, rhPCR method and the like can be used.
  • the detection oligonucleotide specifically causes hybridization with DNA or RNA in the biological sample of the patient of the present invention is determined by the following experimental system.
  • the DNA or RNA in the biological sample of the patient of the present invention is immobilized on a nitrocellulose filter or other solid phase by capillary action or electrophoresis after being separated according to the molecular weight directly or by agarose electrophoresis.
  • a solid phase immobilized with the same number of moles as the DNA or RNA in the biological sample of the patient is used as a positive control.
  • These solid phases are hybridized under stringent conditions.
  • stringent conditions refers to Sambrook, J. et al. And Russell, D .; W. , Molecular Cloning A Laboratory Manual 3rd Edition, Cold Spring Harbor Laboratory Press (2001). Pre-wash with a solution consisting of 6x SSC and 0.2% SDS.
  • a hybridization reaction between a probe labeled with the detection oligonucleotide with a radioisotope or other labeling substance and DNA, RNA or oligonucleotide immobilized on the solid phase is performed from 6 ⁇ SSC and 0.2% SDS. In the resulting solution at 65 ° C. overnight. Thereafter, the solid phase was washed twice at 65 ° C. for 30 minutes each in a solution consisting of 1 ⁇ SSC and 0.1% SDS, and 65 ° in a solution consisting of 0.2 ⁇ SSC and 0.1% SDS. C. Wash twice for 30 minutes each. Finally, the amount of the probe remaining on the solid phase is determined by quantifying the labeling substance.
  • the detection oligonucleotide specifically hybridizes with DNA or RNA in the biological sample of the patient of the present invention means that the solid phase immobilizing DNA or RNA in the biological sample of the patient of the present invention is used.
  • the difference between the amount of probe remaining on the negative control and the amount of probe remaining on the negative control solid phase is the difference between the amount of probe remaining on the positive control solid phase and the amount of probe remaining on the negative control solid phase. Of at least 25%, or at least 50%, or at least 75% or more.
  • antibody includes immunoglobulin IgG, IgM, IgE, IgA and IgD of any animal.
  • Antibody fragments include the immunoglobulin antigen binding portion of any animal, ie, the light chain and / or heavy chain variable region itself, or the Fab fragment comprising the light and / or heavy chain variable region and Or F (ab ′) 2 fragments or camelid single domain antibodies (nanobodies).
  • the “antibody” includes a bispecific antibody or a multivalent antibody which is a fusion protein containing a fragment of the antibody.
  • “specifically binds to an isolated human BRAF somatic mutein or isolated peptide fragment thereof of the present invention” refers to the same amount of human wild-type BRAF protein or somatic mutein.
  • the immobilized solid phase is blocked, reacted with an antibody or antibody fragment at the same concentration, and further reacted with a labeled secondary antibody against the antibody or antigen fragment to immobilize human wild-type BRAF protein or somatic mutein
  • the amount of the antibody or antigen fragment bound to the solid phase was compared, the amount of the antibody or antigen fragment bound to the solid phase immobilizing the somatic mutein was equal to the amount of human wild-type BRAF protein or other body. 2 times, 5 times, or 10 times more than the amount of the antibody or antigen fragment bound to the solid phase immobilized with the cell mutein. The point.
  • a multi-item simultaneous measurement technique using fluorescent microbeads such as xMAP (registered trademark) technology using the Luminex (registered trademark) system can be used.
  • a genomic DNA extracted from a measurement sample (formalin-fixed paraffin-embedded (FFPE) tissue or fresh frozen tissue) is used as a specimen, and a master mix containing a biotin-labeled primer and Taq DNA polymerase are used for humans.
  • FFPE formalin-fixed paraffin-embedded
  • the region containing BRAF genes G469, L485, Q524, L525, D594 and V600 is PCR amplified.
  • a region containing known human BRAF amino acid substitution mutations may be PCR amplified, including but not limited to P655, S657, S683, P686, C696, L697, P722, F738 and C748.
  • the PCR amplification product and the bead mix are reacted in a hybridization buffer, and the probe on the fluorescent beads contained in the bead mix is hybridized with the PCR amplification product.
  • the bead mix may include wild type (WT) beads and mutant beads on which a probe corresponding to an oligonucleotide containing a mutant base with amino acid substitution is solid-phased.
  • a probe complementary to a region other than the mutant base of the BRAF gene can also be used as a control.
  • a fluorescently labeled protein such as SA-PE (phycoerythrin-labeled streptavidin) is reacted with a bead / PCR amplification product complex in a phosphate buffer to fluorescently label the PCR amplification product.
  • SA-PE phycoerythrin-labeled streptavidin
  • a primer consisting of the nucleotide sequence of SEQ ID NO: 3 to 11 or containing the nucleotide sequence of SEQ ID NO: 3 to 11 may be used.
  • at least one pair of primers selected from SEQ ID NOs: 3 and 4, SEQ ID NOs: 5 and 6, SEQ ID NOs: 7 and 8, SEQ ID NOs: 9 and 11, and primer pairs comprising the nucleotide sequences of SEQ ID NOs: 10 and 11 May be used.
  • a probe comprising at least one kind of nucleotide sequence selected from the group consisting of nucleotide sequences of SEQ ID NOs: 12 to 84, or a nucleotide sequence of SEQ ID NOs: 12 to 84, A probe containing at least one kind of base sequence selected from the group consisting of may be used.
  • the mutation of the human BRAF gene is performed by detecting a peptide containing a substitution of the at least one amino acid residue of the human BRAF protein
  • the mutation is selected from the group consisting of G469, L485, Q524, L525, D594 and V600.
  • An antibody that specifically binds to human BRAF protein substituted with at least one selected amino acid residue may be used.
  • the antibody may be detected by a fluorescence in situ hybridization method, an HRP polymerized polymer-bound secondary antibody method, or other highly sensitive antibody detection methods.
  • a fragment peptide of BRAF protein substituted with the amino acid residue may be detected by mass spectrometry imaging technique or other mass analysis of a biological sample.
  • a step of administering a prescription comprising a BRAF-mediated signal transduction system inhibitor other than EGFR to a patient in which the human BRAF mutation is detected BRAF inhibitors Encorafenib (Encorafenib, LGX 818) and cetuximab (Cetuximab), BRAF inhibitors Encorafenib (Encorafenib, LGX 818), cetuximab (Cetuximab) and PI3K inhibitors BYL 719 (BRAF dab, BRA 212) Panitumumab, BRAF inhibitor Dabrafenib, Panitumumab and MEK inhibitor Trametinib, FOLFOXIRI (Infusional 5-FU + LV + IRI + OX), FOLBes vacizumab), including but not limited to prescriptions.
  • BRAF inhibitors Encorafenib (Encorafenib, LGX 818) and cetuximab (Cetuxim
  • BRAF inhibitor Encorafenib (LGX818): 250 mg. Cetuximab: 400 mg / m 2 for the first time only, intravenous infusion over 120 minutes, and then intravenous infusion over 250 minutes for 250 mg / m 2 . BYL719: 250 mg / day. Dabrafenib: 150 mg / day. Panitumumab: Intravenous infusion of 6 mg / kg (body weight) over 60 minutes. Trametinib: 2 mg.
  • FOLFOXIRI irinotecan 165mg / m 2, oxaliplatin 85mg / m 2, oxaliplatin at the same time as L- leucovorin mg / m 2, 5- fluorouracil 3,200mg / m 2, the intravenous infusion, repeated every 2 weeks. Bevacizumab 5 mg / kg. Note that the actual dose to an individual patient will be determined by dose limiting toxicity, escalating towards the recommended dose. In addition to these prescriptions, a combination prescription of FOLFOX, CapeOX, FOLFIRI, FL and / or Cape with Bevacizumab, or a combination prescription with UFT + LV, IRIS, IRI, TAS-102, etc. may be administered.
  • Eligibility criteria for the BREAC test (1) Histologically confirmed as adenocarcinoma of the large intestine (2) Unresectable, advanced recurrent colorectal cancer (3) KRAS genotype is wild type or unknown (treatment (It is possible even after the start) (4) Perform baseline CT examination within 42 days prior to the start of treatment (5) Have at least one measurable lesion (6) From June 2010 to the date of approval by each institutional review board Received treatment containing cetuximab or panitumumab (7) Received at least one imaging diagnosis within 3 months after initiation of treatment containing cetuximab or panitumumab (8) Refractory to fluoropyrimidine or difficult to re-administer (9) Irinotecan Refractory (10) Oxaliplatin refractory or difficult to re-administer (11) Age 20 years and older (12) PS: 0-2 (ECOG performance status score) (13) Major organ functions are maintained in the examination immediately before administration of cetuximab or panitumumab
  • Exclusion criteria for the BREAC study Exclude any pretreatment tests that include cetuximab or panitumumab that meet the following exclusion criteria: (1) Have active double cancer (2) Have severe infections (3) Have body fluids (such as chest, ascites and pericardial effusion) that need treatment (4) Interstitial (5) Others who have pneumonia or a history of it and pulmonary fibrosis (5) Other cases that doctors judge as inappropriate for this study (6) Documents refuse to use samples for research
  • the BRAF gene is known to have the V600E mutation as the main mutation in colorectal cancer, and the V600E mutation was detected in 9 cases (6.0%) in this study. Furthermore, mutations other than V600E (G469A (1 example), L485F (1 example), Q524L (1 example), L525R (1 example), D594G (2 examples), V600R (1 example)) total 7 examples (4.7). %).
  • RAS wild type means a tumor in which somatic mutation is not detected in either KRAS or NRAS.
  • RAS variant is a somatic mutation in which amino acid residues at positions 12, 13, 59, 61, 117, 146 are detected in at least one of KRAS and NRAS Refers to the tumor being treated.
  • RAS / BRAF V600E wild type means a RAS wild type and no BRAF V600E mutation.
  • the BRAF V600E mutant means a RAS wild type and a BRAF V600E mutation.
  • RAS / BRAF wild type means a RAS wild type and BRAF tumor without somatic mutation.
  • the BRAF other mutation means a tumor having a somatic mutation in any of RAS wild type and BRAF G469A, L485F, Q524L, L525R, D594G, or V600R.
  • FIG. 1 shows a Kaplan-Meier curve of PFS.
  • the PFS of the mutant patient population (dashed line) and the PFS of the wild type patient population (solid line) were comparable in all classifications.
  • the BRAF V600E mutant group and other BRAF mutant patient groups are expected to have therapeutic effects of anti-EGFR antibody drugs. It was suggested that it may not be possible.
  • FIG. 2 shows the Kaplan-Meier curve of the OS.
  • the mutant patient population (broken line)
  • the other mutant forms of BRAF dark gray dashed line
  • the prognosis of the wild-type patient population was similar in all categories.
  • OS showed a tendency of improvement.
  • Table 3 shows the mutation types in patients with BRAF gene mutations and the best responses of the patients.
  • Table 4 shows analysis results of response rate (RR), disease control rate (DCR), tumor shrinkage rate (% shrink), median values of PFS and OS.
  • the response rate (RR) refers to the percentage of cases in which the response to a certain treatment was CR and PR.
  • Disease control rate (DCR) refers to the percentage of cases in which the response to a certain treatment was CR, PR, and SD. Since DCR includes SD cases (less than 20% tumor growth from baseline), an analysis was also performed on the rate of tumor shrinkage.
  • the response rate (RR) was 0% for BRAF V600E and BRAF and other mutants, and a complete response by anti-EGFR antibody drug could not be confirmed.
  • Disease control rate (DCR) was 22.2% for the BRAF V600E variant and 71.4% for the other variants of BRAF.
  • the percentage of “% shrink * 1 ” indicating cases in which the tumor did not increase (including cases in which the tumor size did not change, that is, did not shrink at all) was 22.2% in the BRAF V600E mutant type and BRAF, respectively. It was 28.6% in other mutant types.
  • the percentage of “% shrink * 2 ” indicating cases in which the tumor has shrunk even once (excluding cases that did not shrink at all from “% shrink * 1”) was 11.1% for the BRAF V600E variant, respectively, It was 28.6% in the mutant type (FIG. 3). From the above results, even when evaluated from the viewpoint of tumor reduction, the BRAF V600E mutant and other BRAF mutant patients including BRAF mutants (G469A, L485F, Q524L, L525R, D594G and V600R) are excluded. Was confirmed to contribute to the improvement of effectiveness.
  • FIG. 3A shows a Kaplan-Meier curve comparing PFS and OS of RAS wild type versus RAS mutant type (RAS W / M). The P value of the log rank test was less than 0.01% or 0.02%, respectively.
  • FIG. 3B shows Kaplan-Meier curves comparing PFS and OS of RAS wild type and BRAF position 600 wild type versus RAS mutant or BRAF V600E mutant (RAS / BRAF V600E W / M). The P value of the log rank test was less than 0.01% or 0.01%, respectively.
  • FIG. 3A shows a Kaplan-Meier curve comparing PFS and OS of RAS wild type versus RAS mutant type (RAS W / M). The P value of the log rank test was less than 0.01% or 0.01%, respectively.
  • 3C shows Kaplan-Meier curves comparing PFS and OS of RAS wild type and BRAF wild type versus RAS mutant or BRAF mutant (RAS / BRAF W / M).
  • the log rank test P values were both less than 0.01%.
  • the P value of the log rank test showed a statistically significant association at a significance level of 5%.
  • the analysis results shown so far show that the BRAF V600E variant and the other variant of BRAF (at least one selected from the group consisting of G469A, L485F, Q524L, L525R, D594G and V600R) are anti-EGFR. It shows that it is a marker for predicting therapeutic effects of antibody drugs.
  • BRAF mutein by transient expression system in cultured human cells 2.1 Effect of BRAF mutein expressed in HEK293 cells on cell proliferation promoting signal transduction system (1) Cell proliferation promoting signals generated by binding of EGF to EGFR are transmitted to BRAF via KRAS and / or NRAS, and activate BRAF. The activated BRAF transmits a cell proliferation promoting signal further downstream by activating ERK (extracellular signal-regulated kinase). Therefore, in this experiment, whether or not the BRAF mutant protein detected in the BREAC test can transmit a cell growth promoting signal to ERK downstream of BRAF in human cells was examined using a transient expression system of BRAF mutant protein.
  • ERK extracellular signal-regulated kinase
  • the vector for expressing the BRAF mutant protein of the present invention is pQCXIP (Clontech, Takara Bio Inc., 631516), a self-inactivating type retrovirus vector, which is a wild type or abrupt type of BRAF fused with a FLAG tag.
  • the mutant gene and the puromycin resistance gene are driven by the CMVIE promoter.
  • the BRAF expression construct was made according to the manufacturer's instructions.
  • Human fetal kidney cells HEK293 were obtained from the JCRB cell bank. 5 ⁇ 10 5 HEK293 cells were seeded per well in a 6-well multiwell plate. The cells were cultured overnight at 37 ° C., 5% CO 2 and saturated humidity, and 10 mM Tris-HCl and 1 mM EDTA buffer (TE buffer, pH 8.0) solutions of plasmid DNAs having the concentrations listed in Table 6 were prepared. A complex solution of a reaction reagent and DNA was prepared with the composition shown in Table 7. According to the manufacturer's instructions for the FuGENE HD transfection reagent, 150 ⁇ L of the complex solution was added to each well and incubated for 6 hours.
  • the medium was changed and further cultured for 24 hours. Thereafter, the following cell lysis buffer (50 mM Tris-HCl, 1% NP-40, 0.5% sodium deoxycholate, Dissolve in 0.5% SDS, 150 mM NaCl, 2 mM EDTA, 50 mM NaF, 1% protease inhibitor cocktail and 1 mM sodium orthovanadate, pH 6.8), perform protein quantification using the Pierce BCA protein assay kit, and SDS-PAGE. Samples were prepared.
  • cell lysis buffer 50 mM Tris-HCl, 1% NP-40, 0.5% sodium deoxycholate, Dissolve in 0.5% SDS, 150 mM NaCl, 2 mM EDTA, 50 mM NaF, 1% protease inhibitor cocktail and 1 mM sodium orthovanadate, pH 6.8
  • the membrane was washed 3 times with TBS to which 0.05% Tween-20 was added, and then a secondary antibody diluted 2000 times with TBS to which 5% BSA was added was reacted at room temperature for 1 hour.
  • the membrane was washed three times with TBS to which 0.05% Tween-20 was added, and then detected with an ECL western blotting detection reagent.
  • Image Quant LAS4000 mini (GE Healthcare Japan, Inc.) was used.
  • FIG. 4 expresses empty vector (pQCXIP) and wild type human BRAF (WT), known BRAF mutant (V600E) and BRAF mutants of the present invention (Q524L and L525R)
  • the cell lysate of HEK293 cells transfected with the vector was separated by SDS-PAGE, and the membrane transcribed by Western blotting was treated with Flag antibody (FLAG), anti-ERK antibody and anti-phosphorylated ERK antibody (ERK and pERK) It is a western blotting figure of the result detected by (1).
  • FLAG Flag antibody
  • ERK and pERK anti-phosphorylated ERK antibody
  • the band part of the ERK protein was enlarged.
  • the antibody in the sample of cells into which BRAF had been introduced except for empty vector-introduced cells, the antibody reacted with a band having a size corresponding to BRAF protein (80 kDa).
  • the antibody reacted with a band having a size corresponding to ERK protein (44 kDa) in the sample of the empty vector-introduced cell and the sample of the cell into which all BRAF had been introduced.
  • Transfection and BRAF expression did not affect ERK protein expression since the density of the bands in all samples was approximately the same.
  • the density of the phosphorylated ERK band corresponds to the density of the BRAF band in the upper part of FIG.
  • the BRAF mutant expression vector was introduced into HEK293 EGFRwt cell line, BRAF was transiently overexpressed, and phosphorylation of ERK in the presence of different concentrations of the anti-EGFR antibody cetuximab was examined.
  • cetuximab (Arbitux (registered trademark) Merck Serono Co., Ltd.) was used in addition to the reagents used in the experiment of the previous section.
  • HEK293 cell line HEK293 EGFRwt constitutively expressing wild-type human EGFR introduced the wild-type EGFR gene into pQCXIN (Clontech, Takara Bio Inc., 631514), a self-inactivating retrovirus vector having a neomycin resistance gene. In addition, it was created according to the manufacturer's instructions.
  • HEBR293 EGFRwt cell line was transfected with wild type or mutant plasmid DNA of human BRAF using FuGENE HD transfection reagent. After culturing in a complex solution of transfection reagent and DNA for 6 hours, the medium was changed and further culturing was performed for 20 hours.
  • the medium was replaced with a medium supplemented with different concentrations (0, 0.5, and 5.0 ⁇ g / mL) of cetuximab, and cultured for another 2 hours. Thereafter, as in the previous section 2.1, cells into which plasmid DNA of human BRAF wild type or mutant was introduced were lysed, and SDS-PAGE and Western blotting were performed.
  • FIG. 5 expresses empty vector (Vector) and wild type human BRAF (WT), known BRAF mutant (V600E) and BRAF mutants of the present invention (Q524L and L525R).
  • a cell lysate of HEK293 EGFRwt cell line cultured in a medium supplemented with different concentrations (0, 0.5 and 5.0 ⁇ g / mL) of cetuximab was isolated by SDS-PAGE, It is a Western blotting result of the result of having detected the membrane transcribe
  • FLAG Flag antibody
  • ERK and pERK anti- phosphorylated ERK antibody
  • the band part of the BRAF protein fused with the Flag tag is enlarged.
  • the band part of the ERK protein was enlarged.
  • the antibody reacted with a band having a size corresponding to BRAF protein (80 kDa).
  • the antibody reacted with a band having a size corresponding to ERK protein (44 kDa) in all the samples of the empty vector-introduced cell and the BRAF-introduced cell.
  • the BRAF mutants Q524L and L525R of the present invention do not decrease the activity of phosphorylating ERK even when the concentration of cetuximab is increased. It was suggested that this is an activated BRAF mutant that does not depend on signals.
  • TE buffer solutions of plasmid DNA at the concentrations listed in Table 7 were prepared, and a transfection reagent and DNA complex solution was prepared with the composition shown in Table 9.
  • transfection into HEK293 cells was performed, cells into which plasmid DNA was introduced were lysed, and SDS-PAGE and Western blotting were performed.
  • FIG. 6 shows that the empty vector (pQCXIP) and wild type human BRAF (WT), known BRAF mutant (V600E) and BRAF mutants of the present invention (Q524L, L525R, G464V, G466V).
  • G469A, G469V, L485F, N581S, D594N, D594G, G596R and V600R) transfected HEK293 cell lysates were separated by SDS-PAGE, and membranes transcribed by Western blotting were flagged. It is a western blotting figure of the result detected by the antibody (FLAG), the anti-ERK antibody, and the anti-phosphorylated ERK antibody (ERK and pERK).
  • the band part of the BRAF protein fused with the Flag tag is enlarged.
  • the band part of the ERK protein was enlarged.
  • wild-type human BRAF WT
  • known BRAF mutant V600E
  • some of the BRAF mutants of the present invention Q524L, L525R, G464V, G469A, G469V, L485F, N581S
  • V600R the density of the phosphorylated ERK band was higher than that of the empty vector sample.
  • the density of the phosphorylated ERK band was approximately the same as that of the empty vector sample.
  • G466V, D594N, D594G and G596R are inactivated BRAF mutants that do not transmit a cell growth promoting signal downstream.
  • TE buffer solutions of plasmid DNA at the concentrations listed in Table 7 were prepared, and a transfection reagent and DNA complex solution was prepared with the composition shown in Table 10.
  • a transfection reagent and DNA complex solution was prepared with the composition shown in Table 10.
  • the HEK293 EGFRwt cell line was transfected, the plasmid DNA-introduced cells were lysed, and SDS-PAGE and Western blotting were performed.
  • FIG. 7 shows an empty vector (Vector) and wild type human BRAF (WT), known BRAF mutant (V600E) and BRAF mutants of the present invention (G466V, D594N, D594G and G596R).
  • WT wild type human BRAF
  • V600E known BRAF mutant
  • G466V D594N, D594G and G596R
  • FIG. 3 is a Western blotting result of detecting the membrane transcribed in (1) with Flag antibody (FLAG), anti-ERK antibody and anti-phosphorylated ERK antibody (ERK and pERK).
  • FLAG Flag antibody
  • ERK and pERK anti-phosphorylated ERK antibody
  • the band part of the BRAF protein fused with the Flag tag is enlarged.
  • the band part of the ERK protein was enlarged.
  • the wild type BRAF and the BRAF mutant of the present invention G466V, D594N, D594G and G596R
  • the higher the concentration of cetuximab the higher the phosphorylated ERK band. Density has dropped.
  • the density of the phosphorylated ERK band did not change even when the concentration of cetuximab was increased.
  • the BRAF mutants (G466V, D594N, D594G and G596R) of the present invention are inactivated BRAF mutants in which downstream signal transduction is attenuated, but are dependent on upstream cell proliferation promoting signals. It was suggested that
  • the BRAF mutants Q524L and L525R of the present invention are activated BRAF mutants that do not depend on the cell growth promoting signal from the upstream, similar to the known BRAF mutant V600E.
  • This result is consistent with the result that the best response of these mutant patients to the anti-EGFR antibody drug in Example 1 was PD or SD (Table 3). Therefore, it is expected that the effects of treatment with EGFR inhibitors, including cetuximab, are low in patients with any of Q524L and L525R mutations in vivo including humans.
  • the BRAF mutants G466V, D594N, D594G and G596R of the present invention are inactivated BRAF mutants that do not transmit a cell growth promoting signal downstream, but are dependent on the cell growth promoting signal from the upstream. It was suggested that This means that the BRAF mutants G466V, D594N, D594G and G596R of the present invention are cetuximab responsive. However, the best response to anti-EGFR antibody drugs in D594G mutant patients resulted in SD (Table 3).
  • BRAF mutants G466V, D594N, D594G and G596R of the present invention are responsive to cetuximab
  • the signal from EGFR is almost blocked even in the absence of cetuximab because it originally has low activity to phosphorylate ERK.
  • cetuximab responsiveness by an inactive BRAF mutant is observed, but in the in vivo environment, cetuximab resistance is acquired by activation of RAF family genes other than BRAF There may be a collateral route to do.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Immunology (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Zoology (AREA)
  • Medicinal Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Oncology (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Cell Biology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Physics & Mathematics (AREA)
  • Hospice & Palliative Care (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Toxicology (AREA)
  • Food Science & Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)

Abstract

【課題】EGFR阻害剤への適応性をより的確に判定するために、BRAF突然変異の新規なEGFR阻害剤治療効果予測マーカーを開発すること。 【解決手段】本発明のEGFR阻害剤の治療効果を予測するヒトBRAFの突然変異を検出する方法は、患者の生体サンプルを用いて、配列番号1のヒトBRAFタンパク質のアミノ酸配列において、G469、L485、Q524、L525、D594及びV600からなる群から選択される少なくとも1つのアミノ酸残基の置換を起こすヒトBRAFの突然変異を検出するステップを含み、前記遺伝子の突然変異が検出された腫瘍は、前記BRAFが介在するシグナル伝達系阻害剤による治療に適さない。

Description

BRAF変異検出によるEGFR阻害剤の効果予測
 本発明は、がん治療薬の薬効を予測する方法に関する。具体的には本発明は、抗EGFR抗体薬に適さないBRAF突然変異の新規な抗EGFR抗体薬治療効果予測マーカーを検出する方法と、その検査キットとに関する。
 近年、転移性大腸がん(metastatic colorectal cancer)の治療成績が向上し、フルオロウラシル単独投与では12ヶ月であった平均余命が約2年にまで延びるまでになった(非特許文献1)。この延命効果は、フルオロウラシルに加えて、EGF(上皮成長因子)受容体(EGFR)に特異的なモノクローナル抗体製剤(以下、「抗EGFR抗体薬」という。)をイリノテカン(irinotecan)、オキサリプラチン(oxaliplatin、L-OHP)等とともに併用することにより得られた。前記抗EGFR抗体薬には、セツキシマブ(Cetuximab)、パニツムマブ(Panitumumab)等が知られている。このうちセツキシマブは、ヒトEGFRに対するマウスモノクローナル抗体225を遺伝子工学的にヒト抗体遺伝子に部分置換して得られたキメラ抗体である。パニツムマブは、ヒト抗体遺伝子座の染色体DNAを導入したトランスジェニックマウスを用いて作成されたモノクローナル抗体である。イリノテカンはトポイソメラーゼI阻害活性によりDNA複製を阻害する。オキサリプラチンは白金製剤でDNAと結合してがん細胞のDNA複製及び転写を阻害する。前記抗EGFR抗体薬は、フルオロウラシル、イリノテカン、オキサリプラチン等の合成化合物製剤と併用される他、さらに、ベバシズマブ(Bevacizumab)のような血管内皮細胞増殖因子(VEGF)に対する抗体製剤と併用される場合がある。前記血管内皮細胞増殖因子(VEGF)に対する抗体製剤は、VEGFの働きを阻害するもので、VEGFを発現しないがん細胞であっても、血管新生を抑制してがん組織への血液供給を低減することでがんの増殖を阻害することができる。
 抗EGFR抗体薬は、EGFがEGFRに結合するのを阻害することにより、EGFRから下流へのシグナル伝達を阻害して、がん細胞の増殖を抑制しがん組織を縮小する。しかし、がん細胞のKRAS、BRAF等の遺伝子に体細胞突然変異が存在するときには、抗EGFR抗体薬は薬効を示さないことが知られている(特許文献1及び2、非特許文献2)。このうちKRASについては、KRASタンパク質の12位、13位、59位、61位、117位又は146位のアミノ酸残基が置換する体細胞突然変異がKRASタンパク質の機能を構成的に活性化させる。KRASタンパク質はEGFRへのEGF結合に始まる細胞増殖促進シグナルの伝達経路に属する。そのため、抗EGFR抗体によるEGFRからのシグナル伝達阻害が突然変異体KRASにより無効にされ、前記シグナル伝達経路の下流に細胞増殖促進シグナルが伝達される。これがKRAS突然変異体による抗EGFR抗体薬の薬効阻害の機序である。大腸がん細胞ではKRASと同じ遺伝子ファミリーに属するNRASも発現する。そのため、KRASは野生型でも、NRASの12位、13位、59位、61位、117位又は146位のアミノ酸残基が置換する体細胞突然変異の場合には、抗EGFR抗体薬の薬効が阻害される。そこで本明細書では、KRAS及びNRASのいずれにも体細胞突然変異が検出されない腫瘍をRAS野生型といい、12位、13位、59位、61位、117位又は146位のアミノ酸残基が置換する体細胞突然変異がKRAS又はNRASの少なくともいずれか1つに検出される腫瘍をRAS変異型という。
 抗EGFR抗体薬セツキシマブ(アービタックス(登録商標))の日本で販売される際の添付文書には、効能・効果に関連する使用上の注意として、「EGFR陽性の治癒切除不能な進行・再発の結腸・直腸がんに対する本剤の使用に際してはKRAS遺伝子変異の有無を考慮した上で、適応患者の選択を行うこと」と記載されている。また、抗EGFR抗体薬パニツムマブ(ベクティビックス(登録商標))の日本で販売される際の添付文書には、効能・効果として、「KRAS遺伝子野生型の治癒切除不能な進行・再発の結腸・直腸がん」と記載され、効能・効果に関連する使用上の注意として、「KRAS遺伝子変異を示す患者での有効性は確立していない。」と記載されている。欧州では、セツキシマブ及びパニツムマブはRASが野生型の大腸がんに適用されるように制限されている。
 RASタンパク質の12位又は13位のアミノ酸残基が置換する体細胞突然変異とBRAFの体細胞突然変異とが共存する大腸がんの症例は非常に少ないことが知られている。そこで大腸がんでは、RAS及びBRAFがEGFRへのEGF結合に始まる細胞増殖促進シグナルの同一の伝達経路に属しており、RASが野生型であっても、BRAFに機能を構成的に活性化させる体細胞突然変異があれば、抗EGFR抗体薬の薬効が阻害される可能性がある。
 BRAFの機能を構成的に活性化させる体細胞突然変異としては、BRAFタンパク質の600位のバリンがグルタミン酸に置換される突然変異(以下、「V600E」という。)が最もよく知られている。しかし、KRAS又はNRASタンパク質の12位、13位、59位、61位、117位、又は146位のアミノ酸残基が置換する体細胞突然変異が抗EGFR抗体薬の効果予測マーカーであることが繰り返し確認されているのとは異なり、BRAFのV600E突然変異については、大規模な治験(CRYSTAL試験及びOPUS試験)のデータの解析によって、BRAFのV600E突然変異は予後が悪いことを予測するマーカーであることは確認されたが、抗EGFR抗体薬の治療効果予測マーカーであることは確認されなかった。しかし、BRAF変異型症例数が少なすぎるため、この結果により予後マーカーや効果予測マーカーとしての可能性を解析するには至らないと結論している(非特許文献3)。
 最近のがん組織の飽和的解析の報告(非特許文献3)から、BRAFはKRASとは異なり、大腸がんではV600E突然変異以外の突然変異の頻度が比較的高く、V600E突然変異が優占的とはいえないことが明かになっている。BRAFの突然変異のうちD594突然変異は、V600E突然変異に比べると頻度が大幅に低いものの、大腸がんではしばしば見いだされることが知られた突然変異である。594位のアスパラギン酸残基はDFGモチーフに含まれ、アスパラギン酸残基のカルボキシル基の酸素原子は、触媒部位でのMg2+イオンのキレート化及びATP結合の安定化に関与することが知られている。D594突然変異体のうち、D594A又はD594V変異型BRAFは、自らのキナーゼ活性を失っているにもかかわらず、前記変異型RASの存在下でのみ野生型CRAFと結合して、CRAFのキナーゼ活性を亢進させるとの報告がある(非特許文献5)。一方で、D594G変異型BRAFは、セツキシマブの薬効とは相関しないこととの報告がある(非特許文献6)。よって、D594突然変異が抗EGFR抗体薬等のEGFR阻害剤の効果予測マーカーになるかどうかについては置換したアミノ酸残基によって結論が異なる。
欧州特許公報EP1913157B1 米国特許出願公開公報US2012/0264129A1
Moorcraft, S.Y.ら、Ther. Adv. Gastroenterol., 6: 381-395 (2013) Siena,S.ら、J. Natl. Cancer Inst., 101: 1308-1324 (2009) Bokemeyer, C.ら、Eur. J. Cancer, 48: 1466-1475 (2012) Lawrence, M.S.ら、Nature, 505: 495-501 (2014) Heidorn, S. J.ら、Cell, 140: 209-221 (2010) Smith, C. G.ら、Clin. Cancer Res, 19: 4104-4113, (2013)
 以上のとおり、V600E及びD594変異型BRAFの結果から、BRAFキナーゼ活性の構成的活性化又は失活という酵素活性だけに基づいて、BRAFの体細胞突然変異とEGFR阻害剤の治療効果との関係を予測することはできない。そこで、EGFR阻害剤抗がん剤への適応性をより的確に判定するためには、V600E突然変異以外の全てのBRAF突然変異を考慮した解析を行って、EGFR阻害剤に適さないBRAF突然変異の新規な抗EGFR抗体薬治療効果予測マーカーを検出する技術を開発する必要がある。
 今回、網羅的遺伝子解析技術を用いた抗EGFRモノクローナル抗体薬治療効果予測バイオマーカーの探索研究に関する多施設共同研究(Biomarker Research for Anti-EGFR Monoclonal Antibodies by Comprehensive Cancer Genomics、以下、「BREAC試験」という。)では、大腸がんのBRAF体細胞突然変異の半数近くがV600E以外の突然変異体であった。そこで本件発明者らは、抗EGFR抗体薬をはじめとするEGFR阻害剤の単独治療か、又はBRAFが介在するシグナル伝達系阻害剤以外の化学療法剤との併用治療かの治療効果を予測するための、BRAF突然変異の新規な効果予測マーカーを検出する技術を開発した。
 本発明は、抗EGFR抗体薬の治療効果を予測するヒトBRAFの突然変異を検出する方法を提供する。本発明のヒトBRAFの体細胞突然変異を検出する方法は、患者生体サンプルを用いて、配列番号1のヒトBRAFタンパク質のアミノ酸配列において、G469、L485、Q524、L525、D594及びV600からなる群から選択される少なくとも1つのアミノ酸残基の置換を起こすヒトBRAFの突然変異を検出するステップを含み、前記遺伝子の突然変異が検出された腫瘍は、前記BRAFが介在するシグナル伝達系阻害剤による治療に適さない。
 本発明のヒトBRAFの突然変異を検出する方法において、ヒトBRAFの突然変異を検出するステップは、G469A、L485F、Q524L、L525R、D594G及びV600Rからなる群から選択される少なくとも1つのアミノ酸残基の置換を起こすヒトBRAFの突然変異を検出するステップの場合がある。
 本発明のヒトBRAFの突然変異を検出する方法において、前記BRAFが介在するシグナル伝達系阻害剤は、EGFR阻害剤の場合がある。
 本発明のヒトBRAFの突然変異を検出する方法において、前記BRAFが介在するシグナル伝達系阻害剤は、抗EGFR抗体薬の場合がある。
 本発明のヒトBRAFの突然変異を検出する方法において、前記BRAFが介在するシグナル伝達系阻害剤は、該阻害剤以外の化学療法剤、例えば、イリノテカン、FOLFOX、又はFOLFIRIとともに併用される場合がある。
 本発明のヒトBRAFの突然変異を検出する方法において、前記患者の生体サンプルは、腫瘍組織サンプル、体液サンプル、分泌物サンプル及び排泄物サンプルからなる群から選択される少なくとも1つのサンプルの場合がある。
 本発明のヒトBRAFの突然変異を検出する方法において、前記ヒトBRAFの突然変異を検出するステップは、患者の生体サンプルから抽出した核酸の塩基配列のうち、ヒトBRAF遺伝子の前記少なくとも1つのアミノ酸残基の置換をコードするオリゴヌクレオチドの塩基配列を決定することを含む場合がある。
 本発明のヒトBRAFの突然変異を検出する方法において、前記ヒトBRAFの突然変異を検出するステップは、患者の生体サンプルから抽出した核酸のうち、ヒトBRAF遺伝子の前記少なくとも1つのアミノ酸残基の置換をコードするポリヌクレオチドを特異的に増幅することを含む場合がある。
 本発明のヒトBRAFの突然変異を検出する方法は、(a)患者の生体サンプルからDNAを単離するステップと、(b)配列番号2の塩基配列においてG469、L485、Q524、L525、D594及びV600からなる群から選択される少なくとも1つのアミノ酸残基をコードする塩基配列を挟むプライマーの対と、前記単離されたDNAとをハイブリダイズさせるステップと、(c)前記単離したDNAとプライマーを用いて、配列番号2の塩基配列においてG469、L485、Q524、L525、D594及びV600からなる群から選択される少なくとも1つのアミノ酸残基をコードする塩基配列を有するBRAF遺伝子DNAを増幅させるステップと、(d)前記増幅されたBRAF遺伝子DNAを固相に固定された若しくは液相中でプローブと接触させるステップと、(e)前記増幅されたBRAF遺伝子DNAとハイブリダイズした前記固相に固定された若しくは液相中のプローブを検出するステップとを含む場合がある。
 本発明のヒトBRAFの突然変異を検出する方法において、前記ヒトBRAFの突然変異を検出するステップは、患者の生体サンプルから、ヒトBRAFタンパク質の前記少なくとも1つのアミノ酸残基の置換を含むペプチドを検出することを含む場合がある。
 本発明のヒトBRAFの突然変異を検出する方法において、前記腫瘍は大腸がんの場合がある。
 本発明は、EGFR阻害剤の治療効果を予測するヒトBRAFの突然変異を検出するためのキットを提供する。本発明のキットは、配列番号2の塩基配列においてG469、L485、Q524、L525、D594及びV600からなる群から選択される少なくとも1つのアミノ酸残基の置換を起こすヒトBRAF遺伝子の突然変異を含む、塩基配列を特異的に検出するためのプライマー又はプローブオリゴヌクレオチドを含む。
 本発明のキットは、BRAF遺伝子におけるG469、L485、Q524、L525、D594及びV600を含むDNAを増幅するように設計されたフォワードプライマー、及びリバースプライマーを含み、BRAF遺伝子の突然変異を検出する場合がある。
 本発明のキットにおいて、前記プライマーオリゴヌクレオチドは、配列番号2の塩基配列においてG469、L485、Q524、L525、D594及びV600からなる群から選択される少なくとも1つのアミノ酸残基の置換をコードするオリゴヌクレオチドの塩基配列を決定することにより、配列番号2の塩基配列においてG469、L485、Q524、L525、D594及びV600からなる群から選択される少なくとも1つのアミノ酸残基の置換を起こすヒトBRAF遺伝子の突然変異を検出する場合がある。
 本発明のキットにおいて、前記プライマーオリゴヌクレオチドは、配列番号2の塩基配列においてG469、L485、Q524、L525、D594及びV600からなる群から選択される少なくとも1つのアミノ酸残基の置換を起こすヒトBRAF遺伝子の突然変異塩基を含む、塩基配列を有するRNA及び/又はDNAを鋳型とするポリヌクレオチドを特異的に増幅することにより、配列番号2の塩基配列においてG469、L485、Q524、L525、D594及びV600からなる群から選択される少なくとも1つのアミノ酸残基の置換を起こすヒトBRAF遺伝子の突然変異を検出する場合がある。
 本発明のキットにおいて、前記プライマーオリゴヌクレオチドは、配列番号3~40からなる群から選択される少なくとも1本の配列からなる場合がある。前記プライマーオリゴヌクレオチドは、配列番号3~40からなる群から選択される少なくとも1本の配列を含む場合がある。前記プライマーオリゴヌクレオチドは、10ないし50個のヌクレオチド、代替的には、15ないし40個、あるいは、18ないし30個のヌクレオチドからなる場合がある。
 本発明のキットにおいて、前記プライマーオリゴヌクレオチドは、配列番号3~9のいずれか1本の配列からなるプライマーオリゴヌクレオチドと配列番号10~14のいずれか1本の配列からなるプライマーオリゴヌクレオチドの対と、配列番号15~18のいずれか1本の配列からなるプライマーオリゴヌクレオチドと配列番号19~22のいずれか1本の配列からなるプライマーオリゴヌクレオチドの対と、配列番号23~26のいずれか1本の配列からなるプライマーオリゴヌクレオチドと配列番号27~30のいずれか1本の配列からなるプライマーオリゴヌクレオチドの対と、配列番号31~35のいずれか1本の配列からなるプライマーオリゴヌクレオチドと配列番号36~40のいずれか1本の配列からなるプライマーオリゴヌクレオチドの対とからなるプライマーオリゴヌクレオチドの対の少なくとも1対の場合がある。前記プライマーオリゴヌクレオチドは、配列番号3~40からなる群から選択される少なくとも1本の配列を含む場合がある。前記プライマーオリゴヌクレオチドは、10ないし50個のヌクレオチド、代替的には、15ないし40個、あるいは、18ないし30個のヌクレオチドからなる場合がある。前記プライマーオリゴヌクレオチドは、配列番号3~9のいずれか1本の配列を含むプライマーオリゴヌクレオチドと配列番号10~14のいずれか1本の配列を含むプライマーオリゴヌクレオチドの対と、配列番号15~18のいずれか1本の配列を含むプライマーオリゴヌクレオチドと配列番号19~22のいずれか1本の配列を含むプライマーオリゴヌクレオチドの対と、配列番号23~26のいずれか1本の配列を含むプライマーオリゴヌクレオチドと配列番号27~30のいずれか1本の配列を含むプライマーオリゴヌクレオチドの対と、配列番号31~35のいずれか1本の配列を含むプライマーオリゴヌクレオチドと配列番号36~40のいずれか1本の配列を含むプライマーオリゴヌクレオチドの対とからなるプライマーオリゴヌクレオチドの対の少なくとも1対の場合がある。
 本発明のキットにおいて、前記プローブオリゴヌクレオチドは、配列番号2の塩基配列において、G469、L485、Q524、L525、D594及びV600からなる群から選択される少なくとも1つのアミノ酸残基の置換を起こすヒトBRAF遺伝子の突然変異塩基を含む、塩基配列を有するRNA及び/又はDNAと雑種形成することにより、配列番号2の塩基配列においてG469、L485、Q524、L525、D594及びV600からなる群から選択される少なくとも1つのアミノ酸残基の置換を起こすヒトBRAF遺伝子の突然変異を検出する場合がある。該プローブオリゴヌクレオチドは、固相に不動化される場合がある。
 本発明のキットにおいて、前記プライマー又はプローブオリゴヌクレオチドは、配列番号2の塩基配列のうち、G469A、L485、Q524、L525、D594及びV600からなる群から選択される少なくとも1つのアミノ酸残基の置換を起こすヒトBRAF遺伝子の突然変異塩基を含む塩基配列か、その相補配列かを含む場合がある。
 本発明のキットにおいて、前記プローブオリゴヌクレオチドは、配列番号41~98からなる群から選択される少なくとも1本の配列の場合がある。前記プローブオリゴヌクレオチドは、配列番号41~98からなる群から選択される少なくとも1本の配列を含む場合がある。前記プローブオリゴヌクレオチドは、10ないし50個のヌクレオチド、代替的には、15ないし40個、あるいは、18ないし30個のヌクレオチドからなる場合がある。
 本発明のキットにおいて、前記ヒトBRAF遺伝子の突然変異は、G469A、L485F、Q524L、L525R、D594G及びV600Rからなる群から選択される少なくとも1つのアミノ酸残基の置換を起こすヒトBRAF遺伝子の突然変異の場合がある。
 本発明のキットにおいて、前記プライマーオリゴヌクレオチドは、その5’末端と3’末端との間にリボヌクレアーゼ酵素認識部位を含み、該リボヌクレアーゼ酵素認識部位は、RNAの連続配列であって、前記アミノ酸残基の置換を起こす突然変異塩基を含み、該リボヌクレアーゼ酵素認識部位は相補的な塩基配列を有するDNAと対合してヘテロ2本鎖を形成するとき、耐熱性RNaseHにより特異的に切断される場合がある。
 本発明のキットにおいて、前記プライマー又はプローブオリゴヌクレオチドは少なくとも前記アミノ酸残基の置換を起こす突然変異塩基に核酸アナログを含む場合がある。核酸アナログには、2’,4’-BNA(Bicyclic nucleoside)、PNA(Peptide Nucleic Acid)、ENA(Ethylene nucleoside acid)又はLNA(Locked nucleoside acid)を含む場合があるがこれらに限定されない。
 本発明のキットは、前記プライマー又はプローブオリゴヌクレオチドに加えて、dNTPなどの酵素反応基質と、DNAポリメラーゼ、リボヌクレアーゼなどの酵素と、酵素反応液、ハイブリダイゼーション緩衝液、洗浄用緩衝液などの溶液又は該溶液調製用固体組成物と、ニトロセルロース膜、ナイロン膜などの核酸不動化用固相と、能書とからなるグループから選択される少なくとも1つを含む場合がある。
 本発明は、配列番号1のヒトBRAFタンパク質のアミノ酸配列において、G469、L485、Q524、L525、D594及びV600からなる群から選択される少なくとも1つのアミノ酸残基の置換を含む単離ヒトBRAFの体細胞突然変異タンパク質、又は、G469、L485、Q524、L525、D594及びV600からなる群から選択される少なくとも1つのアミノ酸残基の置換を含むヒトBRAF体細胞突然変異タンパク質の単離ペプチド断片を提供する。
 本発明は、本発明の単離ヒトBRAFの体細胞突然変異タンパク質又はヒトBRAF体細胞突然変異タンパク質の単離ペプチド断片に結合するが、野生型ヒトBRAFタンパク質又はその単離ペプチドとは結合しない抗体又は抗体断片を提供する。
 本発明は、本発明の単離ヒトBRAFの体細胞突然変異タンパク質又はヒトBRAF体細胞突然変異タンパク質の単離ペプチド断片を発現する宿主細胞を提供する。本発明の宿主細胞は、発明の単離ヒトBRAFの体細胞突然変異タンパク質又はヒトBRAF体細胞突然変異タンパク質の単離ペプチド断片をコード化するポリヌクレオチドを含む発現ベクターを含み、該発現ベクターは前記宿主細胞内での遺伝子の発現を可能にする制御領域を含み、該制御領域は前記ポリヌクレオチドと動作可能に連結される。
 本発明は、BRAFが介在するシグナル伝達系阻害剤のヒトBRAF体細胞突然変異に対する治療効果を予測する方法を提供する。本発明の治療効果を予測する方法は、本発明の宿主細胞にBRAFが介在するシグナル伝達系阻害剤を曝露するステップと、前記宿主細胞の増殖に与える前記阻害剤の効果を調べるステップとを含み、前記阻害剤の非存在下と比較して前記阻害剤の存在下で前記宿主細胞の増殖が抑制されるとき、前記ヒトBRAFタンパク質又はその単離ペプチド断片に含まれるアミノ酸残基置換体細胞突然変異に対して前記阻害剤は治療効果があり、あるいは、前記阻害剤の非存在下と比較して前記阻害剤の存在下で前記宿主細胞の増殖が抑制されないとき、前記ヒトBRAFタンパク質又はその単離ペプチド断片に含まれるアミノ酸残基置換体細胞突然変異に対して前記阻害剤は治療効果がないと予測する。
 本発明は、単離ヒトBRAFタンパク質又はその単離ペプチド断片の発現方法を提供する。本発明の単離ヒトBRAFタンパク質又はその単離ペプチド断片の発現方法は、本発明の単離ヒトBRAFタンパク質又はその単離ペプチド断片をコード化するポリヌクレオチドを含む発現ベクターを宿主細胞に導入するステップと、該宿主細胞中で前記単離ヒトBRAFタンパク質又はその単離ペプチド断片を発現するステップとを含み、前記宿主細胞内での遺伝子の発現を可能にする制御領域が前記発現ベクターに含まれ、該制御領域は前記ポリヌクレオチドと動作可能に連結される。
 本発明は、BRAFが介在するシグナル伝達系阻害剤の治療効果を予測するヒトBRAFの突然変異タンパク質を検出するための参照タンパク質組成物を提供する。本発明の参照タンパク質組成物は、配列番号1のヒトBRAFタンパク質のアミノ酸配列において、G469、L485、Q524、L525、D594及びV600からなる群から選択される少なくとも1つのアミノ酸残基の置換を含む単離ヒトBRAFタンパク質か、G469、L485、Q524、L525、D594及びV600からなる群から選択される少なくとも1つのアミノ酸残基の置換を含むヒトBRAFタンパク質の単離ペプチド断片を含む。
 本発明は、配列番号2の塩基配列のうち、G469A、L485F、Q524L、L525R、D594G及びV600Rからなる群から選択される少なくとも1つのアミノ酸残基の置換を起こすヒトBRAF遺伝子の突然変異塩基を含む変異型ヒトBRAFcDNA塩基配列を含むポリヌクレオチドを提供する。
 本発明は、配列番号2の塩基配列のうち、G469A、L485F、Q524L、L525R、D594G及びV600Rからなる群から選択される少なくとも1つの変異を検出するためのプローブオリゴヌクレオチドを提供する。前記プローブオリゴヌクレオチドは、配列番号41~98からなる群から選択される少なくとも1本の配列を含む場合がある。前記プローブオリゴヌクレオチドは、配列番号41~98からなる群から選択される少なくとも1本の配列の場合がある。前記プローブオリゴヌクレオチドは、10ないし50個のヌクレオチド、代替的には、15ないし40個、あるいは、18ないし30個のヌクレオチドからなる場合がある。
 本発明は、配列番号2の塩基配列のうち、G469A、L485F、Q524L、L525R、D594G及びV600Rからなる群から選択される少なくとも1つの変異を検出するためのプライマーオリゴヌクレオチドを提供する。該プライマーオリゴヌクレオチドは、配列番号2の塩基配列においてG469、L485、Q524、L525、D594及びV600からなる群から選択される少なくとも1つのアミノ酸残基の置換を起こすヒトBRAF遺伝子の突然変異塩基を含む、塩基配列を有するRNA及び/又はDNAを鋳型とするポリヌクレオチドを特異的に増幅することにより、配列番号2の塩基配列においてG469、L485、Q524、L525、D594及びV600からなる群から選択される少なくとも1つのアミノ酸残基の置換を起こすヒトBRAF遺伝子の突然変異を検出する場合がある。前記プライマーオリゴヌクレオチドは、配列番号3~40からなる群から選択される少なくとも1本の配列からなる場合がある。前記プライマーオリゴヌクレオチドは、配列番号3~40からなる群から選択される少なくとも1本の配列を含む場合がある。前記プライマーオリゴヌクレオチドは、10ないし50個のヌクレオチド、代替的には、15ないし40個、あるいは、18ないし30個のヌクレオチドからなる場合がある。前記プライマーオリゴヌクレオチドは、配列番号3~9のいずれか1本の配列からなるプライマーオリゴヌクレオチドと配列番号10~14のいずれか1本の配列からなるプライマーオリゴヌクレオチドの対と、配列番号15~18のいずれか1本の配列からなるプライマーオリゴヌクレオチドと配列番号19~22のいずれか1本の配列からなるプライマーオリゴヌクレオチドの対と、配列番号23~26のいずれか1本の配列からなるプライマーオリゴヌクレオチドと配列番号27~30のいずれか1本の配列からなるプライマーオリゴヌクレオチドの対と、配列番号31~35のいずれか1本の配列からなるプライマーオリゴヌクレオチドと配列番号36~40のいずれか1本の配列からなるプライマーオリゴヌクレオチドの対とからなるプライマーオリゴヌクレオチドの対の少なくとも1対の場合がある。前記プライマーオリゴヌクレオチドは、配列番号3~40からなる群から選択される少なくとも1本の配列を含む場合がある。前記プライマーオリゴヌクレオチドは、10ないし50個のヌクレオチド、代替的には、15ないし40個、あるいは、18ないし30個のヌクレオチドからなる場合がある。前記プライマーオリゴヌクレオチドは、配列番号3~9のいずれか1本の配列を含むプライマーオリゴヌクレオチドと配列番号10~14のいずれか1本の配列を含むプライマーオリゴヌクレオチドの対と、配列番号15~18のいずれか1本の配列を含むプライマーオリゴヌクレオチドと配列番号19~22のいずれか1本の配列を含むプライマーオリゴヌクレオチドの対と、配列番号23~26のいずれか1本の配列を含むプライマーオリゴヌクレオチドと配列番号27~30のいずれか1本の配列を含むプライマーオリゴヌクレオチドの対と、配列番号31~35のいずれか1本の配列を含むプライマーオリゴヌクレオチドと配列番号36~40のいずれか1本の配列を含むプライマーオリゴヌクレオチドの対とからなるプライマーオリゴヌクレオチドの対の少なくとも1対の場合がある。前記プライマーオリゴヌクレオチドは、その5’末端と3’末端との間にリボヌクレアーゼ酵素認識部位を含み、該リボヌクレアーゼ酵素認識部位は、RNAの連続配列であって、前記アミノ酸残基の置換を起こす突然変異塩基を含み、該リボヌクレアーゼ酵素認識部位は相補的な塩基配列を有するDNAと対合してヘテロ2本鎖を形成するとき、耐熱性RNaseHにより特異的に切断される場合がある。
 本発明は腫瘍の治療方法を提供する。本発明の腫瘍の治療方法は、患者の生体サンプルを用いて、配列番号1のヒトBRAFタンパク質のアミノ酸配列において、G469、L485、Q524、L525、D594及びV600からなる群から選択される少なくとも1つのアミノ酸残基の置換を起こすヒトBRAFの突然変異を検出するステップと、前記ヒトBRAFの突然変異が検出された患者には、BRAFが介在するシグナル伝達系阻害剤であってEGFR以外のシグナル伝達系阻害剤を含む処方を投与するステップとを含む。該BRAFが介在するシグナル伝達系阻害剤であってEGFR以外のシグナル伝達系阻害剤は、BRAF阻害剤、MEK阻害剤及びPI3K阻害剤のうち少なくとも1種類の場合がある。前記BRAFが介在するシグナル伝達系阻害剤であってEGFR以外のシグナル伝達系阻害剤は、BRAF阻害剤を少なくとも含む場合がある。前記処方は、前記BRAFが介在するシグナル伝達系阻害剤であってEGFR以外のシグナル伝達系阻害剤単剤治療か、前記BRAFが介在するシグナル伝達系阻害剤であってEGFR以外のシグナル伝達系阻害剤と、フルオロウラシル、イリノテカン、フォリン酸、オキサリプラチン、カペシタビン、ロイコボリン、テガフール・ウラシル、ギメラシル、オテラシルカリウム及びトリフルリジン・チピラシル(TAS-102)からなる群から選択される少なくとも1つの化学療法剤との組みあわせの場合がある。前記処方は、さらに、VEGF阻害剤、免疫チェックポイント阻害剤、例えば、ベバシズマブ、アフリベルセプト、ラムシルマブ、PD-1、PD-L1、CTLA-4の活性を阻害する抗体、遺伝子組み換えタンパク質又は低分子薬との組みあわせの場合がある。前記処方は、さらに、EGFR阻害剤を含む場合がある。本発明の腫瘍の治療方法において、ヒトBRAFの突然変異を検出するステップは、G469A、L485F、Q524L、L525R、D594G及びV600Rからなる群から選択される少なくとも1つのアミノ酸残基の置換を起こすヒトBRAF遺伝子の突然変異を検出するステップの場合がある。
 本発明の腫瘍の治療方法において、前記患者の生体サンプルを用いて、配列番号1のヒトBRAFタンパク質のアミノ酸配列において、G469、L485、Q524、L525、D594及びV600からなる群から選択される少なくとも1つのアミノ酸残基の置換を起こすヒトBRAFの突然変異を検出するステップは、本発明のヒトBRAFの突然変異を検出する方法により実施される。前記患者の生体サンプルは、腫瘍組織サンプル、血液サンプル、分泌物サンプル、排泄物サンプルの場合がある。本発明の腫瘍の治療方法において、前記ヒトBRAFの突然変異を検出するステップは、患者の生体サンプルから抽出した核酸の塩基配列のうち、ヒトBRAF遺伝子の前記少なくとも1つのアミノ酸残基の置換をコードするオリゴヌクレオチドの塩基配列を決定することを含む場合がある。前記ヒトBRAFの突然変異を検出するステップは、患者の生体サンプルから抽出した核酸の塩基配列のうち、ヒトBRAF遺伝子の前記少なくとも1つのアミノ酸残基の置換をコードするポリヌクレオチドを特異的に増幅することを含む場合がある。本発明の腫瘍の治療方法において、前記ヒトBRAFの突然変異を検出するステップは、患者の生体サンプルから、ヒトBRAFタンパク質の前記少なくとも1つのアミノ酸残基の置換を含むペプチドを検出することを含む場合がある。本発明の腫瘍の治療方法において、腫瘍は大腸がんの場合がある。
 本明細書において言及される全ての文献はその全体が引用により本明細書に取り込まれる。
無増悪生存期間(PFS)のKaplan-Meier曲線。 全生存期間(OS)のKaplan-Meier曲線。 RAS野生型対RAS変異型(RAS W/M)のPFS及びOSを比較したKaplan-Meier曲線。 RAS野生型かつBRAF600位野生型対RAS野生型かつBRAF V600E変異型(RAS/BRAF V600E W/M)のPFS及びOSを比較したKaplan-Meier曲線。 RAS野生型かつBRAF野生型対RAS野生型かつBRAF変異型(RAS/BRAF W/M)のPFS及びOSを比較したKaplan-Meier曲線。 空ベクター(pQCXIP)と、野生型ヒトBRAF(WT)、既知のBRAF突然変異体(V600E)及び本発明のBRAF突然変異体(Q524L及びL525R)を発現するベクターとをトランスフェクションしたHEK293細胞の細胞溶解液をSDS-PAGE法で分離し、ウェスタンブロッティング法で転写したメンブレンをFlag抗体(FLAG)、抗ERK抗体および抗リン酸化ERK抗体で(ERK及びpERK)で検出した結果のウェスタンブロッティング図である。図4の上段では、Flagタグを融合したBRAFタンパク質のバンド部分を拡大した。図4の中段及び下段では、ERKタンパク質のバンド部分を拡大した。 図5は、空ベクター(Vector)と、野生型ヒトBRAF(WT)、既知のBRAF突然変異体(V600E)及び本発明のBRAF突然変異体(Q524L及びL525R)を発現するベクターとをトランスフェクションして、異なる濃度(0、0.5及び5.0μg/mL)のセツキシマブを添加した培地で培養したHEK293細胞の細胞溶解液をSDS-PAGE法で分離し、ウェスタンブロッティング法で転写したメンブレンをFlag抗体(FLAG)、抗ERK抗体および抗リン酸化ERK抗体で(ERK及びpERK)で検出した結果のウェスタンブロッティング図である。図5の上段では、Flagタグを融合したBRAFタンパク質のバンド部分を拡大した。図5の中段及び下段では、ERKタンパク質のバンド部分を拡大した。 図6は、空ベクター(pQCXIP)と、野生型ヒトBRAF(WT)、既知のBRAF突然変異体(V600E)及び本発明のBRAF突然変異体(Q524L、L525R、G464V、G466V、G469A、G469V、L485F、N581S、D594N、D594G、G596R及びV600R)を発現するベクターとをトランスフェクションしたHEK293細胞の細胞溶解液をSDS-PAGE法で分離し、ウェスタンブロッティング法で転写したメンブレンをFlag抗体(FLAG)、抗ERK抗体および抗リン酸化ERK抗体で(ERK及びpERK)で検出した結果のウェスタンブロッティング図である。図6の上段では、Flagタグを融合したBRAFタンパク質のバンド部分を拡大した。図6の中段及び下段では、ERKタンパク質のバンド部分を拡大した。 図7は、空ベクター(Vector)と、野生型ヒトBRAF(WT)、既知のBRAF突然変異体(V600E)及び本発明のBRAF突然変異体(G466V、D594N、D594G及びG596R)を発現するベクターとをトランスフェクションして、異なる濃度(0及び5.0μg/mL)のセツキシマブを添加した培地で培養したHEK293細胞の細胞溶解液をSDS-PAGE法で分離し、ウェスタンブロッティング法で転写したメンブレンをFlag抗体(FLAG)、抗ERK抗体および抗リン酸化ERK抗体で(ERK及びpERK)で検出した結果のウェスタンブロッティング図である。図7の上段では、Flagタグを融合したBRAFタンパク質のバンド部分を拡大した。図7の中段及び下段では、ERKタンパク質のバンド部分を拡大した。
 本明細書に添付する配列表には、配列番号1としてヒト野生型BRAFタンパク質のアミノ酸配列、配列番号2としてヒト野生型BRAFcDNAの塩基配列を記載する。本明細書において、タンパク質のアミノ酸残基は、アミノ酸の1文字表記と、タンパク質のアミノ末端からのアミノ酸残基の位置との組合せで表される。例えばV600は、600位(アミノ末端から600番目)のアミノ酸残基がバリンであることを表す。タンパク質のアミノ酸置換突然変異は、野生型タンパク質でのアミノ酸の1文字表記と、タンパク質のアミノ末端からのアミノ酸残基の位置と、変異型タンパク質で置換されたアミノ酸の1文字表記との組合せで表される。例えばV600Eは、600位のアミノ酸残基が野生型ではバリンであったのが、グルタミン酸に置換された突然変異を表す。なお、ヒトBRAFタンパク質の1次構造については、2000年代前半に翻訳開始位置の特定に誤りが見つかって、アミノ酸残基の位置が1個分カルボキシル末端にシフトした。そのためV600Eは古い文献ではV599Eと表記されている点に注意を要する。
 本願に添付する配列表に記載の配列番号と、配列の名称と、配列の内容との関係は以下に示すとおりである。
Figure JPOXMLDOC01-appb-T000001

 
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 本明細書における腫瘍は、BRAFを発現するいずれかのがん、悪性腫瘍、悪性新生物、肉腫又は腫瘍である。本発明の方法又はキットの対象となるがんは、肺がん、胃がん、大腸がん(直腸・結腸がん)又はメラノーマの場合があるが、これらに限られない。
 本明細書における治療薬は、ヒトBRAFの突然変異を検出することにより治療効果を予測することができる全ての治療薬を指し、BRAFが介在するシグナル伝達系阻害剤、すなわち、EGFR阻害剤、MEK阻害剤、PI3K阻害剤、VEGF阻害剤、BRAF阻害剤及びこれらのいずれかの組合せが含まれる。EGFR阻害剤には、セツキシマブ(Cetuximab)、パニツムマブ(Panitumumab)を含むがこれらに限られない抗EGFR抗体薬のほか、ゲフィチニブ(Gefitinib)、エルロチニブ(Erlotinib)、ラパチニブ(Lapatinib)、アファチニブ(Afatinib)を含むがこれらに限られないEGFRのチロシンキナーゼ阻害活性を有する抗体、組換えタンパク質、又は低分子化合物が含まれる。MEK(MAPK/ERKキナーゼ)阻害剤には、トラメチニブ(Trametinib)、セルメチニブ(Selumetinib)、MEK162を含むがこれらに限られないMEKのキナーゼ阻害活性を有する抗体、組換えタンパク質、又は低分子化合物が含まれる。PI3K(ホスホイノシチド3-キナーゼ)阻害剤には、ペリフォシン(Perifosine)、イデラリシブ(Idelalisib)、BYL719を含むがこれらに限られないホスホイノシチド3-キナーゼ阻害活性を有する抗体、組換えタンパク質、又は低分子化合物が含まれる。VEGF阻害剤には、ベバシズマブ(Bevacizumab)を含むがこれらに限られないVEGF阻害活性を有する抗体、組換えタンパク質、又は低分子化合物が含まれる。BRAF阻害剤には、ベムラフェニブ(Vemurafenib)、ダブラフェニブ(Dabrafenib)、エンコラフェニブ(Encorafenib、LGX-818)を含むがこれらに限られないBRAFキナーゼ阻害活性を有する抗体、組換えタンパク質、又は低分子化合物が含まれる。また、BRAF阻害剤は、BRAFに加えて、ARAF及び/又はCRAFを阻害してもよい。EGFR阻害剤、及び/又は、EGFR阻害剤以外のBRAFが介在するシグナル伝達系阻害剤と併用される場合がある化学療法剤には、フルオロウラシル、イリノテカン、フォリン酸、オキサリプラチン、カペシタビン、ロイコボリン、テガフール・ウラシル、ギメラシル、オテラシルカリウム及びトリフルリジン・チピラシル(TAS-102)が含まれるが、これらに限られない。EGFR阻害剤以外のBRAFが介在するシグナル伝達系阻害剤、及び/又は、化学療法剤は、さらに、免疫チェックポイント阻害剤、例えば、PD-1、PD-L1、CTLA-4の活性を阻害する抗体、組換えタンパク質、又は低分子化合物と併用される場合がある。
 現在臨床現場では、BRAFV600変異により活性化されているメラノーマに対してだけでなく大腸がんに対してもMEK阻害剤が積極的に投与される場合がある。BRAFの下流のMEKを阻害することによって、生存シグナル伝達を止めることが期待されるためである。同様に、524、525、486、594位など600位以外が置換されたBRAF変異がんに対しても、MEK阻害剤を投与することが有効であると考えられる。また、大腸がんにおいては、BRAF変異がんに対して、EGFR阻害剤及びBRAF阻害剤に、PI3K阻害剤又はMEK阻害剤をさらに併用して投与されその安全性と有効性が報告されている(Van Geel,R. et al. Abstract #3514、Bendell, J.C. et al. Abstract #3515、2014 Annual Meeting of the American Society of Clinical Oncology)。大腸がんにおいては、EGFRの発現量が多くEGFRからの生存シグナルがメラノーマと比較してより強いことから、PI3K阻害剤又はMEK阻害剤をEGFR阻害剤及びBRAF阻害剤とを併用することにより、治療効果があがったと考えられる。本発明が提供するヒトBRAFの体細胞突然変異を有する腫瘍についても、同様に、MEK阻害剤とEGFR阻害剤との併用治療が施される場合がある。
 本発明において患者の生体サンプルは、腫瘍組織サンプル、体液サンプル、分泌物サンプル及び排泄物サンプルからなる群から選択される少なくとも1つのサンプルの場合がある。腫瘍組織サンプルは、患者から手術又は生検により切除された新鮮ながん組織と、該新鮮ながん組織を凍結保存した標本とを含むが、これらに限られない。またホルムアルデヒドを37%以上含む水溶液(ホルマリン原液)を精製水で10倍に希釈した10%ホルマリン固定液や、リン酸バッファーで10倍に希釈した10%リン酸緩衝ホルマリン固定液で固定された標本であってもよい。ホルマリン固定後、常法に従ってパラフィンに包埋される場合がある。簡潔には、ホルマリン固定されたがん組織を50~100%の濃度のエタノール水溶液系列に順次浸漬して脱水し、100%エタノールに到達すると、次は、エタノールとキシレンとの混合液の系列に順次浸漬して溶媒をキシレンに置換する。その後、パラフィンのキシレン溶液の系列に順次浸漬する。パラフィンのキシレン濃度が下がると、パラフィンが融解する60℃の恒温槽に移す。最終的に100%パラフィンを組織に浸透させてから、パラフィンの温度を下げて固化させる方法などがあげられるが、これに限定されない。体液サンプルは、患者から採取された全血、血清、血餅、血沈、血漿、リンパ液、組織液等の体液のサンプルを含むが、これらに限られない。分泌物サンプルは、汗腺、涙腺、乳腺、唾液腺、その他の外分泌腺の分泌物と、胃液、胆汁その他の消化腺の分泌物とを含むが、これらに限られない。排泄物サンプルは、糞尿、鼻汁、喀痰、その他の排泄物を含むが、これらに限られない。
 BRAF変異の有無は、BRAFをコードするDNA、RNA、及び/又はBRAFタンパク質における塩基又はアミノ酸置換の有無を確認することにより、変異の有無を確認できる。
本発明における生体組織サンプルからのDNA又はRNA抽出には、Absolutely RNA FFPE kit(アジレント・テクノロジー株式会社)、NucleoSpin(登録商標) DNA FFPE XS(MACHEREY-NAGEL GmbH、タカラバイオ株式会社)、WaxFree(商標) Paraffin Sample DNA Extraction Kit(TrimGen Corporation、フナコシ株式会社)、DNA Isolater PS-Rapid Reagent(和光純薬工業株式会社)その他の商業的に入手可能なキットを使用して、製造者の指示書に従って操作することによってDNA解析に供するのに十分な品質のDNAを得ることができる方法があげられるが、これに限定されない。簡潔には、パラフィン包埋薄切標本をキシレン、d-リモネン等の脱パラフィン剤で処理してパラフィンを溶解除去し、該脱パラフィン剤をエタノール等で洗浄した後、プロテイナーゼK消化により核酸を可溶化する。代替的には、界面活性剤によりパラフィン包埋薄切標本から直接核酸を可溶化する。その後、フェノール、グアニジンチオシアン酸塩等のタンパク質変性剤でタンパク質を変性させて水相から除去し、水相に残った核酸をシリカ又は樹脂で吸着分離する。生体サンプルからのRNA抽出には、DNアーゼ(デオキシリボヌクレアーゼ)I等のDNA分解酵素処理が施される場合がある。
 腫瘍からのタンパク質は、524位等を置換されたBRAFに特異的に結合する抗体を用いた蛍光 in situ ハイブリダイゼーションなどによって、変異の検出をすることができる。
 本明細書において、BRAFのG469、L485、Q524、L525、D594及びV600における変異は、配列番号1の野生型BRAFのアミノ酸配列におけるそれぞれの箇所のアミノ酸残基と比較して、異なるアミノ酸に置換されているものを含む。したがって本明細書において、G469、L485、Q524、Q524,L525、D594及びV600の用語には、それぞれ、G469A、L485F、Q524L、L525R、D594G及びV600Rを含む。本明細書において、アミノ酸残基の置換を起こすヒトBRAF遺伝子の突然変異塩基とは、配列番号1の野生型BRAFのアミノ酸残基の置換を起こす突然変異体塩基配列のうち、配列番号1の野生型BRAFの塩基配列と異なる塩基をいう。あるアミノ酸残基の置換の有無を検出するためには、当該突然変異塩基を含む少なくとも1個、好ましくは2個又は3個分のオリゴヌクレオチドの塩基配列を決定する必要がある。本発明におけるヒトBRAF遺伝子の突然変異で検出されるアミノ酸残基置換は、好ましくは、G469A、L485F、Q524L、L525R、D594Gである。
 本発明におけるヒトBRAF遺伝子の突然変異の検出は、G469、L485、Q524、L525、D594及びV600からなる群から選択されるアミノ酸残基の置換突然変異があるかどうかを検出することができることを条件として、いかなるやり方で行われてもかまわない。G469、L485、Q524、L525、D594及びV600に加えて、A29、H72、S113、S124、P162、C194、L227、P231、C251、V291、Q329、G464、G466、G469、V483、T521、V528、E586、D587、F595、G596、L597、P655、S657、S683、P686、C696、L697、P722、F738及びC748を含むが、これらに限定されない、既知のヒトBRAFの置換突然変異があるかどうかを併せて検出できてもかまわない。抽出されたDNAはシークエンス解析の鋳型となるDNAが濃縮される場合がある。DNAの濃縮には、SureSelect XT AUTO カスタムキャプチャライブラリ(アジレント・テクノロジー株式会社)その他のキットを用いる場合がある。
 前記ヒトBRAF遺伝子の突然変異の検出は、ヒトBRAF遺伝子の少なくとも1つのアミノ酸残基の置換をコードするオリゴヌクレオチドの塩基配列の決定か、ヒトBRAF遺伝子の少なくとも1つのアミノ酸残基の置換をコードするポリヌクレオチドの特異的増幅か、ヒトBRAFタンパク質の前記少なくとも1つのアミノ酸残基の置換を含むペプチドの検出かにより行われる場合がある。
 本発明における別の態様は、BRAF遺伝子におけるG469、L485、Q524、L525、D594及びV600の塩基部位を含むDNAを増幅するように設計されたフォワードプライマー、及びリバースプライマーを含む試薬である。プライマーの長さは、通常 10bp~100bpであり、好ましくは15bp~35bp、さらに好ましくは19bp~31bpである。プライマーは、多型部分を含むBRAF遺伝子の少なくとも一部を増幅しうるものであれば、特に制限されない。
 プローブは、BRAF遺伝子の多型を検出することができるものであれば、特に制限されない。即ち該プローブは、例えば、野生型のBRAF遺伝子、あるいはG469、L485、Q524、L525、D594及びV600に変異を有するBRAF遺伝子と特異的にハイブリダイズするようなプローブである。プローブの長さは、通常10bp~100bpであり、好ましくは、15bp~30bp、さらに好ましくは18bp~24bpである。特異的なハイブリダイズが可能であれば、ヌクレオチドプローブは、検出するBRAF遺伝子を含むDNA、又は変異を有するBRAF遺伝子に対し、完全に相補的である必要はない。
 前記ヒトBRAF遺伝子の突然変異の検出を、ヒトBRAF遺伝子の少なくとも1つのアミノ酸残基の置換をコードするオリゴヌクレオチドの塩基配列の決定により行う場合には、サンガー法による従来技術の核酸シーケンシング法の他、以下の実施例で使用されるとおりのイルミナ株式会社のHiSeq1500/2000/2500、MiseqやNextSeq 500、ライフテクノロジーズ社のIon PGM/Proton、ロシュ・ダイアグノスティックス株式会社のゲノムシークエンサーFLX等の次世代シーケンシングシステムが用いられる場合がある。がん組織標本から抽出・精製された鋳型DNAは、製造者の指示書に従って、各製造者が用意する試薬キットで処理され、配列決定機器に装架される。塩基配列の決定によるヒトBRAF遺伝子の突然変異の検出は、タンパク質全長の全てのアミノ酸置換突然変異を検出できる利点があるが、特定の体細胞突然変異を起こした細胞ががん組織中に占める割合が少ないと検出できないという検出感度の問題がある。
 前記ヒトBRAF遺伝子の突然変異の検出を、ヒトBRAF遺伝子の少なくとも1つのアミノ酸残基の置換をコードするポリヌクレオチドの特異的合成により行う場合には、それぞれのアミノ酸残基の位置ごとにプライマーやプローブ等の検出用オリゴヌクレオチドを用意する必要がある。前記ポリヌクレオチドの特異的合成が生体サンプルから抽出されたRNAを鋳型とする場合には、RNA依存RNA合成酵素又はRNA依存DNA合成酵素(逆転写酵素)が用いられる。前記ポリヌクレオチドの特異的合成が生体サンプルから抽出されたDNAを鋳型とする場合には、DNA依存DNA合成酵素、あるいは、DNA依存RNA合成酵素が用いられる。該検出用オリゴヌクレオチドの配列は、前記置換アミノ酸をコードするオリゴヌクレオチドを含むか、あるいは、該オリゴヌクレオチドを1対のプライマーが挟むように配列番号2の塩基配列から選択される場合がある。
 前記ヒトBRAF遺伝子の突然変異の検出を、ヒトBRAF遺伝子の少なくとも1つのアミノ酸残基の置換をコードするポリヌクレオチドの全部または一部を増幅し、プローブオリゴヌクレオチドによって検出する場合は、該オリゴヌクレオチドを1対のプライマーが挟むように配列番号2の塩基配列から選択される場合がある。
 前記検出用オリゴヌクレオチドは、本発明の患者の生体サンプル中のDNA又はRNAと特異的に雑種形成を起こすことを条件として、いかなる長さであっても、いかなる天然ヌクレオチド又はヌクレオチド類似体を含むものであってもかまわない。前記検出用オリゴヌクレオチドはヌクレオチドが少なくとも12、13、14、15、16、17個又は18個の長さの場合がある。また、塩基配列の決定により行う場合に比べて検出感度が高い方法で行ってもよい。パイロシーケンシング法、SURVEYORアッセイ、BEAMing技術、リアルタイムPCR、rhPCR法等が利用可能である。
 本明細書において、「検出用オリゴヌクレオチドが、本発明の患者の生体サンプル中のDNA又はRNAと特異的に雑種形成を起こす」とは、以下の実験系で決定される。本発明の患者の生体サンプル中のDNA又はRNAを、直接に、あるいは、アガロース電気泳動により分子量に応じて分離したうえで、毛管現象又は電気泳動によりニトロセルロースフィルターその他の固相に不動化する。該固相に不動化された患者の生体サンプル中のDNA又はRNAと同じモル数の前記検出用オリゴヌクレオチドが不動化された固相を陰性対照とし、前記検出用オリゴヌクレオチドと相補的なヌクレオチド配列のオリゴヌクレオチドを患者の生体サンプル中のDNA又はRNAと同じモル数で不動化された固相を陽性対照とする。これらの固相をストリンジェントな条件で雑種形成させる。ここで「ストリンジェントな条件」とは、Sambrook、J.及びRussell、D.W.、Molecular Cloning A Laboratory Manual 3rd Edition,Cold Spring Harbor Laboratory Press(2001)に説明される以下の実験条件で行うことを指す。6× SSC及び0.2% SDSからなる溶液で前洗浄する。前記検出用オリゴヌクレオチドを放射性同位元素その他の標識物質で標識したプローブと前記固相に不動化されたDNA、RNA又はオリゴヌクレオチドとの間のハイブリダイゼーション反応を6× SSC及び0.2% SDSからなる溶液中で65°C、終夜行う。その後前記固相を1× SSC及び0.1% SDSからなる溶液中で65°C、各30分ずつ2回洗浄し、0.2× SSC及び0.1% SDSからなる溶液中で65°C、各30分ずつ2回洗浄する。最後に前記固相に残存するプローブの量を前記標識物質の定量により決定する。「前記検出用オリゴヌクレオチドが、本発明の患者の生体サンプル中のDNA又はRNAと特異的に雑種形成を起こす」とは、本発明の患者の生体サンプル中のDNA又はRNAを不動化した固相に残存するプローブの量と陰性対照の固相に残存するプローブの量との差が、前記陽性対照の固相に残存するプローブの量と陰性対照の固相に残存するプローブの量との差の、少なくとも25%、又は、少なくとも50%、、又は、少なくとも75%以上であることを指す。
 本明細書において、「抗体」には、いずれかの動物の免疫グロブリンIgG、IgM、IgE、IgA及びIgDを含む。「抗体の断片」には、いずれかの動物の免疫グロブリンの抗原結合部分、すなわち、軽鎖及び/又は重鎖の可変領域自体か、軽鎖及び/又は重鎖の可変領域を含むFab断片及び/又はF(ab’)断片か、ラクダ科動物の単一ドメイン抗体(ナノボディ)かを含む。「抗体」には、前記抗体の断片を含む融合タンパク質である2重特異的抗体又は多価抗体を含む。
 本明細書において、「本発明の単離ヒトBRAFの体細胞突然変異タンパク質又はその単離ペプチド断片に特異的に結合する」とは、同じ量のヒト野生型BRAFタンパク質又は体細胞突然変異タンパク質を不動化した固相をブロッキングし、同一濃度の抗体又は抗体断片と反応させ、さらに該抗体又は抗原断片に対する標識2次抗体と反応させて、ヒト野生型BRAFタンパク質又は体細胞突然変異タンパク質を不動化した固相に結合した前記抗体又は抗原断片の量を比較したとき、体細胞突然変異タンパク質を不動化した固相に結合した前記抗体又は抗原断片の量が、ヒト野生型BRAFタンパク質又は他の体細胞突然変異タンパク質を不動化した固相に結合した前記抗体又は抗原断片の量より2倍、又は、5倍、又は、10倍多いことを指す。
 Luminex(登録商標)システムを利用したxMAP(登録商標)テクノロジーのような蛍光マイクロビーズを使った多項目同時測定技術が利用可能である。当該技術では、測定試料(ホルマリン固定パラフィン包埋(FFPE:Formalin-Fixed Paraffin-Embedded)組織又は新鮮凍結組織)から抽出したゲノムDNAを検体として、ビオチン標識プライマーを含むマスターミックスとTaq DNAポリメラーゼによりヒトBRAF遺伝子のG469、L485、Q524、L525、D594及びV600を含む領域をPCR増幅させる。前記領域に加えて、A29、H72、S113、S124、P162、C194、L227、P231、C251、V291、Q329、G464、G466、G469、V483、T521、V528、E586、D587、F595、G596、L597、P655、S657、S683、P686、C696、L697、P722、F738及びC748を含むが、これらに限定されない、既知のヒトBRAFのアミノ酸置換突然変異を含む領域をPCR増幅させる場合もある。ハイブリダイゼーション緩衝液中にてPCR増幅産物とビーズミックスを反応させ、ビーズミックスに含まれる蛍光ビーズ上のプローブとPCR増幅産物をハイブリダイズさせる。ビーズミックスには、野生型(WT)ビーズと前記アミノ酸置換を伴う突然変異塩基を含むオリゴヌクレオチドに対応するプローブを固相した変異型ビーズが含まれる場合がある。また、BRAF遺伝子の突然変異塩基以外の領域と相補的なプローブを対照として用いることもできる。ビーズを洗浄後、リン酸緩衝液中にて蛍光標識タンパク質、例えば、SA-PE(フィコエリスリン標識ストレプトアビジン)とビーズ・PCR増幅産物複合体を反応させ、PCR増幅産物を蛍光標識する。フローサイトメトリーの原理を利用したLuminex 100/200 システムにより、ビーズと前記蛍光標識タンパク質の蛍光を測定し、ヒトBRAF遺伝子のアミノ酸置換突然変異を検出する。
 本発明のヒトBRAF遺伝子の突然変異の検出には、配列番号3ないし11の塩基配列からなるか、あるいは、配列番号3ないし11の塩基配列を含むプライマーが用いられる場合がある。配列番号3及び4、配列番号5及び6、配列番号7及び8、配列番号9及び11、及び、配列番号10及び11の塩基配列からなるプライマーの対から選択される少なくとも1対のプライマーか、あるいは、配列番号3及び4、配列番号5及び6、配列番号7及び8、配列番号9及び11、及び、配列番号10及び11の塩基配列を含むプライマーの対から選択される少なくとも1対のプライマーが用いられる場合がある。本発明のヒトBRAF遺伝子の突然変異の検出には、配列番号12ないし84の塩基配列からなる群から選択される少なくとも1種類の塩基配列からなるプローブか、あるいは、配列番号12ないし84の塩基配列からなる群から選択される少なくとも1種類の塩基配列を含むプローブかが用いられる場合がある。
 前記ヒトBRAF遺伝子の突然変異の検出を、ヒトBRAFタンパク質の前記少なくとも1つのアミノ酸残基の置換を含むペプチドの検出により行う場合には、G469、L485、Q524、L525、D594及びV600からなる群から選択される少なくとも1つのアミノ酸残基が置換したヒトBRAFタンパク質に特異的に結合する抗体が用いられる場合がある。該抗体は、蛍光in situハイブリダイゼーション法、HRP重合ポリマー結合2次抗体法その他の高感度な抗体検出法により検出される場合がある。質量分析イメージング技術その他の微量生体サンプルの質量分析により、前記アミノ酸残基が置換したBRAFタンパク質の断片ペプチドが検出される場合もある。
 本発明の腫瘍の治療方法において、前記ヒトBRAFの突然変異が検出された患者には、BRAFが介在するシグナル伝達系阻害剤であってEGFR以外のシグナル伝達系阻害剤を含む処方を投与するステップでは、BRAF阻害剤エンコラフェニブ(Encorafenib、LGX818)及びセツキシマブ(Cetuximab)か、BRAF阻害剤エンコラフェニブ(Encorafenib、LGX818)、セツキシマブ(Cetuximab)及びPI3K阻害剤BYL719(GSK212)か、BRAF阻害剤ダブラフェニブ(Dabrafenib)及びパニツムマブ(Panitumumab)か、BRAF阻害剤ダブラフェニブ(Dabrafenib)、パニツムマブ(Panitumumab)及びMEK阻害剤トラメチニブ(Trametinib)か、FOLFOXIRI(Infusional 5-FU+LV+IRI+OX)か、FOLFOXIRI及びベバシズマブ(Bevacizumab)かを含むが、これらに限られない処方を投与する場合がある。具体的な推奨用量は、当業者に周知であり、以下に推奨用量の例を挙げるが、これらに限定されない。BRAF阻害剤エンコラフェニブ(Encorafenib、LGX818):250mg。セツキシマブ(Cetuximab):初回のみ400mg/m、120分以上かけて点滴静注、その後は250mg/m、60分以上かけて点滴静注。BYL719:250mg/日。ダブラフェニブ(Dabrafenib):150mg/日。パニツムマブ(Panitumumab):1回6mg/kg(体重)を60分以上かけて点滴静注。トラメチニブ(Trametinib):2mg。FOLFOXIRI:イリノテカン165mg/m、オキサリプラチン85mg/m、オキサリプラチンと同時にL-ロイコボリンmg/m、5-フルオロウラシル3,200mg/m、を点滴静注、2週ごとに繰り返す。ベバシズマブ(Bevacizumab)5mg/kg。なお個々の患者への実際の用量は、推奨用量に向けて漸増しながら、用量制限毒性により決定される。これらの処方の他、FOLFOX、CapeOX、FOLFIRI、FL及び/又はCapeとベバシズマブ(Bevacizumab)との併用処方や、UFT+LV、IRIS、IRI、TAS-102等との併用処方を投与する場合もある。
 以下に説明する本発明の実施例は例示のみを目的とし、本発明の技術的範囲を限定するものではない。本発明の技術的範囲は特許請求の範囲の記載によってのみ限定される。本発明の趣旨を逸脱しないことを条件として、本発明の変更、例えば、本発明の構成要件の追加、削除及び置換を行うことができる。
 1.1 BREAC試験の対象患者
 網羅的遺伝子解析技術を用いた抗EGFR抗体薬治療効果予測バイオマーカーの探索研究に関する多施設共同研究(Biomarker Research for Anti-EGFR Monoclonal Antibodies by Comprehensive Cancer Genomics、以下、「BREAC試験」という。)では、2010年6月から2011年11月に抗EGFR抗体薬を含む治療を受けた大腸がんの症例のうち、以下の適格基準を満たし、以下の除外基準に該当しない184例を解析対象とした。本解析の対象は、実地臨床で抗EGFR抗体薬を投与された症例であり、治療が有効であった群から無効であった群を含む連続的な症例である。
 BREAC試験の適格基準
(1)組織学的に大腸原発の腺がんと確認されている
(2)切除不能・進行再発大腸がんである
(3)KRAS遺伝子型が野生型である又は不明(治療開始後の判明でも可能)
(4)治療開始前42日以内にベースラインのCT検査を行っている
(5)測定可能な病変を少なくとも1つ以上有する
(6)2010年6月から各施設倫理審査委員会承認日までにセツキシマブあるいはパニツムマブを含む治療を受けた
(7)セツキシマブあるいはパニツムマブを含む治療開始後3ヶ月以内に、少なくとも1回以上の画像診断を受けた
(8)フルオロピリミジン不応性又は再投与困難
(9)イリノテカン不応性
(10)オキサリプラチン不応性又は再投与困難
(11)年齢20歳以上
(12)PS:0~2(ECOG performance status score)
(13)セツキシマブ又はパニツムマブの投与直前の検査で下記のように主要臓器機能が保持されている
  (i)白血球数: 2,000/mm以上12,000/mm未満
  (ii)血小板数:≧75,000/mm
  (iii)ヘモグロビン:≧8.0g/dL
  (iv)血清総ビリルビン:≦施設正常値上限(ULN)の3倍
  (v)AST(GOT)及びALT(GPT):≦施設正常値上限(ULN)の3倍(肝転移を有する症例は5倍以下とする)
  (vi)血清クレアチニン:≦施設正常値上限(ULN)の2倍
(14)十分なホルマリン固定パラフィン包埋組織標本(以下、「FFPE標本」という。)があること
(15)セツキシマブ単独或いはイリノテカンベースの化学療法にセツキシマブを併用した、あるいはパニツムマブ単独或いはイリノテカンベースの化学療法にパニツムマブを併用した、いずれかの治療を受けた患者
 BREAC試験の除外基準
セツキシマブ又はパニツムマブを含む治療前の検査で下記の除外基準を満たすものを、除外する。
(1)活動性の重複がんを有する
(2)重篤な感染症を合併している
(3)処置が必要な体腔液(胸、腹水及び心嚢水など)を有する
(4)間質性肺炎又はその既往歴及び肺線維症を有する
(5)その他、担当医師が本研究の対象として不適当と判断した症例
(6)試料等を研究に利用することを文書等で拒否している
 1.2 ターゲットシーケンス解析
 BREAC試験に参加する各施設の倫理審査委員会の承認(国立がん研究センター倫理審査委員会の承認番号:2011-137)の下、文書による同意を得た患者の大腸がんのホルマリン固定パラフィン包埋組織から、アジレント・テクノロジー株式会社が提供するプロトコールでDNAを抽出した。抽出されたDNAは、任意の遺伝子領域をハイブリダイズするSureSelect XT AUTO カスタムキャプチャライブラリ(アジレント・テクノロジー株式会社)を用いて、シークエンス解析の鋳型となるDNAが濃縮された。カスタムライブラリにはBRAF遺伝子、KRAS遺伝子、NRAS遺伝子のコーディングエクソンすべてが含まれていた。TruSeq PE Cluster Kit v3-cBot-HS(イルミナ株式会社)を用いて、DNAクラスターが作成された。該DNAクラスターが、HiSeq1500(イルミナ株式会社)においてTruSeq SBS Kit v3-HS(イルミナ株式会社)を用いる塩基配列決定に供された。
 1.3 統計解析の対象となる患者の臨床背景
 最終的に基準を満たし、塩基配列を決定することが可能であった150例を対象として、抗EGFR抗体薬の治療効果と相関する遺伝子変異を探索した。
150例の臨床背景は、男性87例及び女性63例、年齢中央値が63.5歳(28-85歳)、performance statusが0、1及び2の症例数は、それぞれ、81、65及び4例であり、セツキシマブ又はパニツムマブを投与された症例は、それぞれ、106又は44例であった。また、無増悪生存期間(Progression Free Survival、以下、「PFS」という。)中央値は4.0ヶ月、全生存期間(Overall Survival、以下、「OS」という。)中央値は12.4ヶ月、奏効率(Response Rate、以下、「RR」という。)は21%であった。
 1.4 BRAF遺伝子変異
 BRAF遺伝子は、大腸がんではV600E変異が主要な変異であることが知られており、本試験においてもV600E変異は9例(6.0%)から検出された。さらにV600E以外の変異(G469A(1例)、L485F(1例)、Q524L(1例)、L525R(1例)、D594G(2例)、V600R(1例))が合計7例(4.7%)から検出された。
 1.5 BRAF遺伝子変異と抗EGFR抗体薬の治療効果
 以下、本明細書で示す解析結果は、十分な追跡期間が終了した後の、成熟したPFS及びOSに対するものである。
(i)RAS野生型(RAS W)対RAS変異型(RAS M、図1、2における薄灰色の実線対破線)」、
(ii)「RAS/BRAF V600E野生型(RAS/BRAF W)対BRAF V600E変異型(BRAF V600E M、図1、2における黒の実線対破線)」、及び
(iii)「RAS/BRAF野生型(RAS/BRAF W)対BRAFのその他の突然変異(G469A、L485F、Q524L、L525R、D594G及びV600R)とを含むBRAF変異型(BRAF Other M、図1、2における濃灰色の実線対破線)」の3通りの分類と有効性エンドポイント(PFS、OS、奏効割合(response rate、以下「RR」という。)、病勢制御率(disease control rate、以下、「DCR」という。)等)の関連について統計学的な検討を行った。
 なお、RAS野生型(RAS W)とは、KRAS及びNRASのいずれにも体細胞突然変異が検出されない腫瘍を意味する。RAS変異型(RAS M)とは、12位、13位、59位、61位、117位又は146位のアミノ酸残基が置換する体細胞突然変異がKRAS又はNRASの少なくともいずれか1つに検出される腫瘍を意味する。RAS/BRAF V600E野生型(RAS/BRAF W)とは、RAS野生型かつBRAF V600E変異がない腫瘍を意味する。BRAF V600E変異型(BRAF V600E M)とは、RAS野生型かつBRAF V600E変異がある腫瘍を意味する。RAS/BRAF野生型(RAS/BRAF W)とは、RAS野生型かつBRAFに体細胞突然変異がない腫瘍を意味する。BRAFのその他の突然変異(BRAF Other M)とは、RAS野生型かつBRAF G469A、L485F、Q524L、 L525R、D594G又はV600Rのいずれかに体細胞突然変異がある腫瘍を意味する。
 1.5.1 無増悪生存期間(PFS)の解析結果
 図1にPFSのKaplan-Meier曲線を示した。変異型の患者集団のPFS(破線)及び野生型の患者集団のPFS(実線)はいずれの分類においても同等であった。従来から抗EGFR抗体薬の無効因子として知られているRAS変異型の患者集団と同様、BRAF V600E変異型と、BRAFのその他の変異型との患者集団は、抗EGFR抗体薬の治療効果が期待できない可能性が示唆された。
 1.5.2 全生存期間(OS)の解析結果
 図2にOSのKaplan-Meier曲線を示した。変異型の患者集団(破線)においては、PFSと異なり、BRAFのその他の変異型(濃灰色破線)において予後良好の傾向を示した。野生型の患者集団の予後はいずれの分類においても同等であった。特に、RAS/BRAF野生型に集団を限定した場合、程度は弱いものの、OSは改善の傾向を示した。
 1.5.3 奏効率、病勢制御率、腫瘍縮小率、PFS及びOSの中央値の解析結果
 表2に、固形がんの治療効果判定のためのガイドライン(response evaluation criteria in solid tumours)改訂版(バージョン1.1、Eisenhauer, E.A.ら、Eur J Cancer 45 (2009) 228-247))による治療への反応の定義を示す。
Figure JPOXMLDOC01-appb-T000004
 それぞれBRAF遺伝子に変異があった患者における変異型と、その患者の最良の反応を表3に示す。
Figure JPOXMLDOC01-appb-T000005
 表4に、奏効率(RR)、病勢制御率(DCR)、腫瘍縮小率(%shrink)、PFS及びOSの中央値の解析結果を示す。ここで奏効率(RR)とは、ある治療に対する反応がCR及びPRであった症例の百分率をいう。また病勢制御率(DCR)とは、ある治療に対する反応がCR、PR及びSDであった症例の百分率をいう。DCRにはSD症例(ベースラインから20%未満の腫瘍増大)が含まれるため、単純に腫瘍が縮小した割合に対する解析も行った。
Figure JPOXMLDOC01-appb-T000006

*1:腫瘍が増大しなかった症例の割合(全く縮小しなかった症例を含む)
*2:腫瘍が一度でも縮小した症例の割合(全く縮小しなかった症例を含まない)
 表4において、奏効率(RR)はBRAF V600EとBRAFその他変異型とも0%であり、抗EGFR抗体薬による完全奏効が確認できなかった。病勢制御率(DCR)は、BRAF V600E変異型で22.2%、BRAFのその他の変異型で71.4%であった。腫瘍が増大しなかった症例(腫瘍の大きさが変わらない、つまり全く縮小しなかった症例も含む)を示す「%shrink*1」の割合は、それぞれBRAF V600E変異型で22.2%、BRAFのその他の変異型で28.6%であった。腫瘍が一度でも縮小した症例(「%shrink*1」から全く縮小しなかった症例を除外)を示す「%shrink*2」の割合は、それぞれBRAF V600E変異型で11.1%、BRAFのその他の変異型で28.6%であった(図3)。以上の結果から、腫瘍縮小という観点で評価した場合においても、BRAF V600E変異型と、BRAFのその他の変異型(G469A、L485F、Q524L、L525R、D594G及びV600R)を含むBRAF変異型患者集団の除外が有効性の改善に寄与することが確認された。
 1.5.4 各遺伝子変異の有無によるPFS及びOSの解析
 図3Aは、RAS野生型対RAS変異型(RAS W/M)のPFS及びOSを比較したKaplan-Meier曲線を示す。ログランク検定のP値は、それぞれ、0.01%未満又は0.02%であった。図3Bは、RAS野生型かつBRAF600位野生型対RAS変異型又はBRAF V600E変異型(RAS/BRAF V600E W/M)のPFS及びOSを比較したKaplan-Meier曲線を示す。ログランク検定のP値は、それぞれ、0.01%未満又は0.01%であった。図3Cは、RAS野生型かつBRAF野生型対RAS変異型又はBRAF変異型(RAS/BRAF W/M)のPFS及びOSを比較したKaplan-Meier曲線を示す。ログランク検定のP値は、いずれも0.01%未満であった。図3A、B及びCのいずれにおいても、ログランク検定のP値は有意水準5%で統計学的に有意な関連を示した。
 1.5.5 各遺伝子変異の有無によるPFS、OSのハザード比
 これまでの結果はKaplan-Meier曲線やログランク検定に基づく、単変量的なアプローチによる検討であった。PFS又はOSに関連する背景因子が両群間で偏る場合、上記で認められた傾向はアーチファクトである可能性(交絡が生じている可能性)がある。そこで、PFS及びOSについては、以下の表5に記載した背景因子を調整したCoxの比例ハザードモデルを適用し、交絡を調整した場合の、3分類によるハザード比を推定した(表5の第3列「Multivariate Cox」を参照)。いずれにおいても、ハザード比の95%信頼区間の下限が1を上回っており、変異型の患者集団が予後不良の傾向を示した。
Figure JPOXMLDOC01-appb-T000007
 これまでに示した解析結果は、BRAFのV600E変異型と、BRAFのその他の変異型(G469A、L485F、Q524L、L525R、D594G及びV600Rからなる群から選択される少なくとも1種類)とが、抗EGFR抗体薬治療効果予測マーカーであることを示している。
 1.6 BRAF遺伝子変異の機能
 Roskoski Jr, R.(Biochemical and Biophysical Research Communications 399: 313-317 (2010))によれば今回検出されたBRAF遺伝子変異は、すべてタンパク質キナーゼドメインに存在する(457-717位)。V600E変異は活性化変異として知られており、V600R、G469A変異も活性化変異であることが知られている。コドン469, 594, 600は、活性に重要なP-loop(464-469)やDFG motif/activation segment (594-600) に存在しており、立体構造上は近い位置にある。一方、コドン485、524及び525はこれらの領域から外れており、既知のヒトBRAFタンパク質の構造及び機能についての知識から抗EGFR抗体薬の治療効果との関連は予測できない。
 ヒト培養細胞における一過性発現系によるBRAF変異タンパク質の機能解析
 2.1 HEK293細胞で発現されたBRAF変異タンパク質の細胞増殖促進シグナル伝達系への影響(1)
 EGFがEGFRに結合して発生する細胞増殖促進シグナルは、KRASおよび/またはNRASを介してBRAFに伝達され、BRAFを活性化する。活性化されたBRAFはERK(細胞外シグナル調節キナーゼ、Extracellular Signal-Regulated Kinase)を活性化することでさらに下流に細胞増殖促進シグナルを伝達する。そこで本実験では、BREAC試験で検出されたBRAF変異タンパク質がヒト細胞において細胞増殖促進シグナルをBRAFの下流のERKに伝達できるかどうかをBRAF変異タンパク質の一過性発現系で検討した。
 2.1.1 材料及び方法
 本実験では以下の試薬が用いられた。
OptiMEM (Gibco、ライフテクノロジーズジャパン株式会社 31985-062)
FuGENE HD トランスフェクション試薬(プロメガ株式会社、 E2313)
ダルベッコ変法イーグル培地(DMEM、Gibco、ライフテクノロジーズジャパン株式会社 11885-084)
プロテアーゼ阻害剤カクテル (シグマ アルドリッチ ジャパン合同会社、 P8340)
BCA タンパク質アッセイキット(Pierce、サーモフィッシャーサイエンティフィック株式会社、 #23225)
SuperSep Ace (5-20%) (和光純薬工業株式会社、194-15021)
プレシジョン Plus プロテイン(商標)2色スタンダード(バイオ・ラッド ラボラトリーズ株式会社、161-0374)
トランスブロット(登録商標)Turbo(商標)ミニ PVDF 転写パック(バイオ・ラッド ラボラトリーズ株式会社、 #170-4156)
抗FLAGマウスモノクローナル抗体(シグマ アルドリッチ ジャパン合同会社、 A8592)
抗p44/42 MAPK (ERK1/2)ウサギ抗体(CSTジャパン株式会社、 #4695)
抗リン酸化p44/42 MAPK(ERK1/2)ウサギ抗体(CSTジャパン株式会社、 #4370)
抗ウサギ抗体HRP結合ヤギ抗体(CSTジャパン株式会社、 #7074)
抗マウス抗体HRP結合ウマ抗体(CSTジャパン株式会社、 #7076)
ECLウェスタンブロッティング検出試薬(Amersham、GEヘルスケア・ジャパン株式会社)
 本発明のBRAF変異タンパク質を発現するためのベクターは、自己不活性化タイプレトロウイルスベクターのpQCXIP(クロンテック、タカラバイオ株式会社、631516)で、これは、FLAGタグを融合したBRAFの野生型又は突然変異体遺伝子と、ピューロマイシン耐性遺伝子とをCMVIEプロモーターで駆動する。BRAF発現コンストラクトの作成は、製造者の指示書に従って行った。
 ヒト胎児腎細胞HEK293はJCRB細胞バンクから入手した。6穴マルチウェルプレートにHEK293細胞を各ウェルあたり5×10個播種した。37°C、5%CO、飽和湿度条件下で終夜培養し、表6に列挙した濃度のプラスミドDNAの10mM Tris-HCl及び1mMEDTAバッファー(TEバッファー、pH8.0)溶液を用意して、トランスフェクション試薬及びDNAの複合体溶液を表7の組成で調製した。前記FuGENE HD トランスフェクション試薬の製造者の指示書に従って前記複合体溶液を各ウェルあたり150μL添加して、6時間培養した。
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 前記複合体溶液中で6時間の培養後、培地を交換しさらに24時間培養を行い、その後以下の細胞溶解バッファー(50mM Tris-HCl、1% NP-40、0.5% デオキシコール酸ナトリウム、0.5% SDS、150 mM NaCl、2mM EDTA、50mM NaF、1%プロテアーゼ阻害剤カクテル及び1mM オルトバナジウム酸ナトリウム、pH6.8)で溶解、Pierce BCA タンパク質アッセイキットによりタンパク定量を行い、SDS-PAGEサンプルを調製した。
 製造者の指示書に従い、各レーンあたりタンパク質10μgのサンプルをプレキャストゲルSuperSep Aceに懸架して、SDS-PAGEを行った。泳動終了後、トランスブロット(登録商標)Turbo(商標)転写システム(バイオ・ラッド ラボラトリーズ株式会社、 #1704150J1)を使用し、添付のプロトコールに従い、ウェスタンブロッティングを行った。ブロッティング終了後のPVDF メンブレンは、5% スキムミルクを添加したTBS(pH7.4)で30分間ブロッキングした後、5% BSAを添加したTBS(pH7.4)で1000倍に希釈した一次抗体と4°C終夜反応させた。0.05% Tween-20を添加したTBSでメンブレンを3回洗浄後、5% BSAを添加したTBSで2000倍に希釈した2次抗体を室温で1時間反応させた。0.05% Tween-20を添加したTBSでメンブレンを3回洗浄後、ECLウェスタンブロッティング検出試薬により検出を行った。検出にはImage Quant LAS4000 mini(GEヘルスケア・ジャパン株式会社)を使用した。
 2.1.2 結果
 図4は、空ベクター(pQCXIP)と、野生型ヒトBRAF(WT)、既知のBRAF突然変異体(V600E)及び本発明のBRAF突然変異体(Q524L及びL525R)を発現するベクターとをトランスフェクションしたHEK293細胞の細胞溶解液をSDS-PAGE法で分離し、ウェスタンブロッティング法で転写したメンブレンをFlag抗体(FLAG)、抗ERK抗体および抗リン酸化ERK抗体で(ERK及びpERK)で検出した結果のウェスタンブロッティング図である。図4の上段では、Flagタグを融合したBRAFタンパク質のバンド部分を拡大した。図4の中段及び下段では、ERKタンパク質のバンド部分を拡大した。図4の上段に示すとおり、空ベクター導入細胞を除くBRAF導入した細胞のサンプルでは、BRAFタンパク質(80kDa)に相当するサイズのバンドに抗体が反応した。また図4の下段に示すとおり、空ベクター導入細胞のサンプルと、全てのBRAFを導入した細胞のサンプルとで、ERKタンパク質(44kDa)に相当するサイズのバンドに抗体が反応した。全てのサンプルでバンドのデンシティがほぼ同じであったことから、トランスフェクション及びBRAFの発現はERKタンパク質の発現には影響を与えなかった。しかし図4の中段に示すとおり、BRAF発現細胞のサンプルでは、リン酸化ERKのバンドのデンシティは図4の上段のBRAFバンドのデンシティに対応していた。そこで、本実験で細胞に導入されたBRAF突然変異体Q524L及びL525Rは、V600Eと同様に細胞増殖促進シグナルを下流に伝達することができることが明らかになった。
 
 2.2 BRAF変異タンパク質による下流への細胞増殖促進シグナル伝達に対する抗EGFR抗体の影響(1)
 前節2.1の実験から、BRAF突然変異体Q524L及びL525Rは細胞増殖促進シグナルを下流に伝達することができることが明かになった。本節では、これらのBRAF突然変異体によるERKの活性化、すなわち、リン酸化が、上流からの細胞増殖促進シグナルに依存するか否かを検証する。そのため、野生型EGFRを恒常的に発現するHEK293細胞株(HEK293 EGFRwt)を樹立した。そして、HEK293 EGFRwt細胞株にBRAF突然変異体発現ベクターを導入し、BRAFを一過的に過剰発現させ、異なる濃度の抗EGFR抗体セツキシマブ存在下でのERKのリン酸化を検討した。
 2.2.1 材料及び方法
 本実験では前節の実験で用いた試薬に加えて、セツキシマブ(アービタックス(登録商標)メルクセローノ株式会社)が用いられた。
 野生型ヒトEGFRを恒常的に発現するHEK293細胞株HEK293 EGFRwtは、ネオマイシン耐性遺伝子を有する自己不活性化タイプレトロウイルスベクターのpQCXIN(クロンテック、タカラバイオ株式会社、631514)に野生型EGFR遺伝子を導入したうえで、製造者の指示書に従って作成した。
 前節2.1と同様に、FuGENE HD トランスフェクション試薬を用いて、HEK293 EGFRwt細胞株にヒトBRAFの野生型又は突然変異体のプラスミドDNAをトランスフェクションした。トランスフェクション試薬及びDNAの複合体溶液中での6時間培養後、培地を交換しさらに20時間培養を行った。その後、異なる濃度(0、0.5及び5.0μg/mL)のセツキシマブを添加した培地に交換して、さらに2時間培養した。その後、前節2.1と同様に、ヒトBRAFの野生型又は突然変異体のプラスミドDNAを導入した細胞を溶解して、SDS-PAGE及びウェスタンブロッティングを行った。
 2.2.2 結果
 図5は、空ベクター(Vector)と、野生型ヒトBRAF(WT)、既知のBRAF突然変異体(V600E)及び本発明のBRAF突然変異体(Q524L及びL525R)を発現するベクターとをトランスフェクションして、異なる濃度(0、0.5及び5.0μg/mL)のセツキシマブを添加した培地で培養したHEK293 EGFRwt細胞株の細胞溶解液をSDS-PAGE法で分離し、ウェスタンブロッティング法で転写したメンブレンをFlag抗体(FLAG)、抗ERK抗体および抗リン酸化ERK抗体で(ERK及びpERK)で検出した結果のウェスタンブロッティング図である。図5の上段では、Flagタグを融合したBRAFタンパク質のバンド部分を拡大した。図5の中段及び下段では、ERKタンパク質のバンド部分を拡大した。図5の上段に示すとおり、空ベクター導入細胞を除くBRAF導入した細胞のサンプルでは、BRAFタンパク質(80kDa)に相当するサイズのバンドに抗体が反応した。また図5の下段に示すとおり、空ベクター導入細胞及びBRAF導入した細胞のサンプルの全てで、ERKタンパク質(44kDa)に相当するサイズのバンドに抗体が反応した。全てのサンプルでバンドのデンシティがほぼ同じであったことから、トランスフェクション、BRAFの発現及びセツキシマブの添加はERKタンパク質の発現には影響を与えなかった。しかし図5の中段に示すとおり、空ベクター及び野生型BRAFを導入した細胞のサンプルでは、セツキシマブの濃度が高いほどリン酸化ERKのバンドのデンシティが下がった。一方、BRAF突然変異体V600E、Q524L及びL525Rを導入した細胞のサンプルでは、セツキシマブの濃度が高くなってもリン酸化ERKのバンドのデンシティは変化しなかった。そこで、本発明のBRAF突然変異体Q524L及びL525Rは、既知のBRAF突然変異体V600Eと同様に、セツキシマブの濃度が高くなってもERKをリン酸化する活性が下がらないので、上流からの細胞増殖促進シグナルに依存しない活性化型BRAF突然変異体であることが示唆された。
 2.3 HEK293細胞で発現されたBRAF変異タンパク質の細胞増殖促進シグナル伝達系への影響(2)
 2.1節と同様の実験を、BRAF変異タンパク質Q524L及びL525Rに加えて、G464V、G466V、G469A、G469V、L485F、N581S、D594N、D594G、G596R及びV600Rについても行った。
 2.3.1 材料及び方法
 表7に列挙した濃度のプラスミドDNAのTEバッファー溶液を用意して、トランスフェクション試薬及びDNAの複合体溶液を表9の組成で調製した。2.1節と同様に、HEK293細胞へのトランスフェクションを行い、プラスミドDNAを導入した細胞を溶解して、SDS-PAGE及びウェスタンブロッティングを行った。
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
 2.3.2 結果
 図6は、空ベクター(pQCXIP)と、野生型ヒトBRAF(WT)、既知のBRAF突然変異体(V600E)及び本発明のBRAF突然変異体(Q524L、L525R、G464V、G466V、G469A、G469V、L485F、N581S、D594N、D594G、G596R及びV600R)を発現するベクターとをトランスフェクションしたHEK293細胞の細胞溶解液をSDS-PAGE法で分離し、ウェスタンブロッティング法で転写したメンブレンをFlag抗体(FLAG)、抗ERK抗体および抗リン酸化ERK抗体で(ERK及びpERK)で検出した結果のウェスタンブロッティング図である。図6の上段では、Flagタグを融合したBRAFタンパク質のバンド部分を拡大した。図6の中段及び下段では、ERKタンパク質のバンド部分を拡大した。図6の中段に示すとおり、野生型ヒトBRAF(WT)、既知のBRAF突然変異体(V600E)及び本発明のBRAF突然変異体の一部(Q524L、L525R、G464V、G469A、G469V、L485F、N581S及びV600R)のサンプルでは、リン酸化ERKのバンドのデンシティは空ベクターのサンプルのデンシティより高かった。しかし、本発明のBRAF突然変異体の残り(G466V、D594N、D594G及びG596R)のサンプルでは、リン酸化ERKのバンドのデンシティは空ベクターのサンプルのデンシティとほぼ同じであった。そこで本発明のBRAF突然変異体のうち、G466V、D594N、D594G及びG596Rは細胞増殖促進シグナルを下流に伝達しない不活性化型BRAF突然変異体であることが示唆された。
 2.4 BRAF変異タンパク質による下流への細胞増殖促進シグナル伝達に対する抗EGFR抗体の影響(2)
 本節では、前節2.3の実験で不活性化型BRAF突然変異体であることが示唆されたG466V、D594N、D594G及びG596Rが、上流からの細胞増殖促進シグナルへの依存性を保持しているかどうかを検証する。
 2.4.1 材料及び方法
 表7に列挙した濃度のプラスミドDNAのTEバッファー溶液を用意して、トランスフェクション試薬及びDNAの複合体溶液を表10の組成で調製した。2.2節と同様に、HEK293 EGFRwt細胞株へのトランスフェクションを行い、プラスミドDNAを導入した細胞を溶解して、SDS-PAGE及びウェスタンブロッティングを行った。
Figure JPOXMLDOC01-appb-T000012
 2.4.2 結果
 図7は、空ベクター(Vector)と、野生型ヒトBRAF(WT)、既知のBRAF突然変異体(V600E)及び本発明のBRAF突然変異体(G466V、D594N、D594G及びG596R)を発現するベクターとをトランスフェクションして、異なる濃度(0及び5.0μg/mL)のセツキシマブを添加した培地で培養したHEK293細胞の細胞溶解液をSDS-PAGE法で分離し、ウェスタンブロッティング法で転写したメンブレンをFlag抗体(FLAG)、抗ERK抗体および抗リン酸化ERK抗体で(ERK及びpERK)で検出した結果のウェスタンブロッティング図である。図7の上段では、Flagタグを融合したBRAFタンパク質のバンド部分を拡大した。図7の中段及び下段では、ERKタンパク質のバンド部分を拡大した。図7の中段に示すとおり、空ベクター、野生型BRAF及び本発明のBRAF突然変異体(G466V、D594N、D594G及びG596R)を導入した細胞のサンプルでは、セツキシマブの濃度が高いほどリン酸化ERKのバンドのデンシティが下がった。これに対し、BRAF突然変異体V600Eを導入した細胞のサンプルでは、セツキシマブの濃度が高くなってもリン酸化ERKのバンドのデンシティは変化しなかった。そこで、本発明のBRAF突然変異体(G466V、D594N、D594G及びG596R)は、下流へのシグナル伝達が減弱する不活性化BRAF突然変異体ではあるが、上流からの細胞増殖促進シグナルへの依存性を保持していることが示唆された。
 実施例2の結果から、本発明のBRAF突然変異体Q524L及びL525Rは、既知のBRAF突然変異体V600Eと同様に、上流からの細胞増殖促進シグナルに依存しない活性化型BRAF突然変異体であることが示唆された。これは、本発明のBRAF突然変異体Q524L及びL525Rにはセツキシマブ応答性がないことを意味する。この結果は、実施例1におけるこれらの変異型の患者の抗EGFR抗体薬への最良の反応がPD又はSDという結果(表3)と一致する。したがって、ヒトを含め生体内でも同様に、Q524L, L525Rのいずれかの変異を有する患者には、セツキシマブをはじめ、EGFR阻害剤による治療の効果は低いことが予想される。
 また、本発明のBRAF突然変異体G466V、D594N、D594G及びG596Rは、細胞増殖促進シグナルを下流に伝達しない不活性化型BRAF突然変異体ではあるが、上流からの細胞増殖促進シグナルへの依存性を保持していることが示唆された。これは、本発明のBRAF突然変異体G466V、D594N、D594G及びG596Rにはセツキシマブ応答性があることを意味する。しかし、D594Gの変異型の患者の抗EGFR抗体薬への最良の反応はSDという結果(表3)であった。すると、本発明のBRAF突然変異体G466V、D594N、D594G及びG596Rにはセツキシマブ応答性があっても、もともとERKをリン酸化する活性が低いため、セツキシマブ非存在下でもEGFRからのシグナルはほとんど遮断されている可能性がある。あるいは、培養細胞における一過性の過剰発現系では、不活性型BRAF変異体によるセツキシマブ応答性が認められるものの、生体内の環境では、BRAF以外のRAFファミリー遺伝子の活性化などによりセツキシマブ耐性を獲得する側副経路が存在する可能性がある。そのため、D594Gを有する臨床結果で示したように、G466V、D594N、D594G、G596Rの変異を有する患者においては、セツキシマブをはじめ、EGFR阻害剤による治療の効果は低いことが予想される。

Claims (31)

  1.  患者の生体サンプルを用いて、配列番号1のヒトBRAFタンパク質のアミノ酸配列において、G469、L485、Q524、L525、D594及びV600からなる群から選択される少なくとも1つのアミノ酸残基の置換を起こすヒトBRAFの突然変異を検出するステップを含み、前記BRAFの突然変異が検出された腫瘍はEGFR阻害剤による治療に適さない、EGFR阻害剤の治療効果を予測するヒトBRAFの突然変異を検出する方法。
  2.  本発明のヒトBRAFの突然変異を検出する方法において、ヒトBRAFの突然変異を検出するステップは、G469A、L485F、Q524L、L525R、D594G及びV600Rからなる群から選択される少なくとも1つのアミノ酸残基の置換を起こすヒトBRAFの突然変異を検出するステップである、請求項1に記載の方法。
  3.  前記EGFR阻害剤は抗EGFR抗体薬である、請求項1又は2に記載の方法。
  4.  前記EGFR阻害剤は、イリノテカン、FOLFOX又はFOLFIRIとともに併用される、請求項1ないし3のいずれか1項に記載の方法。
  5.  前記患者の生体サンプルは、腫瘍組織サンプル、体液サンプル、分泌物サンプル及び排泄物サンプルからなる群から選択される少なくとも1つのサンプルである、請求項1ないし4のいずれか1項に記載の方法。
  6.  前記ヒトBRAFの突然変異を検出するステップは、患者の生体サンプルから抽出した核酸の塩基配列のうち、ヒトBRAF遺伝子の前記少なくとも1つのアミノ酸残基の置換をコードするオリゴヌクレオチドの塩基配列を決定することを含む、請求項5に記載の方法。
  7.  前記ヒトBRAFの突然変異を検出するステップは、患者の生体サンプルから抽出した核酸の塩基配列のうち、ヒトBRAF遺伝子の前記少なくとも1つのアミノ酸残基の置換をコードするポリヌクレオチドを特異的に増幅することを含む、請求項5に記載の方法。
  8.  (a)患者の生体サンプルから腫瘍からDNAを単離するステップと、
    (b)配列番号2の塩基配列においてG469、L485、Q524、L525、D594及びV600からなる群から選択される少なくとも1つのアミノ酸残基をコードする塩基配列を挟むプライマーの対と、前記単離されたDNAとをハイブリダイズさせるステップと、
    (c)前記単離したDNAとプライマーを用いて、配列番号2の塩基配列においてG469、L485、Q524、L525、D594及びV600からなる群から選択される少なくとも1つのアミノ酸残基をコードする塩基配列を有するBRAF遺伝子DNAを増幅させるステップと、
    (d)前記増幅されたBRAF遺伝子DNAをプローブと接触させるステップと、
    (e)前記増幅されたBRAF遺伝子DNAとハイブリダイズしたプローブを検出するステップとを含む、請求項5に記載の方法。
  9.  前記ヒトBRAFの突然変異を検出するステップは、患者の生体サンプルから、ヒトBRAFタンパク質の前記少なくとも1つのアミノ酸残基の置換を含むペプチドを検出することを含む、請求項5に記載の方法。
  10.  前記腫瘍は大腸がんである、請求項1ないし9のいずれか1項に記載の方法。
  11.  EGFR阻害剤の治療効果を予測するヒトBRAFの突然変異を検出するためのキットであって、
     配列番号2の塩基配列においてG469、L485、Q524、L525、D594及びV600からなる群から選択される少なくとも1つのアミノ酸残基の置換を起こすヒトBRAF遺伝子の突然変異を含む塩基配列を特異的に検出するためのプライマー又はプローブオリゴヌクレオチドを含む、キット。
  12.  BRAF遺伝子におけるG469、L485、Q524、L525、D594及びV600を含むDNAを増幅するように設計されたフォワードプライマー、及びリバースプライマーを含む、BRAF遺伝子の突然変異を検出する、請求項11に記載のキット。
  13.  前記プライマーオリゴヌクレオチドは、配列番号2の塩基配列において、G469、L485、Q524、L525、D594及びV600からなる群から選択される少なくとも1つのアミノ酸残基の置換をコードするオリゴヌクレオチドの塩基配列を決定することにより、配列番号2の塩基配列においてG469、L485、Q524、L525、D594及びV600からなる群から選択される少なくとも1つのアミノ酸残基の置換を起こすヒトBRAF遺伝子の突然変異を検出する、請求項11に記載のキット。
  14.  前記プライマーオリゴヌクレオチドは、配列番号2の塩基配列において、G469、L485、Q524、L525、D594及びV600からなる群から選択される少なくとも1つのアミノ酸残基の置換を起こすヒトBRAF遺伝子の突然変異塩基を含む、塩基配列を有するRNA及び/又はDNAを鋳型とするポリヌクレオチドを特異的に増幅することにより、配列番号2の塩基配列においてG469、L485、Q524、L525、D594及びV600からなる群から選択される少なくとも1つのアミノ酸残基の置換を起こすヒトBRAF遺伝子の突然変異を検出する、請求項11に記載のキット。
  15.  前記プライマーオリゴヌクレオチドは、配列番号3~40からなる群から選択される少なくとも1本の配列からなる、請求項11ないし14のいずれか1項に記載のキット。
  16.  前記プライマーオリゴヌクレオチドは、配列番号3~9のいずれか1本の配列からなるプライマーオリゴヌクレオチドと配列番号10~14のいずれか1本の配列からなるプライマーオリゴヌクレオチドの対と、配列番号15~18のいずれか1本の配列からなるプライマーオリゴヌクレオチドと配列番号19~22のいずれか1本の配列からなるプライマーオリゴヌクレオチドの対と、配列番号23~26のいずれか1本の配列からなるプライマーオリゴヌクレオチドと配列番号27~30のいずれか1本の配列からなるプライマーオリゴヌクレオチドの対と、配列番号31~35のいずれか1本の配列からなるプライマーオリゴヌクレオチドと配列番号36~40のいずれか1本の配列からなるプライマーオリゴヌクレオチドの対とからなるプライマーオリゴヌクレオチドの対の少なくとも1対である、請求項15に記載のキット。
  17.  前記プローブオリゴヌクレオチドは、配列番号2の塩基配列において、G469、L485、Q524、L525、D594及びV600からなる群から選択される少なくとも1つのアミノ酸残基の置換を起こすヒトBRAF遺伝子の突然変異塩基を含む、塩基配列を有するRNA及び/又はDNAと雑種形成することにより、配列番号2の塩基配列においてG469、L485、Q524、L525、D594及びV600からなる群から選択される少なくとも1つのアミノ酸残基の置換を起こすヒトBRAF遺伝子の突然変異を検出する、請求項11に記載のキット。
  18.  前記プローブオリゴヌクレオチドは、配列番号41~98からなる群から選択される少なくとも1本の配列のプローブオリゴヌクレオチドである、請求項17に記載のキット。
  19.  前記プライマー又はプローブオリゴヌクレオチドは、配列番号2の塩基配列のうち、G469A、L485、Q524、L525、D594及びV600からなる群から選択される少なくとも1つのアミノ酸残基の置換を起こすヒトBRAF遺伝子の突然変異塩基を含む塩基配列か、その相補配列かを含む、請求項11ないし15及び18のいずれか1項に記載のキット。
  20.  前記ヒトBRAF遺伝子の突然変異は、G469A、L485F、Q524L、L525R、D594G及びV600Rからなる群から選択される少なくとも1つのアミノ酸残基の置換を起こすヒトBRAF遺伝子の突然変異である、請求項11ないし15及び18のいずれか1項に記載のキット。
  21.  前記プライマーオリゴヌクレオチドは、その5’末端と3’末端との間にリボヌクレアーゼ酵素認識部位を含み、
     該リボヌクレアーゼ酵素認識部位は、RNAの連続配列であって、前記アミノ酸残基の置換を起こす突然変異塩基を含み、該リボヌクレアーゼ酵素認識部位は相補的な塩基配列を有するDNAと対合してヘテロ2本鎖を形成するとき、耐熱性RNaseHにより特異的に切断される、請求項11ないし20のいずれかに記載のキット。
  22.  前記プライマー又はプローブオリゴヌクレオチドは少なくとも前記アミノ酸残基の置換を起こす突然変異塩基に核酸アナログを含む、請求項11ないし21のいずれか1項に記載のキット。
  23.  配列番号1のヒトBRAFタンパク質のアミノ酸配列において、G469、L485、Q524、L525、D594及びV600からなる群から選択される少なくとも1つのアミノ酸残基の置換を起こす単離ヒトBRAFの体細胞突然変異タンパク質、又は、G469、L485、Q524、L525、D594及びV600からなる群から選択される少なくとも1つのアミノ酸残基の置換を含むヒトBRAF体細胞突然変異タンパク質の単離ペプチド断片。
  24.  請求項23に記載の単離ヒトBRAFの体細胞突然変異タンパク質又はその単離ペプチド断片に特異的に結合する、抗体又は抗体断片。
  25.  請求項23に記載の単離ヒトBRAFタンパク質又はその単離ペプチド断片をコード化するポリヌクレオチドを含む発現ベクターを含む宿主細胞であって、該発現ベクターは前記宿主細胞内での遺伝子の発現を可能にする制御領域を含み、該制御領域は前記ポリヌクレオチドと動作可能に連結される、単離ヒトBRAFタンパク質又はその単離ペプチド断片を発現する宿主細胞。
  26.  請求項24に記載の宿主細胞にBRAFが介在するシグナル伝達系阻害剤を曝露するステップと、前記宿主細胞の増殖に与える前記阻害剤の効果を調べるステップとを含み、前記阻害剤の非存在下と比較して前記阻害剤の存在下で前記宿主細胞の増殖が抑制されるとき、前記ヒトBRAFタンパク質又はその単離ペプチド断片に含まれるアミノ酸残基置換体細胞突然変異に対して前記阻害剤は治療効果があり、あるいは、前記阻害剤の非存在下と比較して前記阻害剤の存在下で前記宿主細胞の増殖が抑制されないとき、前記ヒトBRAFタンパク質又はその単離ペプチド断片に含まれるアミノ酸残基置換体細胞突然変異に対して前記阻害剤は治療効果がない、BRAFが介在するシグナル伝達系阻害剤のヒトBRAF体細胞突然変異に対する治療効果を予測する方法。
  27.  請求項23に記載の単離ヒトBRAFタンパク質又はその単離ペプチド断片をコード化するポリヌクレオチドを含む発現ベクターを宿主細胞に導入するステップと、該宿主細胞中で前記単離ヒトBRAFタンパク質又はその単離ペプチド断片を発現するステップとを含み、前記宿主細胞内での遺伝子の発現を可能にする制御領域が前記発現ベクターに含まれ、該制御領域は前記ポリヌクレオチドと動作可能に連結される、単離ヒトBRAFタンパク質又はその単離ペプチド断片の発現方法。
  28.  BRAFが介在するシグナル伝達系阻害剤の治療効果を予測するヒトBRAFの体細胞突然変異タンパク質を検出するための参照タンパク質組成物であって、請求項23に記載の単離ヒトBRAFタンパク質又は単離ペプチド断片を含む組成物。
  29.  配列番号2の塩基配列のうち、G469A、L485F、Q524L、L525R、D594G及びV600Rからなる群から選択される少なくとも1つのアミノ酸残基の置換を起こすヒトBRAF遺伝子の突然変異塩基を含む、変異型ヒトBRAFcDNA塩基配列を含むポリヌクレオチド。
  30.  配列番号2の塩基配列のうち、G469A、L485F、Q524L、L525R、D594G及びV600Rからなる群から選択される少なくとも1つの変異を検出するためのプローブオリゴヌクレオチド。
  31.  配列番号2の塩基配列のうち、G469A、L485F、Q524L、L525R、D594G及びV600Rからなる群から選択される少なくとも1つの変異を検出するためのプライマーオリゴヌクレオチド。
PCT/JP2015/086420 2014-12-26 2015-12-25 Braf変異検出によるegfr阻害剤の効果予測 WO2016104794A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016566575A JP6858563B2 (ja) 2014-12-26 2015-12-25 Braf変異検出によるegfr阻害剤の効果予測

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014266577 2014-12-26
JP2014-266577 2014-12-26

Publications (1)

Publication Number Publication Date
WO2016104794A1 true WO2016104794A1 (ja) 2016-06-30

Family

ID=56150804

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/086420 WO2016104794A1 (ja) 2014-12-26 2015-12-25 Braf変異検出によるegfr阻害剤の効果予測

Country Status (2)

Country Link
JP (1) JP6858563B2 (ja)
WO (1) WO2016104794A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110760575A (zh) * 2018-07-27 2020-02-07 中国人民解放军军事科学院军事医学研究院 一种用于检测微波辐射致脑损伤的生物标志物Braf蛋白
JP2020514684A (ja) * 2016-12-20 2020-05-21 トリート4ライフ アーベー 質量分析によってbraf突然変異および野生型brafタンパク質を定める方法
WO2020145734A1 (ko) * 2019-01-11 2020-07-16 주식회사 진캐스트 Braf 돌연변이 검출을 위한 dna 중합효소 및 이를 포함하는 키트

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
HIDEAKI BANDO ET AL.: "Predictive Biomarkers for Anti-EGFR Antibodies", GAN TO KAGAKU RYOHO, vol. 39, 2012, pages 1618 - 1625 *
KATSUYA TSUCHIHARA: "Development of clinical sequencing", JOURNAL OF CLINICAL AND EXPERIMENTAL MEDICINE, vol. 249, 7 June 2014 (2014-06-07), pages 1133 - 1138 *
LITVAK, ANYA M. ET AL.: "Clinical Characteristics and Course of 63 Patients with BRAF Mutant Lung Cancers", JOURNAL OF THORACIC ONCOLOGY, vol. 9, November 2014 (2014-11-01), pages 1669 - 1674 *
ROBERT ROSKOSKI JR ET AL.: "RAF protein- serine/threonine kinases: Structure and regulation", BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, vol. 399, 2010, pages 313 - 317 *
SMITH, CHRISTOPHER G. ET AL.: "Somatic Profiling of the Epidermal Growth Factor Receptor Pathway in Tumors from Patients with Advanced Colorectal Cancer Treated with Chemotherapy ± Cetuximab", CLINICAL CANCER RESEARCH, vol. 19, 2013, pages 4104 - 4113 *
YASUTOSHI KUBOKI ET AL.: "Kobetsuka Iryo no Aratana Tenkai [Daicho Gan no Kobetsuka Iryo no Shin-tenkai", GEKKAN SAIBO, vol. 46, no. 14, 20 December 2014 (2014-12-20), pages 687 - 691 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020514684A (ja) * 2016-12-20 2020-05-21 トリート4ライフ アーベー 質量分析によってbraf突然変異および野生型brafタンパク質を定める方法
CN110760575A (zh) * 2018-07-27 2020-02-07 中国人民解放军军事科学院军事医学研究院 一种用于检测微波辐射致脑损伤的生物标志物Braf蛋白
WO2020145734A1 (ko) * 2019-01-11 2020-07-16 주식회사 진캐스트 Braf 돌연변이 검출을 위한 dna 중합효소 및 이를 포함하는 키트

Also Published As

Publication number Publication date
JP6858563B2 (ja) 2021-04-14
JPWO2016104794A1 (ja) 2017-10-05

Similar Documents

Publication Publication Date Title
Belli et al. ESMO recommendations on the standard methods to detect RET fusions and mutations in daily practice and clinical research
Wheeler et al. Molecular features of cancers exhibiting exceptional responses to treatment
Davies et al. Identifying and targeting ROS1 gene fusions in non–small cell lung cancer
Tobin et al. The importance of molecular markers for diagnosis and selection of targeted treatments in patients with cancer
EP1751309B1 (en) Methods for prediction of clinical outcome to epidermal growth factor receptor inhibitors by cancer patients
EP2740742B1 (en) Fusion gene of kif5b gene and ret gene, and method for determining effectiveness of cancer treatment targeting fusion gene
US10421820B2 (en) Bruton's tyrosine kinase as anti-cancer drug target
CN105980576B (zh) 用于源自乳腺癌的骨转移癌的预后和治疗的方法
US20230366035A1 (en) Biomarker for her2-positive cancer and anti-her2 therapy and applications thereof
JP6667967B2 (ja) Met阻害剤に対する感受性予測用の新規なバイオマーカー及びその用途
TW200911988A (en) Methods for isolating long fragment RNA from fixed samples
CA2662591A1 (en) Method for evaluating patients for treatment with drugs targeting ret receptor tyrosine kinase
Projetti et al. Epidermal growth factor receptor expression and KRAS and BRAF mutations: study of 39 sinonasal intestinal-type adenocarcinomas
KR102338510B1 (ko) 항-her2 치료제에 대한 동반진단 마커 및 이의 용도
US20220316014A1 (en) Methods for diagnosing the effectiveness of anti-tumor treatment
JP6858563B2 (ja) Braf変異検出によるegfr阻害剤の効果予測
WO2005075681A1 (ja) 抗癌剤に対する癌細胞の感受性を検定する方法
Wu et al. Coexpression of receptor tyrosine kinase AXL and EGFR in human primary lung adenocarcinomas
Fakih KRAS mutation screening in colorectal cancer: from paper to practice
US20230250492A1 (en) Novel Cell Based Assay
Hummel et al. BRAF testing in metastatic colorectal carcinoma and novel, chemotherapy-free therapeutic options
Sakthianandeswaren et al. Predictive Biomarkers for monoclonal antibody therapies targeting EGFR (Cetuximab, Panitumumab) in the treatment of metastatic colorectal cancer
Yazdani et al. Progesterone arrested cell cycle progression through progesterone receptor isoform A in pancreatic neuroendocrine neoplasm
Rutkowska et al. Immunohistochemical detection of EGFRvIII in glioblastoma–Anti-EGFRvIII antibody validation for diagnostic and CAR-T purposes
Monzon et al. Markers of Sensitivity and Resistance to EGFR Inhibitors in Colorectal Cancer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15873362

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016566575

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15873362

Country of ref document: EP

Kind code of ref document: A1