WO2016104784A1 - Filter fiber, filter, and water treatment method - Google Patents
Filter fiber, filter, and water treatment method Download PDFInfo
- Publication number
- WO2016104784A1 WO2016104784A1 PCT/JP2015/086405 JP2015086405W WO2016104784A1 WO 2016104784 A1 WO2016104784 A1 WO 2016104784A1 JP 2015086405 W JP2015086405 W JP 2015086405W WO 2016104784 A1 WO2016104784 A1 WO 2016104784A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fiber
- filter
- width
- filter fiber
- groove
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D39/00—Filtering material for liquid or gaseous fluids
- B01D39/14—Other self-supporting filtering material ; Other filtering material
- B01D39/16—Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/42—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
- D04H1/4391—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece characterised by the shape of the fibres
- D04H1/43918—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece characterised by the shape of the fibres nonlinear fibres, e.g. crimped or coiled fibres
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/42—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
- D04H1/4391—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece characterised by the shape of the fibres
- D04H1/43912—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece characterised by the shape of the fibres fibres with noncircular cross-sections
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F8/00—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
- D01F8/04—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
- D01F8/10—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one other macromolecular compound obtained by reactions only involving carbon-to-carbon unsaturated bonds as constituent
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H3/00—Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
- D04H3/018—Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the shape
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M11/00—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
Definitions
- the present invention relates to a filter fiber having water wettability despite being formed from a hydrophobic polymer, a filter having the filter fiber, and a water treatment method for treating water using the filter.
- Patent Document 1 Japanese Patent Publication No. 2010-509099 discloses a high surface area fiber and an improved filter composite produced therefrom.
- thermoplastic polymers polypropylene, polyester, nylon, polyethylene, TPU, copolyester, liquid crystal polymer, etc.
- soluble outer sheath components polylactide, copolyester, polyvinyl alcohol or ethylene-vinyl alcohol copolymer, etc.
- a high-surface-area fiber having a plurality of protrusions is obtained by producing a composite fiber to be constructed and washing and removing the outer sheath component from the composite fiber.
- Patent Document 2 Japanese Patent Laid-Open No. 2003-129327 discloses a fiber having 20 or more grooves on the fiber surface.
- a method for producing a fiber for example, a composite fiber in which a polyethylene terephthalate component (X component) and a copolyester (Y component) are radially combined is spun, and the Y component is dissolved and removed from the composite fiber. Is described. It is described that the obtained fiber has a brown chestnut-like cross section (see FIG. 2 of Patent Document 2), has a high surface area, high contact resistance, and good squeaking feeling.
- X component polyethylene terephthalate component
- Y component copolyester
- Patent Document 3 Japanese Patent Application Laid-Open No. 2004-52161 also discloses a fiber having 20 or more grooves on the fiber surface.
- polyethylene terephthalate is used as component X
- heat-meltable component Y is used as component Y.
- Composite spinning is performed using modified polyvinyl alcohol (ethylene content: 8 mol%), and after spinning, the component Y is dissolved and removed to obtain a fiber with good squeakiness.
- Patent Document 4 Japanese Patent Laid-Open No. 2006-89851
- polyethylene terephthalate component X
- component Y ethylene-modified polyvinyl alcohol resin in which 8.7 mol% of ethylene is copolymerized are each divided (mandarin orange type).
- a composite spinning pack forming an ultra-thin fiber nonwoven fabric while performing composite spinning, and then dissolving and removing most of the modified polyvinyl alcohol resin from the composite long fiber with water and drying, and then modifying polyvinyl alcohol A part of the obtained ultrafine long fiber nonwoven fabric remains.
- Patent Document 1 does not describe a pleated shape protruding from a specific elliptical shape. Moreover, since there is a description that the outer sheath is removed by washing with a solvent, it is assumed that the outer sheath is completely removed by washing. That is, Patent Document 1 does not intend to make the surface of a high surface area fiber made of a hydrophobic polymer hydrophilic by a sheath component, and further, by making the surface hydrophilic, it is an effective filter medium as a water treatment filter. There is no suggestion that
- Patent Documents 2 to 3 are obtained by removing the polymer component Y to obtain a fiber having a groove structure on the surface, but the main use is for clothing having a feeling of creaking, The tip is sharp. Therefore, the contact portions between the single fibers are engaged to form an associated state, the contact resistance between the fibers is increased, and the liquid flow resistance is too high for use as a water treatment filter.
- these documents describe that when used as a battery separator, a hydrophilic treatment is separately performed. Therefore, in this document as well, the surface of the polymer component Y is to be hydrophilized with the polymer component X. There is no intention.
- Patent Document 4 discloses that the Y component is removed from the fiber in which the X component and the Y component are combined in a radial split type.
- this fiber since the center part of the fiber needs to be divided, there is no technical idea that a specific shape is given to the center part of the fiber after the Y component is removed. Therefore, there is no suggestion about a pleated structure extending from the fiber center to both sides.
- an ultra-thin fiber non-woven fabric is constructed from the fibers from which the Y component has been removed, and this non-woven fabric is used as a liquid filter.
- such a filter structure has a large pressure loss and traps trapped particles There is a problem that efficiency is not high.
- the present inventors have ensured the shape stability of the filter fiber layer when immersed in water by (i) forming the filter fiber from a hydrophobic polymer, and (ii) having a specific shape with respect to the fiber.
- a hydrophobic polymer for example, in water treatment etc.
- a first configuration of the present invention is a filter fiber having a plurality of pleated projections, which is composed of a hydrophobic polymer,
- a cross section of the fiber (a) an elliptical part having a substantially elliptical shape; (b) a plurality of protruding parts with rounded ends extending from the elliptical part on both sides; and (c) the protruding part and the protruding part. It is the fiber comprised from the groove part formed between parts.
- a hydrophilic polymer is attached to the surface of the fiber, and the fiber surface maintains water wettability when subjected to hot water treatment at 95 ° C.
- this fiber may have, for example, the following characteristics singly or in combination of two or more.
- the fiber has a fineness of 6 dtex or less.
- the elliptical part is composed of a long axis part and a short axis part, and the width of the short axis part is 3 to 30 ⁇ m.
- the protrusion has a width of 0.5 to 4 ⁇ m.
- the groove has a depth of 1 to 4 ⁇ m.
- the width of the major axis of the ellipse is the width (major axis) of the longest part in the straight line passing through the center of the ellipse, and the part of the short axis is the shortest in the straight line passing through the center of the ellipse. This means the width (minor axis).
- the ratio of the width of the major axis portion to the width of the minor axis portion is, for example, 1.1 to 6.0, preferably 1.1 to 4.0.
- the ratio of the depth of the groove to the width of the elliptical short axis is 0.02 to 3. Is preferred.
- the protrusion may have a width of 0.5 to 4 ⁇ m, and the depth of the groove is a ratio of the width of the protrusion (depth of the groove / width of the protrusion). , 1/1 to 4/1 may be used. Further, the groove portion may have a depth of 1 to 4 ⁇ m.
- the ratio of the width of the protrusion to the width of the groove may be 2/1 to 20/1.
- the hydrophobic polymer is preferably a polyolefin, polyamide or polyester, and the hydrophobic polymer is more preferably polypropylene.
- the hydrophilic polymer is preferably a heat-meltable and water-soluble ethylene-vinyl alcohol copolymer, and the ethylene-vinyl alcohol copolymer contains 0.1 to 20 mol% of ethylene monomer units.
- An ethylene-vinyl alcohol copolymer is preferable.
- the hydrophilic polymer adhering to the filter fiber surface is 0.5% by mass or less (vs. filter fiber).
- the hydrophilic polymer adheres to the fiber surface.
- various surface analysis methods such as IR analysis.
- the fiber is formed from a fiber formed by core-sheath type composite spinning using the hydrophobic polymer as a core layer and the hydrophilic polymer (such as a heat-meltable and water-soluble ethylene-vinyl alcohol copolymer) as a sheath layer.
- the hydrophilic polymer such as a heat-meltable and water-soluble ethylene-vinyl alcohol copolymer
- a fiber formed by removing the hydrophilic polymer is preferable.
- the fiber may have a short fiber or long fiber shape.
- the second configuration of the present invention is a filter including the filter fiber described above.
- the filter refers to an apparatus that can remove or remove unnecessary components such as fine particles in water or components to be recovered by filtration.
- the filter fiber is preferably a filter in which a dry or wet nonwoven fabric is formed.
- a dry-type nonwoven fabric the nonwoven fabric formed from the fiber in which a single yarn fineness exceeds 0.5 dtex, for example, a spun bond nonwoven fabric, formed by direct spinning may be included.
- the dry or wet nonwoven fabric is a filter filled in a cartridge.
- the cartridge refers to a filter formed in a predetermined shape such as a flat plate shape or a cylindrical shape and accommodated in a housing.
- the filter is suitably used for water treatment.
- the third configuration of the present invention is a water treatment method for filtering water containing an object to be removed using the filter.
- the filter fiber of the first configuration is formed of a hydrophobic polymer, and a large number of pleated projections having a specific shape protruding from a specific substantially elliptical columnar portion are arranged on the fiber surface. Therefore, it has rigidity and high surface area as a filter fiber.
- the hydrophilic polymer is attached to the fiber surface, the fiber surface has water wettability, and for example, the water wettability is maintained even if the hot water treatment at 95 ° C. is performed 15 times. It has characteristics. Therefore, it has a preferable characteristic especially as a filter fiber for water treatment.
- the filter according to the second configuration is loaded with the filter fiber composed of the hydrophobic polymer, the filter fiber is stable even when immersed in water. is there. Further, the filter fiber has a large number of pleated protrusions having a specific shape protruding from a specific substantially elliptical columnar part, so that the filter fiber has rigidity and a high surface area, and the filter fiber surface has water wettability. Therefore, it is suitably used as a water treatment filter.
- the particles to be filtered can be efficiently removed or collected, and water treatment with a long filtration life is possible. Can be.
- the first configuration of the present invention is a filter fiber made of a hydrophobic polymer and having a central portion and a plurality of pleated projections protruding from the central portion, and is specified in a fiber cross section perpendicular to the fiber axis. Further, a hydrophilic polymer is attached to the surface of the fiber, and when the fiber surface is subjected to hot water treatment at 95 ° C. 15 times, the wettability is maintained.
- the cross section of the fiber includes: (a) an elliptical portion having a substantially elliptical shape; (b) a plurality of rounded protrusions extending from the elliptical part on both sides; and (c) the protruding part and the protruding part.
- the elliptical part may be composed of a long axis part and a short axis part, and the width of the short axis part may be 3 to 30 ⁇ m, and / or (ii) the protrusion part may have a width of 0.5 to And / or (iii) the groove may have a depth of 1 to 4 ⁇ m.
- the elliptical part is composed of a long axis part and a short axis part, and the width of the short axis part is 3 to 30 ⁇ m.
- the filter fiber may have a fineness of 6 dtex or less, and preferably has a fineness of more than 0.5 dtex and 6 dtex or less. Such a filter fiber can be manufactured by a method described later.
- the filter fiber of the present invention is formed by extruding a hydrophobic polymer as a core part and extruding a hydrophilic polymer as a sheath part to form a core-sheath type composite spun fiber, and after forming the composite fiber, the hydrophilic polymer in the sheath part It can be obtained by dissolving and removing the hydrophilic polymer so that at least a part of the polymer remains. More specifically, when a core-sheath type composite spun fiber is formed, the melted hydrophobicity from a nozzle capable of forming a composite fiber composed of a core part having a predetermined shape and a sheath part surrounding the core part. A core-sheath type composite spun fiber is formed by extruding a polymer for core formation and a melted hydrophilic polymer for sheath formation.
- the core portion having a predetermined shape can be formed by using a composite spinning nozzle in which nozzle parts are adjusted so as to form an elliptical portion having a predetermined shape and a projection portion having a predetermined shape in the fiber cross section.
- a nozzle component can be appropriately selected so as to have a shape corresponding to the cross-sectional shape of the core portion.
- the spinning temperature is not particularly limited as long as the polymers forming the core and the sheath can each be maintained in a molten state.
- the hydrophilic polymer in the sheath part is dissolved and removed within a predetermined range, so that (a) an elliptical part having a substantially elliptical shape in the fiber cross section, and (b) the above-mentioned It is composed of a plurality of protrusions with rounded tips extending from the ellipse on both sides, and (c) a groove formed between the protrusions and the protrusions.
- the sheath may be removed after the core-sheath composite spun fiber is once formed into a predetermined shape such as a nonwoven fabric.
- the hydrophilic polymer in the sheath is removed using hot water at a predetermined temperature in accordance with the solubility of the hydrophilic polymer, but not all of the hydrophilic polymer is removed, and at least a part of the hydrophilic polymer is removed. Polymer remains in the filter fibers.
- the temperature of hot water may be, for example, 70 to 120 ° C., and preferably about 80 to 110 ° C. Since the composite fiber has an ellipse at the core, it has high rigidity and can be treated with hot water without gradually increasing the water temperature (that is, directly combined with hot water having a predetermined temperature). Fiber).
- the removal of the hydrophilic polymer may be performed by leaving the conjugate fiber in hot water, or in order not to remove all the hydrophilic polymer in order to shorten the time required for the removal process, You may carry out by giving a physical irritation
- stimulation for example, stirring process etc.
- a pleated projection is formed in the core portion. Therefore, even when the removal treatment is performed in a state where physical stimulation is applied, the pleated portion is used. It is possible to leave a hydrophilic polymer.
- the core-sheath type composite spun fiber obtained after the composite spinning is composed of a core part composed of a hydrophobic polymer and a sheath part composed of a hydrophilic polymer, and the sheath part surrounds the core part.
- the core portion has substantially the same cross-sectional shape as the filter fiber.
- the core of the composite spun fiber shown in FIG. 1 has substantially the same cross-sectional shape as the filter fiber shown in FIG.
- the composite ratio of the hydrophobic polymer and the hydrophilic polymer can be appropriately set as long as the composite spinning is possible.
- the hydrophobic polymer / hydrophilic property is used from the viewpoint of achieving both spinnability and sheath removability.
- Polymer (mass ratio) 90/10 to 30/70, preferably about 80/20 to 40/60.
- the hydrophobic polymer constituting the core part is not particularly limited as long as it is a hydrophobic polymer having fiber forming ability.
- Polyolefin polyethylene, polypropylene, etc.
- polyester polyethylene terephthalate, polybutylene terephthalate, etc.
- polyamide nylon 6, nylon 66, nylon 610, nylon 11, nylon 12, etc.
- polyurethane for example, thermoplastic polyurethane (TPU), etc.
- TPU thermoplastic polyurethane
- the hydrophilic polymer constituting the sheath portion is not particularly limited as long as it is a hydrophilic polymer having fiber forming ability, but is preferably an ethylene-vinyl alcohol copolymer (ethylene copolymer ratio: 0.1 to 40). Mol%), hydroxyl group-containing polymers such as polyvinyl alcohol and polyhydroxybutyrate.
- the hydrophilic polymer is preferably excellent in melt spinnability together with the hydrophobic polymer, and also excellent in removability from the composite fiber after spinning (particularly in hot water treatment).
- an ethylene-vinyl alcohol copolymer having an ethylene copolymerization ratio of 0.1 to 20 mol%, preferably 3 to 15 mol% achieves both melt spinnability and removability with hot water. Therefore, it is particularly preferably used as the hydrophilic polymer in the present invention.
- a preferred ethylene-vinyl alcohol copolymer may have a saponification degree of 88 to 99, preferably 90 to 98, for example.
- the viscosity average degree of polymerization may be, for example, 300 to 2000, preferably 400 to 1700.
- the saponification degree and the viscosity average polymerization degree can be appropriately set by those skilled in the art according to the type of hydrophobic polymer constituting the core, the fineness required of the composite fiber, and the like.
- the core / sheath portion is polyolefin / ethylene-vinyl alcohol copolymer, polyester / ethylene-vinyl alcohol copolymer, polyamide / ethylene-vinyl alcohol copolymer, polyurethane / ethylene-vinyl alcohol copolymer. And so on.
- a fiber having a fineness of 6 dtex or less preferably a fiber having a fineness of more than 0.5 dtex and 6 dtex or less by removing the sheath as described above, for example, a core-sheath type composite
- the fineness of the spun fiber may be, for example, 15 dtex or less, preferably 0.7 to 15 dtex, and more preferably 0.7 to 10 dtex.
- Example 1 a fiber having a fineness of 3.3 dtex of a core-sheath type composite spun fiber (core part: 60% by mass of polypropylene; sheath part: 40% by mass of ethylene-vinyl alcohol copolymer) As a result, a filter fiber having a fineness of 2.2 dtex was obtained.
- the fiber surface area (BET) in this case was 1.94 m 2 / g. Further, in the result of analyzing the fiber surface after removal of the sheath portion by XPS analysis, the hydrophilic polymer remains because oxygen can be confirmed on the fiber surface.
- the filter fiber of the present invention is used as a filter fiber for water treatment in particular, the fiber is formed from a hydrophobic polymer, but the fiber surface needs to have water wettability. For this reason, after removing the hydrophilic polymer from the core-sheath type composite spun fiber having the hydrophobic polymer as the core and the hydrophilic polymer as the sheath, a small amount of the hydrophilic polymer remains on and adheres to the fiber surface. The fiber surface maintains water wettability (water absorption) after being subjected to hot water treatment at 95 ° C. 15 times.
- the adhesion amount of the hydrophilic polymer 99% by mass or more and less than 100% by mass of the hydrophilic polymer may be removed from the core-sheath composite fiber.
- the hydrophilic polymer may be attached to the fiber in a minute amount. It is preferable that it exceeds 0.5 mass% and exceeds 0.5 mass%. If the adhesion amount is too large, the hydrophilic polymer tends to fall off during use as a filter. The remaining trace amount of hydrophilic polymer retains the wettability of the filter fiber over a long period of time.
- the trace amount may be an amount in which the hydrophilic polymer remains to the extent that the water wettability of the filter fiber is maintained.
- the remaining of the hydrophilic polymer (for example, ethylene-vinyl alcohol copolymer) is considered as follows. A part of radicals at the time of polymer production (polymerization) is trapped in the polymer, and at the time of heat melting for fiber formation, a polymer in which the trapped radicals are combined to form a large molecule (including crosslinking) is formed, A small amount of this polymer having a large molecular weight is contained in the hydrophilic polymer layer of the fiber, and it remains on the fiber surface without being removed when the hydrophilic polymer is removed.
- ethylene-vinyl alcohol copolymer for example, ethylene-vinyl alcohol copolymer
- the hydrophilic polymer may be subjected to repeated hot water treatment. It is considered that a very small amount is adhered without being completely removed, and the water wettability of the fiber surface is maintained by this adhesion.
- a filter fiber obtained from a core-sheath composite spun fiber formed with a hydrophilic polymer for example, an ethylene-vinyl alcohol copolymer having an ethylene copolymerization ratio of 0.1 to 20 mol% as a sheath is made of hot water Since the water wettability is maintained even when the treatment is repeated 15 times or more, it is suitably used as a filter material for water treatment.
- a hydrophilic polymer for example, an ethylene-vinyl alcohol copolymer having an ethylene copolymerization ratio of 0.1 to 20 mol
- a hydrophilic polymer is attached to the surface of the filter fiber, and the fiber surface is subjected to a hot water treatment at 95 ° C. for 30 minutes at a bath ratio of 1:20 with respect to the fiber amount. It is necessary that the wettability is maintained even when the drying treatment at 60 ° C. for 10 minutes is set as one set and this treatment is carried out 15 times. If water wettability cannot be maintained after less than 15 times, the filter fiber may lose water wettability during use, and may not function as a filter fiber over a long period of time.
- the single fiber fineness of the filter fiber may be 6 dtex or less, for example, more than 0.5 dtex and 6 dtex or less, and preferably 1 dtex to 4 dtex.
- a filter layer formed from fibers with too small fineness is disadvantageous in terms of strength, and is not suitable as a filter fiber because the pressure loss increases.
- the fineness is too large, the filter layer becomes coarse and it becomes difficult to filter fine particles, which makes it unsuitable as a filter fiber.
- the surface area (BET) of the filter fiber is, for example, 0.8 to 4.0 m 2 / g from the viewpoint of imparting wettability by adhering the hydrophilic polymer to the fiber surface made of the hydrophobic polymer. It may be 1.2 to 3.0 m 2 / g.
- the filter fiber has, in cross-sectional shape, (a) an elliptical part having a substantially elliptical shape, (b) a plurality of protruding parts with rounded ends extending from the elliptical part on both sides, and (c) the protruding part. And a groove formed between the protrusions.
- the elliptical part is preferably a solid-filled elliptical part from the viewpoint of rigidity.
- the width of the short axis part of the ellipse may be in the range of 3 ⁇ m to 30 ⁇ m, and preferably in the range of 4.0 ⁇ m to 20 ⁇ m.
- the filter fibers have a flat shape, so that the density of the filter layer formed by laminating the filter fibers becomes too high, which tends to be unsuitable in terms of pressure loss. Moreover, since a fiber cross section will approximate circular when the width becomes too large, it becomes difficult to form a large number of protrusions.
- the ratio of the long axis portion to the short axis portion may be, for example, in the range of 1.1 to 5.0, preferably in the range of 1.1 to 4.0, more preferably 1 It may be in the range of 0.5 to 4.0, more preferably in the range of 2.1 to 4.0. If the ratio is too large, the fiber shape becomes flat, which may cause the above-mentioned problems. If the ratio is too small, the fiber approaches a circle and it is difficult to form many protrusions. .
- the plurality of protrusions may protrude adjacent to each other across the groove from the ellipse, and both sides from the ellipse (upper and lower sides with the major axis of the ellipse being axisymmetric). On both sides), preferably on the entire circumference of the ellipse.
- the trapping property by the groove is effectively utilized by utilizing the gentle curvature of the substantially ellipse. It can be effectively used to achieve both improvement in strength and strength of the protrusion.
- the width of the protrusion may be, for example, in the range of 0.5 to 4 ⁇ m, and preferably in the range of 1 to 3 ⁇ m. If the width is too narrow, the strength of the protrusion becomes too weak and the protrusion is easily chipped, which is not suitable. On the other hand, if the width is too large, it is difficult to arrange many protrusions. It is.
- the number of protrusions per filter fiber is, for example, 5 to 50, preferably 10 to 40, more preferably 20 to 35. If the number of protrusions is too small, the surface area of the fiber surface increases. If the effect is not sufficient and the number of protrusions is too large, the width of one protrusion is narrowed, and the strength of the protrusion tends to be insufficient.
- the tip of the protruding portion protruding from the elliptical portion needs to be rounded (see, for example, FIG. 1).
- the tip of the protrusion is not rounded but is tapered toward the tip (see FIGS. 2 and 4 of Patent Document 3), the tip tends to be damaged, which is not preferable as a filter fiber.
- the depth of the groove is, for example, in the range of 1 to 4 ⁇ m, preferably in the range of 1.5 to 3.6 ⁇ m, and more preferably in the range of 2 to 3.2 ⁇ m. It is within the range. If the groove is too shallow, the filter fiber particles may not be sufficiently captured. By increasing the depth of the groove portion, the surface area of the filter fiber according to the present invention is increased and the effect of imparting water wettability is increased. On the other hand, even if the groove portion is too deep, particles contained in the treated water It does not contribute to the capture property.
- the width of the groove is, for example, 0.1 ⁇ m to 2.0 ⁇ m, more preferably 0.1 to 1.0 ⁇ m, still more preferably 0.1 to 0.5 ⁇ m, and particularly preferably 0.1 to 0.18 ⁇ m. It is preferable from the viewpoint of particle trapping properties.
- the ratio of the width of the protruding portion to the width of the groove portion is preferably 2 / The range may be from 1 to 20/1, more preferably from 5/1 to 15/1.
- the ratio of the groove depth to the groove width is preferably 1/2 to 40/1, more preferably 1/1 to 20/1.
- the depth of the groove is, for example, the same as the width of the protrusion, and less than 4 times, and preferably 1.2 times to 3.5 times the width of the protrusion. It is preferable in terms of balance with the strength of the protruding portion.
- the bottom of the groove between the protrusions is rounded.
- the adhesiveness to the groove part of a hydrophilic polymer can be improved.
- the ratio of the depth of the groove and the width of the elliptical short axis (depth of the groove / width of the elliptical short axis) May be about 0.02 to 3, more preferably about 0.1 to 2.5, and still more preferably about 0.5 to 1.5.
- the filter fiber may be directly used as various shapes, for example, a short fiber (cut fiber) or a long fiber (filament), as long as it can be used for a filter device. May be used by forming it into a fabric shape, for example, a nonwoven fabric (wet, dry, spunbonded, etc., directly-coupled type).
- a nonwoven fabric wet, dry, spunbonded, etc., directly-coupled type.
- the filter fiber is preferably used in the form of a nonwoven fabric, and a spunbonded nonwoven fabric is particularly preferred.
- the nonwoven fabric may be subjected to post-processing such as embossing treatment as necessary.
- the basis weight of the filter fiber nonwoven fabric is, for example, preferably 20 to 300 g / m 2 , preferably 30 to 200 g / m 2 , and more preferably 40 to 100 g / m 2 . If the basis weight of the nonwoven fabric is too small, the strength will be too low and it will break during processing during filter molding. Moreover, when the fabric weight of a nonwoven fabric is too large, the tension
- the basis weight of the core-sheath type composite spun fiber nonwoven fabric before removing the sheath component is, for example, 30 to 500 g / m 2 , preferably 50 to 350 g / m 2 , more preferably 60 to 200 g / m 2. Also good.
- the filter cartridge used in the present invention may be any of known filter cartridges, for example, a thread wound cartridge in which filter fibers are wound around a core material, a filter in which a dry or wet nonwoven fabric composed of filter fibers is filled in the cartridge It may be.
- a flat plate cartridge in which a plurality of flat filter units formed by arranging two rectangular filter media facing each other, a pleated cartridge having a structure in which filter media are folded into a pleat shape, and the like are illustrated. can do.
- a filter medium mounted on a pleated cartridge filter is folded by pleating, and the folded filter medium is wound around a core body, inserted into a cylindrical container, and used for water filtration.
- the filter fiber of the present invention can be suitably used as various filter materials that require hydrophilicity.
- the filter fiber of the present invention can be suitably used as a filter material for water treatment, and specifically, water filtration that removes or collects the foreign matter from the water in which the foreign matter is mixed (for example, It can be suitably used as a water treatment filter in water and circulation filtration of pools and hot springs, and water filtration in seawater desalination plants.
- FIG. 3 shows a state after the water is filtered using the filter fiber according to the present invention. It can be seen that the substance to be filtered in water is caught by the groove formed between the protrusions of the filter fiber of the present invention.
- this invention may include the following embodiments as filter fiber.
- each characteristic described in the following embodiments may conform to each characteristic described above.
- the fibers have a fineness of 6 dtex or less;
- the ratio of the width of the major axis portion to the width of the minor axis portion is 1.1 to 6.0,
- a filter fiber made of a hydrophobic polymer and having a plurality of pleated projections, wherein the cross section of the fiber is (a) an elliptical part having a substantially elliptical shape, and (b) extending from the elliptical part to both sides.
- the fiber has a groove depth of 1 to 4 ⁇ m, and a ratio of the groove depth to the width of the elliptical short axis portion (depth of the groove portion / width of the elliptical short axis portion) is 0.02 to 3 Yes,
- a filter fiber having a ratio of the width of the protrusion to the width of the groove (width of the protrusion / width of the groove) of 2/1 to 20/1.
- a ratio of a width of the major axis portion to a width of the minor axis portion is 1.1 to 6.0.
- any one of the aspects 1 to 5 wherein the ratio of the depth of the groove portion to the width of the elliptical short axis portion (depth of the groove portion / width of the elliptical short axis portion) is 1/10 to 4/1.
- [Aspect 7] 7 The filter fiber according to any one of aspects 1 to 6, wherein in the filter fiber, the protrusion has a width of 0.5 to 4 ⁇ m, and the groove has a depth of 1 to 4 ⁇ m.
- the fiber is formed by removing the hydrophilic polymer from a fiber formed by core-sheath type composite spinning using the hydrophobic polymer as a core layer and the hydrophilic polymer as a sheath layer.
- BET method Evaluation of specific surface area of fiber (BET method)> It evaluated using the flow method BET 1-point method specific surface area measuring apparatus (Monosorb made from Quantachrome). In the pretreatment attached to the apparatus, deaeration was performed at room temperature for 30 minutes in an N 2 gas atmosphere. In the measurement, a mixed gas (N 2 30%, He 70%) was allowed to flow through the U-shaped cell containing the sample, the sample chamber was cooled to liquid nitrogen temperature (77K), and only the N 2 gas was adsorbed on the surface of the sample.
- N 2 30%, He 70% a mixed gas
- the cross section of the filter fiber was photographed with a scanning electron microscope (magnification: 5000 times), and the printed image was used to determine the width of the minor axis of the ellipse, the ratio of the width of the major axis to the minor axis, and the protrusion The width of the part and the depth of the groove part were measured.
- the width of the protrusions for the ten protrusions randomly selected from the image, the width at the point between the tip part and the root part of the protrusion part is measured, and the average value is obtained. The width of the part.
- the protrusions were basically selected by excluding the protrusions protruding from the end of the major axis, and the protrusions were selected from the protrusions protruding from within 80% of the major axis width around the minor axis.
- tip part of a protrusion part and a root part was measured about ten randomly selected protrusion parts, the average value was calculated
- the width of the groove from the image, for 10 randomly selected grooves, the width at the point between the tip and the root of the groove is measured, and the average value is obtained. did.
- the ellipse part it is a part excluding the protruding part in the fiber cross section, and in the straight line passing through the center of the ellipse from the printed image, the longest part is the long axis part, and in the straight line passing through the center of the ellipse
- the portion having the shortest width was defined as the short axis portion, and the major axis that was the width of the major axis portion and the minor axis that was the width of the minor axis portion were each calculated from the average value of ten measurement results.
- the center of the circumscribed circle of the portion excluding the protruding portion in the fiber cross section is the center of the ellipse.
- the shortest portion in the straight line passing through the center of the circumscribed circle is the short axis portion, and the short axis portion On the straight line passing through the center, the longest portion was defined as the longest width portion.
- PP polypropylene
- EXC ethylene copolymerization ratio
- the fineness of the core-sheath type composite spun fiber was 3.3 dtex, and the basis weight of the fiber accumulation sheet was 120 g / m 2 .
- the nonwoven fabric was immersed in hot water at 95 ° C. for 30 minutes, and the ethylene-vinyl alcohol copolymer was removed from the core-sheath composite spun fiber to obtain a filter fiber having a cross section shown in FIG. .2 dtex).
- the basis weight of the spunbonded nonwoven fabric formed by hot embossing the accumulated sheet after the hot water treatment was 72 g / m 2 .
- the fiber surface area (BET) was 1.94 m 2 / g.
- the fiber cross section was substantially oval at the center, and the protrusion protruded from the center, and the tip of each of the protrusions was rounded.
- the width of the short shaft portion is 4 ⁇ m
- the ratio of the width of the long shaft portion to the short shaft portion is 3.7
- the number of the protrusion portions is 30,
- the width of the protrusion portions is 1.5 ⁇ m
- the width of the groove portion is 0.
- the depth of the groove portion was 3 ⁇ m
- the ratio of the groove depth to the groove width (groove depth / groove width) was 20/1.
- the adhesion amount of the ethylene-vinyl alcohol copolymer from the composite spun fiber was 0.43% by mass (vs. the mass of the nonwoven fabric).
- the surface of the obtained spunbond nonwoven fabric was analyzed by XPS analysis, and the surface oxygen content was measured. The results are shown in FIG. As a result of analyzing the fiber surface after removal of the sheath by XPS analysis, oxygen can be confirmed on the fiber surface, so that a hydrophilic polymer remains. Water drops were dropped on the obtained spunbond nonwoven fabric sample, and the spread of the water drops was observed. The result is shown in FIG. 5A. Further, the nonwoven fabric sample is immersed in hot water at 95 ° C. for 30 minutes (bath ratio: 1:20), taken out after immersion, cooled and dried (60 ° C., 10 minutes), and then again in 95 ° C. hot water. This treatment was repeated 15 times to measure the droplet absorption rate, and the results are shown in FIG.
- a spunbonded nonwoven fabric (weight per unit area: 80 g / m 2 ) made of polypropylene fiber (single filament: 3.3 dtex) is mixed with an ethylene-vinyl alcohol copolymer (ethylene copolymerization ratio: 8.7 mol%) aqueous solution (polymer concentration: (0.4% by mass) to prepare a sample coated with 0.4% by mass (filter fiber mass) of ethylene-vinyl alcohol copolymer.
- Example 1 Since the ethylene-vinyl alcohol copolymer was present in a smaller amount than in Example 1, such a phenomenon was not observed. From the results shown in FIG. 6, in the filter fiber according to the present invention (Example 1), water absorption is immediately observed, whereas in the case of Comparative Example 1, as the number of hot water treatments increases, It takes time to absorb the water droplets, and it is shown that the ethylene-vinyl alcohol copolymer is being detached from the fiber surface as the number of hot water treatments is increased.
- Example 2 The filter fiber according to the present invention (after hydrothermal treatment and before nonwoven fabric formation) was evaluated using a micromer (latex particle) having a different particle diameter (manufactured by Micromod) as an evaluation dust and using the apparatus shown in FIG.
- the sample sample (4) was attached to the sample holder (3), and the test liquid prepared by adjusting the solid content concentration of the evaluation dust to 0.125 mg / L was passed through 2 L at a flow rate of 350 ml / min.
- the number of particles was evaluated by measuring the number of each particle diameter with a particle counter (manufactured by PARTICLE MEASURING SYSTEMS: MODEL LS-200).
- a particle counter manufactured by PARTICLE MEASURING SYSTEMS: MODEL LS-200
- the hollow fiber filter (2) is for removing dust contained in the filter cleaning water in the filter cleaning.
- the dust collection efficiency was evaluated according to the following procedure.
- Collection efficiency calculation Collection efficiency 100-([4]-[2]) ⁇ ([3]-[1]) x 100 After the step (c) and immediately before the end of the step (e), the measurement was performed with a pressure gauge installed in the apparatus shown in FIG.
- the dust trapping property was evaluated using evaluation dusts having different diameters for a 2 g column packed only with filter fibers (diameter: 17 ⁇ m, 2.2 dtex) according to the present invention. The results are shown in FIG.
- ⁇ Comparative Example 3> Polypropylene (PP) and ethylene-vinyl alcohol copolymer (manufactured by Kuraray Co., Ltd., ethylene copolymerization ratio: 8.7 mol%) (sometimes abbreviated as EXC) as separate fibers for comparison It is supplied to a machine and melted and discharged from a composite fiber forming nozzle having a pleat number of 32 at a ratio of PP / EXC 60/40 (mass ratio), and a core-sheath type composite spun fiber (core: A core-sheath composite spun fiber composed of polypropylene; sheath: ethylene-vinyl alcohol copolymer) was formed, and hydrothermal treatment was performed in the same manner as in Example 1 to obtain a filter fiber (fineness: 3.2 dtex).
- core A core-sheath composite spun fiber composed of polypropylene; sheath: ethylene-vinyl alcohol copolymer
- the fiber cross section was substantially oval at the center, and the protrusion protruded from the center, and the tip of each of the protrusions was rounded.
- the width of the short shaft portion is 1.5 ⁇ m
- the ratio of the width of the long shaft portion to the short shaft portion is 17.6
- the number of protrusions is 32
- the width of the protrusions is 1.3 ⁇ m
- the root of the protrusions The width of the part was 1.3 ⁇ m
- the depth of the groove part was 6 ⁇ m. Dust collecting property was evaluated in the same manner as in Example 2.
- ⁇ Comparative example 4> As a comparative fiber, a dust collecting property was evaluated in the same manner as described above for a polypropylene fiber having a circular cross section (diameter: 17.5 ⁇ m, 2.2 dtex).
- a core-sheath type composite spun fiber composed of a core-sheath type composite spun fiber (core part: polypropylene; sheath part: polylactic acid) is formed by discharging from a fiber forming nozzle and placed in 10% sodium hydroxide at 80 ° C.
- the polylactic acid component was removed by dipping to obtain filter fibers (fineness: 2.2 dtex). When the obtained fiber was subjected to hot water treatment at 95 ° C. 15 times, the wettability was not maintained.
- the obtained filter fiber cross section had the same shape as in Example 1, and the dust collecting property was evaluated in the same manner as in Example 2.
- the results obtained in Example 2 and Comparative Examples 2 to 5 are shown in Table 1.
- Example 2 has a pleated protrusion protruding from an elliptical columnar part having a predetermined shape, and also has water wettability derived from a hydrophilic polymer. In addition to exhibiting dust collection efficiency, it is possible to maintain the pressure at the time of passing a fluid at a low value. That is, in Example 2, not only the initial pressure is a low value of 15 Kpa, but also the post-evaluation pressure at the end of the filtration test can be maintained at a low pressure of 20 Kpa.
- Comparative Example 2 is advantageous in terms of trapping properties because it has a fineness of about 1/30 that of the filter fiber of Example 2.
- the initial pressure in the filtration test is an extremely high pressure of 55 Kpa.
- the pressure is further increased, and the post-evaluation pressure shows an extremely high value of 85 Kpa.
- Comparative Example 3 although it is derived from a hydrophilic polymer and has water wettability, the fiber does not have the predetermined shape defined in the present invention, and thus exhibits satisfactory characteristics in terms of collection.
- the initial pressure in the filtration test is 30 Kpa, which is twice as high as that in Example 2.
- the pressure is further increased, and the post-evaluation pressure is 45 Kpa, which is twice as high as that of the example.
- Comparative Example 4 the fineness is similar to that of the filter fiber of Example 2, but the cross-sectional shape is a round cross section and does not have water wettability, so the collection efficiency is extremely low at 0.1% or less. The value is low.
- Comparative Example 5 although the fibers have a predetermined shape defined in the present invention, the collection efficiency is inferior to that of Example 2 because it is derived from the hydrophilic polymer and does not have water wettability.
- the initial pressure in the filtration test is 25 Kpa, which is higher than that at the end of the filtration test of Example 2. At the end of the filtration test, the pressure was further increased, and the post-evaluation pressure was 30 Kpa, 1.5 times higher than Example 2.
- the filter fiber of the present invention is formed from a hydrophobic polymer, the surface has many pleated projections, a high surface area, and the surface has water wettability, so that the water treatment is particularly effective. Since it is useful as a filter fiber for industrial use, it has industrial applicability.
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Hydrology & Water Resources (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Organic Chemistry (AREA)
- Nonwoven Fabrics (AREA)
- Filtering Materials (AREA)
- Chemical Or Physical Treatment Of Fibers (AREA)
- Multicomponent Fibers (AREA)
- Filtration Of Liquid (AREA)
Abstract
Provided is a filter fiber which is formed from a hydrophobic polymer and has water wettability. The fiber is formed from a hydrophobic polymer and has multiple frill-like protrusions, wherein the cross section of the fiber is formed by (a) an oval part having an approximately oval shape, (b) multiple protrusions which extend on both sides from the oval part and each of which has a rounded tip and (c) grooves each of which is formed between adjacent two of the protrusions. A hydrophilic polymer is adhered onto the surface of the fiber, and water wettability of the surface of the fiber is maintained when a treatment with hot water is carried out at 95°C in 15 rounds.
Description
本願は、日本国で2014年12月26日に出願した特願2014-265447の優先権を主張するものであり、その全体を参照により本出願の一部をなすものとして引用する。
This application claims the priority of Japanese Patent Application No. 2014-265447 filed on December 26, 2014 in Japan, and is incorporated herein by reference in its entirety as a part of this application.
本発明は、疎水性ポリマーから形成されているにもかかわらず、水濡れ性を有するフィルター繊維、該フィルター繊維を具備するフィルターおよび該フィルターを用いて水を処理する水処理方法に関する。
The present invention relates to a filter fiber having water wettability despite being formed from a hydrophobic polymer, a filter having the filter fiber, and a water treatment method for treating water using the filter.
特許文献1(特表2010-509099号公報)には、高表面積繊維及びそれから製造される改良されたフィルター複合材について開示されている。この文献では、熱可塑性ポリマー(ポリプロピレン、ポリエステル、ナイロン、ポリエチレン、TPU、コポリエステル、液晶ポリマーなど)と溶解性の外鞘成分(ポリラクチド、コポリエステル、ポリビニルアルコールまたはエチレン-ビニルアルコールコポリマーなど)とから構成される複合繊維を作製し、この複合繊維から外鞘成分を洗浄除去することにより、複数の突起部を有する高表面積繊維を得ている。
Patent Document 1 (Japanese Patent Publication No. 2010-509099) discloses a high surface area fiber and an improved filter composite produced therefrom. In this document, from thermoplastic polymers (polypropylene, polyester, nylon, polyethylene, TPU, copolyester, liquid crystal polymer, etc.) and soluble outer sheath components (polylactide, copolyester, polyvinyl alcohol or ethylene-vinyl alcohol copolymer, etc.) A high-surface-area fiber having a plurality of protrusions is obtained by producing a composite fiber to be constructed and washing and removing the outer sheath component from the composite fiber.
特許文献2(特開2003-129327号公報)には、繊維表面に20個以上の溝を有する繊維が開示されている。この文献では、繊維の製造方法として、例えば、ポリエチレンテレフタレート成分(X成分)と共重合ポリエステル(Y成分)とが放射状に複合された複合繊維を紡糸し、複合繊維からY成分を溶解除去することが記載されている。得られた繊維は毬栗状(特許文献2の図2参照)の断面を形成して、高表面積を有しており接触抵抗が高い、キシミ感が良好な繊維であることが記載されている。
Patent Document 2 (Japanese Patent Laid-Open No. 2003-129327) discloses a fiber having 20 or more grooves on the fiber surface. In this document, as a method for producing a fiber, for example, a composite fiber in which a polyethylene terephthalate component (X component) and a copolyester (Y component) are radially combined is spun, and the Y component is dissolved and removed from the composite fiber. Is described. It is described that the obtained fiber has a brown chestnut-like cross section (see FIG. 2 of Patent Document 2), has a high surface area, high contact resistance, and good squeaking feeling.
特許文献3(特開2004-52161号公報)でも、繊維表面に20個以上の溝を有する繊維が開示されており、例えば、成分Xとして、ポリエチレンテレフタレートを用い、成分Yとして、熱溶融性の変性ポリビニルアルコール(エチレン含量:8モル%)を用いて、複合紡糸を行い、紡糸後、成分Yを溶解除去して形成された、キシミ感が良好な繊維を得ている。
Patent Document 3 (Japanese Patent Application Laid-Open No. 2004-52161) also discloses a fiber having 20 or more grooves on the fiber surface. For example, polyethylene terephthalate is used as component X, and heat-meltable component Y is used as component Y. Composite spinning is performed using modified polyvinyl alcohol (ethylene content: 8 mol%), and after spinning, the component Y is dissolved and removed to obtain a fiber with good squeakiness.
特許文献4(特開2006-89851号公報)では、ポリエチレンテレフタレート(X成分)とエチレンが8.7モル%共重合されたエチレン変性ポリビニルアルコール樹脂(Y成分)とをそれぞれ、分割型(みかん型)複合紡糸パックに導き、複合紡糸を行いながら、極細長繊維不織布を形成し、その後、複合長繊維から、上記の変性ポリビニルアルコール樹脂の大部分を水で溶解除去・乾燥して、変性ポリビニルアルコールの一部は残存する極細長繊維不織布を得ている。
In Patent Document 4 (Japanese Patent Laid-Open No. 2006-89851), polyethylene terephthalate (component X) and ethylene-modified polyvinyl alcohol resin (component Y) in which 8.7 mol% of ethylene is copolymerized are each divided (mandarin orange type). ) Leading to a composite spinning pack, forming an ultra-thin fiber nonwoven fabric while performing composite spinning, and then dissolving and removing most of the modified polyvinyl alcohol resin from the composite long fiber with water and drying, and then modifying polyvinyl alcohol A part of the obtained ultrafine long fiber nonwoven fabric remains.
特許文献1には、特定の楕円形状から突出するひだ状形状については記載されていない。また、外鞘が溶媒により洗浄除去されているとの記載があるため、外鞘は洗浄により完全に除去されていると推測される。すなわち、特許文献1には、疎水性ポリマーからなる高表面積繊維の表面を、鞘成分により親水化しようとする意図はなく、さらに、表面を親水化することにより、水処理フィルターとして効果的な濾材が得られるとの示唆はない。
Patent Document 1 does not describe a pleated shape protruding from a specific elliptical shape. Moreover, since there is a description that the outer sheath is removed by washing with a solvent, it is assumed that the outer sheath is completely removed by washing. That is, Patent Document 1 does not intend to make the surface of a high surface area fiber made of a hydrophobic polymer hydrophilic by a sheath component, and further, by making the surface hydrophilic, it is an effective filter medium as a water treatment filter. There is no suggestion that
特許文献2~3に開示されている繊維は、ポリマー成分Yを除去することにより、表面に溝構造を有する繊維を得ているが、主たる用途はキシミ感を有する衣料用途であり、ひだ部の先端が尖っている。そのため、単繊維間で接触した部分がかみ合い、会合状態を形成し、繊維間の接触抵抗が増えてしまい、水処理フィルターとして使用するには通液抵抗が高くなりすぎる。また、これらの文献には、電池用セパレータとして用いる場合は、別途親水化処理を行うことが記載されているため、この文献においても、ポリマー成分Yの表面をポリマー成分Xにより親水化しようとする意図はない。
The fibers disclosed in Patent Documents 2 to 3 are obtained by removing the polymer component Y to obtain a fiber having a groove structure on the surface, but the main use is for clothing having a feeling of creaking, The tip is sharp. Therefore, the contact portions between the single fibers are engaged to form an associated state, the contact resistance between the fibers is increased, and the liquid flow resistance is too high for use as a water treatment filter. In addition, these documents describe that when used as a battery separator, a hydrophilic treatment is separately performed. Therefore, in this document as well, the surface of the polymer component Y is to be hydrophilized with the polymer component X. There is no intention.
特許文献4には、X成分とY成分とが放射状の分割型に複合化された繊維からY成分が除去されることが開示されている。しかしながら、この繊維では、繊維の中心部が分割される必要があるため、Y成分の除去後において、繊維の中心部に対して特定の形状を付与して残すという技術思想は存在しない。したがって、繊維中心部から両側に延びるひだ状構造についても示唆はない。また、Y成分を除去した繊維から極細長繊維不織布を構成し、この不織布を液体用フィルターに用いるとの示唆があるが、このようなフィルター構造は、圧力損失が大きく、被捕捉粒子の捕集効率が高くないという問題がある。
Patent Document 4 discloses that the Y component is removed from the fiber in which the X component and the Y component are combined in a radial split type. However, in this fiber, since the center part of the fiber needs to be divided, there is no technical idea that a specific shape is given to the center part of the fiber after the Y component is removed. Therefore, there is no suggestion about a pleated structure extending from the fiber center to both sides. In addition, there is a suggestion that an ultra-thin fiber non-woven fabric is constructed from the fibers from which the Y component has been removed, and this non-woven fabric is used as a liquid filter. However, such a filter structure has a large pressure loss and traps trapped particles There is a problem that efficiency is not high.
本発明者らは、(i)疎水性ポリマーからフィルター繊維を形成することにより、水に浸漬された場合のフィルター繊維層の形態安定性を確保し、(ii)繊維に対して特定の形を付与するだけでなく、そのような繊維表面に特定の親水化を行うことにより、例えば、水処理などにおいて、除去すべき粒子の捕捉性を高めることができるとともに、繊維としての剛性を確保することが可能な高表面積繊維形態を有するフィルター繊維を開発することを解決すべき課題と設定した。
The present inventors have ensured the shape stability of the filter fiber layer when immersed in water by (i) forming the filter fiber from a hydrophobic polymer, and (ii) having a specific shape with respect to the fiber. In addition to imparting, by performing specific hydrophilization on such a fiber surface, for example, in water treatment etc., it is possible to enhance the trapping property of particles to be removed and to ensure the rigidity as a fiber Developing a filter fiber having a high surface area fiber form capable of being set as a problem to be solved.
本発明者らは、上記課題の解決をすべく鋭意検討の結果、本発明に到達した。
本発明の第1の構成は、疎水性ポリマーから構成された、複数のひだ状突起部を有するフィルター繊維であって、
前記繊維の断面が、(a)略楕円形状を有する楕円部と、(b)前記楕円部から両側に延びる、先端が丸みを帯びた複数の突起部と、(c)前記突起部と前記突起部の間に形成される溝部と、から構成される繊維である。前記繊維の表面には、親水性ポリマーが付着しており、前記繊維表面は、95℃の熱水処理を15回行った場合、水濡れ性が維持されている。この繊維は、他の特徴として、例えば、以下の特徴を、単独でまたは二種以上組み合わせて有していてもよい。
前記繊維は、6dtex以下の繊度を有している。
前記楕円部は長軸部と短軸部からなり、前記短軸部の幅が、3~30μmである。
前記突起部は、幅0.5~4μmを有している。
前記溝部は、深さ1~4μmを有している。
ここで、楕円部の長軸部の幅は、楕円の中心を通る直線において最も長くなる箇所の幅(長径)であり、短軸部の幅は、楕円の中心を通る直線において最も短くなる箇所の幅(短径)を意味している。 The inventors of the present invention have arrived at the present invention as a result of intensive studies to solve the above problems.
A first configuration of the present invention is a filter fiber having a plurality of pleated projections, which is composed of a hydrophobic polymer,
A cross section of the fiber (a) an elliptical part having a substantially elliptical shape; (b) a plurality of protruding parts with rounded ends extending from the elliptical part on both sides; and (c) the protruding part and the protruding part. It is the fiber comprised from the groove part formed between parts. A hydrophilic polymer is attached to the surface of the fiber, and the fiber surface maintains water wettability when subjected to hot water treatment at 95 ° C. 15 times. As other characteristics, this fiber may have, for example, the following characteristics singly or in combination of two or more.
The fiber has a fineness of 6 dtex or less.
The elliptical part is composed of a long axis part and a short axis part, and the width of the short axis part is 3 to 30 μm.
The protrusion has a width of 0.5 to 4 μm.
The groove has a depth of 1 to 4 μm.
Here, the width of the major axis of the ellipse is the width (major axis) of the longest part in the straight line passing through the center of the ellipse, and the part of the short axis is the shortest in the straight line passing through the center of the ellipse. This means the width (minor axis).
本発明の第1の構成は、疎水性ポリマーから構成された、複数のひだ状突起部を有するフィルター繊維であって、
前記繊維の断面が、(a)略楕円形状を有する楕円部と、(b)前記楕円部から両側に延びる、先端が丸みを帯びた複数の突起部と、(c)前記突起部と前記突起部の間に形成される溝部と、から構成される繊維である。前記繊維の表面には、親水性ポリマーが付着しており、前記繊維表面は、95℃の熱水処理を15回行った場合、水濡れ性が維持されている。この繊維は、他の特徴として、例えば、以下の特徴を、単独でまたは二種以上組み合わせて有していてもよい。
前記繊維は、6dtex以下の繊度を有している。
前記楕円部は長軸部と短軸部からなり、前記短軸部の幅が、3~30μmである。
前記突起部は、幅0.5~4μmを有している。
前記溝部は、深さ1~4μmを有している。
ここで、楕円部の長軸部の幅は、楕円の中心を通る直線において最も長くなる箇所の幅(長径)であり、短軸部の幅は、楕円の中心を通る直線において最も短くなる箇所の幅(短径)を意味している。 The inventors of the present invention have arrived at the present invention as a result of intensive studies to solve the above problems.
A first configuration of the present invention is a filter fiber having a plurality of pleated projections, which is composed of a hydrophobic polymer,
A cross section of the fiber (a) an elliptical part having a substantially elliptical shape; (b) a plurality of protruding parts with rounded ends extending from the elliptical part on both sides; and (c) the protruding part and the protruding part. It is the fiber comprised from the groove part formed between parts. A hydrophilic polymer is attached to the surface of the fiber, and the fiber surface maintains water wettability when subjected to hot water treatment at 95 ° C. 15 times. As other characteristics, this fiber may have, for example, the following characteristics singly or in combination of two or more.
The fiber has a fineness of 6 dtex or less.
The elliptical part is composed of a long axis part and a short axis part, and the width of the short axis part is 3 to 30 μm.
The protrusion has a width of 0.5 to 4 μm.
The groove has a depth of 1 to 4 μm.
Here, the width of the major axis of the ellipse is the width (major axis) of the longest part in the straight line passing through the center of the ellipse, and the part of the short axis is the shortest in the straight line passing through the center of the ellipse. This means the width (minor axis).
前記フィルター繊維において、前記長軸部の幅と前記短軸部の幅の比が、例えば1.1~6.0、好ましくは1.1~4.0であることが好ましい。また、繊維の剛性と捕捉性とを向上させる観点から、溝部の深さと楕円短軸部の幅との比(溝部の深さ/楕円短軸部の幅)が0.02~3であるのが好ましい。
In the filter fiber, it is preferable that the ratio of the width of the major axis portion to the width of the minor axis portion is, for example, 1.1 to 6.0, preferably 1.1 to 4.0. In addition, from the viewpoint of improving the rigidity and capturing property of the fiber, the ratio of the depth of the groove to the width of the elliptical short axis (the depth of the groove / the width of the elliptical short axis) is 0.02 to 3. Is preferred.
前記フィルター繊維において、前記突起部は、幅0.5~4μmを有していてもよく、前記溝部の深さは、突起部の幅との比(溝部の深さ/突起部の幅)が、1/1~4/1であってもよい。さらに、前記溝部は、深さ1~4μmを有していてもよい。
In the filter fiber, the protrusion may have a width of 0.5 to 4 μm, and the depth of the groove is a ratio of the width of the protrusion (depth of the groove / width of the protrusion). , 1/1 to 4/1 may be used. Further, the groove portion may have a depth of 1 to 4 μm.
前記フィルター繊維において、突起部の幅と前記の溝部の幅との比(突起部の幅/溝部の幅)が、2/1~20/1であってもよい。
In the filter fiber, the ratio of the width of the protrusion to the width of the groove (width of the protrusion / width of the groove) may be 2/1 to 20/1.
前記疎水性ポリマーがポリオレフィン、ポリアミドまたはポリエステルであることが好ましく、前記疎水性ポリマーがポリプロピレンであることがさらに好ましい。
The hydrophobic polymer is preferably a polyolefin, polyamide or polyester, and the hydrophobic polymer is more preferably polypropylene.
前記親水性ポリマーが、熱溶融性かつ水溶性のエチレン-ビニルアルコール共重合体であることが好ましく、前記エチレン-ビニルアルコール共重合体が、0.1~20モル%のエチレン単量体単位を含有するエチレン-ビニルアルコール共重合体であることが好ましい。
The hydrophilic polymer is preferably a heat-meltable and water-soluble ethylene-vinyl alcohol copolymer, and the ethylene-vinyl alcohol copolymer contains 0.1 to 20 mol% of ethylene monomer units. An ethylene-vinyl alcohol copolymer is preferable.
フィルター繊維表面に付着している前記親水性ポリマーの付着量が0.5質量%以下(対フィルター繊維)であることが好ましい。前記疎水性ポリマーがポリプロピレンであり、前記親水性ポリマーが熱溶融性かつ水溶性のエチレン-ビニルアルコール共重合体であるフィルター繊維において、繊維表面に親水性ポリマーが付着していることは、XPS分析やIR分析などの各種表面分析法により確認することができる。
It is preferable that the hydrophilic polymer adhering to the filter fiber surface is 0.5% by mass or less (vs. filter fiber). In the filter fiber in which the hydrophobic polymer is polypropylene and the hydrophilic polymer is a heat-meltable and water-soluble ethylene-vinyl alcohol copolymer, the hydrophilic polymer adheres to the fiber surface. And various surface analysis methods such as IR analysis.
前記繊維が、前記疎水性ポリマーを芯層、前記親水性ポリマー(熱溶融性かつ水溶性のエチレン-ビニルアルコール共重合体など)を鞘層とする芯鞘型複合紡糸により形成された繊維から前記親水性ポリマーを除去して形成された繊維であることが好ましい。
The fiber is formed from a fiber formed by core-sheath type composite spinning using the hydrophobic polymer as a core layer and the hydrophilic polymer (such as a heat-meltable and water-soluble ethylene-vinyl alcohol copolymer) as a sheath layer. A fiber formed by removing the hydrophilic polymer is preferable.
前記繊維が、短繊維または長繊維の形状を有していてもよい。
The fiber may have a short fiber or long fiber shape.
本発明第2の構成は、前記に記載のフィルター繊維を含むフィルターである。本発明において、フィルターとは、水中の微粒子等の不要成分または回収すべき成分を濾過により除去または取り出すことを可能にした装置をいう。
The second configuration of the present invention is a filter including the filter fiber described above. In the present invention, the filter refers to an apparatus that can remove or remove unnecessary components such as fine particles in water or components to be recovered by filtration.
前記のフィルターにおいて、前記フィルター繊維が乾式または湿式不織布を形成しているフィルターであることが好ましい。乾式不織布としては、紡糸直結して形成される、単糸繊度が0.5dtexを超える繊維から形成された不織布、例えばスパンボンド不織布を含んでいてもよい。しかし、圧力損失の点で不利となるため、メルトブローン法により形成される、単糸繊度が0.5dtex以下の極細繊維やそのような繊維で構成される不織布を含まないのが好ましい。
In the above filter, the filter fiber is preferably a filter in which a dry or wet nonwoven fabric is formed. As a dry-type nonwoven fabric, the nonwoven fabric formed from the fiber in which a single yarn fineness exceeds 0.5 dtex, for example, a spun bond nonwoven fabric, formed by direct spinning may be included. However, since it is disadvantageous in terms of pressure loss, it is preferable not to include an ultrafine fiber having a single yarn fineness of 0.5 dtex or less formed by a melt blown method or a nonwoven fabric composed of such a fiber.
前記乾式または湿式不織布がカートリッジに充填されたフィルターであることが好ましい。本発明において、カートリッジとは、フィルターを平板状または筒状などの所定形状に成形してハウジングに収容したものをいう。
It is preferable that the dry or wet nonwoven fabric is a filter filled in a cartridge. In the present invention, the cartridge refers to a filter formed in a predetermined shape such as a flat plate shape or a cylindrical shape and accommodated in a housing.
前記フィルターは、水処理に好適に用いられる。
The filter is suitably used for water treatment.
本発明第3の構成は、前記のフィルターを用いて被除去物を含む水をろ過する水の処理方法である。
The third configuration of the present invention is a water treatment method for filtering water containing an object to be removed using the filter.
なお、請求の範囲および/または明細書に開示された少なくとも2つの構成要素のどのような組み合わせも、本発明に含まれる。特に、請求の範囲に記載された請求項の2つ以上のどのような組み合わせも本発明に含まれる。
It should be noted that any combination of at least two components disclosed in the claims and / or the specification is included in the present invention. In particular, any combination of two or more of the claims recited in the claims is included in the present invention.
本発明第1の構成によれば、第1の構成のフィルター繊維は、疎水性ポリマーから形成され、特定の略楕円柱状部から突出する、特定形状のひだ状突起部が多数繊維表面に配置されることにより、フィルター繊維としての剛性と高表面積を有している。しかも、繊維表面に親水性ポリマーが付着しているため、繊維表面は水濡れ性を有しており、例えば、95℃の熱水処理を15回行っても水濡れ性が維持されているという特性を有している。そのため、特に水処理用のフィルター繊維として好ましい特性を有している。
According to the first configuration of the present invention, the filter fiber of the first configuration is formed of a hydrophobic polymer, and a large number of pleated projections having a specific shape protruding from a specific substantially elliptical columnar portion are arranged on the fiber surface. Therefore, it has rigidity and high surface area as a filter fiber. In addition, since the hydrophilic polymer is attached to the fiber surface, the fiber surface has water wettability, and for example, the water wettability is maintained even if the hot water treatment at 95 ° C. is performed 15 times. It has characteristics. Therefore, it has a preferable characteristic especially as a filter fiber for water treatment.
本発明第2の構成によれば、第2の構成に係るフィルターは、上記の疎水性ポリマーから構成されるフィルター繊維を装填しているため、前記フィルター繊維が水に浸漬されても安定性がある。また、フィルター繊維が、特定の略楕円柱状部から突出する多数の特定形状のひだ状突起部を有することにより、剛性を有するとともに高表面積であり、しかもフィルター繊維表面が水濡れ性を有しているため、水処理用フィルターとして好適に使用される。
According to the second configuration of the present invention, since the filter according to the second configuration is loaded with the filter fiber composed of the hydrophobic polymer, the filter fiber is stable even when immersed in water. is there. Further, the filter fiber has a large number of pleated protrusions having a specific shape protruding from a specific substantially elliptical columnar part, so that the filter fiber has rigidity and a high surface area, and the filter fiber surface has water wettability. Therefore, it is suitably used as a water treatment filter.
本発明第3の構成によれば、上記のフィルターを用いて、被濾過粒子を含む水を処理することにより、効率的に被濾過粒子を除去または回収し、しかも濾過寿命の長い水処理を可能にすることができる。
According to the third configuration of the present invention, by using the above filter to treat water containing the particles to be filtered, the particles to be filtered can be efficiently removed or collected, and water treatment with a long filtration life is possible. Can be.
この発明は、添付の図面を参考にした以下の好適な実施形態の説明からより明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきでない。この発明の範囲は添付の請求の範囲によって定まる。
本発明に係るフィルター繊維を製造するために用いられる複合繊維の一例を示す繊維断面図(走査型電子顕微鏡写真:倍率5000倍)である。
本発明に係るフィルター繊維の一例を示す繊維断面図(走査型電子顕微鏡写真:倍率5000倍)である。
本発明に係るフィルター繊維を用いて水ろ過を行った後の状態を示す側面図(走査型電子顕微鏡写真:倍率5000倍)である。
本発明に係るフィルター繊維不織布表面および比較対照繊維不織布の表面酸素量の測定結果を示すグラフである。
本発明に係るフィルター繊維不織布表面の水濡れ性を示す写真である。
比較対照繊維不織布の水濡れ性を示す写真である。
本発明に係るフィルター繊維不織布および比較対照繊維不織布について熱水処理回数と水滴吸収速度との関係を示すグラフである。
フィルター繊維の濾過性能を測定する濾過装置の概略図である。
フィルター繊維の濾過性能(ダスト捕集率)を示すグラフである。
The present invention will be more clearly understood from the following description of preferred embodiments with reference to the accompanying drawings. However, the embodiments and drawings are merely for illustration and description and should not be used to define the scope of the present invention. The scope of the invention is defined by the appended claims.
It is a fiber sectional view (scanning electron micrograph: magnification 5000 times) which shows an example of the composite fiber used in order to manufacture the filter fiber concerning the present invention. It is a fiber sectional view (scanning electron micrograph: magnification 5000 times) showing an example of the filter fiber concerning the present invention. It is a side view (scanning electron micrograph: magnification 5000 times) which shows the state after performing water filtration using the filter fiber concerning the present invention. It is a graph which shows the measurement result of the surface oxygen amount of the filter fiber nonwoven fabric which concerns on this invention, and a comparison fiber nonwoven fabric. It is a photograph which shows the water wettability of the filter fiber nonwoven fabric surface concerning this invention. It is a photograph which shows the water wettability of a comparative control nonwoven fabric. It is a graph which shows the relationship between the frequency | count of a hot-water process, and a water droplet absorption rate about the filter fiber nonwoven fabric and comparative control fiber nonwoven fabric which concern on this invention. It is the schematic of the filtration apparatus which measures the filtration performance of a filter fiber. It is a graph which shows the filtration performance (dust collection rate) of a filter fiber.
(フィルター繊維)
本発明の第一の構成は、疎水性ポリマーから構成された、中心部と前記中心部から突出する複数のひだ状突起部を有するフィルター繊維であって、繊維軸に直交する繊維断面において、特定の形状を有するとともに、前記繊維の表面には、親水性ポリマーが付着しており、前記繊維表面は、95℃の熱水処理を15回行った場合、水濡れ性が維持されている。前記繊維の断面は、(a)略楕円形状を有する楕円部と、(b)前記楕円部から両側に延びる、先端が丸みを帯びた複数の突起部と、(c)前記突起部と前記突起部の間に形成される溝部と、から構成され、
(i)前記楕円部は長軸部と短軸部からなり、前記短軸部の幅が、3~30μmであってもよく、および/または
(ii)前記突起部は、幅0.5~4μmを有していてもよく、および/または
(iii)前記溝部は、深さ1~4μmを有していてもよい。
特に、前記繊維の断面において、楕円部は長軸部と短軸部からなり、前記短軸部の幅が、3~30μmであるのが好ましい。
また、前記フィルター繊維は、6dtex以下の繊度を有していてもよく、好ましくは、0.5dtexを超えて、6dtex以下の繊度を有していてもよい。
このようなフィルター繊維は、後述する方法により製造することが可能である。 (Filter fiber)
The first configuration of the present invention is a filter fiber made of a hydrophobic polymer and having a central portion and a plurality of pleated projections protruding from the central portion, and is specified in a fiber cross section perpendicular to the fiber axis. Further, a hydrophilic polymer is attached to the surface of the fiber, and when the fiber surface is subjected to hot water treatment at 95 ° C. 15 times, the wettability is maintained. The cross section of the fiber includes: (a) an elliptical portion having a substantially elliptical shape; (b) a plurality of rounded protrusions extending from the elliptical part on both sides; and (c) the protruding part and the protruding part. A groove formed between the portions, and
(I) The elliptical part may be composed of a long axis part and a short axis part, and the width of the short axis part may be 3 to 30 μm, and / or (ii) the protrusion part may have a width of 0.5 to And / or (iii) the groove may have a depth of 1 to 4 μm.
In particular, in the cross section of the fiber, it is preferable that the elliptical part is composed of a long axis part and a short axis part, and the width of the short axis part is 3 to 30 μm.
The filter fiber may have a fineness of 6 dtex or less, and preferably has a fineness of more than 0.5 dtex and 6 dtex or less.
Such a filter fiber can be manufactured by a method described later.
本発明の第一の構成は、疎水性ポリマーから構成された、中心部と前記中心部から突出する複数のひだ状突起部を有するフィルター繊維であって、繊維軸に直交する繊維断面において、特定の形状を有するとともに、前記繊維の表面には、親水性ポリマーが付着しており、前記繊維表面は、95℃の熱水処理を15回行った場合、水濡れ性が維持されている。前記繊維の断面は、(a)略楕円形状を有する楕円部と、(b)前記楕円部から両側に延びる、先端が丸みを帯びた複数の突起部と、(c)前記突起部と前記突起部の間に形成される溝部と、から構成され、
(i)前記楕円部は長軸部と短軸部からなり、前記短軸部の幅が、3~30μmであってもよく、および/または
(ii)前記突起部は、幅0.5~4μmを有していてもよく、および/または
(iii)前記溝部は、深さ1~4μmを有していてもよい。
特に、前記繊維の断面において、楕円部は長軸部と短軸部からなり、前記短軸部の幅が、3~30μmであるのが好ましい。
また、前記フィルター繊維は、6dtex以下の繊度を有していてもよく、好ましくは、0.5dtexを超えて、6dtex以下の繊度を有していてもよい。
このようなフィルター繊維は、後述する方法により製造することが可能である。 (Filter fiber)
The first configuration of the present invention is a filter fiber made of a hydrophobic polymer and having a central portion and a plurality of pleated projections protruding from the central portion, and is specified in a fiber cross section perpendicular to the fiber axis. Further, a hydrophilic polymer is attached to the surface of the fiber, and when the fiber surface is subjected to hot water treatment at 95 ° C. 15 times, the wettability is maintained. The cross section of the fiber includes: (a) an elliptical portion having a substantially elliptical shape; (b) a plurality of rounded protrusions extending from the elliptical part on both sides; and (c) the protruding part and the protruding part. A groove formed between the portions, and
(I) The elliptical part may be composed of a long axis part and a short axis part, and the width of the short axis part may be 3 to 30 μm, and / or (ii) the protrusion part may have a width of 0.5 to And / or (iii) the groove may have a depth of 1 to 4 μm.
In particular, in the cross section of the fiber, it is preferable that the elliptical part is composed of a long axis part and a short axis part, and the width of the short axis part is 3 to 30 μm.
The filter fiber may have a fineness of 6 dtex or less, and preferably has a fineness of more than 0.5 dtex and 6 dtex or less.
Such a filter fiber can be manufactured by a method described later.
(フィルター繊維の製造方法)
本発明のフィルター繊維は、疎水性ポリマーを芯部形成用とし、親水性ポリマーを鞘部形成用として押し出して、芯鞘型複合紡糸繊維を形成し、複合繊維形成後、鞘部の親水性ポリマーの少なくとも一部を残すように親水性ポリマーを溶解除去することにより得ることができる。より詳細には、芯鞘型複合紡糸繊維を形成する場合、所定の形状を有する芯部と、前記芯部を取り囲む鞘部とからなる複合繊維を形成することのできるノズルから、溶融した疎水性ポリマーを芯部形成用として、溶融した親水性ポリマーを鞘部形成用として押し出して、芯鞘型複合紡糸繊維を形成する。 (Filter fiber manufacturing method)
The filter fiber of the present invention is formed by extruding a hydrophobic polymer as a core part and extruding a hydrophilic polymer as a sheath part to form a core-sheath type composite spun fiber, and after forming the composite fiber, the hydrophilic polymer in the sheath part It can be obtained by dissolving and removing the hydrophilic polymer so that at least a part of the polymer remains. More specifically, when a core-sheath type composite spun fiber is formed, the melted hydrophobicity from a nozzle capable of forming a composite fiber composed of a core part having a predetermined shape and a sheath part surrounding the core part. A core-sheath type composite spun fiber is formed by extruding a polymer for core formation and a melted hydrophilic polymer for sheath formation.
本発明のフィルター繊維は、疎水性ポリマーを芯部形成用とし、親水性ポリマーを鞘部形成用として押し出して、芯鞘型複合紡糸繊維を形成し、複合繊維形成後、鞘部の親水性ポリマーの少なくとも一部を残すように親水性ポリマーを溶解除去することにより得ることができる。より詳細には、芯鞘型複合紡糸繊維を形成する場合、所定の形状を有する芯部と、前記芯部を取り囲む鞘部とからなる複合繊維を形成することのできるノズルから、溶融した疎水性ポリマーを芯部形成用として、溶融した親水性ポリマーを鞘部形成用として押し出して、芯鞘型複合紡糸繊維を形成する。 (Filter fiber manufacturing method)
The filter fiber of the present invention is formed by extruding a hydrophobic polymer as a core part and extruding a hydrophilic polymer as a sheath part to form a core-sheath type composite spun fiber, and after forming the composite fiber, the hydrophilic polymer in the sheath part It can be obtained by dissolving and removing the hydrophilic polymer so that at least a part of the polymer remains. More specifically, when a core-sheath type composite spun fiber is formed, the melted hydrophobicity from a nozzle capable of forming a composite fiber composed of a core part having a predetermined shape and a sheath part surrounding the core part. A core-sheath type composite spun fiber is formed by extruding a polymer for core formation and a melted hydrophilic polymer for sheath formation.
所定の形状を有する芯部は、繊維断面において所定形状の楕円部と、所定形状の突起部を形成するようノズル部品を調整した複合紡糸ノズルを使うことにより形成することができる。このようなノズル部品は、芯部の断面形状と対応する形状となるよう、適宜選択することができる。
紡糸温度は、芯部および鞘部を形成するポリマーがそれぞれ溶融状態を維持できる範囲であれば特に限定されない。 The core portion having a predetermined shape can be formed by using a composite spinning nozzle in which nozzle parts are adjusted so as to form an elliptical portion having a predetermined shape and a projection portion having a predetermined shape in the fiber cross section. Such a nozzle component can be appropriately selected so as to have a shape corresponding to the cross-sectional shape of the core portion.
The spinning temperature is not particularly limited as long as the polymers forming the core and the sheath can each be maintained in a molten state.
紡糸温度は、芯部および鞘部を形成するポリマーがそれぞれ溶融状態を維持できる範囲であれば特に限定されない。 The core portion having a predetermined shape can be formed by using a composite spinning nozzle in which nozzle parts are adjusted so as to form an elliptical portion having a predetermined shape and a projection portion having a predetermined shape in the fiber cross section. Such a nozzle component can be appropriately selected so as to have a shape corresponding to the cross-sectional shape of the core portion.
The spinning temperature is not particularly limited as long as the polymers forming the core and the sheath can each be maintained in a molten state.
次いで、芯鞘型複合紡糸繊維形成後、鞘部の親水性ポリマーを、所定の範囲で溶解除去することにより、繊維断面においては、(a)略楕円形状を有する楕円部と、(b)前記楕円部から両側に延びる、先端が丸みを帯びた複数の突起部と、(c)前記突起部と前記突起部の間に形成される溝部と、から構成され、繊維軸方向においては、ひだ状に突起部と溝部が連続している部分を備えるフィルター繊維を得ることができる。なお、必要に応じて、鞘部の除去は、芯鞘型複合紡糸繊維を一旦不織布などの所定の形状に成形後に行ってもよい。
Next, after the core-sheath type composite spun fiber is formed, the hydrophilic polymer in the sheath part is dissolved and removed within a predetermined range, so that (a) an elliptical part having a substantially elliptical shape in the fiber cross section, and (b) the above-mentioned It is composed of a plurality of protrusions with rounded tips extending from the ellipse on both sides, and (c) a groove formed between the protrusions and the protrusions. Thus, it is possible to obtain a filter fiber having a portion in which the protrusion and the groove are continuous. If necessary, the sheath may be removed after the core-sheath composite spun fiber is once formed into a predetermined shape such as a nonwoven fabric.
鞘部の親水性ポリマーは、親水性ポリマーの溶解性に合わせて、所定の温度の熱水を用いて除去されるが、親水性ポリマーは全てが除去されるわけではなく、少なくとも一部の親水性ポリマーがフィルター繊維に残っている。例えば、熱水の温度は、例えば、70~120℃であってもよく、好ましくは80~110℃程度であってもよい。複合繊維は、芯部に楕円部を有しているため剛性が高く、徐々に水温を昇温しなくとも、熱水処理を行うこと(すなわち、既に所定の温度を有する熱水で、直接複合繊維を処理すること)が可能である。
The hydrophilic polymer in the sheath is removed using hot water at a predetermined temperature in accordance with the solubility of the hydrophilic polymer, but not all of the hydrophilic polymer is removed, and at least a part of the hydrophilic polymer is removed. Polymer remains in the filter fibers. For example, the temperature of hot water may be, for example, 70 to 120 ° C., and preferably about 80 to 110 ° C. Since the composite fiber has an ellipse at the core, it has high rigidity and can be treated with hot water without gradually increasing the water temperature (that is, directly combined with hot water having a predetermined temperature). Fiber).
また、親水性ポリマーの除去は、複合繊維を熱水中に静置して行ってもよいし、または、除去工程に係る時間を短縮するために、すべての親水性ポリマーを除去しない程度において、複合繊維を熱水中で物理的な刺激を与えることなど(例えば、撹拌処理など)により行ってもよい。特に、本発明では、単なる極細繊維の場合とは異なって、芯部においてひだ状突起部が形成されているため、物理的刺激を与える状態で除去処理を行う場合でも、ひだ状部を利用して親水性ポリマーを残存させることが可能である。
In addition, the removal of the hydrophilic polymer may be performed by leaving the conjugate fiber in hot water, or in order not to remove all the hydrophilic polymer in order to shorten the time required for the removal process, You may carry out by giving a physical irritation | stimulation (for example, stirring process etc.) to a composite fiber in hot water. In particular, in the present invention, unlike the case of a mere ultrafine fiber, a pleated projection is formed in the core portion. Therefore, even when the removal treatment is performed in a state where physical stimulation is applied, the pleated portion is used. It is possible to leave a hydrophilic polymer.
(芯鞘型複合紡糸繊維)
複合紡糸後に得られる芯鞘型複合紡糸繊維は、疎水性ポリマーから構成される芯部と、親水性ポリマーから構成される鞘部で構成され、前記鞘部は前記芯部を取り囲んでいる。前記芯部は、フィルター繊維とほぼ同じ断面形状を有している。例えば、図1に示す複合紡糸繊維の芯部は、図2に示すフィルター繊維とほぼ同じ断面形状を有している。 (Core-sheath type composite spinning fiber)
The core-sheath type composite spun fiber obtained after the composite spinning is composed of a core part composed of a hydrophobic polymer and a sheath part composed of a hydrophilic polymer, and the sheath part surrounds the core part. The core portion has substantially the same cross-sectional shape as the filter fiber. For example, the core of the composite spun fiber shown in FIG. 1 has substantially the same cross-sectional shape as the filter fiber shown in FIG.
複合紡糸後に得られる芯鞘型複合紡糸繊維は、疎水性ポリマーから構成される芯部と、親水性ポリマーから構成される鞘部で構成され、前記鞘部は前記芯部を取り囲んでいる。前記芯部は、フィルター繊維とほぼ同じ断面形状を有している。例えば、図1に示す複合紡糸繊維の芯部は、図2に示すフィルター繊維とほぼ同じ断面形状を有している。 (Core-sheath type composite spinning fiber)
The core-sheath type composite spun fiber obtained after the composite spinning is composed of a core part composed of a hydrophobic polymer and a sheath part composed of a hydrophilic polymer, and the sheath part surrounds the core part. The core portion has substantially the same cross-sectional shape as the filter fiber. For example, the core of the composite spun fiber shown in FIG. 1 has substantially the same cross-sectional shape as the filter fiber shown in FIG.
複合紡糸できる限り、疎水性ポリマーと親水性ポリマーとの複合比率は適宜設定することが可能であるが、好ましくは、紡糸性と鞘部の除去性を両立させる観点から、疎水性ポリマー/親水性ポリマー(質量比)=90/10~30/70、好ましくは、80/20~40/60程度であってもよい。
The composite ratio of the hydrophobic polymer and the hydrophilic polymer can be appropriately set as long as the composite spinning is possible. However, preferably, the hydrophobic polymer / hydrophilic property is used from the viewpoint of achieving both spinnability and sheath removability. Polymer (mass ratio) = 90/10 to 30/70, preferably about 80/20 to 40/60.
前記の芯鞘型複合紡糸繊維において、芯部を構成する疎水性ポリマーとしては、繊維形成能を有する疎水性ポリマーであれば特に限定されないが、好ましくは、溶融紡糸可能な疎水性ポリマー、例えば、ポリオレフィン(ポリエチレン、ポリプロピレンなど)、ポリエステル(ポリエチレンテレフタレート、ポリブチレンテレフタレートなど)、ポリアミド(ナイロン6、ナイロン66、ナイロン610、ナイロン11、ナイロン12など)、ポリウレタン(例えば、熱可塑性ポリウレタン(TPU)など)などの熱可塑性疎水性ポリマーが挙げられる。疎水性ポリマーで形成できるため、得られるフィルター繊維は、良好な耐久性を有することができる。
In the core-sheath type composite spun fiber, the hydrophobic polymer constituting the core part is not particularly limited as long as it is a hydrophobic polymer having fiber forming ability. Polyolefin (polyethylene, polypropylene, etc.), polyester (polyethylene terephthalate, polybutylene terephthalate, etc.), polyamide (nylon 6, nylon 66, nylon 610, nylon 11, nylon 12, etc.), polyurethane (for example, thermoplastic polyurethane (TPU), etc.) And other thermoplastic hydrophobic polymers. Since it can be formed with a hydrophobic polymer, the resulting filter fiber can have good durability.
また、鞘部を構成する親水性ポリマーとしては、繊維形成能を有する親水性ポリマーであれば特に限定されないが、好ましくは、エチレン-ビニルアルコール共重合体(エチレン共重合比率:0.1~40モル%)、ポリビニルアルコール、ポリヒドロキシブチレートなどの水酸基含有ポリマーなどが挙げられる。上記親水性ポリマーは、疎水性ポリマーとともに溶融紡糸性に優れるとともに、紡糸後において複合繊維からの除去性(特に熱水処理における除去性)に優れるものであることが好ましい。かかる観点から、エチレン共重合比率が0.1~20モル%、好ましくは、3~15モル%のエチレン-ビニルアルコール共重合体が、溶融紡糸性および熱水による除去性の双方を両立する観点から、本発明における親水性ポリマーとして特に好ましく用いられる。好ましいエチレン-ビニルアルコール共重合体は、例えば、けん化度が88~99、好ましくは90~98であってもよい。また、粘度平均重合度が、例えば、300~2000、好ましくは400~1700であってもよい。けん化度および粘度平均重合度は、芯部を構成する疎水性ポリマーの種類、複合繊維に求められる繊度などに応じて、当業者が適宜設定することができる。
Further, the hydrophilic polymer constituting the sheath portion is not particularly limited as long as it is a hydrophilic polymer having fiber forming ability, but is preferably an ethylene-vinyl alcohol copolymer (ethylene copolymer ratio: 0.1 to 40). Mol%), hydroxyl group-containing polymers such as polyvinyl alcohol and polyhydroxybutyrate. The hydrophilic polymer is preferably excellent in melt spinnability together with the hydrophobic polymer, and also excellent in removability from the composite fiber after spinning (particularly in hot water treatment). From this viewpoint, an ethylene-vinyl alcohol copolymer having an ethylene copolymerization ratio of 0.1 to 20 mol%, preferably 3 to 15 mol%, achieves both melt spinnability and removability with hot water. Therefore, it is particularly preferably used as the hydrophilic polymer in the present invention. A preferred ethylene-vinyl alcohol copolymer may have a saponification degree of 88 to 99, preferably 90 to 98, for example. Further, the viscosity average degree of polymerization may be, for example, 300 to 2000, preferably 400 to 1700. The saponification degree and the viscosity average polymerization degree can be appropriately set by those skilled in the art according to the type of hydrophobic polymer constituting the core, the fineness required of the composite fiber, and the like.
鞘部の親水性ポリマーを除去させつつも、その一部を芯部の疎水性ポリマーに残存させてフィルター繊維に水濡れ性を付与する観点から、好ましい親水性ポリマーと疎水性ポリマーとの組み合わせとしては、例えば、芯部/鞘部が、ポリオレフィン/エチレン-ビニルアルコール共重合体、ポリエステル/エチレン-ビニルアルコール共重合体、ポリアミド/エチレン-ビニルアルコール共重合体、ポリウレタン/エチレン-ビニルアルコール共重合体などを挙げることができる。
From the viewpoint of imparting water wettability to the filter fiber by removing a portion of the hydrophilic polymer from the sheath while leaving a part of the polymer in the hydrophobic polymer of the core, as a preferred combination of hydrophilic polymer and hydrophobic polymer For example, the core / sheath portion is polyolefin / ethylene-vinyl alcohol copolymer, polyester / ethylene-vinyl alcohol copolymer, polyamide / ethylene-vinyl alcohol copolymer, polyurethane / ethylene-vinyl alcohol copolymer. And so on.
上記のように鞘部を除去することにより、例えば、6dtex以下の繊度を有する繊維、好ましくは0.5dtexを超えて、6dtex以下の繊度を有する繊維を得るためには、例えば、芯鞘型複合紡糸繊維の繊度は、例えば、15dtex以下であってもよく、好ましくは0.7~15dtexであってもよく、より好ましくは、0.7~10dtexであってもよい。
例えば、後述する実施例1では、芯鞘型複合紡糸繊維(芯部:ポリプロピレン60質量%;鞘部:エチレン-ビニルアルコール共重合体40質量%)の繊度が3.3dtexの繊維は、鞘部を除去することにより41質量%減量し、繊度2.2dtexのフィルター繊維が得られている。この場合の繊維表面積(BET)は、1.94m2/gであった。また、XPS分析により鞘部除去後の繊維表面を分析した結果では、繊維表面に酸素が確認出来ることから親水性ポリマーが残留している。 In order to obtain, for example, a fiber having a fineness of 6 dtex or less, preferably a fiber having a fineness of more than 0.5 dtex and 6 dtex or less by removing the sheath as described above, for example, a core-sheath type composite The fineness of the spun fiber may be, for example, 15 dtex or less, preferably 0.7 to 15 dtex, and more preferably 0.7 to 10 dtex.
For example, in Example 1, which will be described later, a fiber having a fineness of 3.3 dtex of a core-sheath type composite spun fiber (core part: 60% by mass of polypropylene; sheath part: 40% by mass of ethylene-vinyl alcohol copolymer) As a result, a filter fiber having a fineness of 2.2 dtex was obtained. The fiber surface area (BET) in this case was 1.94 m 2 / g. Further, in the result of analyzing the fiber surface after removal of the sheath portion by XPS analysis, the hydrophilic polymer remains because oxygen can be confirmed on the fiber surface.
例えば、後述する実施例1では、芯鞘型複合紡糸繊維(芯部:ポリプロピレン60質量%;鞘部:エチレン-ビニルアルコール共重合体40質量%)の繊度が3.3dtexの繊維は、鞘部を除去することにより41質量%減量し、繊度2.2dtexのフィルター繊維が得られている。この場合の繊維表面積(BET)は、1.94m2/gであった。また、XPS分析により鞘部除去後の繊維表面を分析した結果では、繊維表面に酸素が確認出来ることから親水性ポリマーが残留している。 In order to obtain, for example, a fiber having a fineness of 6 dtex or less, preferably a fiber having a fineness of more than 0.5 dtex and 6 dtex or less by removing the sheath as described above, for example, a core-sheath type composite The fineness of the spun fiber may be, for example, 15 dtex or less, preferably 0.7 to 15 dtex, and more preferably 0.7 to 10 dtex.
For example, in Example 1, which will be described later, a fiber having a fineness of 3.3 dtex of a core-sheath type composite spun fiber (core part: 60% by mass of polypropylene; sheath part: 40% by mass of ethylene-vinyl alcohol copolymer) As a result, a filter fiber having a fineness of 2.2 dtex was obtained. The fiber surface area (BET) in this case was 1.94 m 2 / g. Further, in the result of analyzing the fiber surface after removal of the sheath portion by XPS analysis, the hydrophilic polymer remains because oxygen can be confirmed on the fiber surface.
(フィルター繊維の水濡れ性)
本発明のフィルター繊維は、とくに水処理用のフィルター繊維として用いられるために、繊維は疎水性ポリマーから形成されるが、繊維表面は水濡れ性を有することが必要である。このため、疎水性ポリマーを芯部とし、親水性ポリマーを鞘部とする芯鞘型複合紡糸繊維から、親水性ポリマー除去後において、繊維表面に親水性ポリマーを微量残存・付着させることにより、前記繊維表面は、95℃の熱水処理を15回行った後において水濡れ性(吸水性)が維持されている。 (Filter fiber water wettability)
Since the filter fiber of the present invention is used as a filter fiber for water treatment in particular, the fiber is formed from a hydrophobic polymer, but the fiber surface needs to have water wettability. For this reason, after removing the hydrophilic polymer from the core-sheath type composite spun fiber having the hydrophobic polymer as the core and the hydrophilic polymer as the sheath, a small amount of the hydrophilic polymer remains on and adheres to the fiber surface. The fiber surface maintains water wettability (water absorption) after being subjected to hot water treatment at 95 ° C. 15 times.
本発明のフィルター繊維は、とくに水処理用のフィルター繊維として用いられるために、繊維は疎水性ポリマーから形成されるが、繊維表面は水濡れ性を有することが必要である。このため、疎水性ポリマーを芯部とし、親水性ポリマーを鞘部とする芯鞘型複合紡糸繊維から、親水性ポリマー除去後において、繊維表面に親水性ポリマーを微量残存・付着させることにより、前記繊維表面は、95℃の熱水処理を15回行った後において水濡れ性(吸水性)が維持されている。 (Filter fiber water wettability)
Since the filter fiber of the present invention is used as a filter fiber for water treatment in particular, the fiber is formed from a hydrophobic polymer, but the fiber surface needs to have water wettability. For this reason, after removing the hydrophilic polymer from the core-sheath type composite spun fiber having the hydrophobic polymer as the core and the hydrophilic polymer as the sheath, a small amount of the hydrophilic polymer remains on and adheres to the fiber surface. The fiber surface maintains water wettability (water absorption) after being subjected to hot water treatment at 95 ° C. 15 times.
親水性ポリマーの付着量については、芯鞘複合繊維から親水性ポリマーの99質量%以上、100質量%未満が除去されていてもよい。例えば、フィルター繊維において、親水性ポリマーは、繊維に対して微量で付着していればよく、例えば、親水性ポリマーの付着量は、フィルター繊維全体に対して、0質量%(例えば、0.001質量%)を超えて、0.5質量%以下であることが好ましい。付着量が大きすぎると、フィルターとして使用中に、親水性ポリマーが脱落する傾向にある。残存している微量の親水性ポリマーは、長期に渡ってフィルター繊維の水濡れ性を保持する。本発明において、微量とは、フィルター繊維の水濡れ性が維持される程度に親水性ポリマーが残存している量であればよい。
Regarding the adhesion amount of the hydrophilic polymer, 99% by mass or more and less than 100% by mass of the hydrophilic polymer may be removed from the core-sheath composite fiber. For example, in the filter fiber, the hydrophilic polymer may be attached to the fiber in a minute amount. It is preferable that it exceeds 0.5 mass% and exceeds 0.5 mass%. If the adhesion amount is too large, the hydrophilic polymer tends to fall off during use as a filter. The remaining trace amount of hydrophilic polymer retains the wettability of the filter fiber over a long period of time. In the present invention, the trace amount may be an amount in which the hydrophilic polymer remains to the extent that the water wettability of the filter fiber is maintained.
親水性ポリマー(たとえばエチレン-ビニルアルコール共重合体)の残存は次のように考えられる。ポリマー製造(重合)時のラジカルの一部がポリマー中にトラップされ、繊維形成のための熱溶融時に、トラップされたラジカル同士が結合して大分子(架橋を含む)化したポリマーが形成され、この大分子化したポリマーが微量、繊維の親水性ポリマー層中に含まれ、これが、親水性ポリマー除去時に除去されることなく、繊維表面に残存する。そして、フィルター繊維が、特定の形状のひだ状突起部を有しているため、このような大分子化したポリマーが、溝部の深部に付着する場合、親水性ポリマーは熱水処理を繰り返しても完全には除去されることなく微量付着し、この付着によって繊維表面の水濡れ性が維持されていると考えられる。親水性ポリマー(例えば、エチレン共重合比率が0.1~20モル%のエチレン-ビニルアルコール共重合体)を鞘部として形成された芯鞘型複合紡糸繊維から得られたフィルター繊維は、熱水処理を15回以上繰り返しても水濡れ性を維持しているので、水処理用のフィルター材料として好適に用いられる。
The remaining of the hydrophilic polymer (for example, ethylene-vinyl alcohol copolymer) is considered as follows. A part of radicals at the time of polymer production (polymerization) is trapped in the polymer, and at the time of heat melting for fiber formation, a polymer in which the trapped radicals are combined to form a large molecule (including crosslinking) is formed, A small amount of this polymer having a large molecular weight is contained in the hydrophilic polymer layer of the fiber, and it remains on the fiber surface without being removed when the hydrophilic polymer is removed. And since the filter fiber has a pleated protrusion of a specific shape, when such a polymer having a large molecular weight adheres to the deep part of the groove, the hydrophilic polymer may be subjected to repeated hot water treatment. It is considered that a very small amount is adhered without being completely removed, and the water wettability of the fiber surface is maintained by this adhesion. A filter fiber obtained from a core-sheath composite spun fiber formed with a hydrophilic polymer (for example, an ethylene-vinyl alcohol copolymer having an ethylene copolymerization ratio of 0.1 to 20 mol%) as a sheath is made of hot water Since the water wettability is maintained even when the treatment is repeated 15 times or more, it is suitably used as a filter material for water treatment.
本発明において、フィルター繊維の表面には、親水性ポリマーが付着しており、前記繊維表面は、繊維量に対して浴比1:20とし、95℃、30分の熱水処理を行った後、60℃、10分の乾燥処理を行う処理を1セットとし、この処理を15回行った場合であっても、水濡れ性が維持されていることが必要である。15回未満で水濡れ性が維持できなくなる場合、フィルター繊維が使用中に水濡れ性を失う可能性があり、長期にわたってフィルター繊維としての機能を果たすことができない可能性がある。
なお、水濡れ性の有無については、JIS L 1906吸水速度A法(滴下法)に準じて吸収速度試験を行い、液滴吸収速度が10秒以下である場合、水濡れ性(吸水性)があると判断することができる。 In the present invention, a hydrophilic polymer is attached to the surface of the filter fiber, and the fiber surface is subjected to a hot water treatment at 95 ° C. for 30 minutes at a bath ratio of 1:20 with respect to the fiber amount. It is necessary that the wettability is maintained even when the drying treatment at 60 ° C. for 10 minutes is set as one set and this treatment is carried out 15 times. If water wettability cannot be maintained after less than 15 times, the filter fiber may lose water wettability during use, and may not function as a filter fiber over a long period of time.
In addition, about the presence or absence of water wettability, an absorption rate test is performed according to JIS L 1906 water absorption rate A method (drop method), and when the droplet absorption rate is 10 seconds or less, water wettability (water absorption) is It can be judged that there is.
なお、水濡れ性の有無については、JIS L 1906吸水速度A法(滴下法)に準じて吸収速度試験を行い、液滴吸収速度が10秒以下である場合、水濡れ性(吸水性)があると判断することができる。 In the present invention, a hydrophilic polymer is attached to the surface of the filter fiber, and the fiber surface is subjected to a hot water treatment at 95 ° C. for 30 minutes at a bath ratio of 1:20 with respect to the fiber amount. It is necessary that the wettability is maintained even when the drying treatment at 60 ° C. for 10 minutes is set as one set and this treatment is carried out 15 times. If water wettability cannot be maintained after less than 15 times, the filter fiber may lose water wettability during use, and may not function as a filter fiber over a long period of time.
In addition, about the presence or absence of water wettability, an absorption rate test is performed according to JIS L 1906 water absorption rate A method (drop method), and when the droplet absorption rate is 10 seconds or less, water wettability (water absorption) is It can be judged that there is.
(フィルター繊維の繊度および表面積)
本発明において、フィルター繊維の単繊維繊度は、6dtex以下であってもよく、例えば、0.5dtexを超えて、6dtex以下であってもよく、好ましくは、1dtex~4dtexである。繊度が小さすぎる繊維から形成されたフィルター層では、強度的に不利であるとともに、圧力損失が大きくなるのでフィルター繊維としては不適となる。また、繊度が大きすぎると、フィルター層の目が粗くなり、細粒子を濾過しにくくなり、フィルター繊維としては不適となる。
また、フィルター繊維の表面積(BET)は、疎水性ポリマーからなる繊維表面に、親水性ポリマーを付着させて水濡れ性を付与する観点から、例えば、0.8~4.0m2/gであってもよく、好ましくは1.2~3.0m2/gであってもよい。 (Fineness and surface area of filter fiber)
In the present invention, the single fiber fineness of the filter fiber may be 6 dtex or less, for example, more than 0.5 dtex and 6 dtex or less, and preferably 1 dtex to 4 dtex. A filter layer formed from fibers with too small fineness is disadvantageous in terms of strength, and is not suitable as a filter fiber because the pressure loss increases. On the other hand, if the fineness is too large, the filter layer becomes coarse and it becomes difficult to filter fine particles, which makes it unsuitable as a filter fiber.
The surface area (BET) of the filter fiber is, for example, 0.8 to 4.0 m 2 / g from the viewpoint of imparting wettability by adhering the hydrophilic polymer to the fiber surface made of the hydrophobic polymer. It may be 1.2 to 3.0 m 2 / g.
本発明において、フィルター繊維の単繊維繊度は、6dtex以下であってもよく、例えば、0.5dtexを超えて、6dtex以下であってもよく、好ましくは、1dtex~4dtexである。繊度が小さすぎる繊維から形成されたフィルター層では、強度的に不利であるとともに、圧力損失が大きくなるのでフィルター繊維としては不適となる。また、繊度が大きすぎると、フィルター層の目が粗くなり、細粒子を濾過しにくくなり、フィルター繊維としては不適となる。
また、フィルター繊維の表面積(BET)は、疎水性ポリマーからなる繊維表面に、親水性ポリマーを付着させて水濡れ性を付与する観点から、例えば、0.8~4.0m2/gであってもよく、好ましくは1.2~3.0m2/gであってもよい。 (Fineness and surface area of filter fiber)
In the present invention, the single fiber fineness of the filter fiber may be 6 dtex or less, for example, more than 0.5 dtex and 6 dtex or less, and preferably 1 dtex to 4 dtex. A filter layer formed from fibers with too small fineness is disadvantageous in terms of strength, and is not suitable as a filter fiber because the pressure loss increases. On the other hand, if the fineness is too large, the filter layer becomes coarse and it becomes difficult to filter fine particles, which makes it unsuitable as a filter fiber.
The surface area (BET) of the filter fiber is, for example, 0.8 to 4.0 m 2 / g from the viewpoint of imparting wettability by adhering the hydrophilic polymer to the fiber surface made of the hydrophobic polymer. It may be 1.2 to 3.0 m 2 / g.
(フィルター繊維の断面形状)
フィルター繊維は、断面形状において、(a)略楕円形状を有する楕円部と、(b)前記楕円部から両側に延びる、先端が丸みを帯びた複数の突起部と、(c)前記突起部と前記突起部の間に形成される溝部と、から構成されている。楕円部は、剛性の観点から内部充実型の楕円部であるのが好ましい。
楕円部の短軸部の幅は、3μm~30μmの範囲内であってもよく、好ましくは4.0μm~20μmの範囲内である。幅が狭すぎると、フィルター繊維が扁平形状となるため、フィルター繊維が積層されて形成されるフィルター層の密度が高くなりすぎて、圧力損失の点で不適となる傾向がある。また、幅が大きくなりすぎると、繊維断面が円形に近づくため、多数の突起部を形成しにくくなる。また、長軸部と短軸部との比は、例えば、1.1~5.0の範囲にあってもよく、1.1~4.0の範囲にあることが好ましく、より好ましくは1.5~4.0の範囲、さらに好ましくは2.1~4.0の範囲であってもよい。前記比が大きすぎると、繊維形状が扁平となり、上記のような問題を生じる可能性があり、また、この比が小さすぎると、円形に近づき、多くの突起部を形成することが困難となる。 (Cross-sectional shape of filter fiber)
The filter fiber has, in cross-sectional shape, (a) an elliptical part having a substantially elliptical shape, (b) a plurality of protruding parts with rounded ends extending from the elliptical part on both sides, and (c) the protruding part. And a groove formed between the protrusions. The elliptical part is preferably a solid-filled elliptical part from the viewpoint of rigidity.
The width of the short axis part of the ellipse may be in the range of 3 μm to 30 μm, and preferably in the range of 4.0 μm to 20 μm. If the width is too narrow, the filter fibers have a flat shape, so that the density of the filter layer formed by laminating the filter fibers becomes too high, which tends to be unsuitable in terms of pressure loss. Moreover, since a fiber cross section will approximate circular when the width becomes too large, it becomes difficult to form a large number of protrusions. Further, the ratio of the long axis portion to the short axis portion may be, for example, in the range of 1.1 to 5.0, preferably in the range of 1.1 to 4.0, more preferably 1 It may be in the range of 0.5 to 4.0, more preferably in the range of 2.1 to 4.0. If the ratio is too large, the fiber shape becomes flat, which may cause the above-mentioned problems. If the ratio is too small, the fiber approaches a circle and it is difficult to form many protrusions. .
フィルター繊維は、断面形状において、(a)略楕円形状を有する楕円部と、(b)前記楕円部から両側に延びる、先端が丸みを帯びた複数の突起部と、(c)前記突起部と前記突起部の間に形成される溝部と、から構成されている。楕円部は、剛性の観点から内部充実型の楕円部であるのが好ましい。
楕円部の短軸部の幅は、3μm~30μmの範囲内であってもよく、好ましくは4.0μm~20μmの範囲内である。幅が狭すぎると、フィルター繊維が扁平形状となるため、フィルター繊維が積層されて形成されるフィルター層の密度が高くなりすぎて、圧力損失の点で不適となる傾向がある。また、幅が大きくなりすぎると、繊維断面が円形に近づくため、多数の突起部を形成しにくくなる。また、長軸部と短軸部との比は、例えば、1.1~5.0の範囲にあってもよく、1.1~4.0の範囲にあることが好ましく、より好ましくは1.5~4.0の範囲、さらに好ましくは2.1~4.0の範囲であってもよい。前記比が大きすぎると、繊維形状が扁平となり、上記のような問題を生じる可能性があり、また、この比が小さすぎると、円形に近づき、多くの突起部を形成することが困難となる。 (Cross-sectional shape of filter fiber)
The filter fiber has, in cross-sectional shape, (a) an elliptical part having a substantially elliptical shape, (b) a plurality of protruding parts with rounded ends extending from the elliptical part on both sides, and (c) the protruding part. And a groove formed between the protrusions. The elliptical part is preferably a solid-filled elliptical part from the viewpoint of rigidity.
The width of the short axis part of the ellipse may be in the range of 3 μm to 30 μm, and preferably in the range of 4.0 μm to 20 μm. If the width is too narrow, the filter fibers have a flat shape, so that the density of the filter layer formed by laminating the filter fibers becomes too high, which tends to be unsuitable in terms of pressure loss. Moreover, since a fiber cross section will approximate circular when the width becomes too large, it becomes difficult to form a large number of protrusions. Further, the ratio of the long axis portion to the short axis portion may be, for example, in the range of 1.1 to 5.0, preferably in the range of 1.1 to 4.0, more preferably 1 It may be in the range of 0.5 to 4.0, more preferably in the range of 2.1 to 4.0. If the ratio is too large, the fiber shape becomes flat, which may cause the above-mentioned problems. If the ratio is too small, the fiber approaches a circle and it is difficult to form many protrusions. .
フィルター繊維において上記の複数の突起部は、例えば、前記楕円部から溝部を挟んで互いに隣接して突出していてもよく、前記楕円部から両側(楕円部の長軸を軸対称とした上側、下側の双方)に配置され、好ましくは、楕円部の全周に配置されるのが好ましい。特に、楕円部の長軸幅において、短軸を中心とする80%以内の箇所から突出する突起部が存在する場合、略楕円形の緩やかな曲率を有効に利用して、溝部による捕集性の向上と、突起部の強度を両立させるのに有効に用いることができる。
In the filter fiber, for example, the plurality of protrusions may protrude adjacent to each other across the groove from the ellipse, and both sides from the ellipse (upper and lower sides with the major axis of the ellipse being axisymmetric). On both sides), preferably on the entire circumference of the ellipse. In particular, when there is a protrusion protruding from a portion within 80% centering on the short axis in the major axis width of the ellipse, the trapping property by the groove is effectively utilized by utilizing the gentle curvature of the substantially ellipse. It can be effectively used to achieve both improvement in strength and strength of the protrusion.
本発明において、突起部の幅は、例えば、0.5~4μmの範囲内にあってもよく、好ましくは、1μm~3μmの範囲内にある。幅が狭すぎると、突起部の強度が弱くなりすぎて、突起部が欠けやすくなるので、不適であり、また、一方、幅が大きくなりすぎると、多くの突起部を配置しにくくなるので不適である。
フィルター繊維一本当たりの突起部の数は、例えば、5~50個、好ましくは10~40個、さらに好ましくは20~35個であり、突起部の数が少なすぎると、繊維表面の表面積増大効果が十分でなく、また突起部の数が多くなりすぎると1個の突起部の幅が狭くなり、突起部の強度が十分でなくなる傾向にある。 In the present invention, the width of the protrusion may be, for example, in the range of 0.5 to 4 μm, and preferably in the range of 1 to 3 μm. If the width is too narrow, the strength of the protrusion becomes too weak and the protrusion is easily chipped, which is not suitable. On the other hand, if the width is too large, it is difficult to arrange many protrusions. It is.
The number of protrusions per filter fiber is, for example, 5 to 50, preferably 10 to 40, more preferably 20 to 35. If the number of protrusions is too small, the surface area of the fiber surface increases. If the effect is not sufficient and the number of protrusions is too large, the width of one protrusion is narrowed, and the strength of the protrusion tends to be insufficient.
フィルター繊維一本当たりの突起部の数は、例えば、5~50個、好ましくは10~40個、さらに好ましくは20~35個であり、突起部の数が少なすぎると、繊維表面の表面積増大効果が十分でなく、また突起部の数が多くなりすぎると1個の突起部の幅が狭くなり、突起部の強度が十分でなくなる傾向にある。 In the present invention, the width of the protrusion may be, for example, in the range of 0.5 to 4 μm, and preferably in the range of 1 to 3 μm. If the width is too narrow, the strength of the protrusion becomes too weak and the protrusion is easily chipped, which is not suitable. On the other hand, if the width is too large, it is difficult to arrange many protrusions. It is.
The number of protrusions per filter fiber is, for example, 5 to 50, preferably 10 to 40, more preferably 20 to 35. If the number of protrusions is too small, the surface area of the fiber surface increases. If the effect is not sufficient and the number of protrusions is too large, the width of one protrusion is narrowed, and the strength of the protrusion tends to be insufficient.
本発明において、繊維断面において、楕円部から突出する突起部の先端は丸み(例えば、図1参照)を有していることが必要である。突起部の先端が丸みを帯びていなく、先端に向かって先細に尖っている場合(特許文献3の図2および図4参照)には、先端部が損傷しやすくなるのでフィルター繊維として好ましくない。
In the present invention, in the fiber cross section, the tip of the protruding portion protruding from the elliptical portion needs to be rounded (see, for example, FIG. 1). When the tip of the protrusion is not rounded but is tapered toward the tip (see FIGS. 2 and 4 of Patent Document 3), the tip tends to be damaged, which is not preferable as a filter fiber.
本発明のフィルター繊維において、溝部の深さは、例えば、1~4μmの範囲、好ましくは、1.5~3.6μmの範囲内にあることであり、さらに好ましくは、2~3.2μmの範囲内にあることである。溝部が浅すぎるとフィルター繊維の粒子捕捉性が十分でなくなる可能性がある。溝部の深さが大きくなることにより、本発明に係るフィルター繊維の表面積が増大して、水濡れ性を付与する効果が大きくなるが、一方、溝部が深すぎても、処理水中に含まれる粒子の捕捉性に寄与しない。
また、溝部の幅は、例えば、0.1μm~2.0μm、より好ましくは0.1~1.0μm、さらに好ましくは、0.1~0.5μm、特に好ましくは0.1~0.18μmであることが、粒子捕捉性の点から好ましい。 In the filter fiber of the present invention, the depth of the groove is, for example, in the range of 1 to 4 μm, preferably in the range of 1.5 to 3.6 μm, and more preferably in the range of 2 to 3.2 μm. It is within the range. If the groove is too shallow, the filter fiber particles may not be sufficiently captured. By increasing the depth of the groove portion, the surface area of the filter fiber according to the present invention is increased and the effect of imparting water wettability is increased. On the other hand, even if the groove portion is too deep, particles contained in the treated water It does not contribute to the capture property.
The width of the groove is, for example, 0.1 μm to 2.0 μm, more preferably 0.1 to 1.0 μm, still more preferably 0.1 to 0.5 μm, and particularly preferably 0.1 to 0.18 μm. It is preferable from the viewpoint of particle trapping properties.
また、溝部の幅は、例えば、0.1μm~2.0μm、より好ましくは0.1~1.0μm、さらに好ましくは、0.1~0.5μm、特に好ましくは0.1~0.18μmであることが、粒子捕捉性の点から好ましい。 In the filter fiber of the present invention, the depth of the groove is, for example, in the range of 1 to 4 μm, preferably in the range of 1.5 to 3.6 μm, and more preferably in the range of 2 to 3.2 μm. It is within the range. If the groove is too shallow, the filter fiber particles may not be sufficiently captured. By increasing the depth of the groove portion, the surface area of the filter fiber according to the present invention is increased and the effect of imparting water wettability is increased. On the other hand, even if the groove portion is too deep, particles contained in the treated water It does not contribute to the capture property.
The width of the groove is, for example, 0.1 μm to 2.0 μm, more preferably 0.1 to 1.0 μm, still more preferably 0.1 to 0.5 μm, and particularly preferably 0.1 to 0.18 μm. It is preferable from the viewpoint of particle trapping properties.
また、突起部の強度と、良好な捕捉性の双方を向上させる観点から、突起部の幅と前記の溝部の幅との比(突起部の幅/溝部の幅)は、好ましくは、2/1~20/1、より好ましくは、5/1~15/1の範囲であってもよい。
Further, from the viewpoint of improving both the strength of the protruding portion and good capturing properties, the ratio of the width of the protruding portion to the width of the groove portion (the width of the protruding portion / the width of the groove portion) is preferably 2 / The range may be from 1 to 20/1, more preferably from 5/1 to 15/1.
また、上記の溝部の深さと前記の溝部の幅との比(溝部の深さ/溝部の幅)が、好ましくは、1/2~40/1、より好ましくは、1/1~20/1の範囲にあることにより、本発明に係るフィルター繊維を水処理フィルターに用いる場合、水処理フィルターの効率を良くするための水濡れ性が付与される。
また、溝部の深さは、例えば、突起部の幅と同じから4倍未満、好ましくは突起部の幅の1.2倍以上3.5倍以下であることが、粒子の捕捉性と配置される突起部の強度とのバランスの点で好ましい。 Further, the ratio of the groove depth to the groove width (groove depth / groove width) is preferably 1/2 to 40/1, more preferably 1/1 to 20/1. When the filter fiber according to the present invention is used for a water treatment filter, water wettability for improving the efficiency of the water treatment filter is imparted.
Further, the depth of the groove is, for example, the same as the width of the protrusion, and less than 4 times, and preferably 1.2 times to 3.5 times the width of the protrusion. It is preferable in terms of balance with the strength of the protruding portion.
また、溝部の深さは、例えば、突起部の幅と同じから4倍未満、好ましくは突起部の幅の1.2倍以上3.5倍以下であることが、粒子の捕捉性と配置される突起部の強度とのバランスの点で好ましい。 Further, the ratio of the groove depth to the groove width (groove depth / groove width) is preferably 1/2 to 40/1, more preferably 1/1 to 20/1. When the filter fiber according to the present invention is used for a water treatment filter, water wettability for improving the efficiency of the water treatment filter is imparted.
Further, the depth of the groove is, for example, the same as the width of the protrusion, and less than 4 times, and preferably 1.2 times to 3.5 times the width of the protrusion. It is preferable in terms of balance with the strength of the protruding portion.
また、突起部と突起部の間の溝部の底部についても丸みを帯びているのが好ましい。溝部が底部において丸みを有する場合、親水性ポリマーの溝部への付着性を向上することができる。
Also, it is preferable that the bottom of the groove between the protrusions is rounded. When a groove part has roundness in a bottom part, the adhesiveness to the groove part of a hydrophilic polymer can be improved.
フィルター繊維に適度な剛性を与えつつ、良好な粒子捕捉性を付与する観点から、好ましくは、溝部の深さと楕円短軸部の幅との比(溝部の深さ/楕円短軸部の幅)は、0.02~3程度であってもよく、より好ましくは0.1~2.5程度、さらに好ましくは0.5~1.5程度であってもよい。
From the viewpoint of imparting good particle trapping properties while imparting appropriate rigidity to the filter fiber, preferably the ratio of the depth of the groove and the width of the elliptical short axis (depth of the groove / width of the elliptical short axis) May be about 0.02 to 3, more preferably about 0.1 to 2.5, and still more preferably about 0.5 to 1.5.
(フィルター繊維不織布)
本発明において、フィルター繊維は、フィルター装置に対して用いることが可能である限り、さまざまな形状、例えば、短繊維(カットファイバー)または長繊維(フィラメント)として直接用いてもよいし、これらの繊維を布帛状、例えば、不織布(湿式、乾式、スパンボンド等の紡糸直結型)に成形して用いてもよい。これらのうち、フィルター繊維は、不織布の形状で使用されるのが好ましく、特にスパンボンド不織布が好ましい。不織布は、必要に応じて、エンボス処理などの後加工をおこなってもよい。 (Filter fiber nonwoven fabric)
In the present invention, the filter fiber may be directly used as various shapes, for example, a short fiber (cut fiber) or a long fiber (filament), as long as it can be used for a filter device. May be used by forming it into a fabric shape, for example, a nonwoven fabric (wet, dry, spunbonded, etc., directly-coupled type). Of these, the filter fiber is preferably used in the form of a nonwoven fabric, and a spunbonded nonwoven fabric is particularly preferred. The nonwoven fabric may be subjected to post-processing such as embossing treatment as necessary.
本発明において、フィルター繊維は、フィルター装置に対して用いることが可能である限り、さまざまな形状、例えば、短繊維(カットファイバー)または長繊維(フィラメント)として直接用いてもよいし、これらの繊維を布帛状、例えば、不織布(湿式、乾式、スパンボンド等の紡糸直結型)に成形して用いてもよい。これらのうち、フィルター繊維は、不織布の形状で使用されるのが好ましく、特にスパンボンド不織布が好ましい。不織布は、必要に応じて、エンボス処理などの後加工をおこなってもよい。 (Filter fiber nonwoven fabric)
In the present invention, the filter fiber may be directly used as various shapes, for example, a short fiber (cut fiber) or a long fiber (filament), as long as it can be used for a filter device. May be used by forming it into a fabric shape, for example, a nonwoven fabric (wet, dry, spunbonded, etc., directly-coupled type). Of these, the filter fiber is preferably used in the form of a nonwoven fabric, and a spunbonded nonwoven fabric is particularly preferred. The nonwoven fabric may be subjected to post-processing such as embossing treatment as necessary.
フィルター繊維不織布の目付は、例えば、20~300g/m2、好ましくは30~200g/m2、さらに好ましくは40~100g/m2であることが好ましい。不織布の目付が小さすぎると強度が低すぎてフィルター成型時の加工時に切れてしまう。また、不織布の目付が大きすぎると巻き成型等で内側と外側での張力差が発生しシワ等の原因になってしまう。
なお、鞘成分を除去する前の芯鞘型複合紡糸繊維不織布の目付は、例えば、30~500g/m2、好ましくは50~350g/m2、さらに好ましくは60~200g/m2であってもよい。 The basis weight of the filter fiber nonwoven fabric is, for example, preferably 20 to 300 g / m 2 , preferably 30 to 200 g / m 2 , and more preferably 40 to 100 g / m 2 . If the basis weight of the nonwoven fabric is too small, the strength will be too low and it will break during processing during filter molding. Moreover, when the fabric weight of a nonwoven fabric is too large, the tension | tensile_strength difference by inner side and outer side will generate | occur | produce by winding molding etc., and will cause wrinkles.
The basis weight of the core-sheath type composite spun fiber nonwoven fabric before removing the sheath component is, for example, 30 to 500 g / m 2 , preferably 50 to 350 g / m 2 , more preferably 60 to 200 g / m 2. Also good.
なお、鞘成分を除去する前の芯鞘型複合紡糸繊維不織布の目付は、例えば、30~500g/m2、好ましくは50~350g/m2、さらに好ましくは60~200g/m2であってもよい。 The basis weight of the filter fiber nonwoven fabric is, for example, preferably 20 to 300 g / m 2 , preferably 30 to 200 g / m 2 , and more preferably 40 to 100 g / m 2 . If the basis weight of the nonwoven fabric is too small, the strength will be too low and it will break during processing during filter molding. Moreover, when the fabric weight of a nonwoven fabric is too large, the tension | tensile_strength difference by inner side and outer side will generate | occur | produce by winding molding etc., and will cause wrinkles.
The basis weight of the core-sheath type composite spun fiber nonwoven fabric before removing the sheath component is, for example, 30 to 500 g / m 2 , preferably 50 to 350 g / m 2 , more preferably 60 to 200 g / m 2. Also good.
(フィルター装置)
本発明において用いられるフィルターカートリッジとしては、公知のフィルターカートリッジのいずれでもよく、たとえば、フィルター繊維を芯材などに巻きつけた糸巻きカートリッジ、フィルター繊維で構成された乾式または湿式不織布をカートリッジに充填したフィルターであってもよい。具体的には、矩形状の濾材2枚を対向配置して形成した平板型フィルターユニットを複数個並設配置した平板型カートリッジや、濾材をプリーツ状に折り束ねた構造のプリーツ型カートリッジなどを例示することができる。例えば、プリーツ型カートリッジフィルターに搭載される濾材は、プリーツ加工をして折りたたみ、折りたたまれた濾材は、芯体に巻き付けられて、円筒状容器に挿入され、水濾過に用いられる。 (Filter device)
The filter cartridge used in the present invention may be any of known filter cartridges, for example, a thread wound cartridge in which filter fibers are wound around a core material, a filter in which a dry or wet nonwoven fabric composed of filter fibers is filled in the cartridge It may be. Specifically, a flat plate cartridge in which a plurality of flat filter units formed by arranging two rectangular filter media facing each other, a pleated cartridge having a structure in which filter media are folded into a pleat shape, and the like are illustrated. can do. For example, a filter medium mounted on a pleated cartridge filter is folded by pleating, and the folded filter medium is wound around a core body, inserted into a cylindrical container, and used for water filtration.
本発明において用いられるフィルターカートリッジとしては、公知のフィルターカートリッジのいずれでもよく、たとえば、フィルター繊維を芯材などに巻きつけた糸巻きカートリッジ、フィルター繊維で構成された乾式または湿式不織布をカートリッジに充填したフィルターであってもよい。具体的には、矩形状の濾材2枚を対向配置して形成した平板型フィルターユニットを複数個並設配置した平板型カートリッジや、濾材をプリーツ状に折り束ねた構造のプリーツ型カートリッジなどを例示することができる。例えば、プリーツ型カートリッジフィルターに搭載される濾材は、プリーツ加工をして折りたたみ、折りたたまれた濾材は、芯体に巻き付けられて、円筒状容器に挿入され、水濾過に用いられる。 (Filter device)
The filter cartridge used in the present invention may be any of known filter cartridges, for example, a thread wound cartridge in which filter fibers are wound around a core material, a filter in which a dry or wet nonwoven fabric composed of filter fibers is filled in the cartridge It may be. Specifically, a flat plate cartridge in which a plurality of flat filter units formed by arranging two rectangular filter media facing each other, a pleated cartridge having a structure in which filter media are folded into a pleat shape, and the like are illustrated. can do. For example, a filter medium mounted on a pleated cartridge filter is folded by pleating, and the folded filter medium is wound around a core body, inserted into a cylindrical container, and used for water filtration.
(水処理)
本発明のフィルター繊維の優れた水濡れ特性を生かすことで、本発明のフィルター繊維は、親水性が求められる各種フィルター材料として好適に利用することが可能である。好ましくは、本発明のフィルター繊維は水処理用フィルター材料として好適に利用することができ、具体的には、異物が混合されている水から該異物を除去または回収するような水ろ過(例えば、プールや温泉の水の循環ろ過や、海水淡水化プラントにおける水ろ過)における水処理フィルターとして好適に使用することができる。図3は、本発明に係るフィルター繊維を用いて水のろ過処理を行った後の状態を示している。水中の被濾過物質が本発明のフィルター繊維の突起部と突起部との間に形成された溝部に引っ掛かって捕集されていることがわかる。 (Water treatment)
By making use of the excellent wettability characteristics of the filter fiber of the present invention, the filter fiber of the present invention can be suitably used as various filter materials that require hydrophilicity. Preferably, the filter fiber of the present invention can be suitably used as a filter material for water treatment, and specifically, water filtration that removes or collects the foreign matter from the water in which the foreign matter is mixed (for example, It can be suitably used as a water treatment filter in water and circulation filtration of pools and hot springs, and water filtration in seawater desalination plants. FIG. 3 shows a state after the water is filtered using the filter fiber according to the present invention. It can be seen that the substance to be filtered in water is caught by the groove formed between the protrusions of the filter fiber of the present invention.
本発明のフィルター繊維の優れた水濡れ特性を生かすことで、本発明のフィルター繊維は、親水性が求められる各種フィルター材料として好適に利用することが可能である。好ましくは、本発明のフィルター繊維は水処理用フィルター材料として好適に利用することができ、具体的には、異物が混合されている水から該異物を除去または回収するような水ろ過(例えば、プールや温泉の水の循環ろ過や、海水淡水化プラントにおける水ろ過)における水処理フィルターとして好適に使用することができる。図3は、本発明に係るフィルター繊維を用いて水のろ過処理を行った後の状態を示している。水中の被濾過物質が本発明のフィルター繊維の突起部と突起部との間に形成された溝部に引っ掛かって捕集されていることがわかる。 (Water treatment)
By making use of the excellent wettability characteristics of the filter fiber of the present invention, the filter fiber of the present invention can be suitably used as various filter materials that require hydrophilicity. Preferably, the filter fiber of the present invention can be suitably used as a filter material for water treatment, and specifically, water filtration that removes or collects the foreign matter from the water in which the foreign matter is mixed (for example, It can be suitably used as a water treatment filter in water and circulation filtration of pools and hot springs, and water filtration in seawater desalination plants. FIG. 3 shows a state after the water is filtered using the filter fiber according to the present invention. It can be seen that the substance to be filtered in water is caught by the groove formed between the protrusions of the filter fiber of the present invention.
また、本発明は、フィルター繊維として、以下の実施態様を含んでいてもよい。また、以下の実施態様において記載されている各特性は、上述した各特性に準じていてもよい。
[態様1]
疎水性ポリマーから構成された、複数のひだ状突起部を有するフィルター繊維であって、前記繊維の断面が、(a)略楕円形状を有する楕円部と、(b)前記楕円部から両側に延びる、先端が丸みを帯びた複数の突起部と、(c)前記突起部と前記突起部の間に形成される溝部と、から構成され、
前記繊維は、6dtex以下の繊度を有し、
前記長軸部の幅と前記短軸部の幅の比が、1.1~6.0であり、
前記繊維の表面には、親水性ポリマーが付着しており、前記繊維表面は、95℃の熱水処理を15回行った場合、水濡れ性が維持されている、フィルター繊維。
[態様2]
疎水性ポリマーから構成された、複数のひだ状突起部を有するフィルター繊維であって、前記繊維の断面が、(a)略楕円形状を有する楕円部と、(b)前記楕円部から両側に延びる、先端が丸みを帯びた複数の突起部と、(c)前記突起部と前記突起部の間に形成される溝部と、から構成され、
前記繊維は、溝部の深さが、1~4μmであるとともに、溝部の深さと楕円短軸部の幅との比(溝部の深さ/楕円短軸部の幅)が0.02~3であり、
前記繊維の表面には、親水性ポリマーが付着しており、前記繊維表面は、95℃の熱水処理を15回行った場合、水濡れ性が維持されている、フィルター繊維。
[態様3]
疎水性ポリマーから構成された、複数のひだ状突起部を有するフィルター繊維であって、前記繊維の断面が、(a)略楕円形状を有する楕円部と、(b)前記楕円部から両側に延びる、先端が丸みを帯びた複数の突起部と、(c)前記突起部と前記突起部の間に形成される溝部と、から構成され、
前記繊維は、6dtex以下の繊度を有し、
突起部の幅と前記の溝部の幅との比(突起部の幅/溝部の幅)が、2/1~20/1である、フィルター繊維。
[態様4]
前記フィルター繊維において、溝部の深さと楕円短軸部の幅との比(溝部の深さ/楕円短軸部の幅)が1/10~4/1である、前記態様1~3のいずれか一態様に記載のフィルター繊維。
[態様5]
前記フィルター繊維において、前記長軸部の幅と前記短軸部の幅の比が、1.1~6.0である、態様1~4のいずれか一態様に記載のフィルター繊維。
[態様6]
前記フィルター繊維において、溝部の深さと楕円短軸部の幅との比(溝部の深さ/楕円短軸部の幅)が1/10~4/1である、態様1~5のいずれか一態様に記載のフィルター繊維。
[態様7]
前記フィルター繊維において、前記突起部は、幅0.5~4μmを有し、前記溝部は、深さ1~4μmを有している、態様1~6のいずれか一態様に記載のフィルター繊維。
[態様8]
前記フィルター繊維において、突起部の幅と前記の溝部の幅との比(突起部の幅/溝部の幅)が、/1~20/1である、態様1~7のいずれか一態様に記載のフィルター繊維。
[態様9]
前記疎水性ポリマーがポリオレフィン、ポリアミドまたはポリエステルである、態様1~8のいずれか一態様に記載のフィルター繊維。
[態様10]
前記親水性ポリマーが、熱溶融性かつ水溶性のエチレン-ビニルアルコール共重合体である、態様1~9のいずれか一態様に記載のフィルター繊維。
[態様11]
前記エチレン-ビニルアルコール共重合体が、0.1~20モル%のエチレン単量体単位を含有するエチレン-ビニルアルコール共重合体である、態様10に記載のフィルター繊維。
[態様12]
前記親水性ポリマーの付着量が0.5質量%以下(対フィルター繊維)である、態様1~11のいずれか一態様に記載のフィルター繊維。
[態様13]
前記繊維が、前記疎水性ポリマーを芯層、前記親水性ポリマーを鞘層とする芯鞘型複合紡糸により形成された繊維から前記親水性ポリマーを除去して形成された繊維である、態様1~12のいずれか一態様に記載のフィルター繊維。 Moreover, this invention may include the following embodiments as filter fiber. Moreover, each characteristic described in the following embodiments may conform to each characteristic described above.
[Aspect 1]
A filter fiber made of a hydrophobic polymer and having a plurality of pleated projections, wherein the cross section of the fiber is (a) an elliptical part having a substantially elliptical shape, and (b) extending from the elliptical part to both sides. A plurality of protrusions with rounded tips, and (c) a groove formed between the protrusions and the protrusions,
The fibers have a fineness of 6 dtex or less;
The ratio of the width of the major axis portion to the width of the minor axis portion is 1.1 to 6.0,
A filter fiber, wherein a hydrophilic polymer is attached to the surface of the fiber, and the fiber surface maintains water wettability when subjected to hot water treatment at 95 ° C. 15 times.
[Aspect 2]
A filter fiber made of a hydrophobic polymer and having a plurality of pleated projections, wherein the cross section of the fiber is (a) an elliptical part having a substantially elliptical shape, and (b) extending from the elliptical part to both sides. A plurality of protrusions with rounded tips, and (c) a groove formed between the protrusions and the protrusions,
The fiber has a groove depth of 1 to 4 μm, and a ratio of the groove depth to the width of the elliptical short axis portion (depth of the groove portion / width of the elliptical short axis portion) is 0.02 to 3 Yes,
A filter fiber, wherein a hydrophilic polymer is attached to the surface of the fiber, and the fiber surface maintains water wettability when subjected to hot water treatment at 95 ° C. 15 times.
[Aspect 3]
A filter fiber made of a hydrophobic polymer and having a plurality of pleated projections, wherein the cross section of the fiber is (a) an elliptical part having a substantially elliptical shape, and (b) extending from the elliptical part to both sides. A plurality of protrusions with rounded tips, and (c) a groove formed between the protrusions and the protrusions,
The fibers have a fineness of 6 dtex or less;
A filter fiber having a ratio of the width of the protrusion to the width of the groove (width of the protrusion / width of the groove) of 2/1 to 20/1.
[Aspect 4]
Any one of theabove aspects 1 to 3, wherein in the filter fiber, the ratio of the depth of the groove portion to the width of the elliptical short axis portion (depth of the groove portion / width of the elliptical short axis portion) is 1/10 to 4/1. The filter fiber according to one embodiment.
[Aspect 5]
The filter fiber according to any one ofaspects 1 to 4, wherein in the filter fiber, a ratio of a width of the major axis portion to a width of the minor axis portion is 1.1 to 6.0.
[Aspect 6]
In the filter fiber, any one of theaspects 1 to 5, wherein the ratio of the depth of the groove portion to the width of the elliptical short axis portion (depth of the groove portion / width of the elliptical short axis portion) is 1/10 to 4/1. The filter fiber according to the embodiment.
[Aspect 7]
7. The filter fiber according to any one ofaspects 1 to 6, wherein in the filter fiber, the protrusion has a width of 0.5 to 4 μm, and the groove has a depth of 1 to 4 μm.
[Aspect 8]
The filter fiber according to any one ofaspects 1 to 7, wherein a ratio of the width of the protrusion to the width of the groove (width of the protrusion / width of the groove) is / 1 to 20/1. Filter fiber.
[Aspect 9]
The filter fiber according to any one ofaspects 1 to 8, wherein the hydrophobic polymer is polyolefin, polyamide, or polyester.
[Aspect 10]
The filter fiber according to any one ofaspects 1 to 9, wherein the hydrophilic polymer is a heat-meltable and water-soluble ethylene-vinyl alcohol copolymer.
[Aspect 11]
The filter fiber according toembodiment 10, wherein the ethylene-vinyl alcohol copolymer is an ethylene-vinyl alcohol copolymer containing 0.1 to 20 mol% of ethylene monomer units.
[Aspect 12]
The filter fiber according to any one ofaspects 1 to 11, wherein the adhesion amount of the hydrophilic polymer is 0.5% by mass or less (vs. filter fiber).
[Aspect 13]
The fiber is formed by removing the hydrophilic polymer from a fiber formed by core-sheath type composite spinning using the hydrophobic polymer as a core layer and the hydrophilic polymer as a sheath layer. The filter fiber according to any one of 12 embodiments.
[態様1]
疎水性ポリマーから構成された、複数のひだ状突起部を有するフィルター繊維であって、前記繊維の断面が、(a)略楕円形状を有する楕円部と、(b)前記楕円部から両側に延びる、先端が丸みを帯びた複数の突起部と、(c)前記突起部と前記突起部の間に形成される溝部と、から構成され、
前記繊維は、6dtex以下の繊度を有し、
前記長軸部の幅と前記短軸部の幅の比が、1.1~6.0であり、
前記繊維の表面には、親水性ポリマーが付着しており、前記繊維表面は、95℃の熱水処理を15回行った場合、水濡れ性が維持されている、フィルター繊維。
[態様2]
疎水性ポリマーから構成された、複数のひだ状突起部を有するフィルター繊維であって、前記繊維の断面が、(a)略楕円形状を有する楕円部と、(b)前記楕円部から両側に延びる、先端が丸みを帯びた複数の突起部と、(c)前記突起部と前記突起部の間に形成される溝部と、から構成され、
前記繊維は、溝部の深さが、1~4μmであるとともに、溝部の深さと楕円短軸部の幅との比(溝部の深さ/楕円短軸部の幅)が0.02~3であり、
前記繊維の表面には、親水性ポリマーが付着しており、前記繊維表面は、95℃の熱水処理を15回行った場合、水濡れ性が維持されている、フィルター繊維。
[態様3]
疎水性ポリマーから構成された、複数のひだ状突起部を有するフィルター繊維であって、前記繊維の断面が、(a)略楕円形状を有する楕円部と、(b)前記楕円部から両側に延びる、先端が丸みを帯びた複数の突起部と、(c)前記突起部と前記突起部の間に形成される溝部と、から構成され、
前記繊維は、6dtex以下の繊度を有し、
突起部の幅と前記の溝部の幅との比(突起部の幅/溝部の幅)が、2/1~20/1である、フィルター繊維。
[態様4]
前記フィルター繊維において、溝部の深さと楕円短軸部の幅との比(溝部の深さ/楕円短軸部の幅)が1/10~4/1である、前記態様1~3のいずれか一態様に記載のフィルター繊維。
[態様5]
前記フィルター繊維において、前記長軸部の幅と前記短軸部の幅の比が、1.1~6.0である、態様1~4のいずれか一態様に記載のフィルター繊維。
[態様6]
前記フィルター繊維において、溝部の深さと楕円短軸部の幅との比(溝部の深さ/楕円短軸部の幅)が1/10~4/1である、態様1~5のいずれか一態様に記載のフィルター繊維。
[態様7]
前記フィルター繊維において、前記突起部は、幅0.5~4μmを有し、前記溝部は、深さ1~4μmを有している、態様1~6のいずれか一態様に記載のフィルター繊維。
[態様8]
前記フィルター繊維において、突起部の幅と前記の溝部の幅との比(突起部の幅/溝部の幅)が、/1~20/1である、態様1~7のいずれか一態様に記載のフィルター繊維。
[態様9]
前記疎水性ポリマーがポリオレフィン、ポリアミドまたはポリエステルである、態様1~8のいずれか一態様に記載のフィルター繊維。
[態様10]
前記親水性ポリマーが、熱溶融性かつ水溶性のエチレン-ビニルアルコール共重合体である、態様1~9のいずれか一態様に記載のフィルター繊維。
[態様11]
前記エチレン-ビニルアルコール共重合体が、0.1~20モル%のエチレン単量体単位を含有するエチレン-ビニルアルコール共重合体である、態様10に記載のフィルター繊維。
[態様12]
前記親水性ポリマーの付着量が0.5質量%以下(対フィルター繊維)である、態様1~11のいずれか一態様に記載のフィルター繊維。
[態様13]
前記繊維が、前記疎水性ポリマーを芯層、前記親水性ポリマーを鞘層とする芯鞘型複合紡糸により形成された繊維から前記親水性ポリマーを除去して形成された繊維である、態様1~12のいずれか一態様に記載のフィルター繊維。 Moreover, this invention may include the following embodiments as filter fiber. Moreover, each characteristic described in the following embodiments may conform to each characteristic described above.
[Aspect 1]
A filter fiber made of a hydrophobic polymer and having a plurality of pleated projections, wherein the cross section of the fiber is (a) an elliptical part having a substantially elliptical shape, and (b) extending from the elliptical part to both sides. A plurality of protrusions with rounded tips, and (c) a groove formed between the protrusions and the protrusions,
The fibers have a fineness of 6 dtex or less;
The ratio of the width of the major axis portion to the width of the minor axis portion is 1.1 to 6.0,
A filter fiber, wherein a hydrophilic polymer is attached to the surface of the fiber, and the fiber surface maintains water wettability when subjected to hot water treatment at 95 ° C. 15 times.
[Aspect 2]
A filter fiber made of a hydrophobic polymer and having a plurality of pleated projections, wherein the cross section of the fiber is (a) an elliptical part having a substantially elliptical shape, and (b) extending from the elliptical part to both sides. A plurality of protrusions with rounded tips, and (c) a groove formed between the protrusions and the protrusions,
The fiber has a groove depth of 1 to 4 μm, and a ratio of the groove depth to the width of the elliptical short axis portion (depth of the groove portion / width of the elliptical short axis portion) is 0.02 to 3 Yes,
A filter fiber, wherein a hydrophilic polymer is attached to the surface of the fiber, and the fiber surface maintains water wettability when subjected to hot water treatment at 95 ° C. 15 times.
[Aspect 3]
A filter fiber made of a hydrophobic polymer and having a plurality of pleated projections, wherein the cross section of the fiber is (a) an elliptical part having a substantially elliptical shape, and (b) extending from the elliptical part to both sides. A plurality of protrusions with rounded tips, and (c) a groove formed between the protrusions and the protrusions,
The fibers have a fineness of 6 dtex or less;
A filter fiber having a ratio of the width of the protrusion to the width of the groove (width of the protrusion / width of the groove) of 2/1 to 20/1.
[Aspect 4]
Any one of the
[Aspect 5]
The filter fiber according to any one of
[Aspect 6]
In the filter fiber, any one of the
[Aspect 7]
7. The filter fiber according to any one of
[Aspect 8]
The filter fiber according to any one of
[Aspect 9]
The filter fiber according to any one of
[Aspect 10]
The filter fiber according to any one of
[Aspect 11]
The filter fiber according to
[Aspect 12]
The filter fiber according to any one of
[Aspect 13]
The fiber is formed by removing the hydrophilic polymer from a fiber formed by core-sheath type composite spinning using the hydrophobic polymer as a core layer and the hydrophilic polymer as a sheath layer. The filter fiber according to any one of 12 embodiments.
以下、実施例及び比較例を挙げて本発明を詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
Hereinafter, the present invention will be described in detail with reference to examples and comparative examples, but the present invention is not limited to these examples.
(XPS分析による不織布表面酸素量の測定)
X線光電子分光法(XPS)により不織布表面の構成元素および結合状態を解析し、その結果より表面酸素量を算出した。 (Measurement of nonwoven fabric surface oxygen content by XPS analysis)
The constituent elements and bonding state of the nonwoven fabric surface were analyzed by X-ray photoelectron spectroscopy (XPS), and the surface oxygen content was calculated from the results.
X線光電子分光法(XPS)により不織布表面の構成元素および結合状態を解析し、その結果より表面酸素量を算出した。 (Measurement of nonwoven fabric surface oxygen content by XPS analysis)
The constituent elements and bonding state of the nonwoven fabric surface were analyzed by X-ray photoelectron spectroscopy (XPS), and the surface oxygen content was calculated from the results.
<繊維の比表面積評価(BET法)>
流動法BET1点法比表面積測定装置(Quantachrome製Monosorb)を用いて評価した。装置付属の前処理はN2ガス雰囲気下で、室温で30分の脱気を行なった。測定は、サンプルの入ったU字型セルに混合ガス(N230%、He70%)を流し、サンプル室を液体窒素温度(77K)に冷却しサンプルの表面にN2ガスのみ吸着させた。 <Evaluation of specific surface area of fiber (BET method)>
It evaluated using the flow method BET 1-point method specific surface area measuring apparatus (Monosorb made from Quantachrome). In the pretreatment attached to the apparatus, deaeration was performed at room temperature for 30 minutes in an N 2 gas atmosphere. In the measurement, a mixed gas (N 2 30%, He 70%) was allowed to flow through the U-shaped cell containing the sample, the sample chamber was cooled to liquid nitrogen temperature (77K), and only the N 2 gas was adsorbed on the surface of the sample.
流動法BET1点法比表面積測定装置(Quantachrome製Monosorb)を用いて評価した。装置付属の前処理はN2ガス雰囲気下で、室温で30分の脱気を行なった。測定は、サンプルの入ったU字型セルに混合ガス(N230%、He70%)を流し、サンプル室を液体窒素温度(77K)に冷却しサンプルの表面にN2ガスのみ吸着させた。 <Evaluation of specific surface area of fiber (BET method)>
It evaluated using the flow method BET 1-point method specific surface area measuring apparatus (Monosorb made from Quantachrome). In the pretreatment attached to the apparatus, deaeration was performed at room temperature for 30 minutes in an N 2 gas atmosphere. In the measurement, a mixed gas (
(吸収速度)
JIS L 1906吸水速度A法(滴下法)に準じて測定した。 (Absorption rate)
Measured according to JIS L 1906 water absorption rate A method (drop method).
JIS L 1906吸水速度A法(滴下法)に準じて測定した。 (Absorption rate)
Measured according to JIS L 1906 water absorption rate A method (drop method).
(フィルター繊維断面における形状の測定)
フィルター繊維の繊維断面を走査型電子顕微鏡で撮影し(倍率:5000倍)、印刷した画像を用いて、楕円部の短軸部の幅、長軸部と短軸部との幅の比、突起部の幅および溝部の深さを測定した。
突起部の幅については、前記画像から、ランダムに選んだ10個の突起部について、突起部の先端部と根元部との中間にある点における幅を測定して、その平均値を求め、突起部の幅とした。
なお、突起部は、基本的に長軸端から突出する突起部を排除して選択され、長軸幅において、短軸を中心とする80%以内の箇所から突出する突起部から選択した。
溝部の深さについては、ランダムに選んだ10個の突起部について、突起部の先端部と根元部との距離を測定して、その平均値を求め、溝部の深さとした。
溝部の幅については、前記画像から、ランダムに選んだ10個の溝部について、溝部の先端部と根元部との中間にある点における幅を測定して、その平均値を求め、溝部の幅とした。
楕円部については、繊維断面での突起部を除く部分であり、前記の印刷した画像より楕円の中心を通る直線において、最も長い幅となる箇所を長軸部とし、楕円の中心を通る直線において、最も短い幅となる箇所を短軸部とし、長軸部の幅である長径、短軸部の幅である短径のそれぞれについて、10個の測定結果の平均値より算出した。ここで、基本的には、繊維断面での突起部を除く部分の外接円の中心を楕円の中心とした。なお、前記外接円の中心が、繊維断面での突起部を除く部分に存在しない場合、前記外接円の中心を通る直線において、最も短い幅となる箇所を短軸部とし、この短軸部の中心を通る直線において、最も長い幅となる箇所を長軸部とした。 (Measurement of the shape of the filter fiber cross section)
The cross section of the filter fiber was photographed with a scanning electron microscope (magnification: 5000 times), and the printed image was used to determine the width of the minor axis of the ellipse, the ratio of the width of the major axis to the minor axis, and the protrusion The width of the part and the depth of the groove part were measured.
As for the width of the protrusions, for the ten protrusions randomly selected from the image, the width at the point between the tip part and the root part of the protrusion part is measured, and the average value is obtained. The width of the part.
Note that the protrusions were basically selected by excluding the protrusions protruding from the end of the major axis, and the protrusions were selected from the protrusions protruding from within 80% of the major axis width around the minor axis.
About the depth of a groove part, the distance of the front-end | tip part of a protrusion part and a root part was measured about ten randomly selected protrusion parts, the average value was calculated | required, and it was set as the depth of a groove part.
As for the width of the groove, from the image, for 10 randomly selected grooves, the width at the point between the tip and the root of the groove is measured, and the average value is obtained. did.
For the ellipse part, it is a part excluding the protruding part in the fiber cross section, and in the straight line passing through the center of the ellipse from the printed image, the longest part is the long axis part, and in the straight line passing through the center of the ellipse The portion having the shortest width was defined as the short axis portion, and the major axis that was the width of the major axis portion and the minor axis that was the width of the minor axis portion were each calculated from the average value of ten measurement results. Here, basically, the center of the circumscribed circle of the portion excluding the protruding portion in the fiber cross section is the center of the ellipse. In addition, when the center of the circumscribed circle does not exist in the portion excluding the protruding portion in the fiber cross section, the shortest portion in the straight line passing through the center of the circumscribed circle is the short axis portion, and the short axis portion On the straight line passing through the center, the longest portion was defined as the longest width portion.
フィルター繊維の繊維断面を走査型電子顕微鏡で撮影し(倍率:5000倍)、印刷した画像を用いて、楕円部の短軸部の幅、長軸部と短軸部との幅の比、突起部の幅および溝部の深さを測定した。
突起部の幅については、前記画像から、ランダムに選んだ10個の突起部について、突起部の先端部と根元部との中間にある点における幅を測定して、その平均値を求め、突起部の幅とした。
なお、突起部は、基本的に長軸端から突出する突起部を排除して選択され、長軸幅において、短軸を中心とする80%以内の箇所から突出する突起部から選択した。
溝部の深さについては、ランダムに選んだ10個の突起部について、突起部の先端部と根元部との距離を測定して、その平均値を求め、溝部の深さとした。
溝部の幅については、前記画像から、ランダムに選んだ10個の溝部について、溝部の先端部と根元部との中間にある点における幅を測定して、その平均値を求め、溝部の幅とした。
楕円部については、繊維断面での突起部を除く部分であり、前記の印刷した画像より楕円の中心を通る直線において、最も長い幅となる箇所を長軸部とし、楕円の中心を通る直線において、最も短い幅となる箇所を短軸部とし、長軸部の幅である長径、短軸部の幅である短径のそれぞれについて、10個の測定結果の平均値より算出した。ここで、基本的には、繊維断面での突起部を除く部分の外接円の中心を楕円の中心とした。なお、前記外接円の中心が、繊維断面での突起部を除く部分に存在しない場合、前記外接円の中心を通る直線において、最も短い幅となる箇所を短軸部とし、この短軸部の中心を通る直線において、最も長い幅となる箇所を長軸部とした。 (Measurement of the shape of the filter fiber cross section)
The cross section of the filter fiber was photographed with a scanning electron microscope (magnification: 5000 times), and the printed image was used to determine the width of the minor axis of the ellipse, the ratio of the width of the major axis to the minor axis, and the protrusion The width of the part and the depth of the groove part were measured.
As for the width of the protrusions, for the ten protrusions randomly selected from the image, the width at the point between the tip part and the root part of the protrusion part is measured, and the average value is obtained. The width of the part.
Note that the protrusions were basically selected by excluding the protrusions protruding from the end of the major axis, and the protrusions were selected from the protrusions protruding from within 80% of the major axis width around the minor axis.
About the depth of a groove part, the distance of the front-end | tip part of a protrusion part and a root part was measured about ten randomly selected protrusion parts, the average value was calculated | required, and it was set as the depth of a groove part.
As for the width of the groove, from the image, for 10 randomly selected grooves, the width at the point between the tip and the root of the groove is measured, and the average value is obtained. did.
For the ellipse part, it is a part excluding the protruding part in the fiber cross section, and in the straight line passing through the center of the ellipse from the printed image, the longest part is the long axis part, and in the straight line passing through the center of the ellipse The portion having the shortest width was defined as the short axis portion, and the major axis that was the width of the major axis portion and the minor axis that was the width of the minor axis portion were each calculated from the average value of ten measurement results. Here, basically, the center of the circumscribed circle of the portion excluding the protruding portion in the fiber cross section is the center of the ellipse. In addition, when the center of the circumscribed circle does not exist in the portion excluding the protruding portion in the fiber cross section, the shortest portion in the straight line passing through the center of the circumscribed circle is the short axis portion, and the short axis portion On the straight line passing through the center, the longest portion was defined as the longest width portion.
[坪量 (g/m2)]
JIS P 8124「紙のメートル坪量測定方法」に準じて測定した。 [Basis weight (g / m 2 )]
Measured according to JIS P 8124 “Measuring basis weight of paper”.
JIS P 8124「紙のメートル坪量測定方法」に準じて測定した。 [Basis weight (g / m 2 )]
Measured according to JIS P 8124 “Measuring basis weight of paper”.
<実施例1>
ポリプロピレン(PP)と、エチレン-ビニルアルコール共重合体(株式会社クラレ製、エチレン共重合比率:8.7モル%)(EXCと略記することがある)とをそれぞれ別の押出機に供給して溶融し、PP/EXC=60/40(質量比)の割合で、複合繊維形成用ノズルから吐出して、図1に示す芯鞘型複合紡糸繊維(芯部:ポリプロピレン;鞘部:エチレン-ビニルアルコール共重合体)からなる芯鞘型複合紡糸繊維(図1)を形成しつつ、集積し、スパンボンド状繊維集積シートを作製した。芯鞘型複合紡糸繊維の繊度は3.3dtexであり、繊維集積シートの目付は120g/m2であった。
ついで、該不織布を95℃の熱水中に30分間浸漬静置し、前記芯鞘型複合紡糸繊維からエチレン-ビニルアルコール共重合体を除去し、図2に示す断面を有するフィルター繊維(繊度2.2dtex)を作製した。熱水処理後の集積シートを熱エンボスして形成したスパンボンド不織布の目付は72g/m2であった。繊維表面積(BET)は、1.94m2/gであった。
得られたフィルター繊維断面を観察すると、繊維断面は、中心部が略楕円形であり、この中心部から突起部が突出しており、これら全ての突起部について先端部は丸みを帯びていた。楕円形において、短軸部の幅は4μm、長軸部と短軸部の幅の比は3.7、突起部の数は30、突起部の幅は1.5μm、溝部の幅は0.15μm、溝部の深さは3μmであり、溝部の深さと溝部の幅との比(溝部深さ/溝部の幅)は、20/1であった。また、前記複合紡糸繊維からのエチレン-ビニルアルコール共重合体の付着量0.43質量%(対不織布質量)であった。 <Example 1>
Polypropylene (PP) and ethylene-vinyl alcohol copolymer (manufactured by Kuraray Co., Ltd., ethylene copolymerization ratio: 8.7 mol%) (sometimes abbreviated as EXC) are supplied to separate extruders. 1 is melted and discharged from a composite fiber forming nozzle at a ratio of PP / EXC = 60/40 (mass ratio), and the core-sheath composite spun fiber (core: polypropylene; sheath: ethylene-vinyl) shown in FIG. A core-sheath type composite spun fiber (FIG. 1) made of an alcohol copolymer was formed and accumulated to produce a spunbonded fiber integrated sheet. The fineness of the core-sheath type composite spun fiber was 3.3 dtex, and the basis weight of the fiber accumulation sheet was 120 g / m 2 .
Next, the nonwoven fabric was immersed in hot water at 95 ° C. for 30 minutes, and the ethylene-vinyl alcohol copolymer was removed from the core-sheath composite spun fiber to obtain a filter fiber having a cross section shown in FIG. .2 dtex). The basis weight of the spunbonded nonwoven fabric formed by hot embossing the accumulated sheet after the hot water treatment was 72 g / m 2 . The fiber surface area (BET) was 1.94 m 2 / g.
When the cross section of the obtained filter fiber was observed, the fiber cross section was substantially oval at the center, and the protrusion protruded from the center, and the tip of each of the protrusions was rounded. In the ellipse, the width of the short shaft portion is 4 μm, the ratio of the width of the long shaft portion to the short shaft portion is 3.7, the number of the protrusion portions is 30, the width of the protrusion portions is 1.5 μm, and the width of the groove portion is 0. The depth of the groove portion was 3 μm, and the ratio of the groove depth to the groove width (groove depth / groove width) was 20/1. Further, the adhesion amount of the ethylene-vinyl alcohol copolymer from the composite spun fiber was 0.43% by mass (vs. the mass of the nonwoven fabric).
ポリプロピレン(PP)と、エチレン-ビニルアルコール共重合体(株式会社クラレ製、エチレン共重合比率:8.7モル%)(EXCと略記することがある)とをそれぞれ別の押出機に供給して溶融し、PP/EXC=60/40(質量比)の割合で、複合繊維形成用ノズルから吐出して、図1に示す芯鞘型複合紡糸繊維(芯部:ポリプロピレン;鞘部:エチレン-ビニルアルコール共重合体)からなる芯鞘型複合紡糸繊維(図1)を形成しつつ、集積し、スパンボンド状繊維集積シートを作製した。芯鞘型複合紡糸繊維の繊度は3.3dtexであり、繊維集積シートの目付は120g/m2であった。
ついで、該不織布を95℃の熱水中に30分間浸漬静置し、前記芯鞘型複合紡糸繊維からエチレン-ビニルアルコール共重合体を除去し、図2に示す断面を有するフィルター繊維(繊度2.2dtex)を作製した。熱水処理後の集積シートを熱エンボスして形成したスパンボンド不織布の目付は72g/m2であった。繊維表面積(BET)は、1.94m2/gであった。
得られたフィルター繊維断面を観察すると、繊維断面は、中心部が略楕円形であり、この中心部から突起部が突出しており、これら全ての突起部について先端部は丸みを帯びていた。楕円形において、短軸部の幅は4μm、長軸部と短軸部の幅の比は3.7、突起部の数は30、突起部の幅は1.5μm、溝部の幅は0.15μm、溝部の深さは3μmであり、溝部の深さと溝部の幅との比(溝部深さ/溝部の幅)は、20/1であった。また、前記複合紡糸繊維からのエチレン-ビニルアルコール共重合体の付着量0.43質量%(対不織布質量)であった。 <Example 1>
Polypropylene (PP) and ethylene-vinyl alcohol copolymer (manufactured by Kuraray Co., Ltd., ethylene copolymerization ratio: 8.7 mol%) (sometimes abbreviated as EXC) are supplied to separate extruders. 1 is melted and discharged from a composite fiber forming nozzle at a ratio of PP / EXC = 60/40 (mass ratio), and the core-sheath composite spun fiber (core: polypropylene; sheath: ethylene-vinyl) shown in FIG. A core-sheath type composite spun fiber (FIG. 1) made of an alcohol copolymer was formed and accumulated to produce a spunbonded fiber integrated sheet. The fineness of the core-sheath type composite spun fiber was 3.3 dtex, and the basis weight of the fiber accumulation sheet was 120 g / m 2 .
Next, the nonwoven fabric was immersed in hot water at 95 ° C. for 30 minutes, and the ethylene-vinyl alcohol copolymer was removed from the core-sheath composite spun fiber to obtain a filter fiber having a cross section shown in FIG. .2 dtex). The basis weight of the spunbonded nonwoven fabric formed by hot embossing the accumulated sheet after the hot water treatment was 72 g / m 2 . The fiber surface area (BET) was 1.94 m 2 / g.
When the cross section of the obtained filter fiber was observed, the fiber cross section was substantially oval at the center, and the protrusion protruded from the center, and the tip of each of the protrusions was rounded. In the ellipse, the width of the short shaft portion is 4 μm, the ratio of the width of the long shaft portion to the short shaft portion is 3.7, the number of the protrusion portions is 30, the width of the protrusion portions is 1.5 μm, and the width of the groove portion is 0. The depth of the groove portion was 3 μm, and the ratio of the groove depth to the groove width (groove depth / groove width) was 20/1. Further, the adhesion amount of the ethylene-vinyl alcohol copolymer from the composite spun fiber was 0.43% by mass (vs. the mass of the nonwoven fabric).
得られたスパンボンド不織布サンプル表面をXPS分析により分析し、表面酸素量を測定した。結果を図4に示す。XPS分析により鞘部除去後の繊維表面を分析した結果では、繊維表面に酸素が確認出来ることから親水性ポリマーが残留している。得られたスパンボンド不織布サンプルに水滴を滴下して、水滴の広がりを観察した。その結果を図5Aに示す。また、上記不織布サンプルを95℃の熱水中に30分間浸漬処理し(浴比:1:20)、浸漬後取出して冷却・乾燥(60℃、10分)後、再び95℃熱水中での浸漬処理を行い、この処理を15回繰り返して、液滴吸収速度を測定し、その結果を図6に示した。
The surface of the obtained spunbond nonwoven fabric was analyzed by XPS analysis, and the surface oxygen content was measured. The results are shown in FIG. As a result of analyzing the fiber surface after removal of the sheath by XPS analysis, oxygen can be confirmed on the fiber surface, so that a hydrophilic polymer remains. Water drops were dropped on the obtained spunbond nonwoven fabric sample, and the spread of the water drops was observed. The result is shown in FIG. 5A. Further, the nonwoven fabric sample is immersed in hot water at 95 ° C. for 30 minutes (bath ratio: 1:20), taken out after immersion, cooled and dried (60 ° C., 10 minutes), and then again in 95 ° C. hot water. This treatment was repeated 15 times to measure the droplet absorption rate, and the results are shown in FIG.
<比較例1>
ポリプロピレン繊維(単糸フィラメント:3.3dtex)からなるスパンボンド不織布(目付:80g/m2)を、エチレン-ビニルアルコール共重合体(エチレン共重合比率:8.7モル%)水溶液(ポリマー濃度:0.4質量%)に浸漬して、0.4質量%(対フィルター繊維質量)のエチレン-ビニルアルコール共重合体がコートしたサンプルを作製した。 <Comparative Example 1>
A spunbonded nonwoven fabric (weight per unit area: 80 g / m 2 ) made of polypropylene fiber (single filament: 3.3 dtex) is mixed with an ethylene-vinyl alcohol copolymer (ethylene copolymerization ratio: 8.7 mol%) aqueous solution (polymer concentration: (0.4% by mass) to prepare a sample coated with 0.4% by mass (filter fiber mass) of ethylene-vinyl alcohol copolymer.
ポリプロピレン繊維(単糸フィラメント:3.3dtex)からなるスパンボンド不織布(目付:80g/m2)を、エチレン-ビニルアルコール共重合体(エチレン共重合比率:8.7モル%)水溶液(ポリマー濃度:0.4質量%)に浸漬して、0.4質量%(対フィルター繊維質量)のエチレン-ビニルアルコール共重合体がコートしたサンプルを作製した。 <Comparative Example 1>
A spunbonded nonwoven fabric (weight per unit area: 80 g / m 2 ) made of polypropylene fiber (single filament: 3.3 dtex) is mixed with an ethylene-vinyl alcohol copolymer (ethylene copolymerization ratio: 8.7 mol%) aqueous solution (polymer concentration: (0.4% by mass) to prepare a sample coated with 0.4% by mass (filter fiber mass) of ethylene-vinyl alcohol copolymer.
図4に示された結果から、本発明に係るフィルター繊維(実施例1)には、25モル%の表面酸素の存在が検出され、この表面酸素は、熱水処理が繰り返されても(25回)維持されていることが示されている。このことは、フィルター繊維の表面にエチレン-ビニルアルコール共重合体が付着していることを示している。一方、比較例1の繊維は、熱水処理が繰り返されるに従って、表面酸素量が減少しており、エチレン-ビニルアルコール共重合体が脱落しやすいことを示している。
図5Aに示された結果から、実施例1のフィルター繊維不織布では、水滴の滴下により水が吸収され、広がっていくのが観察されているが、図5Bの比較例1のサンプルでは、表面にエチレン-ビニルアルコール共重合体の存在量が実施例1の場合よりも少ないため、そのような現象は観察されなかった。
図6に示された結果から、本発明に係るフィルター繊維(実施例1)では、水の吸収が直ちにみられるのに対して、比較例1の場合では、熱水処理回数が多くなるにつれて、水滴吸収に時間を要し、熱水処理回数が進むにつれて、繊維表面からエチレン-ビニルアルコール共重合体の離脱が進んでいる状況が示されている。 From the results shown in FIG. 4, the presence of 25 mol% surface oxygen was detected in the filter fiber (Example 1) according to the present invention, and this surface oxygen was detected even after repeated hydrothermal treatment (25 Times) is shown to be maintained. This indicates that the ethylene-vinyl alcohol copolymer is adhered to the surface of the filter fiber. On the other hand, the fiber of Comparative Example 1 shows that the amount of surface oxygen decreases as the hot water treatment is repeated, indicating that the ethylene-vinyl alcohol copolymer tends to fall off.
From the results shown in FIG. 5A, in the filter fiber nonwoven fabric of Example 1, it is observed that water is absorbed and spread by dripping water droplets, but in the sample of Comparative Example 1 in FIG. Since the ethylene-vinyl alcohol copolymer was present in a smaller amount than in Example 1, such a phenomenon was not observed.
From the results shown in FIG. 6, in the filter fiber according to the present invention (Example 1), water absorption is immediately observed, whereas in the case of Comparative Example 1, as the number of hot water treatments increases, It takes time to absorb the water droplets, and it is shown that the ethylene-vinyl alcohol copolymer is being detached from the fiber surface as the number of hot water treatments is increased.
図5Aに示された結果から、実施例1のフィルター繊維不織布では、水滴の滴下により水が吸収され、広がっていくのが観察されているが、図5Bの比較例1のサンプルでは、表面にエチレン-ビニルアルコール共重合体の存在量が実施例1の場合よりも少ないため、そのような現象は観察されなかった。
図6に示された結果から、本発明に係るフィルター繊維(実施例1)では、水の吸収が直ちにみられるのに対して、比較例1の場合では、熱水処理回数が多くなるにつれて、水滴吸収に時間を要し、熱水処理回数が進むにつれて、繊維表面からエチレン-ビニルアルコール共重合体の離脱が進んでいる状況が示されている。 From the results shown in FIG. 4, the presence of 25 mol% surface oxygen was detected in the filter fiber (Example 1) according to the present invention, and this surface oxygen was detected even after repeated hydrothermal treatment (25 Times) is shown to be maintained. This indicates that the ethylene-vinyl alcohol copolymer is adhered to the surface of the filter fiber. On the other hand, the fiber of Comparative Example 1 shows that the amount of surface oxygen decreases as the hot water treatment is repeated, indicating that the ethylene-vinyl alcohol copolymer tends to fall off.
From the results shown in FIG. 5A, in the filter fiber nonwoven fabric of Example 1, it is observed that water is absorbed and spread by dripping water droplets, but in the sample of Comparative Example 1 in FIG. Since the ethylene-vinyl alcohol copolymer was present in a smaller amount than in Example 1, such a phenomenon was not observed.
From the results shown in FIG. 6, in the filter fiber according to the present invention (Example 1), water absorption is immediately observed, whereas in the case of Comparative Example 1, as the number of hot water treatments increases, It takes time to absorb the water droplets, and it is shown that the ethylene-vinyl alcohol copolymer is being detached from the fiber surface as the number of hot water treatments is increased.
<実施例2>
本発明に係るフィルター繊維(熱水処理後、不織布形成前)の濾過性を、粒子径の異なるmicromer(ラテックス粒子)[Micromod社製]を評価ダストとして用いて、図7に示す装置を使用し、評価サンプル(4)をサンプルホルダー(3)に取り付けて、評価用ダストの固形分濃度を0.125mg/Lに調整した試験液を350ml/分の送液量で2L通過後に採取した液の粒子数をパーティクルカウンター(PARTICLE MEASURING SYSTEMS社製:MODEL LS-200)で各粒子径の個数を測定することで評価した。 図7において、中空糸フィルター(2)は、フィルター洗浄においてフィルター洗浄水に含まれるダスト除去用である。ダストの捕集効率の評価は、下記の手順により行った。
(a)純水ダスト量測定:粒子数測定[1](補正用)
(b)濾過経路の洗浄
(c)サンプルの洗浄:粒子数測定[2](補正用)
(d)ダスト調整:粒子数測定[3]
(e)濾過試験:粒子数測定[4]
(f)捕集効率算出
捕集効率=100-([4]-[2])÷([3]-[1])×100
前記(c)工程の後、および上記(e)工程の終了時直前に、図7に示す装置に設置の圧力計により測定した。 <Example 2>
The filter fiber according to the present invention (after hydrothermal treatment and before nonwoven fabric formation) was evaluated using a micromer (latex particle) having a different particle diameter (manufactured by Micromod) as an evaluation dust and using the apparatus shown in FIG. The sample sample (4) was attached to the sample holder (3), and the test liquid prepared by adjusting the solid content concentration of the evaluation dust to 0.125 mg / L was passed through 2 L at a flow rate of 350 ml / min. The number of particles was evaluated by measuring the number of each particle diameter with a particle counter (manufactured by PARTICLE MEASURING SYSTEMS: MODEL LS-200). In FIG. 7, the hollow fiber filter (2) is for removing dust contained in the filter cleaning water in the filter cleaning. The dust collection efficiency was evaluated according to the following procedure.
(A) Pure water dust measurement: particle number measurement [1] (for correction)
(B) Filtration path washing (c) Sample washing: particle number measurement [2] (for correction)
(D) Dust adjustment: particle number measurement [3]
(E) Filtration test: particle number measurement [4]
(F) Collection efficiency calculation Collection efficiency = 100-([4]-[2]) ÷ ([3]-[1]) x 100
After the step (c) and immediately before the end of the step (e), the measurement was performed with a pressure gauge installed in the apparatus shown in FIG.
本発明に係るフィルター繊維(熱水処理後、不織布形成前)の濾過性を、粒子径の異なるmicromer(ラテックス粒子)[Micromod社製]を評価ダストとして用いて、図7に示す装置を使用し、評価サンプル(4)をサンプルホルダー(3)に取り付けて、評価用ダストの固形分濃度を0.125mg/Lに調整した試験液を350ml/分の送液量で2L通過後に採取した液の粒子数をパーティクルカウンター(PARTICLE MEASURING SYSTEMS社製:MODEL LS-200)で各粒子径の個数を測定することで評価した。 図7において、中空糸フィルター(2)は、フィルター洗浄においてフィルター洗浄水に含まれるダスト除去用である。ダストの捕集効率の評価は、下記の手順により行った。
(a)純水ダスト量測定:粒子数測定[1](補正用)
(b)濾過経路の洗浄
(c)サンプルの洗浄:粒子数測定[2](補正用)
(d)ダスト調整:粒子数測定[3]
(e)濾過試験:粒子数測定[4]
(f)捕集効率算出
捕集効率=100-([4]-[2])÷([3]-[1])×100
前記(c)工程の後、および上記(e)工程の終了時直前に、図7に示す装置に設置の圧力計により測定した。 <Example 2>
The filter fiber according to the present invention (after hydrothermal treatment and before nonwoven fabric formation) was evaluated using a micromer (latex particle) having a different particle diameter (manufactured by Micromod) as an evaluation dust and using the apparatus shown in FIG. The sample sample (4) was attached to the sample holder (3), and the test liquid prepared by adjusting the solid content concentration of the evaluation dust to 0.125 mg / L was passed through 2 L at a flow rate of 350 ml / min. The number of particles was evaluated by measuring the number of each particle diameter with a particle counter (manufactured by PARTICLE MEASURING SYSTEMS: MODEL LS-200). In FIG. 7, the hollow fiber filter (2) is for removing dust contained in the filter cleaning water in the filter cleaning. The dust collection efficiency was evaluated according to the following procedure.
(A) Pure water dust measurement: particle number measurement [1] (for correction)
(B) Filtration path washing (c) Sample washing: particle number measurement [2] (for correction)
(D) Dust adjustment: particle number measurement [3]
(E) Filtration test: particle number measurement [4]
(F) Collection efficiency calculation Collection efficiency = 100-([4]-[2]) ÷ ([3]-[1]) x 100
After the step (c) and immediately before the end of the step (e), the measurement was performed with a pressure gauge installed in the apparatus shown in FIG.
本発明に係るフィルター繊維(直径:17μm、2.2dtex)のみを2gカラムに充填したものについて、径の異なる評価ダストを用いてダスト捕集性を評価した。結果を図8に示した。
The dust trapping property was evaluated using evaluation dusts having different diameters for a 2 g column packed only with filter fibers (diameter: 17 μm, 2.2 dtex) according to the present invention. The results are shown in FIG.
<比較例2>
比較対象繊維として、断面円形のポリプロピレン繊維(直径:3.3μm、0.08dtex)について、上記と同様にしてダスト捕集性を評価した。結果を図8に示した。 <Comparative example 2>
As a comparison target fiber, a dust collecting property was evaluated in the same manner as described above for a polypropylene fiber having a circular cross section (diameter: 3.3 μm, 0.08 dtex). The results are shown in FIG.
比較対象繊維として、断面円形のポリプロピレン繊維(直径:3.3μm、0.08dtex)について、上記と同様にしてダスト捕集性を評価した。結果を図8に示した。 <Comparative example 2>
As a comparison target fiber, a dust collecting property was evaluated in the same manner as described above for a polypropylene fiber having a circular cross section (diameter: 3.3 μm, 0.08 dtex). The results are shown in FIG.
<比較例3>
比較対象繊維として、ポリプロピレン(PP)と、エチレン-ビニルアルコール共重合体(株式会社クラレ製、エチレン共重合比率:8.7モル%)(EXCと略記することがある)とをそれぞれ別の押出機に供給して溶融し、PP/EXC=60/40(質量比)の割合で、ヒダ数が32個となる複合繊維形成用ノズルから吐出して、芯鞘型複合紡糸繊維(芯部:ポリプロピレン;鞘部:エチレン-ビニルアルコール共重合体)からなる芯鞘型複合紡糸繊維を形成し、実施例1と同様に熱水処理を実施してフィルター繊維(繊度3.2dtex)を得た。
得られたフィルター繊維断面を観察すると、繊維断面は、中心部が略楕円形であり、この中心部から突起部が突出しており、これら全ての突起部について先端部は丸みを帯びていた。楕円形において、短軸部の幅は1.5μm、長軸部と短軸部の幅の比は17.6、突起部の数は32、突起部の幅は1.3μm、突起部の根元部の幅は1.3μm、溝部の深さは6μmであった。
実施例2と同様にしてダスト捕集性を評価した。 <Comparative Example 3>
Polypropylene (PP) and ethylene-vinyl alcohol copolymer (manufactured by Kuraray Co., Ltd., ethylene copolymerization ratio: 8.7 mol%) (sometimes abbreviated as EXC) as separate fibers for comparison It is supplied to a machine and melted and discharged from a composite fiber forming nozzle having a pleat number of 32 at a ratio of PP / EXC = 60/40 (mass ratio), and a core-sheath type composite spun fiber (core: A core-sheath composite spun fiber composed of polypropylene; sheath: ethylene-vinyl alcohol copolymer) was formed, and hydrothermal treatment was performed in the same manner as in Example 1 to obtain a filter fiber (fineness: 3.2 dtex).
When the cross section of the obtained filter fiber was observed, the fiber cross section was substantially oval at the center, and the protrusion protruded from the center, and the tip of each of the protrusions was rounded. In the oval shape, the width of the short shaft portion is 1.5 μm, the ratio of the width of the long shaft portion to the short shaft portion is 17.6, the number of protrusions is 32, the width of the protrusions is 1.3 μm, and the root of the protrusions The width of the part was 1.3 μm, and the depth of the groove part was 6 μm.
Dust collecting property was evaluated in the same manner as in Example 2.
比較対象繊維として、ポリプロピレン(PP)と、エチレン-ビニルアルコール共重合体(株式会社クラレ製、エチレン共重合比率:8.7モル%)(EXCと略記することがある)とをそれぞれ別の押出機に供給して溶融し、PP/EXC=60/40(質量比)の割合で、ヒダ数が32個となる複合繊維形成用ノズルから吐出して、芯鞘型複合紡糸繊維(芯部:ポリプロピレン;鞘部:エチレン-ビニルアルコール共重合体)からなる芯鞘型複合紡糸繊維を形成し、実施例1と同様に熱水処理を実施してフィルター繊維(繊度3.2dtex)を得た。
得られたフィルター繊維断面を観察すると、繊維断面は、中心部が略楕円形であり、この中心部から突起部が突出しており、これら全ての突起部について先端部は丸みを帯びていた。楕円形において、短軸部の幅は1.5μm、長軸部と短軸部の幅の比は17.6、突起部の数は32、突起部の幅は1.3μm、突起部の根元部の幅は1.3μm、溝部の深さは6μmであった。
実施例2と同様にしてダスト捕集性を評価した。 <Comparative Example 3>
Polypropylene (PP) and ethylene-vinyl alcohol copolymer (manufactured by Kuraray Co., Ltd., ethylene copolymerization ratio: 8.7 mol%) (sometimes abbreviated as EXC) as separate fibers for comparison It is supplied to a machine and melted and discharged from a composite fiber forming nozzle having a pleat number of 32 at a ratio of PP / EXC = 60/40 (mass ratio), and a core-sheath type composite spun fiber (core: A core-sheath composite spun fiber composed of polypropylene; sheath: ethylene-vinyl alcohol copolymer) was formed, and hydrothermal treatment was performed in the same manner as in Example 1 to obtain a filter fiber (fineness: 3.2 dtex).
When the cross section of the obtained filter fiber was observed, the fiber cross section was substantially oval at the center, and the protrusion protruded from the center, and the tip of each of the protrusions was rounded. In the oval shape, the width of the short shaft portion is 1.5 μm, the ratio of the width of the long shaft portion to the short shaft portion is 17.6, the number of protrusions is 32, the width of the protrusions is 1.3 μm, and the root of the protrusions The width of the part was 1.3 μm, and the depth of the groove part was 6 μm.
Dust collecting property was evaluated in the same manner as in Example 2.
<比較例4>
比較対象繊維として、断面円形のポリプロピレン繊維(直径:17.5μm、2.2dtex)について、上記と同様にしてダスト捕集性を評価した。 <Comparative example 4>
As a comparative fiber, a dust collecting property was evaluated in the same manner as described above for a polypropylene fiber having a circular cross section (diameter: 17.5 μm, 2.2 dtex).
比較対象繊維として、断面円形のポリプロピレン繊維(直径:17.5μm、2.2dtex)について、上記と同様にしてダスト捕集性を評価した。 <Comparative example 4>
As a comparative fiber, a dust collecting property was evaluated in the same manner as described above for a polypropylene fiber having a circular cross section (diameter: 17.5 μm, 2.2 dtex).
<比較例5>
比較対象繊維として、ポリプロピレン(PP)と、ポリ乳酸(PLA)とをそれぞれ別の押出機に供給して溶融し、PP/PLA=60/40(質量比)の割合で、実施例1の複合繊維形成用ノズルから吐出して、芯鞘型複合紡糸繊維(芯部:ポリプロピレン;鞘部:ポリ乳酸)からなる芯鞘型複合紡糸繊維を形成し、80℃の10%の水酸化ナトリウム中に浸漬しポリ乳酸成分を除去してフィルター繊維(繊度2.2dtex)を得た。得られた繊維は、95℃の熱水処理を15回行った場合、水濡れ性が維持されていなかった。
得られたフィルター繊維断面は実施例1と同様の形状となっており、実施例2と同様にしてダスト捕集性を評価した。
実施例2および比較例2~5で得られた結果を表1に示す。 <Comparative Example 5>
As comparative fibers, polypropylene (PP) and polylactic acid (PLA) were supplied to different extruders and melted, and the ratio of PP / PLA = 60/40 (mass ratio) in the composite of Example 1 A core-sheath type composite spun fiber composed of a core-sheath type composite spun fiber (core part: polypropylene; sheath part: polylactic acid) is formed by discharging from a fiber forming nozzle and placed in 10% sodium hydroxide at 80 ° C. The polylactic acid component was removed by dipping to obtain filter fibers (fineness: 2.2 dtex). When the obtained fiber was subjected to hot water treatment at 95 ° C. 15 times, the wettability was not maintained.
The obtained filter fiber cross section had the same shape as in Example 1, and the dust collecting property was evaluated in the same manner as in Example 2.
The results obtained in Example 2 and Comparative Examples 2 to 5 are shown in Table 1.
比較対象繊維として、ポリプロピレン(PP)と、ポリ乳酸(PLA)とをそれぞれ別の押出機に供給して溶融し、PP/PLA=60/40(質量比)の割合で、実施例1の複合繊維形成用ノズルから吐出して、芯鞘型複合紡糸繊維(芯部:ポリプロピレン;鞘部:ポリ乳酸)からなる芯鞘型複合紡糸繊維を形成し、80℃の10%の水酸化ナトリウム中に浸漬しポリ乳酸成分を除去してフィルター繊維(繊度2.2dtex)を得た。得られた繊維は、95℃の熱水処理を15回行った場合、水濡れ性が維持されていなかった。
得られたフィルター繊維断面は実施例1と同様の形状となっており、実施例2と同様にしてダスト捕集性を評価した。
実施例2および比較例2~5で得られた結果を表1に示す。 <Comparative Example 5>
As comparative fibers, polypropylene (PP) and polylactic acid (PLA) were supplied to different extruders and melted, and the ratio of PP / PLA = 60/40 (mass ratio) in the composite of Example 1 A core-sheath type composite spun fiber composed of a core-sheath type composite spun fiber (core part: polypropylene; sheath part: polylactic acid) is formed by discharging from a fiber forming nozzle and placed in 10% sodium hydroxide at 80 ° C. The polylactic acid component was removed by dipping to obtain filter fibers (fineness: 2.2 dtex). When the obtained fiber was subjected to hot water treatment at 95 ° C. 15 times, the wettability was not maintained.
The obtained filter fiber cross section had the same shape as in Example 1, and the dust collecting property was evaluated in the same manner as in Example 2.
The results obtained in Example 2 and Comparative Examples 2 to 5 are shown in Table 1.
表1に示すように、実施例2は、所定形状の楕円柱状部から突出するひだ状突起部を有するとともに、親水性ポリマーに由来して水濡れ性を有しているため、水中で良好なダスト捕集効率を示すだけでなく、流体を通液させる際の圧力についても低い値で維持することが可能である。すなわち、実施例2では、初期圧力が15Kpaと低い値であるだけでなく、濾過試験終了時における評価後圧力についても、20Kpaと、低い圧力を維持することが可能である。
As shown in Table 1, Example 2 has a pleated protrusion protruding from an elliptical columnar part having a predetermined shape, and also has water wettability derived from a hydrophilic polymer. In addition to exhibiting dust collection efficiency, it is possible to maintain the pressure at the time of passing a fluid at a low value. That is, in Example 2, not only the initial pressure is a low value of 15 Kpa, but also the post-evaluation pressure at the end of the filtration test can be maintained at a low pressure of 20 Kpa.
一方、比較例2では、実施例2のフィルター繊維の1/30程度の極細繊度であるため、捕集性の点では有利である。しかしながら、比較例2のフィルター繊維は、極細繊度であるとともに、水濡れ性を有していないため、濾過試験における初期圧力が55Kpaと極めて高い圧力となっている。濾過試験終了時には、圧力がさらに高くなり、評価後圧力は、85Kpaもの極めて高い値を示している。
On the other hand, Comparative Example 2 is advantageous in terms of trapping properties because it has a fineness of about 1/30 that of the filter fiber of Example 2. However, since the filter fiber of Comparative Example 2 has a very fineness and does not have water wettability, the initial pressure in the filtration test is an extremely high pressure of 55 Kpa. At the end of the filtration test, the pressure is further increased, and the post-evaluation pressure shows an extremely high value of 85 Kpa.
比較例3では、親水性ポリマーに由来して水濡れ性を有しているものの、繊維が本願発明で規定される所定形状を有していないため、捕集の点では満足する特性を示すものの、濾過試験における初期圧力が30Kpaと、実施例2の2倍もの高い圧力となっている。濾過試験終了時には、圧力がさらに高くなり、評価後圧力は、45Kpaと、実施例の2倍以上の高い値を示している。
In Comparative Example 3, although it is derived from a hydrophilic polymer and has water wettability, the fiber does not have the predetermined shape defined in the present invention, and thus exhibits satisfactory characteristics in terms of collection. The initial pressure in the filtration test is 30 Kpa, which is twice as high as that in Example 2. At the end of the filtration test, the pressure is further increased, and the post-evaluation pressure is 45 Kpa, which is twice as high as that of the example.
比較例4では、実施例2のフィルター繊維と同程度の繊度であるが、断面形状が丸断面であるとともに、水濡れ性を有していないため、捕集効率が0.1%以下と極めて低い値となっている。
In Comparative Example 4, the fineness is similar to that of the filter fiber of Example 2, but the cross-sectional shape is a round cross section and does not have water wettability, so the collection efficiency is extremely low at 0.1% or less. The value is low.
比較例5では、繊維が本願発明で規定される所定形状を有しているものの、親水性ポリマーに由来して水濡れ性を有していないため、捕集効率が実施例2と比較すると劣るだけでなく、濾過試験における初期圧力が25Kpaと、実施例2の濾過試験終了時よりも高い圧力となっている。濾過試験終了時には、圧力がさらに高くなり、評価後圧力は、30Kpaと、実施例2の1.5倍もの高い値を示している。
In Comparative Example 5, although the fibers have a predetermined shape defined in the present invention, the collection efficiency is inferior to that of Example 2 because it is derived from the hydrophilic polymer and does not have water wettability. In addition, the initial pressure in the filtration test is 25 Kpa, which is higher than that at the end of the filtration test of Example 2. At the end of the filtration test, the pressure was further increased, and the post-evaluation pressure was 30 Kpa, 1.5 times higher than Example 2.
本発明のフィルター繊維は、疎水性ポリマーから形成されているが、表面は多くのひだ状突起部を有して、高表面積を有し、しかも表面が水濡れ性を有するために、とくに水処理用のフィルター繊維として有用であることから、産業上の利用可能性がある。
Although the filter fiber of the present invention is formed from a hydrophobic polymer, the surface has many pleated projections, a high surface area, and the surface has water wettability, so that the water treatment is particularly effective. Since it is useful as a filter fiber for industrial use, it has industrial applicability.
以上、本発明の好ましい実施態様を例示的に説明したが、当業者であれば、特許請求の範囲に開示した本発明の範囲および精神から逸脱することなく多様な修正、付加および置換ができることが理解可能であろう。したがって、そのような変更および修正は、請求の範囲から定まる発明の範囲内のものと解釈される。
Although the preferred embodiments of the present invention have been described above by way of example, those skilled in the art can make various modifications, additions and substitutions without departing from the scope and spirit of the present invention disclosed in the claims. It will be understandable. Accordingly, such changes and modifications are to be construed as within the scope of the invention as defined by the appended claims.
1 3方コック
2 0.04μm中空糸フィルター
3 サンプルホルダー
4 評価サンプル 1 3-way cock 2 0.04 μm hollow fiber filter 3 Sample holder 4 Evaluation sample
2 0.04μm中空糸フィルター
3 サンプルホルダー
4 評価サンプル 1 3-
Claims (15)
- 疎水性ポリマーから構成された、複数のひだ状突起部を有するフィルター繊維であって、前記繊維の断面が、(a)略楕円形状を有する楕円部と、(b)前記楕円部から両側に延びる、先端が丸みを帯びた複数の突起部と、(c)前記突起部と前記突起部の間に形成される溝部と、から構成され、
前記繊維は、6dtex以下の繊度を有し、
前記楕円部は長軸部と短軸部からなり、前記短軸部の幅が、3~30μmであり、
前記繊維の表面には、親水性ポリマーが付着しており、前記繊維表面は、95℃の熱水処理を15回行った場合、水濡れ性が維持されている、フィルター繊維。 A filter fiber made of a hydrophobic polymer and having a plurality of pleated projections, wherein the cross section of the fiber is (a) an elliptical part having a substantially elliptical shape, and (b) extending from the elliptical part to both sides. A plurality of protrusions with rounded tips, and (c) a groove formed between the protrusions and the protrusions,
The fibers have a fineness of 6 dtex or less;
The ellipse part is composed of a long axis part and a short axis part, and the width of the short axis part is 3 to 30 μm,
A filter fiber, wherein a hydrophilic polymer is attached to the surface of the fiber, and the fiber surface maintains water wettability when subjected to hot water treatment at 95 ° C. 15 times. - 前記フィルター繊維において、前記長軸部の幅と前記短軸部の幅の比が、1.1~6.0である、請求項1に記載のフィルター繊維。 2. The filter fiber according to claim 1, wherein in the filter fiber, a ratio of a width of the major axis portion to a width of the minor axis portion is 1.1 to 6.0.
- 前記フィルター繊維において、溝部の深さと楕円短軸部の幅との比(溝部の深さ/楕円短軸部の幅)が0.02~3である、請求項1または2に記載のフィルター繊維。 3. The filter fiber according to claim 1, wherein a ratio of the groove depth to the elliptical short axis portion ratio (groove depth / elliptical minor axis width) is 0.02 to 3 in the filter fiber. .
- 前記フィルター繊維において、前記突起部は、幅0.5~4μmを有し、前記溝部の深さは、突起部の幅との比(溝部の深さ/突起部の幅)が、1/1~4/1である、請求項1~3のいずれか一項に記載のフィルター繊維。 In the filter fiber, the protrusion has a width of 0.5 to 4 μm, and the depth of the groove is a ratio of the width of the protrusion (depth of the groove / width of the protrusion) of 1/1. The filter fiber according to any one of claims 1 to 3, which is -4/1.
- 前記フィルター繊維において、突起部の幅と前記の溝部の幅との比(突起部の幅/溝部の幅)が、2/1~20/1である、請求項1~4のいずれか一項に記載のフィルター繊維。 5. The filter fiber according to claim 1, wherein a ratio of the width of the protrusion to the width of the groove (width of the protrusion / width of the groove) is 2/1 to 20/1. Filter fiber as described in.
- 前記疎水性ポリマーがポリオレフィン、ポリアミドまたはポリエステルである、請求項1または2に記載のフィルター繊維。 The filter fiber according to claim 1 or 2, wherein the hydrophobic polymer is polyolefin, polyamide or polyester.
- 前記親水性ポリマーが、熱溶融性かつ水溶性のエチレン-ビニルアルコール共重合体である、請求項1~6のいずれか一項に記載のフィルター繊維。 The filter fiber according to any one of claims 1 to 6, wherein the hydrophilic polymer is a heat-meltable and water-soluble ethylene-vinyl alcohol copolymer.
- 前記エチレン-ビニルアルコール共重合体が、0.1~20モル%のエチレン単量体単位を含有するエチレン-ビニルアルコール共重合体である、請求項7に記載のフィルター繊維。 The filter fiber according to claim 7, wherein the ethylene-vinyl alcohol copolymer is an ethylene-vinyl alcohol copolymer containing 0.1 to 20 mol% of ethylene monomer units.
- 前記親水性ポリマーの付着量が0.5質量%以下(対フィルター繊維)である、請求項1~8のいずれか一項に記載のフィルター繊維。 The filter fiber according to any one of claims 1 to 8, wherein the adhesion amount of the hydrophilic polymer is 0.5% by mass or less (to the filter fiber).
- 前記繊維が、前記疎水性ポリマーを芯層、前記親水性ポリマーを鞘層とする芯鞘型複合紡糸により形成された繊維から前記親水性ポリマーを除去して形成された繊維である、請求項1~9のいずれか一項に記載のフィルター繊維。 2. The fiber is a fiber formed by removing the hydrophilic polymer from a fiber formed by core-sheath composite spinning using the hydrophobic polymer as a core layer and the hydrophilic polymer as a sheath layer. The filter fiber according to any one of 1 to 9.
- 請求項1~10のいずれか一項に記載のフィルター繊維を含むフィルター。 A filter comprising the filter fiber according to any one of claims 1 to 10.
- 請求項11に記載のフィルターにおいて、前記フィルター繊維が乾式または湿式不織布を形成しているフィルター。 The filter according to claim 11, wherein the filter fiber forms a dry or wet nonwoven fabric.
- 請求項12のフィルターにおいて、前記乾式または湿式不織布をカートリッジに充填したフィルター。 The filter according to claim 12, wherein a cartridge is filled with the dry or wet nonwoven fabric.
- 水処理に用いられる、請求項11~13のいずれか一項に記載のフィルター。 The filter according to any one of claims 11 to 13, which is used for water treatment.
- 請求項11~14のいずれか一項記載のフィルターを用いて被除去物を含む水をろ過する水の処理方法。 A water treatment method for filtering water containing an object to be removed using the filter according to any one of claims 11 to 14.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016566565A JP6553646B2 (en) | 2014-12-26 | 2015-12-25 | Filter fiber, filter and water treatment method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-265447 | 2014-12-26 | ||
JP2014265447 | 2014-12-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016104784A1 true WO2016104784A1 (en) | 2016-06-30 |
Family
ID=56150796
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/086405 WO2016104784A1 (en) | 2014-12-26 | 2015-12-25 | Filter fiber, filter, and water treatment method |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6553646B2 (en) |
WO (1) | WO2016104784A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019203216A (en) * | 2018-05-23 | 2019-11-28 | 東レ株式会社 | Wet type nonwoven fabric |
EP3518652A4 (en) * | 2016-09-30 | 2020-07-01 | Jutta M. Gietl | Subsurface irrigation systems and methods |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62289668A (en) * | 1986-06-05 | 1987-12-16 | ユニチカ株式会社 | Flat composite polyester fiber |
JP2010509517A (en) * | 2006-11-03 | 2010-03-25 | アラッソ・インダストリーズ・インコーポレーテッド | Improved high surface area fibers and textiles produced therefrom |
JP2014073442A (en) * | 2012-10-03 | 2014-04-24 | Daiwabo Holdings Co Ltd | Filter and method for manufacturing the same |
-
2015
- 2015-12-25 WO PCT/JP2015/086405 patent/WO2016104784A1/en active Application Filing
- 2015-12-25 JP JP2016566565A patent/JP6553646B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62289668A (en) * | 1986-06-05 | 1987-12-16 | ユニチカ株式会社 | Flat composite polyester fiber |
JP2010509517A (en) * | 2006-11-03 | 2010-03-25 | アラッソ・インダストリーズ・インコーポレーテッド | Improved high surface area fibers and textiles produced therefrom |
JP2014073442A (en) * | 2012-10-03 | 2014-04-24 | Daiwabo Holdings Co Ltd | Filter and method for manufacturing the same |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3518652A4 (en) * | 2016-09-30 | 2020-07-01 | Jutta M. Gietl | Subsurface irrigation systems and methods |
JP2019203216A (en) * | 2018-05-23 | 2019-11-28 | 東レ株式会社 | Wet type nonwoven fabric |
JP7047593B2 (en) | 2018-05-23 | 2022-04-05 | 東レ株式会社 | Wet non-woven fabric |
Also Published As
Publication number | Publication date |
---|---|
JP6553646B2 (en) | 2019-07-31 |
JPWO2016104784A1 (en) | 2017-10-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6441446B2 (en) | Nanofiber-containing composite structure | |
JP5593344B2 (en) | Engine fuel filtration method | |
JP6593170B2 (en) | Fiber laminate including ultrafine fibers and filter comprising the same | |
CN109219475B (en) | Filter assembly, method of manufacturing the same, and filter module including the same | |
JP5150137B2 (en) | Method for producing ultrafine fiber nonwoven fabric | |
CN108472566B (en) | Cartridge filter using nanofiber composite fiber yarn and method for manufacturing the same | |
TWI758722B (en) | Filter media comprising polyamide nanofiber layer | |
JP5043050B2 (en) | Cartridge filter for liquid filtration | |
US10981095B2 (en) | Nonwoven fabric and air filter including same | |
US11141686B2 (en) | Backwashable depth filter | |
WO2016104784A1 (en) | Filter fiber, filter, and water treatment method | |
US20060278574A1 (en) | Fluid treatment element | |
JP2022551565A (en) | Filter medium containing a fine fiber layer | |
WO2020196515A1 (en) | Depth filter | |
JP2001321619A (en) | Filter cartridge | |
JP5836191B2 (en) | Cylindrical filter | |
JP5836190B2 (en) | Cylindrical filter | |
WO2016081937A1 (en) | In-situ charging fiber spinning method for producing a nonwoven electret | |
JP2001321620A (en) | Cylindrical filter | |
JP4464433B2 (en) | Cylindrical filter | |
JP2004000851A (en) | Cylindrical filter and its production method | |
JP4464434B2 (en) | Cylindrical filter | |
JPH0518614U (en) | Cartridge Filter | |
JP4073150B2 (en) | Cylindrical filter | |
JP2001112862A (en) | Blood filter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15873352 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016566565 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15873352 Country of ref document: EP Kind code of ref document: A1 |