WO2016104496A1 - Drowsiness estimation device and drowsiness estimation program - Google Patents

Drowsiness estimation device and drowsiness estimation program Download PDF

Info

Publication number
WO2016104496A1
WO2016104496A1 PCT/JP2015/085813 JP2015085813W WO2016104496A1 WO 2016104496 A1 WO2016104496 A1 WO 2016104496A1 JP 2015085813 W JP2015085813 W JP 2015085813W WO 2016104496 A1 WO2016104496 A1 WO 2016104496A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
rri
index
estimation
sleepiness
Prior art date
Application number
PCT/JP2015/085813
Other languages
French (fr)
Japanese (ja)
Inventor
秀俊 奥富
好将 藤原
Original Assignee
東芝情報システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝情報システム株式会社 filed Critical 東芝情報システム株式会社
Publication of WO2016104496A1 publication Critical patent/WO2016104496A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/0245Detecting, measuring or recording pulse rate or heart rate by using sensing means generating electric signals, i.e. ECG signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/346Analysis of electrocardiograms
    • A61B5/349Detecting specific parameters of the electrocardiograph cycle

Definitions

  • the present invention relates to a sleepiness estimation apparatus and a sleepiness estimation program.
  • Patent Document 1 discloses a device that detects the drowsiness level of a driver using an FFT processing result of a heartbeat signal. More specifically, the wakefulness index band ⁇ is set centering on the peak frequency of the spectrum signal that is the result of the FFT processing of the heartbeat signal, and the sleepiness is centered on a predetermined ratio (65 to 90%) with respect to the peak frequency during wakefulness. The degree index band ⁇ is set.
  • Cited Document 2 based on the driver's heartbeat and the like, when specifying and outputting a chronically dangerous position for driving such as a dark place, a place with poor visibility, or a place with many on-street parking, It is described that the dangerous position is accurately identified by identifying the influence of the fluctuation and obtaining an appropriate heartbeat fluctuation.
  • Cited Document 3 heart rate interval data in which RR intervals are time-sequentially obtained from a heart rate waveform is obtained, and this heart rate interval data is frequency-analyzed to obtain a power spectrum density (PSD) and an autonomic nerve total power (TP). Based on the frequency analysis result of heart rate fluctuations including the initial state, the sleepiness scale with the origin of the sleepiness position and the origin of the awakening position set based on the estimated sleepiness position and the estimated awakening position included in the initial state It is described that the sleepiness determination is performed using this sleepiness scale.
  • PSD power spectrum density
  • TP autonomic nerve total power
  • Cited Document 4 a heartbeat interval is detected from a heartbeat signal, a spectral density with respect to fluctuation of the heartbeat interval is obtained, a maximum spectral density corresponding to the maximum frequency and the maximum frequency is calculated, and the calculated maximum frequency and maximum frequency are calculated. It is described that it is determined whether or not the user is in an arousal state based on the fluctuation tendency of the maximum spectral density corresponding to.
  • the present invention has been made as a solution to the conventional problems related to sleepiness estimation as described above, and its purpose is to provide a sleepiness estimation apparatus capable of estimating sleepiness with higher accuracy corresponding to individual differences and the like, and It is to provide a drowsiness estimation program.
  • An apparatus for estimating sleepiness includes an RRI acquisition unit that acquires RRI data that is data of an RR interval from a signal obtained by an RRI sensor that detects a signal corresponding to an R wave of an electrocardiogram signal; Based on the result of statistical processing and the result of spectrum analysis of the RRI data, an index value calculation means for calculating an index value for a plurality of types of activity indexes related to autonomic nerve activity, a threshold value and / or a fluctuation state for each activity index And drowsiness estimation means for evaluating the index value calculated by the index value calculation means and estimating drowsiness based on a drowsiness estimation rule constituted by an estimation function evaluated by the above.
  • the activity index as a result of statistical processing of the RRI data includes: SDRR: (standard deviation of RRI)
  • RMSSD (the square root of the root mean square of the difference between adjacent RRIs)
  • SDSD (standard deviation of the difference between adjacent RRIs)
  • pRR50 (Percentage where the difference between adjacent RRIs exceeds 50 (milliseconds)) It is characterized by including at least one of these.
  • the index value calculation means calculates an index value for unit time using the RRI data for each first time, collects the index values for unit time for each type of activity index, and
  • the index value vector time series is created by arranging the vectorized index values in a time series, and the sleepiness estimation means performs sleepiness estimation using an estimation function that is evaluated using a threshold vector and the index value vector time series.
  • the estimation function of the sleepiness estimation rule includes a comparison condition between each of the thresholds corresponding to the activity index and a condition of presence / absence of a predetermined fluctuation state, and is either AND or OR. Or two or more of these AND and OR are used to combine the above conditions.
  • the drowsiness estimation apparatus is characterized by including data shaping means that performs at least one of trend removal, abnormal value removal, data interpolation, and filter processing, which are removal of a predetermined frequency component.
  • the sleepiness estimation program is an RRI acquisition unit that acquires RRI data that is data of an RR interval from a signal obtained by an RRI sensor that detects a signal corresponding to an R wave of an electrocardiogram signal.
  • Index value calculation means for calculating an index value for a plurality of types of activity indexes related to autonomic nerve activity based on the result of statistical processing of data and the result of spectrum analysis of the RRI data, threshold value and / or fluctuation for each activity index Based on a drowsiness estimation rule configured by an estimation function that is evaluated according to a state, the index value calculated by the index value calculation unit is evaluated to function as a drowsiness estimation unit that estimates drowsiness.
  • the activity index as a result of statistical processing of the RRI data includes: SDRR: (standard deviation of RRI)
  • RMSSD (the square root of the root mean square of the difference between adjacent RRIs)
  • SDSD (standard deviation of the difference between adjacent RRIs)
  • pRR50 (Percentage where the difference between adjacent RRIs exceeds 50 (milliseconds)) It is characterized by including at least one of these.
  • the index value calculation means calculates an index value for unit time using the RRI data for each first time, collects the index values for unit time for each type of activity index, and
  • the index value vector time series is created by arranging the vectorized index values in a time series, and the sleepiness estimation means performs sleepiness estimation using an estimation function that is evaluated using a threshold vector and the index value vector time series.
  • the estimation function of the sleepiness estimation rule includes a comparison condition between each of the thresholds corresponding to the activity index and a condition of presence / absence of a predetermined fluctuation state, and is either AND or OR. Or two or more of these AND and OR are used to combine the above conditions.
  • the sleepiness estimation program causes the computer to function as data shaping means that performs at least one of trend removal, abnormal value removal, data interpolation, and filter processing, which are removal of a predetermined frequency component.
  • index values are calculated for a plurality of types of activity indexes related to autonomic nerve activity, and threshold values for each activity index and / or
  • the activity index is evaluated and sleepiness is estimated based on the sleepiness estimation rule configured by the estimation function that is evaluated based on the fluctuation state. Therefore, the activity index of the autonomic nerve based on the result of statistical processing of the RRI data and the spectrum analysis of the RRI data are performed.
  • sleepiness is estimated from various directions, and more accurate sleepiness can be estimated corresponding to individual differences and the like.
  • the block diagram of 1st Embodiment of the sleepiness estimation apparatus which concerns on this invention The figure which shows the electrocardiogram waveform for demonstrating RRI in an electrocardiogram signal.
  • the block diagram which shows the internal structure of the system which comprised 1st Embodiment of the sleepiness estimation apparatus which concerns on this invention centering on the terminal.
  • the flowchart which shows the process by the sleepiness estimation processing program of 1st Embodiment of the sleepiness estimation apparatus which concerns on this invention.
  • the block diagram which shows the 2nd structural example of the data shaping means which is the principal part in embodiment of the sleepiness estimation apparatus which concerns on this invention.
  • the figure which shows an example of RRI data in case loop count of the loop process is 0 in embodiment of the sleepiness estimation apparatus which concerns on this invention.
  • the figure which shows an example of RRI data in case loop count of the loop process is 3 in embodiment of the sleepiness estimation apparatus which concerns on this invention.
  • the figure which is RRI data processed in embodiment of the drowsiness estimation apparatus which concerns on this invention, Comprising: RRI data (before shaping) 4000 seconds after index calculation start time T0 (cnt 400).
  • the figure which shows the data after shaping the waveform by the trend removal part of embodiment of the sleepiness estimation apparatus which concerns on RRI data shown in FIG. The figure which shows the data after carrying out waveform shaping by the abnormal value removal part of embodiment of the sleepiness estimation apparatus which concerns on RRI data shown in FIG.
  • the figure which shows the data after waveform shaping by the data interpolation part of embodiment of the sleepiness estimation apparatus which concerns on RRI data shown in FIG. The figure which shows the filter characteristic of the filter process part of embodiment of the sleepiness estimation apparatus which concerns on this invention.
  • the figure which shows the data after carrying out waveform shaping by the filter process part of embodiment of the sleepiness estimation apparatus which concerns on RRI data shown in FIG. The figure which shows PSD obtained by the FFT direct method.
  • required by the maximum entropy method (burg method).
  • the block diagram of 3rd Embodiment of the sleepiness estimation apparatus which concerns on this invention The block diagram which shows the internal structure of the system which comprised 3rd Embodiment of the sleepiness estimation apparatus which concerns on this invention centering on the terminal and the server.
  • the flowchart which shows the process by the sleepiness estimation program of 3rd Embodiment of the sleepiness estimation apparatus which concerns on this invention.
  • the block diagram of 4th Embodiment of the sleepiness estimation apparatus which concerns on this invention.
  • a heart rate sensor can be used as the RRI sensor 10 that detects a signal corresponding to the R wave of the electrocardiogram signal.
  • the RRI sensor 10 may use a configuration of a part for taking out an electrocardiogram signal of an electrocardiograph or a pulse wave sensor.
  • the RRI sensor 10 is provided on a living body, detects an electrocardiogram signal as shown in FIG. 2B by wireless or wired, and outputs an RRI (before shaping) 1001 as shown in FIG.
  • a QRS wave having an R peak can be observed in the electrocardiogram signal. QRS waves are assumed to be generated when the entire ventricle is rapidly excited. Further, the P wave in front thereof is a wave when excitement occurs in the sinoatrial node and the atrium contracts. Further, the T wave appearing behind the QRS wave is a wave generated when the excitement of the ventricle is recovered. For the analysis of the heart, the PQ time, QRS time, QT time and the like obtained from the P wave, QRS wave, and T wave are used as important parameters.
  • R waves appear at predetermined intervals according to the pulsation, so that RRI is also an important parameter and is known to be related to autonomic nerve activity. . In this embodiment, this RRI data is used for sleepiness estimation.
  • the terminal 20 includes an RRI acquisition unit 21, a data shaping unit 22, an index value calculation unit 23, a sleepiness estimation unit 24, and an output unit 25.
  • the RRI acquisition means 21 acquires RRI data sent by the RRI sensor 10.
  • the RRI sensor 10 may output an electrocardiogram signal.
  • the RRI acquisition unit 21 creates RRI data based on the electrocardiogram signal.
  • the data shaping means 22 has a configuration for performing at least one of trend removal, abnormal value removal, data interpolation, and filter processing, which is removal of a predetermined frequency component. These configurations will be described in detail later as a trend removal unit 222, an abnormal value removal unit 223, a data interpolation unit 224, a filter processing unit 225, and the like.
  • the index value calculation means 23 calculates the index value of the autonomic nerve based on the RRI data. For example, based on the result of statistical processing of the RRI data and the result of spectrum analysis of the RRI data, a plurality of types For the autonomic nerve activity index, the index value can be calculated.
  • the index value calculation means 23 calculates an index value for unit time using the RRI data for each first time, collects the index values for unit time for each type of activity index, and vectorizes the index values. Create an index value vector time series in a series.
  • the sleepiness estimation means 24 estimates sleepiness by evaluating the activity index calculated by the index value calculation means 23 on the basis of a sleepiness estimation rule constituted by an estimation function that is evaluated based on a threshold value related to an activity index and / or a fluctuation state. To do.
  • the output means 25 outputs the estimation result by the sleepiness estimation means 24 and is used for generating an alarm, stopping the operation of the device, warning, or the like.
  • the terminal 20 can be configured by a smartphone, a tablet terminal, a mobile terminal, or the like.
  • the cloud storage 30 is connected to the terminal 20.
  • the cloud storage 30 includes sensor characteristic information 1101 and sleepiness estimation rules 1102 in advance.
  • the sensor characteristic information 1101 is used when the data shaping unit 22 executes data shaping.
  • the sleepiness estimation rule 1102 is used when the sleepiness estimation means 24 estimates sleepiness.
  • the cloud storage 30 indicates that the acquired RRI data acquired in the terminal 20 may be stored as acquired RRI 1012X of history data, and this acquired RRI 1012X is not shown in the present embodiment. It may be used for updating the sleepiness estimation rule 1102.
  • the sleepiness estimation of the above configuration has the configuration shown in FIG.
  • the RRI sensor 10 described above, the terminal 20, and the cloud storage 30 are included.
  • the terminal 20 performs processing under the control of the CPU, and includes a memory that temporarily stores data being processed and the like, and a nonvolatile memory that stores various processing data.
  • the terminal 20 includes a communication unit that performs communication via a telephone line or communication via a network, an input / output unit that can input information and commands via a touch screen, and display various data and images, and time data. Has a timer to retrieve. Communication with the cloud storage 30 can be performed by the communication unit.
  • the storage device includes various application programs, application software, various browsers, a data processing program for performing data processing such as data acquisition and data shaping performed in the present embodiment, and a sleepiness estimation program for performing sleepiness estimation processing. Etc., parameters and programs for sleepiness estimation processing are provided.
  • the cloud storage 30 performs processing under the control of the CPU, and includes a memory that temporarily stores data being processed, a non-volatile memory that stores various types of processing data, and the like. And a communication unit that performs communication via the network (here, mainly communication with the terminal 20).
  • the storage device also includes various parameters and programs for sleepiness estimation processing.
  • the CPU performs processing corresponding to the flowchart shown in FIG. 4 in the terminal 20 using the data processing program and the sleepiness estimation program.
  • the cloud storage 30 includes sensor characteristic information 1101 and sleepiness estimation rules 1102.
  • the sensor characteristic information 1101 is used for the purpose of correcting the RRI data in the data shaping unit 22 shown in FIGS. 1 and 4 in order to absorb the characteristic difference due to the difference in the sensor model.
  • the peak of the QRS wave is used. Is corrected by the correction value when the characteristic is not sharp or is sharp but has a large error.
  • the sensor characteristic information 1101 does not exist in the cloud storage 30, it is not necessary to perform correction particularly for the purpose of absorbing differences in sensor models.
  • the sleepiness estimation rule 1102 is configured by an estimation function that is evaluated based on a threshold and / or a fluctuation state regarding each activity index.
  • the estimation function of the sleepiness estimation rule 1102 which will be described in detail later, includes a comparison condition between the activity index and the corresponding threshold value, and a condition of presence / absence of a predetermined fluctuation state, and uses either AND or OR. Alternatively, two or more of these AND and OR can be used to combine the above conditions.
  • the start processing unit 201 is first executed, the loop start unit 202 is then started, and the RRI acquisition unit 21 and the subsequent steps are executed.
  • the processing after the RRI acquisition unit 21 sandwiched between the loop start unit 202 and the loop end determination unit 203 is loop processing, and the loop processing is continued until the loop end determination unit 203 determines the end.
  • the termination in this case can be executed by the user performing a predetermined key operation from the terminal 20, for example.
  • the loop counter cnt is incremented every time the processing returns to the RRI acquisition means 21.
  • cnt 0, 1, 2,... (Starting value of cnt is zero).
  • Loop processing (between the loop start unit 202 and the loop end determination unit 203) is performed every index value calculation time interval DT [seconds] determined by the start processing unit 201. Therefore, if the measurement start time by the RRI sensor 10 is T0, and the RRI data length handled in one loop process is LT [seconds], the cnt-th loop process has time T0 + cnt ⁇ DT to time T0 + cnt ⁇ DT + LT. RRI data acquired during LT [seconds] is processed.
  • the start processing unit 201 sets parameters for each process performed in this process.
  • the parameter is the time interval DT [seconds] (index value calculation time interval) of reprocessing by the subsequent loop processing (between the loop start unit 202 and the loop end determination unit 203).
  • RRI data handled in one loop processing The data includes parameters for the long time LT [seconds], data shaping processing parameters and constants in the subsequent data shaping means 22, and heart rate analysis parameters and constants in the subsequent index value calculation means 23.
  • a default value prepared in advance can be used as the parameter, but some candidate parameters may be prepared and changed by executing a change procedure at a predetermined timing or the like.
  • the start processing unit 201 accesses the cloud storage 30 and reads if there is sensor characteristic information 1101 corresponding to the RRI sensor model.
  • the sensor characteristic information 1101 does not exist in the cloud storage 30, no correction is performed particularly for the purpose of absorbing differences between sensor models.
  • the start processing unit 201 reads the drowsiness estimation rule 1102 connected to the cloud storage 30 and updated for improving the estimation accuracy.
  • the sleepiness estimation rule 1102 used in the previous sleepiness estimation process is applied.
  • the loop start unit 202 is activated, and the processing of the RRI acquisition unit 21 is executed.
  • the RRI acquisition unit 21 sequentially executes the following using the measurement start time T0, the RRI time length LT, and the index value calculation time interval DT. That is, the RRI (before shaping) 1001 is acquired from the RRI sensor 10 in real time. For example, data as shown in FIG. 10 is acquired. In the example of FIG. 10, “680” (unit: [milliseconds]) is first fetched from the RRI sensor 10, and thereafter “710”, “593”, “827”,... ing.
  • the RRI acquisition unit 21 acquires the time 1002 when one piece of RRI data is generated from a timer built in the RRI sensor 10 or a timer provided in the terminal 20.
  • Data associating the time 1002 with the RRI (before shaping) 1001 is added and stored in a register (not shown) as RRI2 (before shaping) 1012.
  • This data is, for example, the data shown in FIG. 11.
  • the first data acquired from the RRI sensor 10 is the time of 15:09:19 seconds and 600 milliseconds, and in FIG. It indicates that it is data at the indicated time.
  • RRI3 (before shaping) 1013 includes the RRI that has been performed and one RRI before and after the RRI.
  • the data up to 15:15:20 includes the data immediately before 15:10:20 and the data after 15:15:20, as shown in FIG. .
  • the processing by the data shaping means 22 is performed.
  • a required one is selected from a plurality of configurations shown in FIGS.
  • four types of data shaping means 22 FIG. 5
  • data shaping means 221A FIG. 6
  • data shaping means 221B FIG. 7
  • data shaping means 221C FIG. 8
  • the data shaping means 22 includes a trend removing unit 222, an abnormal value removing unit 223, a data interpolation unit 224, and a filter processing unit 225.
  • the data shaping unit 22 performs shaping processing on the RRI 3 (before shaping) 1013, and finally RRI (after shaping) 1014 is generated.
  • the trend removing unit 222 removes RRI ultra-low frequency components that are not handled in the present embodiment.
  • the householder method is applied to RRI3 (before shaping) 1013 to calculate the least square estimation amount. Next, the least square curve is removed from the RRI 3 (before shaping) 1013.
  • the order of the Householder method is about 6th (Mino Hino, “Spectrum Analysis”, Asakura Shoten (2009)).
  • FIG. 15 shows the waveform of RRI3 (before shaping) 1013
  • FIG. 16 shows the waveform data after trend removal obtained by applying the processing by the trend removal unit 222 to the RRI 3 (before shaping) 1013 shown in FIG.
  • the abnormal value removing unit 223 that performs processing following the trend removing unit 222 removes the abnormal value of the sensor based on a mathematical basis. This is a process performed when an abnormal value is mixed, because a correct value cannot be obtained for the index (activity index) calculated by the index value calculation means 23 thereafter.
  • FIG. 17 shows data after removing abnormal values obtained by applying the processing by the abnormal value removing unit 223 to the data after removing the trend in FIG.
  • the data after trend removal shown in FIG. 16 is handled as an abnormal value if it exceeds ⁇ 300 [ms].
  • ⁇ 300 In addition to exclusion by an absolute numerical value such as ⁇ 300, for example, when an RRI histogram is created, data exceeding ⁇ 5 ⁇ is treated as an abnormal value.
  • the data interpolation unit 224 that performs processing next to the abnormal value removal unit 223 calculates RRI data at regular time intervals using spline interpolation, linear interpolation, or the like. This corresponds to the preprocessing for calculating the FFT in the index value calculation means 23 that performs processing thereafter.
  • FIG. 18 shows post-interpolation data obtained by applying the processing by the data interpolation unit 224 to the data after the abnormal value removal shown in FIG. In this embodiment, linear interpolation is performed.
  • FIG. 20 shows an RRI (after shaping) 1014 obtained by applying the processing by the filter processing unit 225 to the data after interpolation in FIG.
  • the characteristics of the filter applied in this embodiment are as shown in FIG. 19, and the purpose is to focus attention (emphasis) on the frequency components included in the latest data in the frequency analysis after waveform shaping.
  • the old data signal (power) is reduced.
  • the filter used in the filter processing unit 225 is not limited to the characteristics shown in this embodiment, and various filters can be used according to the purpose of analysis.
  • the data shaping unit 221A shown in FIG. 6 has a configuration in which a first stage abnormal value removing unit 226A is provided in the previous stage of the data shaping unit 22 shown in FIG.
  • the data shaping unit 221A includes a first abnormal value removing unit 226A, a trend removing unit 222, a second abnormal value removing unit 223A, a data interpolation unit 224, and a filter processing unit 225.
  • the first abnormal value removing unit 226A performs the shaping process sequentially on the RRI 3 (before shaping) 1013 by the filter processing unit 225, and finally generates the RRI (after shaping) 1014.
  • the difference between the first abnormal value removing unit 226A and the second abnormal value removing unit 223A is that the first abnormal value removing unit 226A removes known “obvious” abnormal values related to the characteristics of the sensor, etc.
  • the second abnormal value removing unit 223A removes the abnormal value based on a mathematical basis.
  • the data shaping unit 221B illustrated in FIG. This data shaping means 221B is used particularly when a highly accurate heart rate sensor is used.
  • the data shaping unit 221 ⁇ / b> C shown in FIG. 8 includes only the data interpolation unit 224.
  • the data shaping unit 22 of the present embodiment can employ any configuration except that the data interpolation unit 224 is an essential component. Therefore, a configuration other than the configuration shown in the present embodiment may be added to the data shaping unit 22 as appropriate.
  • correction according to the sensor characteristic information 1101 may be performed on the data at a predetermined time. This is to absorb the characteristic difference due to the difference in the sensor model.
  • the index value calculation means 23 includes an index 1 calculation unit 232-1 to an index m calculation unit 232-m, and a vectorization unit 233.
  • the index 1 calculation unit 232-1 to the index m calculation unit 232-m calculate m autonomic nerve activity indices (plurality) based on heart rate variability using RRI3 (before shaping) 1013 and RRI (after shaping) 1014. To do.
  • Examples of the autonomic nerve activity index (plurality) based on heart rate variability used in the present embodiment include the following.
  • -Activity index related to product moment statistics SDRR: RRI standard deviation (sympathetic and parasympathetic activity index)
  • RMSSD root mean square of adjacent RRI differences (parasympathetic activity index)
  • SDSD Standard deviation of the difference between adjacent RRIs (parasympathetic activity index)
  • pRR50 Rate at which the difference between adjacent RRIs exceeds 50 [milliseconds] (parasympathetic activity index)
  • the activity index related to the product moment statistic is given by the following equation when the data of RRI3 (after shaping) 1013 is x i (1 ⁇ i ⁇ m).
  • the calculation of the index based on the spectrum analysis is performed by first applying an FFT, a maximum entropy method, etc. to the RRI (after shaping) 1014 (that is, ⁇ x i ⁇ sequence (1 ⁇ i ⁇ m)) PSD (power spectral density function). )
  • the FFT calculation is well known, and detailed description thereof is omitted here.
  • FIG. 21 is a diagram showing PSD obtained by the FFT direct method.
  • FIG. 22 is a diagram showing PSD obtained by the maximum entropy method (burg method).
  • a method for obtaining the PSD there is a method for obtaining by PSD and AR model prediction (Yule-Walker method) in addition to the above.
  • HF / (LF + HF) is shown as an index, but Ratio may be LF / (LF + HF) or HF / LF.
  • the section at [Hz] is divided into 10 sections, and the power is calculated in units of divided sections. That is, the power is obtained by the processing shown by the following equation.
  • FIG. 23 is a diagram showing that the above 0.15 to 0.40 [Hz] section of PSD obtained by the FFT direct method is divided into 10 sections from section I to section X, and the power is obtained in each section. It is. Further, FIG. 24 shows that the above 0.15-0.40 [Hz] section of PSD obtained by the maximum entropy method (burg method) is divided into 10 sections from section I to section X.
  • FIG. Of course, the division number 10 is an example, and it may be divided into an arbitrary number of sections of 2 or more.
  • y j , cnt (j 1, 2, 3,..., M)
  • index value vector time series unit Since the index value calculation means 23 of FIG. 4 includes an index value vector time series unit (not shown), the index value vector time series unit will be described below.
  • the drowsiness estimation unit 24 that performs processing subsequent to the index value calculation unit 23 will be described.
  • the sleepiness estimation rule 1102 includes a threshold vector RR with a threshold value, an index value vector time series DD, and an estimation function f having the threshold vector RR as arguments.
  • f (DD, RR) means an estimated value.
  • YY cnt ⁇ y 1, cnt , y 2, cnt ,..., Y m, cnt ⁇ , and at least one y j, cnt (1 ⁇ j ⁇ m) can be used. That is, an index value vector corresponding to at least one time among index value vectors corresponding to time k + 1 is referred to, and one or more of m elements of these index value vectors are used. be able to.
  • Example 1 A more specific example 1 of the estimation function f will be shown.
  • Example 1 it can be determined that there is “sleepiness” when the following conditions 1 to 3 are satisfied. This is an example of binary determination.
  • Condition 1 HF / (LF + HF) ⁇ 0.2
  • Condition 2 p 5 ⁇ 3.8 or p 6 ⁇ 4.2
  • Condition 3 HF ⁇ 200
  • the index name, the index variable, and the threshold value have correspondence as shown in FIG.
  • the variables of index names p 5 , p 6 and HF are y 13 , y 14 and y 6
  • RR ⁇ 7, 0.2 ⁇ , ⁇ 13, 3.8 ⁇ , ⁇ 14 4.2 ⁇ , ⁇ 6,200 ⁇ , ⁇ index number, threshold ⁇ , ⁇ index number, threshold ⁇ , ⁇ index number, threshold ⁇ , ⁇ index number, threshold ⁇ ,. Can be configured.
  • f (DD, RR): (y 7, k ⁇ r 7 ) ⁇ ((y 13, k ⁇ r 13 ) ⁇ (y 14, k ⁇ r 14 )) ⁇ (y 6, k ⁇ r 6 )
  • means AND
  • means OR. It can be set to 1 if the above estimation function f (DD, RR) is TRUE and 0 if it is FALSE.
  • the processing performed by the estimation function in the present embodiment is that the determination using a general index is Condition 1, and is a characteristic unique to the subject, and is 0.275 to 0.3 particularly in PSD especially during sleepiness.
  • the determination using the tendency that the component in the [Hz] region or the 0.3 to 0.325 [Hz] region increases is the condition 2, and the parasympathetic nerve activity such as meal or talk is activated
  • the determination is Condition 3, and both Condition 1 and Condition 2 are satisfied and Condition 3 is excluded.
  • the above-mentioned conditions relating to the characteristics unique to the user can be obtained by performing measurement using all the indexes in advance for the user and measuring when sleepiness occurs. From this measurement data, a significant change in each activity index when sleepiness occurs can be obtained and used as an estimation function.
  • the sleepiness estimation rule 1102 is updated each time the sleepiness estimation process is executed, and the process can be executed in a configuration that improves the estimation accuracy. Thereby, a sleepiness estimation rule specific to the user can be set.
  • Example 2 is obtained by adding condition 4 to the estimation function f of the previous example 1, and is as follows.
  • Condition 1 HF / (LF + HF) ⁇ 0.2
  • Condition 2 p 5 ⁇ 3.8 or p 6 ⁇ 4.2
  • Condition 3 HF ⁇ 200
  • Condition 4 Condition 1 has been satisfied three times in the past (4 times including the present)
  • f (DD, RR): (y 7, k ⁇ r 7) ⁇ ((y 13, k ⁇ r 13) ⁇ (y 14, k ⁇ r 14)) ⁇ (y 6, k ⁇ r 6 ) ⁇ ((y 7, k ⁇ 1 ⁇ r 7 ) ⁇ (y 7, k-2 ⁇ r 7 ) ⁇ (y 7, k-3 ⁇ r 7 )) It can be set to 1 if the above estimation function (conditional expression) is TRUE, and 0 if it is FALSE.
  • the index value calculation unit 23 calculates the activity index for unit time using the RRI data for each first time, collects the activity index for unit time for each type of activity index, and vectorizes it. Then, the vectorized index values are arranged in time series to create an index value vector time series, and the sleepiness estimation means 24 performs sleepiness estimation using a threshold vector and a function that is evaluated using the index value vector time series.
  • the output unit 25 performs a process of returning the estimated value f (DD, RR) calculated by the sleepiness estimation unit 24 as a return value to the caller / upper side of the sleepiness estimation process.
  • the loop end determination unit 203 performs processing.
  • the loop end determination unit 203 branches to YES, terminates and stops data acquisition by the RRI sensor 10, and controls the caller / upper function of the drowsiness estimation process. Will pass.
  • the loop start unit 202 returns to the processing of the RRI acquisition unit 21, and the loop processing after the next step is performed.
  • the loop end unit 204 After the end determination (branch to YES) is made by the loop end determination unit 203, the loop end unit 204 includes at least the RRI2 (before shaping) 1012 acquired from the RRI sensor 10 and the index value, as shown in FIG.
  • the index value vector time series 1051 that is a part or all of the vector time series data DD is transferred to the cloud storage 30 together with a flag that preferably indicates whether or not the drowsiness occurs.
  • the cloud storage 30 stores the acquired RRI 1012X and the index value vector time series 1051X for a predetermined period.
  • the data transferred to the cloud storage 30 may be used for recalculation of the sleepiness estimation rule 1102 by a server (not shown) that can access the cloud storage 30.
  • the drowsiness estimation rule 1102 may be updated every time the drowsiness estimation process is executed, and a configuration that improves the estimation accuracy may be adopted.
  • the second embodiment of the sleepiness estimation apparatus is configured as shown in FIG.
  • the terminal 20 holds the estimation rule 1102. Therefore, the start processing unit 201 reads the estimation rule 1102 from the storage device of the terminal 20 and uses it.
  • the other configuration is the same as that of the first embodiment.
  • the process is executed according to the flowchart shown in FIG. 26 having a process of reading the estimation rule 1102 from the storage device of the terminal 20.
  • the third embodiment of the sleepiness estimation apparatus is configured as shown in FIG. That is, the RRI sensor 10 and the server 60 are connected to the terminal 20, and the cloud storage 30 is connected to the server 60.
  • the terminal 20 is provided with RRI acquisition means 21 and output means 25.
  • the server 60 is provided with data shaping means 22, index value calculation means 23, and sleepiness estimation means 24.
  • An estimated value 1005 is obtained in the server 60. This estimated value 1005 is transmitted to the calling side / upper side of the sleepiness estimation process provided in the server 60 and / or the terminal 20, and used there.
  • the cloud storage 30 includes sensor characteristic information 1101 and sleepiness estimation rules 1102 in advance.
  • the cloud storage 30 can store the acquired RRI data acquired in the terminal 20 as the acquired RRI 1012X of history data.
  • FIG. 28 shows the configuration of the terminal 20, the server 60, and the cloud storage 30 in the third embodiment.
  • the configuration of the cloud storage 30 is the same as that of the first embodiment, and the configuration of the terminal 20 includes a data processing program for performing data acquisition processing, and performs data processing such as data shaping and sleepiness estimation processing. This is different from that of the first embodiment in that a sleepiness estimation program is not provided.
  • the server 60 performs processing under the control of the CPU, and is composed of a memory that temporarily stores data being processed and the like, a non-volatile memory that stores various types of processing data, and the like. And a communication unit for performing communication via the network. Communication with the terminal 20 or the cloud storage 30 can be performed by the communication unit.
  • the server 60 does not include a data processing program for performing data processing for data acquisition, but includes a sleepiness estimation program for performing data processing such as data shaping and sleepiness estimation processing.
  • the processing is executed according to the flowchart shown in FIG. Since the processes with the same reference numerals as in FIG. 4 are basically the same processes, the different parts will be described.
  • the start processing unit 201 does not capture the sensor characteristic information or the estimation rule, but the reprocessing time interval DT [seconds] by loop processing (between the loop start unit 202 and the loop end determination unit 203), 1 Parameters such as the RRI data length LT [seconds] handled in the loop processing of the number of times are fetched.
  • the start processing unit 601 of the server 60 performs the same processing as the start processing unit 201 in FIG.
  • the terminal 20 in order for the terminal 20 and the server 60 to operate synchronously, the terminal 20 is provided with a server synchronization start unit 206 and a server synchronization end unit 207, and the server 60 has a terminal synchronization A start unit 606 and a terminal synchronization end unit 607 are provided. From the synchronization start by communication between the server synchronization start unit 206 and the terminal synchronization start unit 606 to the synchronization end by communication between the server synchronization end unit 207 and the terminal synchronization end unit 607, RRI data collected by the terminal 20 is sent to the server 60, The server 60 performs data processing and sleepiness estimation processing using the sent RRI data.
  • the terminal 20 acquires RRI data by the RRI acquisition unit 21 and sends the acquired RRI data to the server 60.
  • the server 60 includes an RRI acquisition unit 21A that fetches data in which the time 1002 sent from the terminal 20 and the RRI (before shaping) 1001 are associated with each other, and the data shaping provided in the terminal 20 in the first embodiment of FIG. Means 22, index value calculation means 23, and sleepiness estimation means 24 are provided.
  • the server 60 data in which the sent time 1002 and RRI (before shaping) 1001 are associated with each other is fetched, and processing by the data shaping means 22, the index value calculating means 23, and the drowsiness estimating means 24 is executed, and an estimated value 1005 is obtained. Is obtained and sent to the terminal 20.
  • the estimated value 1005 is received, and the output means 25 performs a process of returning it as a return value to the caller / upper side of the sleepiness estimation process.
  • the loop end determination unit 203 of the terminal 20 performs processing for continuing the loop processing by the RRI acquisition unit 21 and the output unit 25 until the predetermined condition as described above is satisfied, and the loop end determination unit 603 of the server 60 performs predetermined processing. Until the above condition is satisfied, a process of continuing the loop process by the data shaping means 22, the index value calculating means 23, and the sleepiness estimating means 24 is performed.
  • the end determination by the loop end determination unit 203 and the end process by the loop end unit 204 are performed, and after the end notification by the server synchronization end unit 207, the end processing unit 205 ends the sleepiness estimation process.
  • the end determination by the loop end determination unit 603 and the end process by the loop end unit 604 are performed.
  • the end process by the loop end unit 604 the RRI 2 (before shaping) 1012 and the index value vector time series 1051 used by the server 60 for the process are transferred to the cloud storage 30, and the acquired RRI 1012X and the index value vector time series for a predetermined period are transferred. Accumulate as 1051X.
  • the end notification is performed by the terminal synchronization end unit 607, and then the end processing unit 605 ends the sleepiness estimation process.
  • FIG. 30 shows a connection configuration of the terminal 20, the server 60, and the cloud storage 30 in the fourth embodiment.
  • the cloud storage 30 and the server 60 are connected to the terminal 20, and the cloud storage 30 and the server 60 are connected to each other. Since the configuration of each part is the same as in FIG. 27, the description thereof is omitted.
  • FIG. 31 shows the configuration of the terminal 20, the server 60, and the cloud storage 30 in the fourth embodiment. Since the configuration of each part is the same as in FIG. 28, the description thereof is omitted. Furthermore, the operations of the terminal 20, the server 60, and the cloud storage 30 in the fourth embodiment are as shown in the flowchart of FIG. 29 described above.
  • the terminal 20 acquires the RRI data. Processing is performed, and the server 60 performs data processing such as data shaping and sleepiness estimation processing using the RRI data acquired by the terminal 20.
  • RRI heart rate interval
  • an index a plurality of indexes reflecting the activity state of the sympathetic nerve / parasympathetic nerve is used against the background of the autonomic nervous function evaluation method based on heart rate variability.
  • the sleepiness estimation level is calculated based on the time series data of the index and the sleepiness estimation rule.
  • the sleepiness estimation level can be, for example, a discretized integer of (4. Large, 3. Caution, 2. Low, 1. None), and the possibility of a state of high sleepiness is estimated.
  • the sleepiness estimation level handled in the present embodiment is a word indicating the possibility of sleepiness and does not mean the depth of sleepiness.
  • the present embodiment it is possible to perform sleepiness estimation with high real-time characteristics by repeating the processing from RRI measurement to sleepiness estimation level calculation at predetermined time intervals (for example, every 10 seconds).
  • RRI heart rate interval data
  • a heart rate sensor a heart rate measuring device including an electrocardiograph
  • the sleepiness estimation level can be calculated and output based on the calculation and determination inside the apparatus.
  • the application / system implemented by the apparatus of this embodiment obtains and outputs the sleepiness estimation level. For example, it is possible to issue warnings to car drivers and machine operators, prompt them to take a break, and provide appropriate advice, services, and processing according to the sleepiness estimation level, such as safely stopping equipment. is there.
  • the application / system implemented by the apparatus according to the present embodiment can be useful for workers who use the apparatus according to the present embodiment to know their sleepiness objectively. It is possible to take
  • the application / system implemented by the apparatus according to the present embodiment can be used so that an administrator who manages the worker who uses the apparatus according to the present embodiment gives an appropriate instruction when estimating sleepiness of the worker. .
  • the apparatus according to this embodiment can be applied to a commercially available heart rate sensor, smartphone, mobile terminal, or the like. Therefore, it can be realized at a lower cost than a special device or a dedicated terminal in which the RRI sensor 10 and the computing device (hardware) and the analysis processing (software) system are integrated, and it is highly convenient. . Regarding the use of commercially available sensors, there is a concern that different determination results may be derived due to characteristic differences between different sensor models.
  • the apparatus according to the present embodiment has a configuration in which correction according to sensor characteristics is performed on heartbeat interval data (RRI) acquired from a sensor, and information relating to the correction can be provided via the cloud. There is.
  • RRI heartbeat interval data
  • the apparatus has two features. First, after executing sleepiness estimation by sleepiness estimation processing, together with index calculation based on heartbeat data, sleepiness data is collected by sleepiness collection means other than heartbeat data, and both are collated and analyzed. It has a mechanism for determining different sleepiness estimation rules and thresholds.
  • the second feature is that the terminal specializes in data collection for the purpose of reducing the calculation burden on the terminal side, and adopts a division process such as determining the data analysis and sleepiness estimation rules and thresholds at the server. It is required to be able to
  • RRI sensor 20 terminal 21 RRI acquisition unit 22, 221A, 221B, 221C data shaping unit 23 index value calculation unit 24 sleepiness estimation unit 25 output unit 30 cloud storage 60 server 201 start processing unit 222 trend removal unit 223 abnormal value removal unit 224 Data interpolation unit 225 Filter processing unit 233 Vectorization unit

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Pathology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hospice & Palliative Care (AREA)
  • Psychiatry (AREA)
  • Psychology (AREA)
  • Social Psychology (AREA)
  • Physics & Mathematics (AREA)
  • Developmental Disabilities (AREA)
  • Biophysics (AREA)
  • Child & Adolescent Psychology (AREA)
  • Biomedical Technology (AREA)
  • Educational Technology (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

[Problem] To estimate drowsiness from various directions, and to cope with individual differences and estimate drowsiness more accurately. [Solution] The present invention is provided with: an RRI acquisition means (22) for acquiring RRI data, i.e. data related to the R-R interval, from a signal obtained from an RRI sensor which detects signals corresponding to R waves in an electrocardiogram signal; an index-value calculation means (23) which calculates, on the basis of a result obtained by statistically processing the RRI data, and a result of an spectral analysis of the RRI data, index values for a plurality of types of activity indices related to the activity of autonomic nerves; and a drowsiness estimation means (24) which, on the basis of drowsiness estimation rules formed by estimation functions evaluated using the change state and/or a threshold value related to each of the activity indices, evaluates the index values calculated by the index-value calculation means (23), to estimate drowsiness.

Description

眠気推定装置及び眠気推定プログラムSleepiness estimation apparatus and sleepiness estimation program
 この発明は、眠気推定装置及び眠気推定プログラムに関するものである。 The present invention relates to a sleepiness estimation apparatus and a sleepiness estimation program.
 近年、健康管理の観点から、或いは、自動車事故防止等の観点から眠気に注目が集まっている。特に、車の運転、機器の操縦・操作、デスクワークなどの場合に、眠気が起こっていることの推定は重要である。 In recent years, drowsiness has attracted attention from the viewpoint of health management or from the viewpoint of preventing automobile accidents. In particular, it is important to estimate that sleepiness is occurring in the case of driving a car, manipulating / operating equipment, desk work, and the like.
 眠気を捕えようとする従来の技術としては、運転者の眠気度合いを心拍信号のFFT処理結果を用いて検出する装置が特許文献1に示されている。より詳細には、心拍信号のFFT処理結果であるスペクトル信号のピーク周波数を中心として覚醒度合指標帯域αを設定すると共に、覚醒時ピーク周波数に対して所定比率(65~90%)を中心として眠気度合指標帯域βを設定する。運転開始後の所定時間帯において、覚醒度合指標帯域αと眠気度合指標帯域βに属するスペクトル信号の強度αp、βpを用いてパラメータSp(=βp/(αp+βp))を算出して、このパラメータSpに基づき眠気度合を評価するというものである。 As a conventional technique for capturing drowsiness, Patent Document 1 discloses a device that detects the drowsiness level of a driver using an FFT processing result of a heartbeat signal. More specifically, the wakefulness index band α is set centering on the peak frequency of the spectrum signal that is the result of the FFT processing of the heartbeat signal, and the sleepiness is centered on a predetermined ratio (65 to 90%) with respect to the peak frequency during wakefulness. The degree index band β is set. The parameter Sp (= βp / (αp + βp)) is calculated using the intensity αp, βp of the spectrum signal belonging to the arousal degree index band α and the sleepiness degree index band β in a predetermined time zone after the start of driving, and this parameter Sp Based on this, the degree of sleepiness is evaluated.
 また、引用文献2には、運転者の心拍等に基づいて、暗い場所、見通しが悪い場所、路上駐車が多い場所などの運転にとって慢性的な危険位置を特定して出力するに際し、眠気による心拍変動の影響を特定して適正な心拍変動を求めることにより正確な危険位置の特定を行うことが記載されている。 Also, in Cited Document 2, based on the driver's heartbeat and the like, when specifying and outputting a chronically dangerous position for driving such as a dark place, a place with poor visibility, or a place with many on-street parking, It is described that the dangerous position is accurately identified by identifying the influence of the fluctuation and obtaining an appropriate heartbeat fluctuation.
 また、引用文献3には、心拍波形からR-R間隔を時系列化した心拍間隔データを求め、この心拍間隔データを周波数解析してパワースペクトル密度(PSD)と自律神経のトータルパワー(TP)を含む心拍揺らぎの周波数解析結果を初期状態とし、初期状態に含まれる推定の眠気の位置及び推定の覚醒の位置に基づき、眠気の位置の原点と覚醒の位置の原点が設定された眠気スケールを決定して、この眠気スケールを用いて眠気判定を行うことが記載されている。 Also, in Cited Document 3, heart rate interval data in which RR intervals are time-sequentially obtained from a heart rate waveform is obtained, and this heart rate interval data is frequency-analyzed to obtain a power spectrum density (PSD) and an autonomic nerve total power (TP). Based on the frequency analysis result of heart rate fluctuations including the initial state, the sleepiness scale with the origin of the sleepiness position and the origin of the awakening position set based on the estimated sleepiness position and the estimated awakening position included in the initial state It is described that the sleepiness determination is performed using this sleepiness scale.
 更に、引用文献4には、心拍信号から心拍間隔を検出し、心拍間隔の変動に対するスペクトル密度を求め、極大周波数と極大周波数に対応する極大スペクトル密度を算出し、算出された極大周波数と極大周波数に対応する極大スペクトル密度の変動傾向を基にして覚醒状態であるか否かを判定することが記載されている。 Further, in Cited Document 4, a heartbeat interval is detected from a heartbeat signal, a spectral density with respect to fluctuation of the heartbeat interval is obtained, a maximum spectral density corresponding to the maximum frequency and the maximum frequency is calculated, and the calculated maximum frequency and maximum frequency are calculated. It is described that it is determined whether or not the user is in an arousal state based on the fluctuation tendency of the maximum spectral density corresponding to.
特開2004-350773号公報JP 2004-350773 A 特開2013-205965号公報JP 2013-205965 A 特開2014-12042号公報JP 2014-12042 A 国際公開2008/065724号パンフレットInternational Publication 2008/065724 Pamphlet
 しかしながら、上記に示した従来の眠気に関する処理では、R-R間隔(以下、RRI)に基づくものであるものの、スペクトル密度をそのまま指標として用いているものが多い。引用文献3にあっては、RRIデータを統計処理した結果と合わせてスペクトル密度を指標とするものの、スペクトル密度をそのまま指標として用いている。 However, the conventional processes related to sleepiness described above are based on the RR interval (hereinafter referred to as RRI), but often use the spectral density as an index as it is. In Cited Document 3, although spectral density is used as an index together with the result of statistical processing of RRI data, spectral density is used as an index as it is.
 上記のような従来技術によっては、十分に眠気を推定するまでの指標がなく、不完全な眠気検出に終わる可能性が高い。特に、個人差によってある指標には変化が生じ難く、また、他のある指標に対しては変化が見られるなどのケースがあり、従来の手法では的確な眠気の推定を行うことができなかった。 Depending on the conventional techniques as described above, there is no index for sufficiently estimating sleepiness, and it is highly likely that the detection of incomplete sleepiness will end. In particular, there are cases in which changes are unlikely to occur in some indicators due to individual differences, and there are cases in which changes are seen in other indicators, and conventional methods have not been able to accurately estimate sleepiness. .
 本発明は上記のような従来の眠気推定に関する問題点を解決せんとしてなされたもので、その目的は、個人差などに対応してより精度の高い眠気の推定を行うことができる眠気推定装置及び眠気推定プログラムを提供することである。 The present invention has been made as a solution to the conventional problems related to sleepiness estimation as described above, and its purpose is to provide a sleepiness estimation apparatus capable of estimating sleepiness with higher accuracy corresponding to individual differences and the like, and It is to provide a drowsiness estimation program.
 本発明に係る眠気推定装置は、心電図信号のR波に相当する信号を検出するRRIセンサにより得られる信号からR-R間隔のデータであるRRIデータを取得するRRI取得手段と、前記RRIデータを統計処理した結果と前記RRIデータのスペクトル解析の結果とに基づいて、自律神経の活動に関する複数種の活動指標について指標値を計算する指標値計算手段と、各活動指標に関する閾値及び/または変動状態により評価する推定関数によって構成される眠気推定ルールに基づき、前記指標値計算手段により算出された指標値を評価し眠気を推定する眠気推定手段とを具備することを特徴とする。 An apparatus for estimating sleepiness according to the present invention includes an RRI acquisition unit that acquires RRI data that is data of an RR interval from a signal obtained by an RRI sensor that detects a signal corresponding to an R wave of an electrocardiogram signal; Based on the result of statistical processing and the result of spectrum analysis of the RRI data, an index value calculation means for calculating an index value for a plurality of types of activity indexes related to autonomic nerve activity, a threshold value and / or a fluctuation state for each activity index And drowsiness estimation means for evaluating the index value calculated by the index value calculation means and estimating drowsiness based on a drowsiness estimation rule constituted by an estimation function evaluated by the above.
 本発明に係る眠気推定装置では、前記RRIデータを統計処理した結果の活動指標には、
SDRR:(RRIの標準偏差)
RMSSD:(隣接するRRIの差の二乗平均値の平方根)
SDSD:(隣接するRRIの差の標準偏差)
pRR50:(隣接するRRIの差が50(ミリ秒)を超える割合)
の少なくとも1つが含まれることを特徴とする。
In the sleepiness estimation apparatus according to the present invention, the activity index as a result of statistical processing of the RRI data includes:
SDRR: (standard deviation of RRI)
RMSSD: (the square root of the root mean square of the difference between adjacent RRIs)
SDSD: (standard deviation of the difference between adjacent RRIs)
pRR50: (Percentage where the difference between adjacent RRIs exceeds 50 (milliseconds))
It is characterized by including at least one of these.
 本発明に係る眠気推定装置では、前記RRIデータのスペクトル解析の結果の活動指標には、
LF:(PSD(パワースペクトル密度関数)の0.04~0.15[Hz]のパワー)
HF:(PSDの0.15~0.40[Hz]のパワー)
HF/(LF+HF)
(i=0,1,2,・・・,9):(PSDの0.15+i×0.025~ 0.15+(i+1)×0.025 [Hz]のパワー)
の少なくとも1つが含まれることを特徴とする。
In the sleepiness estimation apparatus according to the present invention, the activity index as a result of spectrum analysis of the RRI data includes:
LF: (PSD (power spectral density function) 0.04 to 0.15 [Hz] power)
HF: (PSD 0.15-0.40 [Hz] power)
HF / (LF + HF)
p i (i = 0, 1, 2,..., 9): (PSD 0.15 + i × 0.025 to 0.15+ (i + 1) × 0.025 [Hz] power)
It is characterized by including at least one of these.
 本発明に係る眠気推定装置では、前記指標値計算手段は、第1の時間毎のRRIデータを用いて単位時間の指標値を算出し、単位時間の指標値を活動指標の種類分集めてベクトル化し、ベクトル化された指標値を時系列に並べて指標値ベクトル時系列を作成し、眠気推定手段は、閾値ベクトルと前記指標値ベクトル時系列を用いて評価する推定関数により眠気推定を行うことを特徴とする。 In the drowsiness estimation apparatus according to the present invention, the index value calculation means calculates an index value for unit time using the RRI data for each first time, collects the index values for unit time for each type of activity index, and The index value vector time series is created by arranging the vectorized index values in a time series, and the sleepiness estimation means performs sleepiness estimation using an estimation function that is evaluated using a threshold vector and the index value vector time series. Features.
 本発明に係る眠気推定装置では、眠気推定ルールの推定関数は、上記活動指標と対応するそれぞれの閾値との比較条件と、所定変動状態の有無の条件とを含み、アンドとオアのいずれかを用いて、或いはこれらアンドとオアを2以上用いて、前記条件を結合させて形成されていることを特徴とする。 In the sleepiness estimation apparatus according to the present invention, the estimation function of the sleepiness estimation rule includes a comparison condition between each of the thresholds corresponding to the activity index and a condition of presence / absence of a predetermined fluctuation state, and is either AND or OR. Or two or more of these AND and OR are used to combine the above conditions.
 本発明に係る眠気推定装置は、所定周波数成分の除去であるトレンド除去、異常値除去、データ補間、フィルタ処理の少なくとも1つを行うデータ整形手段を含んで構成されていることを特徴とする。 The drowsiness estimation apparatus according to the present invention is characterized by including data shaping means that performs at least one of trend removal, abnormal value removal, data interpolation, and filter processing, which are removal of a predetermined frequency component.
 本発明に係る眠気推定プログラムは、コンピュータを、心電図信号のR波に相当する信号を検出するRRIセンサにより得られる信号からR-R間隔のデータであるRRIデータを取得するRRI取得手段、前記RRIデータを統計処理した結果と前記RRIデータのスペクトル解析の結果とに基づいて、自律神経の活動に関する複数種の活動指標について指標値を計算する指標値計算手段、各活動指標に関する閾値及び/または変動状態により評価する推定関数によって構成される眠気推定ルールに基づき、前記指標値計算手段により算出された指標値を評価し眠気を推定する眠気推定手段として機能させることを特徴とする。 The sleepiness estimation program according to the present invention is an RRI acquisition unit that acquires RRI data that is data of an RR interval from a signal obtained by an RRI sensor that detects a signal corresponding to an R wave of an electrocardiogram signal. Index value calculation means for calculating an index value for a plurality of types of activity indexes related to autonomic nerve activity based on the result of statistical processing of data and the result of spectrum analysis of the RRI data, threshold value and / or fluctuation for each activity index Based on a drowsiness estimation rule configured by an estimation function that is evaluated according to a state, the index value calculated by the index value calculation unit is evaluated to function as a drowsiness estimation unit that estimates drowsiness.
 本発明に係る眠気推定プログラムでは、前記RRIデータを統計処理した結果の活動指標には、
SDRR:(RRIの標準偏差)
RMSSD:(隣接するRRIの差の二乗平均値の平方根)
SDSD:(隣接するRRIの差の標準偏差)
pRR50:(隣接するRRIの差が50(ミリ秒)を超える割合)
の少なくとも1つが含まれることを特徴とする。
In the sleepiness estimation program according to the present invention, the activity index as a result of statistical processing of the RRI data includes:
SDRR: (standard deviation of RRI)
RMSSD: (the square root of the root mean square of the difference between adjacent RRIs)
SDSD: (standard deviation of the difference between adjacent RRIs)
pRR50: (Percentage where the difference between adjacent RRIs exceeds 50 (milliseconds))
It is characterized by including at least one of these.
 本発明に係る眠気推定プログラムでは、前記RRIデータのスペクトル解析の結果の活動指標には、
LF:(PSD(パワースペクトル密度関数)の0.04~0.15[Hz]のパワー)
HF:(PSDの0.15~0.40[Hz]のパワー)
HF/(LF+HF)
(i=0,1,2,・・・,9):(PSDの0.15+i×0.025~ 0.15+(i+1)×0.025 [Hz]のパワー)
の少なくとも1つが含まれることを特徴とする。
In the sleepiness estimation program according to the present invention, the activity index as a result of spectrum analysis of the RRI data includes:
LF: (PSD (power spectral density function) 0.04 to 0.15 [Hz] power)
HF: (PSD 0.15-0.40 [Hz] power)
HF / (LF + HF)
p i (i = 0, 1, 2,..., 9): (PSD 0.15 + i × 0.025 to 0.15+ (i + 1) × 0.025 [Hz] power)
It is characterized by including at least one of these.
 本発明に係る眠気推定プログラムでは、前記指標値計算手段は、第1の時間毎のRRIデータを用いて単位時間の指標値を算出し、単位時間の指標値を活動指標の種類分集めてベクトル化し、ベクトル化された指標値を時系列に並べて指標値ベクトル時系列を作成し、眠気推定手段は、閾値ベクトルと前記指標値ベクトル時系列を用いて評価する推定関数により眠気推定を行うことを特徴とする。 In the sleepiness estimation program according to the present invention, the index value calculation means calculates an index value for unit time using the RRI data for each first time, collects the index values for unit time for each type of activity index, and The index value vector time series is created by arranging the vectorized index values in a time series, and the sleepiness estimation means performs sleepiness estimation using an estimation function that is evaluated using a threshold vector and the index value vector time series. Features.
 本発明に係る眠気推定プログラムでは、眠気推定ルールの推定関数は、上記活動指標と対応するそれぞれの閾値との比較条件と、所定変動状態の有無の条件とを含み、アンドとオアのいずれかを用いて、或いはこれらアンドとオアを2以上用いて、前記条件を結合させて形成されていることを特徴とする。 In the sleepiness estimation program according to the present invention, the estimation function of the sleepiness estimation rule includes a comparison condition between each of the thresholds corresponding to the activity index and a condition of presence / absence of a predetermined fluctuation state, and is either AND or OR. Or two or more of these AND and OR are used to combine the above conditions.
 本発明に係る眠気推定プログラムは、前記コンピュータを、所定周波数成分の除去であるトレンド除去、異常値除去、データ補間、フィルタ処理の少なくとも1つを行うデータ整形手段として機能させることを特徴とする。 The sleepiness estimation program according to the present invention causes the computer to function as data shaping means that performs at least one of trend removal, abnormal value removal, data interpolation, and filter processing, which are removal of a predetermined frequency component.
 本発明によれば、RRIデータを統計処理した結果とRRIデータのスペクトル解析の結果に基づいて、自律神経の活動に関する複数種の活動指標について指標値を計算し、各活動指標に関する閾値及び/または変動状態により評価する推定関数によって構成される眠気推定ルールに基づき、活動指標を評価し眠気を推定するので、RRIデータを統計処理した結果に基づく自律神経の活動指標と、RRIデータのスペクトル解析の結果に基づいて算出した複数の自律神経の活動指標とを用いて、多角的方向から眠気に関する推定がなされ、個人差などに対応してより精度の高い眠気の推定を行うことができる。 According to the present invention, based on the result of statistical processing of RRI data and the result of spectrum analysis of RRI data, index values are calculated for a plurality of types of activity indexes related to autonomic nerve activity, and threshold values for each activity index and / or The activity index is evaluated and sleepiness is estimated based on the sleepiness estimation rule configured by the estimation function that is evaluated based on the fluctuation state. Therefore, the activity index of the autonomic nerve based on the result of statistical processing of the RRI data and the spectrum analysis of the RRI data are performed. By using a plurality of autonomic nerve activity indexes calculated based on the results, sleepiness is estimated from various directions, and more accurate sleepiness can be estimated corresponding to individual differences and the like.
本発明に係る眠気推定装置の第1の実施形態のブロック図。The block diagram of 1st Embodiment of the sleepiness estimation apparatus which concerns on this invention. 心電図信号におけるRRIを説明するための心電図波形を示す図。The figure which shows the electrocardiogram waveform for demonstrating RRI in an electrocardiogram signal. 本発明に係る眠気推定装置の第1の実施形態を、端末を中心として構成したシステムの内部構成を示すブロック図。The block diagram which shows the internal structure of the system which comprised 1st Embodiment of the sleepiness estimation apparatus which concerns on this invention centering on the terminal. 本発明に係る眠気推定装置の第1の実施形態の眠気推定処理プログラムによる処理を示すフローチャート。The flowchart which shows the process by the sleepiness estimation processing program of 1st Embodiment of the sleepiness estimation apparatus which concerns on this invention. 本発明に係る眠気推定装置の実施形態における要部であるデータ整形手段の第1の構成例を示すブロック図。The block diagram which shows the 1st structural example of the data shaping means which is the principal part in embodiment of the sleepiness estimation apparatus which concerns on this invention. 本発明に係る眠気推定装置の実施形態における要部であるデータ整形手段の第2の構成例を示すブロック図。The block diagram which shows the 2nd structural example of the data shaping means which is the principal part in embodiment of the sleepiness estimation apparatus which concerns on this invention. 本発明に係る眠気推定装置の実施形態における要部であるデータ整形手段の第3の構成例を示すブロック図。The block diagram which shows the 3rd structural example of the data shaping means which is the principal part in embodiment of the sleepiness estimation apparatus which concerns on this invention. 本発明に係る眠気推定装置の実施形態における要部であるデータ整形手段の第4の構成例を示すブロック図。The block diagram which shows the 4th structural example of the data shaping means which is the principal part in embodiment of the sleepiness estimation apparatus which concerns on this invention. 本発明に係る眠気推定装置の実施形態における要部である指標値計算手段の構成例を示すブロック図。The block diagram which shows the structural example of the index value calculation means which is the principal part in embodiment of the sleepiness estimation apparatus which concerns on this invention. 本発明に係る眠気推定装置の実施形態に取り込んだRRIデータの一例を示す図。The figure which shows an example of the RRI data taken in into embodiment of the sleepiness estimation apparatus which concerns on this invention. 本発明に係る眠気推定装置の実施形態に取り込んだRRIデータとその取り込み時刻により構成されるデータの一例を示す図。The figure which shows an example of the data comprised by the RRI data taken in by embodiment of the sleepiness estimation apparatus which concerns on this invention, and its taking-in time. 本発明に係る眠気推定装置の実施形態におけるループ処理のループ回数が0の場合のRRIデータの一例を示す図。The figure which shows an example of RRI data in case loop count of the loop process is 0 in embodiment of the sleepiness estimation apparatus which concerns on this invention. 本発明に係る眠気推定装置の実施形態におけるループ処理のループ回数が3の場合のRRIデータの一例を示す図。The figure which shows an example of RRI data in case loop count of the loop process is 3 in embodiment of the sleepiness estimation apparatus which concerns on this invention. 本発明に係る眠気推定装置の実施形態において用いる複数の活動指標について、指標名と指標変数、その閾値の一例を示す図。The figure which shows an example of an index name, an index variable, and its threshold value about several activity index used in embodiment of the sleepiness estimation apparatus which concerns on this invention. 本発明に係る眠気推定装置の実施形態において処理するRRIデータであって、指標計算開始時刻T0 から4000秒後(cnt=400)のRRIデータ(整形前)を示す図。The figure which is RRI data processed in embodiment of the drowsiness estimation apparatus which concerns on this invention, Comprising: RRI data (before shaping) 4000 seconds after index calculation start time T0 (cnt = 400). 図15に示したRRIデータについて、本発明に係る眠気推定装置の実施形態のトレンド除去部により波形整形した後のデータを示す図。The figure which shows the data after shaping the waveform by the trend removal part of embodiment of the sleepiness estimation apparatus which concerns on RRI data shown in FIG. 図16に示したRRIデータについて、本発明に係る眠気推定装置の実施形態の異常値除去部により波形整形した後のデータを示す図。The figure which shows the data after carrying out waveform shaping by the abnormal value removal part of embodiment of the sleepiness estimation apparatus which concerns on RRI data shown in FIG. 図17に示したRRIデータについて、本発明に係る眠気推定装置の実施形態のデータ補間部により波形整形した後のデータを示す図。The figure which shows the data after waveform shaping by the data interpolation part of embodiment of the sleepiness estimation apparatus which concerns on RRI data shown in FIG. 本発明に係る眠気推定装置の実施形態のフィルタ処理部のフィルタ特性を示す図。The figure which shows the filter characteristic of the filter process part of embodiment of the sleepiness estimation apparatus which concerns on this invention. 図18に示したRRIデータについて、本発明に係る眠気推定装置の実施形態のフィルタ処理部により波形整形した後のデータを示す図。The figure which shows the data after carrying out waveform shaping by the filter process part of embodiment of the sleepiness estimation apparatus which concerns on RRI data shown in FIG. FFT直接法により得たPSDを示す図。The figure which shows PSD obtained by the FFT direct method. 最大エントロピー法(burg法)により求めたPSDを示す図。The figure which shows PSD calculated | required by the maximum entropy method (burg method). 図21に示したFFT直接法により得たPSDに対して、本発明に係る眠気推定装置の実施形態が用いる指標である特定周波数帯のパワーpを求める区間を示す図。The figure which shows the area which calculates | requires power p i of the specific frequency band which is the parameter | index which embodiment of the sleepiness estimation apparatus which concerns on this invention uses with respect to PSD obtained by the FFT direct method shown in FIG. 図22に示した最大エントロピー法(burg法)により得たPSDに対して、本発明に係る眠気推定装置の実施形態が用いる指標である特定周波数帯のパワーpを求める区間を示す図。Shows respect PSD obtained by the maximum entropy method shown in FIG. 22 (burg method), a section for obtaining the power p i of the specific frequency band, which is an embodiment uses an indication of drowsiness estimation apparatus according to the present invention. 本発明に係る眠気推定装置の第2の実施形態のブロック図。The block diagram of 2nd Embodiment of the sleepiness estimation apparatus which concerns on this invention. 本発明に係る眠気推定装置の第2の実施形態の眠気推定プログラムによる処理を示すフローチャート。The flowchart which shows the process by the sleepiness estimation program of 2nd Embodiment of the sleepiness estimation apparatus which concerns on this invention. 本発明に係る眠気推定装置の第3の実施形態のブロック図。The block diagram of 3rd Embodiment of the sleepiness estimation apparatus which concerns on this invention. 本発明に係る眠気推定装置の第3の実施形態を、端末及びサーバを中心として構成したシステムの内部構成を示すブロック図。The block diagram which shows the internal structure of the system which comprised 3rd Embodiment of the sleepiness estimation apparatus which concerns on this invention centering on the terminal and the server. 本発明に係る眠気推定装置の第3の実施形態の眠気推定プログラムによる処理を示すフローチャート。The flowchart which shows the process by the sleepiness estimation program of 3rd Embodiment of the sleepiness estimation apparatus which concerns on this invention. 本発明に係る眠気推定装置の第4の実施形態のブロック図。The block diagram of 4th Embodiment of the sleepiness estimation apparatus which concerns on this invention. 本発明に係る眠気推定装置の第4の実施形態を、端末及びサーバを中心として構成したシステムの内部構成を示すブロック図。The block diagram which shows the internal structure of the system which comprised 4th Embodiment of the sleepiness estimation apparatus which concerns on this invention centering on the terminal and the server.
 以下、添付図面を参照して本発明に係る眠気推定装置及び眠気推定プログラムの実施形態を説明する。各図において、同一の構成要素には、同一の符号を付して重複する説明を省略する。眠気推定装置の第1の実施形態は、図1に示すように構成される。本実施形態では、心電図信号のR波に相当する信号を検出するRRIセンサ10として、心拍センサを用いることができる。このRRIセンサ10は、心拍センサ以外に、心電計の心電図信号を取り出す部分の構成や脈波センサを用いても良い。 Hereinafter, embodiments of a sleepiness estimation apparatus and a sleepiness estimation program according to the present invention will be described with reference to the accompanying drawings. In each figure, the same components are denoted by the same reference numerals and redundant description is omitted. The first embodiment of the drowsiness estimation apparatus is configured as shown in FIG. In the present embodiment, a heart rate sensor can be used as the RRI sensor 10 that detects a signal corresponding to the R wave of the electrocardiogram signal. In addition to the heart rate sensor, the RRI sensor 10 may use a configuration of a part for taking out an electrocardiogram signal of an electrocardiograph or a pulse wave sensor.
 RRIセンサ10は、生体に設けられ、無線或いは有線により図2(b)に示すような心電図信号を検出して、図1に示すようにRRI(整形前)1001を出力する。 The RRI sensor 10 is provided on a living body, detects an electrocardiogram signal as shown in FIG. 2B by wireless or wired, and outputs an RRI (before shaping) 1001 as shown in FIG.
 ここで、心電図信号について説明を行う。図2(a)に示されるように、心電図信号には、Rのピークを有するQRS波を観測することができる。QRS波は、心室全体を急速に興奮させるときに発生するものとされる。また、その前方のP波は、洞房結節に興奮が発生し、心房が収縮したときの波とされる。更に、QRS波の後方に現れるT波は、心室の興奮か回復するときに発生する波とされる。心臓の解析には、上記のP波、QRS波、T波により得られるPQ時間、QRS時間、QT時間などが重要なパラメータとして用いられる。心電図信号には図2(b)に示すように、拍動に応じてR波が所定間隔で現れるので、RRIも重要なパラメータとされ、自律神経活動に関連していることが知られている。本実施形態では、このRRIデータを眠気推定に用いるものである。 Here, the ECG signal will be described. As shown in FIG. 2A, a QRS wave having an R peak can be observed in the electrocardiogram signal. QRS waves are assumed to be generated when the entire ventricle is rapidly excited. Further, the P wave in front thereof is a wave when excitement occurs in the sinoatrial node and the atrium contracts. Further, the T wave appearing behind the QRS wave is a wave generated when the excitement of the ventricle is recovered. For the analysis of the heart, the PQ time, QRS time, QT time and the like obtained from the P wave, QRS wave, and T wave are used as important parameters. In the electrocardiogram signal, as shown in FIG. 2B, R waves appear at predetermined intervals according to the pulsation, so that RRI is also an important parameter and is known to be related to autonomic nerve activity. . In this embodiment, this RRI data is used for sleepiness estimation.
 図1に示すように、本実施形態の眠気推定装置では、端末20が、RRI取得手段21、データ整形手段22、指標値計算手段23、眠気推定手段24、出力手段25を備える。 As shown in FIG. 1, in the sleepiness estimation apparatus of the present embodiment, the terminal 20 includes an RRI acquisition unit 21, a data shaping unit 22, an index value calculation unit 23, a sleepiness estimation unit 24, and an output unit 25.
 RRI取得手段21は、上記RRIセンサ10により送出されるRRIデータを取得するものである。RRIセンサ10としては、心電図信号を出力するものでもよく、この場合には、RRI取得手段21が心電図信号に基づきRRIデータを作成する。データ整形手段22は、所定周波数成分の除去であるトレンド除去、異常値除去、データ補間、フィルタ処理の少なくとも1つを行う構成を備えている。これ等の構成は、トレンド除去部222、異常値除去部223、データ補間部224、フィルタ処理部225などとして後に詳述する。 The RRI acquisition means 21 acquires RRI data sent by the RRI sensor 10. The RRI sensor 10 may output an electrocardiogram signal. In this case, the RRI acquisition unit 21 creates RRI data based on the electrocardiogram signal. The data shaping means 22 has a configuration for performing at least one of trend removal, abnormal value removal, data interpolation, and filter processing, which is removal of a predetermined frequency component. These configurations will be described in detail later as a trend removal unit 222, an abnormal value removal unit 223, a data interpolation unit 224, a filter processing unit 225, and the like.
 指標値計算手段23は、上記RRIデータに基づいて自律神経の指標値を算出するもので、例えば、上記RRIデータを統計処理した結果と、上記RRIデータのスペクトル解析の結果に基づいて、複数種類である自律神経の活動指標について、その指標値を算出するように構成することができる。指標値計算手段23は、第1の時間毎のRRIデータを用いて単位時間の指標値を算出し、単位時間の指標値を活動指標の種類分集めてベクトル化し、ベクトル化された指標を時系列に並べて指標値ベクトル時系列を作成する。 The index value calculation means 23 calculates the index value of the autonomic nerve based on the RRI data. For example, based on the result of statistical processing of the RRI data and the result of spectrum analysis of the RRI data, a plurality of types For the autonomic nerve activity index, the index value can be calculated. The index value calculation means 23 calculates an index value for unit time using the RRI data for each first time, collects the index values for unit time for each type of activity index, and vectorizes the index values. Create an index value vector time series in a series.
 また、眠気推定手段24は、活動指標に関する閾値及び/または変動状態により評価する推定関数によって構成される眠気推定ルールに基づき、上記指標値計算手段23により算出された活動指標を評価し眠気を推定する。 The sleepiness estimation means 24 estimates sleepiness by evaluating the activity index calculated by the index value calculation means 23 on the basis of a sleepiness estimation rule constituted by an estimation function that is evaluated based on a threshold value related to an activity index and / or a fluctuation state. To do.
 出力手段25は、眠気推定手段24による推定結果を出力し、警報発生や機器の動作停止、警告などに用いられるようにする。上記端末20は、スマートフォン、タブレット端末、モバイル端末などにより構成することができる。 The output means 25 outputs the estimation result by the sleepiness estimation means 24 and is used for generating an alarm, stopping the operation of the device, warning, or the like. The terminal 20 can be configured by a smartphone, a tablet terminal, a mobile terminal, or the like.
 端末20には、クラウドストレージ30が接続されている。クラウドストレージ30には、センサ特性情報1101、眠気推定ルール1102が予め備えられている。センサ特性情報1101は、データ整形手段22がデータ整形を実行するときに用いられる。眠気推定ルール1102は、眠気推定手段24が眠気を推定するときに用いられる。クラウドストレージ30には、端末20において取得した取得済RRIデータを履歴データの取得済RRI1012Xとして記憶しておいても良いことを示しており、この取得済RRI1012Xは、本実施形態では示さないが、眠気推定ルール1102の更新のために用いても良い。 The cloud storage 30 is connected to the terminal 20. The cloud storage 30 includes sensor characteristic information 1101 and sleepiness estimation rules 1102 in advance. The sensor characteristic information 1101 is used when the data shaping unit 22 executes data shaping. The sleepiness estimation rule 1102 is used when the sleepiness estimation means 24 estimates sleepiness. The cloud storage 30 indicates that the acquired RRI data acquired in the terminal 20 may be stored as acquired RRI 1012X of history data, and this acquired RRI 1012X is not shown in the present embodiment. It may be used for updating the sleepiness estimation rule 1102.
 以上の構成の眠気推定は、具体的には、図3に示す構成を有する。既に説明したRRIセンサ10と、端末20、クラウドストレージ30により構成される。 Specifically, the sleepiness estimation of the above configuration has the configuration shown in FIG. The RRI sensor 10 described above, the terminal 20, and the cloud storage 30 are included.
 端末20は、CPUの制御によって処理を行うものであり、処理中のデータなどを一時保持するための一時記憶などを行うメモリと、各種の処理データを記憶するための不揮発性メモリなどにより構成される記憶装置を備える。端末20は、電話回線を介した通信やネットワークを介した通信などを行う通信部、タッチ画面による情報やコマンドの入力と、各種データや画像の表示を行うことのできる入出力部、時刻データを取り出すためのタイマを有する。上記通信部によって、クラウドストレージ30との間で通信を行うことができる。更に、記憶装置には、各種のアプリケーションプログラム、応用ソフト、各種ブラウザ、本実施形態において行うデータ取得やデータ整形等のデータ処理を行うためのデータ処理プログラム、眠気推定処理を行うための眠気推定プログラムなど、眠気推定処理用パラメータ・プログラム類を備えている。 The terminal 20 performs processing under the control of the CPU, and includes a memory that temporarily stores data being processed and the like, and a nonvolatile memory that stores various processing data. A storage device. The terminal 20 includes a communication unit that performs communication via a telephone line or communication via a network, an input / output unit that can input information and commands via a touch screen, and display various data and images, and time data. Has a timer to retrieve. Communication with the cloud storage 30 can be performed by the communication unit. Further, the storage device includes various application programs, application software, various browsers, a data processing program for performing data processing such as data acquisition and data shaping performed in the present embodiment, and a sleepiness estimation program for performing sleepiness estimation processing. Etc., parameters and programs for sleepiness estimation processing are provided.
 クラウドストレージ30は、CPUの制御によって処理を行うものであり、処理中のデータなどを一時保持するための一時記憶などを行うメモリと、各種の処理データを記憶するための不揮発性メモリなどにより構成される記憶装置、ネットワークを介した通信(ここでは、主に端末20との間の通信)などを行う通信部を備えている。また、記憶装置には、眠気推定処理用の各種パラメータ・プログラム類を備えている。 The cloud storage 30 performs processing under the control of the CPU, and includes a memory that temporarily stores data being processed, a non-volatile memory that stores various types of processing data, and the like. And a communication unit that performs communication via the network (here, mainly communication with the terminal 20). The storage device also includes various parameters and programs for sleepiness estimation processing.
 以上の構成を有する眠気推定装置では、端末20において、データ処理プログラムと眠気推定プログラムによってCPUが図4に示すフローチャートに対応する処理を行う。クラウドストレージ30には、図1と図4に示すように、センサ特性情報1101、眠気推定ルール1102が備えられている。センサ特性情報1101は、センサ機種の違いによる特性差を吸収するために、図1と図4に示すデータ整形手段22においてRRIデータを補正する目的で利用されるもので、例えば、QRS波のピークが尖鋭でない特性や尖鋭であるが誤差が大きい特性となっている場合を補正値により補正する。クラウドストレージ30にセンサ特性情報1101が存在しない場合は、特にセンサ機種の違いを吸収する目的での補正を行わなくとも良い。 In the sleepiness estimation apparatus having the above configuration, the CPU performs processing corresponding to the flowchart shown in FIG. 4 in the terminal 20 using the data processing program and the sleepiness estimation program. As shown in FIGS. 1 and 4, the cloud storage 30 includes sensor characteristic information 1101 and sleepiness estimation rules 1102. The sensor characteristic information 1101 is used for the purpose of correcting the RRI data in the data shaping unit 22 shown in FIGS. 1 and 4 in order to absorb the characteristic difference due to the difference in the sensor model. For example, the peak of the QRS wave is used. Is corrected by the correction value when the characteristic is not sharp or is sharp but has a large error. When the sensor characteristic information 1101 does not exist in the cloud storage 30, it is not necessary to perform correction particularly for the purpose of absorbing differences in sensor models.
 眠気推定ルール1102は、各活動指標に関する閾値及び/または変動状態により評価する推定関数によって構成されるものである。上記眠気推定ルール1102の推定関数は、後に詳述するが、上記活動指標と対応するそれぞれの閾値との比較条件と、所定変動状態の有無の条件とを含み、アンドとオアのいずれかを用いて、或いはこれらアンドとオアを2以上用いて、前記条件を結合させて形成することができる。 The sleepiness estimation rule 1102 is configured by an estimation function that is evaluated based on a threshold and / or a fluctuation state regarding each activity index. The estimation function of the sleepiness estimation rule 1102, which will be described in detail later, includes a comparison condition between the activity index and the corresponding threshold value, and a condition of presence / absence of a predetermined fluctuation state, and uses either AND or OR. Alternatively, two or more of these AND and OR can be used to combine the above conditions.
 図4に示される処理では、初めに開始処理部201が実行され、次にループ開始部202が起動され、更にRRI取得手段21以降が実行される。ループ開始部202とループ終了判定部203に挟まれているRRI取得手段21以降の処理はループ処理であり、ループ終了判定部203で終了と判定されるまでループ処理が継続される。この場合の終了は、例えば端末20からユーザが所定のキー操作を行うことにより実行させることができる。上記ループ処理では、処理がRRI取得手段21に戻る度に、ループカウンタcntをカウントアップする。ここに、cnt=0,1,2,・・・(cntの開始値はゼロ)とする。 In the processing shown in FIG. 4, the start processing unit 201 is first executed, the loop start unit 202 is then started, and the RRI acquisition unit 21 and the subsequent steps are executed. The processing after the RRI acquisition unit 21 sandwiched between the loop start unit 202 and the loop end determination unit 203 is loop processing, and the loop processing is continued until the loop end determination unit 203 determines the end. The termination in this case can be executed by the user performing a predetermined key operation from the terminal 20, for example. In the loop processing, the loop counter cnt is incremented every time the processing returns to the RRI acquisition means 21. Here, cnt = 0, 1, 2,... (Starting value of cnt is zero).
 ループ処理(ループ開始部202からループ終了判定部203の間)は、開始処理部201で決定される指標値計算時間間隔DT[秒]毎に実施される。このため、RRIセンサ10による測定開始時刻をT0、1回のループ処理で扱うRRIのデータ長をLT[秒]間分とすると、cnt回目のループ処理では、時刻T0+cnt×DT~時刻T0+cnt×DT+LTまでの、LT[秒]間に取得されたRRIデータが処理される。 Loop processing (between the loop start unit 202 and the loop end determination unit 203) is performed every index value calculation time interval DT [seconds] determined by the start processing unit 201. Therefore, if the measurement start time by the RRI sensor 10 is T0, and the RRI data length handled in one loop process is LT [seconds], the cnt-th loop process has time T0 + cnt × DT to time T0 + cnt × DT + LT. RRI data acquired during LT [seconds] is processed.
 開始処理部201では、本処理で実施される各処理のパラメータを設定する。パラメータとは、以降のループ処理(ループ開始部202からループ終了判定部203の間)による再処理の時間間隔DT[秒](指標値計算時間間隔)、1回のループ処理で扱うRRIのデータ長LT[秒]間分をはじめとし、以降のデータ整形手段22におけるデータ整形処理のパラメータ、定数類、以降の指標値計算手段23における心拍解析のパラメータ類、定数類である。パラメータは、通常は予め用意しているデフォルト値を利用することができるが、幾つかの候補パラメータを用意しておき、所定のタイミングなどで変更手続きを実行して変更してもよい。 The start processing unit 201 sets parameters for each process performed in this process. The parameter is the time interval DT [seconds] (index value calculation time interval) of reprocessing by the subsequent loop processing (between the loop start unit 202 and the loop end determination unit 203). RRI data handled in one loop processing The data includes parameters for the long time LT [seconds], data shaping processing parameters and constants in the subsequent data shaping means 22, and heart rate analysis parameters and constants in the subsequent index value calculation means 23. Normally, a default value prepared in advance can be used as the parameter, but some candidate parameters may be prepared and changed by executing a change procedure at a predetermined timing or the like.
 クラウドストレージ30の説明において既述した内容と重複するが、この開始処理部201では、クラウドストレージ30にアクセスし、RRIセンサ機種に応じたセンサ特性情報1101が存在すれば読み込む。クラウドストレージ30にセンサ特性情報1101が存在しない場合は、特にセンサ機種の違いを吸収する目的での補正は行われない。 Although it overlaps with the contents already described in the description of the cloud storage 30, the start processing unit 201 accesses the cloud storage 30 and reads if there is sensor characteristic information 1101 corresponding to the RRI sensor model. When the sensor characteristic information 1101 does not exist in the cloud storage 30, no correction is performed particularly for the purpose of absorbing differences between sensor models.
 更に開始処理部201では、クラウドストレージ30に接続し、推定精度向上のために更新された眠気推定ルール1102が存在すれば読み込む。クラウドストレージ30に更新された眠気推定ルール1102が存在しない場合は、前回の眠気推定処理で使用した眠気推定ルール1102が適用される。 Further, the start processing unit 201 reads the drowsiness estimation rule 1102 connected to the cloud storage 30 and updated for improving the estimation accuracy. When the updated sleepiness estimation rule 1102 does not exist in the cloud storage 30, the sleepiness estimation rule 1102 used in the previous sleepiness estimation process is applied.
 開始処理部201の処理に続いてループ開始部202が起動され、RRI取得手段21の処理が実行される。RRI取得手段21では、測定開始時刻T0、RRI時間長LT、指標値計算時間間隔DTを用いて以下を順次実行する。即ち、RRIセンサ10からRRI(整形前)1001をリアルタイムに取得する。例えば、図10に示されるようなデータを取得する。図10の例では、RRIセンサ10からはじめに「680」(単位は[ミリ秒])を取り込み、以降、「710」,「593」,「827」,・・・とデータを取得したことを示している。 Following the processing of the start processing unit 201, the loop start unit 202 is activated, and the processing of the RRI acquisition unit 21 is executed. The RRI acquisition unit 21 sequentially executes the following using the measurement start time T0, the RRI time length LT, and the index value calculation time interval DT. That is, the RRI (before shaping) 1001 is acquired from the RRI sensor 10 in real time. For example, data as shown in FIG. 10 is acquired. In the example of FIG. 10, “680” (unit: [milliseconds]) is first fetched from the RRI sensor 10, and thereafter “710”, “593”, “827”,... ing.
 次に、RRI取得手段21では、RRIセンサ10に内蔵されるタイマ、或いは端末20に備えられているタイマから1つのRRIデータが発生した時刻1002を取得する。時刻1002とRRI(整形前)1001を対応付けたデータを、RRI2(整形前)1012として図示しないレジスタに追加・蓄積する。このデータは例えば、図11に示されるデータであり、図11では、RRIセンサ10から取得した初めのデータが15時09分19秒600ミリ秒の時刻のものであり、以降、図11中に示される時刻のデータであることを示している。 Next, the RRI acquisition unit 21 acquires the time 1002 when one piece of RRI data is generated from a timer built in the RRI sensor 10 or a timer provided in the terminal 20. Data associating the time 1002 with the RRI (before shaping) 1001 is added and stored in a register (not shown) as RRI2 (before shaping) 1012. This data is, for example, the data shown in FIG. 11. In FIG. 11, the first data acquired from the RRI sensor 10 is the time of 15:09:19 seconds and 600 milliseconds, and in FIG. It indicates that it is data at the indicated time.
 上記レジスタのRRI2(整形前)1012中の、所定の時刻から所定の時刻までのデータを抽出して図5などに示されるRRI3(整形前)1013を生成する。指標値計算開始時刻T0以降、図4のフローチャートによる処理の第cnt回目のループでは(cnt=0,1,2,・・・)、時刻T0+cnt×DT~時刻T0+cnt×DT+LTまでのLT秒間に取得されたRRIを扱う。 The data from the predetermined time to the predetermined time in the RRI2 (before shaping) 1012 of the register is extracted to generate the RRI3 (before shaping) 1013 shown in FIG. After the index value calculation start time T0, in the cnt-th loop of the processing according to the flowchart of FIG. 4 (cnt = 0, 1, 2,. Handled RRI.
 尚、以降のデータ整形手段22の補間処理において、時刻T0+cnt×DT~時刻T0+cnt×DT+LTの前後1つずつのデータも必要になるため、時刻T0+cnt×DT~時刻T0+cnt×DT+LTまでのLT秒間に取得されたRRIと、その前後1つずつのRRIを含めたものが、RRI3(整形前)1013である。 In the subsequent interpolation processing of the data shaping means 22, one piece of data before and after the time T0 + cnt × DT to the time T0 + cnt × DT + LT is also required, and therefore acquired in LT seconds from the time T0 + cnt × DT to the time T0 + cnt × DT + LT. RRI3 (before shaping) 1013 includes the RRI that has been performed and one RRI before and after the RRI.
 例えば、指標値計算開始時刻T0が15時10分20秒、LT=300[秒](=5[分])、DT=10秒、cnt=0、の場合は、時刻15時10分20秒~15時15分20秒までのデータに、15時10分20秒の1つ前のデータと、15時15分20秒の1つ後のデータを含めた図12に示すようなデータである。 For example, when the index value calculation start time T0 is 15:10:20, LT = 300 [seconds] (= 5 [minutes]), DT = 10 seconds, and cnt = 0, the time is 15:10:20. The data up to 15:15:20 includes the data immediately before 15:10:20 and the data after 15:15:20, as shown in FIG. .
 cnt=3の場合は、時刻15時10分50秒~15時15分50秒までのデータに、15時10分50秒の1つ前のデータと、15時15分50秒の1つ後のデータを含めた図13に示すようなデータである。 When cnt = 3, the data from 15:10:50 to 15:15:50, the data before 15:10:50, and the data after 15:15:50 The data as shown in FIG.
 RRI取得手段21による処理に続いてデータ整形手段22による処理が行われる。データ整形手段22は、処理手法の相違により、例えば以下の図5から図8に示す複数の構成から所要のものが選択される。ここでは、データ整形手段22(図5)、データ整形手段221A(図6)、データ整形手段221B(図7)、データ整形手段221C(図8)の4種類を説明する。 Following the processing by the RRI acquisition means 21, the processing by the data shaping means 22 is performed. For the data shaping means 22, a required one is selected from a plurality of configurations shown in FIGS. Here, four types of data shaping means 22 (FIG. 5), data shaping means 221A (FIG. 6), data shaping means 221B (FIG. 7), and data shaping means 221C (FIG. 8) will be described.
 データ整形手段22は、トレンド除去部222、異常値除去部223、データ補間部224、フィルタ処理部225により構成され、この順で、RRI3(整形前)1013に対して整形処理を行い、最終的にRRI(整形後)1014を生成する。トレンド除去部222では、本実施形態では扱わないRRIの超低周波成分を除去する。RRI3(整形前)1013にハウスホルダー法を適用し最小二乗推定量を算出する。次いでRRI3(整形前)1013から最小二乗曲線を除去する。5分程度のRRIデータを扱う場合は、ハウスホルダー法の次数は6次程度で十分である(日野幹男、「スペクトル解析」、朝倉書店(2009年))。 The data shaping means 22 includes a trend removing unit 222, an abnormal value removing unit 223, a data interpolation unit 224, and a filter processing unit 225. In this order, the data shaping unit 22 performs shaping processing on the RRI 3 (before shaping) 1013, and finally RRI (after shaping) 1014 is generated. The trend removing unit 222 removes RRI ultra-low frequency components that are not handled in the present embodiment. The householder method is applied to RRI3 (before shaping) 1013 to calculate the least square estimation amount. Next, the least square curve is removed from the RRI 3 (before shaping) 1013. When handling RRI data of about 5 minutes, the order of the Householder method is about 6th (Mino Hino, “Spectrum Analysis”, Asakura Shoten (2009)).
 図15にRRI3(整形前)1013の波形を示し、図16にトレンド除去後の波形を示す。より詳細には、図15は、指標値計算開始時刻T0から4000秒後(cnt=400)のRRI3(整形前)1013の波形である。図16は、図15に示したRRI3(整形前)1013に対して、当該トレンド除去部222による処理を適用して得たトレンド除去後の波形データである。 15 shows the waveform of RRI3 (before shaping) 1013, and FIG. 16 shows the waveform after trend removal. More specifically, FIG. 15 shows a waveform of RRI3 (before shaping) 1013 4000 seconds after the index value calculation start time T0 (cnt = 400). FIG. 16 shows the waveform data after trend removal obtained by applying the processing by the trend removal unit 222 to the RRI 3 (before shaping) 1013 shown in FIG.
 トレンド除去部222に続いて処理を行う異常値除去部223は、センサの異常値を数理的根拠に基づき除去するものである。異常値が混入すると、以降の指標値計算手段23で算出される指標(活動指標)に関して正しい値が得られないために行われる処理である。 The abnormal value removing unit 223 that performs processing following the trend removing unit 222 removes the abnormal value of the sensor based on a mathematical basis. This is a process performed when an abnormal value is mixed, because a correct value cannot be obtained for the index (activity index) calculated by the index value calculation means 23 thereafter.
 図17は、図16のトレンド除去後のデータに対して、当該異常値除去部223による処理を適用して得た異常値除去後のデータである。本実施形態では、図16に示したトレンド除去後のデータについて、±300[ms]を超えたものを異常値として扱っている。尚、±300のような絶対的な数値による排除だけでなく、例えばRRIのヒストグラムを作成した際に±5σを越えるデータは異常値として扱う、などとして処理する。 FIG. 17 shows data after removing abnormal values obtained by applying the processing by the abnormal value removing unit 223 to the data after removing the trend in FIG. In the present embodiment, the data after trend removal shown in FIG. 16 is handled as an abnormal value if it exceeds ± 300 [ms]. In addition to exclusion by an absolute numerical value such as ± 300, for example, when an RRI histogram is created, data exceeding ± 5σ is treated as an abnormal value.
 異常値除去部223の次に処理を行うデータ補間部224では、スプライン補間、線形補間等を利用して、一定時間間隔のRRIデータを算出する。これは、以降に処理を行う指標値計算手段23におけるFFTの計算のための前処理に相当している。図18は、図17に示した異常値除去後のデータに対して、当該データ補間部224による処理を適用して得た補間後のデータである。尚、本実施形態では1次補間を行っている。 The data interpolation unit 224 that performs processing next to the abnormal value removal unit 223 calculates RRI data at regular time intervals using spline interpolation, linear interpolation, or the like. This corresponds to the preprocessing for calculating the FFT in the index value calculation means 23 that performs processing thereafter. FIG. 18 shows post-interpolation data obtained by applying the processing by the data interpolation unit 224 to the data after the abnormal value removal shown in FIG. In this embodiment, linear interpolation is performed.
 データ補間部224に続く処理を行うフィルタ処理部225では、適宜FFTフィルタを作用させる(日野幹男、「スペクトル解析」、朝倉書店(2009年))。このフィルタ処理部225の処理は、データ補間部224の処理と同じく指標値計算手段23におけるFFTの計算のための前処理に相当している。図20は、図18の補間後のデータに対して当該フィルタ処理部225による処理を適用して得たRRI(整形後)1014を示している。 In the filter processing unit 225 that performs processing subsequent to the data interpolation unit 224, an FFT filter is applied as appropriate (Mikio Hino, “Spectrum Analysis”, Asakura Shoten (2009)). The processing of the filter processing unit 225 corresponds to preprocessing for FFT calculation in the index value calculation unit 23 as in the processing of the data interpolation unit 224. FIG. 20 shows an RRI (after shaping) 1014 obtained by applying the processing by the filter processing unit 225 to the data after interpolation in FIG.
 尚、本実施形態で適用したフィルタの特性は図19に示すようであり、波形整形以降の周波数解析において、最新のデータに含まれる周波数成分を最も注目(強調)したいという目的のものであり、古いデータの信号(パワー)を小さくしている。フィルタ処理部225に用いるフィルタはこの実施形態に示した特性に限るものではなく、解析の目的に合わせて様々なものを採用できる。 Note that the characteristics of the filter applied in this embodiment are as shown in FIG. 19, and the purpose is to focus attention (emphasis) on the frequency components included in the latest data in the frequency analysis after waveform shaping. The old data signal (power) is reduced. The filter used in the filter processing unit 225 is not limited to the characteristics shown in this embodiment, and various filters can be used according to the purpose of analysis.
 図6に示すデータ整形手段221Aは、図5に示したデータ整形手段22の前段に1段の第1異常値除去部226Aを設けた構成である。データ整形手段221Aは、第1異常値除去部226A、トレンド除去部222、第2異常値除去部223A、データ補間部224、フィルタ処理部225によって構成される。これら第1異常値除去部226Aからフィルタ処理部225によりRRI3(整形前)1013に対し順に整形処理を行い、最終的にRRI(整形後)1014を生成する。 The data shaping unit 221A shown in FIG. 6 has a configuration in which a first stage abnormal value removing unit 226A is provided in the previous stage of the data shaping unit 22 shown in FIG. The data shaping unit 221A includes a first abnormal value removing unit 226A, a trend removing unit 222, a second abnormal value removing unit 223A, a data interpolation unit 224, and a filter processing unit 225. The first abnormal value removing unit 226A performs the shaping process sequentially on the RRI 3 (before shaping) 1013 by the filter processing unit 225, and finally generates the RRI (after shaping) 1014.
 第1異常値除去部226Aと第2異常値除去部223Aの相違は、第1異常値除去部226Aはセンサの特性等に関する既知の「明らかな」異常値を除去するものであるのに対し、第2異常値除去部223Aは、数理的根拠に基づき異常値を取り除くものである。 The difference between the first abnormal value removing unit 226A and the second abnormal value removing unit 223A is that the first abnormal value removing unit 226A removes known “obvious” abnormal values related to the characteristics of the sensor, etc. The second abnormal value removing unit 223A removes the abnormal value based on a mathematical basis.
 図7に示すデータ整形手段221Bは、データ補間部224とフィルタ処理部225によって構成される。このデータ整形手段221Bは、特に高精度の心拍センサを利用する場合に利用するものである。図8に示すデータ整形手段221Cは、データ補間部224のみで構成される。以上の通り、本実施形態のデータ整形手段22は、データ補間部224を必須の構成要素とする他は任意の構成を採用することができる。従って、データ整形手段22には、本実施形態により示した構成以外の構成を適宜追加してもよい。 7 includes a data interpolation unit 224 and a filter processing unit 225. The data shaping unit 221B illustrated in FIG. This data shaping means 221B is used particularly when a highly accurate heart rate sensor is used. The data shaping unit 221 </ b> C shown in FIG. 8 includes only the data interpolation unit 224. As described above, the data shaping unit 22 of the present embodiment can employ any configuration except that the data interpolation unit 224 is an essential component. Therefore, a configuration other than the configuration shown in the present embodiment may be added to the data shaping unit 22 as appropriate.
 上記に示したデータ整形手段22、データ整形手段221A、データ整形手段221B及びデータ整形手段221Cでは、所定の時点のデータに対してセンサ特性情報1101に応じた補正がなされる場合がある。これはセンサ機種の違いによる特性差を吸収するためのものである。 In the data shaping unit 22, the data shaping unit 221A, the data shaping unit 221B, and the data shaping unit 221C described above, correction according to the sensor characteristic information 1101 may be performed on the data at a predetermined time. This is to absorb the characteristic difference due to the difference in the sensor model.
 次に、図9に示されている指標値計算手段23の説明を行う。指標値計算手段23は、指標1計算部232-1~指標m計算部232-mと、ベクトル化部233によって構成される。指標1計算部232-1~指標m計算部232-mでは、RRI3(整形前)1013およびRRI(整形後)1014を用いて、心拍変動に基づく自律神経の活動指標(複数)をm個算出する。 Next, the index value calculation means 23 shown in FIG. 9 will be described. The index value calculation means 23 includes an index 1 calculation unit 232-1 to an index m calculation unit 232-m, and a vectorization unit 233. The index 1 calculation unit 232-1 to the index m calculation unit 232-m calculate m autonomic nerve activity indices (plurality) based on heart rate variability using RRI3 (before shaping) 1013 and RRI (after shaping) 1014. To do.
 本実施形態において用いる、心拍変動に基づく自律神経の活動指標(複数)とは、例えば以下ものを挙げることができる。
 ・積率統計量に関する活動指標
 SDRR:RRIの標準偏差(交感神経と副交感神経の活動指標)
 RMSSD:隣接するRRIの差の二乗平均値の平方根(副交感神経の活動指標)
 SDSD:隣接するRRIの差の標準偏差(副交感神経の活動指標)
 pRR50:隣接するRRIの差が50[ミリ秒]を超える割合(副交感神経の活動指標)
Examples of the autonomic nerve activity index (plurality) based on heart rate variability used in the present embodiment include the following.
-Activity index related to product moment statistics SDRR: RRI standard deviation (sympathetic and parasympathetic activity index)
RMSSD: root mean square of adjacent RRI differences (parasympathetic activity index)
SDSD: Standard deviation of the difference between adjacent RRIs (parasympathetic activity index)
pRR50: Rate at which the difference between adjacent RRIs exceeds 50 [milliseconds] (parasympathetic activity index)
 ・スペクトル解析に基づく活動指標
 LF:PSDの0.04~0.15[Hz]のパワー(主として交感神経の活動指標)
 HF:(PSDの0.15~0.40[Hz]のパワー(副交感神経の活動指標)
 HF/(LF+HF)(副交感神経の活動比率)
 特定周波数帯のパワーp(i=0,1,2,・・・,9):PSDの0.15+i×0.025~0.15+(i+1)×0.025[Hz]のパワー(副交感神経の個別周波数帯の活動指標)
・ Activity index based on spectrum analysis LF: PSD 0.04-0.15 [Hz] power (mainly sympathetic activity index)
HF: (PSD 0.15-0.40 [Hz] power (parasympathetic activity index)
HF / (LF + HF) (parasympathetic activity ratio)
Specific frequency band power p i (i = 0, 1, 2,..., 9): PSD power of 0.15 + i × 0.025 to 0.15+ (i + 1) × 0.025 [Hz] Activity index of individual frequency band of nerve)
 積率統計量に関する活動指標は、RRI3(整形後)1013のデータを
(1≦i≦m)としたとき、以下の式により与えられる。
The activity index related to the product moment statistic is given by the following equation when the data of RRI3 (after shaping) 1013 is x i (1 ≦ i ≦ m).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 スペクトル解析に基づく指標の算出は、はじめにRRI(整形後)1014(即ち、{x}系列(1≦i≦m))について、FFT、最大エントロピー法等を適用してPSD(パワースペクトル密度関数)を求める。FFT算出については良く知られており、ここではその詳細説明を省略する。 The calculation of the index based on the spectrum analysis is performed by first applying an FFT, a maximum entropy method, etc. to the RRI (after shaping) 1014 (that is, {x i } sequence (1 ≦ i ≦ m)) PSD (power spectral density function). ) The FFT calculation is well known, and detailed description thereof is omitted here.
 図21は、FFT直接法により得たPSDを示す図である。また、図22は、最大エントロピー法(burg法)により求めたPSDを示す図である。PSDを求める手法としては、上記の他に、FFTとARモデル予測(Yule-Walker 法)により求める手法がある。 FIG. 21 is a diagram showing PSD obtained by the FFT direct method. FIG. 22 is a diagram showing PSD obtained by the maximum entropy method (burg method). As a method for obtaining the PSD, there is a method for obtaining by PSD and AR model prediction (Yule-Walker method) in addition to the above.
 周波数fにおけるパワースペクトル密度関数をPSD(f)と表すと、LF、HFは以下の式により与えられる。尚、LF、HFの積分区間の定義は諸説あり、定まったものは存在しない。従って、以下の式における積分区間は一例である。 When the power spectral density function at the frequency f is expressed as PSD (f), LF and HF are given by the following equations. There are various theories about the definition of the integration interval of LF and HF, and there is no fixed one. Therefore, the integration interval in the following formula is an example.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 上記の「スペクトル解析に基づく指標」においては、HF/(LF+HF)を指標として示したが、Ratio は、LF/(LF+HF)であっても、HF/LFであっても良い。特定周波数帯のパワーp(i=0,1,2,・・・,9)は、本願発明者が初めて提供する独自の指標であり、上記HFの積分区間が0.15~0.40[Hz]であるところを、該区間を10分割し、分割区間単位でパワーを算出するものである。即ち、次の式により示す処理によりパワーを求める。 In the above “index based on spectrum analysis”, HF / (LF + HF) is shown as an index, but Ratio may be LF / (LF + HF) or HF / LF. The power p i (i = 0, 1, 2,..., 9) in the specific frequency band is a unique index provided for the first time by the inventor of the present application, and the integration interval of the HF is 0.15 to 0.40. The section at [Hz] is divided into 10 sections, and the power is calculated in units of divided sections. That is, the power is obtained by the processing shown by the following equation.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 図23は、FFT直接法により得たPSDの上記0.15~0.40[Hz]の区間を、区間Iから区間Xまでの10区間に分割し、各区間でパワーを求めることを示す図である。また、図24は、最大エントロピー法(burg法)により求めたPSDの上記0.15~0.40[Hz]の区間を、区間Iから区間Xまでの10区間に分割し、各区間でパワーを求めることを示す図である。勿論、分割数10は一例であり、2以上の任意の数の区間に分割しても良い。 FIG. 23 is a diagram showing that the above 0.15 to 0.40 [Hz] section of PSD obtained by the FFT direct method is divided into 10 sections from section I to section X, and the power is obtained in each section. It is. Further, FIG. 24 shows that the above 0.15-0.40 [Hz] section of PSD obtained by the maximum entropy method (burg method) is divided into 10 sections from section I to section X. FIG. Of course, the division number 10 is an example, and it may be divided into an arbitrary number of sections of 2 or more.
 上記の実施形態において、眠気推定処理の第cnt回目のループでは、時刻T0+cnt×DT~時刻T0+cnt×DT+LTまでのLT秒間に取得されたRRIを用いて、SDRR、RMSSD、SDSD、pRR50、LF、HF、HF/(LF+HF)、p、p、p、p、p、p、p、p、p、pのm(=17)個の指標の指標値が算出される。 In the above embodiment, in the cnt-th loop of sleepiness estimation processing, using the RRI acquired during LT seconds from time T0 + cnt × DT to time T0 + cnt × DT + LT, SDRR, RMSSD, SDSD, pRR50, LF, HF , HF / (LF + HF), p 0 , p 1 , p 2 , p 3 , p 4 , p 5 , p 6 , p 7 , p 8 , p 9 index values are calculated. Is done.
 以降では,それぞれの指標値をy(j=1,2,3,…,m)と表記する。特に、時刻T0+cnt×DT+LT(cnt値に依存)における指標値であることを表す場合には、ycnt(j=1,2,3,…,m)、(cnt=0,1,2,3,…)と表記する。すなわち、yα,βは、時刻T0+β×DT~時刻T0+β×DT+LTまでのLT秒間に取得されたRRIから算出されたα番目の指標値を意味する。 Hereinafter, each index value is expressed as y j (j = 1, 2, 3,..., M). In particular, y j , cnt (j = 1, 2, 3,..., M), (cnt = 0, 1, 2, when representing an index value at time T0 + cnt × DT + LT (depending on the cnt value) , 3, ...). That is, y α, β means the α-th index value calculated from RRI acquired during LT seconds from time T0 + β × DT to time T0 + β × DT + LT.
 図9に示す指標値計算手段23に備えられているベクトル化部233では、眠気推定処理の第cnt回目のループで算出される指標値をベクトル化する。すなわち、時刻T0+cnt×DT~時刻T0+cnt×DT+LTまでのLT秒間に取得されたRRIに基づき生成された指標値y1,cnt~ym,cntをまとめてベクトル化する。これにより、指標値ベクトル1021
YYcnt={y1,cnt,y2,cnt,y3,cnt,・・・・,ym,cnt}を生成する。ベクトルの標記は、文中ではYYのように、大文字を連続記載したものとする。以降、YYcntは、時刻T0+cnt×DT+LTにおける指標値ベクトルとして扱う。
The vectorization unit 233 provided in the index value calculation unit 23 shown in FIG. 9 vectorizes the index value calculated in the cnt-th loop of sleepiness estimation processing. That is, the index values y 1, cnt to y m, cnt generated based on RRI acquired during the LT seconds from time T0 + cnt × DT to time T0 + cnt × DT + LT are collectively vectorized. Thereby, the index value vector 1021
YY cnt = {y 1, cnt , y 2, cnt , y 3, cnt ,..., Ym , cnt } is generated. In the text, the capital letters are continuously written as YY in the text. Hereinafter, YY cnt is treated as an index value vector at time T0 + cnt × DT + LT.
 図4の指標値計算手段23には、図示しない指標値ベクトルの時系列化部が含まれているので、以下に指標値ベクトルの時系列化部の説明を行う。指標値ベクトルの時系列化部では、眠気推定処理の第k回目(0≦cnt≦k)までに算出された指標値ベクトルYYをまとめて、指標値ベクトル時系列1051:DD={YY,YY,YY,・・・,YY}を生成する。 Since the index value calculation means 23 of FIG. 4 includes an index value vector time series unit (not shown), the index value vector time series unit will be described below. In the index value vector time series unit, the index value vectors YY k calculated up to the k-th time (0 ≦ cnt ≦ k) of the sleepiness estimation process are collected and index value vector time series 1051: DD = {YY 0 , YY 1 , YY 2 ,..., YY k }.
 次に、指標値計算手段23に次いで処理を行う眠気推定手段24の説明を行う。眠気推定手段24では、再処理ループ(ループ開始部202~ループ終了判定部203)の0~k回目までのループで構成される指標値ベクトル時系列1051:DD={YY,YY,YY,・・・,YY}を参照し、眠気推定ルール1102に基づき眠気の推定を行う。 Next, the drowsiness estimation unit 24 that performs processing subsequent to the index value calculation unit 23 will be described. In the drowsiness estimating means 24, the index value vector time series 1051: DD = {YY 0 , YY 1 , YY composed of loops 0 to k of the reprocessing loop (loop start unit 202 to loop end determination unit 203). 2 ,..., YY k }, and sleepiness is estimated based on the sleepiness estimation rule 1102.
 ここに、眠気推定ルール1102とは、閾値が定められた閾値ベクトルRRと、指標値ベクトル時系列DDと閾値ベクトルRRを引数とする推定関数fとで構成されるものである。f(DD,RR)は推定値を意味する。また、推定関数fは、推定値f(DD,RR)={1,0}(1:眠気可能性あり、0:眠気可能性なし)のように、離散化された整数値を返すように設計されている。上記では、2値のものを示したが、推定値f(DD,RR)={3,2,1,0}(3:眠気可能性大、2:可能性中、1:可能性低、0:なし)のように、4値化されていても良く、特に制限は無い。 Here, the sleepiness estimation rule 1102 includes a threshold vector RR with a threshold value, an index value vector time series DD, and an estimation function f having the threshold vector RR as arguments. f (DD, RR) means an estimated value. Further, the estimation function f returns a discretized integer value such as an estimated value f (DD, RR) = {1, 0} (1: possibility of sleepiness, 0: no possibility of sleepiness). Designed. In the above, a binary value is shown, but the estimated value f (DD, RR) = {3, 2, 1, 0} (3: high possibility of drowsiness, 2: possible possibility, 1: low possibility, 0: None), and may be quaternized, and is not particularly limited.
 推定関数fは、指標値ベクトル時系列DD={YY,YY,YY,・・・,YY}のk+1個の要素のうち、少なくとも1つ以上のYYcnt(0≦cnt≦k)を利用し、また、YYcnt={y1,cnt,y2,cnt,・・・・,ym,cnt}のm個の要素のうち、少なくとも1つ以上のyj,cnt(1≦j≦m)を利用するように構成することができる。即ち、k+1の時刻に対応する指標値ベクトルのうち少なくとも1つ以上の時刻に対応する指標値ベクトルを参照し、これらの指標値ベクトルのm個の要素のうち1つ以上を利用するようにすることができる。 The estimation function f is an index value vector time series DD = {YY 0 , YY 1 , YY 2 ,..., YY k } of at least one element YY cnt (0 ≦ cnt ≦ k). ) And YY cnt = {y 1, cnt , y 2, cnt ,..., Y m, cnt }, and at least one y j, cnt (1 ≦ j ≦ m) can be used. That is, an index value vector corresponding to at least one time among index value vectors corresponding to time k + 1 is referred to, and one or more of m elements of these index value vectors are used. be able to.
 上記推定関数fのより具体的な例1を示す。例1は、以下の条件1~3を満たすときに「眠気あり」と判定することができる。これは、2値判定の例である。 A more specific example 1 of the estimation function f will be shown. In Example 1, it can be determined that there is “sleepiness” when the following conditions 1 to 3 are satisfied. This is an example of binary determination.
 条件1:HF/(LF+HF)≧0.2
 条件2:p≧3.8 または p≧4.2
 条件3:HF≦200
Condition 1: HF / (LF + HF) ≧ 0.2
Condition 2: p 5 ≧ 3.8 or p 6 ≧ 4.2
Condition 3: HF ≦ 200
 本実施形態では、指標名と、指標変数及びその閾値は、図14に示す如き対応があるものとする。例えば、HF/(LF+HF)の変数はy,閾値はr(=0.2)である。同様に、指標名p,p,HFの変数は、y13,y14,y,閾値はr13(=3.8),r14(=4.2),r(=200)であることを示している。これに対応する閾値ベクトルRRは、図14の上から下まで連番で1~17までの指標番号とすると、RR={{7,0.2},{13,3.8},{14,4.2},{6,200}}であり、{{指標番号,閾値},{指標番号,閾値},{指標番号,閾値},{指標番号,閾値},・・・}などとして構成することができる。 In the present embodiment, it is assumed that the index name, the index variable, and the threshold value have correspondence as shown in FIG. For example, the variable of HF / (LF + HF) is y 7 and the threshold is r 7 (= 0.2). Similarly, the variables of index names p 5 , p 6 and HF are y 13 , y 14 and y 6 , and the threshold values are r 13 (= 3.8), r 14 (= 4.2), r 6 (= 200). ). If the threshold vector RR corresponding to this is an index number from 1 to 17 in a serial number from the top to the bottom of FIG. 14, RR = {{7, 0.2}, {13, 3.8}, {14 4.2}, {6,200}}, {{index number, threshold}, {index number, threshold}, {index number, threshold}, {index number, threshold},. Can be configured.
 処理時刻及びループカウントを意味する最新のcnt値をkとすると、例1の推定関数は以下のように与えられる。
 f(DD,RR):=(y7,k≧r)∧((y13,k≧r13)∨(y14,k≧r14))∧(y6,k≦r
 上記において、∧はANDを意味し、∨はORを意味する。
 上記の推定関数f(DD,RR)がTRUEならば1、FALSEならば0とすることができる。
Assuming that the latest cnt value meaning the processing time and loop count is k, the estimation function of Example 1 is given as follows.
f (DD, RR): = (y 7, k ≧ r 7 ) ∧ ((y 13, k ≧ r 13 ) ∨ (y 14, k ≧ r 14 )) ∧ (y 6, k ≦ r 6 )
In the above, ∧ means AND, and ∨ means OR.
It can be set to 1 if the above estimation function f (DD, RR) is TRUE and 0 if it is FALSE.
 尚、本実施形態における推定関数が処理する内容は、一般的な指標を用いた判定が条件1であり、被検者に固有の特徴である、眠気時に特にPSDにおける0.275~0.3[Hz]の領域或いは0.3~0.325[Hz]の領域の成分が上昇するという傾向を用いた判定が条件2であり、食事やお喋りなど、副交感神経の活動が活性化する場合の判定が条件3であり、これら条件1と条件2が共に成立し、条件3を排除するようにしたものである。 Note that the processing performed by the estimation function in the present embodiment is that the determination using a general index is Condition 1, and is a characteristic unique to the subject, and is 0.275 to 0.3 particularly in PSD especially during sleepiness. The determination using the tendency that the component in the [Hz] region or the 0.3 to 0.325 [Hz] region increases is the condition 2, and the parasympathetic nerve activity such as meal or talk is activated The determination is Condition 3, and both Condition 1 and Condition 2 are satisfied and Condition 3 is excluded.
 上記のユーザに固有の特徴に係る条件については、ユーザについて予め全指標を用いた測定であって、眠気を生じたときの測定を行うことにより得るものとすることができる。この測定のデータから、眠気を生じたときの各活動指標において顕著な変化を求め、推定関数とすることができる。これは後述するクラウドストレージ30において、眠気推定処理が実行される毎に眠気推定ルール1102が更新され、推定精度を向上させて行く構成において処理を実行することができる。これによって、ユーザに固有の眠気推定ルールを設定することができる。 The above-mentioned conditions relating to the characteristics unique to the user can be obtained by performing measurement using all the indexes in advance for the user and measuring when sleepiness occurs. From this measurement data, a significant change in each activity index when sleepiness occurs can be obtained and used as an estimation function. In the cloud storage 30, which will be described later, the sleepiness estimation rule 1102 is updated each time the sleepiness estimation process is executed, and the process can be executed in a configuration that improves the estimation accuracy. Thereby, a sleepiness estimation rule specific to the user can be set.
 上記推定関数fの、より具体的な例2を示す。例2は、先の例1の推定関数fについて、条件4を加えたものであり、以下の通りである。
 条件1:HF/(LF+HF)≧0.2
 条件2:p≧3.8 または p≧4.2
 条件3:HF≦200
 条件4:条件1が過去連続して3回(現在を含め4回)満たしている
A more specific example 2 of the estimation function f will be described. Example 2 is obtained by adding condition 4 to the estimation function f of the previous example 1, and is as follows.
Condition 1: HF / (LF + HF) ≧ 0.2
Condition 2: p 5 ≧ 3.8 or p 6 ≧ 4.2
Condition 3: HF ≦ 200
Condition 4: Condition 1 has been satisfied three times in the past (4 times including the present)
 処理時刻及びループカウントを意味する最新のcnt値をkとすると、本例の推定関数は以下のように与えられる。
 f(DD,RR):=(y7,k≧r)∧((y13,k≧r13)∨(y14,k≧r14))
∧(y6,k≦r)∧((y7,k-1≧r)∧(y7,k-2≧r)∧(y7,k-3≧r))
 上記の推定関数(条件式)がTRUEならば1、FALSEならば0とすることができる。
Assuming that the latest cnt value meaning the processing time and loop count is k, the estimation function of this example is given as follows.
f (DD, RR): = (y 7, k ≧ r 7) ∧ ((y 13, k ≧ r 13) ∨ (y 14, k ≧ r 14))
∧ (y 6, k ≦ r 6 ) ∧ ((y 7, k−1 ≧ r 7 ) ∧ (y 7, k-2 ≧ r 7 ) ∧ (y 7, k-3 ≧ r 7 ))
It can be set to 1 if the above estimation function (conditional expression) is TRUE, and 0 if it is FALSE.
 以上の通り、指標値計算手段23(図1)は、第1の時間毎のRRIデータを用いて単位時間の活動指標を算出し、単位時間の活動指標を活動指標の種類分集めてベクトル化し、ベクトル化された指標値を時系列に並べて指標値ベクトル時系列を作成し、眠気推定手段24は、閾値ベクトルと上記指標値ベクトル時系列を用いて評価する関数により眠気推定を行う。 As described above, the index value calculation unit 23 (FIG. 1) calculates the activity index for unit time using the RRI data for each first time, collects the activity index for unit time for each type of activity index, and vectorizes it. Then, the vectorized index values are arranged in time series to create an index value vector time series, and the sleepiness estimation means 24 performs sleepiness estimation using a threshold vector and a function that is evaluated using the index value vector time series.
 次に、眠気推定手段24に続き処理を行う出力手段25の説明を行う。出力手段25は、眠気推定手段24において算出された推定値f(DD,RR)を、眠気推定処理の呼び出し側/上位側への返り値として戻す処理を行う。 Next, the output means 25 that performs processing following the sleepiness estimation means 24 will be described. The output unit 25 performs a process of returning the estimated value f (DD, RR) calculated by the sleepiness estimation unit 24 as a return value to the caller / upper side of the sleepiness estimation process.
 出力手段25の処理の次には、ループ終了判定部203が処理を行う。眠気推定処理の呼び出し側/上位側などから終了指示により、ループ終了判定部203はYESへ分岐し、RRIセンサ10によるデータ取得終了、停止し、及び眠気推定処理の呼び出し側/上位関数へコントロールを渡すことになる。ループ終了判定部203がNOへ分岐した場合には、ループ開始部202からRRI取得手段21の処理へ戻り、次ステップ以降のループ処理が行われる。 Next to the processing of the output means 25, the loop end determination unit 203 performs processing. In response to an end instruction from the caller / upper side of the drowsiness estimation process, the loop end determination unit 203 branches to YES, terminates and stops data acquisition by the RRI sensor 10, and controls the caller / upper function of the drowsiness estimation process. Will pass. When the loop end determination unit 203 branches to NO, the loop start unit 202 returns to the processing of the RRI acquisition unit 21, and the loop processing after the next step is performed.
 ループ終了部204は、ループ終了判定部203による終了判定(YESへの分岐)がなされた後に、図4に示すように、少なくとも、RRIセンサ10から取得したRRI2(整形前)1012と、指標値ベクトルの時系列データDDの一部或いは全部のデータである指標値ベクトル時系列1051を、好ましくは眠気が生じたときのデータであるか否かを示すフラグと共にクラウドストレージ30に転送する。この結果、クラウドストレージ30には、取得済RRI1012Xとして、また所定期間の指標値ベクトル時系列1051Xとして記憶されることになる。 After the end determination (branch to YES) is made by the loop end determination unit 203, the loop end unit 204 includes at least the RRI2 (before shaping) 1012 acquired from the RRI sensor 10 and the index value, as shown in FIG. The index value vector time series 1051 that is a part or all of the vector time series data DD is transferred to the cloud storage 30 together with a flag that preferably indicates whether or not the drowsiness occurs. As a result, the cloud storage 30 stores the acquired RRI 1012X and the index value vector time series 1051X for a predetermined period.
 クラウドストレージ30に転送されたデータは、クラウドストレージ30にアクセス可能な図示しないサーバによる眠気推定ルール1102の再計算のために使われても良い。眠気推定ルール1102は、眠気推定処理が実行される毎に更新され、推定精度を向上させて行く構成を採用しても良い。 The data transferred to the cloud storage 30 may be used for recalculation of the sleepiness estimation rule 1102 by a server (not shown) that can access the cloud storage 30. The drowsiness estimation rule 1102 may be updated every time the drowsiness estimation process is executed, and a configuration that improves the estimation accuracy may be adopted.
 眠気推定装置の第2の実施形態は、図25に示すように構成される。この第2の実施形態では、端末20が推定ルール1102を保持している。従って、開始処理部201は端末20の記憶装置から推定ルール1102を読み出して用いる。これ以外の構成は第1の実施形態と同様である。この第2の実施形態では、端末20の記憶装置から推定ルール1102を読み出す処理を有する図26に示したフローチャートにより処理が実行される。 The second embodiment of the sleepiness estimation apparatus is configured as shown in FIG. In the second embodiment, the terminal 20 holds the estimation rule 1102. Therefore, the start processing unit 201 reads the estimation rule 1102 from the storage device of the terminal 20 and uses it. The other configuration is the same as that of the first embodiment. In the second embodiment, the process is executed according to the flowchart shown in FIG. 26 having a process of reading the estimation rule 1102 from the storage device of the terminal 20.
 眠気推定装置の第3の実施形態は、図27に示すように構成される。即ち、端末20にRRIセンサ10とサーバ60が接続され、サーバ60にクラウドストレージ30が接続された構成を有する。端末20には、RRI取得手段21、出力手段25が備えられる。また、サーバ60にデータ整形手段22、指標値計算手段23、眠気推定手段24が備えられる。サーバ60において推定値1005が得られるが、この推定値1005は、サーバ60及び/または端末20が備える、眠気推定処理の呼び出し側/上位側などへ送出され、そこで使用される。 The third embodiment of the sleepiness estimation apparatus is configured as shown in FIG. That is, the RRI sensor 10 and the server 60 are connected to the terminal 20, and the cloud storage 30 is connected to the server 60. The terminal 20 is provided with RRI acquisition means 21 and output means 25. Further, the server 60 is provided with data shaping means 22, index value calculation means 23, and sleepiness estimation means 24. An estimated value 1005 is obtained in the server 60. This estimated value 1005 is transmitted to the calling side / upper side of the sleepiness estimation process provided in the server 60 and / or the terminal 20, and used there.
 クラウドストレージ30には、センサ特性情報1101、眠気推定ルール1102が予め備えられている。また、クラウドストレージ30には、端末20において取得した取得済RRIデータを履歴データの取得済RRI1012Xとして記憶しておくことができる。 The cloud storage 30 includes sensor characteristic information 1101 and sleepiness estimation rules 1102 in advance. The cloud storage 30 can store the acquired RRI data acquired in the terminal 20 as the acquired RRI 1012X of history data.
 図28に、第3の実施形態における、端末20、サーバ60、クラウドストレージ30の構成を示す。クラウドストレージ30の構成は、第1の実施形態のものと同じであり、端末20の構成は、データ取得処理を行うためのデータ処理プログラムを備え、データ整形等のデータ処理や眠気推定処理を行うための眠気推定プログラムを備えていない点が第1の実施形態のものと異なっている。 FIG. 28 shows the configuration of the terminal 20, the server 60, and the cloud storage 30 in the third embodiment. The configuration of the cloud storage 30 is the same as that of the first embodiment, and the configuration of the terminal 20 includes a data processing program for performing data acquisition processing, and performs data processing such as data shaping and sleepiness estimation processing. This is different from that of the first embodiment in that a sleepiness estimation program is not provided.
 サーバ60は、CPUの制御によって処理を行うものであり、処理中のデータなどを一時保持するための一時記憶などを行うメモリ、各種の処理データを記憶するための不揮発メモリなどにより構成されるストレージ、ネットワークを介した通信などを行う通信部を有する。上記通信部によって、端末20またはクラウドストレージ30との間で通信を行うことができる。サーバ60は、データ取得のデータ処理を行うためのデータ処理プログラムを備えておらず、データ整形等のデータ処理や眠気推定処理を行うための眠気推定プログラムを備えている。 The server 60 performs processing under the control of the CPU, and is composed of a memory that temporarily stores data being processed and the like, a non-volatile memory that stores various types of processing data, and the like. And a communication unit for performing communication via the network. Communication with the terminal 20 or the cloud storage 30 can be performed by the communication unit. The server 60 does not include a data processing program for performing data processing for data acquisition, but includes a sleepiness estimation program for performing data processing such as data shaping and sleepiness estimation processing.
 第3の実施形態では、図29に示すフローチャートにより処理が実行される。図4と同一の符号の処理は基本的に同じ処理であるので、異なる部分を説明する。端末20では、開始処理部201がセンサ特性情報や推定ルールを取り込むことはないが、ループ処理(ループ開始部202からループ終了判定部203の間)による再処理の時間間隔DT[秒]、1回のループ処理で扱うRRIのデータ長LT[秒]間分などのパラメータを取り込む。サーバ60の開始処理部601は、図4の開始処理部201と同じ処理を行う。 In the third embodiment, the processing is executed according to the flowchart shown in FIG. Since the processes with the same reference numerals as in FIG. 4 are basically the same processes, the different parts will be described. In the terminal 20, the start processing unit 201 does not capture the sensor characteristic information or the estimation rule, but the reprocessing time interval DT [seconds] by loop processing (between the loop start unit 202 and the loop end determination unit 203), 1 Parameters such as the RRI data length LT [seconds] handled in the loop processing of the number of times are fetched. The start processing unit 601 of the server 60 performs the same processing as the start processing unit 201 in FIG.
 この第3の実施形態では、同期して端末20とサーバ60が動作を行うために、端末20には、サーバ同期開始部206とサーバ同期終了部207が設けられ、サーバ60には、端末同期開始部606と端末同期終了部607が設けられている。サーバ同期開始部206と端末同期開始部606の通信による同期開始から、サーバ同期終了部207と端末同期終了部607の通信による同期終了まで、端末20により収集されたRRIデータをサーバ60へ送り、サーバ60は送られたRRIデータを用いてデータ処理と眠気推定処理を行う。 In the third embodiment, in order for the terminal 20 and the server 60 to operate synchronously, the terminal 20 is provided with a server synchronization start unit 206 and a server synchronization end unit 207, and the server 60 has a terminal synchronization A start unit 606 and a terminal synchronization end unit 607 are provided. From the synchronization start by communication between the server synchronization start unit 206 and the terminal synchronization start unit 606 to the synchronization end by communication between the server synchronization end unit 207 and the terminal synchronization end unit 607, RRI data collected by the terminal 20 is sent to the server 60, The server 60 performs data processing and sleepiness estimation processing using the sent RRI data.
 サーバ同期開始部206からサーバ同期終了部207までの間、端末20では、RRI取得手段21によるRRIデータの取得が行われ、取得されたRRIデータがサーバ60へ送られる。サーバ60は、端末20から送られる時刻1002とRRI(整形前)1001を対応付けたデータの取り込みを行うRRI取得手段21Aと、図4の第1の実施形態において端末20が備えていたデータ整形手段22、指標値計算手段23、眠気推定手段24を備えている。サーバ60では、送られた時刻1002とRRI(整形前)1001を対応付けたデータが取り込まれ、データ整形手段22、指標値計算手段23、眠気推定手段24による処理が実行されて、推定値1005が得られ、これが端末20へ送出される。 During the period from the server synchronization start unit 206 to the server synchronization end unit 207, the terminal 20 acquires RRI data by the RRI acquisition unit 21 and sends the acquired RRI data to the server 60. The server 60 includes an RRI acquisition unit 21A that fetches data in which the time 1002 sent from the terminal 20 and the RRI (before shaping) 1001 are associated with each other, and the data shaping provided in the terminal 20 in the first embodiment of FIG. Means 22, index value calculation means 23, and sleepiness estimation means 24 are provided. In the server 60, data in which the sent time 1002 and RRI (before shaping) 1001 are associated with each other is fetched, and processing by the data shaping means 22, the index value calculating means 23, and the drowsiness estimating means 24 is executed, and an estimated value 1005 is obtained. Is obtained and sent to the terminal 20.
 端末20では、上記推定値1005を受け取って、出力手段25が眠気推定処理の呼び出し側/上位側への返り値として戻す処理を行う。端末20のループ終了判定部203では、前述の如くの所定の条件が整うまでRRI取得手段21と出力手段25によるループ処理を継続させる処理が行われ、サーバ60のループ終了判定部603では、所定の条件が整うまでデータ整形手段22と指標値計算手段23と眠気推定手段24によるループ処理を継続させる処理が行われる。 In the terminal 20, the estimated value 1005 is received, and the output means 25 performs a process of returning it as a return value to the caller / upper side of the sleepiness estimation process. The loop end determination unit 203 of the terminal 20 performs processing for continuing the loop processing by the RRI acquisition unit 21 and the output unit 25 until the predetermined condition as described above is satisfied, and the loop end determination unit 603 of the server 60 performs predetermined processing. Until the above condition is satisfied, a process of continuing the loop process by the data shaping means 22, the index value calculating means 23, and the sleepiness estimating means 24 is performed.
 端末20では、ループ終了判定部203による終了の判定及びループ終了部204による終了処理が行われ、更にサーバ同期終了部207による終了通知の後、終了処理部205が眠気推定処理を終了する。また、サーバ60では、ループ終了判定部603による終了の判定及びループ終了部604による終了処理が行われる。このループ終了部604による終了処理では、サーバ60が処理に用いたRRI2(整形前)1012及び指標値ベクトル時系列1051をクラウドストレージ30に転送し、取得済RRI1012X及び所定期間の指標値ベクトル時系列1051Xとして蓄積する。更に、端末同期終了部607による終了通知が行われ、その後、終了処理部605が眠気推定処理を終了する。 In the terminal 20, the end determination by the loop end determination unit 203 and the end process by the loop end unit 204 are performed, and after the end notification by the server synchronization end unit 207, the end processing unit 205 ends the sleepiness estimation process. In the server 60, the end determination by the loop end determination unit 603 and the end process by the loop end unit 604 are performed. In the end process by the loop end unit 604, the RRI 2 (before shaping) 1012 and the index value vector time series 1051 used by the server 60 for the process are transferred to the cloud storage 30, and the acquired RRI 1012X and the index value vector time series for a predetermined period are transferred. Accumulate as 1051X. Furthermore, the end notification is performed by the terminal synchronization end unit 607, and then the end processing unit 605 ends the sleepiness estimation process.
 図30に、第4の実施形態における、端末20、サーバ60、クラウドストレージ30の接続構成を示す。この実施形態では、端末20にクラウドストレージ30及びサーバ60が接続され、更にクラウドストレージ30とサーバ60が相互に接続された構成を有する。各部の構成は図27と同一であるので、その説明を省略する。 FIG. 30 shows a connection configuration of the terminal 20, the server 60, and the cloud storage 30 in the fourth embodiment. In this embodiment, the cloud storage 30 and the server 60 are connected to the terminal 20, and the cloud storage 30 and the server 60 are connected to each other. Since the configuration of each part is the same as in FIG. 27, the description thereof is omitted.
 また、図31に、第4の実施形態における、端末20、サーバ60、クラウドストレージ30の構成を示す。各部の構成は図28と同一であるので、その説明を省略する。更に、第4の実施形態における、端末20、サーバ60、クラウドストレージ30の動作は、既に説明した図29のフローチャートの如くであり、第3の実施形態と同様に、端末20が、RRIデータ取得処理を行い、端末20が取得したRRIデータを用いて、サーバ60がデータ整形等のデータ処理や眠気推定処理を行う。 FIG. 31 shows the configuration of the terminal 20, the server 60, and the cloud storage 30 in the fourth embodiment. Since the configuration of each part is the same as in FIG. 28, the description thereof is omitted. Furthermore, the operations of the terminal 20, the server 60, and the cloud storage 30 in the fourth embodiment are as shown in the flowchart of FIG. 29 described above. As in the third embodiment, the terminal 20 acquires the RRI data. Processing is performed, and the server 60 performs data processing such as data shaping and sleepiness estimation processing using the RRI data acquired by the terminal 20.
 以上の通り、本実施形態では、RRIセンサ10からRRI(心拍間隔)データを得て、心拍変動に基づく自律神経機能評価法を背景として、交感神経・副交感神経の活動状態を反映する指標(複数)を算出し時系列化することが特徴である。本実施形態では次に、指標の時系列データと眠気推定ルールに基づき眠気推定レベルを算出する。眠気推定レベルは、例えば(4.大、3.注意、2.低、1.なし)の離散化された整数とすることができ、眠気が高い状態の可能性を推定する。なお、本実施形態で扱う眠気推定レベルは、眠気が生じている可能性を指し示す文言であり、眠気の深さを意味するものではない。 As described above, in the present embodiment, RRI (heart rate interval) data is obtained from the RRI sensor 10, and an index (a plurality of indexes reflecting the activity state of the sympathetic nerve / parasympathetic nerve is used against the background of the autonomic nervous function evaluation method based on heart rate variability. ) Is calculated and time-series. Next, in this embodiment, the sleepiness estimation level is calculated based on the time series data of the index and the sleepiness estimation rule. The sleepiness estimation level can be, for example, a discretized integer of (4. Large, 3. Caution, 2. Low, 1. None), and the possibility of a state of high sleepiness is estimated. Note that the sleepiness estimation level handled in the present embodiment is a word indicating the possibility of sleepiness and does not mean the depth of sleepiness.
 本実施形態では、RRI測定からの眠気推定レベル算出までの処理を所定の時間間隔毎に繰り返して(例えば10秒間隔)、リアルタイム性の高い眠気推定を行うことができる。本実施形態では、心拍センサ(心電計等を含む心拍測定機器)が出力するRRI(心拍間隔データ)を取り込む。本実施形態では、装置内部の計算と判定に基づき、眠気推定レベルを算出出力することができる。 In the present embodiment, it is possible to perform sleepiness estimation with high real-time characteristics by repeating the processing from RRI measurement to sleepiness estimation level calculation at predetermined time intervals (for example, every 10 seconds). In this embodiment, RRI (heart rate interval data) output by a heart rate sensor (a heart rate measuring device including an electrocardiograph) is captured. In the present embodiment, the sleepiness estimation level can be calculated and output based on the calculation and determination inside the apparatus.
 本実施形態は以下の特徴や特性を有する。本実施形態の装置が実装しているアプリケーション/システムは、眠気推定レベルを得て出力する。例えば、自動車の運転者や機械の作業者に対して警告を発し、休憩を促すことができ、機器類を安全停止させる等の眠気推定レベルに応じた適切なアドバイス、サービス、処理を提供可能である。本実施形態の装置が実装しているアプリケーション/システムは、本実施形態の装置を利用する作業者等が自らの眠気状態を客観的に知るために役立つことができ、作業者等が適切な処置を取ることが可能である。本実施形態の装置が実装しているアプリケーション/システムは、本実施形態の装置を利用する作業者を管理する管理者が、作業者の眠気推定時に適切な指示を与えるように使用することができる。 This embodiment has the following features and characteristics. The application / system implemented by the apparatus of this embodiment obtains and outputs the sleepiness estimation level. For example, it is possible to issue warnings to car drivers and machine operators, prompt them to take a break, and provide appropriate advice, services, and processing according to the sleepiness estimation level, such as safely stopping equipment. is there. The application / system implemented by the apparatus according to the present embodiment can be useful for workers who use the apparatus according to the present embodiment to know their sleepiness objectively. It is possible to take The application / system implemented by the apparatus according to the present embodiment can be used so that an administrator who manages the worker who uses the apparatus according to the present embodiment gives an appropriate instruction when estimating sleepiness of the worker. .
 本実施形態に係る装置は、市販の心拍センサ、スマートフォン、モバイル端末等への適用が可能である。従って、RRIセンサ10や計算機器(ハードウェア)と解析処理(ソフトウェア)のシステムが一体化した特殊機器や専用端末として構成するよりも低コストに実現でき、かつ利便性も高いことを特徴とする。市販のセンサ利用に関しては、異なるセンサ機種間の特性差により異なる判定結果が導かれる場合があるという課題が危惧される。本実施形態に係る装置は、センサから取得した心拍間隔データ(RRI)に対して、センサ特性に応じた補正を加える構成を備えており、当該補正に係る情報は、クラウド経由で提供できるという特徴がある。 The apparatus according to this embodiment can be applied to a commercially available heart rate sensor, smartphone, mobile terminal, or the like. Therefore, it can be realized at a lower cost than a special device or a dedicated terminal in which the RRI sensor 10 and the computing device (hardware) and the analysis processing (software) system are integrated, and it is highly convenient. . Regarding the use of commercially available sensors, there is a concern that different determination results may be derived due to characteristic differences between different sensor models. The apparatus according to the present embodiment has a configuration in which correction according to sensor characteristics is performed on heartbeat interval data (RRI) acquired from a sensor, and information relating to the correction can be provided via the cloud. There is.
 更に、バイタルデータには個人差、年齢差等が現れるため、眠気推定ルールや閾値等は個人毎にカスタマイズする必要があるという課題がある。これに対応して、本実施形態に係る装置は、2つの特徴を有している。その第1は、眠気推定処理による眠気推定を実行後において、心拍データに基づく指標計算と共に、心拍データ以外の眠気収集手段により眠気データを収集し、双方を照合し解析の上で、個人毎に異なる眠気推定ルール、閾値、を決定する仕組みを有する。第2の特徴は、このとき、端末側の計算負担を軽減する目的で、端末はデータ収集に特化し、サーバで該データ解析と眠気推定ルールや閾値を決定する等の分割処理を採用することができる点に求められる。 Furthermore, since individual differences, age differences, etc. appear in vital data, there is a problem that sleepiness estimation rules and thresholds need to be customized for each individual. Correspondingly, the apparatus according to the present embodiment has two features. First, after executing sleepiness estimation by sleepiness estimation processing, together with index calculation based on heartbeat data, sleepiness data is collected by sleepiness collection means other than heartbeat data, and both are collated and analyzed. It has a mechanism for determining different sleepiness estimation rules and thresholds. The second feature is that the terminal specializes in data collection for the purpose of reducing the calculation burden on the terminal side, and adopts a division process such as determining the data analysis and sleepiness estimation rules and thresholds at the server. It is required to be able to
10 RRIセンサ
20 端末
21 RRI取得手段
22、221A、221B、221C データ整形手段
23 指標値計算手段
24 眠気推定手段
25 出力手段
30 クラウドストレージ
60 サーバ
201 開始処理部
222 トレンド除去部
223 異常値除去部
224 データ補間部
225 フィルタ処理部
233 ベクトル化部
 
 
10 RRI sensor 20 terminal 21 RRI acquisition unit 22, 221A, 221B, 221C data shaping unit 23 index value calculation unit 24 sleepiness estimation unit 25 output unit 30 cloud storage 60 server 201 start processing unit 222 trend removal unit 223 abnormal value removal unit 224 Data interpolation unit 225 Filter processing unit 233 Vectorization unit

Claims (12)

  1.  心電図信号のR波に相当する信号を検出するRRIセンサにより得られる信号からR-R間隔のデータであるRRIデータを取得するRRI取得手段と、
     前記RRIデータを統計処理した結果と前記RRIデータのスペクトル解析の結果とに基づいて、自律神経の活動に関する複数種の活動指標について指標値を計算する指標値計算手段と、
     各活動指標に関する閾値及び/または変動状態により評価する推定関数によって構成される眠気推定ルールに基づき、前記指標値計算手段により算出された指標値を評価し眠気を推定する眠気推定手段と
     を具備することを特徴とする眠気推定装置。
    RRI acquisition means for acquiring RRI data, which is RR interval data, from a signal obtained by an RRI sensor that detects a signal corresponding to an R wave of an electrocardiogram signal;
    Index value calculation means for calculating an index value for a plurality of types of activity indexes related to autonomic nerve activity based on a result of statistical processing of the RRI data and a result of spectrum analysis of the RRI data;
    Drowsiness estimation means for evaluating drowsiness estimation by evaluating the index value calculated by the index value calculation means based on a drowsiness estimation rule composed of an estimation function that is evaluated based on a threshold value and / or a variation state for each activity index. The sleepiness estimation apparatus characterized by the above-mentioned.
  2.  前記RRIデータを統計処理した結果の活動指標には、
     SDRR:(RRIの標準偏差)
     RMSSD:(隣接するRRIの差の二乗平均値の平方根)
     SDSD:(隣接するRRIの差の標準偏差)
     pRR50:(隣接するRRIの差が50(ミリ秒)を超える割合)
     の少なくとも1つが含まれることを特徴とする請求項1に記載の眠気推定装置。
    The activity index as a result of statistical processing of the RRI data includes:
    SDRR: (standard deviation of RRI)
    RMSSD: (the square root of the root mean square of the difference between adjacent RRIs)
    SDSD: (standard deviation of the difference between adjacent RRIs)
    pRR50: (Percentage where the difference between adjacent RRIs exceeds 50 (milliseconds))
    The sleepiness estimation apparatus according to claim 1, wherein at least one of the following is included.
  3.  前記RRIデータのスペクトル解析の結果の活動指標には、
     LF:(PSD(パワースペクトル密度関数)の0.04~0.15[Hz]のパワー)
     HF:(PSDの0.15~0.40[Hz]のパワー)
     HF/(LF+HF)
     p(i=0,1,2,・・・,9):(PSDの0.15+i×0.025 ~ 0.15+(i+1)×0.025 [Hz]のパワー)
     の少なくとも1つが含まれることを特徴とする請求項1または2に記載の眠気推定装置。
    In the activity index as a result of spectrum analysis of the RRI data,
    LF: (PSD (power spectral density function) 0.04 to 0.15 [Hz] power)
    HF: (PSD 0.15-0.40 [Hz] power)
    HF / (LF + HF)
    p i (i = 0, 1, 2,..., 9): (PSD 0.15 + i × 0.025 to 0.15+ (i + 1) × 0.025 [Hz] power)
    The sleepiness estimation apparatus according to claim 1, wherein at least one of the following is included.
  4.  前記指標値計算手段は、第1の時間毎のRRIデータを用いて単位時間の指標値を算出し、単位時間の指標値を活動指標の種類分集めてベクトル化し、ベクトル化された指標値を時系列に並べて指標値ベクトル時系列を作成し、
     眠気推定手段は、閾値ベクトルと前記指標値ベクトル時系列を用いて評価する推定関数により眠気推定を行うことを特徴とする請求項1に記載の眠気推定装置。
    The index value calculation means calculates an index value for unit time using the RRI data for each first time, collects the index values for unit time for each type of activity index, and vectorizes the index value. Create index value vector time series in time series,
    The sleepiness estimation apparatus according to claim 1, wherein the sleepiness estimation means performs sleepiness estimation using an estimation function evaluated using a threshold vector and the index value vector time series.
  5.  眠気推定ルールの推定関数は、上記活動指標と対応するそれぞれの閾値との比較条件と、所定変動状態の有無の条件とを含み、アンドとオアのいずれかを用いて、或いはこれらアンドとオアを2以上用いて、前記条件を結合させて形成されていることを特徴とする請求項1に記載の眠気推定装置。 The estimation function of the drowsiness estimation rule includes a comparison condition between each activity index and the corresponding threshold value, and a condition for the presence or absence of a predetermined fluctuation state, and uses either AND or OR, or AND and OR. The sleepiness estimation apparatus according to claim 1, wherein two or more are used and the conditions are combined.
  6.  所定周波数成分の除去であるトレンド除去、異常値除去、データ補間、フィルタ処理の少なくとも1つを行うデータ整形手段を含んで構成されていることを特徴とする請求項1に記載の眠気推定装置。 The drowsiness estimation apparatus according to claim 1, comprising data shaping means for performing at least one of trend removal, abnormal value removal, data interpolation, and filter processing, which are removal of a predetermined frequency component.
  7.  コンピュータを、
     心電図信号のR波に相当する信号を検出するRRIセンサにより得られる信号からR-R間隔のデータであるRRIデータを取得するRRI取得手段、
     前記RRIデータを統計処理した結果と前記RRIデータのスペクトル解析の結果とに基づいて、自律神経の活動に関する複数種の活動指標について指標値を計算する指標値計算手段、
     各活動指標に関する閾値及び/または変動状態により評価する推定関数によって構成される眠気推定ルールに基づき、前記指標値計算手段により算出された指標値を評価し眠気を推定する眠気推定手段
     として機能させることを特徴とする眠気推定プログラム。
    Computer
    RRI acquisition means for acquiring RRI data, which is RR interval data, from a signal obtained by an RRI sensor that detects a signal corresponding to an R wave of an electrocardiogram signal;
    Index value calculation means for calculating index values for a plurality of types of activity indices related to autonomic nerve activity based on a result of statistical processing of the RRI data and a result of spectrum analysis of the RRI data;
    Based on a drowsiness estimation rule constituted by a threshold value and / or a fluctuation state for each activity index, the index value calculated by the index value calculation means is evaluated to function as sleepiness estimation means for estimating sleepiness Drowsiness estimation program.
  8.  前記RRIデータを統計処理した結果の活動指標には、
     SDRR:(RRIの標準偏差)
     RMSSD:(隣接するRRIの差の二乗平均値の平方根)
     SDSD:(隣接するRRIの差の標準偏差)
     pRR50:(隣接するRRIの差が50(ミリ秒)を超える割合)
     の少なくとも1つが含まれることを特徴とする請求項7に記載の眠気推定プログラム。
    The activity index as a result of statistical processing of the RRI data includes:
    SDRR: (standard deviation of RRI)
    RMSSD: (the square root of the root mean square of the difference between adjacent RRIs)
    SDSD: (standard deviation of the difference between adjacent RRIs)
    pRR50: (Percentage where the difference between adjacent RRIs exceeds 50 (milliseconds))
    The sleepiness estimation program according to claim 7, wherein at least one of the following is included.
  9.  前記RRIデータのスペクトル解析の結果の活動指標には、
     LF:(PSD(パワースペクトル密度関数)の0.04~0.15[Hz]のパワー)
     HF:(PSDの0.15~0.40[Hz]のパワー)
     HF/(LF+HF)
     p(i=0,1,2,・・・,9):(PSDの0.15+i×0.025~ 0.15+(i+1)×0.025 [Hz]のパワー)
     の少なくとも1つが含まれることを特徴とする請求項7または8に記載の眠気推定プログラム。
    In the activity index as a result of spectrum analysis of the RRI data,
    LF: (PSD (power spectral density function) 0.04 to 0.15 [Hz] power)
    HF: (PSD 0.15-0.40 [Hz] power)
    HF / (LF + HF)
    p i (i = 0, 1, 2,..., 9): (PSD 0.15 + i × 0.025 to 0.15+ (i + 1) × 0.025 [Hz] power)
    The sleepiness estimation program according to claim 7 or 8, wherein at least one of the following is included.
  10.  前記指標値計算手段は、第1の時間毎のRRIデータを用いて単位時間の指標値を算出し、単位時間の指標値を活動指標の種類分集めてベクトル化し、ベクトル化された指標値を時系列に並べて指標値ベクトル時系列を作成し、
     眠気推定手段は、閾値ベクトルと前記指標値ベクトル時系列を用いて評価する推定関数により眠気推定を行うことを特徴とする請求項7に記載の眠気推定プログラム。
    The index value calculation means calculates an index value for unit time using the RRI data for each first time, collects the index values for unit time for each type of activity index, and vectorizes the index value. Create index value vector time series in time series,
    The sleepiness estimation program according to claim 7, wherein the sleepiness estimation means performs sleepiness estimation using an estimation function evaluated using a threshold vector and the index value vector time series.
  11.  眠気推定ルールの推定関数は、上記活動指標と対応するそれぞれの閾値との比較条件と、所定変動状態の有無の条件とを含み、アンドとオアのいずれかを用いて、或いはこれらアンドとオアを2以上用いて、前記条件を結合させて形成されていることを特徴とする請求項7に記載の眠気推定プログラム。 The estimation function of the drowsiness estimation rule includes a comparison condition between each activity index and the corresponding threshold value, and a condition for the presence or absence of a predetermined fluctuation state, and uses either AND or OR, or AND and OR. The sleepiness estimation program according to claim 7, wherein the sleepiness estimation program is formed by using two or more and combining the conditions.
  12.  前記コンピュータを、
     所定周波数成分の除去であるトレンド除去、異常値除去、データ補間、フィルタ処理の少なくとも1つを行うデータ整形手段
     として機能させることを特徴とする請求項7に記載の眠気推定プログラム。
     
     
    The computer,
    8. The sleepiness estimation program according to claim 7, wherein the sleepiness estimation program functions as data shaping means for performing at least one of trend removal, abnormal value removal, data interpolation, and filter processing, which are removal of a predetermined frequency component.

PCT/JP2015/085813 2014-12-25 2015-12-22 Drowsiness estimation device and drowsiness estimation program WO2016104496A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014261863A JP6468635B2 (en) 2014-12-25 2014-12-25 Sleepiness estimation apparatus and sleepiness estimation program
JP2014-261863 2014-12-25

Publications (1)

Publication Number Publication Date
WO2016104496A1 true WO2016104496A1 (en) 2016-06-30

Family

ID=56150514

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/085813 WO2016104496A1 (en) 2014-12-25 2015-12-22 Drowsiness estimation device and drowsiness estimation program

Country Status (2)

Country Link
JP (1) JP6468635B2 (en)
WO (1) WO2016104496A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3508119A4 (en) * 2016-08-30 2019-09-11 Fujitsu Limited Activity amount processing device, activity amount processing method, and activity amount processing program
JP6846288B2 (en) * 2017-06-02 2021-03-24 日本電信電話株式会社 Instantaneous heart rate time series data complement device, complement method and its program
JP7174589B2 (en) * 2018-10-10 2022-11-17 大和ハウス工業株式会社 Health status determination system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009201676A (en) * 2008-02-27 2009-09-10 Toyota Motor Corp Awakening degree estimating apparatus
JP2014230717A (en) * 2013-05-30 2014-12-11 トヨタ自動車株式会社 Concentration level estimation device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8805485B2 (en) * 2008-11-21 2014-08-12 Massachusetts Institute Of Technology Extraction of fetal cardiac signals

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009201676A (en) * 2008-02-27 2009-09-10 Toyota Motor Corp Awakening degree estimating apparatus
JP2014230717A (en) * 2013-05-30 2014-12-11 トヨタ自動車株式会社 Concentration level estimation device

Also Published As

Publication number Publication date
JP2016120061A (en) 2016-07-07
JP6468635B2 (en) 2019-02-13

Similar Documents

Publication Publication Date Title
Van Gent et al. Analysing noisy driver physiology real-time using off-the-shelf sensors: Heart rate analysis software from the taking the fast lane project
CN107595243B (en) Disease evaluation method and terminal equipment
CN110236573B (en) Psychological stress state detection method and related device
US20140081088A1 (en) Computer-implemented method for determining physical movements of a body organ
CN112022144B (en) Network training method for detecting electrocardio abnormality, electrocardio abnormality early warning method and device
JP6375496B2 (en) Sleepiness detection method and sleepiness detection device
JP6468637B2 (en) Sleepiness estimation apparatus and sleepiness estimation program
WO2016104496A1 (en) Drowsiness estimation device and drowsiness estimation program
US11610073B2 (en) Device and method for analyzing the state of a system in a noisy context
WO2021122011A1 (en) A device and method for respiratory monitoring in mechanically ventilated patients
CN109674474B (en) Sleep apnea recognition method, device and computer readable medium
JP6344912B2 (en) Epileptic seizure sign detection apparatus, epileptic seizure sign detection model generation apparatus, epileptic seizure sign detection method, epileptic seizure sign detection model generation method, epileptic seizure sign detection program, and epileptic seizure sign detection model generation program
DE102016204397A1 (en) CLASSIFICATION OF A TIME SERIES SIGNAL AS VENTRICULAR EXTRASYSTOLE
US20130041275A1 (en) System, apparatus and method for diagnosing seizures
CN114366060A (en) Health early warning method and device based on heart rate variability and electronic equipment
Ghaderyan et al. Dynamic Hilbert warping, a new measure of RR-interval signals evaluated in the cognitive load estimation
DE102016204398A1 (en) CLASSIFICATION OF A TIME SERIES SIGNAL AS VENTRICULAR EXTRASYSTOLE AND VENTRICULAR TACHYCARDIA
JP6791708B2 (en) Drowsiness estimation device and drowsiness estimation program
JP2010131061A (en) Drowsiness detector
JP6468636B2 (en) Sleepiness estimation rule update device and sleepiness estimation rule update program
JP5125538B2 (en) Time-series data processing method, time-series data processing program, and time-series data processing system
JP2004089272A (en) Method and device for biological state estimation, and program
JP6791707B2 (en) Drowsiness estimation device and drowsiness estimation program
WO2022201639A1 (en) Biological data evaluation server, biological data evaluation system, and biological data evaluation method
CN112244882B (en) Disease early warning method and device based on multi-mode physiological data

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15873064

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15873064

Country of ref document: EP

Kind code of ref document: A1