WO2016104415A1 - Ultrasonic sensor - Google Patents

Ultrasonic sensor Download PDF

Info

Publication number
WO2016104415A1
WO2016104415A1 PCT/JP2015/085653 JP2015085653W WO2016104415A1 WO 2016104415 A1 WO2016104415 A1 WO 2016104415A1 JP 2015085653 W JP2015085653 W JP 2015085653W WO 2016104415 A1 WO2016104415 A1 WO 2016104415A1
Authority
WO
WIPO (PCT)
Prior art keywords
case
ultrasonic sensor
piezoelectric element
bottom plate
rough surface
Prior art date
Application number
PCT/JP2015/085653
Other languages
French (fr)
Japanese (ja)
Inventor
浩司 南部
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2016566342A priority Critical patent/JP6493415B2/en
Priority to KR1020177016566A priority patent/KR101935784B1/en
Priority to CN201580070327.9A priority patent/CN107113511B/en
Publication of WO2016104415A1 publication Critical patent/WO2016104415A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/521Constructional features
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/50Piezoelectric or electrostrictive devices having a stacked or multilayer structure

Definitions

  • the present invention relates to an ultrasonic sensor.
  • An ultrasonic sensor may be used to measure the presence or absence of an object and the distance to the object.
  • An example of an ultrasonic sensor based on the prior art is described in International Publication WO2013 / 051525A1 (Patent Document 1).
  • a piezoelectric element is arranged inside a bottomed cylindrical case.
  • the piezoelectric element has a flat plate shape and is disposed on the bottom surface of the case. Wiring is provided so that a voltage can be applied to both surfaces of the piezoelectric element.
  • This type of ultrasonic sensor can transmit and receive ultrasonic waves.
  • a pause time is provided after a certain transmission time, and reception is performed during this time. That is, after the piezoelectric element is continuously vibrated by applying a potential change to the piezoelectric element for a certain time, the potential change is stopped, and thereafter, the vibration generated in the piezoelectric element by reception is electrically detected.
  • the vibration generated from the piezoelectric element during transmission not only vibrates the bottom plate of the case, but also vibrates the side wall of the case at the same time. Even after the supply of the potential change to the piezoelectric element is stopped, the side wall of the case may continue to vibrate. Such vibration remaining in the case is also referred to as “reverberation vibration”.
  • reverberation time The time that the reverberation continues continues is also called “reverberation time”.
  • reverberation time When measuring with an ultrasonic sensor in a state where the distance to the object is short, since the ultrasonic wave emitted from the ultrasonic sensor and reflected by the object returns to the ultrasonic sensor at an early stage, reverberation Reception may occur before the time expires.
  • vibration generated in the bottom plate due to the ultrasonic wave reflected by the object hereinafter referred to as “reflected wave”.
  • reflected wave When reaching the bottom plate, the vibration caused by the reflected wave is buried in the reverberation vibration that was originally there. In this case, the detection characteristics of the ultrasonic sensor deteriorate, and in the worst case, the reflected wave cannot be detected.
  • an object of the present invention is to provide an ultrasonic sensor in which reverberation time is shortened while maintaining sensitivity.
  • an ultrasonic sensor includes a bottomed cylindrical case having a bottom plate and a side wall, a piezoelectric element disposed on the bottom plate in the case, and the above-described case in the case.
  • a filling resin filled in at least a part of the case so as to cover the piezoelectric element, and at least a surface of the case in contact with the filling resin is a rough surface.
  • the inner surface of the side wall is preferably a rough surface.
  • the entire surface of the inner surface of the bottom plate and the inner surface of the side wall is a rough surface.
  • an ultrasonic sensor with a shorter reverberation time can be realized.
  • the surface roughness Ra of the rough surface is preferably 1.3 ⁇ m or more and 2.2 ⁇ m or less.
  • the rough surface is preferably formed by sandblasting. Thereby, a desired rough surface can be easily formed in a case.
  • the case is made of an aluminum alloy.
  • a case becomes easy to process and a desired rough surface can be formed easily.
  • the weight of the ultrasonic sensor as a whole can be reduced.
  • Embodiment 1 With reference to FIG. 1, the ultrasonic sensor in Embodiment 1 based on this invention is demonstrated.
  • the vertical relationship in FIG. 1 will be described as a reference, but the term “upper and lower” here does not mean absolute upper and lower, but is merely for convenience of explanation, and in the posture shown in FIG. It is up and down.
  • the ultrasonic sensor 101 in the present embodiment includes a case 2, a piezoelectric element 3, a sound absorbing material 4, a reinforcing material 5, a damper 7, a filling resin 8, a flexible substrate 9, a terminal holding member 10, Pin terminals 11 and 11 and lead wires 12 and 12 are provided.
  • Case 2 is made of, for example, lightweight aluminum with a high elastic modulus. Case 2 is formed by forging, for example.
  • the case 2 has a bottomed cylindrical shape in which one end face is closed and the other end face is opened.
  • the outer shape of the case 2 has a bottom surface with a diameter of 15.5 mm and a height of 9.0 mm.
  • the case 2 has, for example, a disk-shaped bottom plate 2a and a cylindrical side wall 2b.
  • the opening of the case 2 is circular when viewed in plan, for example.
  • Side wall 2b includes a thin portion and a thick portion. The portion on the opening side of the side wall 2b is thin, and the portion on the bottom plate 2a side is thick.
  • the inner diameter (diameter 12.0 mm) of the portion of the side wall 2b on the bottom plate 2a side is smaller than the inner diameter (diameter 14.5 mm) of the portion on the opening side of the side wall 2b.
  • the bottom plate 2a has a recess in the vicinity of the center. The depth of the recess is, for example, 0.49 mm.
  • the material of the case 2 is not limited to a conductive material such as aluminum, and may be an insulating material. Fine irregularities are formed on the inner surface of the bottom plate 2a of the case 2 and the inner surface of the side wall 2b of the case so as to be a rough surface having a larger surface roughness than the outer surface of the side wall of the case. Of the inner surface of the case, at least the surface in contact with the filling resin is a rough surface.
  • the piezoelectric element 3 is made of, for example, lead zirconate titanate ceramic.
  • the piezoelectric element 3 has a disk-shaped piezoelectric body and a pair of electrodes provided on the principal surfaces of the piezoelectric body facing away from each other.
  • the piezoelectric element 3 has a flat plate shape, and “spreads and vibrates” in the in-plane direction when a driving voltage is applied to a pair of electrodes.
  • the piezoelectric element 3 is disposed in the recess of the case 2 and joined to the bottom plate 2a. Specifically, the piezoelectric element 3 is joined to the case 2 so that one of the pair of electrodes is in contact with the bottom surface of the recess.
  • the piezoelectric element 3 and the bottom plate 2a are joined together to form a bimorph vibrator.
  • This bimorph vibrator is bent and vibrated by the spreading vibration of the piezoelectric element 3. Therefore, the bottom plate 2 a becomes the main vibration region of the case 2.
  • the sound absorbing material 4 is made of, for example, polyester felt.
  • the sound absorbing material 4 has a flat plate shape, for example.
  • the sound absorbing material 4 is provided so as to cover the piezoelectric element 3.
  • the sound absorbing material 4 is provided to absorb unnecessary sound waves emitted from the piezoelectric element 3 to the opening side of the case 2.
  • the reinforcing material 5 is a ring-shaped member having an opening at the center, and has high acoustic impedance.
  • the reinforcing material 5 is made of a material having a higher density and higher rigidity than the material constituting the case 2 and functions as a weight.
  • the material of the reinforcing material 5 may be stainless steel or zinc, for example.
  • the reinforcing material 5 may be made of the same material (aluminum) as the case 2 by adjusting the size such as thickness.
  • the reinforcing material 5 is provided above the sound absorbing material 4 so as to be separated from the sound absorbing material 4.
  • the reinforcing material 5 is held by a step provided on the inner surface of the case 2.
  • the reinforcing material 5 is disposed in contact with the inner surface of the thick portion of the side wall 2b.
  • the reinforcing material 5 is disposed in contact with the inner surface of the thick portion of the side wall 2b.
  • the damper 7 is a cup-shaped member made of an elastic body such as silicone rubber or urethane resin.
  • the damper 7 has a convex portion that engages with the opening of the reinforcing member 5 and an opening that extends upward from the convex portion and engages with the terminal holding member 10.
  • each of the lead wires 12 and 12 is connected to a flexible substrate 9 to be described later, and is inserted into the damper 7 and disposed in the opening of the case 2.
  • the other ends of the lead wires 12 and 12 are arranged outside the case 2 and connected to the terminal holding member 10.
  • the terminal holding member 10 is an L-shaped member made of a resin such as polybutylene terephthalate (PBT). Two through holes into which the pin terminals 11 and 11 are inserted are provided in the center portion of the terminal holding member 10.
  • PBT polybutylene terephthalate
  • the pin terminals 11 and 11 are metal linear pins to which the driving voltage of the piezoelectric element 3 is applied, and are held by the terminal holding member 10. Specifically, the pin terminals 11 and 11 are inserted into the through holes of the terminal holding member 10 and connected to the lead wires 12 and 12, respectively.
  • the flexible substrate 9 has a wide band shape, and electrically connects the lead wires 12 and 12 and the piezoelectric element 3.
  • the flexible substrate 9 has a first end and a second end. The first end is connected to the lead wires 12 and 12. The second end is connected to the electrode of the piezoelectric element 3 by a conductive adhesive.
  • the flexible substrate 9 is bent and disposed in the opening of the case 2.
  • the filling resin 8 is made of an elastic body such as silicone resin or urethane resin.
  • the filling resin 8 is filled in at least a part of the case 2 so as to cover the piezoelectric element 3 inside the case 2. Specifically, the filling resin 8 is filled in the entire space above the reinforcing material 5 in the internal space of the case 2.
  • the filling resin 8 seals the reinforcing material 5, the damper 7, one end of the lead wires 12, 12 and the flexible substrate 9 disposed in the opening of the case 2.
  • the filling resin 8 has a function of suppressing vibration of the side wall 2b of the case 2 and also has a function of preventing the lead wires 12, 12 and the damper 7 from being detached from the case 2.
  • the damper 7 is more suitable if it is difficult to propagate vibration.
  • the filling resin 8 is more preferable as long as it suppresses (vibrates) the vibration of the side wall 2a of the case 2.
  • the damper 7 preferably has a lower elastic modulus than the filled resin 8. More specifically, the elastic modulus includes a storage elastic modulus and a loss elastic modulus. It is preferable that the damper 7 has a small storage elastic modulus and the filling resin 8 has a large loss elastic modulus.
  • the damper 7 is preferably made of a silicone resin (silicone rubber).
  • the filling resin 8 is preferably made of a urethane resin.
  • the ultrasonic sensor with the reverberation time shortened while maintaining the sensitivity of the ultrasonic sensor. Can be realized.
  • the following experiment was conducted as Experiment 1.
  • a rough surface was formed by sandblasting under different conditions on the inner surface of the bottom plate of the case of condition numbers 2 to 6 and the inner surface of the side wall of the case (hereinafter simply referred to as “inner surface of the case”).
  • Table 1 shows the sandblast conditions for the case and the surface roughness Ra for each condition number.
  • the surface roughness referred to here is the roughness of the inner surface of the case.
  • the surface roughness Ra of Condition No. 1 was 1.0 ⁇ m.
  • the surface roughness Ra under condition numbers 2 to 6 were 1.3 ⁇ m, 1.6 ⁇ m, 2.0 ⁇ m, 2.2 ⁇ m, and 2.5 ⁇ m, respectively.
  • FIG. 2 shows a surface roughness profile with respect to the position of the inner surface of the bottom plate of the case of condition number 1.
  • FIG. 3 shows a surface roughness profile with respect to the position of the inner surface of the bottom plate of the case of condition number 5.
  • the horizontal axis represents the distance T1 of the inner surface of the bottom plate of the case.
  • the left end of T1 in FIG. 1 corresponds to the position 0 ⁇ m, and the right end of T1 in FIG. 1 corresponds to the position 1200 ⁇ m. Comparing FIG. 2 and FIG. 3, it can be seen that condition number 5 subjected to sandblasting has a narrower width of unevenness on the inner surface of the bottom plate of the case and larger variation in unevenness depth than condition number 1. .
  • an ultrasonic sensor (condition numbers 1 to 6) having the same configuration as the ultrasonic sensor of the first embodiment was assembled using the above-described case. These ultrasonic sensors were driven at a frequency of 40.0 kHz, for example, and the reverberation time was measured with an oscilloscope.
  • the ultrasonic sensors of condition numbers 1 to 6 are the same for members other than the case. The measurement conditions are all the same.
  • the reverberation times for condition numbers 1 to 6 were 1.77 msec, 1.71 msec, 1.63 msec, 1.60 msec, 1.57 msec, and 1.52 msec, respectively. Therefore, it has been found that the reverberation time becomes shorter as the surface roughness Ra of the inner surface of the case increases.
  • the reverberation time is shortened in the ultrasonic sensor in which the inner surface of the case 2 is roughened compared to the case in which the inner surface of the case 2 is not roughened. It is considered that the vibration contact property in the case 2 is improved and the reverberation can be suppressed at an early stage because the surface of the inner surface of the case 2 that is in contact with the filling resin 8 is a rough surface. Therefore, the ultrasonic sensor in the present embodiment is an ultrasonic sensor with a reverberation time shortened.
  • Example 2 The inventor examined the resonance frequency at each surface roughness as Experiment 2 using the sample of Experiment 1.
  • the reference resonance frequency is the resonance frequency of condition number 1.
  • the fluctuation values from the reference of the resonance frequency of condition numbers 2 to 6 were ⁇ 0.10 kHz, ⁇ 0.28 kHz, ⁇ 0.36 kHz, ⁇ 0.50 kHz, and ⁇ 1.03 kHz, respectively.
  • the inventor has found that the resonance frequency fluctuates outside the original value of 40.0 kHz in the sample with the increased surface roughness Ra. As shown in FIG. 6, it was found that the resonance frequency decreases as the surface roughness Ra increases.
  • the sample having a surface roughness Ra larger than 2.2 ⁇ m, for example, the surface roughness Ra compared to a sample having a surface roughness Ra of 2.2 ⁇ m or less.
  • the resonance frequency was particularly greatly varied and decreased.
  • the resonance frequency is reduced, the sensitivity is lowered, so that even if the reverberation characteristics are improved, the characteristics of the ultrasonic sensor as a whole are deteriorated.
  • the surface roughness Ra of the inner surface of the case 2 may be increased in order to shorten the reverberation time.
  • the surface roughness Ra is increased. If too much, it can be seen that the adverse effect of increasing the fluctuation range of the resonance frequency is brought about. Therefore, in order to realize an ultrasonic sensor with a reverberation time shortened while maintaining the sensitivity of the ultrasonic sensor, the surface roughness Ra of the rough surface is preferably 1.3 ⁇ m or more and 2.2 ⁇ m or less.
  • Embodiment 2 With reference to FIG. 5, the ultrasonic sensor in Embodiment 2 based on this invention is demonstrated.
  • the configuration of the ultrasonic sensor 102 in the present embodiment is basically the same as the configuration of the ultrasonic sensor 101 described in the first embodiment, but differs in the following points.
  • the sound absorbing material 4, the reinforcing material 5, and the damper 7 are not arranged inside the case 2. Further, the cavity 13 is not provided inside the case 2.
  • Filling resin 8 is filled so as to cover the piezoelectric element 3 disposed so as to be in contact with the bottom plate 2 a inside the case 2.
  • the inner surface of the case 2 at least the surface in contact with the filling resin 8 is a rough surface. Therefore, in the present embodiment, at least almost all of the inner surface of the case 2 is a rough surface.
  • the inner surface of the bottom plate 2a and the inner surface of the side wall 2b are rough.
  • an ultrasonic sensor having a reverberation time shorter than that in the first embodiment can be realized.
  • the rough surface is preferably formed by sandblasting. This is because, as already shown in the experiment of the first embodiment, when sandblasting is employed, a rough surface can be easily formed on the inner surface of the case 2.
  • Case 2 is preferably formed of an aluminum alloy. By adopting this configuration, the case 2 is easy to process, and a desired rough surface is easily formed. Further, by forming the case 2 with such a material, the weight of the ultrasonic sensor as a whole can be reduced.
  • the electrical lead-out from the case 2 is performed by the lead wire 12, the pin terminal 11, and the like has been described.
  • the electrical lead-out may be realized by other configurations. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Transducers For Ultrasonic Waves (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

An ultrasonic sensor (101) is provided with the following: a bottomed cylindrical case (2) having a bottom plate (2a) and side walls (2b); a piezoelectric element (3) disposed above the bottom plate (2a) inside the case (2); and a filling resin (8) filled into at least a portion of the inside of the case (2), so as to cover the piezoelectric element (3) inside the case (2). Among the inner surfaces of the case (2), at least a surface with which the filling resin (8) makes contact is a rough surface.

Description

超音波センサUltrasonic sensor
 本発明は、超音波センサに関するものである。 The present invention relates to an ultrasonic sensor.
 対象物の接近の有無や、対象物との距離の測定に超音波センサが使用される場合がある。従来技術に基づく超音波センサの一例が国際公開WO2013/051525A1(特許文献1)に記載されている。この超音波センサにおいては、有底筒状のケースの内部に圧電素子が配置されている。圧電素子は平板状であり、ケースの底面に配置されている。圧電素子の両面に電圧を印加することができるように配線が施されている。この種の超音波センサは、超音波の送信と受信とを行なうことができる。超音波の送信時には、平板状の圧電素子に電圧が印加されることで圧電素子が面方向に振動し、この振動が伝わることによってケースの底板が面に垂直な方向に振動する。ケースの底板の振動によって超音波が外部に放出される。超音波の受信時には、外部から到達した超音波によってケースの底板が振動し、この振動が圧電素子における面方向の振動として圧電素子に伝わる。これによって電位変化が生じ、電気的に検出される。 An ultrasonic sensor may be used to measure the presence or absence of an object and the distance to the object. An example of an ultrasonic sensor based on the prior art is described in International Publication WO2013 / 051525A1 (Patent Document 1). In this ultrasonic sensor, a piezoelectric element is arranged inside a bottomed cylindrical case. The piezoelectric element has a flat plate shape and is disposed on the bottom surface of the case. Wiring is provided so that a voltage can be applied to both surfaces of the piezoelectric element. This type of ultrasonic sensor can transmit and receive ultrasonic waves. When transmitting ultrasonic waves, a voltage is applied to the plate-like piezoelectric element, so that the piezoelectric element vibrates in the plane direction, and this vibration is transmitted to vibrate the bottom plate of the case in a direction perpendicular to the plane. Ultrasonic waves are emitted to the outside by the vibration of the bottom plate of the case. When receiving the ultrasonic wave, the bottom plate of the case is vibrated by the ultrasonic wave reaching from the outside, and this vibration is transmitted to the piezoelectric element as a vibration in the surface direction of the piezoelectric element. As a result, a potential change occurs and is detected electrically.
国際公開WO2013/051525A1International Publication WO2013 / 051525A1
 一般的に、この種の超音波センサが使用される際には、一定時間の送信時間の後に、休止時間が設けられ、この間に受信が行なわれる。すなわち、一定時間にわたって圧電素子に電位変化を与えて圧電素子を振動させ続けた後、電位変化を与えることをやめ、その後は、受信によって圧電素子に生じる振動を電気的に検出することとなる。しかし、送信時に圧電素子から発生する振動は、ケースの底板を振動させるだけでなく、同時にケースの側壁も振動させる。圧電素子への電位変化供給をやめた後も、ケースの側壁は振動を続けている場合がある。このようにケースに残存する振動を「余韻振動」ともいう。余韻振動が続く時間のことを「残響時間」ともいう。対象物との距離が短い状態で超音波センサによる測定を行なう場合には、超音波センサから放出されて対象物で反射して返ってくる超音波が早期に超音波センサに到達するので、残響時間が終わらないうちに受信が行なわれる場合がある。受信の際に、本来検出すべきは対象物で反射して戻ってきた超音波(以下、「反射波」という。)によって底板に生じた振動であるが、残響時間が経過しないうちに反射波が底板に到達すると、反射波によって生じた振動が元々あった余韻振動に埋もれてしまう。こうなると、超音波センサの検知特性は劣化し、最悪の場合には、反射波が検知できなくなってしまう。 Generally, when this type of ultrasonic sensor is used, a pause time is provided after a certain transmission time, and reception is performed during this time. That is, after the piezoelectric element is continuously vibrated by applying a potential change to the piezoelectric element for a certain time, the potential change is stopped, and thereafter, the vibration generated in the piezoelectric element by reception is electrically detected. However, the vibration generated from the piezoelectric element during transmission not only vibrates the bottom plate of the case, but also vibrates the side wall of the case at the same time. Even after the supply of the potential change to the piezoelectric element is stopped, the side wall of the case may continue to vibrate. Such vibration remaining in the case is also referred to as “reverberation vibration”. The time that the reverberation continues continues is also called “reverberation time”. When measuring with an ultrasonic sensor in a state where the distance to the object is short, since the ultrasonic wave emitted from the ultrasonic sensor and reflected by the object returns to the ultrasonic sensor at an early stage, reverberation Reception may occur before the time expires. During reception, what should be detected is vibration generated in the bottom plate due to the ultrasonic wave reflected by the object (hereinafter referred to as “reflected wave”). When reaching the bottom plate, the vibration caused by the reflected wave is buried in the reverberation vibration that was originally there. In this case, the detection characteristics of the ultrasonic sensor deteriorate, and in the worst case, the reflected wave cannot be detected.
 対象物までの距離が短くても超音波センサによって良好な検知特性を得るためには、残響時間をできるだけ短くすることが求められる。 In order to obtain good detection characteristics with an ultrasonic sensor even when the distance to the object is short, it is required to shorten the reverberation time as much as possible.
 そこで、本発明は、感度を維持しつつ、残響時間を短くした超音波センサを提供することを目的とする。 Therefore, an object of the present invention is to provide an ultrasonic sensor in which reverberation time is shortened while maintaining sensitivity.
 上記目的を達成するため、本発明に基づく超音波センサは、底板および側壁を有する有底筒状のケースと、上記ケース内で上記底板上に配置されている圧電素子と、上記ケース内で上記圧電素子を覆うように上記ケース内の少なくとも一部に充填されている充填樹脂とを備え、上記ケースの内面のうち少なくとも上記充填樹脂が接している面が粗面となっている。これにより、超音波センサの感度を維持しつつ、残響時間が短くなった超音波センサを実現することができる。 To achieve the above object, an ultrasonic sensor according to the present invention includes a bottomed cylindrical case having a bottom plate and a side wall, a piezoelectric element disposed on the bottom plate in the case, and the above-described case in the case. A filling resin filled in at least a part of the case so as to cover the piezoelectric element, and at least a surface of the case in contact with the filling resin is a rough surface. Thereby, it is possible to realize an ultrasonic sensor with a reverberation time shortened while maintaining the sensitivity of the ultrasonic sensor.
 上記発明において好ましくは、上記側壁の内面が粗面となっている。これにより、ケースの側壁の制振性が向上し、残響時間が短くなった超音波センサを実現することができる。 In the above invention, the inner surface of the side wall is preferably a rough surface. Thereby, the vibration damping property of the side wall of the case is improved, and an ultrasonic sensor with a short reverberation time can be realized.
 上記発明において好ましくは、上記底板の内面と上記側壁の内面との全面が粗面となっている。これにより、より残響時間が短くなった超音波センサを実現することができる。 Preferably, in the above invention, the entire surface of the inner surface of the bottom plate and the inner surface of the side wall is a rough surface. Thereby, an ultrasonic sensor with a shorter reverberation time can be realized.
 上記発明において好ましくは、上記粗面の表面粗さRaは1.3μm以上2.2μm以下である。これにより、超音波センサの感度を低下せずに、残響特性を向上させることができる。 In the above invention, the surface roughness Ra of the rough surface is preferably 1.3 μm or more and 2.2 μm or less. Thereby, the reverberation characteristic can be improved without reducing the sensitivity of the ultrasonic sensor.
 上記発明において好ましくは、上記粗面はサンドブラスト加工によって形成されている。これにより、ケースに所望の粗面を容易に形成することができる。 In the above invention, the rough surface is preferably formed by sandblasting. Thereby, a desired rough surface can be easily formed in a case.
 上記発明において好ましくは、上記ケースはアルミニウム合金によって形成されている。これにより、ケースが加工しやすくなり、所望の粗面を容易に形成することができる。また、ケースをこのような材料で形成することにより、超音波センサ全体としての軽量化も図ることができる。 In the above invention, preferably, the case is made of an aluminum alloy. Thereby, a case becomes easy to process and a desired rough surface can be formed easily. Further, by forming the case with such a material, the weight of the ultrasonic sensor as a whole can be reduced.
 本発明によれば、感度を維持しつつ、残響時間が短くなった超音波センサを実現することができる。 According to the present invention, it is possible to realize an ultrasonic sensor in which reverberation time is shortened while maintaining sensitivity.
本発明に基づく実施の形態1における超音波センサの断面図である。It is sectional drawing of the ultrasonic sensor in Embodiment 1 based on this invention. ケース内面にサンドブラスト加工を行なわない場合のケース底面のプロファイルを示すグラフである。It is a graph which shows the profile of a case bottom face when not performing sandblasting to a case inner surface. ケース内面にサンドブラスト加工を行なって表面粗さRaを2.02μmとした場合のケース底面のプロファイルを示すグラフである。It is a graph which shows the profile of a case bottom surface when sandblasting is performed to the case inner surface and surface roughness Ra is 2.02 micrometers. 表面粗さと残響時間との関係を示すグラフである。It is a graph which shows the relationship between surface roughness and reverberation time. 本発明に基づく実施の形態2における超音波センサの断面図である。It is sectional drawing of the ultrasonic sensor in Embodiment 2 based on this invention. 表面粗さと共振周波数の基準からの変動値との関係を示すグラフである。It is a graph which shows the relationship between the surface roughness and the fluctuation value from the reference | standard of resonance frequency.
 (実施の形態1)
 図1を参照して、本発明に基づく実施の形態1における超音波センサについて説明する。以下では図1における上下関係を基準に説明するが、ここでいう上下は絶対的な上下を意味するものではなく、あくまで説明の便宜のためのものであり、図1に示した姿勢の中での上下である。
(Embodiment 1)
With reference to FIG. 1, the ultrasonic sensor in Embodiment 1 based on this invention is demonstrated. In the following description, the vertical relationship in FIG. 1 will be described as a reference, but the term “upper and lower” here does not mean absolute upper and lower, but is merely for convenience of explanation, and in the posture shown in FIG. It is up and down.
 本実施の形態における超音波センサ101は、ケース2と、圧電素子3と、吸音材4と、補強材5と、ダンパ7と、充填樹脂8と、フレキシブル基板9と、端子保持部材10と、ピン端子11,11と、リード線12,12とを備えている。 The ultrasonic sensor 101 in the present embodiment includes a case 2, a piezoelectric element 3, a sound absorbing material 4, a reinforcing material 5, a damper 7, a filling resin 8, a flexible substrate 9, a terminal holding member 10, Pin terminals 11 and 11 and lead wires 12 and 12 are provided.
 ケース2は、たとえば弾性率が高くて軽量なアルミニウムからなる。ケース2は、たとえば鍛造により形成されている。ケース2は、一方の端面が閉塞し、他方の端面が開口する有底筒状である。ケース2の外形は、底面は直径15.5mmであり、高さが9.0mmである。ケース2は、たとえば円板状の底板2aと、筒状の側壁2bとを有する。ケース2の開口はたとえば平面視したとき円形である。側壁2bは薄肉の部分と厚肉の部分とを含む。側壁2bのうち開口側の部分は薄肉であって、底板2a側の部分は厚肉である。したがって、側壁2bにおける開口側の部分の内径(直径14.5mm)よりも側壁2bにおける底板2a側の部分の内径(直径12.0mm)のほうが小さい。底板2aは、中央近傍に凹部を有する。凹部の深さは、たとえば0.49mmである。なお、ケース2の材料は、アルミニウムのような導電性材料に限られず、絶縁性材料であってもよい。ケース2の底板2aの内面およびケースの側壁2bの内面には、ケースの側壁の外面よりも表面粗さが大きい粗面となるように、微細な凹凸が形成されている。ケースの内面のうち少なくとも充填樹脂が接している面が粗面となっている。 Case 2 is made of, for example, lightweight aluminum with a high elastic modulus. Case 2 is formed by forging, for example. The case 2 has a bottomed cylindrical shape in which one end face is closed and the other end face is opened. The outer shape of the case 2 has a bottom surface with a diameter of 15.5 mm and a height of 9.0 mm. The case 2 has, for example, a disk-shaped bottom plate 2a and a cylindrical side wall 2b. The opening of the case 2 is circular when viewed in plan, for example. Side wall 2b includes a thin portion and a thick portion. The portion on the opening side of the side wall 2b is thin, and the portion on the bottom plate 2a side is thick. Accordingly, the inner diameter (diameter 12.0 mm) of the portion of the side wall 2b on the bottom plate 2a side is smaller than the inner diameter (diameter 14.5 mm) of the portion on the opening side of the side wall 2b. The bottom plate 2a has a recess in the vicinity of the center. The depth of the recess is, for example, 0.49 mm. The material of the case 2 is not limited to a conductive material such as aluminum, and may be an insulating material. Fine irregularities are formed on the inner surface of the bottom plate 2a of the case 2 and the inner surface of the side wall 2b of the case so as to be a rough surface having a larger surface roughness than the outer surface of the side wall of the case. Of the inner surface of the case, at least the surface in contact with the filling resin is a rough surface.
 圧電素子3は、たとえばチタン酸ジルコン酸鉛系セラミックスからなる。圧電素子3は、円板形状の圧電体と、圧電体の互いに反対を向く主面にそれぞれ設けられている1対の電極とを有する。圧電素子3は、平板状であり、1対の電極に駆動電圧が印加されることにより面内方向に「広がり振動」をする。圧電素子3は、ケース2の凹部に配置されていて、底板2aに接合されている。具体的には、圧電素子3は、1対の電極の一方が凹部の底面部に接触するように、ケース2に接合されている。 The piezoelectric element 3 is made of, for example, lead zirconate titanate ceramic. The piezoelectric element 3 has a disk-shaped piezoelectric body and a pair of electrodes provided on the principal surfaces of the piezoelectric body facing away from each other. The piezoelectric element 3 has a flat plate shape, and “spreads and vibrates” in the in-plane direction when a driving voltage is applied to a pair of electrodes. The piezoelectric element 3 is disposed in the recess of the case 2 and joined to the bottom plate 2a. Specifically, the piezoelectric element 3 is joined to the case 2 so that one of the pair of electrodes is in contact with the bottom surface of the recess.
 圧電素子3および底板2aは、互いに接合されてバイモルフ振動子を構成している。このバイモルフ振動子は、圧電素子3の広がり振動によって、屈曲振動することになる。そのため、底板2aがケース2の主たる振動領域となる。 The piezoelectric element 3 and the bottom plate 2a are joined together to form a bimorph vibrator. This bimorph vibrator is bent and vibrated by the spreading vibration of the piezoelectric element 3. Therefore, the bottom plate 2 a becomes the main vibration region of the case 2.
 吸音材4は、たとえばポリエステルフェルトからなる。吸音材4は、たとえば平板状である。吸音材4は、圧電素子3を覆うように設けられている。吸音材4は、圧電素子3からケース2の開口側に放出される不要な音波を吸収するために設けられている。 The sound absorbing material 4 is made of, for example, polyester felt. The sound absorbing material 4 has a flat plate shape, for example. The sound absorbing material 4 is provided so as to cover the piezoelectric element 3. The sound absorbing material 4 is provided to absorb unnecessary sound waves emitted from the piezoelectric element 3 to the opening side of the case 2.
 補強材5は、中央に開口が設けられているリング状の部材であり、高い音響インピーダンスを有する。補強材5は、ケース2を構成する材料よりも密度が高くかつ剛性が高い材料からなり、おもりとして機能する。補強材5の材料としては、たとえばステンレス鋼や亜鉛などであってもよい。なお、補強材5は、厚みなどのサイズを調整することによってケース2と同じ材料(アルミニウム)からなるものであってもよい。補強材5は、吸音材4から離間して、吸音材4の上方に設けられている。補強材5は、ケース2の内面に設けられた段差によって保持されている。具体的には、補強材5は、側壁2bの厚肉の部分の内面に接して配置されている。このように補強材5が設けられていることにより、ケース2の剛性が高まり、ケース2の底板2aにおける振動がケース2の側壁2bへ伝わることを抑制できる。補強材5によってケース2の内部空間が区画されることによって吸音材4の周囲は空洞13となっている。 The reinforcing material 5 is a ring-shaped member having an opening at the center, and has high acoustic impedance. The reinforcing material 5 is made of a material having a higher density and higher rigidity than the material constituting the case 2 and functions as a weight. The material of the reinforcing material 5 may be stainless steel or zinc, for example. The reinforcing material 5 may be made of the same material (aluminum) as the case 2 by adjusting the size such as thickness. The reinforcing material 5 is provided above the sound absorbing material 4 so as to be separated from the sound absorbing material 4. The reinforcing material 5 is held by a step provided on the inner surface of the case 2. Specifically, the reinforcing material 5 is disposed in contact with the inner surface of the thick portion of the side wall 2b. By providing the reinforcing material 5 in this way, the rigidity of the case 2 is increased, and the vibration in the bottom plate 2a of the case 2 can be prevented from being transmitted to the side wall 2b of the case 2. Since the internal space of the case 2 is partitioned by the reinforcing material 5, the sound absorbing material 4 is surrounded by a cavity 13.
 ダンパ7は、シリコーンゴムやウレタン樹脂などの弾性体からなるカップ状の部材である。ダンパ7は、補強材5の開口に係合する凸部と、凸部から上側に延在して設けられており、端子保持部材10が係合する開口とを有する。 The damper 7 is a cup-shaped member made of an elastic body such as silicone rubber or urethane resin. The damper 7 has a convex portion that engages with the opening of the reinforcing member 5 and an opening that extends upward from the convex portion and engages with the terminal holding member 10.
 リード線12,12の一端部は、後述のフレキシブル基板9と接続されており、ダンパ7の中に挿入され、ケース2の開口内に配置されている。リード線12,12の他端部は、ケース2の外部に配置され、端子保持部材10が接続されている。 One end of each of the lead wires 12 and 12 is connected to a flexible substrate 9 to be described later, and is inserted into the damper 7 and disposed in the opening of the case 2. The other ends of the lead wires 12 and 12 are arranged outside the case 2 and connected to the terminal holding member 10.
 端子保持部材10は、ポリブチレンテレフタレート(PBT)などの樹脂からなるL字状の部材である。端子保持部材10の中央部には、ピン端子11,11が挿通される2つの貫通孔が設けられている。 The terminal holding member 10 is an L-shaped member made of a resin such as polybutylene terephthalate (PBT). Two through holes into which the pin terminals 11 and 11 are inserted are provided in the center portion of the terminal holding member 10.
 ピン端子11,11は、圧電素子3の駆動電圧が印加される金属製の直線状ピンであり、端子保持部材10によって保持されている。具体的には、ピン端子11,11は端子保持部材10の貫通孔にそれぞれ挿入され、リード線12,12とそれぞれ接続されている。 The pin terminals 11 and 11 are metal linear pins to which the driving voltage of the piezoelectric element 3 is applied, and are held by the terminal holding member 10. Specifically, the pin terminals 11 and 11 are inserted into the through holes of the terminal holding member 10 and connected to the lead wires 12 and 12, respectively.
 フレキシブル基板9は、幅広な帯状であり、リード線12,12と圧電素子3とを電気的に接続している。フレキシブル基板9は、第一端と第二端とを有する。第一端は、リード線12,12に接続されている。第二端は、圧電素子3の電極に導電性接着剤により接続されている。フレキシブル基板9は、ケース2の開口内に屈曲して配置されている。 The flexible substrate 9 has a wide band shape, and electrically connects the lead wires 12 and 12 and the piezoelectric element 3. The flexible substrate 9 has a first end and a second end. The first end is connected to the lead wires 12 and 12. The second end is connected to the electrode of the piezoelectric element 3 by a conductive adhesive. The flexible substrate 9 is bent and disposed in the opening of the case 2.
 充填樹脂8は、シリコーン樹脂やウレタン樹脂などの弾性体からなる。充填樹脂8は、ケース2の内部で圧電素子3を覆うようにケース2の内部の少なくとも一部に充填されている。具体的には、充填樹脂8は、ケース2の内部空間のうち補強材5よりも上側の全体に充填されている。充填樹脂8は、ケース2の開口内に配置されている補強材5、ダンパ7、リード線12,12の一方の先端部およびフレキシブル基板9を封止している。 The filling resin 8 is made of an elastic body such as silicone resin or urethane resin. The filling resin 8 is filled in at least a part of the case 2 so as to cover the piezoelectric element 3 inside the case 2. Specifically, the filling resin 8 is filled in the entire space above the reinforcing material 5 in the internal space of the case 2. The filling resin 8 seals the reinforcing material 5, the damper 7, one end of the lead wires 12, 12 and the flexible substrate 9 disposed in the opening of the case 2.
 充填樹脂8は、ケース2の側壁2bの振動を抑制する機能を有しているとともに、リード線12,12およびダンパ7がケース2から離脱することを防止する機能も有している。 The filling resin 8 has a function of suppressing vibration of the side wall 2b of the case 2 and also has a function of preventing the lead wires 12, 12 and the damper 7 from being detached from the case 2.
 なお、ダンパ7は振動を伝搬し難いものであればさらに好適である。充填樹脂8はケース2の側壁2aの振動を抑制(制振)するものであればさらに好適である。ダンパ7は、充填樹脂8に比べて弾性率が低いことが好ましい。さらに詳しくは、弾性率には貯蔵弾性率と損失弾性率があり、ダンパ7は貯蔵弾性率が小さく、充填樹脂8は損失弾性率が大きいことが好ましい。たとえば、ダンパ7はシリコーン樹脂(シリコーンゴム)からなることが好ましい。充填樹脂8はウレタン樹脂からなることが好ましい。 The damper 7 is more suitable if it is difficult to propagate vibration. The filling resin 8 is more preferable as long as it suppresses (vibrates) the vibration of the side wall 2a of the case 2. The damper 7 preferably has a lower elastic modulus than the filled resin 8. More specifically, the elastic modulus includes a storage elastic modulus and a loss elastic modulus. It is preferable that the damper 7 has a small storage elastic modulus and the filling resin 8 has a large loss elastic modulus. For example, the damper 7 is preferably made of a silicone resin (silicone rubber). The filling resin 8 is preferably made of a urethane resin.
 本実施の形態によれば、ケースの内面のうち少なくとも充填樹脂が接している面が粗面となっているので、超音波センサの感度を維持しつつ、残響時間が短くなった超音波センサを実現することができる。この効果を検証するために、実験1として以下の実験を行なった。 According to the present embodiment, since at least the surface of the inner surface of the case that is in contact with the filling resin is a rough surface, the ultrasonic sensor with the reverberation time shortened while maintaining the sensitivity of the ultrasonic sensor. Can be realized. In order to verify this effect, the following experiment was conducted as Experiment 1.
 (実験1)
 実験1としては、粗面形成の有無および程度による効果を確認する。以下に、本実験で用いた試料である条件番号1~6の超音波センサについて詳述する。
(Experiment 1)
In Experiment 1, the effect of the presence and degree of rough surface formation is confirmed. The ultrasonic sensors with condition numbers 1 to 6 that are samples used in this experiment will be described in detail below.
 まず、同じ条件で製造した複数のケースを用意した。このうち、条件番号1のケースには追加工は行なわなかった。条件番号2~6のケースの底板における内面およびケースの側壁における内面(以下、単に「ケースの内面」という。)には、それぞれ異なる条件でサンドブラスト加工により粗面の形成を行なった。表1に各条件番号におけるケースへのサンドブラスト条件と表面粗さRaとを示す。ここでいう表面粗さは、ケースの内面の粗さである。条件番号1の表面粗さRaは、1.0μmであった。条件番号2~6の表面粗さRaは、それぞれ、順に1.3μm、1.6μm、2.0μm、2.2μm、2.5μmであった。 First, a plurality of cases manufactured under the same conditions were prepared. Of these, no additional work was performed on the case of condition number 1. A rough surface was formed by sandblasting under different conditions on the inner surface of the bottom plate of the case of condition numbers 2 to 6 and the inner surface of the side wall of the case (hereinafter simply referred to as “inner surface of the case”). Table 1 shows the sandblast conditions for the case and the surface roughness Ra for each condition number. The surface roughness referred to here is the roughness of the inner surface of the case. The surface roughness Ra of Condition No. 1 was 1.0 μm. The surface roughness Ra under condition numbers 2 to 6 were 1.3 μm, 1.6 μm, 2.0 μm, 2.2 μm, and 2.5 μm, respectively.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 図2に、条件番号1のケースの底板における内面の位置に対する表面粗さプロファイルを示す。図3に、条件番号5のケースの底板における内面の位置に対する表面粗さプロファイルを示す。横軸は、図1において、ケースの底板における内面の距離T1である。図1におけるT1の左端が位置0μmに相当し、図1におけるT1の右端が位置1200μmに相当する。図2と図3とを比較すると、サンドブラスト加工を行った条件番号5のほうが、条件番号1よりも、ケースの底板における内面の凹凸の幅が細かく、凹凸の深さのばらつきも大きいことがわかる。次に、上述のケースを用いて実施の形態1の超音波センサと同じ構成の超音波センサ(条件番号1~6)を組み立てた。これらの超音波センサをたとえば周波数40.0kHzで駆動し、オシロスコープで残響時間を計測した。条件番号1~6の超音波センサは、ケース以外の部材に関しては同一である。また、測定条件についても全て同一である。 FIG. 2 shows a surface roughness profile with respect to the position of the inner surface of the bottom plate of the case of condition number 1. FIG. 3 shows a surface roughness profile with respect to the position of the inner surface of the bottom plate of the case of condition number 5. In FIG. 1, the horizontal axis represents the distance T1 of the inner surface of the bottom plate of the case. The left end of T1 in FIG. 1 corresponds to the position 0 μm, and the right end of T1 in FIG. 1 corresponds to the position 1200 μm. Comparing FIG. 2 and FIG. 3, it can be seen that condition number 5 subjected to sandblasting has a narrower width of unevenness on the inner surface of the bottom plate of the case and larger variation in unevenness depth than condition number 1. . Next, an ultrasonic sensor (condition numbers 1 to 6) having the same configuration as the ultrasonic sensor of the first embodiment was assembled using the above-described case. These ultrasonic sensors were driven at a frequency of 40.0 kHz, for example, and the reverberation time was measured with an oscilloscope. The ultrasonic sensors of condition numbers 1 to 6 are the same for members other than the case. The measurement conditions are all the same.
 各条件につき、用意した試料で5回の実験を行ない、得られた残響時間の平均値を当該条件に対応する残響時間の長さとした。結果をまとめると、図4のようになった。条件番号1~6の残響時間は、それぞれ、順に1.77msec、1.71msec、1.63msec、1.60msec、1.57msec、1.52msecであった。したがって、ケースの内面の表面粗さRaが大きくなればなるほど残響時間が短くなることがわかった。 For each condition, five experiments were performed with the prepared sample, and the average value of the obtained reverberation time was defined as the length of the reverberation time corresponding to the condition. The results are summarized as shown in FIG. The reverberation times for condition numbers 1 to 6 were 1.77 msec, 1.71 msec, 1.63 msec, 1.60 msec, 1.57 msec, and 1.52 msec, respectively. Therefore, it has been found that the reverberation time becomes shorter as the surface roughness Ra of the inner surface of the case increases.
 このことから、超音波センサにおいて、ケース2の内面を粗面化しないものに比べて粗面化したものにおいては、残響時間が短くなるといえる。ケース2の内面のうち充填樹脂8が接している面が粗面となっていることにより、ケース2における制振性が向上して、残響を早期に抑えることができていると考えられる。したがって、本実施の形態における超音波センサは、残響時間を短くした超音波センサとなる。 From this, it can be said that the reverberation time is shortened in the ultrasonic sensor in which the inner surface of the case 2 is roughened compared to the case in which the inner surface of the case 2 is not roughened. It is considered that the vibration contact property in the case 2 is improved and the reverberation can be suppressed at an early stage because the surface of the inner surface of the case 2 that is in contact with the filling resin 8 is a rough surface. Therefore, the ultrasonic sensor in the present embodiment is an ultrasonic sensor with a reverberation time shortened.
 (実験2)
 発明者は、実験1の試料を利用して、実験2として各表面粗さにおける共振周波数を調べた。なお、基準となる共振周波数は条件番号1の共振周波数である。その結果、ケース2の内面に設ける粗面の表面粗さと共振周波数との関係は、図6に示すようになった。条件番号2~6の共振周波数の基準からの変動値は、それぞれ、順に-0.10kHz、-0.28kHz、-0.36kHz、-0.50kHz、-1.03kHzであった。発明者は、表面粗さRaを大きくした試料においては、共振周波数が本来の値である40.0kHzから外れて変動していることを見出した。図6に示すように、表面粗さRaを大きくすればするほど共振周波数は小さくなることがわかった。また、表面粗さRaを順に上げていったときに表面粗さRaが2.2μm以下の試料に比べて、表面粗さRaが2.2μmより大きくなっている試料、たとえば表面粗さRaが2.5μmである試料においては、共振周波数が特に大幅に変動して小さくなっていることがわかった。共振周波数が小さくなると、感度が低下するので、残響特性が向上したとしても、超音波センサ全体としての特性は劣化してしまう。
(Experiment 2)
The inventor examined the resonance frequency at each surface roughness as Experiment 2 using the sample of Experiment 1. The reference resonance frequency is the resonance frequency of condition number 1. As a result, the relationship between the surface roughness of the rough surface provided on the inner surface of the case 2 and the resonance frequency is as shown in FIG. The fluctuation values from the reference of the resonance frequency of condition numbers 2 to 6 were −0.10 kHz, −0.28 kHz, −0.36 kHz, −0.50 kHz, and −1.03 kHz, respectively. The inventor has found that the resonance frequency fluctuates outside the original value of 40.0 kHz in the sample with the increased surface roughness Ra. As shown in FIG. 6, it was found that the resonance frequency decreases as the surface roughness Ra increases. Further, when the surface roughness Ra is increased in order, the sample having a surface roughness Ra larger than 2.2 μm, for example, the surface roughness Ra, compared to a sample having a surface roughness Ra of 2.2 μm or less. In the sample of 2.5 μm, it was found that the resonance frequency was particularly greatly varied and decreased. When the resonance frequency is reduced, the sensitivity is lowered, so that even if the reverberation characteristics are improved, the characteristics of the ultrasonic sensor as a whole are deteriorated.
 図4からすれば、残響時間を短くするためにはケース2の内面の表面粗さRaは大きくすればよいことがわかっているが、図6に示される傾向からすると、表面粗さRaを大きくしすぎた場合には、共振周波数の変動幅の拡大という弊害をもたらすことがわかる。したがって、超音波センサの感度を維持しつつ、残響時間が短くなった超音波センサを実現するためには、粗面の表面粗さRaは1.3μm以上2.2μm以下であることが好ましい。 According to FIG. 4, it is known that the surface roughness Ra of the inner surface of the case 2 may be increased in order to shorten the reverberation time. However, from the tendency shown in FIG. 6, the surface roughness Ra is increased. If too much, it can be seen that the adverse effect of increasing the fluctuation range of the resonance frequency is brought about. Therefore, in order to realize an ultrasonic sensor with a reverberation time shortened while maintaining the sensitivity of the ultrasonic sensor, the surface roughness Ra of the rough surface is preferably 1.3 μm or more and 2.2 μm or less.
 (実施の形態2)
 図5を参照して、本発明に基づく実施の形態2における超音波センサについて説明する。本実施の形態における超音波センサ102の構成は、基本的には実施の形態1で説明した超音波センサ101の構成と同様であるが、以下の点で異なる。
(Embodiment 2)
With reference to FIG. 5, the ultrasonic sensor in Embodiment 2 based on this invention is demonstrated. The configuration of the ultrasonic sensor 102 in the present embodiment is basically the same as the configuration of the ultrasonic sensor 101 described in the first embodiment, but differs in the following points.
 超音波センサ102においては、ケース2の内部に、吸音材4、補強材5、およびダンパ7が配置されていない。また、ケース2の内部に空洞13が設けられていない。ケース2の内部で底板2aに接するように配置された圧電素子3を覆うように充填樹脂8が充填されている。ケース2の内面のうち少なくとも充填樹脂8が接している面が粗面となっている。したがって、本実施の形態では、ケース2の内面の少なくともほとんど全てが粗面となっている。 In the ultrasonic sensor 102, the sound absorbing material 4, the reinforcing material 5, and the damper 7 are not arranged inside the case 2. Further, the cavity 13 is not provided inside the case 2. Filling resin 8 is filled so as to cover the piezoelectric element 3 disposed so as to be in contact with the bottom plate 2 a inside the case 2. Of the inner surface of the case 2, at least the surface in contact with the filling resin 8 is a rough surface. Therefore, in the present embodiment, at least almost all of the inner surface of the case 2 is a rough surface.
 たとえば底板2aの内面と側壁2bの内面との両方にわたって粗面となっていることが好ましい。 For example, it is preferable that the inner surface of the bottom plate 2a and the inner surface of the side wall 2b are rough.
 本実施の形態では、実施の形態1よりも残響時間が短くなった超音波センサを実現することができる。 In the present embodiment, an ultrasonic sensor having a reverberation time shorter than that in the first embodiment can be realized.
 なお、前記粗面はサンドブラスト加工によって形成されていることが好ましい。実施の形態1の実験で既に示したように、サンドブラスト加工を採用した場合、ケース2の内面に簡単に粗面を形成することができるからである。 The rough surface is preferably formed by sandblasting. This is because, as already shown in the experiment of the first embodiment, when sandblasting is employed, a rough surface can be easily formed on the inner surface of the case 2.
 ケース2はアルミニウム合金によって形成されていることが好ましい。この構成を採用することにより、ケース2は加工しやすいものとなり、所望の粗面を形成しやすいからである。また、ケース2をこのような材料で形成することにより、超音波センサ全体としての軽量化も図ることができる。 Case 2 is preferably formed of an aluminum alloy. By adopting this configuration, the case 2 is easy to process, and a desired rough surface is easily formed. Further, by forming the case 2 with such a material, the weight of the ultrasonic sensor as a whole can be reduced.
 なお、上記各実施の形態では、ケース2からの電気的引出しがリード線12、ピン端子11などによって行なわれている例を示したが、電気的引出しは他の構成によって実現されていてもよい。 In each of the above-described embodiments, the example in which the electrical lead-out from the case 2 is performed by the lead wire 12, the pin terminal 11, and the like has been described. However, the electrical lead-out may be realized by other configurations. .
 なお、上記実施の形態のうち複数を適宜組み合わせて採用してもよい。
 なお、今回開示した上記実施の形態はすべての点で例示であって制限的なものではない。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更を含むものである。
In addition, you may employ | adopt combining suitably two or more among the said embodiment.
In addition, the said embodiment disclosed this time is an illustration in all the points, Comprising: It is not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 2 ケース、2a 底板、2b 側壁、3 圧電素子、4 吸音材、5 補強材、7 ダンパ、8 充填樹脂、9 フレキシブル基板、10 端子保持部材、11 ピン端子、12 リード線、13 空洞、101,102 超音波センサ。 2 case, 2a bottom plate, 2b side wall, 3 piezoelectric element, 4 sound absorbing material, 5 reinforcing material, 7 damper, 8 filling resin, 9 flexible substrate, 10 terminal holding member, 11 pin terminal, 12 lead wire, 13 cavity, 101, 102 Ultrasonic sensor.

Claims (6)

  1.  底板および側壁を有する有底筒状のケースと、
     前記ケース内で前記底板上に配置されている圧電素子と、
     前記ケース内で前記圧電素子を覆うように前記ケース内の少なくとも一部に充填されている充填樹脂とを備え、
     前記ケースの内面のうち少なくとも前記充填樹脂が接している面が粗面となっている、超音波センサ。
    A bottomed cylindrical case having a bottom plate and side walls;
    A piezoelectric element disposed on the bottom plate in the case;
    A filling resin filled in at least a part of the case so as to cover the piezoelectric element in the case;
    An ultrasonic sensor in which at least a surface of the inner surface of the case that is in contact with the filling resin is a rough surface.
  2.  前記側壁の内面が粗面となっている、請求項1に記載の超音波センサ。 The ultrasonic sensor according to claim 1, wherein an inner surface of the side wall is a rough surface.
  3.  前記底板の内面が粗面となっている、請求項2に記載の超音波センサ。 The ultrasonic sensor according to claim 2, wherein an inner surface of the bottom plate is a rough surface.
  4.  前記粗面の表面粗さRaは1.3μm以上2.2μm以下である、請求項1から3のいずれかに記載の超音波センサ。 The ultrasonic sensor according to any one of claims 1 to 3, wherein a surface roughness Ra of the rough surface is 1.3 µm or more and 2.2 µm or less.
  5.  前記粗面はサンドブラスト加工によって形成されている、請求項1から4のいずれかに記載の超音波センサ。 The ultrasonic sensor according to any one of claims 1 to 4, wherein the rough surface is formed by sandblasting.
  6.  前記ケースはアルミニウム合金によって形成されている、請求項1から5のいずれかに記載の超音波センサ。 The ultrasonic sensor according to any one of claims 1 to 5, wherein the case is formed of an aluminum alloy.
PCT/JP2015/085653 2014-12-26 2015-12-21 Ultrasonic sensor WO2016104415A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016566342A JP6493415B2 (en) 2014-12-26 2015-12-21 Ultrasonic sensor
KR1020177016566A KR101935784B1 (en) 2014-12-26 2015-12-21 Ultrasonic sensor
CN201580070327.9A CN107113511B (en) 2014-12-26 2015-12-21 Ultrasonic sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-264565 2014-12-26
JP2014264565 2014-12-26

Publications (1)

Publication Number Publication Date
WO2016104415A1 true WO2016104415A1 (en) 2016-06-30

Family

ID=56150434

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/085653 WO2016104415A1 (en) 2014-12-26 2015-12-21 Ultrasonic sensor

Country Status (4)

Country Link
JP (1) JP6493415B2 (en)
KR (1) KR101935784B1 (en)
CN (1) CN107113511B (en)
WO (1) WO2016104415A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020153099A1 (en) * 2019-01-23 2020-07-30 株式会社村田製作所 Ultrasound sensor
US20220260712A1 (en) * 2019-06-04 2022-08-18 Tdk Electronics Ag Ultrasonic Transducer and Method for Producing an Ultrasonic Transducer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111133772A (en) * 2017-09-21 2020-05-08 株式会社村田制作所 Ultrasonic sensor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001232294A (en) * 2000-02-24 2001-08-28 Matsushita Electric Works Ltd Ultrasonic vibrator
JP2007318742A (en) * 2006-04-28 2007-12-06 Murata Mfg Co Ltd Ultrasonic sensor
WO2008047743A1 (en) * 2006-10-20 2008-04-24 Murata Manufacturing Co., Ltd. Ultrasonic sensor
JP2010050963A (en) * 2008-07-25 2010-03-04 Sumitomo Chemical Co Ltd Ultrasonic sensor case and ultrasonic sensor
JP2012060369A (en) * 2010-09-08 2012-03-22 Murata Mfg Co Ltd Ultrasonic transducer

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140157894A1 (en) * 2012-12-12 2014-06-12 Tung Thih Electronic Co., Ltd. Transducer Case

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001232294A (en) * 2000-02-24 2001-08-28 Matsushita Electric Works Ltd Ultrasonic vibrator
JP2007318742A (en) * 2006-04-28 2007-12-06 Murata Mfg Co Ltd Ultrasonic sensor
WO2008047743A1 (en) * 2006-10-20 2008-04-24 Murata Manufacturing Co., Ltd. Ultrasonic sensor
JP2010050963A (en) * 2008-07-25 2010-03-04 Sumitomo Chemical Co Ltd Ultrasonic sensor case and ultrasonic sensor
JP2012060369A (en) * 2010-09-08 2012-03-22 Murata Mfg Co Ltd Ultrasonic transducer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020153099A1 (en) * 2019-01-23 2020-07-30 株式会社村田製作所 Ultrasound sensor
CN113228709A (en) * 2019-01-23 2021-08-06 株式会社村田制作所 Ultrasonic sensor
CN113228709B (en) * 2019-01-23 2023-09-12 株式会社村田制作所 ultrasonic sensor
US11835663B2 (en) 2019-01-23 2023-12-05 Murata Manufacturing Co., Ltd. Ultrasonic sensor
US20220260712A1 (en) * 2019-06-04 2022-08-18 Tdk Electronics Ag Ultrasonic Transducer and Method for Producing an Ultrasonic Transducer

Also Published As

Publication number Publication date
CN107113511A (en) 2017-08-29
KR20170085104A (en) 2017-07-21
JP6493415B2 (en) 2019-04-03
CN107113511B (en) 2019-10-15
JPWO2016104415A1 (en) 2017-09-14
KR101935784B1 (en) 2019-01-07

Similar Documents

Publication Publication Date Title
US7548014B2 (en) Ultrasonic transducer
JP4407767B2 (en) Ultrasonic sensor and manufacturing method thereof
JP4766112B2 (en) Ultrasonic sensor and manufacturing method thereof
KR101528890B1 (en) Ultrasonic sensor
US9003887B2 (en) Ultrasonic sensor
JP5387697B2 (en) Ultrasonic vibration device
US7692367B2 (en) Ultrasonic transducer
WO2007029559A1 (en) Ultrasonic sensor
JP6493415B2 (en) Ultrasonic sensor
US20130081470A1 (en) Ultrasonic sensor and method for manufacturing the same
JPWO2007091609A1 (en) Ultrasonic sensor
US10363574B2 (en) Piezoelectric element, probe, and ultrasonic measurement apparatus
JP4304556B2 (en) Ultrasonic sensor
US9853578B2 (en) Ultrasonic generator
JP7088099B2 (en) Ultrasonic sensor
WO2023203879A1 (en) Ultrasonic transducer and method for producing same
JP7327637B2 (en) ultrasonic sensor
WO2023119745A1 (en) Ultrasonic transducer
WO2022185763A1 (en) Ultrasonic sensor
JP2005303486A (en) Ultrasonic sensor
JPH0772006A (en) Frequency adjusting method for ultrasonic sensor
JP2002296094A (en) Ultrasonic level gage

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15872983

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016566342

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177016566

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15872983

Country of ref document: EP

Kind code of ref document: A1