WO2016104263A1 - Flame retardant, and flame-retardant resin composition containing same - Google Patents

Flame retardant, and flame-retardant resin composition containing same Download PDF

Info

Publication number
WO2016104263A1
WO2016104263A1 PCT/JP2015/085139 JP2015085139W WO2016104263A1 WO 2016104263 A1 WO2016104263 A1 WO 2016104263A1 JP 2015085139 W JP2015085139 W JP 2015085139W WO 2016104263 A1 WO2016104263 A1 WO 2016104263A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
flame retardant
compound
flame
reaction
Prior art date
Application number
PCT/JP2015/085139
Other languages
French (fr)
Japanese (ja)
Inventor
翔 橋本
勝一 大槻
Original Assignee
大八化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大八化学工業株式会社 filed Critical 大八化学工業株式会社
Priority to JP2016566144A priority Critical patent/JP6635944B2/en
Publication of WO2016104263A1 publication Critical patent/WO2016104263A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/521Esters of phosphoric acids, e.g. of H3PO4
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K21/00Fireproofing materials
    • C09K21/06Organic materials
    • C09K21/12Organic materials containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/06Phosphorus compounds without P—C bonds
    • C07F9/08Esters of oxyacids of phosphorus
    • C07F9/09Esters of phosphoric acids

Definitions

  • the present invention relates to a flame retardant and a flame retardant resin composition containing the flame retardant. More specifically, the present invention can exhibit excellent flame retardancy as an additive-type flame retardant for resin flame retardant, particularly polyurethane foam, and can give excellent foamability and physical properties to polyurethane foam.
  • the invention relates to a flame retardant containing an organic phosphorus compound as a main component and a flame retardant resin composition containing the flame retardant.
  • a method of adding a flame retardant during the preparation of a resin molded product is employed.
  • the flame retardant include an inorganic compound, an organic phosphorus compound, an organic halogen compound, and a halogen-containing organic phosphorus compound.
  • the organic halogen compound and the halogen-containing organic phosphorus compound exhibit excellent flame retarding effects.
  • organic phosphorus compounds, particularly organic phosphate esters and halogen-containing organic phosphate esters are widely used as flame retardants that can provide good flame retardant effects.
  • polyurethane foams are flammable and have limited applications. In recent years, various studies have been made to make them flame retardant, but they are not sufficient. Conventionally, as a flame retardant for polyurethane foam, tris (2-chloroethyl) phosphate, squirrel (chloropropyl) phosphate, tris (dichloropropyl) phosphate, tris (2,3-dibromopropyl) phosphate and the like have been used.
  • Lis (2-chloroethyl) phosphate and tris (dichloropropyl) phosphate when blended in flexible polyurethane foam, exhibit a flame retardant effect in the initial stage, but the flame retardant effect significantly decreases with time and fogging resistance
  • VOC volatile organic compounds
  • Tris (2,3-dibromopropyl) phosphate is excellent in terms of flame retardancy and durability, but is inferior in heat resistance. When added to flexible polyurethane foam, scorch is produced during foam production. It is not preferable. In addition, tris (2,3-dibromopropyl) phosphate has been used as a flame retardant for polyester fibers, but is not currently used due to suspected carcinogenic properties.
  • 2,2-bis (chloromethyl) trimethylenebis bis (2-chloroethyl) phosphate
  • Patent Document 2 2,2-bis (chloromethyl) trimethylenebis (bis (2-chloroethyl) phosphate)
  • tetrakis (2-chloroethyl) ethylene diphosphate for example, see Japanese Patent Publication No. 49-43272: Patent Document 2
  • these compounds must use chlorine gas at the time of production, have problems in production, and are not sufficient in terms of flame retardancy and sustainability.
  • the halogen-containing condensed phosphate ester of Patent Document 5 contains, as an impurity, a phosphorus compound having one hydroxyl group in the molecule, which is by-produced during the production thereof.
  • a halogen-containing condensed phosphate ester containing such a phosphorus compound having a hydroxyl group is added to a resin as a flame retardant, there is a problem that a transesterification reaction occurs with a terminal molecule of the resin and the molecular weight of the resin is lowered.
  • the resin when the resin is polyurethane foam, it reacts with isocyanate at the time of foaming to become the end of the polyurethane molecule, which hinders the increase in the molecular weight of the polyurethane, resulting in a decrease in the physical properties of the polyurethane foam. There is.
  • the present invention provides an excellent flame retardancy as an additive-type flame retardant for resin flame retardant, particularly when polyurethane foam is made flame retardant, and can give excellent foamability and physical properties to polyurethane foam. It is an object to provide a flame retardant containing a phosphorus compound as a main component and a flame retardant resin composition containing the flame retardant.
  • an organic phosphorus compound having one hydroxyl group in the molecule and a polyphosphate type organic phosphorus having a reduced phosphate ester monomer content.
  • the present inventors have found that the compound is an excellent flame retardant that satisfies most of the various conditions of a flame retardant for resins, particularly polyurethane foams, and has completed the present invention.
  • R is a hydrogen atom, an alkyl group having 1 to 4 carbon atoms or a monochloroalkyl group
  • Y is an alkylene group having 3 to 6 carbon atoms, or —CH 2 CH 2 (OCH 2 CH 2 ) z OCH 2 CH 2- (z is an integer of 0 to 3), and n is an integer of 0 to 10]
  • a flame retardant containing an organic phosphorus compound represented by When the flame retardant is measured by gel permeation chromatography (GPC), the general formula (II):
  • a flame retardant resin composition containing the above flame retardant and a resin.
  • an organic flame retardant that exhibits excellent flame retardancy as an additive-type flame retardant for resin flame retardants, particularly polyurethane foams, and that can impart excellent foamability and physical properties to polyurethane foams.
  • a flame retardant containing a phosphorus compound as a main component and a flame retardant resin composition containing the flame retardant can be provided.
  • the flame retardant of the present invention further exhibits the above excellent effects when the organic phosphorus compound is phosphoric acid oxydi-2,1-ethanediyltetrakis (2-chloro-1-methylethyl) ester.
  • the flame retardant resin composition of the present invention has any one of the following requirements:
  • the resin is a resin selected from polyurethane resin, acrylic resin, phenol resin, epoxy resin, vinyl chloride resin, polyamide resin, polyester resin, unsaturated polyester resin, styrene resin and synthetic rubber;
  • the polyurethane resin is a polyurethane foam, and the flame retardant resin composition satisfies the above-described excellent condition when it contains a flame retardant at a ratio of 1 to 40 parts by mass with respect to 100 parts by mass of the resin, More effective.
  • Flame retardant The flame retardant of the present invention has the general formula (I):
  • R is a hydrogen atom, an alkyl group having 1 to 4 carbon atoms or a monochloroalkyl group
  • Y is an alkylene group having 3 to 6 carbon atoms, or —CH 2 CH 2 (OCH 2 CH 2 ) z OCH 2 CH 2- (z is an integer of 0 to 3), and n is an integer of 0 to 10]
  • a flame retardant containing an organic phosphorus compound hereinafter also referred to as “compound (I)” as a main component, When the flame retardant is measured by gel permeation chromatography (GPC), the general formula (II):
  • the content of the compound represented by (hereinafter also referred to as “compound (II)”) is 4 area% or less.
  • the flame retardant of the present invention contains the compound (I) as a main component and contains a small amount of impurities by-produced in the production process, and strictly means a flame retardant composition.
  • the “main component” means having a content of 50% by area or more of the flame retardant of the present invention.
  • the content (area%) of compound (I) can be 55, 60, 65, 70, 75, or 80, but is preferably 80 area% or more as described later.
  • the content of compound (II) in GPC measurement is “4 area% or less” means that the content is “over 0 area% and 4 area% or less”.
  • the content (area%) of the compound (II) in specific GPC measurement is 0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.00. 2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.
  • the lower limit is preferably 0.01 area%, more preferably 0.001 area%, still more preferably 0.0001 area%, and the upper limit is preferably 3.8 area%, more preferably 3 .5 area%, more preferably 3.4 area%.
  • Compound (II) is a compound (also referred to as “half-ester”) that is produced by hydrolysis (by-product) when compound (I) is produced, and has one hydroxyl group in the molecule. For this reason, when it is added to a resin as a flame retardant, it causes a transesterification reaction with a terminal molecule of the resin, thereby reducing the molecular weight of the resin. In particular, when the resin is a polyurethane foam, it reacts with isocyanate at the time of foaming to become the end of the polyurethane molecule, thereby inhibiting the foaming of the polyurethane and the increase in the molecular weight, resulting in a decrease in the physical properties of the polyurethane foam.
  • the flame retardant of the present invention does not contain the compound (II).
  • the compound (II) in the GPC measurement can be prevented.
  • Content must be 4 area% or less.
  • the content of the compound (I) in GPC measurement is preferably 80 area% or more, more preferably 85 area% or more, and further preferably 90 area% or more.
  • the content (area%) of compound (I) in specific GPC measurement is 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 90.5, 91, 91. 5, 92, 92.5, 93, 93.5, 94, 94.5, 95, 95.5, 96, 96.5, 97, 97.5, 98, 98.5, 99 and 99.5, etc. It is.
  • the upper limit of the content is theoretically 100 area%, preferably 98 area%, more preferably 96 area%, and still more preferably 95 area%.
  • the flame retardant of the present invention is measured by gel permeation chromatography (GPC), the general formula (III): [Wherein, R has the same meaning as in formula (I). ]
  • the content of the compound represented by (hereinafter also referred to as “compound (III)”) is preferably 7 area% or less, and more preferably 6 area% or less.
  • the content of the compound (III) in GPC measurement is “7 area% or less” means that the content is “over 0 area% and 7 area% or less”.
  • the content (area%) of the compound (III) in specific GPC measurement is 0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.00. 5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5 and 7.0 or the like.
  • the lower limit thereof is preferably 0.01 area%, more preferably 0.001 area%, still more preferably 0.0001 area%, and the further preferable upper limit thereof is 5 area%, more preferably 4 area%. More preferably, it is 3 area%.
  • Compound (III) is a monomer phosphate ester produced (by-product) when producing Compound (I), and has a small molecular weight and easily volatilizes. For this reason, when it adds to a resin as a flame retardant, content of a volatile organic compound (VOC) will increase and fogging resistance will worsen. Therefore, it is most preferable that the flame retardant of the present invention does not contain the compound (III). However, since the by-product in the production process of the compound (I) cannot be completely prevented, the compound (III) in the GPC measurement can be prevented. ) Content is desirably 7% by area or less.
  • the substituent R in the general formula (I) is a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or a monochloroalkyl group.
  • the alkyl group having 1 to 4 carbon atoms may be linear or branched, and examples thereof include methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, and tert-butyl groups.
  • a methyl group and an ethyl group are preferable in that the phosphorus content in the compound (I) is high, and a methyl group is more preferable.
  • the monochloroalkyl group having 1 to 4 carbon atoms may be linear or branched, and examples thereof include chloromethyl, chloroethyl, chloropropyl and chlorobutyl groups. Among these, a chloromethyl group and a chloroethyl group are preferable, and a chloromethyl group is more preferable in that the phosphorus content in the compound (I) is increased.
  • the substituent R is preferably a hydrogen atom, methyl, ethyl, chloromethyl, or chloroethyl group, more preferably a hydrogen atom, methyl group, or chloromethyl group, and particularly preferably a hydrogen atom or methyl group.
  • the substituent Y in the general formula (I) is represented by an alkylene group having 3 to 6 carbon atoms or —CH 2 CH 2 (OCH 2 CH 2 ) z OCH 2 CH 2 — (z is an integer of 0 to 3). It is a group.
  • the alkylene group having 3 to 6 carbon atoms may be linear or branched, and examples thereof include trimethylene, propylene, butylene, pentylene, and hexamethylene groups. Of these, trimethylene and propylene groups are preferred in that the phosphorus content in compound (I) is high.
  • a group represented by —CH 2 CH 2 (OCH 2 CH 2 ) z OCH 2 CH 2 — (z is an integer of 0 to 3) is a residue of oxyalkylene glycol, specifically, by a coefficient z, —CH 2 CH 2 OCH 2 CH 2 —, —CH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 —, —CH 2 CH 2 (OCH 2 CH 2 ) 2 OCH 2 CH 2 —, —CH 2 CH 2 ( OCH 2 CH 2 ) 3 OCH 2 CH 2 —.
  • —CH 2 CH 2 OCH 2 CH 2 — and —CH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 — are preferable in view of increasing the phosphorus content in the compound (I), and —CH 2 CH 2 OCH 2 CH 2 — is more preferred.
  • substituent Y trimethylene, a propylene group, and —CH 2 CH 2 OCH 2 CH 2 — are particularly preferable.
  • the coefficient n in the general formula (I) is an integer of 0 to 10.
  • the coefficient n exceeds 10, the flame retardancy does not change, and the handling becomes difficult only by increasing the viscosity, which is not preferable.
  • the coefficient n increases, the molecular weight of the compound (I) tends to increase and the viscosity tends to increase. Therefore, depending on the type of resin to be added, the physical properties of the resin to be obtained, the difficulty in manufacturing the compound (I), etc.
  • the coefficient n may be appropriately determined, but is usually preferably 0 to 5, and more preferably 0 to 3.
  • Examples of the compound (I) that is the main component of the flame retardant of the present invention include phosphoric acid oxydi-2,1-ethanediyltetrakis (2-chloroethyl) ester, phosphoric acid oxydi-2,1-ethanediyltetrakis (2 -Chloro-1-methylethyl) ester, oxy-2,1-ethanediylbis [10-chloro-7- (2-chloroethoxy) -7-oxide-3,6,8-trioxa-7-phosphadec-1 -Yl] bis (2-chloroethyl) ester, poly [oxy [(2-chloro-1-methylethoxy) phosphinylidene] oxy-1,2-ethanediyloxy-1,2-ethanediyl], ⁇ - (2-chloro -1-methylethyl) - ⁇ -[[bis (2-chloro-1-methyle
  • the flame retardant of the present invention can be obtained, for example, by the following two-stage reaction production method.
  • Y and n are the same as in general formula (I)).
  • hydrogen chloride is generated by an exothermic reaction.
  • the raw material phosphorus oxychloride remains unreacted in the system.
  • This remaining phosphorus oxychloride reacts with alkylene oxide or chloroalkylene oxide in the second reaction of the next step to produce a low molecular weight phosphate ester monomer, which reduces fogging and flame retardancy.
  • the produced hydrogen chloride and unreacted phosphorus oxychloride remaining in the system are removed under reduced pressure. That is, in the first reaction, phosphorus oxychloride and alkylene glycol or oxyalkylene glycol are in a molar ratio of 1.5 to 3.0: 1.0, preferably the phosphorus oxychloride is mol to alkylene glycol or oxyalkylene glycol
  • the reaction is carried out by continuously feeding the reaction vessel in an amount less than an equivalent amount, specifically, in a molar ratio of 1.7 to 2.0: 1.0.
  • the reaction temperature is 0 to 50 ° C., preferably 15 to 20 ° C., and the generated heat is removed by passing a refrigerant through a jacket or coil attached to the reaction vessel.
  • the produced condensed phosphorodichloridate is unstable to heat, and it is required to remove hydrogen chloride and remaining phosphorus oxychloride in as short a time as possible and in a short time. Therefore, hydrogen chloride and phosphorus oxychloride are removed at a temperature of 15 to 20 ° C., a degree of vacuum of 1 to 7 kPa, and then a temperature of 20 ° C. or less and a degree of vacuum of 0.1 to 1 kPa.
  • the residual amount of hydrogen chloride and phosphorus oxychloride in the first reaction solution can be minimized within a temperature range of 16 to 20 ° C. and a vacuum level of 0.1 to 1 kPa. it can.
  • the alkylene glycol used in the reaction is 1,2-propylene glycol, 1,3-propylene glycol, 1,2-butylene glycol, 1,3-butylene glycol, 1,4-butylene glycol, 2,3-butylene.
  • Examples include glycol, 1,6-hexanediol, 2,4-hexanediol, and 2,5-hexanediol, but are not limited thereto.
  • Examples of the oxyalkylene glycol include diethylene glycol, triethylene glycol, and tetraethylene glycol, but are not limited thereto.
  • the condensed phosphorodichloridate When the condensed phosphorodichloridate is reacted with alkylene oxide or chloroalkylene oxide, this reaction is also exothermic, as in the first reaction. Since the condensed phosphorodichloridate is weak and unstable to heat, the second reaction is preferably a continuous reaction rather than a batch reaction in which the heat receiving time is long. When the heat receiving time is increased, the condensed phosphorodichloridate is thermally decomposed, which is accompanied by an undesirable side reaction.
  • the heat receiving time of the condensed phosphorodichloridate is shortened, and the occurrence rate of thermal decomposition and undesirable side reactions is significantly reduced compared to the batch system. That is, it is preferable that the alkylene oxide or chloroalkylene oxide corresponding to the reaction product is supplied and gradually reacted while quantitatively supplying the reaction product of the first reaction containing the condensed phosphorodichloridate. Specifically, it is preferable to react both products while supplying the reaction product of the first reaction and the alkylene oxide or chloroalkylene oxide with a tube-type metering pump and a flow meter.
  • alkylene oxide used in the reaction examples include, but are not limited to, ethylene oxide, propylene oxide, 1,2-butylene oxide, 2,3-butylene oxide, and the like. Among these, ethylene oxide and propylene oxide are preferable, and propylene oxide is more preferable.
  • chloroalkylene oxide examples include epichlorohydrin and the like, but are not limited thereto.
  • Theoretical usage (g) (A ⁇ B ⁇ C) / (100 ⁇ 35.5) [Wherein A is the mass (g) of condensed phosphorodichloridate, B is the chlorine content (% by mass) of condensed phosphorodichloridate, C is the molecular weight of alkylene oxide or chloroalkylene oxide, 35.5 is It is the atomic weight of chlorine]
  • the actual amount of alkylene oxide or chloroalkylene oxide used is 10% by mass excess, preferably 2-6% by mass excess of the theoretical usage amount to the theoretical usage amount.
  • An excess amount of more than 6% by mass of alkylene oxide or chloroalkylene oxide has an advantage that the aging (retention) time required for completion of the reaction can be shortened, but it is economically disadvantageous for increasing the amount of use.
  • the reaction temperature is 40 to 90 ° C, preferably 50 to 70 ° C. At temperatures below 40 ° C, the progress of the reaction becomes very slow and impractical. At temperatures above 90 ° C, phenomena such as coloring of the reaction liquid and an increase in by-products occur, resulting in a high-quality product. Can not be.
  • the reaction time required to complete the reaction is in the range of 5 to 30 hours, preferably 10 to 20 hours, on an industrial scale reaction using raw materials economically.
  • condensed phosphorodichloridate When a continuous reaction is carried out at a reaction temperature of 55 to 60 ° C. with an excess of 5% by mass of propylene oxide, the residence time for obtaining a product with good quality is preferably 10 to 20 hours. Is 12-15 hours.
  • the reaction mixture is discharged from the reactor and commercialized through a washing and dehydration process as a purification process.
  • the washing step is generally performed by a known method, and can be performed by either a batch method or a continuous method. Specifically, the reaction mixture is washed with a mineral acid solution such as sulfuric acid and hydrochloric acid, then washed with an alkali and water, and dehydrated under reduced pressure. Alternatively, the reaction mixture is washed with an alkali without washing with a mineral acid, and the formed water-insoluble titanium compound (catalyst component) is removed by filtration or centrifugation, washed with water, and dehydrated under reduced pressure.
  • a mineral acid solution such as sulfuric acid and hydrochloric acid
  • the temperature of the washing step is 95 ° C. or less, preferably 85 ° C. or less, more preferably 70 ° C. or less, and further preferably 55 to 65 ° C.
  • the dehydration step is preferably performed under reduced pressure.
  • the temperature of the dehydration step is 120 ° C. or less, preferably 110 ° C. or less, more preferably 95 to 105 ° C., and the pressure is 10 kPa or less, preferably 1 to 5 kPa.
  • the product may be subjected to a purification step in order to completely remove low-boiling components.
  • a purification step steam distillation under reduced pressure is preferable.
  • the temperature is 120 ° C. or lower, preferably 110 ° C. or lower, more preferably 95 to 105 ° C., and the pressure is 10 kPa or lower, preferably 1 to 5 kPa.
  • the flame retardant resin composition of the present invention comprises the flame retardant of the present invention and a resin.
  • the flame retardant of the present invention has high purity and high quality, and can be used as a flame retardant for various thermoplastic resins and thermosetting resins.
  • thermoplastic resin examples include polyethylene resin, chlorinated polyethylene resin, polypropylene resin, polybutadiene resin, styrene resin, vinyl chloride resin, polyphenylene ether resin, polyphenylene sulfide resin, polycarbonate resin, ABS (acrylonitrile-butadiene-styrene) resin, Saturated or unsaturated polyester resins such as impact-resistant styrene resin, rubber-modified styrene resin, SAN (styrene-acrylonitrile) resin, ACS resin, polyamide resin, polyimide resin, PET (polyethylene terephthalate) resin and PBT (polybutylene terephthalate) resin Acrylic resin, polymethacrylic resin, polyetheretherketone resin, polyethersulfone resin, polysulfone resin, polyarylate resin, polyester Examples include ether ketone resins, polyether nitrile resins, polythioether sulfone resins, polybenzimidazole
  • thermosetting resins examples include epoxy resins, polyurethane resins, polyimide resins, phenolic resins, novolac resins, resole resins, polyetherimide resins, melamine resins, urea resins, unsaturated polyester resins, diallyl phthalate resins, and the like. These 1 type can be used individually or in mixture of 2 or more types.
  • polyurethane resins acrylic resins, phenol resins, epoxy resins, vinyl chloride resins, polyamide resins, polyester resins, unsaturated polyesters can be used as the resins that the flame retardant composition of the present invention can sufficiently perform its functions.
  • Resins selected from resins, styrene resins and synthetic rubbers are preferred, polyurethane resins are more preferred, and polyurethane foams are particularly preferred.
  • the synthetic rubber means a resin (elastomer) having rubber elasticity obtained by addition polymerization or copolymerization among the thermoplastic resins, and examples thereof include polybutadiene, nitrile, and chloroprene.
  • the amount of flame retardant added may be appropriately set depending on the type of resin to be added, the desired degree of flame retardant, etc., and the flame retardant composition of the present invention is usually based on 100 parts by mass of the resin. 1 to 40 parts by mass of a flame retardant is preferably contained. If the amount of the flame retardant added is less than 1 part by mass, it may not be possible to impart sufficient flame retardancy to the resin. On the other hand, when the amount of the flame retardant added exceeds 40 parts by mass, the physical properties of the resin itself, particularly the mechanical physical properties, may be deteriorated.
  • the amount of flame retardant added (parts by mass) relative to 100 parts by mass of specific resin is 1, 5, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23. 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, and 40. A more preferable amount of the flame retardant added is 1 to 35 parts by mass, and particularly preferably 1 to 30 parts by mass.
  • the flame retardant resin composition of the present invention may be added with known resin additives, that is, other flame retardants and other additives other than the flame retardant, as long as they do not adversely affect the physical properties of the resin. May be included. These addition amounts may be set as appropriate depending on the type of resin and the desired physical properties.
  • flame retardants include, for example, non-halogen phosphate ester flame retardants such as triphenyl phosphate, tricresyl phosphate, cresyl diphenyl phosphate, resorcinol-tetraphenyl bisphosphate, bisphenol A-tetraphenyl bisphosphate; -Including bis (chloromethyl) -1,3-propanebis (chloroethyl) diphosphate, tetrakis (2-chloroethyl) ethylene diphosphate, (poly) alkylene glycol halogen-containing polyphosphate, tris (tribromo) neopentyl phosphate, etc.
  • non-halogen phosphate ester flame retardants such as triphenyl phosphate, tricresyl phosphate, cresyl diphenyl phosphate, resorcinol-tetraphenyl bisphosphate, bisphenol A-tetraphenyl bisphosphate;
  • Halogen phosphate ester flame retardants brominated flame retardants such as decabromodiphenyl ether, tetrabromobisphenol A, 1,2-bis (pentabromophenyl) ethane; antimony trioxide, Inorganic flame retardants such magnesium oxide; ammonium polyphosphate, such as nitrogen-based flame retardant such as melamine phosphate and the like.
  • additives besides flame retardants include antioxidants, fillers, lubricants, modifiers, fragrances, antibacterial agents, pigments, dyes, heat-resistant agents, weathering agents, antistatic agents, UV absorbers, stabilizers, Strengthening agents, anti-drip agents, anti-blocking agents, wood flour, starch and the like.
  • the flame retardant of the present invention exhibits an excellent flame retardancy particularly as an additive-type flame retardant when making a polyurethane foam flame retardant, and an organophosphorus compound having excellent polyurethane foam foaming properties and physical properties.
  • a flame retardant as a main component and a flame retardant resin composition containing the flame retardant can be provided.
  • the flame retardant of the present invention has a very low volatility of the main component compound (I), and exhibits an excellent flame retardant effect when added to a resin, particularly by adding to a polyurethane foam component before foaming according to a predetermined formulation. .
  • the obtained polyurethane foam exhibits excellent flame retardancy and foamability by a flammability test method such as MVSS-302. That is, the flame-retardant polyurethane foam is superior in flame retardancy and durability as compared with a polyurethane foam flame-retarded with an existing organic phosphorus compound-based flame retardant, and further has excellent fogging resistance.
  • a method for producing a polyurethane foam is already known, and a flame retardant polyurethane foam to which the flame retardant of the present invention is added can also be produced by a known method.
  • 1 to 40 parts by mass, preferably 1 to 30 parts by mass of the flame retardant of the present invention is mixed with 100 parts by mass of polyol including polyester polyol, polyether polyol and the like.
  • a foam stabilizer, a catalyst, a foaming agent, etc. to the obtained mixture and stirring, when an organic polyisocyanate is added and reacted, a flame-retardant polyurethane foam is obtained.
  • the polyol is not particularly limited as long as it is generally used as a raw material for forming polyurethane, but a polyester polyol and a polyether polyol having about 2 to 8 hydroxyl groups per molecule and having a molecular weight of about 250 to 6500. Polyols such as are preferably used. When the molecular weight is smaller than 250, the activity is strong and not suitable for forming urethane foam, and when the molecular weight is larger than 6500, the viscosity is increased and workability may be deteriorated.
  • polyols examples include diols; triols; and polyols obtained by polymerizing ethylene oxide and / or propylene oxide using initiators such as sorbitol, sucrose, or ethylenediamine as initiators.
  • diols such as polyoxyethylene glycol and polyoxypropylene glycol; polyoxyethylene glycerol, polyoxypropylene glycerol, poly (oxyethylene) poly (oxypropylene) glycerol, polyoxyethylene neohexanetriol, polyoxypropylene Triols such as pentaneohexanetriol, poly (oxyethylene) poly (oxypropylene) neohexanetriol, poly (oxypropylene) 1,2,6-hexanetriol, and polyoxypropylenealkanol; poly (oxyethylene) poly (oxy Propylene) ethylenediamine; hexol such as polyoxyethylene sorbitol, polyoxypropylene sorbitol; polyoxyethylene sucrose
  • polyol and a phosphorus-containing polyol in which melamine or ammonium polyphosphate, which is commercially available as a special grade, is dispersed are also included.
  • Preferred polyols include polyether polyols with poly (oxyethylene / oxypropylene) triols having an average molecular weight in the range of about 250 to about 6500.
  • organic polyisocyanates include, but are not limited to, butylene diisocyanate, phenylene diisocyanate, xylene diisocyanate, biphenyl diisocyanate, naphthalene diisocyanate, diphenylmethane diisocyanate, cyclopentane diisocyanate, cyclohexane diisocyanate, isophorone diisocyanate, norbornane diisocyanate, trimethylene diisocyanate, tetramethylene diisocyanate, pentane Examples include methylene diisocyanate, hexamethylene diisocyanate, 1,2-propylene diisocyanate, 1,2-butylene diisocyanate, 2,3-butylene diisocyanate, and 1,3-butylene diisocyanate.
  • foam stabilizer examples include silicone foam stabilizers (silicone oils) such as siloxane-oxyalkylene block copolymers.
  • silicone foam stabilizers such as siloxane-oxyalkylene block copolymers.
  • Specific examples include NIAX SILICON L-580, L-590, L-620, L-638, L-638J, L-680, L-682, and L-690 manufactured by Momentive Performance Materials. .
  • the catalyst examples include triethylenediamine, dimethylethanolamine, bis (2-dimethylaminoethyl) ether, N, N, N ′, N′-tetramethylhexamethylenediamine, N, N ′, N′-trimethylaminoethylpiperazine, Examples thereof include amine catalysts such as N-ethylmorpholine; tin catalysts such as stannous octoate and dibutyltin dilaurate.
  • dispersant nonionic surfactants such as ether type, ether ester type, and ester type can be used.
  • alkyl methyl, ethyl, propyl, butyl, amyl, heptyl, octyl, nonyl, decyl, dodecyl, tridecyl
  • aryl phenyl, tolyl, xylyl, biphenyl, naphthyl
  • alkylaryl formaldehyde examples include condensed polyoxyethylene ether, polyoxyethylene ether of glycerin ester, polyethylene glycol fatty acid ester, propylene glycol ester, polyglycerin, sorbitan ester, fatty acid monoglyceride, and mixtures thereof.
  • the acid value (KOHmg / g) of the obtained product was measured according to JIS K0070 neutralization titration method.
  • the viscosity (mPa ⁇ s) of the obtained product was measured under the condition of a temperature of 25 ° C. using an Ubbelohde viscometer according to JIS Z8803.
  • the reaction product obtained in the second reaction was subjected to a purification step batchwise.
  • a washing step 100 g of sulfuric acid having a concentration of 0.1% by mass was added to the reaction solution at a temperature of 60 ° C. and stirred for 30 minutes, and then 3 g of sodium carbonate and 150 g of water were added to the reaction solution and stirred for 30 minutes. Summed and allowed to settle to separate the aqueous phase. Thereafter, the oil phase was washed with 250 g of water at the same temperature.
  • the obtained reaction product was subjected to a vacuum dehydration step at a temperature of 100 ° C. and a pressure of 4 kPa.
  • part means “part by mass”
  • a polyol, a foam stabilizer, a catalyst, a foaming agent, and a flame retardant were blended, and the blend was uniformly mixed by stirring for 1 minute at 3000 rpm using a stirrer. Thereafter, further isocyanate was added, and the mixture was stirred at a rotational speed of 3000 rpm for 5 to 7 seconds.
  • the formulation was then immediately poured into a cube (about 200 mm high) cardboard box with a square bottom (about 200 mm on each side). Foaming occurred immediately and reached the maximum volume after a few minutes. Next, the obtained foam was allowed to stand for 30 minutes in a furnace at a temperature of 120 ° C. to be cured.
  • Example 3 As a flame retardant control test, a foam was produced and evaluated in the same manner as in Example 1 except that no flame retardant was added (Comparative Example 3). The obtained foam had a white soft open-cell type cell structure. The obtained results are shown in Table 2 together with a part of the formulation (the amount of flame retardant and isocyanate used).
  • the flame retardant of the present invention and the flame retardant resin composition containing the flame retardant exhibit excellent flame retardancy among the required conditions, and are excellent in the foamability and physical properties of the polyurethane foam.
  • the air permeability and compressive residual strain were greatly changed as compared with the foams of Examples 1 to 3. This is because the compound (II) is a monofunctional compound, so it reacts with isocyanate faster than a polyfunctional and high molecular weight polyol, and the usual urethane foam formation reaction stops halfway. It is thought that the formation of the urethane foam was inhibited and the physical properties of the urethane foam were affected.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Fireproofing Substances (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

A flame retardant containing as a main component an organic phosphorus compound represented by general formula (I): (in the formula, R is a hydrogen atom or a C1-4 alkyl group or monochloroalkyl group, Y is a C3-6 alkylene group or a group represented by -CH2CH2(OCH2CH2)zOCH2CH2- (z is an integer of 0-3), n is an integer of 0-10), wherein the flame retardant has a contained amount of a compound represented by general formula (II): (in the formula, R, Y, and n are defined the same as in general formula (I)) of 4 area% or less when the flame retardant is measured by gel permeation chromatography (GPC); and a flame-retardant resin composition containing this flame retardant and a resin.

Description

難燃剤およびそれを含有する難燃性樹脂組成物Flame retardant and flame retardant resin composition containing the same
 本発明は、難燃剤およびそれを含有する難燃性樹脂組成物に関する。さらに詳しくは、本発明は、樹脂の難燃剤、特にポリウレタンフォームを難燃化する際の添加型難燃剤として優れた難燃性を発揮し、しかもポリウレタンフォームに優れた発泡性および物性を与え得る、有機リン化合物を主成分とする難燃剤およびそれを含む難燃性樹脂組成物に関する。 The present invention relates to a flame retardant and a flame retardant resin composition containing the flame retardant. More specifically, the present invention can exhibit excellent flame retardancy as an additive-type flame retardant for resin flame retardant, particularly polyurethane foam, and can give excellent foamability and physical properties to polyurethane foam. The invention relates to a flame retardant containing an organic phosphorus compound as a main component and a flame retardant resin composition containing the flame retardant.
 樹脂に難燃性を付与するためには、樹脂成形品の調製時に難燃剤を添加する方法が採用されている。難燃剤としては、無機化合物、有機リン化合物、有機ハロゲン化合物、ハロゲン含有有機リン化合物などがあり、これらの中でも有機ハロゲン化合物およびハロゲン含有有機リン化合物が優れた難燃効果を発揮する。実用面では、良好な難燃効果が得られる難燃剤として、有機リン化合物、特に有機リン酸エステル類、ハロゲン含有有機リン酸エステル類が汎用されている。 In order to impart flame retardancy to the resin, a method of adding a flame retardant during the preparation of a resin molded product is employed. Examples of the flame retardant include an inorganic compound, an organic phosphorus compound, an organic halogen compound, and a halogen-containing organic phosphorus compound. Among these, the organic halogen compound and the halogen-containing organic phosphorus compound exhibit excellent flame retarding effects. In practical terms, organic phosphorus compounds, particularly organic phosphate esters and halogen-containing organic phosphate esters are widely used as flame retardants that can provide good flame retardant effects.
 種々の樹脂の中でも、ポリウレタンフォーム(発泡体)は、可燃性であるためその用途に制限があり、近年その難燃化のために様々な研究がなされてきたが未だ充分ではない。
 従来からポリウレタンフォーム用難燃剤として、トリス(2-クロロエチル)ホスフェート、卜リス(クロロプロピル)ホスフェート、トリス(ジクロロプロピル)ホスフェート、トリス(2,3-ジブロモプロピル)ホスフェートなどが使用されていた。
 卜リス(2-クロロエチル)ホスフェートおよびトリス(ジクロロプロピル)ホスフェートは、軟質ポリウレタンフォームに配合された場合、初期には難燃効果を発揮するが、経時変化と共に難燃効果が著しく低下し、耐フォギング性が悪く、揮発性有機化合物(VOC)も多いという問題がある。これは、これら化合物の分子量が小さく、難燃剤が揮発するためであると考えられる。
Among various resins, polyurethane foams (foams) are flammable and have limited applications. In recent years, various studies have been made to make them flame retardant, but they are not sufficient.
Conventionally, as a flame retardant for polyurethane foam, tris (2-chloroethyl) phosphate, squirrel (chloropropyl) phosphate, tris (dichloropropyl) phosphate, tris (2,3-dibromopropyl) phosphate and the like have been used.
卜 Lis (2-chloroethyl) phosphate and tris (dichloropropyl) phosphate, when blended in flexible polyurethane foam, exhibit a flame retardant effect in the initial stage, but the flame retardant effect significantly decreases with time and fogging resistance There is a problem that the property is poor and there are many volatile organic compounds (VOC). This is thought to be because the molecular weight of these compounds is small and the flame retardant volatilizes.
 また、トリス(2,3-ジブロモプロピル)ホスフェートは、難燃性およびその持続性の点で優れているが、耐熱性に劣り、軟質ポリウレタンフォームに添加した場合には、フォーム製造時にスコーチが生じ、好ましくない。
 さらに、トリス(2,3-ジブロモプロピル)ホスフェートは、ポリエステル繊維用難燃剤としても使用されていたが、発ガン性の疑いから、現在では使われていない。
Tris (2,3-dibromopropyl) phosphate is excellent in terms of flame retardancy and durability, but is inferior in heat resistance. When added to flexible polyurethane foam, scorch is produced during foam production. It is not preferable.
In addition, tris (2,3-dibromopropyl) phosphate has been used as a flame retardant for polyester fibers, but is not currently used due to suspected carcinogenic properties.
 その後、一分子中に2個のリン原子を有する化合物として、2,2-ビス(クロロメチル)トリメチレンビス(ビス(2-クロロエチル)ホスフェート)(例えば、米国特許第3192242号明細書:特許文献1参照)およびテトラキス(2-クロロエチル)エチレンジホスフェート(例えば、特公昭49-43272号公報:特許文献2参照)が軟質ポリウレタンフォーム用難燃剤として注目されてきた。
 しかし、これらの化合物は、製造時に塩素ガスを使用しなければならず、製造面において問題があり、また難燃性やその持続性の点でも充分ではない。
Subsequently, 2,2-bis (chloromethyl) trimethylenebis (bis (2-chloroethyl) phosphate) (for example, US Pat. No. 3,192,242: Patent Document) is used as a compound having two phosphorus atoms in one molecule. 1) and tetrakis (2-chloroethyl) ethylene diphosphate (for example, see Japanese Patent Publication No. 49-43272: Patent Document 2) have attracted attention as flame retardants for flexible polyurethane foams.
However, these compounds must use chlorine gas at the time of production, have problems in production, and are not sufficient in terms of flame retardancy and sustainability.
 これを改良するために、トリス[ビス(2-クロロエトキシ)ホスフィニル(ジメチル)メチル]ホスフェート、2-クロロエチルビス[ビス(2-クロロエトキシ)ホスフィニル(ジメチル)メチル]ホスフェート、オキシジ-2,1-エタンジイルテトラキス(2-クロロエチル)ビスホスフェートが検討されてきた(例えば、特開昭48-96649号公報:特許文献3および特開昭56-36512号公報:特許文献4参照)。
 しかし、これらの化合物は、製造時にトリス(2-クロロエチル)ホスフェートやトリス(クロロプロピル)ホスフェートなどのリン化合物単量体が副生し、耐フォギング性が悪く、VOCが多いなどの問題があった。
To improve this, tris [bis (2-chloroethoxy) phosphinyl (dimethyl) methyl] phosphate, 2-chloroethylbis [bis (2-chloroethoxy) phosphinyl (dimethyl) methyl] phosphate, oxydi-2,1 -Ethanediyltetrakis (2-chloroethyl) bisphosphate has been studied (see, for example, JP-A-48-96649: Patent Document 3 and JP-A-56-36512: Patent Document 4).
However, these compounds have a problem in that phosphorus compound monomers such as tris (2-chloroethyl) phosphate and tris (chloropropyl) phosphate are by-produced during production, resulting in poor fogging resistance and a large amount of VOC. .
 そこで、リン化合物単量体の含有量が少量であり、低フォギング性でVOCが少ない含ハロゲン縮合リン酸エステルが検討された(例えば、特開平8-259577号公報:特許文献5参照)。 Therefore, a halogen-containing condensed phosphate ester having a low content of phosphorus compound monomer, low fogging property and low VOC has been studied (for example, see JP-A-8-259577: Patent Document 5).
米国特許第3192242号明細書U.S. Pat. No. 3,192,242 特公昭49-43272号公報Japanese Patent Publication No.49-43272 特開昭48-96649号公報JP-A 48-96649 特開昭56-36512号公報JP 56-36512 A 特開平8-259577号公報JP-A-8-2559577
 しかしながら、特許文献5の含ハロゲン縮合リン酸エステルには、その製造時に副生される、分子中に1つのヒドロキシル基を有するリン化合物が不純物として含有することがわかった。
 このようなヒドロキシル基を有するリン化合物を含有する含ハロゲン縮合リン酸エステルを難燃剤として樹脂に添加した場合、樹脂の末端分子とエステル交換反応を起こし、樹脂の分子量を低下させるという問題がある。また、樹脂がポリウレタンフォームである場合には、その発泡時にイソシアネートと反応してポリウレタン分子の末端となってしまい、ポリウレタンの分子量の増大を阻害し、その結果ポリウレタンフォームの物性をも低下させるという問題がある。
However, it has been found that the halogen-containing condensed phosphate ester of Patent Document 5 contains, as an impurity, a phosphorus compound having one hydroxyl group in the molecule, which is by-produced during the production thereof.
When a halogen-containing condensed phosphate ester containing such a phosphorus compound having a hydroxyl group is added to a resin as a flame retardant, there is a problem that a transesterification reaction occurs with a terminal molecule of the resin and the molecular weight of the resin is lowered. In addition, when the resin is polyurethane foam, it reacts with isocyanate at the time of foaming to become the end of the polyurethane molecule, which hinders the increase in the molecular weight of the polyurethane, resulting in a decrease in the physical properties of the polyurethane foam. There is.
 また、発泡体の気泡の生成や状態にも影響を与え、同じ通気度を持つポリウレタンフォームを製造しようとしたときの調整が不利となる。特に工業生産の場合では、ポリウレタンフォームの品質のバラツキをもたらすことになり、好ましくない。
 上記のようにVOCの低減を課題とする特許文献5に記載の技術では、含ハロゲン縮合リン酸エステルの全体的な不純物(副生物)の低減、特にリン化合物単量体の低減に着目され、ヒドロキシル基を有するリン化合物の存在およびその副生については全く着目されていなかった。
In addition, it affects the generation and state of bubbles in the foam, which makes it difficult to make adjustments when trying to produce a polyurethane foam having the same air permeability. In particular, in the case of industrial production, the quality of polyurethane foam varies, which is not preferable.
As described above, in the technique described in Patent Document 5 in which reduction of VOC is an issue, attention is focused on the reduction of the overall impurities (by-products) of the halogen-containing condensed phosphate ester, particularly the reduction of the phosphorus compound monomer. No attention has been paid to the presence of phosphorus compounds having hydroxyl groups and their by-products.
 そこで、本発明は、樹脂の難燃剤、特にポリウレタンフォームを難燃化する際の添加型難燃剤として優れた難燃性を発揮し、しかもポリウレタンフォームに優れた発泡性および物性を与え得る、有機リン化合物を主成分とする難燃剤およびそれを含む難燃性樹脂組成物を提供することを課題とする。 Therefore, the present invention provides an excellent flame retardancy as an additive-type flame retardant for resin flame retardant, particularly when polyurethane foam is made flame retardant, and can give excellent foamability and physical properties to polyurethane foam. It is an object to provide a flame retardant containing a phosphorus compound as a main component and a flame retardant resin composition containing the flame retardant.
 本発明者らは、上記課題を解決すべく鋭意研究を重ねたた結果、分子中に1つのヒドロキシル基を有する有機リン化合物およびリン酸エステル単量体含有量を低減したポリホスフェートタイプの有機リン化合物が、樹脂、特にポリウレタンフォーム用難燃剤の諸条件の大半を満たす、優れた難燃剤であることを見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above problems, the present inventors have found that an organic phosphorus compound having one hydroxyl group in the molecule and a polyphosphate type organic phosphorus having a reduced phosphate ester monomer content. The present inventors have found that the compound is an excellent flame retardant that satisfies most of the various conditions of a flame retardant for resins, particularly polyurethane foams, and has completed the present invention.
 かくして、本発明によれば、一般式(I):
Figure JPOXMLDOC01-appb-C000003
Thus, according to the invention, the general formula (I):
Figure JPOXMLDOC01-appb-C000003
[式中、Rは水素原子または炭素数1~4のアルキル基もしくはモノクロロアルキル基であり、Yは炭素数3~6のアルキレン基または-CH2CH2(OCH2CH2)zOCH2CH2-(zは0~3の整数)で表される基であり、nは0~10の整数である]
で表される有機リン化合物を主成分として含有する難燃剤であり、
 前記難燃剤をゲルパーミエーションクロマトグラフィー(GPC)で測定したときに、一般式(II):
[Wherein, R is a hydrogen atom, an alkyl group having 1 to 4 carbon atoms or a monochloroalkyl group, Y is an alkylene group having 3 to 6 carbon atoms, or —CH 2 CH 2 (OCH 2 CH 2 ) z OCH 2 CH 2- (z is an integer of 0 to 3), and n is an integer of 0 to 10]
A flame retardant containing an organic phosphorus compound represented by
When the flame retardant is measured by gel permeation chromatography (GPC), the general formula (II):
Figure JPOXMLDOC01-appb-C000004
[式中、R、Yおよびnは一般式(I)と同義である]
で表される化合物の含有量が4面積%以下である難燃剤が提供される。
Figure JPOXMLDOC01-appb-C000004
[Wherein R, Y and n have the same meanings as in general formula (I)]
The flame retardant whose content of the compound represented by this is 4 area% or less is provided.
 また、本発明によれば、上記の難燃剤と樹脂とを含有する難燃性樹脂組成物が提供される Further, according to the present invention, there is provided a flame retardant resin composition containing the above flame retardant and a resin.
 本発明によれば、樹脂の難燃剤、特にポリウレタンフォームを難燃化する際の添加型難燃剤として優れた難燃性を発揮し、しかもポリウレタンフォームに優れた発泡性および物性を与え得る、有機リン化合物を主成分とする難燃剤およびそれを含む難燃性樹脂組成物を提供することができる。
 本発明の難燃剤は、有機リン化合物が、リン酸オキシジ-2,1-エタンジイルテトラキス(2-クロロ-1-メチルエチル)エステルである場合に、上記の優れた効果をさらに発揮する。
According to the present invention, an organic flame retardant that exhibits excellent flame retardancy as an additive-type flame retardant for resin flame retardants, particularly polyurethane foams, and that can impart excellent foamability and physical properties to polyurethane foams. A flame retardant containing a phosphorus compound as a main component and a flame retardant resin composition containing the flame retardant can be provided.
The flame retardant of the present invention further exhibits the above excellent effects when the organic phosphorus compound is phosphoric acid oxydi-2,1-ethanediyltetrakis (2-chloro-1-methylethyl) ester.
 また、本発明の難燃性樹脂組成物は、次のいずれか1つの要件:
 樹脂が、ポリウレタン樹脂、アクリル樹脂、フェノール樹脂、エポキシ樹脂、塩化ビニル樹脂、ポリアミド樹脂、ポリエステル樹脂、不飽和ポリエステル樹脂、スチレン樹脂および合成ゴムから選択される樹脂であること、
 ポリウレタン樹脂が、ポリウレタンフォームであること、および
 難燃性樹脂組成物が、樹脂100質量部に対して1~40質量部の割合で難燃剤を含有すること
を満足する場合に、上記の優れた効果をさらに発揮する。
Moreover, the flame retardant resin composition of the present invention has any one of the following requirements:
The resin is a resin selected from polyurethane resin, acrylic resin, phenol resin, epoxy resin, vinyl chloride resin, polyamide resin, polyester resin, unsaturated polyester resin, styrene resin and synthetic rubber;
When the polyurethane resin is a polyurethane foam, and the flame retardant resin composition satisfies the above-described excellent condition when it contains a flame retardant at a ratio of 1 to 40 parts by mass with respect to 100 parts by mass of the resin, More effective.
1.難燃剤
 本発明の難燃剤は、一般式(I):
Figure JPOXMLDOC01-appb-C000005
1. Flame retardant The flame retardant of the present invention has the general formula (I):
Figure JPOXMLDOC01-appb-C000005
[式中、Rは水素原子または炭素数1~4のアルキル基もしくはモノクロロアルキル基であり、Yは炭素数3~6のアルキレン基または-CH2CH2(OCH2CH2)zOCH2CH2-(zは0~3の整数)で表される基であり、nは0~10の整数である]
で表される有機リン化合物(以下「化合物(I)」ともいう)を主成分として含有する難燃剤であり、
 前記難燃剤をゲルパーミエーションクロマトグラフィー(GPC)で測定したときに、一般式(II):
[Wherein, R is a hydrogen atom, an alkyl group having 1 to 4 carbon atoms or a monochloroalkyl group, Y is an alkylene group having 3 to 6 carbon atoms, or —CH 2 CH 2 (OCH 2 CH 2 ) z OCH 2 CH 2- (z is an integer of 0 to 3), and n is an integer of 0 to 10]
A flame retardant containing an organic phosphorus compound (hereinafter also referred to as “compound (I)”) as a main component,
When the flame retardant is measured by gel permeation chromatography (GPC), the general formula (II):
Figure JPOXMLDOC01-appb-C000006
[式中、R、Yおよびnは一般式(I)と同義である]
で表される化合物(以下「化合物(II)」ともいう)の含有量が4面積%以下であることを特徴とする。
 本発明の難燃剤は、化合物(I)を主成分とし、その製造過程において副生される微量の不純物を含み、厳密には難燃剤組成物を意味する。
 本発明において「主成分」とは、本発明の難燃剤の50面積%以上の含有量を有することを意味する。化合物(I)の含有量(面積%)は、55、60、65、70、75、80を取り得るが、後述するように、80面積%以上であるのが好ましい。
Figure JPOXMLDOC01-appb-C000006
[Wherein R, Y and n have the same meanings as in general formula (I)]
The content of the compound represented by (hereinafter also referred to as “compound (II)”) is 4 area% or less.
The flame retardant of the present invention contains the compound (I) as a main component and contains a small amount of impurities by-produced in the production process, and strictly means a flame retardant composition.
In the present invention, the “main component” means having a content of 50% by area or more of the flame retardant of the present invention. The content (area%) of compound (I) can be 55, 60, 65, 70, 75, or 80, but is preferably 80 area% or more as described later.
 ここで、GPC測定での化合物(II)の含有量が「4面積%以下である」とは、その含有量が「0面積%を超えかつ4面積%以下である」ことを意味する。
 具体的なGPC測定での化合物(II)の含有量(面積%)は、0.0001、0.0005、0.001、0.005、0.01、0.05、0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9、1.0、1.1、1.2、1.3、1.4、1.5、1.6、1.7、1.8、1.9、2.0、2.1、2.2、2.3、2.4、2.5、2.6、2.7、2.8、2.9、3.0、3.1、3.2、3.3、3.4、3.5、3.6、3.7、3.8、3.9および4.0などである。
 また、その下限は、好ましくは0.01面積%、より好ましくは0.001面積%、さらに好ましくは0.0001面積%であり、その上限は、好ましくは3.8面積%、より好ましくは3.5面積%、さらに好ましくは3.4面積%である。
Here, the content of compound (II) in GPC measurement is “4 area% or less” means that the content is “over 0 area% and 4 area% or less”.
The content (area%) of the compound (II) in specific GPC measurement is 0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.00. 2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2. 7, 2.8, 2.9, 3.0, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9 and 4.0 or the like.
Further, the lower limit is preferably 0.01 area%, more preferably 0.001 area%, still more preferably 0.0001 area%, and the upper limit is preferably 3.8 area%, more preferably 3 .5 area%, more preferably 3.4 area%.
 化合物(II)は、化合物(I)を製造する際に加水分解により生成(副生)する化合物(「ハーフエステル」ともいう)であり、分子中に1つのヒドロキシル基を有する。このために難燃剤として樹脂に添加したときに、樹脂の末端分子とエステル交換反応を起こし、樹脂の分子量を低下させる。特に樹脂がポリウレタンフォームである場合には、その発泡時にイソシアネートと反応してポリウレタン分子の末端となり、ポリウレタンの発泡や分子量の増大を阻害し、その結果ポリウレタンフォームの物性をも低下させる。
 したがって、本発明の難燃剤には、化合物(II)が含まれていないのが最も好ましいが、化合物(I)の製造工程における副生を完全には防止できないことから、GPC測定における化合物(II)の含有量は4面積%以下でなければならない。
 なお、GPC(ゲルパーミエーションクロマトグラフィー:Gel Permeation Chromatography)測定については、実施例において詳述する。
Compound (II) is a compound (also referred to as “half-ester”) that is produced by hydrolysis (by-product) when compound (I) is produced, and has one hydroxyl group in the molecule. For this reason, when it is added to a resin as a flame retardant, it causes a transesterification reaction with a terminal molecule of the resin, thereby reducing the molecular weight of the resin. In particular, when the resin is a polyurethane foam, it reacts with isocyanate at the time of foaming to become the end of the polyurethane molecule, thereby inhibiting the foaming of the polyurethane and the increase in the molecular weight, resulting in a decrease in the physical properties of the polyurethane foam.
Therefore, it is most preferable that the flame retardant of the present invention does not contain the compound (II). However, since the by-product in the production process of the compound (I) cannot be completely prevented, the compound (II) in the GPC measurement can be prevented. ) Content must be 4 area% or less.
GPC (Gel Permeation Chromatography) measurement will be described in detail in Examples.
 また、GPC測定での化合物(I)の含有量は、80面積%以上であるのが好ましく、85面積%以上であるのがより好ましく、90面積%以上であるのがさらに好ましい。
 具体的なGPC測定での化合物(I)の含有量(面積%)は、80、81、82、83、84、85、86、87、88、89、90、90.5、91、91.5、92、92.5、93、93.5、94、94.5、95、95.5、96、96.5、97、97.5、98、98.5、99および99.5などである。
 また、その含有量の上限値は、理論上100面積%であるが、好ましくは98面積%、より好ましくは96面積%、さらに好ましくは95面積%である。
 化合物(I)の含有量は、一般式(I)における係数n=0~10の化合物の合計量を意味する。実際には、実施例のようにn=0の化合物が合計量の50~75%とn=1の化合物が合計量の20~25%を占め、残りがn≧2の化合物である。
 化合物(I)の含有量が80面積%未満では、難燃剤として樹脂に添加したときに、樹脂に充分な難燃性を付与できないことがある。
Further, the content of the compound (I) in GPC measurement is preferably 80 area% or more, more preferably 85 area% or more, and further preferably 90 area% or more.
The content (area%) of compound (I) in specific GPC measurement is 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 90.5, 91, 91. 5, 92, 92.5, 93, 93.5, 94, 94.5, 95, 95.5, 96, 96.5, 97, 97.5, 98, 98.5, 99 and 99.5, etc. It is.
The upper limit of the content is theoretically 100 area%, preferably 98 area%, more preferably 96 area%, and still more preferably 95 area%.
The content of the compound (I) means the total amount of the compounds having a coefficient n = 0 to 10 in the general formula (I). Actually, as in the examples, the compound with n = 0 accounts for 50 to 75% of the total amount, the compound with n = 1 accounts for 20 to 25% of the total amount, and the rest is a compound with n ≧ 2.
When the content of compound (I) is less than 80% by area, sufficient flame retardancy may not be imparted to the resin when added to the resin as a flame retardant.
 本発明の難燃剤は、難燃剤をゲルパーミエーションクロマトグラフィー(GPC)で測定したときに、一般式(III):
Figure JPOXMLDOC01-appb-C000007
[式中、Rは一般式(I)と同義である。]
で表される化合物(以下「化合物(III)」ともいう)の含有量が7面積%以下であるのが好ましく、6面積%以下であるのがより好ましい。
When the flame retardant of the present invention is measured by gel permeation chromatography (GPC), the general formula (III):
Figure JPOXMLDOC01-appb-C000007
[Wherein, R has the same meaning as in formula (I). ]
The content of the compound represented by (hereinafter also referred to as “compound (III)”) is preferably 7 area% or less, and more preferably 6 area% or less.
 ここで、GPC測定での化合物(III)の含有量が「7面積%以下である」とは、その含有量が「0面積%を超えかつ7面積%以下である」ことを意味する。
 具体的なGPC測定での化合物(III)の含有量(面積%)は、0.0001、0.0005、0.001、0.005、0.01、0.05、0.1、0.5、1.0、1.5、2.0、2.5、3.0、3.5、4.0、4.5、5.0、5.5、6.0、6.5および7.0などである。
 また、その下限は、好ましくは0.01面積%、より好ましくは0.001面積%、さらに好ましくは0.0001面積%であり、そのさらに好ましい上限は、5面積%、より好ましくは4面積%、さらに好ましくは3面積%である。
Here, the content of the compound (III) in GPC measurement is “7 area% or less” means that the content is “over 0 area% and 7 area% or less”.
The content (area%) of the compound (III) in specific GPC measurement is 0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.00. 5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5 and 7.0 or the like.
The lower limit thereof is preferably 0.01 area%, more preferably 0.001 area%, still more preferably 0.0001 area%, and the further preferable upper limit thereof is 5 area%, more preferably 4 area%. More preferably, it is 3 area%.
 化合物(III)は、化合物(I)を製造する際に生成(副生)する単量型リン酸エステルであり、分子量が小さく揮発し易い。このため難燃剤として樹脂に添加したときに、揮発性有機化合物(VOC)の含有量が多くなり、耐フォギング性が悪くなる。
 したがって、本発明の難燃剤には、化合物(III)が含まれていないのが最も好ましいが、化合物(I)の製造工程における副生を完全には防止できないことから、GPC測定における化合物(III)の含有量は7面積%以下であることが望まれる。
Compound (III) is a monomer phosphate ester produced (by-product) when producing Compound (I), and has a small molecular weight and easily volatilizes. For this reason, when it adds to a resin as a flame retardant, content of a volatile organic compound (VOC) will increase and fogging resistance will worsen.
Therefore, it is most preferable that the flame retardant of the present invention does not contain the compound (III). However, since the by-product in the production process of the compound (I) cannot be completely prevented, the compound (III) in the GPC measurement can be prevented. ) Content is desirably 7% by area or less.
 一般式(I)における置換基Rは、水素原子または炭素数1~4のアルキル基もしくはモノクロロアルキル基である。
 炭素数1~4のアルキル基としては、直鎖および分枝状のいずれであってもよく、例えばメチル、エチル、プロピル、イソプロピル、n-ブチル、イソブチル、tert-ブチル基などが挙げられる。これらの中でも化合物(I)中のリン含有率が高くなるという点でメチル、エチル基が好ましく、メチル基がより好ましい。
The substituent R in the general formula (I) is a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or a monochloroalkyl group.
The alkyl group having 1 to 4 carbon atoms may be linear or branched, and examples thereof include methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, and tert-butyl groups. Among these, a methyl group and an ethyl group are preferable in that the phosphorus content in the compound (I) is high, and a methyl group is more preferable.
 炭素数1~4のモノクロロアルキル基としては、直鎖および分枝状のいずれであってもよく、例えばクロロメチル、クロロエチル、クロロプロピル、クロロブチル基が挙げられる。これらの中でも化合物(I)中のリン含有率が高くなるという点でクロロメチル、クロロエチル基が好ましく、クロロメチル基がより好ましい。
 置換基Rとしては、水素原子、メチル、エチル、クロロメチル、クロロエチル基が好ましく、水素原子、メチル基、クロロメチル基がより好ましく、水素原子、メチル基が特に好ましい。
The monochloroalkyl group having 1 to 4 carbon atoms may be linear or branched, and examples thereof include chloromethyl, chloroethyl, chloropropyl and chlorobutyl groups. Among these, a chloromethyl group and a chloroethyl group are preferable, and a chloromethyl group is more preferable in that the phosphorus content in the compound (I) is increased.
The substituent R is preferably a hydrogen atom, methyl, ethyl, chloromethyl, or chloroethyl group, more preferably a hydrogen atom, methyl group, or chloromethyl group, and particularly preferably a hydrogen atom or methyl group.
 一般式(I)における置換基Yは、炭素数3~6のアルキレン基または-CH2CH2(OCH2CH2)zOCH2CH2-(zは0~3の整数)で表される基である。
 炭素数3~6のアルキレン基としては、直鎖および分枝状のいずれであってもよく、例えばトリメチレン、プロピレン、ブチレン、ペンチレン、ヘキサメチレン基が挙げられる。これらの中でも化合物(I)中のリン含有率が高くなるという点でトリメチレン、プロピレン基が好ましい。
The substituent Y in the general formula (I) is represented by an alkylene group having 3 to 6 carbon atoms or —CH 2 CH 2 (OCH 2 CH 2 ) z OCH 2 CH 2 — (z is an integer of 0 to 3). It is a group.
The alkylene group having 3 to 6 carbon atoms may be linear or branched, and examples thereof include trimethylene, propylene, butylene, pentylene, and hexamethylene groups. Of these, trimethylene and propylene groups are preferred in that the phosphorus content in compound (I) is high.
 -CH2CH2(OCH2CH2)zOCH2CH2-(zは0~3の整数)で表される基は、オキシアルキレングリコールの残基であり、具体的には係数zにより、-CH2CH2OCH2CH2-、-CH2CH2OCH2CH2OCH2CH2-、-CH2CH2(OCH2CH2)2OCH2CH2-、-CH2CH2(OCH2CH2)3OCH2CH2-が挙げられる。これらの中でも化合物(I)中のリン含有率が高くなるという点で-CH2CH2OCH2CH2-、-CH2CH2OCH2CH2OCH2CH2-が好ましく、-CH2CH2OCH2CH2-がより好ましい。
 置換基Yとしては、トリメチレン、プロピレン基、-CH2CH2OCH2CH2-が特に好ましい
A group represented by —CH 2 CH 2 (OCH 2 CH 2 ) z OCH 2 CH 2 — (z is an integer of 0 to 3) is a residue of oxyalkylene glycol, specifically, by a coefficient z, —CH 2 CH 2 OCH 2 CH 2 —, —CH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 —, —CH 2 CH 2 (OCH 2 CH 2 ) 2 OCH 2 CH 2 —, —CH 2 CH 2 ( OCH 2 CH 2 ) 3 OCH 2 CH 2 —. Among these, —CH 2 CH 2 OCH 2 CH 2 — and —CH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 — are preferable in view of increasing the phosphorus content in the compound (I), and —CH 2 CH 2 OCH 2 CH 2 — is more preferred.
As the substituent Y, trimethylene, a propylene group, and —CH 2 CH 2 OCH 2 CH 2 — are particularly preferable.
 一般式(I)における係数nは、0~10の整数である。
 係数nが10を超えると、難燃性は変わらず、粘度が増大し過ぎるだけで取り扱いが困難となり、好ましくない。
 係数nが大きくなると化合物(I)の分子量が増加して粘度が増大する傾向になることから、添加する樹脂の種類や得ようとする樹脂の物性、化合物(I)の製造の難易性などにより係数nを適宜決定すればよいが、通常、0~5が好ましく、0~3がより好ましい。
The coefficient n in the general formula (I) is an integer of 0 to 10.
When the coefficient n exceeds 10, the flame retardancy does not change, and the handling becomes difficult only by increasing the viscosity, which is not preferable.
As the coefficient n increases, the molecular weight of the compound (I) tends to increase and the viscosity tends to increase. Therefore, depending on the type of resin to be added, the physical properties of the resin to be obtained, the difficulty in manufacturing the compound (I), etc. The coefficient n may be appropriately determined, but is usually preferably 0 to 5, and more preferably 0 to 3.
 本発明の難燃剤の主成分である化合物(I)としては、例えば、リン酸オキシジ-2,1-エタンジイルテトラキス(2-クロロエチル)エステル、リン酸オキシジ-2,1-エタンジイルテトラキス(2-クロロ-1-メチルエチル)エステル、リン酸オキシ-2,1-エタンジイルビス[10-クロロ-7-(2-クロロエトキシ)-7-オキシド-3,6,8-トリオキサ-7-ホスファデク-1-イル]ビス(2-クロロエチル)エステル、ポリ[オキシ[(2-クロロ-1-メチルエトキシ)ホスフィニリデン]オキシ-1,2-エタンジイルオキシ-1,2-エタンジイル]、α-(2-クロロ-1-メチルエチル)-ω-[[ビス(2-クロロ-1-メチルエトキシ)ホスフィニル]オキシ]が挙げられ、リン酸オキシジ-2,1-エタンジイルテトラキス(2-クロロエチル)エステルおよびリン酸オキシジ-2,1-エタンジイルテトラキス(2-クロロ-1-メチルエチル)エステルが好ましく、これらの中でも製造例で製造され、実施例で評価に用いられているリン酸オキシジ-2,1-エタンジイルテトラキス(2-クロロ-1-メチルエチル)エステルが特に好ましい。 Examples of the compound (I) that is the main component of the flame retardant of the present invention include phosphoric acid oxydi-2,1-ethanediyltetrakis (2-chloroethyl) ester, phosphoric acid oxydi-2,1-ethanediyltetrakis (2 -Chloro-1-methylethyl) ester, oxy-2,1-ethanediylbis [10-chloro-7- (2-chloroethoxy) -7-oxide-3,6,8-trioxa-7-phosphadec-1 -Yl] bis (2-chloroethyl) ester, poly [oxy [(2-chloro-1-methylethoxy) phosphinylidene] oxy-1,2-ethanediyloxy-1,2-ethanediyl], α- (2-chloro -1-methylethyl) -ω-[[bis (2-chloro-1-methylethoxy) phosphinyl] oxy], such as oxydi-2 phosphate , 1-ethanediyltetrakis (2-chloroethyl) ester and phosphoric acid oxydi-2,1-ethanediyltetrakis (2-chloro-1-methylethyl) ester are preferred. The oxydi-2,1-ethanediyltetrakis (2-chloro-1-methylethyl) phosphate used for evaluation is particularly preferred.
2.難燃剤の製造
 本発明の難燃剤は、例えば次のような2段反応の製造方法によって得ることができる。
2. Production of Flame Retardant The flame retardant of the present invention can be obtained, for example, by the following two-stage reaction production method.
 (1)第1反応工程
 オキシ塩化リンとアルキレングリコールまたはオキシアルキレングリコールを反応させて、次式のように、対応する縮合型ホスホロジクロリデートを得る。
(1) First Reaction Step By reacting phosphorus oxychloride with alkylene glycol or oxyalkylene glycol, the corresponding condensed phosphorodichloridate is obtained as shown in the following formula.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
(式中、Yおよびnは一般式(I)と同義)
 オキシ塩化リンとアルキレングリコールまたはオキシアルキレングリコールを連続的に反応させると、発熱反応で塩化水素を生成する。その際、原料であるオキシ塩化リンが系内に未反応のまま残存する。この残存するオキシ塩化リンは、次工程の第2反応でアルキレンオキシドまたはクロロアルキレンオキシドと反応して低分子量のリン酸エステル単量体を生成し、フォギング性、難燃性能を低下させる。
(In the formula, Y and n are the same as in general formula (I)).
When phosphorus oxychloride and alkylene glycol or oxyalkylene glycol are continuously reacted, hydrogen chloride is generated by an exothermic reaction. At that time, the raw material phosphorus oxychloride remains unreacted in the system. This remaining phosphorus oxychloride reacts with alkylene oxide or chloroalkylene oxide in the second reaction of the next step to produce a low molecular weight phosphate ester monomer, which reduces fogging and flame retardancy.
 そこで、生成された塩化水素と系内に残存する未反応のオキシ塩化リンとを減圧下で除去する。すなわち、第1反応にて、オキシ塩化リンとアルキレングリコールまたはオキシアルキレングリコールを1.5~3.0:1.0のモル比、好ましくはオキシ塩化リンがアルキレングリコールまたはオキシアルキレングリコールに対してモル当量未満の量、具体的には1.7~2.0:1.0のモル比で連続的に反応槽に供給して反応させる。 Therefore, the produced hydrogen chloride and unreacted phosphorus oxychloride remaining in the system are removed under reduced pressure. That is, in the first reaction, phosphorus oxychloride and alkylene glycol or oxyalkylene glycol are in a molar ratio of 1.5 to 3.0: 1.0, preferably the phosphorus oxychloride is mol to alkylene glycol or oxyalkylene glycol The reaction is carried out by continuously feeding the reaction vessel in an amount less than an equivalent amount, specifically, in a molar ratio of 1.7 to 2.0: 1.0.
 反応温度は0~50℃、好ましくは15~20℃で、生成する熱は反応槽に付属したジャケットまたはコイルに冷媒を通し除去する。生成される縮合型ホスホロジクロリデートは熱に不安定であり、できるだけ低温でかつ短時間に塩化水素と残存するオキシ塩化リンを除去することが求められる。そこで、温度15~20℃、真空度1~7kPa、次いで温度20℃以下、真空度0.1~1kPaとして塩化水素とオキシ塩化リンを除去する。
 また、強制薄膜蒸溜装置を用いることにより、温度16~20℃、真空度0.1~1kPaの範囲内で、第1反応液中の塩化水素とオキシ塩化リンの残存量を最小にすることができる。
The reaction temperature is 0 to 50 ° C., preferably 15 to 20 ° C., and the generated heat is removed by passing a refrigerant through a jacket or coil attached to the reaction vessel. The produced condensed phosphorodichloridate is unstable to heat, and it is required to remove hydrogen chloride and remaining phosphorus oxychloride in as short a time as possible and in a short time. Therefore, hydrogen chloride and phosphorus oxychloride are removed at a temperature of 15 to 20 ° C., a degree of vacuum of 1 to 7 kPa, and then a temperature of 20 ° C. or less and a degree of vacuum of 0.1 to 1 kPa.
In addition, by using a forced thin film distillation apparatus, the residual amount of hydrogen chloride and phosphorus oxychloride in the first reaction solution can be minimized within a temperature range of 16 to 20 ° C. and a vacuum level of 0.1 to 1 kPa. it can.
 反応に使用されるアルキレングリコールとしては、1,2-プロピレングリコール、1,3-プロピレングリコール、1,2-ブチレングリコール、1,3-ブチレングリコール、1,4-ブチレングリコール、2,3-ブチレングリコール、1,6-ヘキサンジオール、2,4-ヘキサンジオール、2,5-ヘキサンジオールなどが挙げられるが、これのみに限定されるものではない。
 オキシアルキレングリコールとしては、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコールなどが挙げられるが、これのみに限定されるものではない。
The alkylene glycol used in the reaction is 1,2-propylene glycol, 1,3-propylene glycol, 1,2-butylene glycol, 1,3-butylene glycol, 1,4-butylene glycol, 2,3-butylene. Examples include glycol, 1,6-hexanediol, 2,4-hexanediol, and 2,5-hexanediol, but are not limited thereto.
Examples of the oxyalkylene glycol include diethylene glycol, triethylene glycol, and tetraethylene glycol, but are not limited thereto.
 (2)第2反応工程
 第1反応で得た縮合型ホスホロジクロリデートとアルキレンオキシドまたはクロロアルキレンオキシドとを反応させて、次式のように、含ハロゲン系縮合リン酸エステル、すなわち目的物である化合物(I)を得る。
(2) Second reaction step The condensed phosphorodichloridate obtained in the first reaction is reacted with alkylene oxide or chloroalkylene oxide, and a halogen-containing condensed phosphate ester, that is, the target product, as shown in the following formula: A certain compound (I) is obtained.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
(式中、R、Yおよびnは一般式(I)と同義)
 縮合型ホスホロジクロリデートとアルキレンオキシドまたはクロロアルキレンオキシドとを反応させると、第1反応と同様に、この反応でも発熱を伴う。縮合型ホスホロジクロリデートは熱に弱く不安定であるため、第2反応は、受熱時間が長くなる回分式反応より連続反応が好ましい。受熱時間が長くなると縮合型ホスホロジクロリデートが熱分解し、好ましくない副反応を伴う。一方、連続反応では、縮合型ホスホロジクロリデートの受熱時間は短くなり、熱分解および好ましくない副反応の生起率は、回分式に比べ格段に少なくなる。つまり、縮合型ホスホロジクロリデートを含む第1反応の反応生成物を定量的に供給しつつ、該反応生成物に対応するアルキレンオキシドまたはクロロアルキレンオキシドを供給し、徐々に反応させることが好ましい。具体的には、第1反応の反応生成物とアルキレンオキシドまたはクロロアルキレンオキシドとをチューブ式定量ポンプおよび流量計で供給しつつ、両者を反応させることが好ましい。
(Wherein R, Y and n are as defined in formula (I))
When the condensed phosphorodichloridate is reacted with alkylene oxide or chloroalkylene oxide, this reaction is also exothermic, as in the first reaction. Since the condensed phosphorodichloridate is weak and unstable to heat, the second reaction is preferably a continuous reaction rather than a batch reaction in which the heat receiving time is long. When the heat receiving time is increased, the condensed phosphorodichloridate is thermally decomposed, which is accompanied by an undesirable side reaction. On the other hand, in the continuous reaction, the heat receiving time of the condensed phosphorodichloridate is shortened, and the occurrence rate of thermal decomposition and undesirable side reactions is significantly reduced compared to the batch system. That is, it is preferable that the alkylene oxide or chloroalkylene oxide corresponding to the reaction product is supplied and gradually reacted while quantitatively supplying the reaction product of the first reaction containing the condensed phosphorodichloridate. Specifically, it is preferable to react both products while supplying the reaction product of the first reaction and the alkylene oxide or chloroalkylene oxide with a tube-type metering pump and a flow meter.
 反応に使用されるアルキレンオキシドとしては、エチレンオキシド、プロピレンオキシド、1,2-ブチレンオキシド、2,3-ブチレンオキシドなどが挙げられるが、これのみに限定されるものではない。これらの中でもエチレンオキシド、プロピレンオキシドが好ましく、プロピレンオキシドがより好ましい。
 クロロアルキレンオキシドとしては、エピクロロヒドリンなどが挙げられるが、これのみに限定されるものではない。
Examples of the alkylene oxide used in the reaction include, but are not limited to, ethylene oxide, propylene oxide, 1,2-butylene oxide, 2,3-butylene oxide, and the like. Among these, ethylene oxide and propylene oxide are preferable, and propylene oxide is more preferable.
Examples of the chloroalkylene oxide include epichlorohydrin and the like, but are not limited thereto.
 第2反応には、触媒の使用が有効であり、例えば、四塩化チタンを使用することができる。添加量は、縮合型ホスホロジクロリデート1モルに対して約5~15ミリモル、好ましくは9~13ミリモルである。
 アルキレンオキシドまたはクロロアルキレンオキシドの理論使用量は次式に従って算出する。
  理論使用量(g)=(A×B×C)/(100×35.5)
[式中、Aは縮合型ホスホロジクロリデートの質量(g)、Bは縮合型ホスホロジクロリデートの塩素含有率(質量%)、Cはアルキレンオキシドまたはクロロアルキレンオキシドの分子量、35.5は塩素の原子量である]
Use of a catalyst is effective for the second reaction, and for example, titanium tetrachloride can be used. The amount added is about 5 to 15 mmol, preferably 9 to 13 mmol, per 1 mol of condensed phosphorodichloridate.
The theoretical use amount of alkylene oxide or chloroalkylene oxide is calculated according to the following formula.
Theoretical usage (g) = (A × B × C) / (100 × 35.5)
[Wherein A is the mass (g) of condensed phosphorodichloridate, B is the chlorine content (% by mass) of condensed phosphorodichloridate, C is the molecular weight of alkylene oxide or chloroalkylene oxide, 35.5 is It is the atomic weight of chlorine]
 アルキレンオキシドまたはクロロアルキレンオキシドの実際の使用量は、理論使用量~理論使用量の10質量%過剰、好ましくは2~6質量%過剰である。
 アルキレンオキシドまたはクロロアルキレンオキシドの6質量%を超える過剰量では、反応完結に必要な熟成(保持)時間を短縮できる利点があるが、その使用量を増加させるために経済的に不利になる。
 反応温度は40~90℃、好ましくは50~70℃である。40℃以下の温度では、反応の進行が非常に遅くなり実用的でなくなり、90℃を超える温度では、反応液の着色や副反応物の増加などの現象が起き、高品位の製品を得ることができなくなる。
The actual amount of alkylene oxide or chloroalkylene oxide used is 10% by mass excess, preferably 2-6% by mass excess of the theoretical usage amount to the theoretical usage amount.
An excess amount of more than 6% by mass of alkylene oxide or chloroalkylene oxide has an advantage that the aging (retention) time required for completion of the reaction can be shortened, but it is economically disadvantageous for increasing the amount of use.
The reaction temperature is 40 to 90 ° C, preferably 50 to 70 ° C. At temperatures below 40 ° C, the progress of the reaction becomes very slow and impractical. At temperatures above 90 ° C, phenomena such as coloring of the reaction liquid and an increase in by-products occur, resulting in a high-quality product. Can not be.
 反応を完結させるために必要な反応時間は、原料を経済的に使用して工業的規模の反応で5~30時間、好ましくは10~20時間の範囲にあり、例えば、縮合型ホスホロジクロリデートに対してプロピレンオキシドを5質量%過剰に使用して反応温度を55~60℃で連続反応を行った場合、良好な品質をもった生成物を得るための滞留時間は10~20時間、好ましくは12~15時間である。 The reaction time required to complete the reaction is in the range of 5 to 30 hours, preferably 10 to 20 hours, on an industrial scale reaction using raw materials economically. For example, condensed phosphorodichloridate When a continuous reaction is carried out at a reaction temperature of 55 to 60 ° C. with an excess of 5% by mass of propylene oxide, the residence time for obtaining a product with good quality is preferably 10 to 20 hours. Is 12-15 hours.
 (3)洗浄・脱水工程
 反応混合物を反応器から排出し、精製工程として洗浄および脱水工程を経て製品化する。
 洗浄工程は一般に公知の方法で行われ、回分法、連続法いずれの方法でも行うことができる。具体的には、反応混合物を硫酸、塩酸などの鉱酸溶液で洗浄した後、アルカリ洗浄および水洗浄して減圧下にて脱水する。あるいは、反応混合物を鉱酸で洗浄することなく、アルカリ洗浄し、生成した水に不溶のチタン化合物(触媒成分)を濾過あるいは遠心分離で除去し、水洗浄し減圧下で脱水する。
(3) Washing / Dehydration Process The reaction mixture is discharged from the reactor and commercialized through a washing and dehydration process as a purification process.
The washing step is generally performed by a known method, and can be performed by either a batch method or a continuous method. Specifically, the reaction mixture is washed with a mineral acid solution such as sulfuric acid and hydrochloric acid, then washed with an alkali and water, and dehydrated under reduced pressure. Alternatively, the reaction mixture is washed with an alkali without washing with a mineral acid, and the formed water-insoluble titanium compound (catalyst component) is removed by filtration or centrifugation, washed with water, and dehydrated under reduced pressure.
 洗浄工程の温度は95℃以下、好ましくは85℃以下、より好ましくは70℃以下、さらに好ましくは55~65℃である。
 脱水工程は減圧下で行うのが好ましい。脱水工程の温度は120℃以下、好ましくは110℃以下、より好ましくは95~105℃であり、圧力は10kPa以下、好ましくは1~5kPaである。
The temperature of the washing step is 95 ° C. or less, preferably 85 ° C. or less, more preferably 70 ° C. or less, and further preferably 55 to 65 ° C.
The dehydration step is preferably performed under reduced pressure. The temperature of the dehydration step is 120 ° C. or less, preferably 110 ° C. or less, more preferably 95 to 105 ° C., and the pressure is 10 kPa or less, preferably 1 to 5 kPa.
 (4)精製工程
 その後、低沸分を完全に除去するために、生成物を精製工程に付してもよい。
 精製工程としては、水蒸気減圧蒸留が好ましい。その温度は120℃以下、好ましくは110℃以下、より好ましくは95~105℃であり、圧力は10kPa以下、好ましくは1~5kPaである。
(4) Purification step Thereafter, the product may be subjected to a purification step in order to completely remove low-boiling components.
As the purification step, steam distillation under reduced pressure is preferable. The temperature is 120 ° C. or lower, preferably 110 ° C. or lower, more preferably 95 to 105 ° C., and the pressure is 10 kPa or lower, preferably 1 to 5 kPa.
 上記の洗浄・脱水工程および精製工程において、生成された化合物(I)が水の存在下で所定の温度条件下に置かれると、加水分解を受けて化合物(II)を副生することがある。 In the above washing / dehydration step and purification step, when the produced compound (I) is placed under a predetermined temperature condition in the presence of water, it may undergo hydrolysis to produce by-product compound (II). .
3.難燃性樹脂組成物
 本発明の難燃性樹脂組成物は、本発明の難燃剤と樹脂とを含有することを特徴とする。
 本発明の難燃剤は、高純度かつ高品質であり、各種の熱可塑性樹脂および熱硬化性樹脂の難燃剤として使用することができる。
3. Flame retardant resin composition The flame retardant resin composition of the present invention comprises the flame retardant of the present invention and a resin.
The flame retardant of the present invention has high purity and high quality, and can be used as a flame retardant for various thermoplastic resins and thermosetting resins.
 熱可塑性樹脂としては、例えば、ポリエチレン樹脂、塩素化ポリエチレン樹脂、ポリプロピレン樹脂、ポリブタジエン樹脂、スチレン樹脂、塩化ビニル樹脂、ポリフェニレンエーテル樹脂、ポリフェニレンスルフィド樹脂、ポリカーボネート樹脂、ABS(アクリロニトリル-ブタジエン-スチレン)樹脂、耐衝撃性スチレン樹脂、ゴム変性スチレン樹脂、SAN(スチレン-アクリロニトリル)樹脂、ACS樹脂、ポリアミド樹脂、ポリイミド樹脂、PET(ポリエチレンテレフタレート)樹脂およびPBT(ポリブチレンテレフタレート)樹脂などの飽和または不飽和ポリエステル樹脂、アクリル樹脂、ポリメタクリル樹脂、ポリエーテルエーテルケトン樹脂、ポリエーテルスルホン樹脂、ポリスルホン樹脂、ポリアリレート樹脂、ポリエーテルケトン樹脂、ポリエーテルニトリル樹脂、ポリチオエーテルスルホン樹脂、ポリベンズイミダゾール樹脂、ポリカルボジイミド樹脂、液晶ポリマー、複合化プラスチックなどが挙げられ、これらの1種を単独で、または2種以上を混合して用いることができる。 Examples of the thermoplastic resin include polyethylene resin, chlorinated polyethylene resin, polypropylene resin, polybutadiene resin, styrene resin, vinyl chloride resin, polyphenylene ether resin, polyphenylene sulfide resin, polycarbonate resin, ABS (acrylonitrile-butadiene-styrene) resin, Saturated or unsaturated polyester resins such as impact-resistant styrene resin, rubber-modified styrene resin, SAN (styrene-acrylonitrile) resin, ACS resin, polyamide resin, polyimide resin, PET (polyethylene terephthalate) resin and PBT (polybutylene terephthalate) resin Acrylic resin, polymethacrylic resin, polyetheretherketone resin, polyethersulfone resin, polysulfone resin, polyarylate resin, polyester Examples include ether ketone resins, polyether nitrile resins, polythioether sulfone resins, polybenzimidazole resins, polycarbodiimide resins, liquid crystal polymers, composite plastics, and the like. These may be used alone or in combination of two or more. Can be used.
 また、熱硬化性樹脂としては、エポキシ樹脂、ポリウレタン樹脂、ポリイミド樹脂、フェノール樹脂、ノボラック樹脂、レゾール樹脂、ポリエーテルイミド樹脂、メラミン樹脂、尿素樹脂、不飽和ポリエステル樹脂、ジアリルフタレート樹脂などが挙げられ、これらの1種を単独で、または2種以上を混合して用いることができる。 Examples of thermosetting resins include epoxy resins, polyurethane resins, polyimide resins, phenolic resins, novolac resins, resole resins, polyetherimide resins, melamine resins, urea resins, unsaturated polyester resins, diallyl phthalate resins, and the like. These 1 type can be used individually or in mixture of 2 or more types.
 上記の樹脂の中でも、本発明の難燃剤組成物がその機能を充分に発揮し得る樹脂として、ポリウレタン樹脂、アクリル樹脂、フェノール樹脂、エポキシ樹脂、塩化ビニル樹脂、ポリアミド樹脂、ポリエステル樹脂、不飽和ポリエステル樹脂、スチレン樹脂および合成ゴムから選択される樹脂が好ましく、ポリウレタン樹脂がより好ましく、ポリウレタンフォームが特に好ましい。
 ここで、合成ゴムとは、上記の熱可塑性樹脂の中でも、付加重合または共重合により得られるゴム弾性を有する樹脂(エラストマー)を意味し、ポリブタジエン系、ニトリル系、クロロプレン系などが挙げられる。
Among the above resins, polyurethane resins, acrylic resins, phenol resins, epoxy resins, vinyl chloride resins, polyamide resins, polyester resins, unsaturated polyesters can be used as the resins that the flame retardant composition of the present invention can sufficiently perform its functions. Resins selected from resins, styrene resins and synthetic rubbers are preferred, polyurethane resins are more preferred, and polyurethane foams are particularly preferred.
Here, the synthetic rubber means a resin (elastomer) having rubber elasticity obtained by addition polymerization or copolymerization among the thermoplastic resins, and examples thereof include polybutadiene, nitrile, and chloroprene.
 難燃剤の添加量は、添加対象となる樹脂の種類や所望する難燃化の程度などにより適宜設定すればよく、本発明の難燃剤組成物は、通常、上記の樹脂100質量部に対して、1~40質量部の難燃剤を含有するのが好ましい。
 難燃剤の添加量が1質量部未満では、樹脂に充分な難燃性を付与することができないことがあるので好ましくない。一方、難燃剤の添加量が40質量部を超えると、樹脂自体の物性、特に機械的物性を低下させることがあるので好ましくない。
 具体的な樹脂100質量部に対する難燃剤の添加量(質量部)は、1、5、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39および40などである。
 より好ましい難燃剤の添加量は、1~35質量部であり、特に好ましくは1~30質量部である。
The amount of flame retardant added may be appropriately set depending on the type of resin to be added, the desired degree of flame retardant, etc., and the flame retardant composition of the present invention is usually based on 100 parts by mass of the resin. 1 to 40 parts by mass of a flame retardant is preferably contained.
If the amount of the flame retardant added is less than 1 part by mass, it may not be possible to impart sufficient flame retardancy to the resin. On the other hand, when the amount of the flame retardant added exceeds 40 parts by mass, the physical properties of the resin itself, particularly the mechanical physical properties, may be deteriorated.
The amount of flame retardant added (parts by mass) relative to 100 parts by mass of specific resin is 1, 5, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23. 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, and 40.
A more preferable amount of the flame retardant added is 1 to 35 parts by mass, and particularly preferably 1 to 30 parts by mass.
 本発明の難燃性樹脂組成物には、必要に応じて、樹脂の物性に悪影響を与えない範囲内で、公知の樹脂添加剤、すなわち他の難燃剤や難燃剤以外の他の添加剤を含んでいてもよい。それらの添加量は、樹脂の種類や所望する物性の程度などにより適宜設定すればよい。 The flame retardant resin composition of the present invention may be added with known resin additives, that is, other flame retardants and other additives other than the flame retardant, as long as they do not adversely affect the physical properties of the resin. May be included. These addition amounts may be set as appropriate depending on the type of resin and the desired physical properties.
 他の難燃剤としては、例えばトリフェニルホスフェート、トリクレジルホスフェート、クレジルジフェニルホスフェート、レゾルシノール-テトラフェニルビスホスフェート、ビスフェノールA-テトラフェニルビスホスフェートなどの非ハロゲンリン酸エステル系難燃剤;2,2-ビス(クロロメチル)-1,3-プロパンビス(クロロエチル)ジホスフェート、テトラキス(2-クロロエチル)エチレンジホスフェート、(ポリ)アルキレングリコール系含ハロゲンポリホスフェート、トリス(トリブロモ)ネオペンチルホスフェートなどの含ハロゲンリン酸エステル系難燃剤;デカブロモジフエニルエーテル、テトラブロモビスフェノールA、1,2-ビス(ペンタブロモフェニル)エタンなどの臭素系難燃剤;三酸化アンチモン、水酸化マグネシウムなどの無機系難燃剤;ポリリン酸アンモニウム、リン酸メラミンなどの窒素系難燃剤などが挙げられる。 Other flame retardants include, for example, non-halogen phosphate ester flame retardants such as triphenyl phosphate, tricresyl phosphate, cresyl diphenyl phosphate, resorcinol-tetraphenyl bisphosphate, bisphenol A-tetraphenyl bisphosphate; -Including bis (chloromethyl) -1,3-propanebis (chloroethyl) diphosphate, tetrakis (2-chloroethyl) ethylene diphosphate, (poly) alkylene glycol halogen-containing polyphosphate, tris (tribromo) neopentyl phosphate, etc. Halogen phosphate ester flame retardants; brominated flame retardants such as decabromodiphenyl ether, tetrabromobisphenol A, 1,2-bis (pentabromophenyl) ethane; antimony trioxide, Inorganic flame retardants such magnesium oxide; ammonium polyphosphate, such as nitrogen-based flame retardant such as melamine phosphate and the like.
 難燃剤以外の他の添加剤としては、酸化防止剤、充填剤、滑剤、改質剤、香料、抗菌剤、顔料、染料、耐熱剤、耐候剤、帯電防止剤、紫外線吸収剤、安定剤、強化剤、ドリップ防止剤、アンチブロッキング剤、木粉、でんぷんなどが挙げられる。 Other additives besides flame retardants include antioxidants, fillers, lubricants, modifiers, fragrances, antibacterial agents, pigments, dyes, heat-resistant agents, weathering agents, antistatic agents, UV absorbers, stabilizers, Strengthening agents, anti-drip agents, anti-blocking agents, wood flour, starch and the like.
 上記のように本発明の難燃剤は、特にポリウレタンフォームを難燃化する際の添加型難燃剤として優れた難燃性を発揮し、しかもポリウレタンフォームの発泡性および物性に優れた有機リン化合物を主成分とする難燃剤およびそれを含む難燃性樹脂組成物を提供することができる。
 本発明の難燃剤は、主成分の化合物(I)の揮発性が非常に小さく、樹脂に添加、特に所定の処方により発泡前のポリウレタンフォーム成分に添加することにより優れた難燃効果を発揮する。得られたポリウレタンフォームは、後述するように、MVSS-302などの燃焼性試験法により優れた難燃性および発泡性を示す。
 すなわち、難燃性ポリウレタンフォームは、既存の有機リン化合物系の難燃剤によって難燃化されたポリウレタンフォームに比べて難燃性とその持続性に優れ、さらに耐フォギング性に優れた性能を有する。
As described above, the flame retardant of the present invention exhibits an excellent flame retardancy particularly as an additive-type flame retardant when making a polyurethane foam flame retardant, and an organophosphorus compound having excellent polyurethane foam foaming properties and physical properties. A flame retardant as a main component and a flame retardant resin composition containing the flame retardant can be provided.
The flame retardant of the present invention has a very low volatility of the main component compound (I), and exhibits an excellent flame retardant effect when added to a resin, particularly by adding to a polyurethane foam component before foaming according to a predetermined formulation. . As will be described later, the obtained polyurethane foam exhibits excellent flame retardancy and foamability by a flammability test method such as MVSS-302.
That is, the flame-retardant polyurethane foam is superior in flame retardancy and durability as compared with a polyurethane foam flame-retarded with an existing organic phosphorus compound-based flame retardant, and further has excellent fogging resistance.
 ポリウレタンフォームの製造方法は既に公知であり、本発明の難燃剤を添加した難燃性ポリウレタンフォームも公知の方法で製造することができる。
 例えば、ポリエステルポリオール、ポリエーテルポリオールなどを含むポリオール100質量部に対して本発明の難燃剤を1~40質量部、好ましくは1~30質量部混合する。さらに得られた混合物に、整泡剤、触媒、発泡剤などを加え、撹拌した後、有機ポリイソシアネートを加えて反応させると、難燃性ポリウレタンフォームが得られる。
A method for producing a polyurethane foam is already known, and a flame retardant polyurethane foam to which the flame retardant of the present invention is added can also be produced by a known method.
For example, 1 to 40 parts by mass, preferably 1 to 30 parts by mass of the flame retardant of the present invention is mixed with 100 parts by mass of polyol including polyester polyol, polyether polyol and the like. Furthermore, after adding a foam stabilizer, a catalyst, a foaming agent, etc. to the obtained mixture and stirring, when an organic polyisocyanate is added and reacted, a flame-retardant polyurethane foam is obtained.
 ポリオールとしては、一般にポリウレタン形成の原料として使用されるものであれば特に限定されないが、一分子当たり約2~8個の水酸基を含有し、約250~6500の分子量を有するポリエステルポリオールおよびポリエーテルポリオールなどのポリオールが好適に用いられる。分子量が250より小さい場合は、活性が強くウレタンフォーム形成に適さず、分子量が6500より大きい場合は、粘度が高くなり作業性が悪くなることがある。 The polyol is not particularly limited as long as it is generally used as a raw material for forming polyurethane, but a polyester polyol and a polyether polyol having about 2 to 8 hydroxyl groups per molecule and having a molecular weight of about 250 to 6500. Polyols such as are preferably used. When the molecular weight is smaller than 250, the activity is strong and not suitable for forming urethane foam, and when the molecular weight is larger than 6500, the viscosity is increased and workability may be deteriorated.
 ポリオールの例としては、ジオール;トリオール;およびソルビトール、スクロース、またはエチレンジアミンなどのアミン類などを開始剤としてエチレンオキシドおよび/またはプロピレンオキシドを重合させたポリオールなどが挙げられる。
 具体的には、ポリオキシエチレングリコール、ポリオキシプロピレングリコールなどのジオール;ポリオキシエチレングリセロール、ポリオキシプロピレングリセロール、ポリ(オキシエチレン)ポリ(オキシプロピレン)グリセロール、ポリオキシエチレンネオヘキサントリオール、ポリオキシプロピレンペンタネオヘキサントリオール、ポリ(オキシエチレン)ポリ(オキシプロピレン)ネオヘキサントリオール、ポリ(オキシプロピレン)1,2,6-ヘキサントリオール、およびポリオキシプロピレンアルカノールなどのトリオール;ポリ(オキシエチレン)ポリ(オキシプロピレン)エチレンジアミン;ポリオキシエチレンソルビトール、ポリオキシプロピレンソルビトールなどのヘキソール;ポリオキシエチレンスクロース、ポリオキシプロピレンスクロースなどのオクトール;およびこれらの混合物などが挙げられる。
 さらに、特殊グレードとして市販されているメラミンまたはポリリン酸アンモニウムが分散された、ポリオールおよび含リンポリオールなども挙げられる。
 好ましいポリオールとしては、ポリ(オキシエチレン/オキシプロピレン)トリオール類で平均分子量が約250~約6500の範囲のポリエーテルポリオールが挙げられる。
Examples of polyols include diols; triols; and polyols obtained by polymerizing ethylene oxide and / or propylene oxide using initiators such as sorbitol, sucrose, or ethylenediamine as initiators.
Specifically, diols such as polyoxyethylene glycol and polyoxypropylene glycol; polyoxyethylene glycerol, polyoxypropylene glycerol, poly (oxyethylene) poly (oxypropylene) glycerol, polyoxyethylene neohexanetriol, polyoxypropylene Triols such as pentaneohexanetriol, poly (oxyethylene) poly (oxypropylene) neohexanetriol, poly (oxypropylene) 1,2,6-hexanetriol, and polyoxypropylenealkanol; poly (oxyethylene) poly (oxy Propylene) ethylenediamine; hexol such as polyoxyethylene sorbitol, polyoxypropylene sorbitol; polyoxyethylene sucrose, Octol such oxypropylene sucrose; and the like and mixtures thereof.
Furthermore, a polyol and a phosphorus-containing polyol in which melamine or ammonium polyphosphate, which is commercially available as a special grade, is dispersed are also included.
Preferred polyols include polyether polyols with poly (oxyethylene / oxypropylene) triols having an average molecular weight in the range of about 250 to about 6500.
 有機ポリイソシアネートとしては、例えば、卜リレンジイソシアネート、フエニレンジイソシアネート、キシレンジイソシアネート、ビフェニルジイソシアネート、ナフタレンジイソシアネート、ジフェニルメタンジイソシアネート、シクロペンタンジイソシアネート、シクロヘキサンジイソシアネート、イソホロンジイソシアネート、ノルボルナンジイソシアネート、トリメチレンジイソシアネート、テトラメチレンジイソシアネート、ペンタメチレンジイソシアネート、ヘキサメチレンジイソシアネート、1,2-プロピレンジイソシアネート、1,2-ブチレンジイソシアネート、2,3-ブチレンジイソシアネート、1,3-ブチレンジイソシアネートなどが挙げられる。 Examples of organic polyisocyanates include, but are not limited to, butylene diisocyanate, phenylene diisocyanate, xylene diisocyanate, biphenyl diisocyanate, naphthalene diisocyanate, diphenylmethane diisocyanate, cyclopentane diisocyanate, cyclohexane diisocyanate, isophorone diisocyanate, norbornane diisocyanate, trimethylene diisocyanate, tetramethylene diisocyanate, pentane Examples include methylene diisocyanate, hexamethylene diisocyanate, 1,2-propylene diisocyanate, 1,2-butylene diisocyanate, 2,3-butylene diisocyanate, and 1,3-butylene diisocyanate.
 整泡剤としては、例えば、シロキサン-オキシアルキレンブロック共重合体などのシリコーン系整泡剤(シリコン油)が挙げられる。具体的には、モメンティブ・パフォーマンス・マテリアルズ社製NIAX SILICONE L-580、L-590、L-620、L-638、L-638J、L-680、L-682、L-690などが挙げられる。
 触媒としては、トリエチレンジアミン、ジメチルエタノールアミン、ビス(2-ジメチルアミノエチル)エーテル、N,N,N’,N’-テトラメチルヘキサメチレンジアミン、N,N’,N’-トリメチルアミノエチルピペラジン、N-エチルモルホリンなどのアミン触媒;スタナスオクトエート、ジブチルチンジラウレートなどの錫系触媒が挙げられる。
Examples of the foam stabilizer include silicone foam stabilizers (silicone oils) such as siloxane-oxyalkylene block copolymers. Specific examples include NIAX SILICON L-580, L-590, L-620, L-638, L-638J, L-680, L-682, and L-690 manufactured by Momentive Performance Materials. .
Examples of the catalyst include triethylenediamine, dimethylethanolamine, bis (2-dimethylaminoethyl) ether, N, N, N ′, N′-tetramethylhexamethylenediamine, N, N ′, N′-trimethylaminoethylpiperazine, Examples thereof include amine catalysts such as N-ethylmorpholine; tin catalysts such as stannous octoate and dibutyltin dilaurate.
 発泡剤としては、水、フロロカーボン、メチレンクロリド(=ジクロロメタン)などのような低沸点化合物を用いることができる。分散剤としては、エーテル型、エーテルエステル型、エステル型などの非イオン性界面活性剤が使用できる。具体例としては、アルキル(メチル、エチル、プロピル、ブチル、アミル、ヘプチル、オクチル、ノニル、デシル、ドデシル、トリデシル)およびアリール(フェニル、トリル、キシリル、ビフェニル、ナフチル)ポリオキシエチレンエーテル、アルキルアリールホルムアルデヒド縮合ポリオキシエチレンエーテル、グリセリンエステルのポリオキシエチレンエーテル、ポリエチレングリコール脂肪酸エステル、プロピレングリコールエステル、ポリグリセリン、ソルビタンエステル、脂肪酸モノグリセリド、およびこれらの混合物などが挙げられる。 As the foaming agent, low boiling point compounds such as water, fluorocarbon, methylene chloride (= dichloromethane) and the like can be used. As the dispersant, nonionic surfactants such as ether type, ether ester type, and ester type can be used. Specific examples include alkyl (methyl, ethyl, propyl, butyl, amyl, heptyl, octyl, nonyl, decyl, dodecyl, tridecyl) and aryl (phenyl, tolyl, xylyl, biphenyl, naphthyl) polyoxyethylene ether, alkylaryl formaldehyde Examples include condensed polyoxyethylene ether, polyoxyethylene ether of glycerin ester, polyethylene glycol fatty acid ester, propylene glycol ester, polyglycerin, sorbitan ester, fatty acid monoglyceride, and mixtures thereof.
 本発明を以下の製造例および比較製造例ならびに実施例および比較例によりさらに具体的に説明するが、本発明の範囲は実施例により限定されるものではない。
 製造例および比較製造例において得られた生成物中の化合物(I)、(II)および(III)の各成分を下記の[GPC測定]により分析し、生成物の[酸価]および[粘度]を下記の方法により測定した。
 また、実施例および比較例において得られた発泡体の[難燃性]、[圧縮残留歪み]および[通気度]を下記の方法により測定し、[圧縮残留歪み]の測定結果から[発泡性]を評価した。
The present invention will be described more specifically with reference to the following production examples and comparative production examples, and examples and comparative examples. However, the scope of the present invention is not limited to the examples.
Each component of the compounds (I), (II) and (III) in the products obtained in the production examples and comparative production examples was analyzed by the following [GPC measurement], and the [acid value] and [viscosity of the products were analyzed. ] Was measured by the following method.
In addition, [Flame Retardancy], [Compressive Residual Strain] and [Air Permeability] of the foams obtained in Examples and Comparative Examples were measured by the following methods. ] Was evaluated.
[GPC測定]
 製造例および比較製造例において得られた生成物を試料とし、各試料0.05gにテトラヒドロフラン(THF)10mlをホールピペットで添加して試料溶液とし、下記の機器および分析条件で分析し、RI検出器の面積%を、化合物(I)、(II)および(III)の各成分の含有量(組成)とする。
 なお、使用する機器については相当品でもよい。
(機器)
 GPC分析装置(東ソー株式会社製、型式:HLC-8220GPC)
 データ分析装置(東ソー株式会社製、型式:GPC-8020 model II)
 ガードカラム(東ソー株式会社製、型式:TSKgel guardcolumn SuperHZ-L 4.6mmI.D.×3.5cm)1本
 サンプル(分析)カラム(東ソー株式会社製、型式:TSKgel SuperHZ1000 4.6mmI.D.×15cm)3本
 リファレンスカラム(東ソー株式会社製、型式:TSKgel SuperH-RC 6.0mmI.D.×15cm)1本
[GPC measurement]
The product obtained in the production example and the comparative production example was used as a sample, and 10 ml of tetrahydrofuran (THF) was added to 0.05 g of each sample with a whole pipette to obtain a sample solution, which was analyzed using the following equipment and analysis conditions to detect RI. The area% of the vessel is the content (composition) of each component of the compounds (I), (II) and (III).
The equipment used may be an equivalent product.
(machine)
GPC analyzer (manufactured by Tosoh Corporation, model: HLC-8220GPC)
Data analyzer (Tosoh Corporation, model: GPC-8020 model II)
Guard column (manufactured by Tosoh Corporation, model: TSKgel guardcolumn SuperHZ-L 4.6 mm ID × 3.5 cm) One sample (analysis) column (manufactured by Tosoh Corporation, model: TSKgel SuperHZ1000 4.6 mm ID × X) 15 cm) 3 reference columns (manufactured by Tosoh Corporation, model: TSKgel SuperH-RC 6.0 mm ID × 15 cm) 1
(分析条件)
 INLET温度:40℃
 カラム温度:40℃
 RI温度:40℃
 溶媒:テトラヒドロフラン
 溶媒流量:0.35ml/分
 検出器RI(Refractive Index:屈折率)
 試料溶液注入量:10μl(ループ管)
(Analysis conditions)
INLET temperature: 40 ° C
Column temperature: 40 ° C
RI temperature: 40 ° C
Solvent: Tetrahydrofuran Solvent flow rate: 0.35 ml / min Detector RI (Refractive Index: Refractive index)
Sample solution injection volume: 10 μl (loop tube)
(データ処理条件)
 START TIME:8.00分
 STOP TIME:18.00分
 検出感度:3mV/分
 ベース判定値:1mV/分
 排除面積:10mV×秒
 排除高さ:0mV
 排除半値幅:0秒
(Data processing conditions)
START TIME: 8.00 min STOP TIME: 18.00 min Detection sensitivity: 3 mV / min Base judgment value: 1 mV / min Exclusion area: 10 mV x sec Exclusion height: 0 mV
Excluded half-width: 0 seconds
[酸価]
 得られた生成物の酸価(KOHmg/g)を、JIS K0070 中和滴定法に準じて測定した。
[粘度]
 得られた生成物の粘度(mPa・s)を、JIS Z8803に準じ、ウベローデ粘度計を用い、温度25℃の条件下で測定した。
[Acid value]
The acid value (KOHmg / g) of the obtained product was measured according to JIS K0070 neutralization titration method.
[viscosity]
The viscosity (mPa · s) of the obtained product was measured under the condition of a temperature of 25 ° C. using an Ubbelohde viscometer according to JIS Z8803.
[難燃性]
 得られた発泡体から試料を切り取り、下記の条件で燃焼試験を行ない、燃焼距離(mm)を測定した。
  試験方法:FMVSS-302法(自動車内装用品の安全基準の試験方法)
       ポリウレタンの水平燃焼試験
  試料  :厚さ10mm
[圧縮残留歪み]
 得られた発泡体の圧縮残留歪み(%)を、JIS K6400-4 A法に準じて測定した。
[Flame retardance]
A sample was cut from the obtained foam, a combustion test was performed under the following conditions, and a combustion distance (mm) was measured.
Test method: FMVSS-302 method (Test method for safety standards for automobile interior parts)
Horizontal burning test of polyurethane Sample: Thickness 10mm
[Compressive residual strain]
The compression residual strain (%) of the obtained foam was measured according to JIS K6400-4 A method.
[発泡性]
 得られた発泡体の発泡性を、圧縮残留歪みの結果に基づき下記の基準で評価した。
  ○(発泡性良好):圧縮残留歪みが10%以下
  ×(発泡性不良):圧縮残留歪みが10%を超える
[通気度]
 得られた発泡体の通気度(ml/cm2/sec)を、JIS L1096に準じて測定した。
[Foaming]
The foamability of the obtained foam was evaluated based on the following criteria based on the result of compression residual strain.
○ (Good foaming property): Compression residual strain is 10% or less × (Poor foaming property): Compression residual strain exceeds 10% [Air permeability]
The air permeability (ml / cm 2 / sec) of the obtained foam was measured according to JIS L1096.
[製造例1]
(第1反応工程)
 撹拌機、温度計、滴下漏斗および水スクラバーを連結したコンデンサーを装着した、容量1リットルの4つ口フラスコに、オキシ塩化リン282.4g(1.8モル)を充填し、滴下漏斗からジエチレングリコール106g(1.0モル)を温度16~18℃の条件下で1時間掛けて滴下した。滴下終了後、同温度で1時間熟成反応させた。次いで、同温度および1.3kPaの圧力下で6時間減圧脱酸を行って、塩化水素と未反応のオキシ塩化リンを除去して縮合型ホスホロジクロリデートを含む反応生成物307.1gを得た。その塩素濃度は37.1質量%であった。
[Production Example 1]
(First reaction step)
A 1-liter four-necked flask equipped with a condenser connected with a stirrer, thermometer, dropping funnel and water scrubber was charged with 282.4 g (1.8 mol) of phosphorus oxychloride and 106 g of diethylene glycol from the dropping funnel. (1.0 mol) was added dropwise at a temperature of 16 to 18 ° C. over 1 hour. After completion of the dropwise addition, an aging reaction was carried out at the same temperature for 1 hour. Next, deoxidation under reduced pressure is performed for 6 hours under the same temperature and a pressure of 1.3 kPa to remove hydrogen chloride and unreacted phosphorus oxychloride to obtain 307.1 g of a reaction product containing condensed phosphorodichloridate. It was. The chlorine concentration was 37.1% by mass.
(第2反応工程)
 第1反応で得られた反応生成物に触媒として四塩化チタン2.1g(11ミリモル)を添加した。得られた反応生成物とプロピレンオキシド197.2g(3.4モル)とを、温度50~55℃の条件下で、同時に3時間掛けて反応液中に添加し、連続的に反応させた。添加後、反応液を温度80℃に昇温し2時間熟成反応させた。その酸価は0.8KOHmg/gであった。
(Second reaction step)
To the reaction product obtained in the first reaction, 2.1 g (11 mmol) of titanium tetrachloride was added as a catalyst. The obtained reaction product and 197.2 g (3.4 mol) of propylene oxide were simultaneously added to the reaction solution over 3 hours under the condition of a temperature of 50 to 55 ° C. and allowed to react continuously. After the addition, the reaction solution was heated to 80 ° C. and aged for 2 hours. Its acid value was 0.8 KOH mg / g.
(洗浄・脱水工程)
 第2反応で得られた反応生成物を回分式で精製工程に付した。まず、洗浄工程として温度60℃で反応液に濃度0.1質量%の硫酸水100gを添加し、30分撹拌した後、反応液に炭酸ナトリウム3gと水150gを添加し30分撹拌して中和し、静置して水相を分離した。その後油相を同温にて250gの水で洗浄した。
 次いで、得られた反応生成物を温度100℃、4kPaの圧力条件下で減圧脱水工程に付した。
(Washing / dehydration process)
The reaction product obtained in the second reaction was subjected to a purification step batchwise. First, as a washing step, 100 g of sulfuric acid having a concentration of 0.1% by mass was added to the reaction solution at a temperature of 60 ° C. and stirred for 30 minutes, and then 3 g of sodium carbonate and 150 g of water were added to the reaction solution and stirred for 30 minutes. Summed and allowed to settle to separate the aqueous phase. Thereafter, the oil phase was washed with 250 g of water at the same temperature.
Next, the obtained reaction product was subjected to a vacuum dehydration step at a temperature of 100 ° C. and a pressure of 4 kPa.
(精製(水蒸気減圧蒸留)工程)
 得られた反応生成物を減圧脱水工程と同条件で1時間、水蒸気減圧蒸留工程に付した。
 得られた化合物は、酸価0.05KOHmg/g、粘度900mPa・s(25℃)で、GPC分析の結果、主成分の構造式は一般式(I)の置換基Rがメチル基である、次式の化合物(I)であった。また、化合物(II)のハーフエステル成分の含有量は0.9面積%、化合物(III)の単量体成分の含有量は5.5面積%であった。
 GPC分析、酸価および粘度測定の結果を表1に示す。
(Purification (steam distillation under reduced pressure) process)
The obtained reaction product was subjected to a steam vacuum distillation step for 1 hour under the same conditions as the vacuum dehydration step.
The resulting compound has an acid value of 0.05 KOH mg / g, a viscosity of 900 mPa · s (25 ° C.), and as a result of GPC analysis, the structural formula of the main component is that the substituent R of the general formula (I) is a methyl group. It was compound (I) of the following formula. The content of the half ester component of compound (II) was 0.9 area%, and the content of the monomer component of compound (III) was 5.5 area%.
The results of GPC analysis, acid value and viscosity measurement are shown in Table 1.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
[製造例2]
 洗浄工程を85℃で行ったこと以外は製造例1と同様にして製造例2の化合物を得た。
[製造例3]
 洗浄工程を95℃で行ったこと以外は製造例1と同様にして製造例3の化合物を得た。
[Production Example 2]
The compound of Production Example 2 was obtained in the same manner as Production Example 1 except that the washing step was performed at 85 ° C.
[Production Example 3]
The compound of Production Example 3 was obtained in the same manner as in Production Example 1 except that the washing step was performed at 95 ° C.
[比較製造例1]
 水蒸気減圧蒸留を160℃で4時間行ったこと以外は製造例1と同様にして比較製造例1の化合物を得た。
[比較製造例2]
 水蒸気減圧蒸留を160℃で8時間行ったこと以外は製造例1と同様にして比較製造例2の化合物を得た。
 製造例1~3および比較製造例1~2の組成および物性を表1に示す。
[Comparative Production Example 1]
A compound of Comparative Production Example 1 was obtained in the same manner as in Production Example 1 except that steam vacuum distillation was performed at 160 ° C. for 4 hours.
[Comparative Production Example 2]
A compound of Comparative Production Example 2 was obtained in the same manner as in Production Example 1 except that steam distillation under reduced pressure was performed at 160 ° C. for 8 hours.
The compositions and physical properties of Production Examples 1 to 3 and Comparative Production Examples 1 to 2 are shown in Table 1.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
[実施例1~3、比較例1、2および比較例3(ブランク)]
(発泡体の製造)
 下記の処方で軟質ポリウレタンフォーム(発泡体)を製造し、その難燃性、発泡性、圧縮残留歪みおよび通気度を評価した。
(処方:本明細書において「部」は「質量部」を意味する)
・ポリオール[水酸基価:56KOHmg/g]              100部
(三井化学株式会社製、製品名:アクトコールT-3000)
・整泡剤[シリコン油]                         1.0部
(モメンティブ・パフォーマンス・マテリアルズ社製、製品名:NIAX SILICONE L-638J)
・触媒[アミン系:トリエチレンジアミン]                0.2部
(エア・プロダクツ・アンド・ケミカル社製、製品名:Dabco 33-LV)
・触媒[アミン系:ビス(2-ジメチルアミノエチル)エーテル]     0.04部
(エア・プロダクツ・アンド・ケミカル社製、製品名:Dabco BL-11)
・触媒[錫系:スタナスオクトエート]                 0.35部
(エア・プロダクツ・アンド・ケミカル社製、製品名:Dabco T-9)
・発泡剤(水)                             4.3部
・発泡剤(メチレンクロリド)                      8.0部
・難燃剤(表2に示したもの)                       22部
・イソシアネート[トリレンジイソシアネート(TDI)]     表2に示した部数
(三井化学株式会社製、製品名:コスモネートT-80(80/20)、Index115)
[Examples 1 to 3, Comparative Examples 1 and 2 and Comparative Example 3 (blank)]
(Manufacture of foam)
A flexible polyurethane foam (foam) was produced with the following formulation, and its flame retardancy, foamability, compression residual strain and air permeability were evaluated.
(Prescription: In this specification, “part” means “part by mass”)
・ Polyol [Hydroxyl value: 56 KOHmg / g] 100 parts (Mitsui Chemicals, product name: Actol T-3000)
-Foam stabilizer [silicone oil] 1.0 part (product name: NIAX SILICONE L-638J, manufactured by Momentive Performance Materials)
・ Catalyst [Amine type: Triethylenediamine] 0.2 part (product name: Dabco 33-LV, manufactured by Air Products and Chemical Co., Ltd.)
・ Catalyst [Amine type: Bis (2-dimethylaminoethyl) ether] 0.04 part (product name: Dabco BL-11) manufactured by Air Products and Chemicals
・ Catalyst [Tin-based: Stanas octoate] 0.35 part (manufactured by Air Products and Chemicals, product name: Dabco T-9)
-Foaming agent (water) 4.3 parts-Foaming agent (methylene chloride) 8.0 parts-Flame retardant (shown in Table 2) 22 parts-Isocyanate [tolylene diisocyanate (TDI)] Number of parts shown in Table 2 (Mitsui Chemicals, product name: Cosmonate T-80 (80/20), Index 115)
 上記の処方で、ポリオール、整泡剤、触媒、発泡剤および難燃剤を配合し、撹拌機を用いて回転数3000rpmで1分間撹拌して配合物を均一に混和した。その後、さらにイソシアネートを加え、回転数3000rpmで5~7秒間撹拌した。次いで、直ちに配合物を、底面が正方形(一辺約200mm)の立方体(高さ約200mm)のボール箱に注いだ。
 直ちに発泡が起こり、数分後最大の容積に達した。次いで、得られた発泡体を温度120℃の炉内に30分間静置して硬化させた。
 難燃性の対照試験として、難燃剤を添加しないこと以外は実施例1と同様にして発泡体を製造し、評価した(比較例3)。
 得られた発泡体は白色軟質連通気泡型セル構造を有していた。
 得られた結果を、処方の一部(使用した難燃剤およびイソシアネートの配合量)と共に表2に示す。
In the above formulation, a polyol, a foam stabilizer, a catalyst, a foaming agent, and a flame retardant were blended, and the blend was uniformly mixed by stirring for 1 minute at 3000 rpm using a stirrer. Thereafter, further isocyanate was added, and the mixture was stirred at a rotational speed of 3000 rpm for 5 to 7 seconds. The formulation was then immediately poured into a cube (about 200 mm high) cardboard box with a square bottom (about 200 mm on each side).
Foaming occurred immediately and reached the maximum volume after a few minutes. Next, the obtained foam was allowed to stand for 30 minutes in a furnace at a temperature of 120 ° C. to be cured.
As a flame retardant control test, a foam was produced and evaluated in the same manner as in Example 1 except that no flame retardant was added (Comparative Example 3).
The obtained foam had a white soft open-cell type cell structure.
The obtained results are shown in Table 2 together with a part of the formulation (the amount of flame retardant and isocyanate used).
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 表2の結果から、本発明の難燃剤およびそれを含む難燃性樹脂組成物は、要求される条件のうち、優れた難燃性を発揮し、しかもポリウレタンフォームの発泡性および物性に優れていることがわかる。
 一方、比較例1および2の発泡体は、実施例1~3の発泡体と比較して通気度と圧縮残留歪み性が大きく変化した。これは、化合物(II)が一官能の化合物であることから、多官能で分子量の大きいポリオールよりも早くイソシアネートと反応してしまい、通常のウレタンフォーム形成反応が途中で停止し、その結果、正常なウレタンフォーム形成を阻害しウレタンフォームの物性に影響が表れたものと考えられる。このことにより、ウレタンフォームの特性である低圧縮残留歪み性が失われ、また同じ物性をもつフォームを製造しようとするときには処方調節が必要となり不利となる。特に工業生産の場合では、ポリウレタンフォームの品質のバラツキをもたらし、好ましくない。
From the results shown in Table 2, the flame retardant of the present invention and the flame retardant resin composition containing the flame retardant exhibit excellent flame retardancy among the required conditions, and are excellent in the foamability and physical properties of the polyurethane foam. I understand that.
On the other hand, in the foams of Comparative Examples 1 and 2, the air permeability and compressive residual strain were greatly changed as compared with the foams of Examples 1 to 3. This is because the compound (II) is a monofunctional compound, so it reacts with isocyanate faster than a polyfunctional and high molecular weight polyol, and the usual urethane foam formation reaction stops halfway. It is thought that the formation of the urethane foam was inhibited and the physical properties of the urethane foam were affected. As a result, the low compressive residual distortion property which is a characteristic of urethane foam is lost, and a formulation adjustment is required when producing a foam having the same physical properties, which is disadvantageous. In particular, in the case of industrial production, the quality of polyurethane foam varies, which is not preferable.

Claims (6)

  1.  一般式(I):
    Figure JPOXMLDOC01-appb-C000001
    [式中、Rは水素原子または炭素数1~4のアルキル基もしくはモノクロロアルキル基であり、Yは炭素数3~6のアルキレン基または-CH2CH2(OCH2CH2)zOCH2CH2-(zは0~3の整数)で表される基であり、nは0~10の整数である]
    で表される有機リン化合物を主成分として含有する難燃剤であり、
     前記難燃剤をゲルパーミエーションクロマトグラフィー(GPC)で測定したときに、一般式(II):
    Figure JPOXMLDOC01-appb-C000002
    [式中、R、Yおよびnは一般式(I)と同義である]
    で表される化合物の含有量が4面積%以下である難燃剤。
    Formula (I):
    Figure JPOXMLDOC01-appb-C000001
    [Wherein, R is a hydrogen atom, an alkyl group having 1 to 4 carbon atoms or a monochloroalkyl group, Y is an alkylene group having 3 to 6 carbon atoms, or —CH 2 CH 2 (OCH 2 CH 2 ) z OCH 2 CH 2- (z is an integer of 0 to 3), and n is an integer of 0 to 10]
    A flame retardant containing an organic phosphorus compound represented by
    When the flame retardant is measured by gel permeation chromatography (GPC), the general formula (II):
    Figure JPOXMLDOC01-appb-C000002
    [Wherein R, Y and n have the same meanings as in general formula (I)]
    The flame retardant whose content of the compound represented by is 4 area% or less.
  2.  前記有機リン化合物が、リン酸オキシジ-2,1-エタンジイルテトラキス(2-クロロ-1-メチルエチル)エステルである請求項1に記載の難燃剤。 The flame retardant according to claim 1, wherein the organic phosphorus compound is phosphoric acid oxydi-2,1-ethanediyltetrakis (2-chloro-1-methylethyl) ester.
  3.  請求項1または2に記載の難燃剤と樹脂とを含有する難燃性樹脂組成物。 A flame retardant resin composition comprising the flame retardant according to claim 1 or 2 and a resin.
  4.  前記樹脂が、ポリウレタン樹脂、アクリル樹脂、フェノール樹脂、エポキシ樹脂、塩化ビニル樹脂、ポリアミド樹脂、ポリエステル樹脂、不飽和ポリエステル樹脂、スチレン樹脂および合成ゴムから選択される樹脂である請求項3に記載の難燃性樹脂組成物。 The difficulty of claim 3, wherein the resin is a resin selected from polyurethane resin, acrylic resin, phenol resin, epoxy resin, vinyl chloride resin, polyamide resin, polyester resin, unsaturated polyester resin, styrene resin, and synthetic rubber. A flammable resin composition.
  5.  前記ポリウレタン樹脂が、ポリウレタンフォームである請求項4に記載の難燃性樹脂組成物。 The flame retardant resin composition according to claim 4, wherein the polyurethane resin is a polyurethane foam.
  6.  前記難燃性樹脂組成物が、前記樹脂100質量部に対して1~40質量部の割合で前記難燃剤を含有する請求項3~5のいずれか1つに記載の難燃性樹脂組成物。 The flame retardant resin composition according to any one of claims 3 to 5, wherein the flame retardant resin composition contains the flame retardant in a ratio of 1 to 40 parts by mass with respect to 100 parts by mass of the resin. .
PCT/JP2015/085139 2014-12-24 2015-12-16 Flame retardant, and flame-retardant resin composition containing same WO2016104263A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016566144A JP6635944B2 (en) 2014-12-24 2015-12-16 Flame retardant resin composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-260782 2014-12-24
JP2014260782 2014-12-24

Publications (1)

Publication Number Publication Date
WO2016104263A1 true WO2016104263A1 (en) 2016-06-30

Family

ID=56150288

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/085139 WO2016104263A1 (en) 2014-12-24 2015-12-16 Flame retardant, and flame-retardant resin composition containing same

Country Status (3)

Country Link
JP (1) JP6635944B2 (en)
TW (1) TWI676677B (en)
WO (1) WO2016104263A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018090731A (en) * 2016-12-06 2018-06-14 大八化学工業株式会社 Flame-retardant woody material and method for producing the same
JP2021500430A (en) * 2017-10-18 2021-01-07 アセンド・パフォーマンス・マテリアルズ・オペレーションズ・リミテッド・ライアビリティ・カンパニーAscend Performance Materials Operations Llc Halogen-containing flame-retardant polyamide composition
JP2021050257A (en) * 2019-09-20 2021-04-01 三菱ケミカル株式会社 Phosphoric acid ester based flame retardant, (meth)acrylic resin composition, and resin molding
CN113637254A (en) * 2021-09-18 2021-11-12 包头稀土研究院 Preparation method of polyolefin composition and application of piperazine compound
CN116496469A (en) * 2023-03-13 2023-07-28 广州光通科技有限公司 Phosphorus-containing flame-retardant resin, and preparation method and application thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4896649A (en) * 1972-03-25 1973-12-10
DE2302843A1 (en) * 1973-01-20 1974-07-25 Bayer Ag Polyethylene glycol esters as flame proofing agents - forming the bis-dichlorophosphate deriv of polyethylene glycol and reacting with alkylene oxide
JPS4998092A (en) * 1972-12-26 1974-09-17
JPS4943272B1 (en) * 1970-02-02 1974-11-20
JPH08259577A (en) * 1995-03-20 1996-10-08 Daihachi Chem Ind Co Ltd Production of condensed phosphoric ester containing halogen
JP2003277568A (en) * 2002-03-25 2003-10-02 Sumitomo Chem Co Ltd Methacrylic resin composition and method for manufacturing the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL7207024A (en) * 1972-05-25 1973-11-27

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4943272B1 (en) * 1970-02-02 1974-11-20
JPS4896649A (en) * 1972-03-25 1973-12-10
JPS4998092A (en) * 1972-12-26 1974-09-17
DE2302843A1 (en) * 1973-01-20 1974-07-25 Bayer Ag Polyethylene glycol esters as flame proofing agents - forming the bis-dichlorophosphate deriv of polyethylene glycol and reacting with alkylene oxide
JPH08259577A (en) * 1995-03-20 1996-10-08 Daihachi Chem Ind Co Ltd Production of condensed phosphoric ester containing halogen
JP2003277568A (en) * 2002-03-25 2003-10-02 Sumitomo Chem Co Ltd Methacrylic resin composition and method for manufacturing the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018090731A (en) * 2016-12-06 2018-06-14 大八化学工業株式会社 Flame-retardant woody material and method for producing the same
JP2021500430A (en) * 2017-10-18 2021-01-07 アセンド・パフォーマンス・マテリアルズ・オペレーションズ・リミテッド・ライアビリティ・カンパニーAscend Performance Materials Operations Llc Halogen-containing flame-retardant polyamide composition
JP7135083B2 (en) 2017-10-18 2022-09-12 アセンド・パフォーマンス・マテリアルズ・オペレーションズ・リミテッド・ライアビリティ・カンパニー Halogen-containing flame-retardant polyamide composition
JP2021050257A (en) * 2019-09-20 2021-04-01 三菱ケミカル株式会社 Phosphoric acid ester based flame retardant, (meth)acrylic resin composition, and resin molding
JP7352906B2 (en) 2019-09-20 2023-10-02 三菱ケミカル株式会社 Phosphate ester flame retardant, (meth)acrylic resin composition and resin molding
CN113637254A (en) * 2021-09-18 2021-11-12 包头稀土研究院 Preparation method of polyolefin composition and application of piperazine compound
CN113637254B (en) * 2021-09-18 2023-03-03 包头稀土研究院 Preparation method of polyolefin composition and application of piperazine compound
CN116496469A (en) * 2023-03-13 2023-07-28 广州光通科技有限公司 Phosphorus-containing flame-retardant resin, and preparation method and application thereof
CN116496469B (en) * 2023-03-13 2024-01-26 广州光通科技有限公司 Phosphorus-containing flame-retardant resin, and preparation method and application thereof

Also Published As

Publication number Publication date
JPWO2016104263A1 (en) 2017-10-12
JP6635944B2 (en) 2020-01-29
TW201629192A (en) 2016-08-16
TWI676677B (en) 2019-11-11

Similar Documents

Publication Publication Date Title
JP6635944B2 (en) Flame retardant resin composition
CN103570972B (en) Oligomer mixture, production and as fire retardant application and include its flame retardant polyurethane
JP6122960B2 (en) Organophosphorus compounds for flame retardant polyurethane foam
US8759411B2 (en) Derivatives of diphosphines as flame retardants for polyurethanes
CA2862594C (en) Phosphoric ester preparations with reduced hygroscopicity
RU2595687C2 (en) Phosphorous-containing flame retardants for polyurethane foams
CN105121449B (en) Phosphonium flame retardant
US9550856B2 (en) Phosphorous based polyaddition / polyurethane-urea polyols
EP2531554B1 (en) Derivatives of diphosphines as flame retardants for polyurethanes
KR20160140748A (en) Polyether polyol providing good blow-gel balance for polyurethane products made therefrom
JP3113228B2 (en) Flame retardant polyurethane foam composition
JP6393621B2 (en) Flame retardant for resin, flame retardant resin composition containing the same, and method for producing organophosphorus compound
JP6630767B2 (en) Poly (alkylene phosphate) with reduced hygroscopicity
JP2862490B2 (en) Method for producing halogen-containing condensed phosphate ester
EP3494156A1 (en) Polyurethane foams comprising mixture obtained in production of tolylene diisocyanate(tdi) as bottoms residue
US20200165382A1 (en) Preparations having improved efficacy as flame retardants
JP2017179320A (en) Polyol composition for hard polyurethane foam, and manufacturing method of hard polyurethane foam using the same
JP2011032367A (en) Flame retardant for polyurethane foam, composition for polyurethane foam, polyurethane foam, and method for producing modified polyurethane foam

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15872832

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016566144

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15872832

Country of ref document: EP

Kind code of ref document: A1