WO2016103934A1 - Positioning signal reception device - Google Patents

Positioning signal reception device Download PDF

Info

Publication number
WO2016103934A1
WO2016103934A1 PCT/JP2015/081580 JP2015081580W WO2016103934A1 WO 2016103934 A1 WO2016103934 A1 WO 2016103934A1 JP 2015081580 W JP2015081580 W JP 2015081580W WO 2016103934 A1 WO2016103934 A1 WO 2016103934A1
Authority
WO
WIPO (PCT)
Prior art keywords
difference
positioning signal
unit
carrier phase
positioning
Prior art date
Application number
PCT/JP2015/081580
Other languages
French (fr)
Japanese (ja)
Inventor
奈緒美 藤澤
戸田 裕行
明大 肥野
中村 拓
健史 長野
壮一郎 榎谷
匡 杉本
Original Assignee
古野電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古野電気株式会社 filed Critical 古野電気株式会社
Publication of WO2016103934A1 publication Critical patent/WO2016103934A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/23Testing, monitoring, correcting or calibrating of receiver elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/53Determining attitude
    • G01S19/54Determining attitude using carrier phase measurements; using long or short baseline interferometry

Definitions

  • the present invention relates to a positioning signal receiving device that is arranged on a moving body such as a ship, a flying body, or an automobile and that receives a positioning signal and performs positioning of the moving body.
  • Patent Document 1 and Patent Document 2 describe a configuration for receiving a positioning signal from a GPS satellite and calculating the azimuth, position, and speed of the device.
  • the devices described in Patent Document 1 and Patent Document 2 include two antennas. Each antenna receives a positioning signal from a GPS satellite.
  • the devices described in Patent Document 1 and Patent Document 2 include a GPS data processing unit.
  • the GPS data processing unit calculates a single phase difference of the carrier wave phase from the positioning signal received by each antenna.
  • the GPS data processing unit performs positioning and azimuth calculation using a single phase difference.
  • the difference in analog delay amount is included in the single phase difference error. Therefore, when the analog delay amount occurs, the single phase difference error increases. For this reason, unless the analog delay amount is corrected, the calculation accuracy such as positioning deteriorates.
  • an object of the present invention is to calculate the difference between analog delay amounts generated in a plurality of receiving units.
  • the positioning signal receiving apparatus of the present invention includes a first antenna and a second antenna that receive a positioning signal, first and second receiving units, and an arithmetic unit.
  • the first receiving unit is connected to the first antenna and detects the first carrier phase of the positioning signal.
  • the second receiving unit is connected to the second antenna and detects the second carrier phase of the positioning signal.
  • the computing unit calculates a difference in analog delay amount between the first receiving unit and the second receiving unit using the difference between the first carrier phase and the second carrier phase.
  • This configuration utilizes the fact that the difference between the first carrier phase and the second carrier phase changes according to the difference in the analog delay amount between the first receiver and the second receiver. Therefore, the difference in the analog delay amount is calculated by using the difference between the first carrier phase and the second carrier phase and performing an operation based on this phase difference.
  • the positioning signal receiving apparatus of the present invention includes a switch for selectively connecting either the first antenna or the second antenna to the first receiving unit.
  • the calculation unit includes a delay difference calculation unit that calculates a difference in analog delay amount from the first carrier phase and the second carrier phase detected when the first receiver and the second receiver are connected to the second antenna by the switch. Prepare.
  • the first receiving unit is also connected to the second antenna.
  • the arithmetic unit calculates a difference in analog delay amount from the first carrier phase detected by the first receiver with respect to the positioning signal received by the second antenna and the second carrier phase detected by the second receiver. Is provided.
  • the calculation unit includes a single phase difference calculation unit and a delay amount determination unit.
  • the single phase difference calculation unit calculates a single phase difference between the first carrier phase and the second carrier phase for a plurality of different positioning signals.
  • the delay amount determination unit compares single phase differences for a plurality of positioning signals with each other, and determines an analog delay amount difference from the comparison result.
  • This configuration utilizes the fact that the single phase difference between the antennas changes in accordance with the difference in the analog delay amount between the first receiver and the second receiver even for a plurality of positioning signals. Therefore, by performing statistical processing on the single phase difference between the antennas for a plurality of positioning signals, the difference in the analog delay amount is calculated with high accuracy.
  • the carrier wave frequencies of a plurality of positioning signals are the same, so that the difference in the analog delay amount can be accurately calculated without correcting each single phase difference due to the difference in frequency.
  • the calculation unit includes a single phase difference calculation unit, a baseline vector storage unit, and a delay amount determination unit.
  • the single phase difference calculation unit calculates a single phase difference between the first carrier phase and the second carrier phase.
  • the baseline vector storage unit stores a baseline vector connecting the first antenna and the second antenna.
  • the delay amount determination unit calculates a single difference of the geometric distance from the baseline vector, includes a difference between the single difference of the geometric distance and the single phase difference in the observation vector, and determines the analog delay amount of the first reception unit and the second reception unit.
  • a difference in the analog delay amount is determined by using a filter operation including the difference in the state vector.
  • the difference in analog delay amount is calculated with high accuracy by using a single difference in geometric distance based on the baseline vector calculated by a method that is not affected by the analog delay amount.
  • the calculation unit includes a single phase difference calculation unit and an estimation unit.
  • the single phase difference calculation unit calculates a single phase difference between the first carrier phase and the second carrier phase at a plurality of times for the same positioning signal.
  • the estimation unit estimates an analog delay amount difference using a filter operation that includes an observation error of a single phase difference in an observation vector, and includes a difference in analog delay amount between the first receiving unit and the second receiving unit in a state vector. .
  • the calculation unit includes a single phase difference calculation unit, an estimation unit, and an integration processing unit.
  • the single phase difference calculation unit calculates a single phase difference between the first carrier phase and the second carrier phase at a plurality of times.
  • the estimation unit includes a difference between the single phase difference based on the positioning data corrected by the integrated processing unit and the single phase difference obtained by the single phase difference calculation unit in the observation vector, and the analog of the first reception unit and the second reception unit A difference in the delay amount and an error included in the output of the inertial sensor are estimated by using a filter operation including the error included in the output of the inertial sensor in the state vector.
  • the integration processing unit corrects the output from the inertial sensor using an error included in the output of the inertial sensor estimated by the estimation unit.
  • the difference in the analog delay amount is calculated with high accuracy by the filter operation for state estimation.
  • the present invention it is possible to calculate the difference in analog delay amount generated between a plurality of receiving units. Thereby, positioning using a single phase difference between antennas and calculation of an azimuth can be performed with high accuracy.
  • the block diagram which shows the structure of the positioning signal receiver which concerns on the 1st Embodiment of this invention The block diagram which shows the structure at the time of calculation of the analog delay difference of the positioning signal receiver which concerns on the 1st Embodiment of this invention.
  • the flowchart which shows the process which determines the calculation timing of a correction value The flowchart which shows the process which determines the calculation timing of a correction value
  • the flowchart which shows the process which determines the calculation timing of a correction value The block diagram which shows the structure of the positioning signal receiver which concerns on the 2nd Embodiment of this invention.
  • the block diagram which shows the structure of the positioning signal receiver which concerns on the 8th Embodiment of this invention.
  • Flowchart of Analog Delay Difference Estimation Method According to Eighth Embodiment of the Invention Flowchart for calculating analog delay difference based on operating time Flow chart for calculating analog delay difference based on temperature Flow chart to calculate analog delay difference based on altitude Flowchart for calculating analog delay difference based on speed and rotation amount
  • FIG. 1 is a block diagram showing a configuration of a positioning signal receiving apparatus according to the first embodiment of the present invention.
  • FIG. 2 is a block diagram showing a configuration at the time of calculating an analog delay difference of the positioning signal receiving apparatus according to the first embodiment of the present invention.
  • FIG. 3 is a block diagram showing a configuration at the time of relative positioning of the positioning signal receiving apparatus according to the first embodiment of the present invention.
  • the positioning signal receiving apparatus 10 includes antennas 100A and 100B, receiving units 11A and 11B, a calculation unit 20, a switch 30, and a clock generation unit 40.
  • the calculation unit 20 includes a positioning unit 21 and a delay difference calculation unit 22.
  • the antenna 100A is the “first antenna” of the present invention, and the antenna 100B is the “second antenna” of the present invention.
  • the receiver 11A is the “first receiver” of the present invention, and the receiver 11B is the “second receiver” of the present invention.
  • Antennas 100A and 100B receive positioning signals from positioning satellites SV.
  • the positioning signal is, for example, a GPS (Global Positioning System) signal. Note that the configuration of the present embodiment is applied even to a signal (GNSS signal) used in another GNSS (Global Navigation Satellite System).
  • GNSS Global Navigation Satellite System
  • the clock signal is input from the clock generator 40 to the receivers 11A and 11B.
  • the receivers 11A and 11B are synchronized by this clock signal.
  • the receiving unit 11A is selectively connected to the antenna 100A and the antenna 100B by the switch 30.
  • the reception unit 11A is connected to the antenna 100B as shown in FIG. 2 when calculating the difference in analog delay amount (analog delay difference).
  • the receiver 11A is connected to the antenna 100A during relative positioning, as shown in FIG.
  • the receiving unit 11B is connected to the antenna 100B.
  • the reception unit 11A captures and tracks the positioning signal by performing correlation processing between the positioning signal received by the antenna 100A and the replica signal of the positioning signal.
  • the receiving unit 11A outputs the code demodulated by the correlation processing to the positioning unit 21.
  • the reception unit 11A captures and tracks the positioning signal by performing correlation processing between the positioning signal received by the antenna 100B and the replica signal of the positioning signal.
  • the receiving unit 11A detects the carrier phase of the positioning signal (corresponding to the “first carrier phase” of the present invention) by correlation processing, regardless of whether the receiving unit 11A is connected to either the antenna 100A or 100B. Output to the delay difference calculation unit 22. At this time, the receiving unit 11A associates the positioning satellite SV that is the transmission source of the positioning signal from which the carrier phase has been acquired, and outputs the carrier phase.
  • the receiving unit 11B captures and tracks the positioning signal by performing correlation processing between the positioning signal received by the antenna 100B and the replica signal of the positioning signal.
  • the receiving unit 11B outputs the code demodulated by the correlation processing to the positioning unit 21.
  • the receiving unit 11 ⁇ / b> B detects the carrier wave phase (the “second carrier wave phase” of the present invention) by correlation processing, and outputs it to the positioning unit 21 and the delay difference calculating unit 22. At this time, the receiving unit 11B associates the positioning satellite SV that is the transmission source of the positioning signal from which the carrier phase has been acquired, and outputs the carrier phase.
  • the positioning unit 21 demodulates the navigation message using the codes from the receiving units 11A and 11B.
  • the positioning unit 21 receives the carrier phase received by the antenna 100A and acquired by the receiving unit 11A (first carrier phase for relative positioning), and the carrier phase received by the antenna 100B and acquired by the receiving unit 11B (for relative positioning). Second carrier phase).
  • the positioning unit 21 combines the first carrier phase for relative positioning and the second carrier phase for relative positioning corresponding to the positioning signal from the positioning satellite SV based on the positioning satellite SV associated with the carrier phase.
  • the positioning unit 21 performs relative positioning using the combined first carrier phase for relative positioning and second carrier phase for relative positioning. Specifically, the positioning unit 21 calculates a single phase difference between antennas between a first carrier phase for relative positioning and a second carrier phase for relative positioning. The positioning unit 21 calculates a path difference that is a difference between the distance between the antenna 100A and the positioning satellite SV and the distance between the antenna 100B and the positioning satellite SV from the single phase difference between the antennas. The positioning unit 21 acquires the position of the positioning satellite SV from the demodulated navigation message. The positioning unit 21 calculates the positions of the antennas 100A and 100B from a known method using the code pseudo distance obtained by the correlation processing in the receiving units 11A and 11B.
  • the positioning unit 21 calculates a direction cosine vector for the path difference using the position of the positioning satellite SV and the positions of the antennas 100A and 100B.
  • the positioning unit 21 calculates the relative vectors of the antennas 100A and 100B from the path difference and the direction cosine vector.
  • the positioning unit 21 calculates a relative vector using three or more positioning satellites.
  • the positioning unit 21 calculates, from the relative vector, the positioning signal receiving device 10 in which the antennas 100A and 100B are arranged and the posture or orientation of the moving body in which the positioning signal receiving device 10 is mounted.
  • the positioning unit 21 uses the analog delay difference calculated by the delay difference calculating unit 22 in such relative positioning calculation.
  • the analog delay difference is a difference between a positioning signal transmission delay amount in the first receiving unit 11A and a positioning signal transmission delay amount in the second receiving unit 11B.
  • the delay difference calculator 22 receives the carrier phase (first carrier phase for delay difference calculation) received by the antenna 100B and received by the receiver 11A and the carrier phase (delay received by the antenna 100B and acquired by the receiver 11B). 2nd carrier wave phase for difference calculation).
  • the positioning signal that has acquired the first carrier phase for delay difference calculation and the positioning signal that has acquired the second carrier phase for delay difference calculation are the same positioning signal.
  • the delay difference calculation unit 22 calculates the analog delay difference ⁇ AD based on the following principle.
  • ⁇ 1 B is a carrier wave phase detected by the receiving unit 11A for the positioning signal of the positioning satellite SV.
  • ⁇ 2 B is a carrier phase detected by the receiving unit 11B for the positioning signal of the positioning satellite SV.
  • ⁇ 2 B is a geometric distance between the positioning satellite SV and the antenna 100B.
  • t u1 is a clock error of the receiving unit 11A
  • t u2 is a clock error of the receiving unit 11B.
  • T 2 B is a tropospheric delay when the positioning signal of the positioning satellite SV is received by the antenna 100B.
  • I 2 B is an ionospheric delay when the positioning signal of the positioning satellite SV is received by the antenna 100B.
  • e ⁇ B1 is a circuit delay amount of the carrier phase with respect to the receiving unit 11A.
  • e ⁇ B2 is a circuit delay amount of the carrier phase with respect to the receiving unit 11B.
  • the carrier phase ⁇ 1 B is expressed by the following (Equation 1).
  • ⁇ 2 B ⁇ 2 B + t u 2 + T 2 B + I 2 B + e ⁇ B 2 ⁇ (formula 2)
  • the carrier phase difference ⁇ 12 between the receiving units using the same antenna is expressed by the following (Expression 3) from (Expression 1) and (Expression 2).
  • the carrier phase difference ⁇ 12 is expressed by the following (formula 4).
  • the difference between the circuit delay (e ⁇ B1 -e ⁇ B2) has an electrical length between the receiving portion 11A and the antenna 100B, the difference .DELTA.e CH of the electrical length of the receiving portion 11B and the antenna 100B, the analog delay difference ⁇ AD And the addition.
  • ⁇ AD ⁇ 12 ⁇ e CH ⁇ (Formula 7)
  • the electrical length between the antenna 100B and the receiving unit 11A and the electrical length between the antenna 100B and the receiving unit 11B can be set to measured and desired values. Therefore, the difference ⁇ e CH is known.
  • the electrical length between the antenna 100B and the receiving unit 11A is preferably the same as the electrical length between the antenna 100B and the receiving unit 11B. In this case, the difference ⁇ e CH can be set to zero.
  • the carrier wave phases ⁇ 1 B and ⁇ 2 B are measured by the delay difference calculation unit 22 as described above, and the carrier wave phase difference ⁇ 12 can be obtained by observing the positioning signal.
  • the analog delay difference ⁇ AD is calculated by substituting the electrical length difference ⁇ e CH and the carrier phase difference ⁇ 12 of these known or observed paths into (Equation 7).
  • the analog delay difference ⁇ AD between the receiving units 11A and 11B can be calculated.
  • the delay difference calculation unit 22 outputs the analog delay difference ⁇ AD to the positioning unit 21.
  • the positioning unit 21 corrects the single phase difference between the antennas by the analog delay difference ⁇ AD from the delay difference calculation unit 22.
  • the positioning unit 21 performs a relative positioning calculation using the corrected single phase difference between the antennas. Thereby, the positioning part 21 can perform highly accurate relative positioning. Furthermore, the positioning unit 21 can perform relative positioning with higher accuracy by performing correction in consideration of the known electrical length difference ⁇ e CH of the path.
  • FIG. 4 is a flowchart of the analog delay difference calculation method and positioning method according to the first embodiment of the present invention.
  • step S101 the receiving units 11A and 11B are connected to the antenna 100B.
  • step S102 the positioning satellite tracked by the receiving unit 11A is matched with the positioning satellite tracked by the receiving unit 11B. If the positioning satellite tracked by the receiving unit 11A and the positioning satellite tracked by the receiving unit 11B are not the same (S102: NO), matching is repeated. If the positioning satellite tracked by the receiving unit 11A is the same as the positioning satellite tracked by the receiving unit 11B (S102: YES), the process proceeds to step S103.
  • step S103 by using the carrier phase detected by the receiving unit 11B has been detected by the receiver 11A carrier phase, it calculates a difference .DELTA..PHI 12 carrier phase between the receiving unit.
  • step S104 a difference (path difference) ⁇ e CH between the electrical length (path length) between the antenna 100B and the receiving unit 11A and the electrical length (path length) between the antenna 100B and the receiving unit 10B is acquired. .
  • step S105 the analog phase difference ⁇ AD is calculated by substituting the carrier phase difference ⁇ 12 between the receiving units and the path difference ⁇ e CH into (Equation 7). Using this analog delay difference ⁇ AD, a correction value for calculating relative positioning is set. At this time, it is better to include the path difference ⁇ e CH in the correction value.
  • step S106 the receiving unit 11A is connected to the antenna 100A, and the receiving unit 11B is connected to the antenna 100B.
  • the receiving unit 11A detects the carrier phase for the positioning signal received by the antenna 100A.
  • the receiving unit 11B detects the carrier phase for the positioning signal received by the antenna 100B.
  • the positioning unit 21 of the calculation unit 20 calculates a single phase difference between the antennas from the difference between the carrier wave phases.
  • step S107 relative positioning is performed using the single phase difference between the antennas corrected by the correction value.
  • the analog delay difference between the receiving units can be calculated, and high-accuracy relative positioning can be realized.
  • correction value need not be calculated at every timing of acquiring the carrier phase.
  • the correction value may be calculated according to the processing shown in FIGS. 5, 6, and 7 are flowcharts showing processing for determining the correction value calculation timing.
  • step S201 it is detected whether a correction value is stored in advance. If the correction value is stored in advance (S201: YES), the process proceeds to step S203. If no correction value is stored (S201: NO), the process proceeds to step S202.
  • step S202 the analog delay difference ⁇ AD is calculated by the above-described method, and a correction value is calculated.
  • step S203 relative positioning is performed using the stored correction value or the single phase difference between the antennas corrected by the correction value calculated this time.
  • the correction value including the analog delay difference ⁇ AD may be calculated only when the correction value immediately after the power is turned on or the like is not stored. Therefore, the overall processing load of the positioning signal receiving apparatus can be reduced.
  • step S301 it is detected whether or not it is a correction value calculation timing.
  • the calculation timing can be detected by a time that can be acquired from the positioning signal, a clock provided in the apparatus, or the like. If it is the calculation timing of the correction value (S301: YES), the process proceeds to step S302. If it is not the calculation timing of the correction value (S301: NO), the process proceeds to step S303.
  • step S302 a correction value is calculated using the method described above.
  • step S303 a relative difference is performed using the correction value calculated this time or the single phase difference between antennas corrected by the correction value already stored.
  • the correction value including the analog delay difference ⁇ AD may be calculated only at a preset time. Therefore, the overall processing load of the positioning signal receiving apparatus can be reduced.
  • step S401 it is detected whether the stored correction value is a normal value or an abnormal value.
  • a correction value abnormality detection method for example, a positioning signal of another positioning satellite different from the positioning satellite for calculating the single phase difference is received, and the carrier phase of the positioning signal from these two positioning satellites is received. Are detected by the receivers 11A and 11B, and a double phase difference is calculated. Further, the double phase difference is calculated using the single phase difference corrected by the correction value. The difference between these two double phase differences is calculated, and when the difference between the double phase differences is equal to or greater than a predetermined threshold value, it is determined that the correction value is equal to or greater.
  • the threshold value for abnormality determination can be set in advance by experiment or simulation.
  • step S401: YES If the correction value is abnormal (S401: YES), the process proceeds to step S402. If the correction value is normal (S401: NO), the process proceeds to step S403.
  • step S402 the correction value is calculated using the method described above.
  • step S403 a relative difference is performed using the correction value calculated this time or the single phase difference between antennas corrected by the correction value that has already been stored and determined to be normal.
  • FIG. 8 is a block diagram showing a configuration of a positioning signal receiving apparatus according to the second embodiment of the present invention.
  • the positioning signal receiving device 10A according to the second embodiment is different from the positioning signal receiving device 10 according to the first embodiment in that the receiving unit 11A is integrated with the arithmetic unit 20A. Note that the receiving unit 11B can also be integrated with the arithmetic unit 20A.
  • the components of the positioning signal receiving device 10A can be reduced.
  • FIG. 9 is a block diagram showing a configuration of a positioning signal receiving apparatus according to the third embodiment of the present invention.
  • the positioning signal receiving device 10B according to the third embodiment is different from the positioning signal receiving device 10 according to the first embodiment in that the switch 30 is omitted.
  • the receiving unit 11A ′ is connected to the antennas 100A and 100B.
  • the reception unit 11A ′ switches between acquisition and tracking of the positioning signal received by the antenna 100A and acquisition and tracking of the positioning signal received by the antenna 100B by a software switch or the like.
  • the receiving unit 11A outputs, in association with the carrier phase, which antenna is the carrier phase of the positioning signal received by the antenna.
  • the switch 30 is omitted, and the components of the positioning signal receiving device 10B can be reduced. Further, by not passing through the switch 30, the electrical length between the antenna 100B and the receiving unit 10A ′ can be acquired more accurately.
  • FIG. 10 is a block diagram showing a configuration of a positioning signal receiving apparatus according to the fourth embodiment of the present invention.
  • the positioning signal receiving device 10C according to the fourth embodiment is different from the positioning signal receiving device 10 according to the first embodiment in that the number of antennas, receiving units, and switches is increased.
  • the positioning signal receiving apparatus 10C includes three antennas 100A, 100B, 100C, three receiving units 11A, 11B, 11C, and two switches 30A, 30B.
  • the receiving unit 11A is selectively connected to the antennas 100A and 100B by the switch 30A.
  • the receiving unit 11C is selectively connected to the antennas 100B and 100C by the switch 30B.
  • the analog delay difference? AD 12 between the receiving portion 11A and the receiving part 11B.
  • the analog delay difference ⁇ AD 23 between the receiving unit 11B and the receiving unit 11C can be calculated.
  • the analog delay difference? AD 12 and the analog delay difference? AD 23 it is possible to calculate the analog delay difference? AD 13 between the receiving portion 11A and the receiving portion 11C.
  • the analog delay difference between the receiving units can be calculated as in the above-described embodiment, and high-accuracy relative positioning can be realized.
  • FIG. 11 is a block diagram showing a configuration of a positioning signal receiving apparatus according to the fifth embodiment of the present invention.
  • the positioning signal receiving device 10D according to the fifth embodiment is different from the positioning signal receiving device 10 according to the first embodiment in the configuration of the delay difference calculation unit 22D.
  • the delay difference calculation unit 22D includes a single phase difference calculation unit 221 and a delay difference determination unit 222.
  • the single phase difference calculation unit 221 calculates a single phase difference between antennas from the carrier phase from the reception unit 11A and the carrier phase from the reception unit 11B. At this time, the single phase difference between the antennas includes the phase difference due to the arrangement position relationship of the antennas and the analog delay difference of the receiving unit.
  • the single phase difference calculation unit 221 calculates a single phase difference between antennas for each satellite. Note that the single phase difference calculation unit 221 may be omitted, and the single phase difference between antennas before correction calculated by the positioning unit 21 may be used.
  • the delay difference determination unit 222 calculates a correction value for relative positioning based on the analog delay difference based on the following principle.
  • the single phase difference calculated by the single phase difference calculator 221 is ⁇ Z 12 B
  • the integer part of the analog delay difference is ⁇ ADn 12 B
  • the decimal part of the analog delay difference is ⁇ ADf 12 B
  • the integer bias of the carrier phase is Assuming ⁇ N 12 B , the single phase difference ⁇ Z 12 B can be expressed by the following (formula 8).
  • ⁇ Z 12 B ⁇ ADn 12 B + ⁇ ADf 12 B + ⁇ N 12 B + ⁇ e ⁇ ⁇ (Formula 8) Incidentally, .DELTA.e [Phi is the observation error is negligible very small relative to other elements.
  • the relative positioning estimation calculation can be performed with high accuracy.
  • the delay difference determination unit 222 extracts the fractional part of the single phase difference between the antennas from the single phase difference calculation unit 221.
  • the delay difference determination unit 222 sets the decimal part to the analog delay difference.
  • the delay difference determination unit 222 sets the analog delay difference as a correction value for relative positioning calculation, and outputs the correction value to the positioning unit 21.
  • the delay difference determination unit 222 continuously acquires a single phase difference between antennas for a plurality of positioning satellites being tracked, and extracts a fractional part for each.
  • the delay difference determination unit 222 calculates the time average value of the decimal part.
  • the delay difference determination unit 222 sets a reference satellite from a plurality of positioning satellites being tracked.
  • the delay difference determination unit 222 calculates the difference between the decimal part of the reference satellite and the decimal part of another positioning satellite, and calculates the width of the difference between the decimal parts.
  • the delay difference determination unit 222 sets a correction value using the decimal part and the difference for each positioning satellite.
  • the delay difference determination unit 222 determines whether or not to use the correction value set this time for the relative positioning calculation based on the difference width of the decimal part.
  • the positioning unit 21 corrects the single phase difference using the correction value output from the delay difference determination unit 222, and estimates the azimuth and position using a known Kalman filter or the like.
  • FIG. 12 is a flowchart of an analog delay difference calculation method and a positioning method according to the fifth embodiment of the present invention.
  • step S501 a single phase difference between antennas is continuously acquired for each positioning satellite. This process is repeated until a single phase difference between the antennas can be acquired continuously over a predetermined time length (S501: NO, S511: NO). At this time, if the single phase difference between the antennas of the specified number of positioning satellites cannot be acquired continuously over a predetermined time (S501: YES), the process proceeds to step S521.
  • step S501 If the single phase difference between the antennas can be continuously acquired over the specified time length (S501: YES), the process proceeds to step S502.
  • step S502 the decimal part of the single phase difference between the antennas for each positioning satellite is extracted.
  • a reference satellite is set from a plurality of positioning satellites that are tracked, that is, a plurality of positioning satellites that have acquired a single phase difference between antennas.
  • step S504 the difference between the decimal part of the reference satellite and the decimal part of the positioning satellite other than the reference satellite is calculated.
  • step S505 a correction value is set for each positioning satellite using the decimal part and the difference.
  • step S506 the plurality of differences are compared to calculate the overall width of the difference.
  • step S507 it is detected whether or not the difference width is within a specified range. If the difference width is less than the threshold value THd (S507: YES), the process proceeds to step S508. If the difference width is equal to or greater than the threshold THd (S507: NO), the process proceeds to step S521.
  • step S508 an average value of correction values of all positioning satellites set in step S505 is calculated. Then, the average value is set to a correction value common to each positioning satellite.
  • step S521 it is determined that the current correction value setting is invalid.
  • the correction value can be set with higher accuracy by using the average value of the correction values of all positioning satellites.
  • FIG. 13 is a flowchart of a specific calculation method of the analog delay difference according to the fifth embodiment of the present invention.
  • step S551 the positioning satellite with the highest elevation angle is set as the reference satellite.
  • the elevation angle of each positioning satellite can be obtained from the demodulated navigation message.
  • step S552 the difference between the decimal part of each positioning satellite being tracked and the decimal part of the reference satellite is calculated.
  • step S553 the difference is compared with a reference value (0.5 in this embodiment). If the difference is 0.5 or more (S553: YES), the process proceeds to step S554. If the difference is less than 0.5 (S553: NO), the process proceeds to step S555. In step S554, (decimal part) -1 is set as the correction value. In step S555, if the difference is less than ⁇ 0.5 (S555: YES), the process proceeds to step S556. If the difference is ⁇ 0.5 or more (S555: NO), the process proceeds to step S557.
  • step S556 (decimal part) +1 is set as the correction value.
  • step S557 (decimal part) is set as a correction value as it is.
  • step S558 it is confirmed whether correction values have been calculated for all positioning satellites being tracked. If the correction value is not calculated even for one of the tracking positioning satellites (S558: NO), the above-described correction value calculation process is repeated. If correction values have been calculated for all positioning satellites, the correction value setting process is terminated, and the process proceeds to another process.
  • the correction value based on the analog delay difference can be accurately calculated.
  • a reference value for the decimal part is provided, and the decimal part is corrected by one of +1, 0 (substantially no correction) or ⁇ 1 based on the magnitude relationship with the reference value.
  • the correction value can be set with higher accuracy.
  • the correction values are unified for all positioning satellites that are being tracked. This utilizes the fact that the frequency of the carrier phase transmitted from each positioning satellite is the same in the case of GPS. By unifying correction values in this way, it becomes easy to store correction values.
  • FIG. 14 is a flowchart of an analog delay difference calculation method and a positioning method in a positioning system in which a carrier frequency differs for each positioning satellite.
  • step S561 the single phase difference between the antennas is acquired for each positioning satellite being tracked, and the time average value of the single phase difference between the antennas is calculated.
  • step S562 a positioning satellite that transmits a positioning signal having a frequency close to the center frequency of the positioning system among the tracking positioning satellites is set as a reference satellite.
  • step S563 the decimal part of the single phase difference between the antennas of the reference satellite is set as the reference correction value.
  • correction values of other positioning satellites are estimated using the reference correction value. Specifically, for example, the difference between the carrier frequency of the positioning signal of the reference satellite and the frequency of the positioning signal of the positioning satellite for estimating the correction value is calculated. Then, the correction value of the other positioning satellite is estimated by correcting the reference correction value using the difference. For this estimation, weighting may be performed according to the elevation angle or signal level of the positioning satellite.
  • step S565 it is verified whether or not the estimated correction value of each positioning satellite is valid. Specifically, switching to the relative positioning calculation state, it is determined that the estimated value is valid if the difference between the single phase difference corrected by the estimated value and the observed single phase difference is not greater than or equal to a predetermined threshold. To do.
  • step S565: YES If the estimated correction value is valid (S565: YES), the process proceeds to step S566. If the estimated correction value is not valid (S565: NO), the process proceeds to step S567.
  • step S566 the estimated correction value is adopted and used for relative positioning calculation as a correction value for each positioning satellite.
  • step S567 it is determined that the estimated correction value is invalid, and the correction value is set again.
  • an analog delay difference can be calculated even for a positioning system in which the carrier frequency differs for each positioning satellite, and highly accurate relative positioning can be realized.
  • FIG. 15 is a block diagram showing a configuration of a positioning signal receiving apparatus according to the sixth embodiment of the present invention.
  • the positioning signal receiving device 10E according to the sixth embodiment is different from the positioning signal receiving device 10D according to the fifth embodiment in the configuration of the delay difference calculating unit 22E.
  • the delay difference calculation unit 22E of the positioning signal receiving apparatus 10E includes a single phase difference calculation unit 221, a delay difference determination unit 22E, and a baseline vector storage unit 223.
  • the configuration and processing of the single phase difference calculation unit 221 are the same as those of the positioning signal reception device 10D according to the fifth embodiment.
  • the baseline vector storage unit 223 stores a baseline vector between the antennas 100A and 100B calculated by the relative positioning performed previously.
  • the baseline vector is updated each time the relative positioning calculation is repeated, and stored in the baseline vector storage unit 223.
  • the delay difference determination unit 222E sets a correction value based on the analog delay difference according to the following principle.
  • a single phase difference calculated by the single phase difference calculation unit 221 is ⁇ Z 12 B
  • a single difference in geometric distance is ⁇ 12 B
  • an analog delay difference is ⁇ AD 12 B
  • an integer value bias is ⁇ Z 12 B
  • ⁇ N 12 B is the single difference
  • ⁇ e ⁇ is the single difference of the observation error.
  • ⁇ Z 12 B ( ⁇ 12 B + ⁇ AD 12 B ) / ⁇ B + ⁇ N 12 B + ⁇ e ⁇ ⁇ (Equation 9)
  • ⁇ B is the wavelength of the positioning signal.
  • ⁇ Z 12 B ⁇ e ( ⁇ ee + ⁇ AD 12 B ) / ⁇ B + ⁇ N 12 B + ⁇ e ⁇ -(Formula 10)
  • ⁇ ee is an estimation error of the single phase difference of the geometric distance.
  • Estimation error ⁇ ee and observation error ⁇ e singlet phase difference geometric distance ⁇ can be assumed to be sufficiently small. Under this condition, the remainder when the values on both sides are divided by the wavelength ⁇ B of the carrier phase can be regarded as a fractional part of the analog delay difference.
  • the single phase difference ⁇ Z 12 B on the left side is an observed value, and the estimated single phase difference of the geometric distance ⁇ e is a value that can be calculated from a known baseline vector. Therefore, the decimal part of the analog delay difference can be calculated by calculating the remainder when the left side of (Equation 10) is divided by the wavelength of the carrier phase.
  • the delay difference determination unit 222E acquires the single phase difference ⁇ Z 12 B from the single phase difference calculation unit 221.
  • the delay difference determination unit 222E reads the baseline vector from the baseline vector storage unit 223, estimates the single phase difference of the geometric distance, and calculates the estimated value ⁇ e.
  • the delay difference determination unit 222E subtracts the single phase difference ⁇ Z 12 B from the estimated single-difference value ⁇ e of the geometric distance, and divides the difference value by the wavelength ⁇ B of the carrier phase, thereby obtaining the decimal part of the analog delay difference.
  • the correction value is determined.
  • the delay difference determination unit 222E outputs this correction value to the positioning unit 21.
  • a filter operation such as a Kalman filter may be used to determine the analog delay difference.
  • the filter may be configured such that the difference value between the single phase difference ⁇ Z 12 B and the estimated single-difference value ⁇ e of the geometric distance is included in the observation vector, and the fractional part of the analog delay difference is included in the state vector.
  • FIG. 16 is a flowchart of an analog delay difference calculation method and positioning method according to the sixth embodiment of the present invention.
  • step S601 it is determined whether a baseline vector is stored. If the baseline vector is stored (S601: YES), the process proceeds to step S602. If the baseline vector is not stored (S601: NO), the baseline vector is acquired from the result of the relative positioning calculation using the method shown in the other embodiment.
  • step S602 the single-point difference ⁇ e of the geometric distance is estimated using the baseline vector.
  • step S603 the single phase difference (observation single difference) ⁇ Z 12 B of the positioning signal is calculated.
  • the antennas connected to the plurality of receiving units are the same.
  • step S604 a difference value between the single difference (observation single difference) ⁇ Z 12 B of the positioning signal carrier phase and the single difference ⁇ e of the geometric distance is calculated.
  • step S605 the remainder obtained by dividing the difference value by the carrier frequency ⁇ B is calculated as a correction value based on the analog delay difference.
  • FIG. 17 is a block diagram showing a configuration of a positioning signal receiving apparatus according to the seventh embodiment of the present invention.
  • the positioning signal receiving device 10F includes antennas 100A and 100B, receiving units 11A and 11B, a calculating unit 20, and a clock generating unit 40.
  • the calculation unit 20 includes a phase difference change amount calculation unit 23 and an estimation unit 24.
  • the antenna 100A is the “first antenna” of the present invention
  • the antenna 100B is the “second antenna” of the present invention.
  • the antennas 100A and 100B receive positioning signals from the positioning satellite SV.
  • the receiving unit 11A is the “first receiving unit” of the present invention, and the receiving unit 11B is the “second receiving unit” of the present invention.
  • the receiving unit 11A is connected to the antenna 100A.
  • the receiving unit 11B is connected to the antenna 100B.
  • a clock signal is input from the clock generator 40 to the receivers 11A and 11B.
  • the receivers 11A and 11B are synchronized by this clock signal.
  • the receiving unit 11A captures and tracks the positioning signal by performing correlation processing between the positioning signal received by the antenna 100A and a replica signal of the positioning signal.
  • the receiving unit 11A outputs the code demodulated by the correlation processing to the estimating unit 24.
  • the receiving unit 11A detects the carrier phase of the positioning signal (the “first carrier phase” of the present invention) by correlation processing, and outputs it to the phase difference calculating unit 23 and the estimating unit 24. At this time, the receiving unit 11A associates the positioning satellite SV that is the transmission source of the positioning signal from which the carrier phase has been acquired, and outputs the carrier phase.
  • the receiving unit 11B captures and tracks the positioning signal by performing correlation processing between the positioning signal received by the antenna 100B and the replica signal of the positioning signal.
  • the receiving unit 11B outputs the code demodulated by the correlation processing to the estimating unit 24.
  • the receiving unit 11B detects the carrier phase of the positioning signal (the “second carrier phase” of the present invention) by correlation processing, and outputs it to the phase difference calculating unit 23 and the estimating unit 24.
  • the receiving unit 11B associates the positioning satellite SV that is the transmission source of the positioning signal from which the carrier phase has been acquired, and outputs the carrier phase.
  • the phase difference calculator 23 calculates the phase difference between the carrier phase output from the receiver 11A and the carrier phase output from the receiver 11B.
  • the phase difference calculation unit 23 refers to the positioning satellite SV associated with the carrier phase, and the phase difference (single phase difference between antennas) with respect to the positioning signal of the positioning satellite SV common to the carrier phase output from the receiving units 11A and 11B. ) Is calculated.
  • the phase difference calculation unit 23 calculates a single phase difference between antennas for a plurality of positioning satellites.
  • the phase difference calculation unit 23 outputs the single phase difference between the antennas to the estimation unit 24.
  • the estimation unit 24 sets a filter operation including the analog delay difference ⁇ AD between the reception unit 11A and the reception unit 11B in the state vector, and estimates the analog delay difference ⁇ AD.
  • a Kalman filter is used as the filter.
  • the state vector usually includes a position, a speed, and an attitude angle in addition to the analog delay amount ⁇ AD.
  • the observation vector of the Kalman filter includes a difference value between the single phase difference between antennas calculated from the previously estimated attitude angle and the single phase difference between antennas from the phase difference calculation unit 23.
  • the observation vector usually includes a position, velocity, and attitude angle obtained from a positioning result based on the code phase difference.
  • the analog delay difference ⁇ AD can be estimated. Thereby, the relative positioning using the single phase difference between the antennas can be reliably realized, and a highly accurate positioning result can be obtained.
  • FIG. 18 is a flowchart of an analog delay difference estimation method according to the seventh embodiment of the present invention.
  • step S701 a single phase difference between antennas is sequentially acquired over time.
  • step S702 a difference value (observation error of the single phase difference between antennas) between the single phase difference between antennas calculated in step S701 and the single phase difference between antennas based on the result of the previous filter calculation is calculated.
  • This difference value is set as an element of the observation vector of the filter operation.
  • step S703 the analog delay difference is set as an element of the state vector.
  • step S704 a filter operation in which the observation vector and the state vector are set in steps S702 and S703 is executed to estimate the analog delay difference.
  • FIG. 19 is a block diagram showing a configuration of a positioning signal receiving apparatus according to the eighth embodiment of the present invention.
  • the positioning signal receiving device 10G according to the present embodiment is different from the positioning signal receiving device 10F according to the seventh embodiment in the configuration and processing of the arithmetic unit 20G.
  • the calculation unit 20G includes a phase difference calculation unit 23G, an estimation unit 24G, and an integration processing unit 25G.
  • the phase difference calculation unit 23G has the same configuration as the phase difference calculation unit 23F of the positioning signal reception device 10F according to the seventh embodiment, and executes the same processing.
  • the estimation unit 24G performs a filter operation.
  • a Kalman filter is used as the filter.
  • the state vector of this filter calculation includes the analog delay difference ⁇ AD between the receiving unit 11A and the receiving unit 11B and the correction value for the integration process.
  • the correction value for the integration process includes an estimated value of sensor error with respect to the output of the IMU sensor 50, a position correction value, a speed correction value, and a posture angle correction value.
  • the observation vector of the filter calculation is a difference value (single-to-antenna single-phase difference between the single-phase phase difference between the antennas output from the phase difference calculation unit 23G and the single-phase difference between antennas calculated from the attitude angle output from the integration processing unit 25G. Phase difference error). Further, the output value of the IMU sensor 50 is included in the observation vector of the filter calculation.
  • the estimation unit 24G executes this filter operation to estimate the analog delay difference ⁇ AD and the correction value for the integration process. By performing such processing, the analog delay difference ⁇ AD can be estimated.
  • the estimation unit 24G outputs the correction value for the integration process to the integration processing unit 25G.
  • the sensor output from the IMU sensor 50 is input to the integrated processing unit 25G.
  • Examples of the sensor output include acceleration and angular velocity.
  • the integrated processing unit 25G calculates the speed, position, and posture angle based on the sensor output. At this time, the integration processing unit 25G uses the correction value for the integration processing for calculating the speed, position, and posture angle. Thereby, a speed, a position, and an attitude angle can be calculated with high accuracy.
  • FIG. 20 is a flowchart of an analog delay difference estimation method according to the eighth embodiment of the present invention.
  • step S801 single phase differences between antennas are sequentially acquired over time.
  • step S802 the sensor output of the IMU sensor 50 is sequentially acquired.
  • step S803 a difference value (observation error of the single phase difference between the antennas) between the single phase difference between the antennas calculated in step S801 and the single phase difference between the antennas based on the result of the previous integration process is calculated.
  • This difference value is set as an element of the observation vector of the filter operation.
  • step S804 the analog delay difference is set as an element of the state vector.
  • step S805 a filter operation in which the observation vector and the state vector are set in steps S803 and S804 is executed to estimate the analog delay difference.
  • the calculation (including estimation) of the analog delay difference ⁇ AD may be executed at all timings (all epochs) at which the single phase difference between the antennas is calculated. You may go on.
  • FIG. 21 is a flowchart for calculating the analog delay difference based on the operating time.
  • step S911 the operation time is counted.
  • the operating time may be counted using a timepiece provided in the positioning signal receiving device or using a time that can be demodulated from the positioning signal.
  • step S912 the operating time is compared with the threshold time THh for calculating the analog delay difference. If the operation time does not satisfy the threshold time THh (S912: NO), the operation time is continuously counted. If the operating time reaches the threshold time THh (S912: YES), the process proceeds to step S913.
  • step S913 an analog delay difference ⁇ AD is calculated.
  • the analog delay difference ⁇ AD can be calculated with high accuracy even if the analog delay difference ⁇ AD changes due to a change with time of the receiving unit. Further, the processing load for calculating the analog delay difference ⁇ AD can be reduced as compared with the aspect of calculating the analog delay difference ⁇ AD for all epochs.
  • FIG. 22 is a flowchart for calculating an analog delay difference based on temperature.
  • step S921 the temperature is measured.
  • step S922 the amount of change in temperature is compared with an analog delay difference calculation threshold value TH ⁇ T. If the temperature change amount does not reach the threshold value TH ⁇ T (S922: NO), the temperature measurement is continued. If the temperature change amount reaches the threshold value TH ⁇ T (S922: YES), the process proceeds to step S923.
  • step S923 an analog delay difference ⁇ AD is calculated.
  • the analog delay difference ⁇ AD can be calculated with high accuracy even if the analog delay difference ⁇ AD changes due to a change in the temperature of the receiving unit.
  • FIG. 23 is a flowchart for calculating the analog delay difference based on the altitude.
  • step S931 the altitude is measured.
  • step S932 the amount of change in altitude and the threshold value TH ⁇ Ta for calculating the analog delay difference are compared. If the change amount of the altitude is less than the threshold value TH ⁇ Ta (S932: NO), the altitude measurement is continued. If the amount of change in altitude reaches the threshold value TH ⁇ Ta (S932: YES), the process proceeds to step S933.
  • step S933 an analog delay difference ⁇ AD is calculated.
  • the analog delay difference ⁇ AD can be calculated with high accuracy even if the analog delay difference ⁇ AD changes due to a change in the altitude of the receiving unit.
  • FIG. 24 is a flowchart for calculating the analog delay difference based on the speed and the rotation amount.
  • step S941 the speed is calculated.
  • the speed is calculated based on, for example, the change amount of the pseudo distance based on the code phase difference.
  • step S942 the azimuth is calculated.
  • the azimuth is calculated, for example, from the position and posture angle obtained from the result of independent positioning using the code phase difference.
  • step S943 the amount of change in speed is compared with the threshold THv for analog delay difference calculation. Also, the amount of change in azimuth and the threshold value TH ⁇ for analog delay difference calculation are compared. If the amount of change in speed is less than the threshold value THv, or if the amount of change in direction is less than the threshold value TH ⁇ (S943: NO), the calculation of the speed and direction is continued. If the speed change amount reaches the threshold value THv and the azimuth change amount (rotation amount) reaches the threshold value TH ⁇ (S943: YES), the process proceeds to step S944.
  • step S944 the elapsed time is measured. If the elapsed time does not reach the preset threshold time (S944: NO), the calculation of the speed and direction is continued. That is, the calculation of the speed and direction is continued in the period in which the change in speed and direction continues or in the period in which the speed and direction do not change for a short time. If the elapsed time has reached the threshold time (S944: YES), the process proceeds to step S945. That is, when it is detected that the change in speed and direction has not changed over a predetermined time, the process proceeds to step S945.
  • step S945 an analog delay difference ⁇ AD is calculated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

[Problem] To calculate the difference between analog delay amounts occurring at a plurality of reception units. [Solution] A positioning signal reception device 10 provided with an antenna 100A and an antenna 100B that receive a positioning signal, reception units 11A and 11B, and a calculation unit 20. The reception unit 11A is connected to either the antenna 100A or the antenna 100B and detects a first carrier wave phase of the positioning signal. The reception unit 11B is connected to the antenna 100B and detects a second carrier wave phase of the positioning signal. The calculation unit 20 calculates the phases difference between the first carrier wave phase and the second carrier wave phase in a state in which the reception unit 11A and the reception unit 11B are connected to the antenna 100B. The calculation unit 20 uses the phase difference (the phase difference between the reception units) to calculate the difference ΔAD between the analog delay amounts of the reception unit 11A and the reception unit 11B.

Description

測位信号受信装置Positioning signal receiver
 本発明は、船舶、飛行体、自動車等の移動体に配置され、測位信号を受信して移動体の測位等を行う測位信号受信装置に関する。 The present invention relates to a positioning signal receiving device that is arranged on a moving body such as a ship, a flying body, or an automobile and that receives a positioning signal and performs positioning of the moving body.
 特許文献1、特許文献2には、GPS衛星からの測位信号を受信して、装置の方位、位置、速度を算出する構成が記載されている。特許文献1、特許文献2に記載の装置は、2基のアンテナを備える。各アンテナは、GPS衛星からの測位信号を受信する。 Patent Document 1 and Patent Document 2 describe a configuration for receiving a positioning signal from a GPS satellite and calculating the azimuth, position, and speed of the device. The devices described in Patent Document 1 and Patent Document 2 include two antennas. Each antenna receives a positioning signal from a GPS satellite.
 特許文献1、特許文献2に記載の装置は、GPSデータ処理部を備える。GPSデータ処理部は、各アンテナで受信した測位信号から搬送波位相の一重位相差を算出する。GPSデータ処理部は、一重位相差を用いて、測位、方位の算出を行っている。 The devices described in Patent Document 1 and Patent Document 2 include a GPS data processing unit. The GPS data processing unit calculates a single phase difference of the carrier wave phase from the positioning signal received by each antenna. The GPS data processing unit performs positioning and azimuth calculation using a single phase difference.
特開2010-197353号公報JP 2010-197353 A 米国特許第6061631号明細書US Pat. No. 6,616,631
 特許文献1に示すような一重位相差を用いて測位等を行う方法では、複数の受信部を用いることになる。しかしながら、各受信部のアナログ遅延量は、一般的に異なる。これにより、受信部間でアナログ遅延量の差が生じる。 In the method of performing positioning or the like using a single phase difference as shown in Patent Document 1, a plurality of receiving units are used. However, the analog delay amount of each receiving unit is generally different. As a result, a difference in analog delay amount occurs between the receiving units.
 アナログ遅延量の差は、一重位相差の誤差に含まれる。したがって、アナログ遅延量が生じることによって、一重位相差の誤差は大きくなる。このため、アナログ遅延量を補正しなければ、測位等の算出精度は劣化してしまう。 The difference in analog delay amount is included in the single phase difference error. Therefore, when the analog delay amount occurs, the single phase difference error increases. For this reason, unless the analog delay amount is corrected, the calculation accuracy such as positioning deteriorates.
 したがって、本発明の目的は、複数の受信部で生じるアナログ遅延量の差を算出することにある。 Therefore, an object of the present invention is to calculate the difference between analog delay amounts generated in a plurality of receiving units.
 この発明の測位信号受信装置は、測位信号を受信する第1アンテナおよび第2アンテナ、第1、第2受信部、および演算部を備える。第1受信部は、第1アンテナに接続し、測位信号の第1搬送波位相を検出する。第2受信部は、第2アンテナに接続し、測位信号の第2搬送波位相を検出する。演算部は、第1搬送波位相と第2搬送波位相との差を用いて、第1受信部と第2受信部とのアナログ遅延量の差を算出する。 The positioning signal receiving apparatus of the present invention includes a first antenna and a second antenna that receive a positioning signal, first and second receiving units, and an arithmetic unit. The first receiving unit is connected to the first antenna and detects the first carrier phase of the positioning signal. The second receiving unit is connected to the second antenna and detects the second carrier phase of the positioning signal. The computing unit calculates a difference in analog delay amount between the first receiving unit and the second receiving unit using the difference between the first carrier phase and the second carrier phase.
 この構成では、第1搬送波位相と第2搬送波位相の差が第1受信部と第2受信部とのアナログ遅延量の差に応じて変化することを利用している。したがって、第1搬送波位相と第2搬送波位相の差を用い、この位相の差に基づく演算を行うことによって、アナログ遅延量の差が算出される。 This configuration utilizes the fact that the difference between the first carrier phase and the second carrier phase changes according to the difference in the analog delay amount between the first receiver and the second receiver. Therefore, the difference in the analog delay amount is calculated by using the difference between the first carrier phase and the second carrier phase and performing an operation based on this phase difference.
 また、この発明の測位信号受信装置は、第1アンテナおよび第2アンテナのいずれかを第1受信部に選択的に接続するスイッチを備える。演算部は、スイッチによって第1受信部と第2受信部が第2アンテナに接続された際に検出する第1搬送波位相と第2搬送波位相からアナログ遅延量の差を算出する遅延差算出部を備える。 Further, the positioning signal receiving apparatus of the present invention includes a switch for selectively connecting either the first antenna or the second antenna to the first receiving unit. The calculation unit includes a delay difference calculation unit that calculates a difference in analog delay amount from the first carrier phase and the second carrier phase detected when the first receiver and the second receiver are connected to the second antenna by the switch. Prepare.
 この構成では、第1受信部と第2受信部に対して同じアンテナで受信した測位信号が入力される。したがって、第1受信部が接続するアンテナと第2受信部が接続するアンテナが異なる場合に生じるアンテナ間の位相差が、この構成では生じない。これにより、アナログ遅延量の差が、より精度良く算出される。 In this configuration, a positioning signal received by the same antenna is input to the first receiver and the second receiver. Therefore, the phase difference between the antennas that occurs when the antenna connected to the first receiver is different from the antenna connected to the second receiver does not occur in this configuration. Thereby, the difference in the analog delay amount is calculated with higher accuracy.
 また、この発明の測位信号受信装置では、第1受信部は第2アンテナにも接続されている。演算部は、第2アンテナで受信した測位信号に対する第1受信部が検出した第1搬送波位相と第2受信部が検出した第2搬送波位相とからアナログ遅延量の差を算出する遅延差算出部を備える。 In the positioning signal receiver of the present invention, the first receiving unit is also connected to the second antenna. The arithmetic unit calculates a difference in analog delay amount from the first carrier phase detected by the first receiver with respect to the positioning signal received by the second antenna and the second carrier phase detected by the second receiver. Is provided.
 この構成では、第1受信部と第2受信部に対して同じアンテナで受信した測位信号が入力される。したがって、第1受信部が接続するアンテナと第2受信部が接続するアンテナが異なる場合に生じるアンテナ間の位相差が、この構成では生じない。これにより、アナログ遅延量の差が、より精度良く算出される。さらに、スイッチを用いないため、測位信号受信装置の構成要素を少なくすることができる。 In this configuration, a positioning signal received by the same antenna is input to the first receiver and the second receiver. Therefore, the phase difference between the antennas that occurs when the antenna connected to the first receiver is different from the antenna connected to the second receiver does not occur in this configuration. Thereby, the difference in the analog delay amount is calculated with higher accuracy. Furthermore, since no switch is used, the components of the positioning signal receiving device can be reduced.
 また、この発明の測位信号受信装置では、演算部は、一重位相差算出部および遅延量決定部を備える。一重位相差算出部は、第1搬送波位相と第2搬送波位相との一重位相差を、互いに異なる複数の測位信号について算出する。遅延量決定部は、複数の測位信号に対する一重位相差を互いに比較し、比較結果からアナログ遅延量の差を決定する。 In the positioning signal receiving apparatus of the present invention, the calculation unit includes a single phase difference calculation unit and a delay amount determination unit. The single phase difference calculation unit calculates a single phase difference between the first carrier phase and the second carrier phase for a plurality of different positioning signals. The delay amount determination unit compares single phase differences for a plurality of positioning signals with each other, and determines an analog delay amount difference from the comparison result.
 この構成では、複数の測位信号に対しても、アンテナ間の一重位相差が第1受信部と第2受信部とのアナログ遅延量の差に応じて変化することを利用している。したがって、複数の測位信号に対するアンテナ間の一重位相差に対して統計的な処理を行うことによって、アナログ遅延量の差が精度良く算出される。特に、GPSでは複数の測位信号の搬送波周波数は同じであるので、各一重位相差に対して周波数の違いによる補正を行わなくても、アナログ遅延量の差が精度良く算出される。 This configuration utilizes the fact that the single phase difference between the antennas changes in accordance with the difference in the analog delay amount between the first receiver and the second receiver even for a plurality of positioning signals. Therefore, by performing statistical processing on the single phase difference between the antennas for a plurality of positioning signals, the difference in the analog delay amount is calculated with high accuracy. In particular, in GPS, the carrier wave frequencies of a plurality of positioning signals are the same, so that the difference in the analog delay amount can be accurately calculated without correcting each single phase difference due to the difference in frequency.
 また、この発明の測位信号受信装置では、演算部は、一重位相差算出部、基線ベクトル記憶部、および、遅延量決定部を備える。一重位相差算出部は、第1搬送波位相と第2搬送波位相との一重位相差を算出する。基線ベクトル記憶部は、第1アンテナと第2アンテナを結ぶ基線ベクトルを記憶する。遅延量決定部は、基線ベクトルから幾何距離の一重差を算出し、幾何距離の一重差と一重位相差との差分を観測ベクトルに含み、第1受信部と第2受信部のアナログ遅延量の差を状態ベクトルに含むフィルタ演算を用いて、アナログ遅延量の差を決定する。 In the positioning signal receiving apparatus of the present invention, the calculation unit includes a single phase difference calculation unit, a baseline vector storage unit, and a delay amount determination unit. The single phase difference calculation unit calculates a single phase difference between the first carrier phase and the second carrier phase. The baseline vector storage unit stores a baseline vector connecting the first antenna and the second antenna. The delay amount determination unit calculates a single difference of the geometric distance from the baseline vector, includes a difference between the single difference of the geometric distance and the single phase difference in the observation vector, and determines the analog delay amount of the first reception unit and the second reception unit. A difference in the analog delay amount is determined by using a filter operation including the difference in the state vector.
 この構成では、アナログ遅延量の影響を受けない方法で算出された基線ベクトルによる幾何距離の一重差を用いることによって、アナログ遅延量の差が高精度に算出される。 In this configuration, the difference in analog delay amount is calculated with high accuracy by using a single difference in geometric distance based on the baseline vector calculated by a method that is not affected by the analog delay amount.
 また、この発明の測位信号受信装置では、演算部は、一重位相差算出部および推定部を備える。一重位相差算出部は、第1搬送波位相と第2搬送波位相の一重位相差を同一の測位信号について複数の時刻で算出する。推定部は、一重位相差の観測誤差を観測ベクトルに含み、第1受信部と第2受信部のアナログ遅延量の差を状態ベクトルに含むフィルタ演算を用いて、アナログ遅延量の差を推定する。 Further, in the positioning signal receiving apparatus of the present invention, the calculation unit includes a single phase difference calculation unit and an estimation unit. The single phase difference calculation unit calculates a single phase difference between the first carrier phase and the second carrier phase at a plurality of times for the same positioning signal. The estimation unit estimates an analog delay amount difference using a filter operation that includes an observation error of a single phase difference in an observation vector, and includes a difference in analog delay amount between the first receiving unit and the second receiving unit in a state vector. .
 また、この発明の測位信号受信装置では、演算部は、一重位相差算出部、推定部、および、統合処理部を備える。一重位相差算出部は、第1搬送波位相と第2搬送波位相の一重位相差を複数の時刻で算出する。推定部は、統合処理部で補正された測位データに基づく一重位相差と一重位相差算出部によって得られる一重位相差との差分を観測ベクトルに含み、第1受信部と第2受信部のアナログ遅延量の差および慣性センサの出力に含まれる誤差を状態ベクトルに含むフィルタ演算を用いて、アナログ遅延量の差および慣性センサの出力に含まれる誤差を推定する。統合処理部は、推定部で推定された慣性センサの出力に含まれる誤差を用いて、慣性センサからの出力を補正する。 Further, in the positioning signal receiving apparatus of the present invention, the calculation unit includes a single phase difference calculation unit, an estimation unit, and an integration processing unit. The single phase difference calculation unit calculates a single phase difference between the first carrier phase and the second carrier phase at a plurality of times. The estimation unit includes a difference between the single phase difference based on the positioning data corrected by the integrated processing unit and the single phase difference obtained by the single phase difference calculation unit in the observation vector, and the analog of the first reception unit and the second reception unit A difference in the delay amount and an error included in the output of the inertial sensor are estimated by using a filter operation including the error included in the output of the inertial sensor in the state vector. The integration processing unit corrects the output from the inertial sensor using an error included in the output of the inertial sensor estimated by the estimation unit.
 これらの構成では、状態推定のフィルタ演算によって、アナログ遅延量の差が高精度に算出される。 In these configurations, the difference in the analog delay amount is calculated with high accuracy by the filter operation for state estimation.
 この発明によれば、複数の受信部間で生じるアナログ遅延量の差を算出できる。これにより、アンテナ間一重位相差を用いた測位や方位の算出を高精度に行うことができる。 According to the present invention, it is possible to calculate the difference in analog delay amount generated between a plurality of receiving units. Thereby, positioning using a single phase difference between antennas and calculation of an azimuth can be performed with high accuracy.
本発明の第1の実施形態に係る測位信号受信装置の構成を示すブロック図The block diagram which shows the structure of the positioning signal receiver which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る測位信号受信装置のアナログ遅延差の算出時の構成を示すブロック図The block diagram which shows the structure at the time of calculation of the analog delay difference of the positioning signal receiver which concerns on the 1st Embodiment of this invention 本発明の第1の実施形態に係る測位信号受信装置の相対測位時の構成を示すブロック図The block diagram which shows the structure at the time of relative positioning of the positioning signal receiver which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係るアナログ遅延差算出方法および測位方法のフローチャートFlowchart of analog delay difference calculation method and positioning method according to the first embodiment of the present invention 補正値の算出タイミングを決定する処理を示すフローチャートThe flowchart which shows the process which determines the calculation timing of a correction value 補正値の算出タイミングを決定する処理を示すフローチャートThe flowchart which shows the process which determines the calculation timing of a correction value 補正値の算出タイミングを決定する処理を示すフローチャートThe flowchart which shows the process which determines the calculation timing of a correction value 本発明の第2の実施形態に係る測位信号受信装置の構成を示すブロック図The block diagram which shows the structure of the positioning signal receiver which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る測位信号受信装置の構成を示すブロック図The block diagram which shows the structure of the positioning signal receiver which concerns on the 3rd Embodiment of this invention. 本発明の第4の実施形態に係る測位信号受信装置の構成を示すブロック図The block diagram which shows the structure of the positioning signal receiver which concerns on the 4th Embodiment of this invention. 本発明の第5の実施形態に係る測位信号受信装置の構成を示すブロック図The block diagram which shows the structure of the positioning signal receiver which concerns on the 5th Embodiment of this invention. 本発明の第5の実施形態に係るアナログ遅延差算出方法および測位方法のフローチャートFlowchart of analog delay difference calculation method and positioning method according to the fifth embodiment of the present invention 本発明の第5の実施形態に係るアナログ遅延差の具体的な算出方法のフローチャートThe flowchart of the concrete calculation method of the analog delay difference which concerns on the 5th Embodiment of this invention. 測位衛星毎に搬送波の周波数が異なる測位システムにおけるアナログ遅延差算出方法および測位方法のフローチャートFlow chart of analog delay difference calculation method and positioning method in positioning system in which carrier wave frequency differs for each positioning satellite 本発明の第6の実施形態に係る測位信号受信装置の構成を示すブロック図The block diagram which shows the structure of the positioning signal receiver which concerns on the 6th Embodiment of this invention. 本発明の第6の実施形態に係るアナログ遅延差算出方法および測位方法のフローチャートFlowchart of analog delay difference calculation method and positioning method according to sixth embodiment of the present invention 本発明の第7の実施形態に係る測位信号受信装置の構成を示すブロック図The block diagram which shows the structure of the positioning signal receiver which concerns on the 7th Embodiment of this invention. 本発明の第7の実施形態に係るアナログ遅延差推定方法のフローチャートThe flowchart of the analog delay difference estimation method which concerns on the 7th Embodiment of this invention. 本発明の第8の実施形態に係る測位信号受信装置の構成を示すブロック図The block diagram which shows the structure of the positioning signal receiver which concerns on the 8th Embodiment of this invention. 本発明の第8の実施形態に係るアナログ遅延差の推定方法のフローチャートFlowchart of Analog Delay Difference Estimation Method According to Eighth Embodiment of the Invention 稼働時間に基づいてアナログ遅延差を算出するフローチャートFlowchart for calculating analog delay difference based on operating time 温度に基づいてアナログ遅延差を算出するフローチャートFlow chart for calculating analog delay difference based on temperature 高度に基づいてアナログ遅延差を算出するフローチャートFlow chart to calculate analog delay difference based on altitude 速度、回動量に基づいてアナログ遅延差を算出するフローチャートFlowchart for calculating analog delay difference based on speed and rotation amount
 本発明の第1の実施形態に係る測位信号受信装置について、図を参照して説明する。図1は、本発明の第1の実施形態に係る測位信号受信装置の構成を示すブロック図である。図2は、本発明の第1の実施形態に係る測位信号受信装置のアナログ遅延差の算出時の構成を示すブロック図である。図3は、本発明の第1の実施形態に係る測位信号受信装置の相対測位時の構成を示すブロック図である。 A positioning signal receiving apparatus according to the first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing a configuration of a positioning signal receiving apparatus according to the first embodiment of the present invention. FIG. 2 is a block diagram showing a configuration at the time of calculating an analog delay difference of the positioning signal receiving apparatus according to the first embodiment of the present invention. FIG. 3 is a block diagram showing a configuration at the time of relative positioning of the positioning signal receiving apparatus according to the first embodiment of the present invention.
 測位信号受信装置10は、アンテナ100A,100B、受信部11A,11B、演算部20、スイッチ30、およびクロック発生部40を備える。演算部20は、測位部21および遅延差算出部22を備える。 The positioning signal receiving apparatus 10 includes antennas 100A and 100B, receiving units 11A and 11B, a calculation unit 20, a switch 30, and a clock generation unit 40. The calculation unit 20 includes a positioning unit 21 and a delay difference calculation unit 22.
 アンテナ100Aは本発明の「第1アンテナ」であり、アンテナ100Bは本発明の「第2アンテナ」である。受信部11Aは本発明の「第1受信部」であり、受信部11Bは本発明の「第2受信部」である。 The antenna 100A is the “first antenna” of the present invention, and the antenna 100B is the “second antenna” of the present invention. The receiver 11A is the “first receiver” of the present invention, and the receiver 11B is the “second receiver” of the present invention.
 アンテナ100A,100Bは、測位衛星SVからの測位信号を受信する。測位信号は、例えばGPS(Grobal Positioning System)信号である。なお、他のGNSS(Grobal Navigation Satellite System)で用いられる信号(GNSS信号)であっても、本実施形態の構成は適用される。 Antennas 100A and 100B receive positioning signals from positioning satellites SV. The positioning signal is, for example, a GPS (Global Positioning System) signal. Note that the configuration of the present embodiment is applied even to a signal (GNSS signal) used in another GNSS (Global Navigation Satellite System).
 受信部11A,11Bには、クロック発生部40からクロック信号が入力されている。受信部11A,11Bは、このクロック信号によって同期されている。 The clock signal is input from the clock generator 40 to the receivers 11A and 11B. The receivers 11A and 11B are synchronized by this clock signal.
 受信部11Aは、スイッチ30によって、アンテナ100Aとアンテナ100Bに対して選択的に接続されている。受信部11Aは、アナログ遅延量の差(アナログ遅延差)の算出時には、図2に示すように、アンテナ100Bに接続されている。受信部11Aは、相対測位時には、図3に示すように、アンテナ100Aに接続されている。受信部11Bは、アンテナ100Bに接続されている。 The receiving unit 11A is selectively connected to the antenna 100A and the antenna 100B by the switch 30. The reception unit 11A is connected to the antenna 100B as shown in FIG. 2 when calculating the difference in analog delay amount (analog delay difference). The receiver 11A is connected to the antenna 100A during relative positioning, as shown in FIG. The receiving unit 11B is connected to the antenna 100B.
 受信部11Aは、アンテナ100Aに接続されている態様では、アンテナ100Aで受信された測位信号と測位信号のレプリカ信号とを相関処理することによって、測位信号を捕捉、追尾する。受信部11Aは相関処理によって復調されたコードを測位部21に出力する。 In the aspect connected to the antenna 100A, the reception unit 11A captures and tracks the positioning signal by performing correlation processing between the positioning signal received by the antenna 100A and the replica signal of the positioning signal. The receiving unit 11A outputs the code demodulated by the correlation processing to the positioning unit 21.
 受信部11Aは、アンテナ100Bに接続されている態様では、アンテナ100Bで受信された測位信号と測位信号のレプリカ信号とを相関処理することによって、測位信号を捕捉、追尾する。 In the aspect connected to the antenna 100B, the reception unit 11A captures and tracks the positioning signal by performing correlation processing between the positioning signal received by the antenna 100B and the replica signal of the positioning signal.
 受信部11Aは、アンテナ100A,100Bのいずれに接続される態様においても、相関処理によって測位信号の搬送波位相(本発明の「第1搬送波位相」である。)を検出して、測位部21および遅延差算出部22に出力する。この際、受信部11Aは、搬送波位相を取得した測位信号の送信元の測位衛星SVを関連付けして、搬送波位相を出力する。 The receiving unit 11A detects the carrier phase of the positioning signal (corresponding to the “first carrier phase” of the present invention) by correlation processing, regardless of whether the receiving unit 11A is connected to either the antenna 100A or 100B. Output to the delay difference calculation unit 22. At this time, the receiving unit 11A associates the positioning satellite SV that is the transmission source of the positioning signal from which the carrier phase has been acquired, and outputs the carrier phase.
 受信部11Bは、アンテナ100Bで受信された測位信号と測位信号のレプリカ信号とを相関処理することによって、測位信号を捕捉、追尾する。受信部11Bは相関処理によって復調されたコードを測位部21に出力する。受信部11Bは、相関処理によって搬送波位相(本発明の「第2搬送波位相」である。)を検出して、測位部21および遅延差算出部22に出力する。この際、受信部11Bは、搬送波位相を取得した測位信号の送信元の測位衛星SVを関連付けして、搬送波位相を出力する。 The receiving unit 11B captures and tracks the positioning signal by performing correlation processing between the positioning signal received by the antenna 100B and the replica signal of the positioning signal. The receiving unit 11B outputs the code demodulated by the correlation processing to the positioning unit 21. The receiving unit 11 </ b> B detects the carrier wave phase (the “second carrier wave phase” of the present invention) by correlation processing, and outputs it to the positioning unit 21 and the delay difference calculating unit 22. At this time, the receiving unit 11B associates the positioning satellite SV that is the transmission source of the positioning signal from which the carrier phase has been acquired, and outputs the carrier phase.
 測位部21は、受信部11A,11Bからのコードを用いて航法メッセージを復調する。測位部21は、アンテナ100Aで受信して受信部11Aで取得した搬送波位相(相対測位用の第1搬送波位相)と、アンテナ100Bで受信して受信部11Bで取得した搬送波位相(相対測位用の第2搬送波位相)とを取得する。測位部21は、搬送波位相に関連付けられた測位衛星SVに基づいて、測位衛星SVからの測位信号に対応する相対測位用の第1搬送波位相と相対測位用の第2搬送波位相とを組み合わせる。 The positioning unit 21 demodulates the navigation message using the codes from the receiving units 11A and 11B. The positioning unit 21 receives the carrier phase received by the antenna 100A and acquired by the receiving unit 11A (first carrier phase for relative positioning), and the carrier phase received by the antenna 100B and acquired by the receiving unit 11B (for relative positioning). Second carrier phase). The positioning unit 21 combines the first carrier phase for relative positioning and the second carrier phase for relative positioning corresponding to the positioning signal from the positioning satellite SV based on the positioning satellite SV associated with the carrier phase.
 測位部21は、組み合わせた相対測位用の第1搬送波位相と相対測位用の第2搬送波位相とを用いて、相対測位を実行する。具体的には、測位部21は、相対測位用の第1搬送波位相と相対測位用の第2搬送波位相とのアンテナ間一重位相差を算出する。測位部21は、アンテナ間一重位相差から、アンテナ100Aと測位衛星SVとの距離と、アンテナ100Bと測位衛星SVとの距離との差である行路差を算出する。測位部21は、復調された航法メッセージから測位衛星SVの位置を取得する。測位部21は、受信部11A,11Bにおける相関処理によって得られたコード擬似距離を用いて既知の方法からアンテナ100A,100Bの位置を算出する。測位部21は、測位衛星SVの位置とアンテナ100A,100Bの位置を用いて、行路差に対する方向余弦ベクトルを算出する。測位部21は、行路差と方向余弦ベクトルとからアンテナ100A,100Bの相対ベクトルを算出する。測位部21は、相対ベクトルを、3個以上の測位衛星を用いて算出する。測位部21は、相対ベクトルから、アンテナ100A,100Bが配置される測位信号受信装置10および当該測位信号受信装置10が搭載される移動体の姿勢または方位を算出する。 The positioning unit 21 performs relative positioning using the combined first carrier phase for relative positioning and second carrier phase for relative positioning. Specifically, the positioning unit 21 calculates a single phase difference between antennas between a first carrier phase for relative positioning and a second carrier phase for relative positioning. The positioning unit 21 calculates a path difference that is a difference between the distance between the antenna 100A and the positioning satellite SV and the distance between the antenna 100B and the positioning satellite SV from the single phase difference between the antennas. The positioning unit 21 acquires the position of the positioning satellite SV from the demodulated navigation message. The positioning unit 21 calculates the positions of the antennas 100A and 100B from a known method using the code pseudo distance obtained by the correlation processing in the receiving units 11A and 11B. The positioning unit 21 calculates a direction cosine vector for the path difference using the position of the positioning satellite SV and the positions of the antennas 100A and 100B. The positioning unit 21 calculates the relative vectors of the antennas 100A and 100B from the path difference and the direction cosine vector. The positioning unit 21 calculates a relative vector using three or more positioning satellites. The positioning unit 21 calculates, from the relative vector, the positioning signal receiving device 10 in which the antennas 100A and 100B are arranged and the posture or orientation of the moving body in which the positioning signal receiving device 10 is mounted.
 測位部21は、このような相対測位の演算において、遅延差算出部22によって算出されたアナログ遅延差を用いる。アナログ遅延差とは、第1受信部11A内での測位信号の伝送遅延量と、第2受信部11B内での測位信号の伝送遅延量との差である。 The positioning unit 21 uses the analog delay difference calculated by the delay difference calculating unit 22 in such relative positioning calculation. The analog delay difference is a difference between a positioning signal transmission delay amount in the first receiving unit 11A and a positioning signal transmission delay amount in the second receiving unit 11B.
 遅延差算出部22は、アンテナ100Bで受信して受信部11Aで取得した搬送波位相(遅延差算出用の第1搬送波位相)と、アンテナ100Bで受信して受信部11Bで取得した搬送波位相(遅延差算出用の第2搬送波位相)とを取得する。遅延差算出用の第1搬送波位相を取得した測位信号と遅延差算出用の第2搬送波位相を取得した測位信号は同じ測位信号である。 The delay difference calculator 22 receives the carrier phase (first carrier phase for delay difference calculation) received by the antenna 100B and received by the receiver 11A and the carrier phase (delay received by the antenna 100B and acquired by the receiver 11B). 2nd carrier wave phase for difference calculation). The positioning signal that has acquired the first carrier phase for delay difference calculation and the positioning signal that has acquired the second carrier phase for delay difference calculation are the same positioning signal.
 遅延差算出部22は、次の原理によってアナログ遅延差ΔADを算出する。 The delay difference calculation unit 22 calculates the analog delay difference ΔAD based on the following principle.
 Φ は、測位衛星SVの測位信号に対する受信部11Aで検出した搬送波位相である。Φ は、測位衛星SVの測位信号に対する受信部11Bで検出した搬送波位相である。ρ は、測位衛星SVとアンテナ100Bとの幾何学距離である。tu1は、受信部11Aのクロック誤差であり、tu2は、受信部11Bのクロック誤差である。T は、測位衛星SVの測位信号をアンテナ100Bで受信する際の対流圏遅延である。I は、測位衛星SVの測位信号をアンテナ100Bで受信する際の電離層遅延である。 Φ 1 B is a carrier wave phase detected by the receiving unit 11A for the positioning signal of the positioning satellite SV. Φ 2 B is a carrier phase detected by the receiving unit 11B for the positioning signal of the positioning satellite SV. ρ 2 B is a geometric distance between the positioning satellite SV and the antenna 100B. t u1 is a clock error of the receiving unit 11A, and t u2 is a clock error of the receiving unit 11B. T 2 B is a tropospheric delay when the positioning signal of the positioning satellite SV is received by the antenna 100B. I 2 B is an ionospheric delay when the positioning signal of the positioning satellite SV is received by the antenna 100B.
 eΦB1は、受信部11Aに対する搬送波位相の回路遅延量である。eΦB2は、受信部11Bに対する搬送波位相の回路遅延量である。 e ΦB1 is a circuit delay amount of the carrier phase with respect to the receiving unit 11A. e ΦB2 is a circuit delay amount of the carrier phase with respect to the receiving unit 11B.
 受信部11Aがアンテナ100Bに接続している時、搬送波位相Φ は、次の(式1)で表される。 When the receiving unit 11A is connected to the antenna 100B, the carrier phase Φ 1 B is expressed by the following (Equation 1).
 Φ =ρ +tu1+T +I +eΦB1    -(式1)
 搬送波位相Φ は、次の(式2)で表される。
Φ 1 B = ρ 2 B + t u1 + T 2 B + I 2 B + e ΦB1 − (formula 1)
The carrier phase Φ 2 B is expressed by the following (Equation 2).
 Φ =ρ +tu2+T +I +eΦB2    -(式2)
 同一アンテナを用いた受信部間での搬送波位相の差ΔΦ12は、(式1)、(式2)から次の(式3)で表される。
Φ 2 B = ρ 2 B + t u 2 + T 2 B + I 2 B + e ΦB 2 − (formula 2)
The carrier phase difference ΔΦ 12 between the receiving units using the same antenna is expressed by the following (Expression 3) from (Expression 1) and (Expression 2).
 ΔΦ12=Φ -Φ =(tu1-tu2)+(eΦB1-eΦB2)    -(式3)
 受信部11A,11Bは同期されているので、(tu1-tu2)=0である。
ΔΦ 12 = Φ 1 B −Φ 2 B = (t u1 −t u2 ) + (e φB1 −e φB2 ) − (Formula 3)
Since the receiving units 11A and 11B are synchronized, (t u1 −t u2 ) = 0.
 したがって、搬送波位相の差ΔΦ12は、次の(式4)で表される。 Therefore, the carrier phase difference ΔΦ 12 is expressed by the following (formula 4).
 ΔΦ12=Φ -Φ =(eΦB1-eΦB2)    -(式4)
 ここで、回路遅延量の差(eΦB1-eΦB2)は、アンテナ100Bと受信部11Aとの電気長と、アンテナ100Bと受信部11Bとの電気長との差ΔeCHと、アナログ遅延差ΔADとの加算である。
ΔΦ 12 = Φ 1 B −Φ 2 B = ( eΦB1− eΦB2 ) − (Formula 4)
Here, the difference between the circuit delay (e ΦB1 -e ΦB2) has an electrical length between the receiving portion 11A and the antenna 100B, the difference .DELTA.e CH of the electrical length of the receiving portion 11B and the antenna 100B, the analog delay difference ΔAD And the addition.
 (eΦB1-eΦB2)=ΔeCH+ΔAD    -(式5)
 したがって、搬送波位相の差ΔΦ12は、次の(式6)で表される。
( EΦB1− eΦB2 ) = Δe CH + ΔAD− (Formula 5)
Therefore, the carrier phase difference ΔΦ 12 is expressed by the following (formula 6).
 ΔΦ12=Φ -Φ =ΔeCH+ΔAD    -(式6)
 この(式6)を変形すると、アナログ遅延差ΔADは、次の(式7)で表される。
ΔΦ 12 = Φ 1 B −Φ 2 B = Δe CH + ΔAD − (Formula 6)
When this (formula 6) is modified, the analog delay difference ΔAD is expressed by the following (formula 7).
 ΔAD=ΔΦ12-ΔeCH    -(式7)
 アンテナ100Bと受信部11Aとの電気長とアンテナ100Bと受信部11Bとの電気長は、測定および所望値に設定することができる。したがって、差ΔeCHは既知である。なお、アンテナ100Bと受信部11Aとの間の電気長と、アンテナ100Bと受信部11Bとの間の電気長と同じであることが好ましい。この場合、差ΔeCHを0にすることができる。
ΔAD = ΔΦ 12 −Δe CH − (Formula 7)
The electrical length between the antenna 100B and the receiving unit 11A and the electrical length between the antenna 100B and the receiving unit 11B can be set to measured and desired values. Therefore, the difference Δe CH is known. Note that the electrical length between the antenna 100B and the receiving unit 11A is preferably the same as the electrical length between the antenna 100B and the receiving unit 11B. In this case, the difference Δe CH can be set to zero.
 また、搬送波位相Φ ,Φ は、上述のように遅延差算出部22において測定されており、搬送波位相の差ΔΦ12は測位信号の観測によって取得できる。 The carrier wave phases Φ 1 B and Φ 2 B are measured by the delay difference calculation unit 22 as described above, and the carrier wave phase difference ΔΦ 12 can be obtained by observing the positioning signal.
 これら既知または観測によって得られる経路の電気長の差ΔeCHおよび搬送波位相の差ΔΦ12を(式7)に代入することによって、アナログ遅延差ΔADは算出される。 The analog delay difference ΔAD is calculated by substituting the electrical length difference Δe CH and the carrier phase difference ΔΦ 12 of these known or observed paths into (Equation 7).
 このように、本実施形態の構成を用いることによって、受信部11A,11B間のアナログ遅延差ΔADを算出することができる。 Thus, by using the configuration of the present embodiment, the analog delay difference ΔAD between the receiving units 11A and 11B can be calculated.
 遅延差算出部22は、アナログ遅延差ΔADを測位部21に出力する。測位部21は、上述のように、遅延差算出部22からのアナログ遅延差ΔADによってアンテナ間一重位相差を補正する。測位部21は、補正されたアンテナ間一重位相差を用いて相対測位の演算を行う。これにより、測位部21は、高精度な相対測位を実行することができる。さらに、測位部21は、既知である経路の電気長の差ΔeCHを加味して補正を行うことによって、より高精度な相対測位を行うことができる。 The delay difference calculation unit 22 outputs the analog delay difference ΔAD to the positioning unit 21. As described above, the positioning unit 21 corrects the single phase difference between the antennas by the analog delay difference ΔAD from the delay difference calculation unit 22. The positioning unit 21 performs a relative positioning calculation using the corrected single phase difference between the antennas. Thereby, the positioning part 21 can perform highly accurate relative positioning. Furthermore, the positioning unit 21 can perform relative positioning with higher accuracy by performing correction in consideration of the known electrical length difference Δe CH of the path.
 このようなアナログ遅延差の算出および測位演算は、プログラム化しておき、コンピュータ等の情報処理装置で実行することも可能である。図4は、本発明の第1の実施形態に係るアナログ遅延差算出方法および測位方法のフローチャートである。 Such analog delay difference calculation and positioning calculation can be programmed and executed by an information processing apparatus such as a computer. FIG. 4 is a flowchart of the analog delay difference calculation method and positioning method according to the first embodiment of the present invention.
 ステップS101では、受信部11A,11Bをアンテナ100Bに接続する。 In step S101, the receiving units 11A and 11B are connected to the antenna 100B.
 ステップS102では、受信部11Aで追尾している測位衛星と受信部11Bで追尾している測位衛星とをマッチングする。受信部11Aで追尾している測位衛星と受信部11Bで追尾している測位衛星とが同じでなければ(S102:NO)、マッチングを繰り返す。受信部11Aで追尾している測位衛星と受信部11Bで追尾している測位衛星が同じであれば(S102:YES)、ステップS103の処理に移行する。 In step S102, the positioning satellite tracked by the receiving unit 11A is matched with the positioning satellite tracked by the receiving unit 11B. If the positioning satellite tracked by the receiving unit 11A and the positioning satellite tracked by the receiving unit 11B are not the same (S102: NO), matching is repeated. If the positioning satellite tracked by the receiving unit 11A is the same as the positioning satellite tracked by the receiving unit 11B (S102: YES), the process proceeds to step S103.
 ステップS103では、受信部11Aで検出した搬送波位相と受信部11Bで検出した搬送波位相を用いて、受信部間における搬送波位相の差ΔΦ12を算出する。 In step S103, by using the carrier phase detected by the receiving unit 11B has been detected by the receiver 11A carrier phase, it calculates a difference .DELTA..PHI 12 carrier phase between the receiving unit.
 ステップS104では、アンテナ100Bと受信部11Aとの間の電気長(経路長)と、アンテナ100Bと受信部10Bとの間の電気長(経路長)との差(経路差)ΔeCHを取得する。 In step S104, a difference (path difference) Δe CH between the electrical length (path length) between the antenna 100B and the receiving unit 11A and the electrical length (path length) between the antenna 100B and the receiving unit 10B is acquired. .
 ステップS105では、受信部間の搬送波位相の差ΔΦ12と経路差ΔeCHとを(式7)に代入して、アナログ遅延差ΔADを算出する。このアナログ遅延差ΔADを用いて、相対測位の演算用の補正値に設定する。この際、補正値に経路差ΔeCHを含むとよりよい。 In step S105, the analog phase difference ΔAD is calculated by substituting the carrier phase difference ΔΦ 12 between the receiving units and the path difference Δe CH into (Equation 7). Using this analog delay difference ΔAD, a correction value for calculating relative positioning is set. At this time, it is better to include the path difference Δe CH in the correction value.
 ステップS106では、受信部11Aをアンテナ100Aに接続し、受信部11Bをアンテナ100Bに接続する。この接続変更によって、受信部11Aでは、アンテナ100Aで受信した測位信号に対する搬送波位相を検出する。受信部11Bでは、アンテナ100Bで受信した測位信号に対する搬送波位相を検出する。演算部20の測位部21では、これらの搬送波位相の差から、アンテナ間一重位相差を算出する。 In step S106, the receiving unit 11A is connected to the antenna 100A, and the receiving unit 11B is connected to the antenna 100B. By this connection change, the receiving unit 11A detects the carrier phase for the positioning signal received by the antenna 100A. The receiving unit 11B detects the carrier phase for the positioning signal received by the antenna 100B. The positioning unit 21 of the calculation unit 20 calculates a single phase difference between the antennas from the difference between the carrier wave phases.
 ステップS107では、補正値によって補正されたアンテナ間一重位相差を用いて、相対測位を行う。 In step S107, relative positioning is performed using the single phase difference between the antennas corrected by the correction value.
 このような方法を用いることによって、受信部間のアナログ遅延差を算出することができ、高精度な相対測位を実現することができる。 By using such a method, the analog delay difference between the receiving units can be calculated, and high-accuracy relative positioning can be realized.
 なお、補正値の算出は、搬送波位相を取得する全てのタイミングで行う必要はない。例えば、次の図5、図6、図7に示す処理にしたがって補正値の算出を行ってもよい。図5、図6、図7は、補正値の算出タイミングを決定する処理を示すフローチャートである。 Note that the correction value need not be calculated at every timing of acquiring the carrier phase. For example, the correction value may be calculated according to the processing shown in FIGS. 5, 6, and 7 are flowcharts showing processing for determining the correction value calculation timing.
 (図5の方法)
 ステップS201では、補正値が予め記憶されているか否かを検出する。補正値が予め記憶されていれば(S201:YES)、ステップS203に移行する。補正値が記憶されていなければ(S201:NO)、ステップS202に移行する。
(Method of FIG. 5)
In step S201, it is detected whether a correction value is stored in advance. If the correction value is stored in advance (S201: YES), the process proceeds to step S203. If no correction value is stored (S201: NO), the process proceeds to step S202.
 ステップS202では、上述の方法によって、アナログ遅延差ΔADを算出して、補正値を計算する。 In step S202, the analog delay difference ΔAD is calculated by the above-described method, and a correction value is calculated.
 ステップS203では、記憶されている補正値または今回算出された補正値によって補正されたアンテナ間一重位相差を用いて相対測位を行う。 In step S203, relative positioning is performed using the stored correction value or the single phase difference between the antennas corrected by the correction value calculated this time.
 この方法を用いることによって、電源投入直後等の補正値が記憶されていない時のみに、アナログ遅延差ΔADを含む補正値を算出すればよい。したがって、測位信号受信装置の全体の処理負荷を軽減することができる。 By using this method, the correction value including the analog delay difference ΔAD may be calculated only when the correction value immediately after the power is turned on or the like is not stored. Therefore, the overall processing load of the positioning signal receiving apparatus can be reduced.
 (図6の方法)
 ステップS301では、補正値の計算タイミングであるか否かを検出する。計算タイミングは、測位信号から取得できる時刻、装置内に備え付けられたクロック等によって検出できる。補正値の計算タイミングであれば(S301:YES)、ステップS302に移行する。補正値の計算タイミングでなければ(S301:NO)、ステップS303に移行する。
(Method of FIG. 6)
In step S301, it is detected whether or not it is a correction value calculation timing. The calculation timing can be detected by a time that can be acquired from the positioning signal, a clock provided in the apparatus, or the like. If it is the calculation timing of the correction value (S301: YES), the process proceeds to step S302. If it is not the calculation timing of the correction value (S301: NO), the process proceeds to step S303.
 ステップS302では、上述の方法を用いて補正値を計算する。 In step S302, a correction value is calculated using the method described above.
 ステップS303では、今回計算した補正値、または、既に記憶されている補正値によって補正されたアンテナ間一重位相差を用いて相対相違を行う。 In step S303, a relative difference is performed using the correction value calculated this time or the single phase difference between antennas corrected by the correction value already stored.
 この方法を用いることによって、予め設定された時刻のみで、アナログ遅延差ΔADを含む補正値を算出すればよい。したがって、測位信号受信装置の全体の処理負荷を軽減することができる。 By using this method, the correction value including the analog delay difference ΔAD may be calculated only at a preset time. Therefore, the overall processing load of the positioning signal receiving apparatus can be reduced.
 (図7の方法)
 ステップS401では、記憶されている補正値が正常値であるか異常値であるかを検出する。補正値の異常検出方法としては、例えば、一重位相差を算出する測位衛星とは別のもう1基の測位衛星の測位信号を受信して、これら2基の測位衛星からの測位信号の搬送波位相を受信部11A,11Bで検出して、二重位相差を算出する。また、補正値によって補正した一重位相差を用いて二重位相差を算出する。これら二つの二重位相差の差を算出し、二重位相差の差が所定閾値以上であった場合、補正値が以上であると判定する。異常判定用の閾値は、実験またはシミュレーションによって予め設定することができる。
(Method of FIG. 7)
In step S401, it is detected whether the stored correction value is a normal value or an abnormal value. As a correction value abnormality detection method, for example, a positioning signal of another positioning satellite different from the positioning satellite for calculating the single phase difference is received, and the carrier phase of the positioning signal from these two positioning satellites is received. Are detected by the receivers 11A and 11B, and a double phase difference is calculated. Further, the double phase difference is calculated using the single phase difference corrected by the correction value. The difference between these two double phase differences is calculated, and when the difference between the double phase differences is equal to or greater than a predetermined threshold value, it is determined that the correction value is equal to or greater. The threshold value for abnormality determination can be set in advance by experiment or simulation.
 補正値が異常であれば(S401:YES)、ステップS402に移行する。補正値が正常であれば(S401:NO)、ステップS403に移行する。 If the correction value is abnormal (S401: YES), the process proceeds to step S402. If the correction value is normal (S401: NO), the process proceeds to step S403.
 ステップS402では、上述の方法を用いて補正値を計算する。 In step S402, the correction value is calculated using the method described above.
 ステップS403では、今回計算した補正値、または、既に記憶されており正常と判定されている補正値によって補正されたアンテナ間一重位相差を用いて相対相違を行う。 In step S403, a relative difference is performed using the correction value calculated this time or the single phase difference between antennas corrected by the correction value that has already been stored and determined to be normal.
 次に、本発明の第2の実施形態に係る測位信号受信装置について、図を参照して説明する。図8は、本発明の第2の実施形態に係る測位信号受信装置の構成を示すブロック図である。 Next, a positioning signal receiving apparatus according to the second embodiment of the present invention will be described with reference to the drawings. FIG. 8 is a block diagram showing a configuration of a positioning signal receiving apparatus according to the second embodiment of the present invention.
 第2の実施形態に係る測位信号受信装置10Aは、第1の実施形態に係る測位信号受信装置10に対して、受信部11Aが演算部20Aに一体化された点で異なる。なお、受信部11Bも演算部20Aに一体化することも可能である。 The positioning signal receiving device 10A according to the second embodiment is different from the positioning signal receiving device 10 according to the first embodiment in that the receiving unit 11A is integrated with the arithmetic unit 20A. Note that the receiving unit 11B can also be integrated with the arithmetic unit 20A.
 このような構成とすることで、測位信号受信装置10Aの構成要素を少なくすることができる。 By adopting such a configuration, the components of the positioning signal receiving device 10A can be reduced.
 次に、本発明の第3の実施形態に係る測位信号受信装置について、図を参照して説明する。図9は、本発明の第3の実施形態に係る測位信号受信装置の構成を示すブロック図である。 Next, a positioning signal receiving apparatus according to the third embodiment of the present invention will be described with reference to the drawings. FIG. 9 is a block diagram showing a configuration of a positioning signal receiving apparatus according to the third embodiment of the present invention.
 第3の実施形態に係る測位信号受信装置10Bは、第1の実施形態に係る測位信号受信装置10に対して、スイッチ30が省略されている点で異なる。 The positioning signal receiving device 10B according to the third embodiment is different from the positioning signal receiving device 10 according to the first embodiment in that the switch 30 is omitted.
 測位信号受信装置10Bでは、受信部11A'は、アンテナ100A,100Bに接続されている。受信部11A'は、例えばソフトウエアスイッチ等によって、アンテナ100Aで受信した測位信号の捕捉追尾と、アンテナ100Bで受信した測位信号の捕捉追尾を切り替える。受信部11Aは、いずれのアンテナで受信した測位信号の搬送波位相であるかを、搬送波位相に関連付けして出力する。 In the positioning signal receiving apparatus 10B, the receiving unit 11A ′ is connected to the antennas 100A and 100B. For example, the reception unit 11A ′ switches between acquisition and tracking of the positioning signal received by the antenna 100A and acquisition and tracking of the positioning signal received by the antenna 100B by a software switch or the like. The receiving unit 11A outputs, in association with the carrier phase, which antenna is the carrier phase of the positioning signal received by the antenna.
 このような構成とすることで、スイッチ30が省略され、測位信号受信装置10Bの構成要素を少なくすることができる。また、スイッチ30を介さないことによって、アンテナ100Bと受信部10A'との電気長を、より精確に取得することができる。 By adopting such a configuration, the switch 30 is omitted, and the components of the positioning signal receiving device 10B can be reduced. Further, by not passing through the switch 30, the electrical length between the antenna 100B and the receiving unit 10A ′ can be acquired more accurately.
 次に、本発明の第4の実施形態に係る測位信号受信装置について、図を参照して説明する。図10は、本発明の第4の実施形態に係る測位信号受信装置の構成を示すブロック図である。 Next, a positioning signal receiving apparatus according to the fourth embodiment of the present invention will be described with reference to the drawings. FIG. 10 is a block diagram showing a configuration of a positioning signal receiving apparatus according to the fourth embodiment of the present invention.
 第4の実施形態に係る測位信号受信装置10Cは、第1の実施形態に係る測位信号受信装置10に対して、アンテナ、受信部、スイッチの個数が増加した点で異なる。 The positioning signal receiving device 10C according to the fourth embodiment is different from the positioning signal receiving device 10 according to the first embodiment in that the number of antennas, receiving units, and switches is increased.
 測位信号受信装置10Cは、3基のアンテナ100A,100B,100C、3個の受信部11A,11B,11C、2個のスイッチ30A,30Bを備える。受信部11Aは、スイッチ30Aによって、アンテナ100A,100Bに選択的に接続される。受信部11Cは、スイッチ30Bによって、アンテナ100B,100Cに選択的に接続される。 The positioning signal receiving apparatus 10C includes three antennas 100A, 100B, 100C, three receiving units 11A, 11B, 11C, and two switches 30A, 30B. The receiving unit 11A is selectively connected to the antennas 100A and 100B by the switch 30A. The receiving unit 11C is selectively connected to the antennas 100B and 100C by the switch 30B.
 スイッチ30Aによって受信部11Aをアンテナ100Bに接続することで、受信部11Aと受信部11Bとのアナログ遅延差ΔAD12を算出することができる。スイッチ30Bによって受信部11Cをアンテナ100Bに接続することによって、受信部11Bと受信部11Cとのアナログ遅延差ΔAD23を算出することができる。アナログ遅延差ΔAD12とアナログ遅延差ΔAD23との差分を用いることで、受信部11Aと受信部11Cとのアナログ遅延差ΔAD13を算出することができる。 By connecting the receiver 11A to the antenna 100B by the switch 30A, it is possible to calculate the analog delay difference? AD 12 between the receiving portion 11A and the receiving part 11B. By connecting the receiving unit 11C to the antenna 100B by the switch 30B, the analog delay difference ΔAD 23 between the receiving unit 11B and the receiving unit 11C can be calculated. By using the difference between the analog delay difference? AD 12 and the analog delay difference? AD 23, it is possible to calculate the analog delay difference? AD 13 between the receiving portion 11A and the receiving portion 11C.
 このようにアンテナおよび受信部が3個であっても、上述の実施形態と同様に、受信部間のアナログ遅延差を算出することができ、高精度な相対測位を実現することができる。 Thus, even if there are three antennas and receiving units, the analog delay difference between the receiving units can be calculated as in the above-described embodiment, and high-accuracy relative positioning can be realized.
 次に、本発明の第5の実施形態に係る測位信号受信装置について、図を参照して説明する。図11は、本発明の第5の実施形態に係る測位信号受信装置の構成を示すブロック図である。 Next, a positioning signal receiving apparatus according to the fifth embodiment of the present invention will be described with reference to the drawings. FIG. 11 is a block diagram showing a configuration of a positioning signal receiving apparatus according to the fifth embodiment of the present invention.
 第5の実施形態に係る測位信号受信装置10Dは、遅延差算出部22Dの構成が第1の実施形態に係る測位信号受信装置10と異なる。 The positioning signal receiving device 10D according to the fifth embodiment is different from the positioning signal receiving device 10 according to the first embodiment in the configuration of the delay difference calculation unit 22D.
 遅延差算出部22Dは、一重位相差算出部221、および遅延差決定部222を備える。 The delay difference calculation unit 22D includes a single phase difference calculation unit 221 and a delay difference determination unit 222.
 一重位相差算出部221は、受信部11Aからの搬送波位相と受信部11Bからの搬送波位相から、アンテナ間一重位相差を算出する。この時点では、このアンテナ間一重位相差は、アンテナの配置位置関係による位相差と受信部のアナログ遅延差を含む。一重位相差算出部221は、衛星毎にアンテナ間一重位相差を算出する。なお、一重位相差算出部221を省略して、測位部21で算出される補正前のアンテナ間一重位相差を用いてもよい。 The single phase difference calculation unit 221 calculates a single phase difference between antennas from the carrier phase from the reception unit 11A and the carrier phase from the reception unit 11B. At this time, the single phase difference between the antennas includes the phase difference due to the arrangement position relationship of the antennas and the analog delay difference of the receiving unit. The single phase difference calculation unit 221 calculates a single phase difference between antennas for each satellite. Note that the single phase difference calculation unit 221 may be omitted, and the single phase difference between antennas before correction calculated by the positioning unit 21 may be used.
 遅延差決定部222は、次の原理に基づいてアナログ遅延差に基づく相対測位用の補正値を算出する。 The delay difference determination unit 222 calculates a correction value for relative positioning based on the analog delay difference based on the following principle.
 一重位相差算出部221で算出される一重位相差をΔΦZ12 とし、アナログ遅延差の整数部をΔADn12 とし、アナログ遅延差の小数部をΔADf12 とし、搬送波位相の整数値バイアスをΔN12 とすると、一重位相差ΔΦZ12 は次の(式8)で表すことができる。 The single phase difference calculated by the single phase difference calculator 221 is ΔΦZ 12 B , the integer part of the analog delay difference is ΔADn 12 B , the decimal part of the analog delay difference is ΔADf 12 B, and the integer bias of the carrier phase is Assuming ΔN 12 B , the single phase difference ΔΦZ 12 B can be expressed by the following (formula 8).
 ΔΦZ12 =ΔADn12 +ΔADf12 +ΔN12 +ΔeΦ    -(式8)
 なお、ΔeΦは観測誤差であり、他の要素に対して極小さく無視できるものとする。
ΔΦZ 12 B = ΔADn 12 B + ΔADf 12 B + ΔN 12 B + Δe Φ − (Formula 8)
Incidentally, .DELTA.e [Phi is the observation error is negligible very small relative to other elements.
 ここで、アナログ遅延差の整数部ΔADn12 と搬送波位相の整数値バイアスΔN12 はともに整数であるので、新たな整数値バイアスΔN12 '=ΔADn12 +ΔN12 として、推定演算に用いることができる。 Here, since the integer part ΔADn 12 B of the analog delay difference and the integer bias ΔN 12 B of the carrier phase are both integers, a new integer bias ΔN 12 B ′ = ΔADn 12 B + ΔN 12 B is used for the estimation calculation. Can be used.
 したがって、相対測位の推定演算用の補正値としては、アナログ遅延差の小数部ΔADf12 が分かれば、高精度の相対測位の推定演算を行うことができる。 Accordingly, if the decimal part ΔADf 12 B of the analog delay difference is known as the correction value for the relative positioning estimation calculation, the relative positioning estimation calculation can be performed with high accuracy.
 この原理を利用し、遅延差決定部222は、一重位相差算出部221からのアンテナ間一重位相差の小数部を抽出する。遅延差決定部222は、小数部をアナログ遅延差に設定する。遅延差決定部222は、アナログ遅延差を相対測位演算用の補正値に設定し、測位部21に出力する。 Using this principle, the delay difference determination unit 222 extracts the fractional part of the single phase difference between the antennas from the single phase difference calculation unit 221. The delay difference determination unit 222 sets the decimal part to the analog delay difference. The delay difference determination unit 222 sets the analog delay difference as a correction value for relative positioning calculation, and outputs the correction value to the positioning unit 21.
 この際、遅延差決定部222は、追尾中の複数の測位衛星に対して、継続的にアンテナ間一重位相差を取得し、それぞれに小数部を抽出する。遅延差決定部222は、小数部の時間平均値を算出する。遅延差決定部222は、追尾中の複数の測位衛星から基準衛星を設定する。遅延差決定部222は、基準衛星の小数部と他の測位衛星の小数部との差を算出し、小数部の差の幅を算出する。遅延差決定部222は、測位衛星毎に小数部と差とを用いて、補正値を設定する。遅延差決定部222は、小数部の差の幅を基準にして、今回設定した補正値を、相対測位演算に採用するか否かを決定する。 At this time, the delay difference determination unit 222 continuously acquires a single phase difference between antennas for a plurality of positioning satellites being tracked, and extracts a fractional part for each. The delay difference determination unit 222 calculates the time average value of the decimal part. The delay difference determination unit 222 sets a reference satellite from a plurality of positioning satellites being tracked. The delay difference determination unit 222 calculates the difference between the decimal part of the reference satellite and the decimal part of another positioning satellite, and calculates the width of the difference between the decimal parts. The delay difference determination unit 222 sets a correction value using the decimal part and the difference for each positioning satellite. The delay difference determination unit 222 determines whether or not to use the correction value set this time for the relative positioning calculation based on the difference width of the decimal part.
 測位部21は、遅延差決定部222から出力された補正値を用い、一重位相差を補正して、既知のカルマンフィルタ等によって方位、位置を推定する。 The positioning unit 21 corrects the single phase difference using the correction value output from the delay difference determination unit 222, and estimates the azimuth and position using a known Kalman filter or the like.
 このような構成であっても、上述の実施形態と同様に、高精度な相対測位を実現することができる。 Even with such a configuration, high-accuracy relative positioning can be realized as in the above-described embodiment.
 本実施形態に示したアナログ遅延差の算出および測位演算は、プログラム化しておき、コンピュータ等の情報処理装置で実行することも可能である。図12は、本発明の第5の実施形態に係るアナログ遅延差算出方法および測位方法のフローチャートである。 The calculation of the analog delay difference and the positioning calculation shown in the present embodiment can be programmed and executed by an information processing apparatus such as a computer. FIG. 12 is a flowchart of an analog delay difference calculation method and a positioning method according to the fifth embodiment of the present invention.
 ステップS501では、測位衛星毎にアンテナ間一重位相差を継続的に取得する。この処理は、予め規定した時間長に亘って継続的にアンテナ間一重位相差を取得できるまで繰り返される(S501:NO,S511:NO)。この際、所定時間に亘って継続的に、規定数の測位衛星のアンテナ間一重位相差を取得できなければ(S501:YES)、ステップS521に移行する。 In step S501, a single phase difference between antennas is continuously acquired for each positioning satellite. This process is repeated until a single phase difference between the antennas can be acquired continuously over a predetermined time length (S501: NO, S511: NO). At this time, if the single phase difference between the antennas of the specified number of positioning satellites cannot be acquired continuously over a predetermined time (S501: YES), the process proceeds to step S521.
 規定した時間長に亘って継続的にアンテナ間一重位相差が取得できれば(S501:YES)、ステップS502に移行する。 If the single phase difference between the antennas can be continuously acquired over the specified time length (S501: YES), the process proceeds to step S502.
 ステップS502では、各測位衛星に対するアンテナ間一重位相差の小数部を抽出する。 In step S502, the decimal part of the single phase difference between the antennas for each positioning satellite is extracted.
 ステップS503では、追尾している複数の測位衛星、すなわち、アンテナ間一重位相差を取得している複数の測位衛星から、基準衛星を設定する。 In step S503, a reference satellite is set from a plurality of positioning satellites that are tracked, that is, a plurality of positioning satellites that have acquired a single phase difference between antennas.
 ステップS504では、基準衛星の小数部と、基準衛星以外の測位衛星の小数部との差を算出する。 In step S504, the difference between the decimal part of the reference satellite and the decimal part of the positioning satellite other than the reference satellite is calculated.
 ステップS505では、測位衛星毎に小数部と差とを用いて補正値を設定する。 In step S505, a correction value is set for each positioning satellite using the decimal part and the difference.
 ステップS506では、複数の差を比較して差の全体の幅を算出する。 In step S506, the plurality of differences are compared to calculate the overall width of the difference.
 ステップS507では、差の幅が規定範囲内であるか否かを検出する。差の幅が閾値THd未満であれば(S507:YES)、ステップS508に移行する。差の幅が閾値THd以上であれば(S507:NO)、ステップS521に移行する。 In step S507, it is detected whether or not the difference width is within a specified range. If the difference width is less than the threshold value THd (S507: YES), the process proceeds to step S508. If the difference width is equal to or greater than the threshold THd (S507: NO), the process proceeds to step S521.
 ステップS508では、ステップS505で設定した全測位衛星の補正値の平均値を算出する。そして、平均値を、各測位衛星に共通の補正値に設定する。 In step S508, an average value of correction values of all positioning satellites set in step S505 is calculated. Then, the average value is set to a correction value common to each positioning satellite.
 なお、ステップS521では、今回の補正値の設定は無効であると判定する。 In step S521, it is determined that the current correction value setting is invalid.
 このような処理を行うことによって、アナログ遅延差に基づく相対測位演算用の補正値を算出することができる。さらに、ステップS508に示すように全測位衛星の補正値の平均値を用いることによって、より高精度に補正値を設定することができる。 By performing such processing, it is possible to calculate a correction value for relative positioning calculation based on the analog delay difference. Furthermore, as shown in step S508, the correction value can be set with higher accuracy by using the average value of the correction values of all positioning satellites.
 上述のステップS503,S504,S505は、より具体的に次の処理からなる。図13は、本発明の第5の実施形態に係るアナログ遅延差の具体的な算出方法のフローチャートである。 The above-described steps S503, S504, and S505 more specifically include the following processing. FIG. 13 is a flowchart of a specific calculation method of the analog delay difference according to the fifth embodiment of the present invention.
 ステップS551では、最も仰角の高い測位衛星を基準衛星に設定する。各測位衛星の仰角は、復調した航法メッセージから得ることができる。 In step S551, the positioning satellite with the highest elevation angle is set as the reference satellite. The elevation angle of each positioning satellite can be obtained from the demodulated navigation message.
 ステップS552では、追尾中の各測位衛星の小数部と基準衛星の小数部との差を算出する。 In step S552, the difference between the decimal part of each positioning satellite being tracked and the decimal part of the reference satellite is calculated.
 ステップS553,S554,S555,S556,S557では、差と基準値とを比較して、補正値を設定する。具体的には、ステップS553では、差を基準値(本実施形態では、0.5)と比較して、差が0.5以上であれば(S553:YES)、ステップS554に移行する。差が0.5未満であれば(S553:NO)、ステップS555に移行する。ステップS554では、(小数部)-1を補正値に設定する。ステップS555では、差が-0.5未満であれば(S555:YES)、ステップS556に移行する。差が-0.5以上であれば(S555:NO)、ステップS557に移行する。 In steps S553, S554, S555, S556, and S557, the difference is compared with the reference value, and a correction value is set. Specifically, in step S553, the difference is compared with a reference value (0.5 in this embodiment). If the difference is 0.5 or more (S553: YES), the process proceeds to step S554. If the difference is less than 0.5 (S553: NO), the process proceeds to step S555. In step S554, (decimal part) -1 is set as the correction value. In step S555, if the difference is less than −0.5 (S555: YES), the process proceeds to step S556. If the difference is −0.5 or more (S555: NO), the process proceeds to step S557.
 ステップS556では、(小数部)+1を補正値に設定する。ステップS557では、(小数部)をそのまま補正値に設定する。 In step S556, (decimal part) +1 is set as the correction value. In step S557, (decimal part) is set as a correction value as it is.
 ステップS558では、追尾中の全ての測位衛星に対して補正値を算出したか確認する。追尾中の測位衛星の一つでも補正値が算出されていなければ(S558:NO)、上述の補正値の算出処理を繰り返す。全ての測位衛星に対して補正値が算出されていれば、補正値の設定処理を終了し、他の処理に移行する。 In step S558, it is confirmed whether correction values have been calculated for all positioning satellites being tracked. If the correction value is not calculated even for one of the tracking positioning satellites (S558: NO), the above-described correction value calculation process is repeated. If correction values have been calculated for all positioning satellites, the correction value setting process is terminated, and the process proceeds to another process.
 このような処理を行うことによって、アナログ遅延差に基づく補正値を精確に算出することができる。また、本実施形態構成を用いることによって、測位衛星毎に異なる整数値バイアスの影響を抑圧できる。具体的には、小数部に対する基準値を設けて、当該基準値との大小関係から小数部を、+1,0(実質的には補正無し),-1のいずれかで補正する。この補正によって、アナログ遅延差の整数部が+1または-1変化することによって生じる小数部の離散的で非線形な変化の影響を抑圧できる。したがって、補正値をより高精度に設定することができる。また、本実施形態の構成では、追尾中の測位衛星の全てに対して補正値を統一している。これは、GPSの場合、各測位衛星から送信される搬送波位相の周波数は同じであることを利用している。このように補正値を統一していることによって、補正値の記憶が容易になる。 By performing such processing, the correction value based on the analog delay difference can be accurately calculated. In addition, by using the configuration of this embodiment, it is possible to suppress the influence of an integer value bias that differs for each positioning satellite. Specifically, a reference value for the decimal part is provided, and the decimal part is corrected by one of +1, 0 (substantially no correction) or −1 based on the magnitude relationship with the reference value. By this correction, it is possible to suppress the influence of the discrete and non-linear change of the fractional part caused by the change of the integer part of the analog delay difference by +1 or −1. Therefore, the correction value can be set with higher accuracy. In the configuration of the present embodiment, the correction values are unified for all positioning satellites that are being tracked. This utilizes the fact that the frequency of the carrier phase transmitted from each positioning satellite is the same in the case of GPS. By unifying correction values in this way, it becomes easy to store correction values.
 なお、他のGNSSで用いられる搬送波位相毎に周波数が異なる場合には、次の方法を用いればよい。図14は、測位衛星毎に搬送波の周波数が異なる測位システムにおけるアナログ遅延差算出方法および測位方法のフローチャートである。 If the frequency differs for each carrier phase used in other GNSS, the following method may be used. FIG. 14 is a flowchart of an analog delay difference calculation method and a positioning method in a positioning system in which a carrier frequency differs for each positioning satellite.
 ステップS561では、追尾中の測位衛星毎にアンテナ間一重位相差を取得して、アンテナ間一重位相差の時間平均値を算出する。 In step S561, the single phase difference between the antennas is acquired for each positioning satellite being tracked, and the time average value of the single phase difference between the antennas is calculated.
 ステップS562では、追尾中の測位衛星のうちで測位システムの中心周波数に近い周波数の測位信号を送信する測位衛星を基準衛星に設定する。 In step S562, a positioning satellite that transmits a positioning signal having a frequency close to the center frequency of the positioning system among the tracking positioning satellites is set as a reference satellite.
 ステップS563では、基準衛星のアンテナ間一重位相差の小数部を基準補正値に設定する。 In step S563, the decimal part of the single phase difference between the antennas of the reference satellite is set as the reference correction value.
 ステップS564では、基準補正値を用いて他の測位衛星の補正値を推定する。具体的には、例えば、基準衛星の測位信号の搬送波周波数と、補正値を推定する測位衛星の測位信号の周波数との差を算出する。そして、当該差を用いて基準補正値を補正することによって、他の測位衛星の補正値を推定する。この推定には、測位衛星の仰角や信号レベルに応じた重み付けを行ってもよい。 In step S564, correction values of other positioning satellites are estimated using the reference correction value. Specifically, for example, the difference between the carrier frequency of the positioning signal of the reference satellite and the frequency of the positioning signal of the positioning satellite for estimating the correction value is calculated. Then, the correction value of the other positioning satellite is estimated by correcting the reference correction value using the difference. For this estimation, weighting may be performed according to the elevation angle or signal level of the positioning satellite.
 ステップS565では、各測位衛星の補正値の推定値が妥当であるか否かを検定する。具体的には、相対測位演算の状態に切り替えて、推定値によって補正した一重位相差と、観測された一重位相差との差が所定の閾値以上でなければ、推定値が妥当であると判定する。 In step S565, it is verified whether or not the estimated correction value of each positioning satellite is valid. Specifically, switching to the relative positioning calculation state, it is determined that the estimated value is valid if the difference between the single phase difference corrected by the estimated value and the observed single phase difference is not greater than or equal to a predetermined threshold. To do.
 推定した補正値が妥当であれば(S565:YES)、ステップS566に移行し、推定した補正値が妥当でなければ(S565:NO)、ステップS567に移行する。 If the estimated correction value is valid (S565: YES), the process proceeds to step S566. If the estimated correction value is not valid (S565: NO), the process proceeds to step S567.
 ステップS566では、推定した補正値を採用し、各測位衛星に対する補正値として、相対測位演算に利用する。 In step S566, the estimated correction value is adopted and used for relative positioning calculation as a correction value for each positioning satellite.
 ステップS567では、推定した補正値を無効と判定し、補正値の設定を再度行う。 In step S567, it is determined that the estimated correction value is invalid, and the correction value is set again.
 このような方法を用いることで、測位衛星毎に搬送波の周波数が異なる測位システムに対しても、アナログ遅延差を算出でき、高精度な相対測位を実現することができる。 By using such a method, an analog delay difference can be calculated even for a positioning system in which the carrier frequency differs for each positioning satellite, and highly accurate relative positioning can be realized.
 次に、本発明の第6の実施形態に係る測位信号受信装置について、図を参照して説明する。図15は、本発明の第6の実施形態に係る測位信号受信装置の構成を示すブロック図である。 Next, a positioning signal receiving apparatus according to the sixth embodiment of the present invention will be described with reference to the drawings. FIG. 15 is a block diagram showing a configuration of a positioning signal receiving apparatus according to the sixth embodiment of the present invention.
 第6の実施形態に係る測位信号受信装置10Eは、遅延差算出部22Eの構成が第5の実施形態に係る測位信号受信装置10Dと異なる。 The positioning signal receiving device 10E according to the sixth embodiment is different from the positioning signal receiving device 10D according to the fifth embodiment in the configuration of the delay difference calculating unit 22E.
 測位信号受信装置10Eの遅延差算出部22Eは、一重位相差算出部221、遅延差決定部22E、および基線ベクトル記憶部223を備える。一重位相差算出部221の構成及び処理は、第5の実施形態に係る測位信号受信装置10Dと同じである。 The delay difference calculation unit 22E of the positioning signal receiving apparatus 10E includes a single phase difference calculation unit 221, a delay difference determination unit 22E, and a baseline vector storage unit 223. The configuration and processing of the single phase difference calculation unit 221 are the same as those of the positioning signal reception device 10D according to the fifth embodiment.
 基線ベクトル記憶部223は、以前に実行された相対測位によって算出されたアンテナ100A,100B間の基線ベクトルが記憶されている。基線ベクトルは、相対測位演算が繰り返される毎に更新されて、基線ベクトル記憶部223に記憶される。 The baseline vector storage unit 223 stores a baseline vector between the antennas 100A and 100B calculated by the relative positioning performed previously. The baseline vector is updated each time the relative positioning calculation is repeated, and stored in the baseline vector storage unit 223.
 遅延差決定部222Eは、次に示す原理にしたがって、アナログ遅延差に基づく補正値を設定する。 The delay difference determination unit 222E sets a correction value based on the analog delay difference according to the following principle.
 一重位相差算出部221で算出される一重位相差をΔΦZ12 とし、幾何距離の一重差をΔρ12 とし、アナログ遅延差(アナログ遅延量の一重差)をΔAD12 とし、整数値バイアスの一重差をΔN12 とし、観測誤差の一重差をΔeΦとすると、一重位相差ΔΦZ12 は次の(式9)で表すことができる。 A single phase difference calculated by the single phase difference calculation unit 221 is ΔΦZ 12 B , a single difference in geometric distance is Δρ 12 B , an analog delay difference (single difference in analog delay amount) is ΔAD 12 B , and an integer value bias The single phase difference ΔΦZ 12 B can be expressed by the following (Equation 9), where ΔN 12 B is the single difference and Δe Φ is the single difference of the observation error.
 ΔΦZ12 =(Δρ12 +ΔAD12 )/λ+ΔN12 +ΔeΦ    -(式9)
 ここで、λは、測位信号の波長である。
ΔΦZ 12 B = (Δρ 12 B + ΔAD 12 B ) / λ B + ΔN 12 B + Δe Φ − (Equation 9)
Here, λ B is the wavelength of the positioning signal.
 基線ベクトルが予め推定できている場合、幾何距離の一重位相差の推定値も算出することができる。幾何距離の一重位相差の推定値をΔρeとすると、(式9)は次の(式10)に変形することができる。 If the baseline vector can be estimated in advance, a single phase difference estimate of the geometric distance can also be calculated. If the estimated value of the single phase difference of the geometric distance is Δρe, (Equation 9) can be transformed into the following (Equation 10).
 ΔΦZ12 -Δρe=(Δρee+ΔAD12 )/λ+ΔN12 +ΔeΦ
                                -(式10)
 ここで、Δρeeは、幾何距離の一重位相差の推定誤差である。
ΔΦZ 12 B −Δρe = (Δρee + ΔAD 12 B ) / λ B + ΔN 12 B + Δe Φ
-(Formula 10)
Here, Δρee is an estimation error of the single phase difference of the geometric distance.
 幾何距離の一重位相差の推定誤差Δρeeおよび観測誤差ΔeΦは十分に小さいと仮定できる。この条件下において、両辺の値を搬送波位相の波長λで除算した時の余りは、アナログ遅延差の小数部と見なすことができる。左辺にある一重位相差ΔΦZ12 は観測値であり、幾何距離の一重位相差の推定値をΔρeは既知の基線ベクトルから算出可能な値である。したがって、(式10)の左辺を搬送波位相の波長で除算した時の余りを算出することによって、アナログ遅延差の小数部を算出することができる。 Estimation error Δρee and observation error Δe singlet phase difference geometric distance Φ can be assumed to be sufficiently small. Under this condition, the remainder when the values on both sides are divided by the wavelength λ B of the carrier phase can be regarded as a fractional part of the analog delay difference. The single phase difference ΔΦZ 12 B on the left side is an observed value, and the estimated single phase difference of the geometric distance Δρe is a value that can be calculated from a known baseline vector. Therefore, the decimal part of the analog delay difference can be calculated by calculating the remainder when the left side of (Equation 10) is divided by the wavelength of the carrier phase.
 遅延差決定部222Eは、一重位相差ΔΦZ12 を一重位相差算出部221から取得する。遅延差決定部222Eは、基線ベクトル記憶部223から基線ベクトルを読み出し、幾何距離の一重位相差を推定し、推定値Δρeを算出する。遅延差決定部222Eは、一重位相差ΔΦZ12 と幾何距離の一重差の推定値Δρeを差分して、差分値を搬送波位相の波長λで除算することによって、アナログ遅延差の小数部からなる補正値を決定する。遅延差決定部222Eは、この補正値を測位部21に出力する。 The delay difference determination unit 222E acquires the single phase difference ΔΦZ 12 B from the single phase difference calculation unit 221. The delay difference determination unit 222E reads the baseline vector from the baseline vector storage unit 223, estimates the single phase difference of the geometric distance, and calculates the estimated value Δρe. The delay difference determination unit 222E subtracts the single phase difference ΔΦZ 12 B from the estimated single-difference value Δρe of the geometric distance, and divides the difference value by the wavelength λ B of the carrier phase, thereby obtaining the decimal part of the analog delay difference. The correction value is determined. The delay difference determination unit 222E outputs this correction value to the positioning unit 21.
 これにより、第5の実施形態に係る測位信号受信装置10Dと同様の相対測位演算に利用することが可能になる。 This makes it possible to use the same relative positioning calculation as the positioning signal receiving apparatus 10D according to the fifth embodiment.
 なお、アナログ遅延差の決定に、カルマンフィルタ等のフィルタ演算を用いてもよい。この場合、一重位相差ΔΦZ12 と幾何距離の一重差の推定値Δρeの差分値を観測ベクトルに含み、アナログ遅延差の小数部を状態ベクトルに含むように、フィルタを構成すればよい。 A filter operation such as a Kalman filter may be used to determine the analog delay difference. In this case, the filter may be configured such that the difference value between the single phase difference ΔΦZ 12 B and the estimated single-difference value Δρe of the geometric distance is included in the observation vector, and the fractional part of the analog delay difference is included in the state vector.
 本実施形態に示したアナログ遅延差の算出および測位演算は、プログラム化しておき、コンピュータ等の情報処理装置で実行することも可能である。図16は、本発明の第6の実施形態に係るアナログ遅延差算出方法および測位方法のフローチャートである。 The calculation of the analog delay difference and the positioning calculation shown in the present embodiment can be programmed and executed by an information processing apparatus such as a computer. FIG. 16 is a flowchart of an analog delay difference calculation method and positioning method according to the sixth embodiment of the present invention.
 ステップS601では、基線ベクトルを記憶しているか判定する。基線ベクトルを記憶していれば(S601:YES)、ステップS602に移行する。基線ベクトルを記憶していなければ(S601:NO)、他の実施形態に示した方法を用いて相対測位演算を行った結果から基線ベクトルを取得する。 In step S601, it is determined whether a baseline vector is stored. If the baseline vector is stored (S601: YES), the process proceeds to step S602. If the baseline vector is not stored (S601: NO), the baseline vector is acquired from the result of the relative positioning calculation using the method shown in the other embodiment.
 ステップS602では、基線ベクトルを用いて、幾何距離の一重差Δρeを推定する。 In step S602, the single-point difference Δρe of the geometric distance is estimated using the baseline vector.
 ステップS603では、測位信号の搬送波位相の一重差(観測一重差)ΔΦZ12 を算出する。この際、複数の受信部が接続するアンテナは同じである。 In step S603, the single phase difference (observation single difference) ΔΦZ 12 B of the positioning signal is calculated. At this time, the antennas connected to the plurality of receiving units are the same.
 ステップS604では、測位信号の搬送波位相の一重差(観測一重差)ΔΦZ12 と幾何距離の一重差Δρeとの差分値を算出する。 In step S604, a difference value between the single difference (observation single difference) ΔΦZ 12 B of the positioning signal carrier phase and the single difference Δρe of the geometric distance is calculated.
 ステップS605では、差分値を搬送波周波数λで除算した余りを、アナログ遅延差に基づく補正値として算出する。 In step S605, the remainder obtained by dividing the difference value by the carrier frequency λ B is calculated as a correction value based on the analog delay difference.
 次に、本発明の第7の実施形態に係る測位信号受信装置について、図を参照して説明する。図17は、本発明の第7の実施形態に係る測位信号受信装置の構成を示すブロック図である。 Next, a positioning signal receiving apparatus according to the seventh embodiment of the present invention will be described with reference to the drawings. FIG. 17 is a block diagram showing a configuration of a positioning signal receiving apparatus according to the seventh embodiment of the present invention.
 測位信号受信装置10Fは、アンテナ100A,100B、受信部11A,11B、演算部20、およびクロック発生部40を備える。演算部20は、位相差変化量算出部23、および推定部24を備える。 The positioning signal receiving device 10F includes antennas 100A and 100B, receiving units 11A and 11B, a calculating unit 20, and a clock generating unit 40. The calculation unit 20 includes a phase difference change amount calculation unit 23 and an estimation unit 24.
 アンテナ100Aは本発明の「第1アンテナ」であり、アンテナ100Bは本発明の「第2アンテナ」である。アンテナ100A,100Bは、測位衛星SVからの測位信号を受信する。 The antenna 100A is the “first antenna” of the present invention, and the antenna 100B is the “second antenna” of the present invention. The antennas 100A and 100B receive positioning signals from the positioning satellite SV.
 受信部11Aは本発明の「第1受信部」であり、受信部11Bは本発明の「第2受信部」である。受信部11Aはアンテナ100Aに接続されている。受信部11Bはアンテナ100Bに接続されている。受信部11A,11Bには、クロック発生部40からクロック信号が入力されている。受信部11A,11Bは、このクロック信号によって同期されている。 The receiving unit 11A is the “first receiving unit” of the present invention, and the receiving unit 11B is the “second receiving unit” of the present invention. The receiving unit 11A is connected to the antenna 100A. The receiving unit 11B is connected to the antenna 100B. A clock signal is input from the clock generator 40 to the receivers 11A and 11B. The receivers 11A and 11B are synchronized by this clock signal.
 受信部11Aは、アンテナ100Aで受信された測位信号と測位信号のレプリカ信号とを相関処理することによって、測位信号を捕捉、追尾する。受信部11Aは相関処理によって復調されたコードを推定部24に出力する。 The receiving unit 11A captures and tracks the positioning signal by performing correlation processing between the positioning signal received by the antenna 100A and a replica signal of the positioning signal. The receiving unit 11A outputs the code demodulated by the correlation processing to the estimating unit 24.
 受信部11Aは、相関処理によって測位信号の搬送波位相(本発明の「第1搬送波位相」である。)を検出して、位相差算出部23および推定部24に出力する。この際、受信部11Aは、搬送波位相を取得した測位信号の送信元の測位衛星SVを関連付けして、搬送波位相を出力する。 The receiving unit 11A detects the carrier phase of the positioning signal (the “first carrier phase” of the present invention) by correlation processing, and outputs it to the phase difference calculating unit 23 and the estimating unit 24. At this time, the receiving unit 11A associates the positioning satellite SV that is the transmission source of the positioning signal from which the carrier phase has been acquired, and outputs the carrier phase.
 受信部11Bは、アンテナ100Bで受信された測位信号と測位信号のレプリカ信号とを相関処理することによって、測位信号を捕捉、追尾する。受信部11Bは相関処理によって復調されたコードを推定部24に出力する。受信部11Bは、相関処理によって測位信号の搬送波位相(本発明の「第2搬送波位相」である。)を検出して、位相差算出部23および推定部24に出力する。この際、受信部11Bは、搬送波位相を取得した測位信号の送信元の測位衛星SVを関連付けして、搬送波位相を出力する。 The receiving unit 11B captures and tracks the positioning signal by performing correlation processing between the positioning signal received by the antenna 100B and the replica signal of the positioning signal. The receiving unit 11B outputs the code demodulated by the correlation processing to the estimating unit 24. The receiving unit 11B detects the carrier phase of the positioning signal (the “second carrier phase” of the present invention) by correlation processing, and outputs it to the phase difference calculating unit 23 and the estimating unit 24. At this time, the receiving unit 11B associates the positioning satellite SV that is the transmission source of the positioning signal from which the carrier phase has been acquired, and outputs the carrier phase.
 位相差算出部23は、受信部11Aから出力される搬送波位相と受信部11Bから出力される搬送波位相との位相差を算出する。位相差算出部23は、搬送波位相に関連付けられた測位衛星SVを参照して、受信部11A,11Bから出力される搬送波位相に共通の測位衛星SVの測位信号に対する位相差(アンテナ間一重位相差)を算出する。位相差算出部23は、複数の測位衛星に対してアンテナ間一重位相差を算出する。位相差算出部23は、アンテナ間一重位相差を推定部24に出力する。 The phase difference calculator 23 calculates the phase difference between the carrier phase output from the receiver 11A and the carrier phase output from the receiver 11B. The phase difference calculation unit 23 refers to the positioning satellite SV associated with the carrier phase, and the phase difference (single phase difference between antennas) with respect to the positioning signal of the positioning satellite SV common to the carrier phase output from the receiving units 11A and 11B. ) Is calculated. The phase difference calculation unit 23 calculates a single phase difference between antennas for a plurality of positioning satellites. The phase difference calculation unit 23 outputs the single phase difference between the antennas to the estimation unit 24.
 推定部24は、受信部11Aと受信部11Bとのアナログ遅延差ΔADを状態ベクトルに含むフィルタ演算を設定し、アナログ遅延差ΔADを推定する。フィルタとしては、例えば、カルマンフィルタが用いられる。なお、状態ベクトルには、通常、アナログ遅延量ΔADとともに、さらに、位置、速度、姿勢角を含む。また、カルマンフィルタの観測ベクトルには、以前に推定した姿勢角から算出したアンテナ間一重位相差と、位相差算出部23からのアンテナ間一重位相差との差分値を含む。また、観測ベクトルには、通常、コード位相差に基づく測位結果等によって得られた位置、速度、姿勢角も含む。 The estimation unit 24 sets a filter operation including the analog delay difference ΔAD between the reception unit 11A and the reception unit 11B in the state vector, and estimates the analog delay difference ΔAD. For example, a Kalman filter is used as the filter. Note that the state vector usually includes a position, a speed, and an attitude angle in addition to the analog delay amount ΔAD. Further, the observation vector of the Kalman filter includes a difference value between the single phase difference between antennas calculated from the previously estimated attitude angle and the single phase difference between antennas from the phase difference calculation unit 23. In addition, the observation vector usually includes a position, velocity, and attitude angle obtained from a positioning result based on the code phase difference.
 以上のような構成および処理を用いることによって、アナログ遅延差ΔADを推定することができる。これにより、アンテナ間一重位相差を用いた相対測位を確実に実現し、高精度な測位結果を得ることができる。 By using the configuration and processing as described above, the analog delay difference ΔAD can be estimated. Thereby, the relative positioning using the single phase difference between the antennas can be reliably realized, and a highly accurate positioning result can be obtained.
 本実施形態に示したアナログ遅延差の推定は、プログラム化しておき、コンピュータ等の情報処理装置で実行することも可能である。図18は、本発明の第7の実施形態に係るアナログ遅延差推定方法のフローチャートである。 The estimation of the analog delay difference shown in the present embodiment can be programmed and executed by an information processing apparatus such as a computer. FIG. 18 is a flowchart of an analog delay difference estimation method according to the seventh embodiment of the present invention.
 ステップS701では、アンテナ間一重位相差を経時的に順次取得する。 In step S701, a single phase difference between antennas is sequentially acquired over time.
 ステップS702では、ステップS701で算出したアンテナ間一重位相差と、以前のフィルタ演算の結果に基づくアンテナ間一重位相差との差分値(アンテナ間一重位相差の観測誤差)を算出する。この差分値をフィルタ演算の観測ベクトルの要素に設定する。 In step S702, a difference value (observation error of the single phase difference between antennas) between the single phase difference between antennas calculated in step S701 and the single phase difference between antennas based on the result of the previous filter calculation is calculated. This difference value is set as an element of the observation vector of the filter operation.
 ステップS703では、アナログ遅延差を状態ベクトルの要素に設定する。ステップS704では、ステップS702,S703にて観測ベクトルと状態ベクトルが設定されたフィルタ演算を実行して、アナログ遅延差を推定する。 In step S703, the analog delay difference is set as an element of the state vector. In step S704, a filter operation in which the observation vector and the state vector are set in steps S702 and S703 is executed to estimate the analog delay difference.
 次に、本発明の第8の実施形態に係る測位信号受信装置について、図を参照して説明する。図19は、本発明の第8の実施形態に係る測位信号受信装置の構成を示すブロック図である。 Next, a positioning signal receiving apparatus according to the eighth embodiment of the present invention will be described with reference to the drawings. FIG. 19 is a block diagram showing a configuration of a positioning signal receiving apparatus according to the eighth embodiment of the present invention.
 本実施形態に係る測位信号受信装置10Gは、第7の実施形態に係る測位信号受信装置10Fに対して、演算部20Gの構成および処理が異なる。 The positioning signal receiving device 10G according to the present embodiment is different from the positioning signal receiving device 10F according to the seventh embodiment in the configuration and processing of the arithmetic unit 20G.
 演算部20Gは、位相差算出部23G、推定部24G、および、統合処理部25Gを備える。位相差算出部23Gは、第7の実施形態に係る測位信号受信装置10Fの位相差算出部23Fと同じ構成であり、同じ処理を実行する。 The calculation unit 20G includes a phase difference calculation unit 23G, an estimation unit 24G, and an integration processing unit 25G. The phase difference calculation unit 23G has the same configuration as the phase difference calculation unit 23F of the positioning signal reception device 10F according to the seventh embodiment, and executes the same processing.
 推定部24Gは、フィルタ演算を実行する。フィルタとしては、例えば、カルマンフィルタが用いられる。このフィルタ演算の状態ベクトルは、受信部11Aと受信部11Bとのアナログ遅延差ΔAD、および統合処理用の補正値を含む。統合処理用の補正値には、IMUセンサ50の出力に対するセンサ誤差の推定値、位置の補正値、速度の補正値、および姿勢角の補正値を含む。 The estimation unit 24G performs a filter operation. For example, a Kalman filter is used as the filter. The state vector of this filter calculation includes the analog delay difference ΔAD between the receiving unit 11A and the receiving unit 11B and the correction value for the integration process. The correction value for the integration process includes an estimated value of sensor error with respect to the output of the IMU sensor 50, a position correction value, a speed correction value, and a posture angle correction value.
 フィルタ演算の観測ベクトルは、位相差算出部23Gから出力されるアンテナ間一重位相差と、統合処理部25Gから出力される姿勢角から算出されるアンテナ間一重位相差との差分値(アンテナ間一重位相差の誤差)を含む。また、フィルタ演算の観測ベクトルには、IMUセンサ50の出力値を含む。 The observation vector of the filter calculation is a difference value (single-to-antenna single-phase difference between the single-phase phase difference between the antennas output from the phase difference calculation unit 23G and the single-phase difference between antennas calculated from the attitude angle output from the integration processing unit 25G. Phase difference error). Further, the output value of the IMU sensor 50 is included in the observation vector of the filter calculation.
 推定部24Gは、このフィルタ演算を実行して、アナログ遅延差ΔAD、および統合処理用の補正値を推定する。このような処理を行うことによって、アナログ遅延差ΔADを推定することができる。推定部24Gは、統合処理用の補正値を統合処理部25Gに出力する。 The estimation unit 24G executes this filter operation to estimate the analog delay difference ΔAD and the correction value for the integration process. By performing such processing, the analog delay difference ΔAD can be estimated. The estimation unit 24G outputs the correction value for the integration process to the integration processing unit 25G.
 統合処理部25Gには、IMUセンサ50からのセンサ出力が入力される。センサ出力としては、例えば、加速度、角速度である。統合処理部25Gは、センサ出力に基づいて、速度、位置、および姿勢角を算出する。この際、統合処理部25Gは、統合処理用の補正値を、速度、位置、および姿勢角の算出処理に用いる。これにより、速度、位置、および姿勢角を高精度に算出することができる。 The sensor output from the IMU sensor 50 is input to the integrated processing unit 25G. Examples of the sensor output include acceleration and angular velocity. The integrated processing unit 25G calculates the speed, position, and posture angle based on the sensor output. At this time, the integration processing unit 25G uses the correction value for the integration processing for calculating the speed, position, and posture angle. Thereby, a speed, a position, and an attitude angle can be calculated with high accuracy.
 本実施形態に示したアナログ遅延差および統合処理用の補正値の推定は、プログラム化しておき、コンピュータ等の情報処理装置で実行することも可能である。図20は、本発明の第8の実施形態に係るアナログ遅延差の推定方法のフローチャートである。 The estimation of the analog delay difference and the correction value for the integration processing shown in the present embodiment can be programmed and executed by an information processing apparatus such as a computer. FIG. 20 is a flowchart of an analog delay difference estimation method according to the eighth embodiment of the present invention.
 ステップS801では、アンテナ間一重位相差を経時的に順次取得する。 In step S801, single phase differences between antennas are sequentially acquired over time.
 ステップS802では、IMUセンサ50のセンサ出力を順次取得する。 In step S802, the sensor output of the IMU sensor 50 is sequentially acquired.
 ステップS803では、ステップS801で算出したアンテナ間一重位相差と、以前の統合処理の結果に基づくアンテナ間一重位相差との差分値(アンテナ間一重位相差の観測誤差)を算出する。この差分値をフィルタ演算の観測ベクトルの要素に設定する。 In step S803, a difference value (observation error of the single phase difference between the antennas) between the single phase difference between the antennas calculated in step S801 and the single phase difference between the antennas based on the result of the previous integration process is calculated. This difference value is set as an element of the observation vector of the filter operation.
 ステップS804では、アナログ遅延差を状態ベクトルの要素に設定する。ステップS805では、ステップS803,S804にて観測ベクトルと状態ベクトルが設定されたフィルタ演算を実行して、アナログ遅延差を推定する。 In step S804, the analog delay difference is set as an element of the state vector. In step S805, a filter operation in which the observation vector and the state vector are set in steps S803 and S804 is executed to estimate the analog delay difference.
 以上の各実施形態において、アナログ遅延差ΔADの算出(推定も含む)は、アンテナ間一重位相差が算出される全てのタイミング(全てのエポック)で実行してもよいが、次に示す各タイミングで行ってもよい。 In each of the embodiments described above, the calculation (including estimation) of the analog delay difference ΔAD may be executed at all timings (all epochs) at which the single phase difference between the antennas is calculated. You may go on.
 (i)稼働時間に基づくアナログ遅延差ΔADの算出
 図21は、稼働時間に基づいてアナログ遅延差を算出するフローチャートである。
(I) Calculation of Analog Delay Difference ΔAD Based on Operating Time FIG. 21 is a flowchart for calculating the analog delay difference based on the operating time.
 ステップS911では、稼働時間をカウントする。稼働時間のカウントは、測位信号受信装置内に装備された時計を用いても、測位信号から復調できる時刻を用いてもよい。 In step S911, the operation time is counted. The operating time may be counted using a timepiece provided in the positioning signal receiving device or using a time that can be demodulated from the positioning signal.
 ステップS912では、稼働時間とアナログ遅延差算出用の閾値時間THhとを比較する。稼働時間が閾値時間THhに満たなければ(S912:NO)、稼働時間のカウントを継続する。稼働時間が閾値時間THhに達すれば(S912:YES)、ステップS913に移行する。 In step S912, the operating time is compared with the threshold time THh for calculating the analog delay difference. If the operation time does not satisfy the threshold time THh (S912: NO), the operation time is continuously counted. If the operating time reaches the threshold time THh (S912: YES), the process proceeds to step S913.
 ステップS913では、アナログ遅延差ΔADを算出する。 In step S913, an analog delay difference ΔAD is calculated.
 このような処理を用いることによって、受信部の経時変化によってアナログ遅延差ΔADが変化しても、アナログ遅延差ΔADを高精度に算出することができる。また、全てのエポックに対してアナログ遅延差ΔADを算出する態様と比較して、アナログ遅延差ΔADの算出に対する処理負荷を軽減することができる。 By using such processing, the analog delay difference ΔAD can be calculated with high accuracy even if the analog delay difference ΔAD changes due to a change with time of the receiving unit. Further, the processing load for calculating the analog delay difference ΔAD can be reduced as compared with the aspect of calculating the analog delay difference ΔAD for all epochs.
 (ii)温度に基づくアナログ遅延差ΔADの算出
 図22は、温度に基づいてアナログ遅延差を算出するフローチャートである。
(Ii) Calculation of Analog Delay Difference ΔAD Based on Temperature FIG. 22 is a flowchart for calculating an analog delay difference based on temperature.
 ステップS921では、温度を測定する。 In step S921, the temperature is measured.
 ステップS922では、温度の変化量とアナログ遅延差算出用の閾値THΔTとを比較する。温度の変化量が閾値THΔTに満たなければ(S922:NO)、温度の測定を継続する。温度の変化量が閾値THΔTに達すれば(S922:YES)、ステップS923に移行する。 In step S922, the amount of change in temperature is compared with an analog delay difference calculation threshold value THΔT. If the temperature change amount does not reach the threshold value THΔT (S922: NO), the temperature measurement is continued. If the temperature change amount reaches the threshold value THΔT (S922: YES), the process proceeds to step S923.
 ステップS923では、アナログ遅延差ΔADを算出する。 In step S923, an analog delay difference ΔAD is calculated.
 このような処理を用いることによって、受信部の温度の変化によってアナログ遅延差ΔADが変化しても、アナログ遅延差ΔADを高精度に算出することができる。 By using such processing, the analog delay difference ΔAD can be calculated with high accuracy even if the analog delay difference ΔAD changes due to a change in the temperature of the receiving unit.
 (iii)高度に基づくアナログ遅延差ΔADの算出
 図23は、高度に基づいてアナログ遅延差を算出するフローチャートである。
(Iii) Calculation of Analog Delay Difference ΔAD Based on Altitude FIG. 23 is a flowchart for calculating the analog delay difference based on the altitude.
 ステップS931では、高度を測定する。 In step S931, the altitude is measured.
 ステップS932では、高度の変化量とアナログ遅延差算出用の閾値THΔTaとを比較する。高度の変化量が閾値THΔTaに満たなければ(S932:NO)、高度の測定を継続する。高度の変化量が閾値THΔTaに達すれば(S932:YES)、ステップS933に移行する。 In step S932, the amount of change in altitude and the threshold value THΔTa for calculating the analog delay difference are compared. If the change amount of the altitude is less than the threshold value THΔTa (S932: NO), the altitude measurement is continued. If the amount of change in altitude reaches the threshold value THΔTa (S932: YES), the process proceeds to step S933.
 ステップS933では、アナログ遅延差ΔADを算出する。 In step S933, an analog delay difference ΔAD is calculated.
 このような処理を用いることによって、受信部の高度の変化によってアナログ遅延差ΔADが変化しても、アナログ遅延差ΔADを高精度に算出することができる。 By using such processing, the analog delay difference ΔAD can be calculated with high accuracy even if the analog delay difference ΔAD changes due to a change in the altitude of the receiving unit.
 (iv)速度、回動量に基づくアナログ遅延差ΔADの算出
 図24は、速度、回動量に基づいてアナログ遅延差を算出するフローチャートである。
(Iv) Calculation of Analog Delay Difference ΔAD Based on Speed and Rotation Amount FIG. 24 is a flowchart for calculating the analog delay difference based on the speed and the rotation amount.
 ステップS941では、速度を算出する。速度の算出は、例えば、コード位相差に基づく擬似距離の変化量等によって算出される。 In step S941, the speed is calculated. The speed is calculated based on, for example, the change amount of the pseudo distance based on the code phase difference.
 ステップS942では、方位を算出する。方位の算出は、例えば、コード位相差を用いた単独測位の結果から得られる位置、姿勢角によって算出される。 In step S942, the azimuth is calculated. The azimuth is calculated, for example, from the position and posture angle obtained from the result of independent positioning using the code phase difference.
 ステップS943では、速度の変化量とアナログ遅延差算出用の閾値THvとを比較する。また、方位の変化量とアナログ遅延差算出用の閾値THψとを比較する。速度の変化量が閾値THvに満たない、もしくは、方位の変化量が閾値THψに満たなければ(S943:NO)、速度および方位の算出を継続する。速度の変化量が閾値THvに達し、且つ、方位の変化量(回動量)が閾値THψに達すれば(S943:YES)、ステップS944に移行する。 In step S943, the amount of change in speed is compared with the threshold THv for analog delay difference calculation. Also, the amount of change in azimuth and the threshold value THψ for analog delay difference calculation are compared. If the amount of change in speed is less than the threshold value THv, or if the amount of change in direction is less than the threshold value THψ (S943: NO), the calculation of the speed and direction is continued. If the speed change amount reaches the threshold value THv and the azimuth change amount (rotation amount) reaches the threshold value THψ (S943: YES), the process proceeds to step S944.
 ステップS944では、経過時間を計測する。経過時間が予め設定した閾値時間に達していなければ(S944:NO)、速度および方位の算出を継続する。すなわち、速度および方位の変化が継続している期間、または、速度および方位が短時間だけ変化していない期間では、速度および方位の算出を継続する。経過時間が閾値時間に達していれば(S944:YES)、ステップS945に移行する。すなわち、速度および方位の変化が所定時間に亘って変化していないことを検出すると、ステップS945に移行する。 In step S944, the elapsed time is measured. If the elapsed time does not reach the preset threshold time (S944: NO), the calculation of the speed and direction is continued. That is, the calculation of the speed and direction is continued in the period in which the change in speed and direction continues or in the period in which the speed and direction do not change for a short time. If the elapsed time has reached the threshold time (S944: YES), the process proceeds to step S945. That is, when it is detected that the change in speed and direction has not changed over a predetermined time, the process proceeds to step S945.
 ステップS945では、アナログ遅延差ΔADを算出する。 In step S945, an analog delay difference ΔAD is calculated.
 このような処理を用いることによって、測位信号受信装置が装備される移動体の姿勢が安定している期間に、アナログ遅延差ΔADを算出することができる。これにより、アナログ遅延差ΔADの算出誤差を軽減でき、アナログ遅延差ΔADをさらに高精度に算出することができる。 By using such processing, it is possible to calculate the analog delay difference ΔAD during a period in which the posture of the moving body equipped with the positioning signal receiving device is stable. Thereby, the calculation error of the analog delay difference ΔAD can be reduced, and the analog delay difference ΔAD can be calculated with higher accuracy.
10,10A,10B,10C,10D,10E,10F,10G:測位信号受信装置
100A,100B,100C:アンテナ
11A,11A',11B,11C:受信部
20,20A,20C,20D,20E,20F,20G:演算部
21,21C:測位部
22,22C,22D,22E:遅延差算出部
221:一重位相差算出部
222,222E:遅延差決定部
223:基線ベクトル記憶部
23,23G:位相差算出部
24,24G:推定部
30,30A,30B:スイッチ
40:クロック発生部
50:IMUセンサ
10, 10A, 10B, 10C, 10D, 10E, 10F, 10G: Positioning signal receivers 100A, 100B, 100C: Antennas 11A, 11A ′, 11B, 11C: Receivers 20, 20A, 20C, 20D, 20E, 20F, 20G: arithmetic units 21, 21C: positioning units 22, 22C, 22D, 22E: delay difference calculation unit 221: single phase difference calculation unit 222, 222E: delay difference determination unit 223: baseline vector storage unit 23, 23G: phase difference calculation Units 24, 24G: estimation units 30, 30A, 30B: switch 40: clock generation unit 50: IMU sensor

Claims (17)

  1.  測位信号を受信する第1アンテナおよび第2アンテナと、
     前記第1アンテナに接続し、前記測位信号の第1搬送波位相を検出する第1受信部と、
     前記第2アンテナに接続し、前記測位信号の第2搬送波位相を検出する第2受信部と、
     前記第1搬送波位相と前記第2搬送波位相との差を用いて、前記第1受信部と前記第2受信部とのアナログ遅延量の差を算出する演算部と、
     を備える、測位信号受信装置。
    A first antenna and a second antenna for receiving positioning signals;
    A first receiver connected to the first antenna and detecting a first carrier phase of the positioning signal;
    A second receiver connected to the second antenna for detecting a second carrier phase of the positioning signal;
    An arithmetic unit that calculates a difference in analog delay amount between the first receiving unit and the second receiving unit using a difference between the first carrier phase and the second carrier phase;
    A positioning signal receiving device.
  2.  請求項1に記載の測位信号受信装置であって、
     前記第1アンテナおよび前記第2アンテナのいずれかを前記第1受信部に選択的に接続するスイッチを備え、
     前記演算部は、
     前記スイッチによって前記第1受信部と前記第2受信部が前記第2アンテナに接続された際に検出する前記第1搬送波位相と前記第2搬送波位相から前記アナログ遅延量の差を算出する遅延差算出部を備える、
     測位信号受信装置。
    The positioning signal receiving device according to claim 1,
    A switch that selectively connects either the first antenna or the second antenna to the first receiver;
    The computing unit is
    A delay difference for calculating a difference in the analog delay amount from the first carrier phase and the second carrier phase detected when the first receiver and the second receiver are connected to the second antenna by the switch. With a calculation unit,
    Positioning signal receiver.
  3.  請求項1に記載の測位信号受信装置であって、
     前記第1受信部は、前記第2アンテナにも接続されており、
     前記演算部は、前記第2アンテナで受信した測位信号に対する前記第1受信部が検出した前記第1搬送波位相と前記第2受信部が検出した前記第2搬送波位相とから前記アナログ遅延量の差を算出する遅延差算出部を備える、
     測位信号受信装置。
    The positioning signal receiving device according to claim 1,
    The first receiving unit is also connected to the second antenna,
    The arithmetic unit is configured to obtain a difference between the analog delay amount from the first carrier phase detected by the first receiver and the second carrier phase detected by the second receiver with respect to the positioning signal received by the second antenna. A delay difference calculating unit for calculating
    Positioning signal receiver.
  4.  請求項1に記載の測位信号受信装置であって、
     前記演算部は、
     前記第1搬送波位相と前記第2搬送波位相との一重位相差を、互いに異なる複数の測位信号について算出する一重位相差算出部と、
     前記複数の測位信号に対する前記一重位相差を互いに比較し、比較結果から前記アナログ遅延量の差を決定する遅延量決定部と、
     を備える、
     測位信号受信装置。
    The positioning signal receiving device according to claim 1,
    The computing unit is
    A single phase difference calculator for calculating a single phase difference between the first carrier phase and the second carrier phase for a plurality of different positioning signals;
    A delay amount determination unit that compares the single phase differences for the plurality of positioning signals with each other, and determines a difference in the analog delay amount from a comparison result;
    Comprising
    Positioning signal receiver.
  5.  請求項1に記載の測位信号受信装置であって、
     前記演算部は、
     前記第1搬送波位相と前記第2搬送波位相との一重位相差を算出する一重位相差算出部と、
     前記第1アンテナと前記第2アンテナを結ぶ基線ベクトルを記憶する基線ベクトル記憶部と、
     前記基線ベクトルから幾何距離の一重差を算出し、前記幾何距離の一重差と前記一重位相差との差分を観測ベクトルに含み、前記第1受信部と前記第2受信部のアナログ遅延量の差を状態ベクトルに含むフィルタ演算を用いて、前記アナログ遅延量の差を決定する遅延量決定部と、
     を備える、
     測位信号受信装置。
    The positioning signal receiving device according to claim 1,
    The computing unit is
    A single phase difference calculator for calculating a single phase difference between the first carrier phase and the second carrier phase;
    A baseline vector storage unit for storing a baseline vector connecting the first antenna and the second antenna;
    A single difference in geometric distance is calculated from the baseline vector, a difference between the single difference in geometric distance and the single phase difference is included in an observation vector, and a difference in analog delay amount between the first receiver and the second receiver A delay amount determination unit that determines a difference between the analog delay amounts using a filter operation including
    Comprising
    Positioning signal receiver.
  6.  請求項1に記載の測位信号受信装置であって、
     前記演算部は、
     前記第1搬送波位相と前記第2搬送波位相の一重位相差を同一の測位信号について複数の時刻で算出する一重位相差算出部と、
     前記一重位相差の観測誤差を観測ベクトルに含み、前記第1受信部と前記第2受信部のアナログ遅延量の差を状態ベクトルに含むフィルタ演算を用いて、前記アナログ遅延量の差を推定する推定部と、
     を備える、測位信号受信装置。
    The positioning signal receiving device according to claim 1,
    The computing unit is
    A single phase difference calculation unit for calculating a single phase difference between the first carrier phase and the second carrier phase at a plurality of times for the same positioning signal;
    The difference in the analog delay amount is estimated using a filter operation that includes the observation error of the single phase difference in an observation vector and includes the difference in analog delay amount between the first receiving unit and the second receiving unit in a state vector. An estimation unit;
    A positioning signal receiving device.
  7.  請求項1に記載の測位信号受信装置であって、
     前記演算部は、
     前記第1搬送波位相と前記第2搬送波位相の一重位相差を複数の時刻で算出する一重位相差算出部と、
     統合処理部で補正された測位データから得られる一重位相差と前記一重位相差算出部によって得られる一重位相差との差分を観測ベクトルに含み、前記第1受信部と前記第2受信部のアナログ遅延量の差および慣性センサの出力に含まれる誤差を状態ベクトルに含むフィルタ演算を用いて、前記アナログ遅延量の差および前記誤差を推定する推定部と、
     前記推定部で推定された前記誤差を用いて、前記慣性センサからの出力を補正する統合処理部と、
     を備える、測位信号受信装置。
    The positioning signal receiving device according to claim 1,
    The computing unit is
    A single phase difference calculating unit that calculates a single phase difference between the first carrier phase and the second carrier phase at a plurality of times;
    The difference between the single phase difference obtained from the positioning data corrected by the integrated processing unit and the single phase difference obtained by the single phase difference calculation unit is included in an observation vector, and the analog of the first reception unit and the second reception unit An estimation unit that estimates the difference in the analog delay amount and the error by using a filter operation including a difference in delay amount and an error included in the output of the inertial sensor in a state vector;
    An integrated processing unit that corrects an output from the inertial sensor using the error estimated by the estimation unit;
    A positioning signal receiving device.
  8.  第1受信部で測位信号の第1搬送波位相を検出する第1受信工程と、
     第2受信部で前記測位信号の第2搬送波位相を検出する第2受信工程と、
     前記第1搬送波位相と前記第2搬送波位相との差を用いて、前記第1受信部と前記第2受信部とのアナログ遅延量の差を算出する演算工程と、
     を有する、測位信号受信方法。
    A first receiving step of detecting a first carrier phase of a positioning signal at a first receiving unit;
    A second receiving step of detecting a second carrier phase of the positioning signal by a second receiver;
    A calculation step of calculating an analog delay amount difference between the first receiver and the second receiver using a difference between the first carrier phase and the second carrier phase;
    A positioning signal receiving method.
  9.  請求項8に記載の測位信号受信方法であって、
     第2アンテナを前記第2受信部に接続し、第1アンテナおよび前記第2アンテナのいずれかを前記第1受信部に選択的に接続する接続切り替え工程を有し、
     前記演算工程は、
     前記第2アンテナで受信した測位信号に対する第1受信部が検出した第1搬送波位相と第2受信部が検出した第2搬送波位相とから前記アナログ遅延量の差を算出する遅延差算出工程を有する、
     測位信号受信方法。
    A positioning signal receiving method according to claim 8,
    A connection switching step of connecting a second antenna to the second receiver, and selectively connecting either the first antenna or the second antenna to the first receiver;
    The calculation step includes
    A delay difference calculating step of calculating a difference between the analog delay amounts from a first carrier phase detected by the first receiver and a second carrier phase detected by the second receiver with respect to the positioning signal received by the second antenna; ,
    Positioning signal reception method.
  10.  請求項8に記載の測位信号受信方法であって、
     前記演算工程は、
     前記第1搬送波位相と前記第2搬送波位相との一重位相差を、互いに異なる複数の測位信号について算出する一重位相差算出工程と、
     前記複数の測位信号に対する前記一重位相差を互いに比較し、比較結果から前記アナログ遅延量の差を決定する遅延量決定工程と、
     を有する、
     測位信号受信方法。
    A positioning signal receiving method according to claim 8,
    The calculation step includes
    A single phase difference calculating step of calculating a single phase difference between the first carrier phase and the second carrier phase for a plurality of different positioning signals;
    A delay amount determination step of comparing the single phase differences for the plurality of positioning signals with each other, and determining a difference in the analog delay amount from a comparison result;
    Having
    Positioning signal reception method.
  11.  請求項8に記載の測位信号受信方法であって、
     前記演算工程は、
     前記第1搬送波位相と前記第2搬送波位相との一重位相差を算出する一重位相差算出工程と、
     前記一重位相差に対応するアンテナを結ぶ基線ベクトルを記憶する基線ベクトル記憶工程と、
     記憶された前記基線ベクトルから幾何距離の一重差を算出し、前記幾何距離の一重差と前記一重位相差との差分を観測ベクトルに含み、前記第1受信部と前記第2受信部のアナログ遅延量の差を状態ベクトルに含むフィルタ演算を用いて、前記アナログ遅延量の差を決定する遅延量決定工程と、
     を有する、
     測位信号受信方法。
    A positioning signal receiving method according to claim 8,
    The calculation step includes
    A single phase difference calculating step of calculating a single phase difference between the first carrier phase and the second carrier phase;
    A baseline vector storing step of storing a baseline vector connecting the antennas corresponding to the single phase difference;
    A single difference in geometric distance is calculated from the stored baseline vector, the difference between the single difference in geometric distance and the single phase difference is included in an observation vector, and the analog delay between the first receiver and the second receiver A delay amount determining step of determining the difference between the analog delay amounts using a filter operation including a difference in the amount in a state vector;
    Having
    Positioning signal reception method.
  12.  請求項8に記載の測位信号受信方法であって、
     前記演算工程は、
     前記第1搬送波位相と前記第2搬送波位相の一重位相差を同一の測位信号について複数の時刻で算出する一重位相差算出工程と、
     前記一重位相差の観測誤差を観測ベクトルに含み、前記第1受信部と前記第2受信部のアナログ遅延量の差を状態ベクトルに含むフィルタ演算を用いて、前記アナログ遅延量の差を推定する推定工程と、
     を有する、測位信号受信方法。
    A positioning signal receiving method according to claim 8,
    The calculation step includes
    A single phase difference calculation step of calculating a single phase difference between the first carrier phase and the second carrier phase at a plurality of times for the same positioning signal;
    The difference in the analog delay amount is estimated using a filter operation that includes the observation error of the single phase difference in an observation vector and includes the difference in analog delay amount between the first receiving unit and the second receiving unit in a state vector. An estimation process;
    A positioning signal receiving method.
  13.  第1受信部と第2受信部とのアナログ遅延量の差を算出する処理を情報処理装置に実行させる測位信号受信プログラムであって、
     前記情報処理装置は、
     第1受信部で測位信号の第1搬送波位相を検出する第1受信処理と、
     第2受信部で前記測位信号の第2搬送波位相を検出する第2受信処理と、
     前記第1搬送波位相と前記第2搬送波位相との差を用いて、前記第1受信部と前記第2受信部とのアナログ遅延量の差を算出する演算処理と、
     を実行する、測位信号受信プログラム。
    A positioning signal receiving program for causing an information processing device to execute a process of calculating a difference in analog delay amount between a first receiving unit and a second receiving unit,
    The information processing apparatus includes:
    A first reception process for detecting a first carrier phase of a positioning signal by a first receiver;
    A second receiving process of detecting a second carrier phase of the positioning signal by a second receiver;
    An arithmetic processing for calculating a difference in analog delay amount between the first receiver and the second receiver using a difference between the first carrier phase and the second carrier phase;
    A positioning signal receiving program that executes
  14.  請求項13に記載の測位信号受信プログラムであって、
     前記情報処理装置は、
     第2アンテナを前記第2受信部に接続し、第1アンテナおよび前記第2アンテナのいずれかを前記第1受信部に選択的に接続する接続切り替え処理をさらに実行し、
     前記演算処理において、
     前記第2アンテナで受信した測位信号に対する第1受信部が検出した第1搬送波位相と第2受信部が検出した第2搬送波位相とから前記アナログ遅延量の差を算出する遅延差算出処理を実行する、
     測位信号受信プログラム。
    A positioning signal receiving program according to claim 13,
    The information processing apparatus includes:
    A connection switching process for connecting a second antenna to the second receiving unit and selectively connecting either the first antenna or the second antenna to the first receiving unit;
    In the arithmetic processing,
    A delay difference calculation process for calculating a difference in the analog delay amount from a first carrier phase detected by the first receiver and a second carrier phase detected by the second receiver with respect to the positioning signal received by the second antenna is executed. To
    Positioning signal reception program.
  15.  請求項13に記載の測位信号受信プログラムであって、
     前記情報処理装置は、
     前記演算処理において、
     前記第1搬送波位相と前記第2搬送波位相との一重位相差を、互いに異なる複数の測位信号について算出する一重位相差算出処理と、
     前記複数の測位信号に対する前記一重位相差を互いに比較し、比較結果から前記アナログ遅延量の差を決定する遅延量決定処理と、
     を実行する、
     測位信号受信プログラム。
    A positioning signal receiving program according to claim 13,
    The information processing apparatus includes:
    In the arithmetic processing,
    A single phase difference calculation process for calculating a single phase difference between the first carrier phase and the second carrier phase for a plurality of different positioning signals;
    A delay amount determination process for comparing the single phase differences for the plurality of positioning signals with each other, and determining a difference in the analog delay amount from a comparison result;
    Run the
    Positioning signal reception program.
  16.  請求項13に記載の測位信号受信プログラムであって、
     前記情報処理装置は、
     前記演算処理において、
     前記第1搬送波位相と前記第2搬送波位相との一重位相差を算出する一重位相差算出処理と、
     前記一重位相差に対応するアンテナを結ぶ基線ベクトルを記憶する基線ベクトル記憶処理と、
     記憶された前記基線ベクトルから幾何距離の一重差を算出し、前記幾何距離の一重差と前記一重位相差との差分を観測ベクトルに含み、前記第1受信部と前記第2受信部のアナログ遅延量の差を状態ベクトルに含むフィルタ演算を用いて、前記アナログ遅延量の差を決定する遅延量決定処理と、
     を実行する、
     測位信号受信プログラム。
    A positioning signal receiving program according to claim 13,
    The information processing apparatus includes:
    In the arithmetic processing,
    A single phase difference calculation process for calculating a single phase difference between the first carrier phase and the second carrier phase;
    A baseline vector storage process for storing a baseline vector connecting the antennas corresponding to the single phase difference;
    A single difference in geometric distance is calculated from the stored baseline vector, the difference between the single difference in geometric distance and the single phase difference is included in an observation vector, and the analog delay between the first receiver and the second receiver A delay amount determination process for determining a difference in the analog delay amount using a filter operation including a difference in the amount in a state vector;
    Run the
    Positioning signal reception program.
  17.  請求項13に記載の測位信号受信プログラムであって、
     前記情報処理装置は、
     前記演算処理において、
     前記第1搬送波位相と前記第2搬送波位相の一重位相差を同一の測位信号について複数の時刻で算出する一重位相差算出処理と、
     前記一重位相差の観測誤差を観測ベクトルに含み、前記第1受信部と前記第2受信部のアナログ遅延量の差を状態ベクトルに含むフィルタ演算を用いて、前記アナログ遅延量の差を推定する推定処理と、
     を実行する、測位信号受信プログラム。
    A positioning signal receiving program according to claim 13,
    The information processing apparatus includes:
    In the arithmetic processing,
    A single phase difference calculation process for calculating a single phase difference between the first carrier phase and the second carrier phase at a plurality of times for the same positioning signal;
    The difference in the analog delay amount is estimated using a filter operation that includes the observation error of the single phase difference in an observation vector and includes the difference in analog delay amount between the first receiving unit and the second receiving unit in a state vector. An estimation process;
    A positioning signal receiving program that executes
PCT/JP2015/081580 2014-12-26 2015-11-10 Positioning signal reception device WO2016103934A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014264585 2014-12-26
JP2014-264585 2014-12-26

Publications (1)

Publication Number Publication Date
WO2016103934A1 true WO2016103934A1 (en) 2016-06-30

Family

ID=56149968

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/081580 WO2016103934A1 (en) 2014-12-26 2015-11-10 Positioning signal reception device

Country Status (1)

Country Link
WO (1) WO2016103934A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1073649A (en) * 1996-05-09 1998-03-17 Agence Spatiale Europ Receiving apparatus for navigation system
JPH11190770A (en) * 1997-09-16 1999-07-13 Space Syst Loral Inc Self-calibration attitude determination for global positioning system
US6005514A (en) * 1997-09-15 1999-12-21 United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Method for attitude determination using GPS carrier phase measurements from nonaligned antennas
US6061631A (en) * 1997-07-03 2000-05-09 Trimble Navigation, Ltd. Hybrid approach for antenna baseline self-survey and line bias calibration using GPS carrier phase
US6163754A (en) * 1998-11-25 2000-12-19 Trimble Navigation Limited Compensation for line bias variation
WO2005124388A1 (en) * 2004-06-21 2005-12-29 Fujitsu Ten Limited Radar apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1073649A (en) * 1996-05-09 1998-03-17 Agence Spatiale Europ Receiving apparatus for navigation system
US6061631A (en) * 1997-07-03 2000-05-09 Trimble Navigation, Ltd. Hybrid approach for antenna baseline self-survey and line bias calibration using GPS carrier phase
US6005514A (en) * 1997-09-15 1999-12-21 United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Method for attitude determination using GPS carrier phase measurements from nonaligned antennas
JPH11190770A (en) * 1997-09-16 1999-07-13 Space Syst Loral Inc Self-calibration attitude determination for global positioning system
US6163754A (en) * 1998-11-25 2000-12-19 Trimble Navigation Limited Compensation for line bias variation
WO2005124388A1 (en) * 2004-06-21 2005-12-29 Fujitsu Ten Limited Radar apparatus

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
DR. PENINA AXELRAD ET AL.: "On-Orbit GPS Based Attitude & Antenna Baseline Estimation", PROCEEDINGS OF THE 1994 NATIONAL TECHNICAL MEETING OF THE INSTITUTE OF NAVIGATION (NTM 1994, 26 January 1994 (1994-01-26), pages 441 - 450 *
ELEANOR KETCHUM ET AL.: "GPS Modeling in the Attitude Determination Error Analysis System: Development and Application to TRACE", PROCEEDINGS OF THE 8TH INTERNATIONAL TECHNICAL MEETING OF THE SATELLITE DIVISION OF THE INSTITUTE OF NAVIGATION (ION GPS 1995), 15 September 1995 (1995-09-15), pages 1767 - 1774 *
R. FULLER ET AL.: "GPS Attitude Determination From Double Difference Differential Phase Measurements", PROCEEDINGS OF THE 9TH INTERNATIONAL TECHNICAL MEETING OF THE SATELLITE DIVISION OF THE INSTITUTE OF NAVIGATION (ION GPS 1996), 20 September 1996 (1996-09-20), pages 1073 - 1080 *
R. FULLER ET AL.: "GPS Tensor An Attitude and Orbit Determination System for Space", PROCEEDINGS OF THE 10TH INTERNATIONAL TECHNICAL MEETING OF THE SATELLITE DIVISION OF THE INSTITUTE OF NAVIGATION (ION GPS 1997), 19 September 1997 (1997-09-19), pages 299 - 311 *
RICHARD PHILLIPS ET AL.: "A Low Cost Low Power INS/IGPS Spacecraft Attitude Determination System", PROCEEDINGS OF THE LLTH INTERNATIONAL TECHNICAL MEETING OF THE SATELLITE DIVISION OF THE INSTITUTE OF NAVIGATION (ION GPS 1998), 18 September 1998 (1998-09-18), pages 1819 - 1829 *
S.PURIVIGRAIPONG ET AL.: "GPS Attitude Determination for Microsatellites", PROCEEDINGS OF THE 12TH INTERNATIONAL TECHNICAL MEETING OF THE SATELLITE DIVISION OF THE INSTITUTE OF NAVIGATION (ION GPS 1999), 17 September 1999 (1999-09-17), pages 2017 - 2026 *

Similar Documents

Publication Publication Date Title
CN106291591B (en) Global Navigation Satellite System (GNSS) spoofing detection with carrier phase and inertial sensors
CN108241161B (en) Distributed Kalman filter architecture for carrier range ambiguity estimation
JP5301762B2 (en) Carrier phase relative positioning device
US10578746B2 (en) Conversion device and computer readable medium
JP7329814B2 (en) Positioning device, positioning method, positioning program, positioning program storage medium, application device, and positioning system
JP6360199B2 (en) State calculation device, state calculation method, and state calculation program
US8370064B1 (en) Integrated global navigation satellite system and inertial navigation system for navigation and tracking
WO2013016800A4 (en) System, method, and computer program for a low power and low cost gnss receiver
JP2012208033A (en) Navigation calculation system
WO2011089041A1 (en) A receiver and method for authenticating satellite signals
JP2008298443A (en) Multipath detection device, positioning device, attitude azimuth orientation device, multipath detection method, and multipath detection program
JP5164546B2 (en) Positioning method
CN102426372A (en) Carrier smoothing pseudo range method and device
JP2014085204A (en) Precision positioning system, precision positioning device, and precision positioning method
WO2006121023A1 (en) Global positioning device, and global positioning system
WO2016103934A1 (en) Positioning signal reception device
US10877163B2 (en) Method and device for calculating attitude angle
JP2012137448A (en) Apparatus for evaluating ionosphere delay and navigation apparatus
JP4215264B2 (en) Position and orientation estimation device
JP2015102330A (en) Movement information calculation device, movement information calculation method, movement information calculation program, and mobile body
CN108351420B (en) Method for detecting parasitic movements during static alignment of an inertial measurement unit, and associated detection device
JP2012008011A (en) Arrival direction orientation device and position orientation device
WO2017022391A1 (en) Multipath detection device, multipath detection method, multipath detection program, positioning device, positioning method, and positioning program
JP7479220B2 (en) Abnormality determination device, abnormality determination method, and abnormality determination program
JP2008082819A (en) Positioning instrument and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15872503

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15872503

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP