WO2016103875A1 - Fiber bundling agent - Google Patents

Fiber bundling agent Download PDF

Info

Publication number
WO2016103875A1
WO2016103875A1 PCT/JP2015/079537 JP2015079537W WO2016103875A1 WO 2016103875 A1 WO2016103875 A1 WO 2016103875A1 JP 2015079537 W JP2015079537 W JP 2015079537W WO 2016103875 A1 WO2016103875 A1 WO 2016103875A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
mass
fiber sizing
acrylic resin
sizing agent
Prior art date
Application number
PCT/JP2015/079537
Other languages
French (fr)
Japanese (ja)
Inventor
武志 岩尾
正浩 梶川
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to JP2016565367A priority Critical patent/JP6112274B2/en
Publication of WO2016103875A1 publication Critical patent/WO2016103875A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/263Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated carboxylic acids; Salts or esters thereof

Definitions

  • fiber reinforced plastics including a matrix resin and a fiber material have been used as automobile members, aircraft members, and the like that are required to have high strength and excellent durability.
  • the matrix resin for example, nylon, polyethylene terephthalate (PET), polybutylene terephthalate (PBT), and the like are used.
  • resins having high heat resistance such as super engineering plastics such as polyphenylene sulfide (PPS) are used. Many are used.
  • the fiber material such as carbon fiber and glass fiber contained in the fiber reinforced plastic is used as a fiber bundle that is bundled approximately in the thousands to tens of thousands by the fiber sizing agent from the viewpoint of imparting high strength.
  • a fiber sizing agent a glass fiber sizing agent containing a (meth) acrylic acid ester polymer has been proposed (see, for example, Patent Document 1).
  • the present inventors have obtained a resin dispersion in which an acrylic resin (a) having a glass transition temperature in the range of ⁇ 20 to 40 ° C. is dispersed in an aqueous medium ( It was found that a fiber sizing agent containing A) and having an acrylic resin (a) having an average particle diameter in the range of 0.5 to 5 ⁇ m was excellent in fiber sizing property and heat resistance, and completed the present invention.
  • (alkoxy) polyalkylene glycol (meth) acrylate is used in the range of 1 to 10% by mass in the total polymerizable monomers. Is preferred.
  • organic solvent examples include aromatic solvents such as toluene and xylene; alicyclic solvents such as cyclohexanone; ester solvents such as normal butyl acetate and ethyl acetate; isobutanol, normal butanol, isopropyl alcohol, sorbitol, propylene Solvents having a hydroxyl group such as glycol monomethyl ether acetate; ketone solvents such as methyl ethyl ketone and methyl isobutyl ketone can be used. These solvents can be used alone or in combination of two or more.
  • polymerization initiator examples include azo compounds such as 2,2′-azobis (isobutyronitrile), 2,2′-azobis (2-methylbutyronitrile), azobiscyanovaleric acid; tert-butylperoxy Organic peroxides such as pivalate, tert-butylperoxybenzoate, tert-butylperoxy-2-ethylhexanoate, di-tert-butyl peroxide, cumene hydroperoxide, benzoyl peroxide, tert-butyl hydroperoxide Oxides; inorganic peroxides such as hydrogen peroxide, ammonium persulfate, potassium persulfate, sodium persulfate and the like. These polymer initiators can be used alone or in combination of two or more. In addition, the polymerization initiator is preferably used in a range of 0.1 to 10% by mass with respect to the total amount of monomers as raw materials for the acrylic resin (A).
  • azo compounds such as
  • the fiber sizing agent of the present invention contains the aqueous resin dispersion (A).
  • a silane coupling agent since the mechanical strength of the obtained molded article is improved, it is preferable to contain a silane coupling agent, Among them, it is particularly preferable to contain ⁇ -aminopropyltriethoxysilane, ⁇ -ureidopropyltriethoxysilane, and ⁇ -aminopropyltriethoxysilane.
  • these silane coupling agents can be used alone or in combination of two or more.
  • the obtained aqueous dispersion was desolvated under reduced pressure (0.080 to 0.095 MPa) at 40 ° C. for about 6 hours, and then cooled to a fiber sizing agent (nonvolatile content 45%, average particle size 1.5 ⁇ m) 1) was obtained.
  • the acrylic resin (a-1) had a glass transition temperature of 3 ° C. and a weight average molecular weight of 30,000.
  • the heat resistance (thermal discoloration) and fiber sizing properties were evaluated in the same manner as in Example 1 except that the fiber sizing agent (2) was used instead of the fiber sizing agent (1) of Example 1.
  • Heat resistance (thermochromic property) and fiber sizing properties were evaluated in the same manner as in Example 1 except that the fiber sizing agent (R-1) was used instead of the fiber sizing agent (1) of Example 1. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Abstract

Provided is a fiber bundling agent comprising an aqueous resin dispersion (A) wherein an acrylic resin (a) having a glass transition temperature of -20 to 40°C is dispersed in an aqueous medium, said fiber bundling agent being characterized in that the average particle diameter of the acrylic resin (a) is within the range of 0.5-5 μm. This fiber bundling agent has an excellent ability to bundle fibers and causes no loosening, fluffing, yarn cut, etc. of fiber bundles in a process of winding up the fiber bundles and weaving. Further, the fiber bundling agent has a high heat tolerance and shows little color change when thermally treated at a high temperature. Thus, fiber bundles bundled with the use of the fiber bundling agent according to the present invention are appropriately usable as a reinforcing material for molded articles for various purposes such as automobile members, aircraft members, components of electrical home appliances, members of wind power generation systems, etc.

Description

繊維集束剤Fiber sizing agent
 本発明は、繊維の集束に使用可能な繊維集束剤に関するものである。 The present invention relates to a fiber sizing agent that can be used for fiber sizing.
 従来、高強度で優れた耐久性の求められる自動車部材や航空機部材等としては、マトリックス樹脂と、繊維材料とを含む繊維強化プラスチックが使用されている。前記マトリックス樹脂としては、例えば、ナイロン、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)等が使用されており、最近では、ポリフェニレンサルファイド(PPS)等のスーパーエンプラといわれる高耐熱性を有する樹脂が多く使用されている。 Conventionally, fiber reinforced plastics including a matrix resin and a fiber material have been used as automobile members, aircraft members, and the like that are required to have high strength and excellent durability. As the matrix resin, for example, nylon, polyethylene terephthalate (PET), polybutylene terephthalate (PBT), and the like are used. Recently, resins having high heat resistance such as super engineering plastics such as polyphenylene sulfide (PPS) are used. Many are used.
 一方、この繊維強化プラスチックに含まれる炭素繊維やガラス繊維等の繊維材料は、高強度を付与する観点から、繊維集束剤によって概ね数千~数万程度に集束された繊維束として使用されることが多い。このような繊維集束剤としては、(メタ)アクリル酸エステル系重合体を含むガラス繊維集束剤が提案されている(例えば、特許文献1参照。)。 On the other hand, the fiber material such as carbon fiber and glass fiber contained in the fiber reinforced plastic is used as a fiber bundle that is bundled approximately in the thousands to tens of thousands by the fiber sizing agent from the viewpoint of imparting high strength. There are many. As such a fiber sizing agent, a glass fiber sizing agent containing a (meth) acrylic acid ester polymer has been proposed (see, for example, Patent Document 1).
 しかし、前記特許文献1に記載された繊維集束剤は、それを用いて集束された繊維束の巻き取りや製織工程において、繊維束の解れや毛羽立ち、糸切れを引き起こす場合があり、その結果、集束された繊維束の生産性及び最終的に得られる成形品の生産性を著しく低下させる場合があった。 However, the fiber sizing agent described in Patent Document 1 may cause unraveling, fluffing, and yarn breakage of the fiber bundle in the winding or weaving process of the fiber bundle that is bundled using the fiber sizing agent. In some cases, the productivity of the bundled fiber bundles and the productivity of the finally obtained molded product are significantly reduced.
 そこで、繊維集束性に優れ、高耐熱性が要求される部位にも使用可能な成形品が得られる繊維集束剤が求められていた。 Therefore, there has been a demand for a fiber sizing agent that is excellent in fiber sizing properties and can provide a molded product that can be used even in parts that require high heat resistance.
特開2003-261359号公報JP 2003-261359 A
 本発明が解決しようとする課題は、繊維集束性及び耐熱性に優れる繊維集束剤を提供することである。 The problem to be solved by the present invention is to provide a fiber sizing agent having excellent fiber sizing properties and heat resistance.
 本発明者等は、上記課題を解決すべく鋭意研究を重ねた結果、ガラス転移温度が-20~40℃の範囲であるアクリル樹脂(a)が水性媒体中に分散されている樹脂分散体(A)を含有し、アクリル樹脂(a)の平均粒子径が0.5~5μmの範囲である繊維集束剤が、繊維集束性及び耐熱性に優れることを見出し、本発明を完成させた。 As a result of intensive studies to solve the above problems, the present inventors have obtained a resin dispersion in which an acrylic resin (a) having a glass transition temperature in the range of −20 to 40 ° C. is dispersed in an aqueous medium ( It was found that a fiber sizing agent containing A) and having an acrylic resin (a) having an average particle diameter in the range of 0.5 to 5 μm was excellent in fiber sizing property and heat resistance, and completed the present invention.
 すなわち、本発明は、ガラス転移温度が-20~40℃の範囲であるアクリル樹脂(a)が、水性媒体中に分散されている水性樹脂分散体(A)を含有する繊維集束剤であって、前記アクリル樹脂(a)の平均粒子径が0.5~5μmの範囲であることを特徴とする繊維集束剤に関する。 That is, the present invention is a fiber sizing agent containing an aqueous resin dispersion (A) in which an acrylic resin (a) having a glass transition temperature in the range of −20 to 40 ° C. is dispersed in an aqueous medium. The fiber sizing agent is characterized in that the acrylic resin (a) has an average particle size in the range of 0.5 to 5 μm.
 本発明の繊維集束剤は繊維集束性及び耐熱性に優れることから、本発明の繊維集束剤を用いて集束した繊維束とマトリックス樹脂とを用いて得られる成形品は、例えば、自動車や航空機の部材、家電製品の部品や風力発電部材をはじめとする様々な用途で使用することができる。 Since the fiber sizing agent of the present invention is excellent in fiber sizing property and heat resistance, a molded product obtained using a fiber bundle and a matrix resin bundled using the fiber sizing agent of the present invention is, for example, an automobile or aircraft. It can be used in various applications including members, parts of home appliances and wind power generation members.
 本発明の繊維集束剤は、ガラス転移温度が-20~40℃の範囲であるアクリル樹脂(a)が、水性媒体中に分散されている水性樹脂分散体(A)を含有する繊維集束剤であって、前記アクリル樹脂(a)の平均粒子径が0.5~5μmの範囲であるものである。 The fiber sizing agent of the present invention is a fiber sizing agent containing an aqueous resin dispersion (A) in which an acrylic resin (a) having a glass transition temperature in the range of −20 to 40 ° C. is dispersed in an aqueous medium. The acrylic resin (a) has an average particle size in the range of 0.5 to 5 μm.
 まず、前記アクリル樹脂(a)について説明する。前記アクリル樹脂(a)は、ガラス転移温度が-20~40℃の範囲であるが、繊維集束剤の繊維集束性がより向上することから、-10~30℃の範囲が好ましく、0~20℃の範囲がより好ましい。 First, the acrylic resin (a) will be described. The acrylic resin (a) has a glass transition temperature in the range of −20 to 40 ° C., but since the fiber sizing property of the fiber sizing agent is further improved, it is preferably in the range of −10 to 30 ° C. A range of ° C is more preferred.
 本発明におけるガラス転移温度は、示差走査熱量計「DSC Q-100」(TA Instrument社製)を用い、JIS K7121に準拠した方法で測定したものである。具体的には、真空吸引して完全に溶剤を除去した重合体を、20℃/分の昇温速度で-100℃~+200℃の範囲で熱量変化を測定し、各ベースラインの延長した直線から縦軸方向に等距離にある直線と、ガラス転移の階段状変化部分の曲線とが交わる点をガラス転移温度とした。 The glass transition temperature in the present invention is measured using a differential scanning calorimeter “DSC Q-100” (manufactured by TA Instruments) by a method in accordance with JIS K 7121. Specifically, a polymer from which the solvent was completely removed by vacuum suction was measured for a change in calorie at a rate of temperature increase of 20 ° C./min in a range of −100 ° C. to + 200 ° C. The point at which the straight line equidistant in the vertical axis direction intersects with the curve of the stepwise change portion of the glass transition was defined as the glass transition temperature.
 また、前記アクリル樹脂(a)は、耐熱性がより向上することから、5,000~150,000の範囲の重量平均分子量を有するものであることが好ましく、10,000~100,000の範囲の重量平均分子量を有するものであることが特に好ましい。なお、前記重量平均分子量はゲル浸透クロマトグラフィー(GPC)を用いて測定された値を指す。 Further, the acrylic resin (a) preferably has a weight average molecular weight in the range of 5,000 to 150,000 because the heat resistance is further improved, and in the range of 10,000 to 100,000. Particularly preferred are those having a weight average molecular weight of In addition, the said weight average molecular weight points out the value measured using gel permeation chromatography (GPC).
 前記アクリル樹脂(a)は、例えば、重合性単量体を、有機溶剤中で、重合開始剤存在下、50~150℃の温度で加熱しラジカル重合することで製造することができる。 The acrylic resin (a) can be produced, for example, by radical polymerization by heating a polymerizable monomer in an organic solvent at a temperature of 50 to 150 ° C. in the presence of a polymerization initiator.
 前記重合性単量体としては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、i-ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソボルニル(メタ)アクリレート等のアルキル(メタ)アクリレート;2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート等の水酸基を有する(メタ)アクリレート;N,N-ジメチルアミノエチル(メタ)アクリレート、N,N-ジエチルアミノエチル(メタ)アクリレート、N,N-ジメチルアミノプロピル(メタ)アクリレート、N,N-ジエチルアミノプロピル(メタ)アクリレート等のアミノ基を有する(メタ)アクリレート;ポリエチレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、ポリプロピレングリコール(メタ)アクリレート、メトキシポリプロピレングリコール(メタ)アクリレート、ポリブチレングリコール(メタ)アクリレート、メトキシポリブチレングリコール(メタ)アクリレート等の(アルコキシ)ポリアルキレングリコール(メタ)アクリレート;(メタ)アクリル酸、クロトン酸等の不飽和モノカルボン酸;イタコン酸(無水物)、マレイン酸(無水物)、フマル酸等の不飽和ジカルボン酸;スチレン、α-メチルスチレン、パラメチルスチレン、クロロメチルスチレン、酢酸ビニル等のビニル単量体;テトラヒドロフルフリル(メタ)アクリレート、ベンジル(メタ)アクリレート、グリシジル(メタ)アクリレートなどが挙げられる。これらの重合性単量体は、単独で用いることも2種以上併用することもできる。 Examples of the polymerizable monomer include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, i-butyl (meth) acrylate, and t-butyl (meth). ) Acrylate, cyclohexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate, isobornyl (meth) acrylate, and other alkyl (meth) acrylates; 2-hydroxyethyl (meth) acrylate , (Meth) acrylates having a hydroxyl group such as 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate; N, N-dimethylaminoethyl (meth) (Meth) acrylates having amino groups such as acrylate, N, N-diethylaminoethyl (meth) acrylate, N, N-dimethylaminopropyl (meth) acrylate, N, N-diethylaminopropyl (meth) acrylate; polyethylene glycol (meta ) Acrylate, methoxypolyethylene glycol (meth) acrylate, polypropylene glycol (meth) acrylate, methoxypolypropylene glycol (meth) acrylate, polybutylene glycol (meth) acrylate, methoxypolybutylene glycol (meth) acrylate and other (alkoxy) polyalkylene glycols Unsaturated monocarboxylic acids such as (meth) acrylate; (meth) acrylic acid and crotonic acid; itaconic acid (anhydride), maleic acid (anhydride), fumaric acid Unsaturated dicarboxylic acids such as styrene, α-methylstyrene, paramethylstyrene, chloromethylstyrene, vinyl acetate and other vinyl monomers; tetrahydrofurfuryl (meth) acrylate, benzyl (meth) acrylate, glycidyl (meth) acrylate Etc. These polymerizable monomers can be used alone or in combination of two or more.
 これらの重合性単量体の中でも、粒子安定性がより向上することから、(アルコキシ)ポリアルキレングリコール(メタ)アクリレートを全重合性単量体中の1~10質量%の範囲で使用することが好ましい。 Among these polymerizable monomers, since the particle stability is further improved, (alkoxy) polyalkylene glycol (meth) acrylate is used in the range of 1 to 10% by mass in the total polymerizable monomers. Is preferred.
 前記有機溶剤としては、例えば、トルエン、キシレン等の芳香族溶剤;シクロへキサノン等の脂環族溶剤;ノルマル酢酸ブチル、酢酸エチル等のエステル溶剤;イソブタノール、ノルマルブタノール、イソプロピルアルコール、ソルビトール、プロピレングリコールモノメチルエーテルアセテート等の水酸基を有する溶剤;メチルエチルケトン、メチルイソブチルケトン等のケトン溶剤などを使用することができる。これらの溶剤は、単独で用いることも2種以上併用することもできる。 Examples of the organic solvent include aromatic solvents such as toluene and xylene; alicyclic solvents such as cyclohexanone; ester solvents such as normal butyl acetate and ethyl acetate; isobutanol, normal butanol, isopropyl alcohol, sorbitol, propylene Solvents having a hydroxyl group such as glycol monomethyl ether acetate; ketone solvents such as methyl ethyl ketone and methyl isobutyl ketone can be used. These solvents can be used alone or in combination of two or more.
 前記重合開始剤としては、例えば、2,2’-アゾビス(イソブチロニトリル)、2,2’-アゾビス(2-メチルブチロニトリル)、アゾビスシアノ吉草酸等のアゾ化合物;tert-ブチルパーオキシピバレート、tert-ブチルパーオキシベンゾエート、tert-ブチルパーオキシ-2-エチルヘキサノエート、ジ-tert-ブチルパーオキサイド、クメンハイドロパーオキサイド、ベンゾイルパーオキサイド、tert-ブチルハイドロパーオキサイド等の有機過酸化物;過酸化水素、過硫酸アンモニウム、過硫酸カリウム、過硫酸ナトリウム等の無機過酸化物などが挙げられる。これらの重合体開始剤は、単独で用いることも2種以上併用することもできる。また、前記重合開始剤は、前記アクリル樹脂(A)の原料となる単量体の合計に対して、0.1~10質量%の範囲内で使用することが好ましい。 Examples of the polymerization initiator include azo compounds such as 2,2′-azobis (isobutyronitrile), 2,2′-azobis (2-methylbutyronitrile), azobiscyanovaleric acid; tert-butylperoxy Organic peroxides such as pivalate, tert-butylperoxybenzoate, tert-butylperoxy-2-ethylhexanoate, di-tert-butyl peroxide, cumene hydroperoxide, benzoyl peroxide, tert-butyl hydroperoxide Oxides; inorganic peroxides such as hydrogen peroxide, ammonium persulfate, potassium persulfate, sodium persulfate and the like. These polymer initiators can be used alone or in combination of two or more. In addition, the polymerization initiator is preferably used in a range of 0.1 to 10% by mass with respect to the total amount of monomers as raw materials for the acrylic resin (A).
 前記水性媒体としては、水、水と混和する有機溶剤、及び、これらの混合物が挙げられる。水と混和する有機溶剤としては、例えば、メタノール、エタノール、n-プロパノール及びイソプロパノール等のアルコール;アセトン、メチルエチルケトン等のケトン;エチレングリコール、ジエチレングリコール、プロピレングリコール等のポリアルキレングリコール;ポリアルキレングリコールのアルキルエーテル;N-メチル-2-ピロリドン等のラクタム等が挙げられる。本発明では、水のみを用いても良く、また水及び水と混和する有機溶剤との混合物を用いても良く、水と混和する有機溶剤のみを用いても良い。安全性や環境に対する負荷の点から、水のみ、または、水及び水と混和する有機溶剤との混合物が好ましく、水のみを使用することが特に好ましい。 Examples of the aqueous medium include water, organic solvents miscible with water, and mixtures thereof. Examples of the organic solvent miscible with water include alcohols such as methanol, ethanol, n-propanol and isopropanol; ketones such as acetone and methyl ethyl ketone; polyalkylene glycols such as ethylene glycol, diethylene glycol and propylene glycol; alkyl ethers of polyalkylene glycols And lactams such as N-methyl-2-pyrrolidone. In the present invention, only water may be used, a mixture of water and an organic solvent miscible with water may be used, or only an organic solvent miscible with water may be used. From the viewpoint of safety and load on the environment, water alone or a mixture of water and an organic solvent miscible with water is preferable, and it is particularly preferable to use only water.
 前記アクリル樹脂(a)を水性媒体中に分散して前記水性樹脂分散体(A)を得る方法としては、各種分散方法が使用できるが、粒子安定性がより向上することから、乳化剤を使用して分散させる方法が好ましい。 As a method for obtaining the aqueous resin dispersion (A) by dispersing the acrylic resin (a) in an aqueous medium, various dispersion methods can be used. However, since particle stability is further improved, an emulsifier is used. The method of dispersing is preferred.
 前記乳化剤を使用して分散させる方法としては、例えば、前記アクリル樹脂(a)、乳化剤、及び水をスタティックミキサー中に供給し、予備乳化混合液を得た後、超音波ホモジナイザーにより乳化分散し、必要に応じて、脱溶剤を行う方法が挙げられる。 As a method of dispersing using the emulsifier, for example, the acrylic resin (a), the emulsifier, and water are supplied into a static mixer to obtain a pre-emulsified mixture, and then emulsified and dispersed with an ultrasonic homogenizer. If necessary, a method for removing the solvent may be mentioned.
 また、前記アクリル樹脂(a)と乳化剤との混合物に、水を供給しながら、乳化分散し、必要に応じて、脱溶剤を行う方法等も挙げられる。 Also, a method of emulsifying and dispersing the mixture of the acrylic resin (a) and the emulsifier while supplying water, and removing the solvent as necessary is also mentioned.
 前記乳化剤としては、例えば、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンポリオキシプロピレン縮合物等のノニオン系乳化剤、アルキル硫酸エステル塩、アルキルベンゼンスルホン酸塩、ポリオキシエチレンアルキルエーテル硫酸エステル塩、ポリオキシエチレンアルキルフェニルエーテル硫酸エステル塩等のアニオン系乳化剤、4級アンモニウム塩等のカチオン系乳化剤等が挙げられる。これらの中でも、粒子安定性が向上することから、ノニオン系乳化剤が好ましく、ポリオキシエチレンポリオキシプロピレン縮合物が特に好ましい。これらの乳化剤は、単独で用いることも2種以上併用することもできる。 Examples of the emulsifier include nonionic emulsifiers such as polyoxyethylene alkyl ether, polyoxyethylene alkylphenyl ether, polyoxyethylene polyoxypropylene condensate, alkyl sulfate ester salt, alkylbenzene sulfonate, polyoxyethylene alkyl ether sulfate. Anionic emulsifiers such as ester salts and polyoxyethylene alkylphenyl ether sulfate esters, and cationic emulsifiers such as quaternary ammonium salts. Among these, nonionic emulsifiers are preferable because particle stability is improved, and polyoxyethylene polyoxypropylene condensates are particularly preferable. These emulsifiers can be used alone or in combination of two or more.
 本発明の繊維集束剤は、前記アクリル樹脂(a)の平均粒子径が0.5~5μmの範囲であるものであるが、繊維集束性がより向上することから、0.8~4.5μmの範囲が好ましく、1.2~4μmの範囲がより好ましい。 In the fiber sizing agent of the present invention, the average particle diameter of the acrylic resin (a) is in the range of 0.5 to 5 μm. However, since the fiber sizing property is further improved, 0.8 to 4.5 μm Is preferable, and the range of 1.2 to 4 μm is more preferable.
 本発明における平均粒子径は、レーザ回折式粒子径分布測定(株式会社島津製作所製「WingSALDII」)により得られた値を指す。 In the present invention, the average particle size refers to a value obtained by laser diffraction particle size distribution measurement (“WingSALDII” manufactured by Shimadzu Corporation).
 本発明の繊維集束剤は、前記水性樹脂分散体(A)を含有するものであるが、得られる成形品の機械的強度が向上することから、シランカップリング剤を含有することが好ましく、その中でも、γ-アミノプロピルトリエトキシシラン、γ-ウレイドプロピルトリエトキシシラン、γ-アミノプロピルトリエトキシシランを含有することが特に好ましい。なお、これらのシランカップリング剤は、単独で用いることも2種以上を併用することもできる。 The fiber sizing agent of the present invention contains the aqueous resin dispersion (A). However, since the mechanical strength of the obtained molded article is improved, it is preferable to contain a silane coupling agent, Among them, it is particularly preferable to contain γ-aminopropyltriethoxysilane, γ-ureidopropyltriethoxysilane, and γ-aminopropyltriethoxysilane. In addition, these silane coupling agents can be used alone or in combination of two or more.
 また、本発明の繊維集束剤は、本発明の効果を損なわない範囲で、ウレタン樹脂、アクリル樹脂、エポキシ樹脂等の結束剤、潤滑剤、帯電防止剤等の成分を添加できる。 Further, the fiber sizing agent of the present invention can contain components such as a binder such as urethane resin, acrylic resin and epoxy resin, lubricant, antistatic agent and the like within a range not impairing the effects of the present invention.
 本発明の繊維集束剤で処理した繊維は、ポリオレフィン樹脂、ポリカーボネート樹脂、ポリアミド樹脂、ポリエステル樹脂、ポリフェニレンサルファイド樹脂等のマトリックス樹脂の補強剤として用いられ、特にポリアミド系樹脂に好適に使用される。 The fiber treated with the fiber sizing agent of the present invention is used as a reinforcing agent for a matrix resin such as a polyolefin resin, a polycarbonate resin, a polyamide resin, a polyester resin, or a polyphenylene sulfide resin, and is particularly preferably used for a polyamide resin.
 次に、本発明を、実施例及び比較例により具体的に説明する。 Next, the present invention will be specifically described with reference to examples and comparative examples.
[ガラス転移温度の測定]
 示差走査熱量計「DSC Q-100」(TA Instrument社製)を用い、JIS K7121に準拠した方法で測定した。真空吸引して完全に溶剤を除去した重合体を、20℃/分の昇温速度で-100℃~+200℃の範囲で熱量変化を測定し、各ベースラインの延長した直線から縦軸方向に等距離にある直線と、ガラス転移の階段状変化部分の曲線とが交わる点をガラス転移温度とした。
[Measurement of glass transition temperature]
A differential scanning calorimeter “DSC Q-100” (manufactured by TA Instrument) was used, and the measurement was performed by a method in accordance with JIS K7121. The polymer from which the solvent was completely removed by vacuum suction was measured for the change in calorie in the range of -100 ° C to + 200 ° C at a rate of temperature increase of 20 ° C / min. The point at which the straight line that is equidistant and the curve of the stepwise change portion of the glass transition intersect was defined as the glass transition temperature.
[重量平均分子量の測定]
 測定装置:高速GPC装置(東ソー株式会社製「HLC-8220GPC」)
カラム:東ソー株式会社製の下記のカラムを直列に接続して使用した。
 「TSKgel G5000」(7.8mmI.D.×30cm)×1本
 「TSKgel G4000」(7.8mmI.D.×30cm)×1本
 「TSKgel G3000」(7.8mmI.D.×30cm)×1本
 「TSKgel G2000」(7.8mmI.D.×30cm)×1本
検出器:RI(示差屈折計)
カラム温度:40℃
溶離液:テトラヒドロフラン(THF)
流速:1.0mL/分
注入量:100μL(試料濃度0.4質量%のテトラヒドロフラン溶液)
標準試料:下記の標準ポリスチレンを用いて検量線を作成した。
[Measurement of weight average molecular weight]
Measuring device: High-speed GPC device (“HLC-8220GPC” manufactured by Tosoh Corporation)
Column: The following columns manufactured by Tosoh Corporation were connected in series.
"TSKgel G5000" (7.8 mm ID x 30 cm) x 1 "TSKgel G4000" (7.8 mm ID x 30 cm) x 1 "TSKgel G3000" (7.8 mm ID x 30 cm) x 1 “TSKgel G2000” (7.8 mm ID × 30 cm) × 1 detector: RI (differential refractometer)
Column temperature: 40 ° C
Eluent: Tetrahydrofuran (THF)
Flow rate: 1.0 mL / min Injection amount: 100 μL (tetrahydrofuran solution with a sample concentration of 0.4 mass%)
Standard sample: A calibration curve was prepared using the following standard polystyrene.
(標準ポリスチレン)
 東ソー株式会社製「TSKgel 標準ポリスチレン A-500」
 東ソー株式会社製「TSKgel 標準ポリスチレン A-1000」
 東ソー株式会社製「TSKgel 標準ポリスチレン A-2500」
 東ソー株式会社製「TSKgel 標準ポリスチレン A-5000」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-1」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-2」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-4」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-10」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-20」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-40」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-80」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-128」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-288」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-550」
(Standard polystyrene)
"TSKgel standard polystyrene A-500" manufactured by Tosoh Corporation
"TSKgel standard polystyrene A-1000" manufactured by Tosoh Corporation
"TSKgel standard polystyrene A-2500" manufactured by Tosoh Corporation
"TSKgel standard polystyrene A-5000" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-1" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-2" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-4" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-10" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-20" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-40" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-80" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-128" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-288" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-550" manufactured by Tosoh Corporation
[平均粒子径の測定]
 測定装置:レーザ回折式粒子径分布測定(株式会社島津製作所製「WingSALDII」)
 測定方法:屈折率の設定を以下の通りとして測定した。
      ウレタン樹脂:1.7-0.2i
      アクリル樹脂:1.6-0.1i
[Measurement of average particle size]
Measuring device: Laser diffraction particle size distribution measurement (“WingSALDII” manufactured by Shimadzu Corporation)
Measurement method: The refractive index was set as follows.
Urethane resin: 1.7-0.2i
Acrylic resin: 1.6-0.1i
(実施例1:繊維集束剤(1)の製造及び評価)
 温度計、攪拌装置、還流冷却管を備えた4つ口フラスコに、n-ブチルアクリレート50質量部、メチルメタクリレート47質量部、及びメトキシポリエチレングリコールメタクリレート(新中村化学工業株式会社製「NKエステル M-230G」)3質量部を仕込み、均一に混合したモノマープレミックス(1)を得た。
 別途、温度計、攪拌装置、還流冷却管を備えた4つ口フラスコに、アゾ系開始剤(和光純薬株式会社製「V-59」)1質量部及びトルエン15質量部を仕込み、触媒溶液(1)を得た。
 次に、温度計、攪拌装置、還流冷却管および窒素吹き込み管を備えた4つ口フラスコに、トルエン85.5質量部を仕込み、窒素雰囲気下で攪拌しながら80℃に昇温した。続いて、上記で得たモノマープレミックス(1)及び触媒溶液(1)を各々滴下漏斗で3時間かけて並行滴下し、重合を行った。滴下終了後、さらに80℃で3時間保持した後、室温まで冷却し、不揮発分50%のアクリル樹脂(a-1)の溶液を得た。
 該アクリル樹脂(a-1)の溶液202質量部と、ポリオキシエチレンポリオキシプロピレン縮合物(数平均分子量約16,000)10.1質量部を含む水溶液140.7質量部とを、(アクリル樹脂(a-1)の溶液/ポリオキシエチレンポリオキシプロピレン縮合物水溶液)=(202質量部/140.7質量部)の流量比でそれぞれの定量ポンプでスタティックミキサー中に供給し予備乳化混合液を得た後、該混合液を超音波ホモジナイザー(ソニックコーポレーション社製「ソノレーターBT型」、0.003inchのオリフィスを使用)に背圧をかけながら120Kgf/cm2の圧力で導入し乳化分散を行った。得られた水分散体を40℃減圧(0.080~0.095MPa)下、約6時間かけて脱溶剤した後、冷却し、不揮発分45%、平均粒子径1.5μmの繊維集束剤(1)を得た。アクリル樹脂(a-1)のガラス転移温度は3℃であり、重量平均分子量は30,000であった。
(Example 1: Production and evaluation of fiber sizing agent (1))
A four-necked flask equipped with a thermometer, a stirrer, and a reflux condenser was charged with 50 parts by mass of n-butyl acrylate, 47 parts by mass of methyl methacrylate, and methoxypolyethylene glycol methacrylate (“NK Ester M-” manufactured by Shin-Nakamura Chemical Co., Ltd.). 230G ") 3 parts by mass were charged, and a monomer premix (1) uniformly mixed was obtained.
Separately, a four-necked flask equipped with a thermometer, a stirrer, and a reflux condenser was charged with 1 part by mass of an azo initiator (“V-59” manufactured by Wako Pure Chemical Industries, Ltd.) and 15 parts by mass of toluene, to obtain a catalyst solution. (1) was obtained.
Next, 85.5 parts by mass of toluene was charged into a four-necked flask equipped with a thermometer, a stirrer, a reflux condenser, and a nitrogen blowing tube, and the temperature was raised to 80 ° C. while stirring in a nitrogen atmosphere. Subsequently, the monomer premix (1) and the catalyst solution (1) obtained above were each dropped in parallel with a dropping funnel over 3 hours to carry out polymerization. After completion of the dropwise addition, the mixture was further maintained at 80 ° C. for 3 hours and then cooled to room temperature to obtain a solution of acrylic resin (a-1) having a nonvolatile content of 50%.
202 parts by mass of the acrylic resin (a-1) solution and 140.7 parts by mass of an aqueous solution containing 10.1 parts by mass of a polyoxyethylene polyoxypropylene condensate (number average molecular weight of about 16,000) Resin (a-1) solution / polyoxyethylene polyoxypropylene condensate aqueous solution) = (202 parts by mass / 140.7 parts by mass) at a flow rate ratio, and supplied to each static mixer by the respective metering pumps, pre-emulsified mixture Then, the mixture is introduced into an ultrasonic homogenizer (“Sonator BT type” manufactured by Sonic Corporation, using a 0.003 inch 2 orifice) at a pressure of 120 Kgf / cm 2 while applying back pressure, and emulsified and dispersed. It was. The obtained aqueous dispersion was desolvated under reduced pressure (0.080 to 0.095 MPa) at 40 ° C. for about 6 hours, and then cooled to a fiber sizing agent (nonvolatile content 45%, average particle size 1.5 μm) 1) was obtained. The acrylic resin (a-1) had a glass transition temperature of 3 ° C. and a weight average molecular weight of 30,000.
[耐熱性(熱変色性)の評価]
 上記で得られた繊維集束剤(1)をA4版のPP基材四隅に枠を付けた基材へ流し、24時間室温乾燥後、150℃で5分間さらに乾燥して、膜厚150μmのフィルムを得た。さらに、このフィルムを200℃で1時間熱処理をした後の外観を分光測色計(コニカミノルタ株式会社製「CM-3500d」)で測定し、Δb値で評価した。Δb値が低いほど熱変色が小さく好ましい。
[Evaluation of heat resistance (thermal discoloration)]
The fiber sizing agent (1) obtained above is flowed to a base material having a frame at the four corners of the A4 size PP base material, dried at room temperature for 24 hours, and further dried at 150 ° C. for 5 minutes. Got. Further, the appearance of the film after heat treatment at 200 ° C. for 1 hour was measured with a spectrocolorimeter (“CM-3500d” manufactured by Konica Minolta Co., Ltd.) and evaluated by a Δb value. The lower the Δb value, the smaller the thermal discoloration.
[繊維集束性の評価]
 上記で得られた繊維集束剤(1)2.2質量部(固形分として1質量部)、γ-アミノプロピルトリエトキシシラン0.1質量部、及びイオン交換水97.7質量部を混合した後、13μm径のガラス繊維表面に、繊維質量に対し1%均一に塗布した。この繊維を集束させた後、長さ3mmに切断、乾燥してチョップドストランド(1)を作成した。このチョップドストランド(1)50gと、ポリアミド66樹脂100gとを容積1Lのタンブラーに投入し、10分間混合した後、発生した毛羽を採取してその質量を測定し、下記の基準で評価した。
 ○:0.15g未満
 △:0.15g以上1.5g未満
 ×:1.5g以上
[Evaluation of fiber convergence]
2.2 parts by mass (1 part by mass as a solid content) of the fiber sizing agent (1) obtained above, 0.1 part by mass of γ-aminopropyltriethoxysilane, and 97.7 parts by mass of ion-exchanged water were mixed. Then, it was uniformly applied to the surface of the glass fiber having a diameter of 13 μm with respect to the fiber mass by 1%. After concentrating the fibers, the fibers were cut to a length of 3 mm and dried to prepare chopped strands (1). 50 g of this chopped strand (1) and 100 g of polyamide 66 resin were put into a 1 L volume tumbler and mixed for 10 minutes, and then the generated fluff was collected and its mass was measured and evaluated according to the following criteria.
○: Less than 0.15 g Δ: 0.15 g or more and less than 1.5 g ×: 1.5 g or more
(実施例2:繊維集束剤(2)の製造及び評価)
 まず、実施例(1)と同様にして、温度計、攪拌装置、還流冷却管および窒素吹き込み管を備えた4つ口フラスコに、不揮発分50質量%のアクリル樹脂(a-1)の溶液を得た。
 次に、該アクリル樹脂(a-1)の溶液202質量部に、スチレン化フェノール系界面活性剤(第一工業製薬株式会社製「NF-08」)3質量部を加えた後、攪拌しながらイオン交換水132質量部を1時間かけて滴下し、乳化分散を行った。その後、ポリオキシエチレンポリオキシプロピレン縮合物(数平均分子量約16,000)7.1質量部を含む101.6質量部の水溶液を添加し、これを60℃減圧(0.080~0.095MPa)下、約6時間かけて脱溶剤した後、冷却し、不揮発分45質量%、平均粒子径2.5μmの繊維集束剤(2)を得た。
(Example 2: Production and evaluation of fiber sizing agent (2))
First, in the same manner as in Example (1), a solution of acrylic resin (a-1) having a nonvolatile content of 50% by mass was added to a four-necked flask equipped with a thermometer, a stirrer, a reflux condenser, and a nitrogen blowing tube. Obtained.
Next, 3 parts by mass of a styrenated phenol surfactant (“NF-08” manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) was added to 202 parts by mass of the acrylic resin (a-1) solution, and the mixture was stirred. 132 parts by mass of ion-exchanged water was added dropwise over 1 hour to carry out emulsification dispersion. Thereafter, 101.6 parts by mass of an aqueous solution containing 7.1 parts by mass of polyoxyethylene polyoxypropylene condensate (number average molecular weight of about 16,000) was added, and this was reduced at 60 ° C. under reduced pressure (0.080 to 0.095 MPa). Then, after removing the solvent over about 6 hours, the mixture was cooled to obtain a fiber sizing agent (2) having a nonvolatile content of 45% by mass and an average particle size of 2.5 μm.
 実施例1の繊維集束剤(1)に代えて、繊維集束剤(2)を使用した以外は、実施例1と同様にして、耐熱性(熱変色性)及び繊維集束性を評価した。 The heat resistance (thermal discoloration) and fiber sizing properties were evaluated in the same manner as in Example 1 except that the fiber sizing agent (2) was used instead of the fiber sizing agent (1) of Example 1.
(比較例1:繊維集束剤(R-1)の製造及び評価)
 温度計、攪拌装置、還流冷却管を備えた4つ口フラスコに、ポリプロピレングリコール(OH価:112)71.1質量部、及びジメチロールプロピオン酸1質量部を仕込み充分撹拌混合した後、イソホロンジイソシアネート27.9質量部を加え、80℃でNCO%が3.9%に到達するまで反応を継続した後、冷却し、ウレタン樹脂(1)を得た。
 該ウレタン樹脂(1)と、トリエチルアミン、ポリオキシエチレンノニルフェニルエーテル(HLB:14)及びイオン交換水を含む水溶液とを、ウレタン樹脂(1)/(トリエチルアミン/ポリオキシエチレンノニルフェニルエーテル(HLB:14)/イオン交換水)=100/(0.72/6.0/93.4)質量部の流量比でそれぞれの定量ポンプでスタティックミキサー中に供給し予備乳化混合液を得た後、該混合液を超音波ホモジナイザー(ソニックコーポレーション社製「ソノレーターBT型」、0.003inchのオリフィスを使用)に背圧をかけながら120Kgf/cm2の圧力で導入し乳化分散を行った。得られた水性樹脂と、20質量%無水ピペラジン水溶液19.9質量部とを混合させて鎖伸長反応させた後、イオン交換水で希釈して、不揮発分45質量%、平均粒子径0.6μmの繊維集束剤(R-1)が得られた。
(Comparative Example 1: Production and evaluation of fiber sizing agent (R-1))
A four-necked flask equipped with a thermometer, a stirrer, and a reflux condenser was charged with 71.1 parts by mass of polypropylene glycol (OH number: 112) and 1 part by mass of dimethylolpropionic acid, and after sufficient stirring and mixing, isophorone diisocyanate. 27.9 parts by mass was added, and the reaction was continued at 80 ° C. until NCO% reached 3.9%, followed by cooling to obtain urethane resin (1).
The urethane resin (1) and an aqueous solution containing triethylamine, polyoxyethylene nonylphenyl ether (HLB: 14) and ion-exchanged water were mixed with urethane resin (1) / (triethylamine / polyoxyethylene nonylphenyl ether (HLB: 14). ) / Ion-exchanged water) = 100 / (0.72 / 6.0 / 93.4) The flow rate ratio of parts by mass is supplied into the static mixer with each metering pump to obtain a pre-emulsified mixed solution, and then mixed. The solution was introduced into an ultrasonic homogenizer (“Sonator BT type” manufactured by Sonic Corporation, using a 0.003 inch 2 orifice) at a pressure of 120 kgf / cm 2 while applying back pressure, and emulsified and dispersed. The obtained aqueous resin was mixed with 19.9 parts by mass of a 20% by mass anhydrous piperazine aqueous solution to cause a chain extension reaction, and then diluted with ion-exchanged water to have a non-volatile content of 45% by mass and an average particle size of 0.6 μm. Fiber sizing agent (R-1) was obtained.
 実施例1の繊維集束剤(1)に代えて、繊維集束剤(R-1)を使用した以外は、実施例1と同様にして、耐熱性(熱変色性)及び繊維集束性を評価した。 Heat resistance (thermochromic property) and fiber sizing properties were evaluated in the same manner as in Example 1 except that the fiber sizing agent (R-1) was used instead of the fiber sizing agent (1) of Example 1. .
(比較例2:繊維集束剤(R-2)の製造及び評価)
 温度計、攪拌装置、還流冷却管を備えた4つ口フラスコに、イオン交換水55.9質量部、及び10質量%に希釈したポリオキシエチレンアルキルエーテル(第一工業製薬株式会社製「NL-180」水溶液15質量部を仕込み、均一に混合した。次に、撹拌しながら、n-ブチルアクリレート50質量部、メチルメタクリレート47質量部、及びメトキシポリエチレングリコールメタクリレート(新中村化学工業株式会社製「NKエステル M-230G」)3質量部を加えて、乳化分散液(1)を得た。
 別途、温度計、攪拌装置、還流冷却管を備えた4つ口フラスコで、過硫酸アンモウム(キシダ化学株式会社製)1質量部を水15質量部で希釈した触媒水溶液(1)を得た。
次に、攪拌機、還流冷却管、温度計および窒素吹き込み管を備えた4つ口フラスコに、イオン交換水45.9質量部仕込み、窒素雰囲気下で攪拌しながら80℃に昇温した。続いて、上記で得られた乳化分散液(1)及び触媒水溶液(1)を各々滴下漏斗で3時間かけて並行滴下し、乳化重合を行った。滴下終了後、さらに温度80℃で3時間保持した後、室温まで冷却して不揮発分45質量%、平均粒子径0.2μmの繊維集束剤(R-2)を得た。得られたアクリル樹脂のガラス転移温度は3℃であった。
(Comparative Example 2: Production and evaluation of fiber sizing agent (R-2))
In a four-necked flask equipped with a thermometer, a stirrer, and a reflux condenser, 55.9 parts by mass of ion-exchanged water and polyoxyethylene alkyl ether diluted to 10% by mass (“NL-” manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) Then, 15 parts by weight of “180” aqueous solution was charged and mixed uniformly.Next, 50 parts by weight of n-butyl acrylate, 47 parts by weight of methyl methacrylate and methoxypolyethylene glycol methacrylate (“NK” manufactured by Shin-Nakamura Chemical Co., Ltd.) were added. Ester M-230G ") (3 parts by mass) was added to obtain an emulsified dispersion (1).
Separately, an aqueous catalyst solution (1) was obtained by diluting 1 part by mass of ammonium persulfate (manufactured by Kishida Chemical Co., Ltd.) with 15 parts by mass of water in a four-necked flask equipped with a thermometer, a stirrer, and a reflux condenser.
Next, 45.9 parts by mass of ion-exchanged water was charged into a four-necked flask equipped with a stirrer, a reflux condenser, a thermometer, and a nitrogen blowing tube, and the temperature was raised to 80 ° C. while stirring in a nitrogen atmosphere. Subsequently, the emulsion dispersion (1) and the aqueous catalyst solution (1) obtained above were dropped in parallel with a dropping funnel over 3 hours, and emulsion polymerization was performed. After completion of dropping, the mixture was further maintained at a temperature of 80 ° C. for 3 hours and then cooled to room temperature to obtain a fiber sizing agent (R-2) having a nonvolatile content of 45 mass% and an average particle size of 0.2 μm. The glass transition temperature of the obtained acrylic resin was 3 ° C.
 実施例1の繊維集束剤(1)に代えて、繊維集束剤(R-2)を使用した以外は、実施例1と同様にして、耐熱性(熱変色性)及び繊維集束性を評価した。 Heat resistance (thermochromic property) and fiber sizing properties were evaluated in the same manner as in Example 1, except that the fiber sizing agent (R-2) was used instead of the fiber sizing agent (1) of Example 1. .
(比較例3:繊維集束剤(R-3)の製造及び評価)
 温度計、攪拌装置、還流冷却管を備えた4つ口フラスコに、n-ブチルアクリレート20.6質量部、メチルメタクリレート77.5質量部、及びメトキシポリエチレングリコールメタクリレート(新中村化学工業株式会社製「NKエステル M-230G」)3質量部を仕込み、均一に混合したモノマープレミックス(2)を得た。
 別途、実施例1と同様にして、触媒溶液(1)を得た。
 次に、温度計、攪拌装置、還流冷却管および窒素吹き込み管を備えた4つ口フラスコに、トルエン86質量部を仕込み、窒素雰囲気下で攪拌しながら80℃に昇温した。続いて、上記で得たモノマープレミックス(2)及び触媒溶液(1)を各々滴下漏斗で3時間かけて並行滴下し、重合を行った。滴下終了後、さらに80℃で3時間保持した後、室温まで冷却し、不揮発分50質量%のアクリル樹脂(Ra-1)の溶液を得た。
 該アクリル樹脂(RA-1)の溶液と、ポリオキシエチレンポリオキシプロピレン縮合物(数平均分子量約16,000)10.1質量部を含む水溶液141.5質量部とを、(アクリル樹脂(RA-1)の溶液/ポリオキシエチレンポリオキシプロピレン縮合物水溶液)=(202質量部/141.5質量部)の流量比でそれぞれの定量ポンプでスタティックミキサー中に供給し予備乳化混合液を得た後、該混合液を超音波ホモジナイザー(ソニックコーポレーション社製「ソノレーターBT型」、0.003inchのオリフィスを使用)に背圧をかけながら120Kgf/cm2の圧力で導入し乳化分散を行った。得られた水分散体を40℃減圧(0.080~0.095MPa)下、約6時間かけて脱溶剤した後、冷却し、不揮発分45質量%、平均粒子径1.2μmの繊維集束剤(R-3)を得た。アクリル樹脂(Ra-1)のガラス転移温度は50℃であった。
(Comparative Example 3: Production and evaluation of fiber sizing agent (R-3))
In a four-necked flask equipped with a thermometer, a stirrer, and a reflux condenser, 20.6 parts by mass of n-butyl acrylate, 77.5 parts by mass of methyl methacrylate, and methoxypolyethylene glycol methacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd. “ NK Ester M-230G ") 3 parts by mass was charged, and a monomer premix (2) uniformly mixed was obtained.
Separately, a catalyst solution (1) was obtained in the same manner as in Example 1.
Next, 86 parts by mass of toluene was charged into a four-necked flask equipped with a thermometer, a stirrer, a reflux condenser, and a nitrogen blowing tube, and the temperature was raised to 80 ° C. while stirring in a nitrogen atmosphere. Subsequently, the monomer premix (2) and the catalyst solution (1) obtained above were each dropped in parallel with a dropping funnel over 3 hours to carry out polymerization. After completion of dropping, the mixture was further maintained at 80 ° C. for 3 hours and then cooled to room temperature to obtain a solution of acrylic resin (Ra-1) having a nonvolatile content of 50% by mass.
A solution of the acrylic resin (RA-1) and 141.5 parts by mass of an aqueous solution containing 10.1 parts by mass of a polyoxyethylene polyoxypropylene condensate (number average molecular weight of about 16,000) were added to (acrylic resin (RA -1) solution / polyoxyethylene polyoxypropylene condensate aqueous solution) = (202 parts by mass / 141.5 parts by mass) at a flow rate ratio and fed into each static mixer by a metering pump to obtain a pre-emulsified mixture Thereafter, the mixture was introduced into an ultrasonic homogenizer (“Sonator BT type” manufactured by Sonic Corporation, using a 0.003 inch 2 orifice) at a pressure of 120 kgf / cm 2 while applying back pressure, and emulsified and dispersed. The obtained aqueous dispersion was desolvated under reduced pressure at 40 ° C. (0.080 to 0.095 MPa) for about 6 hours, then cooled, and a fiber sizing agent having a nonvolatile content of 45% by mass and an average particle size of 1.2 μm. (R-3) was obtained. The glass transition temperature of the acrylic resin (Ra-1) was 50 ° C.
 実施例1の繊維集束剤(1)に代えて、繊維集束剤(R-3)を使用した以外は、実施例1と同様にして、耐熱性(熱変色性)及び繊維集束性を評価した。 Heat resistance (thermochromic property) and fiber sizing properties were evaluated in the same manner as in Example 1 except that the fiber sizing agent (R-3) was used instead of the fiber sizing agent (1) of Example 1. .
 上記の実施例1~2及び比較例1~3で得られた繊維集束剤の評価を表1に示す。 Table 1 shows the evaluation of the fiber sizing agent obtained in Examples 1-2 and Comparative Examples 1-3.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本発明の繊維集束剤である実施例1及び2のものは、耐熱性及び繊維集束性に優れることが確認された。 It was confirmed that the fiber sizing agents of Examples 1 and 2 which are the fiber sizing agents of the present invention are excellent in heat resistance and fiber sizing properties.
 一方、比較例1は、樹脂成分としてウレタン樹脂を用いた例であるが、耐熱性に劣ることが確認された。 On the other hand, Comparative Example 1 is an example in which a urethane resin is used as a resin component, but it was confirmed that the heat resistance was poor.
 比較例2は、平均粒子径が本発明の下限である0.5μmより小さい0.2μmである例であるが、繊維集束性に劣ることが確認された。 Comparative Example 2 is an example in which the average particle diameter is 0.2 μm which is smaller than 0.5 μm which is the lower limit of the present invention, but it was confirmed that the fiber convergence is poor.
 比較例3は、アクリル樹脂のガラス転移温度が本発明の上限である40℃より高い50℃である例であるが、繊維集束性に劣ることが確認された。 Comparative Example 3 is an example in which the glass transition temperature of the acrylic resin is 50 ° C., which is higher than the upper limit of 40 ° C. of the present invention, but it was confirmed that the fiber converging property is inferior.

Claims (2)

  1.  ガラス転移温度が-20~40℃の範囲であるアクリル樹脂(a)が、水性媒体中に分散されている水性樹脂分散体(A)を含有する繊維集束剤であって、前記アクリル樹脂(a)の平均粒子径が0.5~5μmの範囲であることを特徴とする繊維集束剤。 The acrylic resin (a) having a glass transition temperature in the range of −20 to 40 ° C. is a fiber sizing agent containing the aqueous resin dispersion (A) dispersed in an aqueous medium, and the acrylic resin (a ) In the range of 0.5 to 5 μm.
  2.  前記樹脂分散体(A)が、前記アクリル樹脂(a)が乳化剤により水性媒体中に分散されているものである請求項1記載の繊維集束剤。 The fiber sizing agent according to claim 1, wherein the resin dispersion (A) is one in which the acrylic resin (a) is dispersed in an aqueous medium by an emulsifier.
PCT/JP2015/079537 2014-12-25 2015-10-20 Fiber bundling agent WO2016103875A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016565367A JP6112274B2 (en) 2014-12-25 2015-10-20 Fiber sizing agent

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014261957 2014-12-25
JP2014-261957 2014-12-25

Publications (1)

Publication Number Publication Date
WO2016103875A1 true WO2016103875A1 (en) 2016-06-30

Family

ID=56149912

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/079537 WO2016103875A1 (en) 2014-12-25 2015-10-20 Fiber bundling agent

Country Status (2)

Country Link
JP (1) JP6112274B2 (en)
WO (1) WO2016103875A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08119682A (en) * 1994-10-14 1996-05-14 Nitto Boseki Co Ltd Primary sizing agent for glass fiber and glass fiber stuck with the agent
JP2003238211A (en) * 2002-02-08 2003-08-27 Mitsubishi Rayon Co Ltd Emulsion for glass fiber sizing agent and method for producing the same, and glass fiber sizing agent, glass fiber bundle, resin composition, resin molding, and method for producing the resin molding
JP2013087396A (en) * 2011-10-20 2013-05-13 Sumitomo Seika Chem Co Ltd Sizing agent for carbon fiber and carbon fiber bundle

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4265897B2 (en) * 2002-09-09 2009-05-20 日本カーバイド工業株式会社 Cross-linked resin aqueous dispersion for textile processing

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08119682A (en) * 1994-10-14 1996-05-14 Nitto Boseki Co Ltd Primary sizing agent for glass fiber and glass fiber stuck with the agent
JP2003238211A (en) * 2002-02-08 2003-08-27 Mitsubishi Rayon Co Ltd Emulsion for glass fiber sizing agent and method for producing the same, and glass fiber sizing agent, glass fiber bundle, resin composition, resin molding, and method for producing the resin molding
JP2013087396A (en) * 2011-10-20 2013-05-13 Sumitomo Seika Chem Co Ltd Sizing agent for carbon fiber and carbon fiber bundle

Also Published As

Publication number Publication date
JPWO2016103875A1 (en) 2017-04-27
JP6112274B2 (en) 2017-04-12

Similar Documents

Publication Publication Date Title
US9777127B2 (en) Carbon fiber bundle for resin reinforcement purposes and method for producing same, and carbon-fiber-reinforced thermoplastic resin composition and molded product thereof
US10793690B2 (en) Prepreg and molded article
US10363724B2 (en) Resin composition and compression-molded article of same
US20190002659A1 (en) Prepreg and molded article
JP6197941B1 (en) Pulp defibrating resin composition, fiber reinforced material, and molding material
US20230042045A1 (en) Prepreg and molded article
WO2018216457A1 (en) Fiber sizing agent, fiber material, molding material and molding
JP6112274B2 (en) Fiber sizing agent
JP6019942B2 (en) Resin composition, fiber sizing agent and molded product
JP6145977B2 (en) Carbon fiber bundle, method for producing the same, carbon fiber chop, carbon fiber reinforced thermoplastic resin and molded article
JP5825514B2 (en) Carbon fiber sizing agent, carbon fiber and molding material
JP6787536B2 (en) Fiber sizing agents, fiber materials, molding materials and molded products
JP2013155237A (en) Aqueous resin composition, and coating agent, adhesive, and fiber-sizing agent containing the aqueous resin composition
JP6478093B2 (en) Fiber sizing agent
JP2013032600A (en) Sizing agent for carbon fiber, carbon fiber, and molded material
JPWO2019131101A1 (en) Resin composition for molding carbon fiber reinforced plastic, molding material, molded article, and method for producing molded article
WO2018198795A1 (en) Sheet winding molding method
JP6269167B2 (en) Aqueous resin composition and glass fiber sizing agent
JP6699153B2 (en) Aqueous resin composition and fiber sizing agent
JP6753305B2 (en) Aqueous epoxy resin compositions, fiber sizing agents, fiber materials, molding materials, and coating agents
WO2020230662A1 (en) Fiber-reinforced molding material and molded article using same
JP6136329B2 (en) Fiber sizing agent
JP7016120B2 (en) Sizing agent for carbon fiber, carbon fiber to which the sizing agent is bonded and its manufacturing method, carbon fiber reinforced plastic containing the carbon fiber
JP6481879B2 (en) Water repellent agent for fabric and fabric
JP2015132025A (en) Sizing agent for carbon fiber

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15872444

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016565367

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15872444

Country of ref document: EP

Kind code of ref document: A1