WO2016103427A1 - Radiation imaging apparatus - Google Patents

Radiation imaging apparatus Download PDF

Info

Publication number
WO2016103427A1
WO2016103427A1 PCT/JP2014/084425 JP2014084425W WO2016103427A1 WO 2016103427 A1 WO2016103427 A1 WO 2016103427A1 JP 2014084425 W JP2014084425 W JP 2014084425W WO 2016103427 A1 WO2016103427 A1 WO 2016103427A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
ray
fpd
images
radiation
Prior art date
Application number
PCT/JP2014/084425
Other languages
French (fr)
Japanese (ja)
Inventor
歩 馬場
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to PCT/JP2014/084425 priority Critical patent/WO2016103427A1/en
Publication of WO2016103427A1 publication Critical patent/WO2016103427A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/02Devices for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/025Tomosynthesis

Definitions

  • the present invention relates to a radiographic apparatus that generates a tomographic image based on radiographic images taken continuously while changing the imaging direction.
  • Such a conventional radiographic apparatus includes a bed that supports a top plate 52 on which a subject is placed, a radiation source 53, and a radiation detector that detects radiation provided inside the bed. 54.
  • Imaging by tomosynthesis is a specific method in which the radiation source 53 and the radiation detector 54 are moved in opposite directions with respect to the subject M on the top plate 52, and the radiographic images continuously taken between them are superimposed. This is a method of obtaining a tomographic image when the subject M is cut in a plane (see, for example, Patent Document 1).
  • the conventional radiation tomography apparatus has the following problems. That is, in the conventional radiation tomography apparatus, the tomographic image may become unclear.
  • a false image that is not related to the subject image may appear in the radiation image that is the basis of the tomographic image.
  • false images there are those that do not appear in the tomographic image because they fade as the radiographic images are superimposed.
  • some radiographic images become increasingly clear as they are superimposed.
  • Such a false image appears on the tomographic image in the form of being superimposed on the subject image, causing a reduction in visibility.
  • a radiation grid 55 is attached to the radiation detector 54 for scattered radiation generated in the subject.
  • the radiation grid 55 has a structure like a window blind in which strip-shaped absorbers that absorb scattered radiation are arranged. Since the absorber is made of a material that absorbs radiation, when an attempt is made to capture a radiation image, the shadow of the radiation grid 55 appears thinly in the radiation image.
  • the shadow of the radiation grid 55 is reflected in the same pattern in a series of radiation images. Therefore, when a series of radiographic images are overlapped in order to obtain a tomographic image, the shadows of the radiation grids 55 strengthen each other as shown in FIG. 25 and an image is formed on the tomographic image. In order to suppress the occurrence of such a false image on the tomographic image, it is necessary to take a series of radiation images so that the positions where the shadow of the radiation grid 55 is reflected are different from each other. Conventionally, a mechanism for suppressing a false image on a tomographic image by taking a series of radiation images while swinging the radiation grid 55 with respect to the radiation detector 54 has been devised.
  • the false image that appears in the same pattern in a series of radiation images is not limited to the shadow of the radiation grid 55.
  • the above-described rocking method cannot be expected to suppress false images except for the shadow of the radiation grid 55. Therefore, a new configuration is desired in which a false image of the same pattern does not appear in a series of radiation images more reliably.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a tomographic image in a radiography apparatus that generates a tomographic image based on radiographic images continuously shot while changing the imaging direction.
  • the purpose is to prevent the image from forming.
  • a radiation tomography apparatus includes a radiation source that irradiates a subject with radiation, a detection unit that detects radiation transmitted through the subject, a radiation source moving unit that moves the radiation source relative to the subject, A radiation source movement control means for controlling the movement of the radiation source, a detector moving means for moving the detection means relative to the subject, and a radiation image in which a false image is reflected together with the subject image based on the output of the detection means
  • the detector moving means is controlled so that the speed of the detecting means is changed when a series of radiographic images taken while the image generating means, the radiation source and the detecting means are moved in opposite directions.
  • Detector movement control means and image processing for shifting the image to a series of radiation images in which a false image of the same pattern is captured, so that the positions to be captured are a series of Shift image processing means that shifts the reference point inside the subject, which differs depending on the ray image, to the same position on the image, and a reference point based on a series of radiation images in which the appearance positions of false images are shifted from each other by shift image processing
  • a tomographic image generating means for generating a tomographic image of a subject in a cut surface
  • a radiation tomography apparatus in which a false image is not formed on a tomographic image can be provided. That is, the radiation tomography apparatus according to the present invention changes the speed of the detection means when taking a series of radiation images while the radiation source and the detection means are moved in opposite directions. As a result, the position of the reference point on the cut surface changes between a series of radiation images. On the other hand, the position where the false image appears is the same between the series of radiation images.
  • a tomographic image is generated based on a series of radiographic images that have been subjected to image processing that shifts so that the reference point is at the same position on the image
  • the tomographic image of the subject at the cutting plane that reliably includes the reference point is included in the tomographic image. Is reflected.
  • no false image appears in the tomographic image. This is because the appearance positions of the false images reflected in the series of radiographic images are shifted by the image processing and are canceled out when generating the tomographic image.
  • the detector movement control means is more desirable if the detector movement means is controlled so that the detection means repeats acceleration and deceleration.
  • the detector movement control means includes detector movement means so that the positions at which the reference points are reflected are different between the radiographic images taken when the detection means changes from acceleration to deceleration. It is more desirable to control.
  • the detector movement control means includes detector movement means so that the positions at which the reference points are reflected are different between the radiographic images taken when the detection means changes from deceleration to acceleration. It is more desirable to control.
  • the above-described configuration represents a more desirable form of the apparatus according to the present invention.
  • the position at which the reference point is reflected between the radiographic images tends to be particularly similar between the images taken when the detection unit changes from acceleration to deceleration. If such a state is left as it is, it may not be possible to reliably suppress the appearance of a false image on the tomographic image. Such a problem also occurs when the detecting means changes from deceleration to acceleration. Therefore, the above configuration pays attention to this problem, and the movement mode of the detection means is selected so that the positions where the reference points are reflected are different between the radiographic images taken when the detection means changes from acceleration to deceleration.
  • the movement mode of the detection means is selected so that the positions where the reference points are reflected are different between the radiographic images taken when the detection means changes from deceleration to acceleration. Thereby, it can suppress reliably that a false image appears on a tomographic image.
  • the detector movement control means recognizes the speed corresponding to each of the radiographic images based on a composite function obtained by adding two periodic functions having different periods and a constant, and detects the detector. It is more desirable to control the moving means.
  • the detector movement control means recognizes the speed corresponding to each of the radiographic images based on a composite function in which the speed of the detection means adds a constant to a periodic function, and moves the detector. It is more desirable to control the means.
  • the detector movement control means is more preferably controlled by controlling the detector movement means so that the detection means continues to accelerate.
  • the radiation tomography apparatus changes the speed of the detection means when taking a series of radiation images while the radiation source and the detection means are moved in opposite directions. As a result, the position of the reference point on the cut surface changes between a series of radiation images.
  • the position where the false image is reflected is the same between the series of radiographic images, if the tomographic image is generated based on the series of radiographic images subjected to the image shift process, the false image is reflected in the tomographic image. There is nothing.
  • FIG. 1 is a functional block diagram illustrating an overall configuration of an X-ray tomography apparatus according to Embodiment 1.
  • FIG. 3 is a schematic diagram illustrating the principle of obtaining a tomographic image according to the first embodiment. It is a schematic diagram explaining the shadow of the X grid which becomes a problem in the apparatus according to the first embodiment.
  • FIG. 6 is a schematic diagram illustrating a complementary mark of a defective pixel that is a problem in the apparatus according to the first embodiment.
  • FIG. 5 is a schematic diagram for explaining calibration overcorrection which is a problem in the apparatus according to the first embodiment.
  • FIG. 5 is a schematic diagram for explaining calibration overcorrection which is a problem in the apparatus according to the first embodiment.
  • FIG. 5 is a schematic diagram for explaining calibration overcorrection which is a problem in the apparatus according to the first embodiment.
  • FIG. 6 is a schematic diagram illustrating the principle that a false image that becomes a problem in the apparatus according to the first embodiment appears in a tomographic image.
  • FIG. 6 is a schematic diagram illustrating the principle that a false image that becomes a problem in the apparatus according to the first embodiment appears in a tomographic image.
  • FIG. 6 is a schematic diagram illustrating the principle that a false image that becomes a problem in the apparatus according to the first embodiment appears in a tomographic image.
  • FIG. 4 is a schematic diagram for explaining the importance of a reference cross section according to the first embodiment.
  • FIG. 1 is a schematic diagram illustrating the speed of the FPD according to Embodiment 1.
  • FIG. 6 is a schematic diagram illustrating movement of an FPD according to Embodiment 1.
  • FIG. FIG. 6 is a schematic diagram for explaining the operation of the FPD movement control unit according to the first embodiment.
  • FIG. 6 is a schematic diagram for explaining the operation of the FPD movement control unit according to the first embodiment.
  • FIG. 6 is a schematic diagram illustrating an operation of the image processing unit according to the first embodiment.
  • FIG. 6 is a schematic diagram illustrating an operation of the image processing unit according to the first embodiment.
  • FIG. 6 is a schematic diagram illustrating optimization of FPD movement according to the first embodiment.
  • FIG. 6 is a schematic diagram illustrating optimization of FPD movement according to the first embodiment.
  • FIG. 6 is a schematic diagram illustrating optimization of FPD movement according to the first embodiment.
  • FIG. 6 is a schematic diagram illustrating optimization of FPD movement according to the first embodiment.
  • FIG. 6 is a schematic diagram illustrating optimization of FPD movement according to the first embodiment.
  • FIG. 6 is a schematic diagram illustrating optimization of FPD movement according to the first embodiment.
  • FIG. 6 is a schematic diagram illustrating optimization of FPD movement according to the first embodiment. It is a schematic diagram explaining the structure of the conventional apparatus. It is a schematic diagram explaining the problem of a conventional apparatus.
  • X-rays correspond to the radiation of the present invention.
  • FPD is an abbreviation for flat panel detector.
  • the X-ray imaging apparatus according to the present invention can capture tomographic images based on the principles of tomosynthesis reconstruction methods such as shift addition, filter back projection, and successive approximation.
  • the subject M corresponds to the subject of the present invention.
  • the X-ray tomography apparatus 1 uses a top plate 2 on which a subject M in a supine position is placed, and X-rays provided on the upper side (one surface side) of the top plate 2.
  • An X-ray tube 3 that irradiates the subject M, and a device that is placed on the top 2 and disposed below the subject M, detects X-rays transmitted through the subject M, and detects signals Is provided.
  • the FPD 4 is a rectangle having four sides along either the body axis direction A or the body side direction S of the subject M.
  • One of the FPDs 4 is used at the time of imaging, and is arranged between the subject M and the top board 2 in the case of imaging related to the supine position.
  • the detection surface for detecting X-rays of the FPD 4 faces the X-ray tube 3 and the subject M side.
  • the X-ray tube 3 irradiates the quadrangular pyramid-shaped X-rays toward the FPD 4. Therefore, the FPD 4 receives X-rays on the entire detection surface.
  • the X-ray tube 3 corresponds to the radiation source of the present invention
  • the FPD 4 corresponds to the detection means of the present invention.
  • the X-ray grid 5 is provided so as to cover the detection surface of the FPD 4.
  • the X-ray grid 5 is configured to absorb scattered X-rays that are secondarily generated when the X-ray beam passes through the subject M.
  • the X-ray grid 5 suppresses the scattered X-rays from being detected by the FPD 4 and prevents the image quality from being deteriorated by the scattered X-rays.
  • the X-ray grid 5 moves following the movement of the FPD 4.
  • the X-ray tube controller 6 shown in FIG. 1 is provided for the purpose of controlling the X-ray tube 3 with a predetermined tube current, tube voltage, and pulse width.
  • the X-ray tube control unit 6 controls the X-ray tube 3 so that an X-ray beam is irradiated toward the subject M every time a predetermined time elapses.
  • the imaging of the X-ray image P is repeated every elapse of a predetermined time, and a series of imaging of the X-ray image P in the apparatus according to the present invention is executed.
  • the X-ray tube moving mechanism 7 a is configured to move the X-ray tube 3 relative to the top plate 2.
  • the X-ray tube moving mechanism 7 a can move the X-ray tube 3 along the body axis of the subject M.
  • the X-ray tube 3 can be moved with respect to the subject M on the top 2 by the X-ray tube moving mechanism 7a.
  • the X-ray tube movement control unit 8a is provided for the purpose of controlling the X-ray tube movement mechanism 7a.
  • the X-ray tube movement control unit 8a controls the movement of the X-ray tube 3 through the X-ray tube moving mechanism 7a.
  • the X-ray tube movement mechanism 7a corresponds to the radiation source movement means of the present invention
  • the X-ray tube movement control unit 8a corresponds to the radiation source movement control means of the present invention.
  • the FPD moving mechanism 7 b is configured to move the FPD 4 relative to the top plate 2 below the top plate 2.
  • the FPD moving mechanism 7b can move the FPD 4 along the body axis of the subject M. In this way, the FPD 4 can move relative to the subject M on the top 2 by the FPD moving mechanism 7b.
  • the FPD movement control unit 8b is provided for the purpose of controlling the FPD movement mechanism 7b.
  • the FPD movement mechanism 7b corresponds to the detector movement means of the present invention, and the FPD movement control unit 8b corresponds to the detector movement control means of the present invention.
  • the FPD movement control unit 8b plays an important role for the present invention.
  • the FPD movement control unit 8b allows the FPD 4 to change the speed of the FPD 4 when the X-ray tube 3 and the FPD 4 are taken in a series of X-ray images P while being moved in opposite directions.
  • the moving mechanism 7b is controlled. More specifically, the FPD movement control unit 8b is configured to control the FPD movement mechanism 7b so that the FPD 4 repeats acceleration and deceleration. Details of the control performed by the FPD movement control unit 8b will be described later.
  • the X-ray tube moving mechanism 7a and the FPD moving mechanism 7b are configured to move the X-ray tube 3 and the FPD 4 in synchronization with the subject M.
  • the X-ray tube moving mechanism 7a and the FPD moving mechanism 7b are linear trajectories (longitudinal of the top plate 2) parallel to the body axis direction A of the subject M according to the control of the X-ray tube moving control unit 8a and the FPD moving control unit 8b.
  • the X-ray tube 3 is moved straight along (direction).
  • the moving direction of the X-ray tube 3 and the FPD 4 coincides with the longitudinal direction of the top 2.
  • the directions of the synchronous movement of the X-ray tube 3 and the FPD 4 realized by the X-ray tube moving mechanism 7a and the FPD moving mechanism 7b are opposite to each other. Therefore, when the X-ray tube 3 moves from the head of the subject M toward the toes, the FPD 4 moves from the toes of the subject M toward the head.
  • the cone-shaped X-ray beam irradiated by the X-ray tube 3 is always irradiated toward the region of interest of the subject M. That is, the irradiation angle of the X-ray beam is changed from, for example, an initial angle of ⁇ 20 ° to a final angle of 20 ° by changing the angle of the X-ray tube 3.
  • the apparatus according to the present invention is devised so that the X-ray tube 3 is inclined so that the X-ray beam irradiated by the X-ray tube 3 is always received by the entire surface of the X-ray detection surface of the FPD 4. .
  • Such an X-ray irradiation angle change is performed by the X-ray tube tilting mechanism 9.
  • the X-ray tube tilt control unit 10 is provided for the purpose of controlling the X-ray tube tilt mechanism 9.
  • the X-ray tube 3 and the FPD 4 are indicated by an alternate long and short dash line through a position indicated by a broken line with the position of the solid line shown in FIG. 1 as an initial position. Move counter to position. At this time, the X-ray tube 3 irradiates the pulsed X-ray beam 74 times while moving synchronously with the FPD 4.
  • the image generation unit 11 acquires an X-ray detection signal output by the FPD 4 every time X-ray irradiation is performed, and generates 74 X-ray images P1, P2, P3,. The generated image is sent to the image processing unit 12.
  • the image generation unit 11 corresponds to the image generation unit of the present invention
  • the image processing unit 12 corresponds to the shift image processing unit of the present invention.
  • the image processing unit 12 performs image processing for individually shifting the images in the body axis direction A on the 74 X-ray images P1, P2, P3,... P74, and generates 74 X-ray images P1a, P2a, P3a,... P74a is generated.
  • the generated image is sent to the tomographic image generation unit 13.
  • the tomographic image generation unit 13 corresponds to the tomographic image generation means of the present invention.
  • the tomographic image generation unit 13 shifts and adds a series of X-ray images P1a, P2a, P3a,... P74a continuously shot while the X-ray tube 3 and the FPD 4 are moved in opposite directions to each other.
  • a tomographic image D obtained when the subject M is cut along a certain cut surface is generated by superimposing them on the basis of the approximation method.
  • the main control unit 25 is provided for the purpose of comprehensively controlling the units 6, 8 a, 8 b, 10, 11, 12, and 13.
  • This main control part is comprised by CPU, and implement
  • each of these units may be executed by being divided into an arithmetic device in charge of them.
  • Each unit can access the storage unit 23 as necessary.
  • the console 26 is provided for the purpose of inputting an operator's instruction.
  • the display unit 27 is provided for the purpose of displaying the tomographic image D.
  • FIG. 2 illustrates the principle of the filter back projection method used by the tomographic image generation unit 13.
  • a virtual plane (reference cut section MA) parallel to the top plate 2 (horizontal with respect to the vertical direction) will be described.
  • the FPD 4 is synchronized with the opposite direction of the X-ray tube 3 in accordance with the irradiation direction of the cone-shaped X-ray beam B by the X-ray tube 3 so as to be projected onto the fixed points p and q of the X-ray detection surface of the FPD 4.
  • a series of X-ray images Pa are generated by the image generation unit 11 and the image processing unit 12 while being moved.
  • the point I that is not located on the reference cut surface MA is reflected as a point i in a series of subject M images while changing the projection position on the FPD 4.
  • a point i is blurred without forming an image when the tomographic image generation unit 13 superimposes the X-ray projection images.
  • an X-ray tomographic image in which only an image positioned on the reference cut surface MA of the subject M is reflected is obtained.
  • the projected images are simply superimposed, a tomographic image at the reference cut surface MA is obtained.
  • the tomographic image generation unit 13 can obtain a similar tomographic image even at an arbitrary cut surface horizontal to the reference cut surface MA.
  • the projection position of the point i moves in the FPD 4, but this moving speed increases as the separation distance between the point I before projection and the reference cut surface MA increases.
  • reconstruction is performed while shifting the acquired series of subject M images in the body axis direction A at a predetermined pitch, and a tomographic image at a cutting plane parallel to the reference cutting plane MA is obtained. That is why.
  • the 74 X-ray images P1a, P2a, P3a,... P74a are subjected to image shift processing by the image processing unit 12. Accordingly, the question arises that the subject image on the reference cut surface MA may not be formed even if the 74 X-ray images P1a, P2a, P3a,.
  • the position of the image reflected in the image is deviated from the ideal position. Therefore, even if 74 X-ray images P1, P2, P3,... P74 are superposed by a normal filter back projection method, only a blurred image can be obtained.
  • the image processing unit 12 is configured to perform image processing for returning an image generated in each X-ray image P1, P2, P3,... P74 to an ideal position. Therefore, the X-ray images P1a, P2a, P3a,... P74a after the shift processing can be considered to be the same as a series of X-ray images assumed by the normal filter back projection method.
  • the reason for providing such an image processing unit 12 is to prevent a false image that appears in common in any of the 74 X-ray images P1, P2, P3,. It is in. This situation will be described later.
  • the false image to be removed by the present invention is a false image of the same pattern that appears in the same position in a series of X-ray images P1, P2, P3,.
  • Such a false image includes, for example, the shadow of the X-ray grid 5, the corrected image of the defective pixel, and the shadow of the top 2 reflected in the calibration image.
  • these false images will be specifically described.
  • FIG. 3 illustrates the shadow of the X-ray grid 5 reflected in a series of X-ray images P1, P2, P3,... P74.
  • the X-ray grid 5 is provided so as to cover the FPD 4 and has a configuration in which absorption foils extending in the body side direction S of the subject M are arranged in the body axis direction A of the subject M as shown on the left side of FIG. is doing.
  • Absorption foil is comprised with the member which is hard to permeate
  • the angle incident on the absorbing foil is different from the direct X-rays. Scattered X-rays enter the absorbing foil in an attempt to penetrate the absorbing foil. Scattered X-rays are absorbed by the absorbing foil and cannot enter the FPD 4.
  • the X-ray grid 5 does not absorb X-rays directly.
  • the absorbing foil of the X-ray grid 5 is not without any thickness. Some of the direct X-rays are incident on the absorbing foil and cannot be transmitted through the X-ray grid 5.
  • Such uneven transmission of direct X-rays appears on the FPD 4 behind the stripe pattern.
  • This shadow is the shadow of the X-ray grid 5, and as shown on the right side of FIG. 3, it is also thinly reflected in a series of X-ray images P1, P2, P3,.
  • the shadow of the X-ray grid 5 appears as the same pattern at the same position between the series of X-ray images P1, P2, P3,. This is because the positional relationship between the FPD 4 and the X-ray grid 5 does not change during continuous shooting of X-ray images.
  • the trace after the shadow removal is located at the same position as the pattern in the same manner as the shadow of the X-ray grid 5. Move in.
  • FIG. 4 illustrates a corrected image of a defective pixel.
  • detection elements for detecting X-rays are arranged vertically and horizontally. Ideally, it is desirable that all of these detection elements operate normally. However, some detection elements may not be able to operate normally. Such a detection element has lost the ability to detect X-rays. Such a detection element is represented by the symbol d on the left side of FIG.
  • the image generation unit 11 performs processing for removing the defective pixel from the X-ray image P. This process is realized by averaging the pixel values of surrounding pixels surrounding the defective pixel and setting the average value to the pixel value of the defective pixel. As a result, the location where the defective pixel indicated by ⁇ is present melts into surrounding pixels surrounded by a dotted line as shown on the right side of FIG.
  • the corrected pixel left after correcting the defective pixel cannot be said to be the same as the surrounding pixels just because it is not noticeable on the X-ray image P. That is, the corrected pixel is slightly darker than the surrounding pixels due to the influence of the fraction processing when calculating the average value.
  • the corrected pixels left after correcting the missing pixels appear in the same position between the series of X-ray images P1, P2, P3,. This is because the detection element that causes the defective pixel always exists at the same position in the FPD 4 during the continuous shooting of the X-ray images.
  • FIG. 5 illustrates the shade of the top 2 reflected in the calibration image.
  • detection elements for detecting X-rays are arranged vertically and horizontally. Ideally, it is desirable that these detection elements detect X-rays with the same sensitivity. However, the detection sensitivity is uneven among the detection elements as shown on the left side of FIG. Therefore, as shown on the right side of FIG. 5, this detection sensitivity non-uniformity is imaged in advance without the subject M being placed on the top 2. This shooting is called calibration shooting.
  • the top plate 2 cannot be easily removed, so that the calibration imaging must be performed while the top plate 2 is being copied. Although the top plate 2 transmits almost X-rays, it still does not absorb X-rays at all. Therefore, the shadow of the top 2 is superimposed on the calibration image obtained by the calibration photographing.
  • the left side of FIG. 6 represents a calibration image.
  • the detection unevenness of the FPD 4 and the shade of the top 2 represented by a grid pattern are superimposed.
  • the shadow of the top plate 2 included in the calibration image is subtracted. This appears as a false image in a series of X-ray images P1, P2, P3,. As shown on the right side of FIG. 6, the shadow of the top 2 is reflected in the same position between a series of X-ray images P1, P2, P3,... P74. This is because the calibration image used in the calibration is common among the X-ray images P1, P2, P3,.
  • a state in which a false image on the X-ray image P appears conspicuously in the tomographic image D will be described.
  • FIG. 7 consider a case where a tomographic image D on the reference cut surface MA is captured for a rectangle that looks like an organ in a subject.
  • a series of continuously shot X-ray images P1, P2, P3,... P74 are superimposed without being shifted to generate a tomographic image D.
  • the X-ray image is also displayed on the tomographic image D as shown in FIG.
  • the same false image as P appears.
  • the false image on the tomographic image D appears more clearly than the false image on the X-ray image P. This is because when the X-ray images P1, P2, P3,... P74 are superimposed, the false images having the same pattern are superimposed many times.
  • FIG. 9 particularly shows a state in which the shadow of the X-ray grid 5 is clearly reflected in the tomographic image D.
  • the subject image represented by a rectangle is obstructed by the shadow of the X-ray grid 5 and is difficult to view.
  • Such an imaging of the shadow of the X-ray grid 5 should occur on the reference cut surface MA.
  • the tomographic image D on the reference cut surface MA should be generated by superimposing the X-ray images P1, P2, P3,.
  • the fact that the X-ray images P1, P2, P3,... P74 are not shifted at the time of superimposing means that the false images are superimposed without being shifted and formed on the tomographic image D. According to the apparatus of the conventional configuration, this is as expected.
  • the standard cutting surface MA is useful for diagnosis.
  • FIG. 10 explains the circumstances.
  • the visual field of the tomographic image D is limited.
  • the tomographic image D is generated by superimposing the images on the cut surface of the subject M that appear in the series of X-ray images P1, P2, P3,.
  • the image of the subject M that can be imaged on the tomographic image D is limited to that reflected in all of the series of X-ray images P1, P2, P3,. Since a series of X-ray images P1, P2, P3,... P74 are taken while moving the X-ray tube 3 and the FPD 4, the region of the subject M that is reflected in all of these X-ray images P is limited.
  • the cut surface MB which is different from the reference cut surface MA, is located on the FPD4 side of the reference cut surface MA, and has a narrow range of reflection in a series of X-ray images P1, P2, P3,. Therefore, the field of view of the tomographic image D on the cut surface MB is narrow.
  • the tomographic image D may be generated with a cut surface other than the reference cut surface MA.
  • the tomographic image D in the cut surface other than the reference cut surface MA should be generated by superimposing the X-ray images P1, P2, P3,.
  • the X-ray images P1, P2, P3,... P74 are shifted at the time of superimposing, the false images are also shifted and superimposed, and the tomographic image D is not formed. This expectation is correct.
  • the reference cut surface MA is a special cut surface from which the tomographic image D having the maximum field of view can be acquired. Even if there is a problem that the false image is easily reflected, the other cut surface does not always replace the reference cut surface MA.
  • a configuration is adopted in which a false image is not reflected in the tomographic image D of the reference cut surface MA.
  • Such tomography that cannot be considered in the conventional apparatus is realized by the FPD movement control unit 8b and the image processing unit 12.
  • the FPD movement control unit 8b controls the FPD movement mechanism 7b so that the speed of the FPD 4 varies during shooting.
  • An example of the fluctuation of the speed of the FPD 4 at this time is shown in FIG. In FIG. 11, a dotted line indicates the moving speed of the FPD 4 when the conventional configuration continuously captures the X-ray image P.
  • the FPD 4 of the present invention is slower or faster than the FPD 4 in the conventional photographing method, the distance that the FPD 4 moves from the start to the end of the photographing is the same as that of the conventional photographing method (or the image processing unit 12 is conventional).
  • the X-ray image P74 obtained by this imaging method is set to be substantially the same to the extent that it can be reproduced).
  • the function shown in FIG. 11 is obtained by adding a constant to a trigonometric function.
  • the FPD movement control unit 8b controls the FPD movement mechanism 7b by recognizing the speed corresponding to each of the X-ray images P based on the composite function as shown in FIG. 11 in which the speed of the FPD 4 is obtained by adding a constant to the periodic function. Configured to do.
  • FIG. 12 visually represents the movement of the FPD 4 of the present invention.
  • the upper side of FIG. 12 shows the movement of the FPD 4 according to the conventional apparatus, and the FPD 4 moves at a constant speed during continuous shooting of a series of X-ray images P.
  • the lower side of FIG. 12 shows the movement of the FPD 4 of the apparatus according to the present invention.
  • the FPD 4 repeats speeding up and down during continuous shooting of a series of X-ray images P.
  • FIG. 13 shows the relationship between the numbers 1 to 74 of the X-ray image P and the position of the FPD 4 when the X-ray image P is imaged in the imaging method according to the present invention.
  • the FPD 4 when the X-ray image P1 is taken is at the 0 position.
  • the position of the FPD 4 is defined similarly in the following FIGS. 18, 20, and 22.
  • the FPD 4 being imaged moves in the body axis direction A of the subject M while passing or overtaking the FPD 4 related to conventional imaging indicated by the dotted line.
  • FIG. 14 shows a case where a series of X-ray images P are captured by the movement method of the FPD 4 of the conventional apparatus.
  • a rectangle indicated by a broken line on the series of X-ray images P1, P2, P3,... P74 represents a subject image on the reference cut surface MA.
  • the image on the reference cut surface MA is always reflected at the same position in a series of X-ray images P1, P2, P3,.
  • the shadow of the X-ray grid 5 having the same pattern is also reflected at the same position.
  • the tomographic image D on the reference cut surface MA includes the shadow of the X-ray grid 5 together with the tomographic image of the subject M. This is because, when a series of X-ray images P1, P2, P3,... P74 are overlapped in order to obtain an image on the reference cut surface MA, the shadow of the X-ray grid 5 is also overlapped at the same position in the tomographic image D.
  • FIG. 15 shows a case where a series of X-ray images P are captured by the method of moving the FPD 4 of the apparatus according to the present invention.
  • a rectangle indicated by a broken line on the series of X-ray images P1, P2, P3,... P74 represents a subject image on the reference cut surface MA.
  • Each of the X-ray images P1, P2, P3,... P74 of the present invention corresponds to each of 74 X-ray images P obtained by a conventional imaging method.
  • the X-ray image P2 of the present invention has the image on the reference cut surface MA shifted to the right as compared with the X-ray image P2 obtained by the conventional imaging method. This deviation is caused by the acceleration of the FPD 4. If the X-ray image P2 is taken while the FPD 4 is moved at a constant speed as in conventional photography, the image on the reference cut surface MA should appear at the same position as the X-ray image P1. However, in the imaging method of the present invention, the X-ray image P2 is captured with the FPD 4 sufficiently accelerated. The X-ray image P2 in the present invention is taken under the condition that the movement amount of the FPD 4 is larger than that in the conventional imaging method.
  • the image on the reference cut surface MA is shifted to the left as compared with the X-ray image P30 of the conventional imaging method. This shift is caused by the FPD 4 being decelerated. If the X-ray image P30 is taken while the FPD 4 is moved at a constant speed as in conventional photography, the image on the reference cut surface MA should appear at the same position as the X-ray image P1. However, in the imaging method of the present invention, the X-ray image P30 is captured with the FPD 4 sufficiently decelerated. The X-ray image P30 in the present invention is taken under the condition that the movement amount of the FPD 4 is small as compared with the conventional imaging method.
  • the image on the reference cut surface MA is not reflected at the same position.
  • X-ray grid images are not.
  • the X-ray grid image is reflected in the same pattern in the same position in a series of X-ray images P1, P2, P3,.
  • the FPD movement control unit 8b controls the FPD movement mechanism 7b so that the speed of the FPD 4 changes during imaging, so that the X-ray image P is changed while changing the positions of the X-ray grid image and the subject image. Can be taken continuously.
  • the tomographic image D is generated on the tomographic image D on the reference cut surface MA.
  • the subject image is not formed. This is because the position at which the subject image on the reference cut surface MA appears in the image is not constant between the series of X-ray images P1, P2, P3,.
  • the X-ray grid image clearly appears on the tomographic image D by superimposing a series of X-ray images P1, P2, P3,. This is because the position at which the X-ray grid image appears in the image is constant between a series of X-ray images P1, P2, P3,.
  • the tomographic image D on which the subject image is formed is obtained by providing the image processing unit 12.
  • a series of X-ray images P1, P2, P3,... P74 are sent from the image generation unit 11 to the image processing unit 12.
  • the image processing unit 12 converts an image reflected in each of the X-ray images P based on a table formed by associating each of the X-ray images P with the data indicating the shift amount and the shift direction corresponding thereto.
  • Image processing that shifts in the direction A (the movement direction of the FPD 4) is performed, and each of the X-ray images Pa is generated.
  • the table is stored in the storage unit 23.
  • the image processing unit 12 performs image processing so that the images on the reference cut surface MA that are shifted and displayed in the series of X-ray images P1, P2, P3,. A certain point on the reference cut surface MA in FIG. In the conventional X-ray images P1, P2, P3,... P74 that are continuously shot by moving the FPD 4 at a constant speed, all the images of the reference point s appear in the center of the image.
  • the image processing unit 12 has an image of the reference point s on the reference cut surface MA that is reflected while changing the position between a series of X-ray images P1, P2, P3,.
  • the image shift process is performed. Since the shift direction and the amount of shift of the image of the reference point s differ between the series of X-ray images P1, P2, P3,... P74, in order to realize such shift processing, different shift processing is applied to the X-ray image P. Need to be done for each.
  • the image processing unit 12 performs individual shift processing on the X-ray image P by referring to the table stored in the storage unit 23.
  • the FPD movement control unit 8b controls the FPD movement mechanism 7b so that the speed of the FPD 4 varies during continuous shooting of the X-ray image P. Accordingly, the FPD 4 moves while shifting. However, the speed change method is not changed every time the image is taken. If the continuous shooting of the X-ray image P is repeated, the speed of the FPD 4 will fluctuate as shown in FIG. 11, for example. Therefore, the position of the FPD 4 when the X-ray images P1, P2, P3,.
  • the distance between the X-ray tube 3 and the reference cut surface MA and the distance from the reference cut surface MA to the FPD 4 are known. Therefore, the reference cutting of the subject M reflected in the X-ray image P2 according to the present invention with respect to the image on the reference cutting plane MA of the subject M reflected in the X-ray image P2 according to the conventional FPD constant velocity moving method. It can be calculated by geometric calculation how much the image on the surface MA is shifted in which direction. Such a situation is the same for the other X-ray images P. The table can be calculated by executing such a geometric calculation for each X-ray image P1, P2, P3,.
  • FIG. 17 shows a state in which the image processing unit 12 performs shift processing on the X-ray images P1, P2, P3,... P74 in which the X-ray grid image and the subject image are reflected.
  • the image processing unit 12 performs a shift process on each of the X-ray images P1, P2, P3,... P74, thereby shifting the subject image on the reference cut surface MA indicated by the dashed rectangle to the center of the image.
  • Images P1a, P2a, P3a,... P74a are generated.
  • the subject image on the reference cut surface MA is reflected at the same position.
  • the image processing unit 12 performs image processing for shifting an image on a series of X-ray images P on which a false image of the same pattern is captured, so that the positions to be captured vary depending on the series of X-ray images P. Are shifted so that the reference point s is at the same position on the image.
  • the X-ray grid images reflected in the X-ray images P1, P2, P3,... P74 are also reflected in the X-ray images P1a, P2a, P3a,. It should be noted here that the X-ray images P1, P2, P3,... P74 show that the X-ray grid images are reflected at the same position in the same direction, and that the X-ray images P1, P2, P3,.
  • the shift processing performed is different for each image. For example, in the X-ray image P2 in FIG. 17, the subject image is shifted to the right as a result of the acceleration of the FPD 4. This shift is corrected by the image processing unit 12, and as a result, the subject image moves to a central position in the X-ray image P2a.
  • the X-ray grid on the X-ray image P2 also moves following the subject image.
  • the subject image is shifted to the left as a result of the deceleration of the FPD 4. This shift is corrected by the image processing unit 12, and as a result, the subject image moves to the center position in the X-ray image P30a.
  • the X-ray grid on the X-ray image P30 also moves following the subject image.
  • a series of X-ray images P1a, P2a, P3a,... P74a generated by the image processing unit 12 as described above are reproduced from X-ray images obtained when the FPD 4 moves at a constant speed as usual without shifting. It has become.
  • the FPD movement control unit 8b and the image processing unit 12 function in cooperation to form an X-ray grid image even in the tomographic image D on the reference cut surface MA. Can be suppressed.
  • Such a situation is not limited to the X-ray grid image, and the same applies to the other false images described with reference to FIGS. 4 to 6 reflected in the same series of X-ray images P1, P2, P3,. .
  • a series of X-ray images P1a, P2a, P3a,... P74a is sent to the tomographic image generation unit 13.
  • the tomographic image generation unit 13 generates a tomographic image D by superimposing these X-ray images Pa. Since the X-ray grid images reflected in the X-ray image Pa are different from each other in the positions reflected in the images, they cancel each other out when they are superimposed, and do not appear in the tomographic image D.
  • the tomographic image generation unit 13 can use the one provided in the conventional apparatus related to the FPD constant speed movement method.
  • the tomographic image generation unit 13 generates a tomographic image D of the subject M on the cut surface including the reference point s based on a series of X-ray images Pa in which the appearance positions of the false images are shifted from each other by the shift image processing.
  • FIG. 18 shows a case where a series of X-ray images P are continuously shot while the FPD 4 is moved at a constant speed as usual.
  • the solid line in FIG. 18 represents the conventional imaging method, and the value indicating the position of the FPD 4 at the time of imaging is proportional to the number of the X-ray image P.
  • the subject image of the reference cross section MA is reflected in the center of the image.
  • shift method Fb The method of shifting the image performed by the image processing unit 12 on the X-ray image P in which the image of the shift image Fa is captured is referred to as shift method Fb, and the image processing unit 12 applies to the X-ray image P in which the image of the shift image Da is captured.
  • shifting method Db The method of shifting the image to be applied will be referred to as shifting method Db.
  • the relationship between the position of the FPD 4 and time is as shown in FIG. That is, when the FPD 4 of the present invention repeats acceleration and deceleration, the relationship between the image number and the position of the FPD 4 can be reciprocated between the point on the broken line and the point on the alternate long and short dash line described in FIG.
  • the relationship between the image number of the X-ray image P and the position of the FPD 4 is further shown in the coordinate system shown in FIG. The coordinates are on the broken line. Then, the deviation image Fa described in FIG. 19 is reflected in the X-ray image P.
  • the relationship between the image number of the X-ray image P and the position of the FPD 4 is further shown in the coordinate system shown in FIG. It is assumed that the coordinates are on a one-dot chain line. Then, the deviation image Da described in FIG. 19 is reflected in the X-ray image P.
  • the series of X-ray images P1, P2, P3,... P74 that are the basis of the tomographic image D include many images in which the shift image Fa is reflected.
  • the shift of the FPD 4 is gentle, and the relationship between the image number and the position of the FPD 4 is close to the broken line for a long period indicated by hatching in FIG. Therefore, when the X-ray images P are continuously shot, many X-ray images P on which the shift image Fa or an image similar to that is copied can be obtained.
  • the continuously shot X-ray image P includes many images in which the shift image Da is reflected.
  • the speed of the FPD 4 is gentle, and the relationship between the image number and the position of the FPD 4 is close to the alternate long and short dash line for a long period of time indicated by the oblique lines in FIG. Therefore, when the X-ray images P are continuously shot, many X-ray images P on which the shift image Da or an image similar thereto is copied can be obtained.
  • FIG. 21 shows only a portion of the series of X-ray images P on which a shift image Fa or an image similar thereto is extracted.
  • the image processing unit 12 generates a X-ray image Pa by performing a shift process for shifting a plurality of X-ray images P in which the misalignment image Fa appears in the same shifting method Fb.
  • the essence of the present invention is to prevent the X-ray grid image from being formed on the tomographic image D by changing the shifting method of the X-ray grid image for each X-ray image P. Nevertheless, the image processing unit 12 has executed the shift process by shifting different X-ray images P in the same way.
  • an X-ray grid image reflected on the misalignment image Fa is formed on the generated tomographic image D.
  • the X-ray grid image of the X-ray image Pa is formed at the destination. Such a situation is the same for the displacement image Da.
  • FIG. 22 has a configuration in which the FPD 4 is moved in consideration of this point. That is, the relationship between the image number and the position of the FPD 4 according to the photographing of the present invention is shown by the thick line in FIG.
  • the point at which the FPD 4 changes from acceleration to deceleration corresponds to the speed of the conventional FPD related to constant speed movement (the speed of the FPD 4 related to the movement method of the FPD 4 reproduced by the image processing unit 12). Adjustments are made so that they are not arranged on a straight line having an inclination. By doing so, it is possible to prevent as much as possible that the same X-ray grid image appears in a series of X-ray images P, and to prevent the X-ray grid image from appearing in the tomographic image D. Can do.
  • the image number and the speed of the FPD 4 may be set as shown in FIG.
  • the function shown in FIG. 23 can be generated by further adding a constant to a composite function of two trigonometric functions having different frequencies.
  • the FPD 4 of the present invention is slower or faster than the FPD 4 in the conventional photographing method, but the distance that the FPD 4 moves from the start to the end of the photographing is the same as the conventional photographing method (or
  • the image processing unit 12 is set so that the X-ray image P74 obtained by the conventional imaging method can be reproduced.
  • the movement of the FPD 4 is realized by the FPD movement control unit 8b.
  • the FPD movement control unit 8b controls the FPD moving mechanism 7b so that the FPD 4 moves in the manner described with reference to FIGS. 22 and 23, so that the X-ray image taken when the FPD 4 changes from acceleration to deceleration.
  • the positions where the reference point s is reflected between P are different from each other.
  • the FPD movement control unit 8b makes the positions at which the reference point s is reflected between the X-ray images P captured when the FPD 4 changes from deceleration to acceleration.
  • the FPD movement control unit 8b controls the FPD movement mechanism 7b by recognizing the speed corresponding to each of the X-ray images P based on a composite function as shown in FIG. 23 in which the speed of the FPD 4 adds a constant to a periodic function. Configured to do.
  • the X-ray tomography apparatus 1 in which a false image is not formed on the tomographic image D. That is, when the X-ray tomography apparatus 1 according to the present invention captures a series of X-ray images P taken while the X-ray tube 3 and the FPD 4 are moved in opposite directions, the speed of the FPD 4 changes. Is done. As a result, the position of the reference point on the cut surface changes between a series of X-ray images P. On the other hand, the position where the false image appears is the same between the series of X-ray images P.
  • the tomographic image D is generated on the basis of a series of X-ray images P subjected to image processing for shifting so that the reference point comes to the same position on the image, the tomographic image D is surely in the cut surface including the reference point. A tomographic image of the subject M is reflected. On the other hand, no false image appears in the tomographic image D. This is because the appearance positions of the false images that appear in the series of X-ray images P are shifted by image processing and cancel each other out when generating the tomographic image.
  • the FPD 4 is moved so that the FPD 4 repeats acceleration and deceleration, a series of X-ray images P necessary for generating the tomographic image D can be reliably executed while the speed of the FPD 4 is changed. This is because the average speed of the FPD 4 can be made the speed of the FPD 4 in the conventional apparatus related to the detection means constant speed movement.
  • the position where the reference point is reflected between the X-ray images P tends to be particularly similar between images taken when the FPD 4 changes from acceleration to deceleration. If such a state is left as it is, it may not be possible to reliably suppress the appearance of a false image on the tomographic image. This problem also occurs when the FPD 4 changes from deceleration to acceleration. Therefore, the above configuration pays attention to this problem, and the movement mode of the FPD 4 is selected so that the positions where the reference points are reflected are different between the X-ray images P taken when the FPD 4 changes from acceleration to deceleration.
  • the movement mode of the FPD 4 is selected so that the positions at which the reference points are captured differ between the X-ray images P taken when the FPD 4 changes from deceleration to acceleration. Thereby, it can suppress reliably that a false image appears on a tomographic image.
  • the FPD 4 is moved at a speed based on a combined function obtained by adding two periodic functions having different periods and a constant, the FPD 4 is photographed when the FPD 4 changes from acceleration to deceleration (or from deceleration to acceleration).
  • the positions where the reference points are reflected between the X-ray images P are surely different from each other.
  • the configuration of the present invention is not limited to the above-described configuration, and can be modified as follows.
  • the speed of the FPD 4 of the first embodiment has a configuration represented by a function as shown in FIG. 11 or FIG. 23, the present invention is not limited to this configuration. You may make it determine the speed of FPD4 using functions other than these.
  • the method of shifting the FPD 4 of the first embodiment is one type, the present invention is not limited to this configuration.
  • the method of shifting the FPD 4 may be selected from a plurality of modes.
  • the image processing unit 12 of this modification can be configured to change the table to be referred to in accordance with the selection of this mode.
  • the shifting method of the FPD 4 shown in FIG. 23 is only an example of the present invention.
  • the FPD movement control unit 8b may recognize the speed of the FPD 4 by a function other than that shown in FIG.
  • the speed of the FPD 4 of the first embodiment is calculated based on a trigonometric function
  • the present invention is not limited to this configuration.
  • An arbitrary periodic function can be used for the calculation instead of the trigonometric function.
  • a function to be used a function having no non-differentiable singularity is desirable. This is because if there is such a singular point, the FPD 4 will rattle due to movement.
  • the filtered back projection method in which a series of X-ray images are superimposed is used as a tomographic reconstruction method.
  • a well-known shift addition method or successive approximation method may be used.
  • the present invention is not limited to this configuration.
  • the FPD 4 may be moved so as to continue to accelerate. In this way, the FPD 4 does not rattle during imaging and vibrations can be prevented, and the X-ray tomography apparatus 1 that is safe and less burdensome on the subject M and the apparatus itself can be provided.
  • Note that such movement of the FPD 4 is realized by the FPD movement control unit 8b executing control of the FPD movement mechanism 7b so as to continuously accelerate the FPD 4.
  • Example 1 Although the reference point s in Example 1 was on the reference section, the present invention is not limited to this configuration.
  • the reference point s can be set on a cut surface other than the reference cut surface.
  • the present invention is suitable for the medical field as described above.

Abstract

Provided is an X-ray tomography apparatus such that artifacts do not occur in a tomographic image. In this X-ray tomography apparatus 1, the speed of a FPD 4 changes when imaging a series of X-ray images P while an X-ray tube 3 and the FPD 4 is moved in opposite directions. As a result, the imaged positions of a reference point on a transverse section change among the series of X-ray images P. Because the positions of the imaged artifacts are the same among the series of X-ray images P, generating a tomographic image D on the basis of a series of X-ray images Pa that have been subjected to an image shifting process prevents artifacts from being included in the tomographic image D.

Description

放射線撮影装置Radiography equipment
 本発明は、撮影方向を変えながら連写された放射線画像に基づいて断層画像を生成する放射線撮影装置に関する。 The present invention relates to a radiographic apparatus that generates a tomographic image based on radiographic images taken continuously while changing the imaging direction.
 医療機関には放射線で被検体の画像を取得する放射線撮影装置が備えらえている。このような従来構成の放射線撮影装置は、図24に示すように被検体を載置する天板52を支持する寝台と、放射線源53と、寝台内部に備えられた放射線を検出する放射線検出器54とを備えている。 Medical institutions are equipped with radiation imaging devices that acquire images of subjects with radiation. As shown in FIG. 24, such a conventional radiographic apparatus includes a bed that supports a top plate 52 on which a subject is placed, a radiation source 53, and a radiation detector that detects radiation provided inside the bed. 54.
 図24のような装置の中にはトモシンセシスによる断層画像を取得できるように放射線源53および放射線検出器54とが同期して移動できる構成となっているものがある。トモシンセシスによる撮影とは、放射線源53および放射線検出器54を天板52上の被検体Mに対して互いに反対方向に移動させ、その間に連写された放射線画像を重ね合わせるなどすることで特定の平面で被検体Mを切断したときの断層画像を得る方法である(例えば特許文献1参照)。 Some apparatuses as shown in FIG. 24 are configured such that the radiation source 53 and the radiation detector 54 can move synchronously so that a tomographic image by tomosynthesis can be acquired. Imaging by tomosynthesis is a specific method in which the radiation source 53 and the radiation detector 54 are moved in opposite directions with respect to the subject M on the top plate 52, and the radiographic images continuously taken between them are superimposed. This is a method of obtaining a tomographic image when the subject M is cut in a plane (see, for example, Patent Document 1).
特開昭57-203430号公報JP-A-57-203430
 しかしながら、従来の放射線断層撮影装置には次のような問題点がある。
 すなわち、従来の放射線断層撮影装置では、断層画像が不鮮明になってしまう場合がある。
However, the conventional radiation tomography apparatus has the following problems.
That is, in the conventional radiation tomography apparatus, the tomographic image may become unclear.
 断層画像の元になる放射線画像に被検体像とは関係のない偽像が写り込んでいることがある。このような偽像の中には、放射線画像を重ね合わせていくうちに薄れて断層画像に現れないようなものもある。しかし、放射線画像には、重ね合わせていくうちに次第にはっきりしてくるものがある。このような偽像は、被検体像に重畳するかたちで断層画像上に現れ、視認性を低下させる原因となる。 A false image that is not related to the subject image may appear in the radiation image that is the basis of the tomographic image. Among such false images, there are those that do not appear in the tomographic image because they fade as the radiographic images are superimposed. However, some radiographic images become increasingly clear as they are superimposed. Such a false image appears on the tomographic image in the form of being superimposed on the subject image, causing a reduction in visibility.
 放射線画像に現れる偽像のうち、断層画像上に現れるものとしては、例えば、放射線グリッドの陰影がある。放射線検出器54には、被検体内で生じた散乱放射線が放射線検出器54に放射線グリッド55が装着されている。放射線グリッド55には、散乱放射線を吸収する短冊状の吸収体が配列されたウィンドウブラインドのような構造をしている。吸収体は、放射線を吸収する素材で構成されているので、放射線画像を撮影しようとすると、放射線画像には薄く放射線グリッド55の陰が写り込む。 Among the false images that appear in the radiation image, what appears on the tomographic image is, for example, the shadow of the radiation grid. A radiation grid 55 is attached to the radiation detector 54 for scattered radiation generated in the subject. The radiation grid 55 has a structure like a window blind in which strip-shaped absorbers that absorb scattered radiation are arranged. Since the absorber is made of a material that absorbs radiation, when an attempt is made to capture a radiation image, the shadow of the radiation grid 55 appears thinly in the radiation image.
 放射線グリッド55の陰は、一連の放射線画像において、同じパターンとなって写り込んでいる。したがって、断層画像を得ようとして一連の放射線画像を重ね合わせると、図25に示すように放射線グリッド55の陰が互いに強め合って断層画像上で像を結んでしまうのである。断層画像上でこのような偽像の発生を抑制するには、放射線グリッド55の陰が写り込む位置が互いに異なるように一連の放射線画像を撮影する必要がある。従来より放射線グリッド55を放射線検出器54に対して揺動させながら一連の放射線画像を撮影することで断層画像上の偽像を抑制する仕組みが考え出されている。 The shadow of the radiation grid 55 is reflected in the same pattern in a series of radiation images. Therefore, when a series of radiographic images are overlapped in order to obtain a tomographic image, the shadows of the radiation grids 55 strengthen each other as shown in FIG. 25 and an image is formed on the tomographic image. In order to suppress the occurrence of such a false image on the tomographic image, it is necessary to take a series of radiation images so that the positions where the shadow of the radiation grid 55 is reflected are different from each other. Conventionally, a mechanism for suppressing a false image on a tomographic image by taking a series of radiation images while swinging the radiation grid 55 with respect to the radiation detector 54 has been devised.
 しかしながら、一連の放射線画像に同じパターンで写り込む偽像は、放射線グリッド55の陰に限られない。上述の揺動させる方法は、放射線グリッド55の陰以外については偽像抑制の効果が望めない。そこで、より確実に一連の放射線画像に同じパターンの偽像が写り込むことがないような新規の構成が望まれる。 However, the false image that appears in the same pattern in a series of radiation images is not limited to the shadow of the radiation grid 55. The above-described rocking method cannot be expected to suppress false images except for the shadow of the radiation grid 55. Therefore, a new configuration is desired in which a false image of the same pattern does not appear in a series of radiation images more reliably.
 本発明は、この様な事情に鑑みてなされたものであって、その目的は、撮影方向を変えながら連写された放射線画像に基づいて断層画像を生成する放射線撮影装置において、断層画像に偽像が結像しないようにすることを目的とする。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a tomographic image in a radiography apparatus that generates a tomographic image based on radiographic images continuously shot while changing the imaging direction. The purpose is to prevent the image from forming.
 本発明は上述の課題を解決するために次のような構成をとる。
 すなわち、本発明に係る放射線断層撮影装置は、被写体に放射線を照射する放射線源と、被写体を透過してきた放射線を検出する検出手段と、放射線源を被写体に対して移動させる放射線源移動手段と、放射線源の移動を制御する放射線源移動制御手段と、検出手段を被写体に対して移動させる検出器移動手段と、検出手段の出力に基づいて被写体像とともに偽像が写り込んでいる放射線画像を生成する画像生成手段と、放射線源と検出手段とが互いに反対方向に移動されながら連写された一連の放射線画像を撮影する際に、検出手段の速度が変更されるように検出器移動手段を制御する検出器移動制御手段と、同じパターンの偽像を写し込んだ一連の放射線画像に対して像をシフトさせる画像処理を施すことにより、写り込む位置が一連の放射線画像によって異なる被写体内部の基準点が画像上の同じ位置に来るようにシフトさせるシフト画像処理手段と、シフト画像処理により偽像の出現位置が互いにずらされた一連の放射線画像を元に基準点を含む裁断面における被写体の断層画像を生成する断層画像生成手段とを備えることを特徴とするものである。
The present invention has the following configuration in order to solve the above-described problems.
That is, a radiation tomography apparatus according to the present invention includes a radiation source that irradiates a subject with radiation, a detection unit that detects radiation transmitted through the subject, a radiation source moving unit that moves the radiation source relative to the subject, A radiation source movement control means for controlling the movement of the radiation source, a detector moving means for moving the detection means relative to the subject, and a radiation image in which a false image is reflected together with the subject image based on the output of the detection means The detector moving means is controlled so that the speed of the detecting means is changed when a series of radiographic images taken while the image generating means, the radiation source and the detecting means are moved in opposite directions. Detector movement control means, and image processing for shifting the image to a series of radiation images in which a false image of the same pattern is captured, so that the positions to be captured are a series of Shift image processing means that shifts the reference point inside the subject, which differs depending on the ray image, to the same position on the image, and a reference point based on a series of radiation images in which the appearance positions of false images are shifted from each other by shift image processing And a tomographic image generating means for generating a tomographic image of a subject in a cut surface including
 [作用・効果]本発明によれば、断層画像に偽像が結像しない放射線断層撮影装置が提供できる。すなわち、本発明に係る放射線断層撮影装置は、放射線源と検出手段とが互いに反対方向に移動されながら一連の放射線画像を撮影する際に、検出手段の速度が変更される。これにより裁断面上の基準点の写り込む位置が一連の放射線画像の間で変化する。一方、偽像の写り込む位置は一連の放射線画像の間で同じである。基準点が画像上の同じ位置に来るようにシフトさせる画像処理を施した一連の放射線画像に基づいて断層画像を生成すれば、断層画像には確実に基準点を含む裁断面における被写体の断層像が写り込む。一方、断層画像には、偽像が写り込むことがない。一連の放射線画像に写り込む偽像は、画像処理により出現位置がシフトされ、断層画像生成の際に互いに相殺されるからである。 [Operation / Effect] According to the present invention, a radiation tomography apparatus in which a false image is not formed on a tomographic image can be provided. That is, the radiation tomography apparatus according to the present invention changes the speed of the detection means when taking a series of radiation images while the radiation source and the detection means are moved in opposite directions. As a result, the position of the reference point on the cut surface changes between a series of radiation images. On the other hand, the position where the false image appears is the same between the series of radiation images. If a tomographic image is generated based on a series of radiographic images that have been subjected to image processing that shifts so that the reference point is at the same position on the image, the tomographic image of the subject at the cutting plane that reliably includes the reference point is included in the tomographic image. Is reflected. On the other hand, no false image appears in the tomographic image. This is because the appearance positions of the false images reflected in the series of radiographic images are shifted by the image processing and are canceled out when generating the tomographic image.
 また、上述の放射線断層撮影装置において、検出器移動制御手段は、検出手段が加速と減速を繰り返すように検出器移動手段を制御すればより望ましい。 In the above-mentioned radiation tomography apparatus, the detector movement control means is more desirable if the detector movement means is controlled so that the detection means repeats acceleration and deceleration.
 [作用・効果]上述の構成は、本発明に係る装置のより望ましい形態を表したものとなっている。検出手段が加速と減速を繰り返すように検出手段を動かせば、検出手段の速度が変更しつつ断層画像の生成に必要な一連の放射線画像の撮影を確実に実行することができる。検出手段の平均速度を検出手段等速移動に係る従来装置における検出手段の速度にすることができるからである。 [Operation / Effect] The above-described configuration represents a more desirable form of the apparatus according to the present invention. If the detection means is moved so that the detection means repeats acceleration and deceleration, a series of radiographic images necessary for generating a tomographic image can be reliably executed while changing the speed of the detection means. This is because the average speed of the detection means can be set to the speed of the detection means in the conventional device related to the detection means constant speed movement.
 また、上述の放射線断層撮影装置において、検出器移動制御手段は、検出手段が加速から減速に転じる際に撮影された放射線画像の間で基準点の写り込む位置が互いに異なるように検出器移動手段を制御すればより望ましい。 Further, in the above-described radiation tomography apparatus, the detector movement control means includes detector movement means so that the positions at which the reference points are reflected are different between the radiographic images taken when the detection means changes from acceleration to deceleration. It is more desirable to control.
 また、上述の放射線断層撮影装置において、検出器移動制御手段は、検出手段が減速から加速に転じる際に撮影された放射線画像の間で基準点の写り込む位置が互いに異なるように検出器移動手段を制御すればより望ましい。 Further, in the above-mentioned radiation tomography apparatus, the detector movement control means includes detector movement means so that the positions at which the reference points are reflected are different between the radiographic images taken when the detection means changes from deceleration to acceleration. It is more desirable to control.
 [作用・効果]上述の構成は、本発明に係る装置のより望ましい形態を表したものとなっている。放射線画像の間で基準点の写り込む位置は、検出手段が加速から減速に転じる際に撮影された画像の間で特に類似しやすい。このような状態を放置すると、断層画像上に偽像が出現することを確実に抑制できない場合がある。このような問題は、検出手段が減速から加速に転じる際にも生じる。そこで、上述の構成はこの問題に着目して、検出手段が加速から減速に転じる際に撮影された放射線画像の間で基準点の写り込む位置が互いに異なるように検出手段の移動様式が選択される。同様に検出手段が減速から加速に転じる際に撮影された放射線画像の間で基準点の写り込む位置が互いに異なるように検出手段の移動様式が選択される。これにより、断層画像上に偽像が出現することが確実に抑制できる。 [Operation / Effect] The above-described configuration represents a more desirable form of the apparatus according to the present invention. The position at which the reference point is reflected between the radiographic images tends to be particularly similar between the images taken when the detection unit changes from acceleration to deceleration. If such a state is left as it is, it may not be possible to reliably suppress the appearance of a false image on the tomographic image. Such a problem also occurs when the detecting means changes from deceleration to acceleration. Therefore, the above configuration pays attention to this problem, and the movement mode of the detection means is selected so that the positions where the reference points are reflected are different between the radiographic images taken when the detection means changes from acceleration to deceleration. The Similarly, the movement mode of the detection means is selected so that the positions where the reference points are reflected are different between the radiographic images taken when the detection means changes from deceleration to acceleration. Thereby, it can suppress reliably that a false image appears on a tomographic image.
 また、上述の放射線断層撮影装置において、検出器移動制御手段は、互いに周期の異なる2つの周期的関数と定数を加算した合成関数に基づいて放射線画像の各々に対応する速度を認識して検出器移動手段を制御すればより望ましい。 In the above-mentioned radiation tomography apparatus, the detector movement control means recognizes the speed corresponding to each of the radiographic images based on a composite function obtained by adding two periodic functions having different periods and a constant, and detects the detector. It is more desirable to control the moving means.
 [作用・効果]上述の構成は、本発明に係る装置のより望ましい形態を表したものとなっている。検出手段を互いに周期の異なる2つの周期的関数と定数を加算した合成関数に基づいた速度で動かせば、検出手段が加速から減速(または減速から加速)に転じる際に撮影された放射線画像の間で基準点の写り込む位置が確実に互いに異なるようになる。 [Operation / Effect] The above-described configuration represents a more desirable form of the apparatus according to the present invention. If the detection means is moved at a speed based on a combined function obtained by adding two periodic functions having different periods and a constant, between the radiographic images taken when the detection means changes from acceleration to deceleration (or from deceleration to acceleration). As a result, the positions where the reference points are reflected are surely different from each other.
 また、上述の放射線断層撮影装置において、検出器移動制御手段は、検出手段の速度が周期的関数に定数を加算した合成関数に基づいて放射線画像の各々に対応する速度を認識して検出器移動手段を制御すればより望ましい。 In the above-described radiation tomography apparatus, the detector movement control means recognizes the speed corresponding to each of the radiographic images based on a composite function in which the speed of the detection means adds a constant to a periodic function, and moves the detector. It is more desirable to control the means.
 [作用・効果]上述の構成は、本発明に係る装置のより望ましい形態を表したものとなっている。検出手段を検出手段の速度が周期的関数に定数を加算した合成関数に基づいた速度で動かせば、検出手段の加速と減速が確実に繰り返される。 [Operation / Effect] The above-described configuration represents a more desirable form of the apparatus according to the present invention. If the detection means is moved at a speed based on a composite function in which the speed of the detection means is a constant added to a periodic function, acceleration and deceleration of the detection means are reliably repeated.
 また、上述の放射線断層撮影装置において、検出器移動制御手段は、検出手段が加速し続けるように検出器移動手段を制御すればより望ましい。 In the above-mentioned radiation tomography apparatus, the detector movement control means is more preferably controlled by controlling the detector movement means so that the detection means continues to accelerate.
 [作用・効果]上述の構成は、本発明に係る装置のより望ましい形態を表したものとなっている。検出手段を加速し続けるように動かせば、撮影中に検出手段ががたついて振動を生じてしまうことがなくなり、安全で被写体および装置自身に対して負担の少ない放射線断層撮影装置が提供できる。 [Operation / Effect] The above-described configuration represents a more desirable form of the apparatus according to the present invention. If the detection means is moved so as to continue to accelerate, the detection means will not rattle during imaging, and a tomography apparatus that is safe and less burdensome on the subject and the apparatus itself can be provided.
 本発明によれば、断層画像に偽像が結像しない放射線断層撮影装置が提供できる。すなわち、本発明に係る放射線断層撮影装置は、放射線源と検出手段とが互いに反対方向に移動されながら一連の放射線画像を撮影する際に、検出手段の速度が変更される。これにより裁断面上の基準点の写り込む位置が一連の放射線画像の間で変化する。一方、偽像の写り込む位置は一連の放射線画像の間で同じなので、像のシフト処理を施した一連の放射線画像に基づいて断層画像を生成すれば、断層画像には、偽像が写り込むことがない。 According to the present invention, it is possible to provide a radiation tomography apparatus in which a false image is not formed on a tomographic image. That is, the radiation tomography apparatus according to the present invention changes the speed of the detection means when taking a series of radiation images while the radiation source and the detection means are moved in opposite directions. As a result, the position of the reference point on the cut surface changes between a series of radiation images. On the other hand, since the position where the false image is reflected is the same between the series of radiographic images, if the tomographic image is generated based on the series of radiographic images subjected to the image shift process, the false image is reflected in the tomographic image. There is nothing.
実施例1に係るX線断層撮影装置の全体構成を説明する機能ブロック図である。1 is a functional block diagram illustrating an overall configuration of an X-ray tomography apparatus according to Embodiment 1. FIG. 実施例1に係る断層画像の取得原理を説明する模式図である。FIG. 3 is a schematic diagram illustrating the principle of obtaining a tomographic image according to the first embodiment. 実施例1に係る装置において問題となるXグリッドの陰について説明する模式図である。It is a schematic diagram explaining the shadow of the X grid which becomes a problem in the apparatus according to the first embodiment. 実施例1に係る装置において問題となる欠損画素の補完痕について説明する模式図である。FIG. 6 is a schematic diagram illustrating a complementary mark of a defective pixel that is a problem in the apparatus according to the first embodiment. 実施例1に係る装置において問題となるキャリブレーションの過補正について説明する模式図である。FIG. 5 is a schematic diagram for explaining calibration overcorrection which is a problem in the apparatus according to the first embodiment. 実施例1に係る装置において問題となるキャリブレーションの過補正について説明する模式図である。FIG. 5 is a schematic diagram for explaining calibration overcorrection which is a problem in the apparatus according to the first embodiment. 実施例1に係る装置において問題となる偽像が断層画像に出現する原理を説明する模式図である。FIG. 6 is a schematic diagram illustrating the principle that a false image that becomes a problem in the apparatus according to the first embodiment appears in a tomographic image. 実施例1に係る装置において問題となる偽像が断層画像に出現する原理を説明する模式図である。FIG. 6 is a schematic diagram illustrating the principle that a false image that becomes a problem in the apparatus according to the first embodiment appears in a tomographic image. 実施例1に係る装置において問題となる偽像が断層画像に出現する原理を説明する模式図である。FIG. 6 is a schematic diagram illustrating the principle that a false image that becomes a problem in the apparatus according to the first embodiment appears in a tomographic image. 実施例1に係る基準裁断面の重要性を説明する模式図である。FIG. 4 is a schematic diagram for explaining the importance of a reference cross section according to the first embodiment. 実施例1に係るFPDの速度について説明する模式図である。FIG. 5 is a schematic diagram illustrating the speed of the FPD according to the first embodiment. 実施例1に係るFPDの移動について説明する模式図である。6 is a schematic diagram illustrating movement of an FPD according to Embodiment 1. FIG. 実施例1に係るFPDの移動について説明する模式図である。6 is a schematic diagram illustrating movement of an FPD according to Embodiment 1. FIG. 実施例1に係るFPD移動制御部の動作を説明する模式図である。FIG. 6 is a schematic diagram for explaining the operation of the FPD movement control unit according to the first embodiment. 実施例1に係るFPD移動制御部の動作を説明する模式図である。FIG. 6 is a schematic diagram for explaining the operation of the FPD movement control unit according to the first embodiment. 実施例1に係る画像処理部の動作について説明する模式図である。FIG. 6 is a schematic diagram illustrating an operation of the image processing unit according to the first embodiment. 実施例1に係る画像処理部の動作について説明する模式図である。FIG. 6 is a schematic diagram illustrating an operation of the image processing unit according to the first embodiment. 実施例1に係るFPDの移動の最適化について説明する模式図である。FIG. 6 is a schematic diagram illustrating optimization of FPD movement according to the first embodiment. 実施例1に係るFPDの移動の最適化について説明する模式図である。FIG. 6 is a schematic diagram illustrating optimization of FPD movement according to the first embodiment. 実施例1に係るFPDの移動の最適化について説明する模式図である。FIG. 6 is a schematic diagram illustrating optimization of FPD movement according to the first embodiment. 実施例1に係るFPDの移動の最適化について説明する模式図である。FIG. 6 is a schematic diagram illustrating optimization of FPD movement according to the first embodiment. 実施例1に係るFPDの移動の最適化について説明する模式図である。FIG. 6 is a schematic diagram illustrating optimization of FPD movement according to the first embodiment. 実施例1に係るFPDの移動の最適化について説明する模式図である。FIG. 6 is a schematic diagram illustrating optimization of FPD movement according to the first embodiment. 従来装置の構成を説明する模式図である。It is a schematic diagram explaining the structure of the conventional apparatus. 従来装置の問題点を説明する模式図である。It is a schematic diagram explaining the problem of a conventional apparatus.
 本発明に係るX線撮影装置の構成について説明する。なお、X線は本発明の放射線に相当する。FPDはフラットパネルディテクタの略である。また、本発明に係るX線撮影装置は、シフト加算法、フィルタバックプロジェクション、逐次近似法などトモシンセシス再構成法の原理に基づいた断層画像の撮影ができる。被検体Mは、本発明の被写体に相当する。 The configuration of the X-ray imaging apparatus according to the present invention will be described. X-rays correspond to the radiation of the present invention. FPD is an abbreviation for flat panel detector. In addition, the X-ray imaging apparatus according to the present invention can capture tomographic images based on the principles of tomosynthesis reconstruction methods such as shift addition, filter back projection, and successive approximation. The subject M corresponds to the subject of the present invention.
 <X線撮影装置の全体構成>
 実施例1に係るX線断層撮影装置1は、図1に示すように仰臥位の被検体Mを載置する天板2と、天板2の上側(一面側)に設けられたX線を被検体Mに照射するX線管3と、天板2に載置されるとともに被検体Mの下部に配置される装置であって、被検体Mを透過してきたX線を検出して検出信号を出力するFPD4とを備えている。FPD4は、被検体Mの体軸方向Aまたは体側方向Sのいずれかに沿った4つの辺を有する矩形となっている。このFPD4は撮影の際にいずれか1つが使用され、仰臥位に係る撮影の場合には被検体Mと天板2との間に配置される。FPD4のX線を検出する検出面は、X線管3および被検体M側に向いている。また、X線管3は、四角錐形状のX線をFPD4に向けて照射する。したがって、FPD4は、X線を検出面の全面で受光することになる。X線管3は、本発明の放射線源に相当し、FPD4は本発明の検出手段に相当する。
<Overall configuration of X-ray imaging apparatus>
As shown in FIG. 1, the X-ray tomography apparatus 1 according to the first embodiment uses a top plate 2 on which a subject M in a supine position is placed, and X-rays provided on the upper side (one surface side) of the top plate 2. An X-ray tube 3 that irradiates the subject M, and a device that is placed on the top 2 and disposed below the subject M, detects X-rays transmitted through the subject M, and detects signals Is provided. The FPD 4 is a rectangle having four sides along either the body axis direction A or the body side direction S of the subject M. One of the FPDs 4 is used at the time of imaging, and is arranged between the subject M and the top board 2 in the case of imaging related to the supine position. The detection surface for detecting X-rays of the FPD 4 faces the X-ray tube 3 and the subject M side. The X-ray tube 3 irradiates the quadrangular pyramid-shaped X-rays toward the FPD 4. Therefore, the FPD 4 receives X-rays on the entire detection surface. The X-ray tube 3 corresponds to the radiation source of the present invention, and the FPD 4 corresponds to the detection means of the present invention.
 X線グリッド5は、FPD4の検出面を覆うように設けられている。このX線グリッド5は、X線ビームが被検体Mを通過するときに副次的に発生する散乱X線を吸収する構成である。X線グリッド5は、散乱X線がFPD4に検出されることを抑制し、散乱X線による画質の悪化を防いでいる。X線グリッド5は、FPD4の移動に追従して移動する。 The X-ray grid 5 is provided so as to cover the detection surface of the FPD 4. The X-ray grid 5 is configured to absorb scattered X-rays that are secondarily generated when the X-ray beam passes through the subject M. The X-ray grid 5 suppresses the scattered X-rays from being detected by the FPD 4 and prevents the image quality from being deteriorated by the scattered X-rays. The X-ray grid 5 moves following the movement of the FPD 4.
 図1に示すX線管制御部6は、所定の管電流、管電圧、パルス幅でX線管3を制御する目的で設けられている。X線管制御部6は、所定時間が経過するごとにX線ビームを被検体Mに向けて照射するようにX線管3を制御する。この制御によりX線画像Pの撮影が所定時間経過ごとに繰り返され、本発明に係る装置における一連のX線画像Pの撮影が実行される。 The X-ray tube controller 6 shown in FIG. 1 is provided for the purpose of controlling the X-ray tube 3 with a predetermined tube current, tube voltage, and pulse width. The X-ray tube control unit 6 controls the X-ray tube 3 so that an X-ray beam is irradiated toward the subject M every time a predetermined time elapses. By this control, the imaging of the X-ray image P is repeated every elapse of a predetermined time, and a series of imaging of the X-ray image P in the apparatus according to the present invention is executed.
 X線管移動機構7aは、X線管3を天板2に対して移動させる構成となっている。このX線管移動機構7aは、X線管3を被検体Mの体軸に沿って移動させることができる。こうして、X線管3は、X線管移動機構7aにより天板2の被検体Mに対して移動することができる。X線管移動制御部8aは、X線管移動機構7aを制御する目的で設けられている。X線管移動制御部8aはX線管移動機構7aを通じてX線管3の移動を制御する。X線管移動機構7aは、本発明の放射線源移動手段に相当し、X線管移動制御部8aは本発明の放射線源移動制御手段に相当する。 The X-ray tube moving mechanism 7 a is configured to move the X-ray tube 3 relative to the top plate 2. The X-ray tube moving mechanism 7 a can move the X-ray tube 3 along the body axis of the subject M. Thus, the X-ray tube 3 can be moved with respect to the subject M on the top 2 by the X-ray tube moving mechanism 7a. The X-ray tube movement control unit 8a is provided for the purpose of controlling the X-ray tube movement mechanism 7a. The X-ray tube movement control unit 8a controls the movement of the X-ray tube 3 through the X-ray tube moving mechanism 7a. The X-ray tube movement mechanism 7a corresponds to the radiation source movement means of the present invention, and the X-ray tube movement control unit 8a corresponds to the radiation source movement control means of the present invention.
 FPD移動機構7bは、天板2の下側にFPD4を天板2に対して移動させる構成となっている。このFPD移動機構7bは、FPD4を被検体Mの体軸に沿って移動させることができる。こうして、FPD4は、FPD移動機構7bにより天板2の被検体Mに対して移動することができる。FPD移動制御部8bは、FPD移動機構7bを制御する目的で設けられている。FPD移動機構7bは本発明の検出器移動手段に相当し、FPD移動制御部8bは本発明の検出器移動制御手段に相当する。 The FPD moving mechanism 7 b is configured to move the FPD 4 relative to the top plate 2 below the top plate 2. The FPD moving mechanism 7b can move the FPD 4 along the body axis of the subject M. In this way, the FPD 4 can move relative to the subject M on the top 2 by the FPD moving mechanism 7b. The FPD movement control unit 8b is provided for the purpose of controlling the FPD movement mechanism 7b. The FPD movement mechanism 7b corresponds to the detector movement means of the present invention, and the FPD movement control unit 8b corresponds to the detector movement control means of the present invention.
 このFPD移動制御部8bは、本発明にとって重要な役割を担っている。すなわち、FPD移動制御部8bは、X線管3とFPD4とが互いに反対方向に移動されながら連写された一連のX線画像Pを撮影する際に、FPD4の速度が変更されるようにFPD移動機構7bを制御する。より具体的には、FPD移動制御部8bは、FPD4が加速と減速を繰り返すようにFPD移動機構7bを制御するように構成されている。FPD移動制御部8bは行う制御の詳細は後述のものとする。 The FPD movement control unit 8b plays an important role for the present invention. In other words, the FPD movement control unit 8b allows the FPD 4 to change the speed of the FPD 4 when the X-ray tube 3 and the FPD 4 are taken in a series of X-ray images P while being moved in opposite directions. The moving mechanism 7b is controlled. More specifically, the FPD movement control unit 8b is configured to control the FPD movement mechanism 7b so that the FPD 4 repeats acceleration and deceleration. Details of the control performed by the FPD movement control unit 8b will be described later.
 X線管移動機構7a,FPD移動機構7bは、被検体Mに対してX線管3とFPD4とを同期させて移動させる構成となっている。このX線管移動機構7a,FPD移動機構7bは、X線管移動制御部8a,FPD移動制御部8bの制御にしたがって被検体Mの体軸方向Aに平行な直線軌道(天板2の長手方向)に沿ってX線管3を直進移動させる。このX線管3とFPD4との移動方向は、天板2の長手方向に一致している。X線管移動機構7a,FPD移動機構7bが実現するX線管3とFPD4との同期的移動の方向は、互いに反対方向である。従って、X線管3が被検体Mの頭部から足先に向けて移動する場合は、FPD4は、被検体Mの足先から頭部に向けて移動する。 The X-ray tube moving mechanism 7a and the FPD moving mechanism 7b are configured to move the X-ray tube 3 and the FPD 4 in synchronization with the subject M. The X-ray tube moving mechanism 7a and the FPD moving mechanism 7b are linear trajectories (longitudinal of the top plate 2) parallel to the body axis direction A of the subject M according to the control of the X-ray tube moving control unit 8a and the FPD moving control unit 8b. The X-ray tube 3 is moved straight along (direction). The moving direction of the X-ray tube 3 and the FPD 4 coincides with the longitudinal direction of the top 2. The directions of the synchronous movement of the X-ray tube 3 and the FPD 4 realized by the X-ray tube moving mechanism 7a and the FPD moving mechanism 7b are opposite to each other. Therefore, when the X-ray tube 3 moves from the head of the subject M toward the toes, the FPD 4 moves from the toes of the subject M toward the head.
 X線管3とFPD4との同期的移動中、X線管3の照射するコーン状のX線ビームは、常に被検体Mの関心部位に向かって照射されるようになっている。すなわち、X線ビームの照射角度は、X線管3の角度を変更することによって、たとえば初期角度-20°から最終角度20°まで変更される。つまり、本発明に係る装置は、X線管3が傾斜することで、X線管3が照射するX線ビームが常にFPD4のX線検出面の全面で受光されるように工夫がされている。この様なX線照射角度の変更は、X線管傾斜機構9が行う。X線管傾斜制御部10は、X線管傾斜機構9を制御する目的で設けられている。 During the synchronous movement of the X-ray tube 3 and the FPD 4, the cone-shaped X-ray beam irradiated by the X-ray tube 3 is always irradiated toward the region of interest of the subject M. That is, the irradiation angle of the X-ray beam is changed from, for example, an initial angle of −20 ° to a final angle of 20 ° by changing the angle of the X-ray tube 3. In other words, the apparatus according to the present invention is devised so that the X-ray tube 3 is inclined so that the X-ray beam irradiated by the X-ray tube 3 is always received by the entire surface of the X-ray detection surface of the FPD 4. . Such an X-ray irradiation angle change is performed by the X-ray tube tilting mechanism 9. The X-ray tube tilt control unit 10 is provided for the purpose of controlling the X-ray tube tilt mechanism 9.
 本発明に係るX線撮影装置が、断層画像を生成するときには、X線管3,FPD4は、図1に示す実線の位置を初期位置として、破線で示した位置を介して、一点鎖線で示す位置まで対向移動する。このとき、X線管3は、FPD4とともに同期移動しながら74回に亘ってパルス状のX線ビームを照射する。 When the X-ray imaging apparatus according to the present invention generates a tomographic image, the X-ray tube 3 and the FPD 4 are indicated by an alternate long and short dash line through a position indicated by a broken line with the position of the solid line shown in FIG. 1 as an initial position. Move counter to position. At this time, the X-ray tube 3 irradiates the pulsed X-ray beam 74 times while moving synchronously with the FPD 4.
 画像生成部11は、X線の照射がなされる度にFPD4が出力するX線の検出信号を取得して、74枚のX線画像P1,P2,P3,…P74を生成する。生成された画像は、画像処理部12に送出される。画像生成部11は本発明の画像生成手段に相当し、画像処理部12は本発明のシフト画像処理手段に相当する。 The image generation unit 11 acquires an X-ray detection signal output by the FPD 4 every time X-ray irradiation is performed, and generates 74 X-ray images P1, P2, P3,. The generated image is sent to the image processing unit 12. The image generation unit 11 corresponds to the image generation unit of the present invention, and the image processing unit 12 corresponds to the shift image processing unit of the present invention.
 画像処理部12は、74枚のX線画像P1,P2,P3,…P74に対して個別に像を体軸方向Aにシフトする画像処理を施して、74枚のX線画像P1a,P2a,P3a,…P74aを生成する。生成された画像は、断層画像生成部13に送出される。断層画像生成部13は本発明の断層画像生成手段に相当する。 The image processing unit 12 performs image processing for individually shifting the images in the body axis direction A on the 74 X-ray images P1, P2, P3,... P74, and generates 74 X-ray images P1a, P2a, P3a,... P74a is generated. The generated image is sent to the tomographic image generation unit 13. The tomographic image generation unit 13 corresponds to the tomographic image generation means of the present invention.
 断層画像生成部13は、X線管3とFPD4とが互いに反対方向に移動されながら連写された一連のX線画像P1a,P2a,P3a,…P74aをシフト加算法、フィルタバックプロジェクション法や逐次近似法に基づいて互いに重ね合わせて、ある裁断面で被検体Mを裁断した時に得られる断層画像Dを生成する。 The tomographic image generation unit 13 shifts and adds a series of X-ray images P1a, P2a, P3a,... P74a continuously shot while the X-ray tube 3 and the FPD 4 are moved in opposite directions to each other. A tomographic image D obtained when the subject M is cut along a certain cut surface is generated by superimposing them on the basis of the approximation method.
 主制御部25は、各部6,8a,8b,10,11,12,13を統括的に制御する目的で設けられている。この主制御部は、CPUによって構成され、各種のプログラムを実行することにより各部を実現している。また、これらの各部は、これらを担当する演算装置に分割されて実行してもよい。各部は、必要に応じ記憶部23にアクセスすることができる。操作卓26は、術者の指示を入力させる目的で設けられている。また、表示部27は、断層画像Dを表示する目的で設けられている。 The main control unit 25 is provided for the purpose of comprehensively controlling the units 6, 8 a, 8 b, 10, 11, 12, and 13. This main control part is comprised by CPU, and implement | achieves each part by running various programs. In addition, each of these units may be executed by being divided into an arithmetic device in charge of them. Each unit can access the storage unit 23 as necessary. The console 26 is provided for the purpose of inputting an operator's instruction. The display unit 27 is provided for the purpose of displaying the tomographic image D.
 <フィルタバックプロジェクション法の原理>
 図2は、断層画像生成部13が用いるフィルタバックプロジェクション法の原理を説明している。例えば、天板2に平行な(鉛直方向に対して水平な)仮想平面(基準裁断面MA)について説明すると、図2に示すように、基準裁断面MAに位置する点P,Qが、常にFPD4のX線検出面の不動点p,qのそれぞれに投影されるように、X線管3によるコーン状のX線ビームBの照射方向に合わせてFPD4をX線管3の反対方向に同期移動させながら一連のX線画像Paが画像生成部11および画像処理部12にて生成される。
<Principle of the filter back projection method>
FIG. 2 illustrates the principle of the filter back projection method used by the tomographic image generation unit 13. For example, a virtual plane (reference cut section MA) parallel to the top plate 2 (horizontal with respect to the vertical direction) will be described. As shown in FIG. The FPD 4 is synchronized with the opposite direction of the X-ray tube 3 in accordance with the irradiation direction of the cone-shaped X-ray beam B by the X-ray tube 3 so as to be projected onto the fixed points p and q of the X-ray detection surface of the FPD 4. A series of X-ray images Pa are generated by the image generation unit 11 and the image processing unit 12 while being moved.
 一連のX線画像Paには、被検体Mの投影像が位置を変えながら写り込んでいる。そして、この一連のX線画像Paを断層画像生成部13にて再構成すれば、基準裁断面MAに位置する像(たとえば、不動点p,q)が集積され、X線断層画像としてイメージングされることになる。 In the series of X-ray images Pa, the projected image of the subject M is reflected while changing the position. Then, when this series of X-ray images Pa is reconstructed by the tomographic image generation unit 13, images (for example, fixed points p and q) positioned on the reference cut surface MA are accumulated and imaged as X-ray tomographic images. Will be.
 一方、基準裁断面MAに位置しない点Iは、FPD4における投影位置を変化させながら一連の被検体M画像に点iとして写り込んでいる。この様な点iは、不動点p,qとは異なり、断層画像生成部13でX線投影画像を重ね合わせる段階で像を結ばずにボケる。このように、一連の投影画像の重ね合わせを行うことにより、被検体Mの基準裁断面MAに位置する像のみが写り込んだX線断層画像が得られる。このように、投影画像を単純に重ね合わせると、基準裁断面MAにおける断層画像が得られる。 On the other hand, the point I that is not located on the reference cut surface MA is reflected as a point i in a series of subject M images while changing the projection position on the FPD 4. Unlike the fixed points p and q, such a point i is blurred without forming an image when the tomographic image generation unit 13 superimposes the X-ray projection images. In this way, by superimposing a series of projection images, an X-ray tomographic image in which only an image positioned on the reference cut surface MA of the subject M is reflected is obtained. In this way, when the projected images are simply superimposed, a tomographic image at the reference cut surface MA is obtained.
 さらに、断層画像生成部13は、基準裁断面MAに水平な任意の裁断面においても、同様な断層画像を得ることができる。撮影中、FPD4において上記点iの投影位置は移動するが、投影前の点Iと基準裁断面MAとの離間距離が大きくなるにしたがって、この移動速度は増加する。これを利用して、取得された一連の被検体M画像を所定のピッチで体軸方向Aにずらしながら再構成を行うようにすれば、基準裁断面MAに平行な裁断面における断層画像が得られるわけである。 Furthermore, the tomographic image generation unit 13 can obtain a similar tomographic image even at an arbitrary cut surface horizontal to the reference cut surface MA. During shooting, the projection position of the point i moves in the FPD 4, but this moving speed increases as the separation distance between the point I before projection and the reference cut surface MA increases. By utilizing this, reconstruction is performed while shifting the acquired series of subject M images in the body axis direction A at a predetermined pitch, and a tomographic image at a cutting plane parallel to the reference cutting plane MA is obtained. That is why.
 74枚のX線画像P1a,P2a,P3a,…P74aは、画像処理部12により像のシフト処理が施されている。したがって、74枚のX線画像P1a,P2a,P3a,…P74aを重ねても基準裁断面MA上の被検体像が結像しないのではないかという疑問が浮かぶ。実は、本発明の画像生成部11が生成する74枚のX線画像P1,P2,P3,…P74には、敢えて画像に写り込む像の位置を理想の位置からずらしている。したがって、74枚のX線画像P1,P2,P3,…P74を通常のフィルタバックプロジェクション法で重ね合わせてもぼけた像しか得られない。画像処理部12は、各X線画像P1,P2,P3,…P74で生じている像を理想の位置に戻す画像処理を行う構成である。従って、シフト処理後のX線画像P1a,P2a,P3a,…P74aは、通常のフィルタバックプロジェクション法が想定する一連のX線画像と同じものと考えることができる。 The 74 X-ray images P1a, P2a, P3a,... P74a are subjected to image shift processing by the image processing unit 12. Accordingly, the question arises that the subject image on the reference cut surface MA may not be formed even if the 74 X-ray images P1a, P2a, P3a,. In fact, in the 74 X-ray images P1, P2, P3,... P74 generated by the image generation unit 11 of the present invention, the position of the image reflected in the image is deviated from the ideal position. Therefore, even if 74 X-ray images P1, P2, P3,... P74 are superposed by a normal filter back projection method, only a blurred image can be obtained. The image processing unit 12 is configured to perform image processing for returning an image generated in each X-ray image P1, P2, P3,... P74 to an ideal position. Therefore, the X-ray images P1a, P2a, P3a,... P74a after the shift processing can be considered to be the same as a series of X-ray images assumed by the normal filter back projection method.
 このような画像処理部12を設けた理由は、74枚のX線画像P1,P2,P3,…P74のいずれにも共通して写り込む偽像が断層画像Dに結像することを防ぐことにある。この事情については後述のものとする。 The reason for providing such an image processing unit 12 is to prevent a false image that appears in common in any of the 74 X-ray images P1, P2, P3,. It is in. This situation will be described later.
 <本発明が除去の対象とする偽像の例>
 本発明が除去の対象とする偽像は、一連のX線画像P1,P2,P3,…P74に同じ位置に写り込む同じパターンの偽像である。このような偽像は、例えば、X線グリッド5の陰、欠損画素の修正像、キャリブレーション画像に写り込む天板2の陰などがある。以降、これらの偽像について具体的に説明する。
<Example of false image to be removed by the present invention>
The false image to be removed by the present invention is a false image of the same pattern that appears in the same position in a series of X-ray images P1, P2, P3,. Such a false image includes, for example, the shadow of the X-ray grid 5, the corrected image of the defective pixel, and the shadow of the top 2 reflected in the calibration image. Hereinafter, these false images will be specifically described.
 図3は、一連のX線画像P1,P2,P3,…P74に写り込むX線グリッド5の陰を説明している。X線グリッド5は、FPD4を覆うように設けられており、図3左側に示すように、被検体Mの体側方向Sに伸びた吸収箔が被検体Mの体軸方向Aに配列した構成をしている。吸収箔は、短冊状のX線を透過しにくい部材で構成されている。X線管3から直接FPD4に向かう直接X線は、吸収箔の間を通過することでX線グリッド5を通過することができる。一方、散乱X線は、同じX線ではあるものの、吸収箔に入射する角度が直接X線とは異なる。散乱X線は吸収箔を突き抜けようとして吸収箔に入射する。散乱X線は吸収箔に吸収され、FPD4に入射できない。 FIG. 3 illustrates the shadow of the X-ray grid 5 reflected in a series of X-ray images P1, P2, P3,... P74. The X-ray grid 5 is provided so as to cover the FPD 4 and has a configuration in which absorption foils extending in the body side direction S of the subject M are arranged in the body axis direction A of the subject M as shown on the left side of FIG. is doing. Absorption foil is comprised with the member which is hard to permeate | transmit strip-shaped X-ray | X_line. Direct X-rays directly from the X-ray tube 3 toward the FPD 4 can pass through the X-ray grid 5 by passing between the absorbing foils. On the other hand, although the scattered X-rays are the same X-rays, the angle incident on the absorbing foil is different from the direct X-rays. Scattered X-rays enter the absorbing foil in an attempt to penetrate the absorbing foil. Scattered X-rays are absorbed by the absorbing foil and cannot enter the FPD 4.
 理想をいえば、X線グリッド5は直接X線を全く吸収しないのが望ましい。しかし、X線グリッド5の吸収箔は、厚みが全くない訳ではない。直接X線の中には、吸収箔に入射してしまい、X線グリッド5を透過できないものがわずかながら存在する。 Ideally, it is desirable that the X-ray grid 5 does not absorb X-rays directly. However, the absorbing foil of the X-ray grid 5 is not without any thickness. Some of the direct X-rays are incident on the absorbing foil and cannot be transmitted through the X-ray grid 5.
 このような直接X線の透過のムラは、FPD4上で縞模様の陰となって現れる。この陰は、X線グリッド5の陰であり、図3右側に示すように一連のX線画像P1,P2,P3,…P74にも薄く写り込んでいる。このX線グリッド5の陰は、一連のX線画像P1,P2,P3,…P74の間で同じ位置に同じパターンとして写り込む。X線画像の連写中、FPD4とX線グリッド5の位置関係は変化しないからである。
特定周波数成分を画像から除去することによりX線グリッド陰影を除去する画像処理を掛けた場合であっても、陰影除去した痕跡が、前記X線グリッド5の陰と同様に、パターンとして同一位置に移りこむ。
Such uneven transmission of direct X-rays appears on the FPD 4 behind the stripe pattern. This shadow is the shadow of the X-ray grid 5, and as shown on the right side of FIG. 3, it is also thinly reflected in a series of X-ray images P1, P2, P3,. The shadow of the X-ray grid 5 appears as the same pattern at the same position between the series of X-ray images P1, P2, P3,. This is because the positional relationship between the FPD 4 and the X-ray grid 5 does not change during continuous shooting of X-ray images.
Even when the image processing for removing the X-ray grid shadow is performed by removing the specific frequency component from the image, the trace after the shadow removal is located at the same position as the pattern in the same manner as the shadow of the X-ray grid 5. Move in.
 図4は、欠損画素の修正像について説明している。FPD4の検出面には、X線を検出する検出素子が縦横に配列している。理想をいえば、これら検出素子は、全て正常に動作することが望ましい。しかし、検出素子の中には、正常に動作できないものが混じっていることがある。このような検出素子は、X線の検出能力を失っている。このような検出素子を図4の左側では符号dで表している。 FIG. 4 illustrates a corrected image of a defective pixel. On the detection surface of the FPD 4, detection elements for detecting X-rays are arranged vertically and horizontally. Ideally, it is desirable that all of these detection elements operate normally. However, some detection elements may not be able to operate normally. Such a detection element has lost the ability to detect X-rays. Such a detection element is represented by the symbol d on the left side of FIG.
 動作できない検出素子を有するFPD4を用いて一連のX線画像Pを撮影すると、それらX線画像Pには、同じ場所に欠損画像が暗点または明点となって現れる。この欠損画素は、断層画像D上にも現れて画像の視認性を損なう。そこで、画像生成部11は、欠損画素をX線画像Pから除く処理を行う。この処理は、欠損画素を取り囲む周辺の画素の画素値を平均して、平均値を欠損画素の画素値にすることで実現される。結果として、□で示す欠損画素があった場所は、図4の右側に示すように、点線で囲んだ周囲の画素に溶け込み、X線画像P上で目立たなくなる。 When a series of X-ray images P are photographed using the FPD 4 having a detection element that cannot operate, a defect image appears as a dark spot or a bright spot in the same place in the X-ray images P. This defective pixel appears on the tomographic image D and impairs the visibility of the image. Therefore, the image generation unit 11 performs processing for removing the defective pixel from the X-ray image P. This process is realized by averaging the pixel values of surrounding pixels surrounding the defective pixel and setting the average value to the pixel value of the defective pixel. As a result, the location where the defective pixel indicated by □ is present melts into surrounding pixels surrounded by a dotted line as shown on the right side of FIG.
 欠損画素が修正された後に残された修正画素は、いくらX線画像P上で目立たないからといって、周囲の画素と同じ存在とはいえない。すなわち修正画素は、平均値を算出するときの端数処理の影響により周囲の画素に比べてわずかに暗い。欠損画素が修正された後に残された修正画素は、一連のX線画像P1,P2,P3,…P74の間で同じ位置に写り込む。X線画像の連写中、FPD4には常に同じ位置に欠損画素の原因の検出素子が存在するからである。 The corrected pixel left after correcting the defective pixel cannot be said to be the same as the surrounding pixels just because it is not noticeable on the X-ray image P. That is, the corrected pixel is slightly darker than the surrounding pixels due to the influence of the fraction processing when calculating the average value. The corrected pixels left after correcting the missing pixels appear in the same position between the series of X-ray images P1, P2, P3,. This is because the detection element that causes the defective pixel always exists at the same position in the FPD 4 during the continuous shooting of the X-ray images.
 図5は、キャリブレーション画像に写り込む天板2の陰を説明している。FPD4の検出面には、X線を検出する検出素子が縦横に配列している。理想をいえば、これら検出素子は、全て同じ感度でX線を検出することが望ましい。しかし、検出素子の間には、図5左側に示すように検出感度にムラがある。そこで、図5の右側に示すように、被検体Mを天板2に載置しない状態で予めこの検出感度のムラを撮影しておく。この撮影をキャリブレーション撮影と呼ぶ。 FIG. 5 illustrates the shade of the top 2 reflected in the calibration image. On the detection surface of the FPD 4, detection elements for detecting X-rays are arranged vertically and horizontally. Ideally, it is desirable that these detection elements detect X-rays with the same sensitivity. However, the detection sensitivity is uneven among the detection elements as shown on the left side of FIG. Therefore, as shown on the right side of FIG. 5, this detection sensitivity non-uniformity is imaged in advance without the subject M being placed on the top 2. This shooting is called calibration shooting.
 その後、被検体Mを天板に載置した状態で一連のX線画像P1,P2,P3,…P74を撮影すると、これらX線画像Pには、検出素子が有する感度のムラが写り込む。このムラは、予め測定された検出感度のムラと同じパターンをしているわけだから、一連のX線画像P1,P2,P3,…P74から検出感度のムラを減算する画像処理を行えば、ムラが除去できる。このようなムラを除く動作はキャリブレーションと呼ばれ画像生成部11が実行する。 Thereafter, when a series of X-ray images P1, P2, P3,... P74 are taken with the subject M placed on the top board, the sensitivity unevenness of the detection element is reflected in these X-ray images P. Since this unevenness has the same pattern as the previously measured unevenness of detection sensitivity, if image processing for subtracting the unevenness of detection sensitivity from a series of X-ray images P1, P2, P3,. Can be removed. The operation for removing such unevenness is called calibration and is executed by the image generation unit 11.
 図5右側を参照すると、天板2を乗せたままキャリブレーション撮影が実行されていることが分かる。実施例1に係る放射線撮影装置は、容易に天板2を取り外すことができないので、天板2を写し込んだままキャリブレーション撮影をせざるを得なかったのである。天板2は、ほとんどX線を透過させるが、それでも全くX線を吸収しないという訳ではない。したがって、キャリブレーション撮影によって得られるキャリブレーション画像には、天板2の陰が重畳してしまう。 Referring to the right side of FIG. 5, it can be seen that the calibration shooting is being performed with the top 2 placed on. In the radiation imaging apparatus according to the first embodiment, the top plate 2 cannot be easily removed, so that the calibration imaging must be performed while the top plate 2 is being copied. Although the top plate 2 transmits almost X-rays, it still does not absorb X-rays at all. Therefore, the shadow of the top 2 is superimposed on the calibration image obtained by the calibration photographing.
 図6左側は、キャリブレーション画像を表している。キャリブレーション画像には、FPD4の検出ムラと、格子状のパターンで表されている天板2の陰とが重畳している。 The left side of FIG. 6 represents a calibration image. In the calibration image, the detection unevenness of the FPD 4 and the shade of the top 2 represented by a grid pattern are superimposed.
 一連のX線画像P1,P2,P3,…P74から検出感度のムラを減算しようとすると、キャリブレーション画像に含まれる天板2の陰の分を余計に減算してしまう。これが、キャリブレーション処理後の一連のX線画像P1,P2,P3,…P74に偽像となって現れる。天板2の陰(正確にはその逆パターン)は、図6右側に示すように、一連のX線画像P1,P2,P3,…P74の間で同じ位置に写り込む。キャリブレーションで用いられるキャリブレーション画像がX線画像P1,P2,P3,…P74の間で共通しているからである。 If an attempt is made to subtract unevenness in detection sensitivity from a series of X-ray images P1, P2, P3,... P74, the shadow of the top plate 2 included in the calibration image is subtracted. This appears as a false image in a series of X-ray images P1, P2, P3,. As shown on the right side of FIG. 6, the shadow of the top 2 is reflected in the same position between a series of X-ray images P1, P2, P3,... P74. This is because the calibration image used in the calibration is common among the X-ray images P1, P2, P3,.
 X線グリッド5の陰、欠損画素の修正像、キャリブレーション画像に写り込む天板2の陰は、いずれも一連のX線画像P1,P2,P3,…P74において、かすかな偽像である。したがって、一連のX線画像P1,P2,P3,…P74を見ていっても、これら偽像が画像全体の視認性を著しく悪化させているようには思えない。しかし、これら偽像は、一連のX線画像P1,P2,P3,…P74の同じ位置に同じパターンとして写り込んでいることが問題である。 The shade of the X-ray grid 5, the corrected image of the defective pixel, and the shade of the top 2 reflected in the calibration image are all faint false images in the series of X-ray images P1, P2, P3,. Therefore, even if a series of X-ray images P1, P2, P3,... P74 are viewed, it does not seem that these false images significantly deteriorate the visibility of the entire image. However, there is a problem that these false images are reflected as the same pattern at the same position in a series of X-ray images P1, P2, P3,.
 断層画像DにおいてX線画像P上の偽像が目立って現れる様子を説明する。図7に示すように、被検体内の臓器に見立てた矩形について基準裁断面MA上の断層画像Dを撮影する場合を考える。連写された一連のX線画像P1,P2,P3,…P74はずらさずに重ね合わせられて断層画像Dが生成される。 A state in which a false image on the X-ray image P appears conspicuously in the tomographic image D will be described. As shown in FIG. 7, consider a case where a tomographic image D on the reference cut surface MA is captured for a rectangle that looks like an organ in a subject. A series of continuously shot X-ray images P1, P2, P3,... P74 are superimposed without being shifted to generate a tomographic image D.
 同じ動作をX線グリッド5の陰に係る偽像が写り込んだX線画像P1,P2,P3,…P74に対して行うと、図8に示すように、断層画像D上にもX線画像Pと同じ偽像が写り込む。しかも、断層画像D上の偽像は、X線画像P上の偽像よりもはっきりと写り込んでしまう。X線画像P1,P2,P3,…P74を重ね合わせの際、同じパターンとなっている偽像が何度も重ねられたからである。 When the same operation is performed on the X-ray images P1, P2, P3,... P74 in which the false image related to the shadow of the X-ray grid 5 is reflected, the X-ray image is also displayed on the tomographic image D as shown in FIG. The same false image as P appears. In addition, the false image on the tomographic image D appears more clearly than the false image on the X-ray image P. This is because when the X-ray images P1, P2, P3,... P74 are superimposed, the false images having the same pattern are superimposed many times.
 図9は、特に断層画像DにX線グリッド5の陰がはっきりと写り込んでいる様子を示している。矩形で表されている被検体像は、X線グリッド5の陰で邪魔されて視認しづらい。 FIG. 9 particularly shows a state in which the shadow of the X-ray grid 5 is clearly reflected in the tomographic image D. The subject image represented by a rectangle is obstructed by the shadow of the X-ray grid 5 and is difficult to view.
 このようなX線グリッド5の陰の結像は、基準裁断面MA上で起こるはずである。図2の説明によれば、基準裁断面MA上の断層画像DはX線画像P1,P2,P3,…P74をずらさずに重ね合わせて生成されるはずだからである。重ね合わせの際、X線画像P1,P2,P3,…P74をずらさないということは、偽像もずれずに重ねられ、断層画像Dに結像するというわけである。従来構成の装置によれば、この予想通りとなる。 Such an imaging of the shadow of the X-ray grid 5 should occur on the reference cut surface MA. This is because the tomographic image D on the reference cut surface MA should be generated by superimposing the X-ray images P1, P2, P3,. The fact that the X-ray images P1, P2, P3,... P74 are not shifted at the time of superimposing means that the false images are superimposed without being shifted and formed on the tomographic image D. According to the apparatus of the conventional configuration, this is as expected.
 基準裁断面MAは、診断の上で有用である。図10は、その事情を説明している。断層画像Dの視野には制限がある。断層画像Dは、一連のX線画像P1,P2,P3,…P74に写り込む被検体Mの裁断面上の像を重ね合わせて生成される。断層画像D上で結像できる被検体Mの像は、一連のX線画像P1,P2,P3,…P74の全てに写り込んでいるものに限られる。一連のX線画像P1,P2,P3,…P74は、X線管3およびFPD4を移動させながら撮影されるから、被検体MのうちこれらX線画像Pの全てに写り込む領域は限られる。 The standard cutting surface MA is useful for diagnosis. FIG. 10 explains the circumstances. The visual field of the tomographic image D is limited. The tomographic image D is generated by superimposing the images on the cut surface of the subject M that appear in the series of X-ray images P1, P2, P3,. The image of the subject M that can be imaged on the tomographic image D is limited to that reflected in all of the series of X-ray images P1, P2, P3,. Since a series of X-ray images P1, P2, P3,... P74 are taken while moving the X-ray tube 3 and the FPD 4, the region of the subject M that is reflected in all of these X-ray images P is limited.
 視野の大きい断層画像Dを取得しようと思えば、基準裁断面MA上の断層画像Dを生成したほうがよい。図10に示すように、FPD4全面に相当する視野の断層画像Dが得られるからである。基準裁断面MAとは異なる裁断面MBは、基準裁断面MAよりもFPD4側にあり、一連のX線画像P1,P2,P3,…P74に共通して写り込む範囲が狭い。したがって、この裁断面MB上の断層画像Dの視野は狭いものとなる。 If it is desired to acquire a tomographic image D with a large field of view, it is better to generate a tomographic image D on the reference cut surface MA. This is because a tomographic image D having a visual field corresponding to the entire surface of the FPD 4 is obtained as shown in FIG. The cut surface MB, which is different from the reference cut surface MA, is located on the FPD4 side of the reference cut surface MA, and has a narrow range of reflection in a series of X-ray images P1, P2, P3,. Therefore, the field of view of the tomographic image D on the cut surface MB is narrow.
 X線グリッド5の陰の結像が基準裁断面MA上で起こるというのなら、基準裁断面MA以外の裁断面で断層画像Dを生成したらよいことになる。図2の説明によれば、基準裁断面MA以外の裁断面における断層画像DはX線画像P1,P2,P3,…P74をずらしながら重ね合わせて生成されるはずだからである。重ね合わせの際、X線画像P1,P2,P3,…P74がずれるということは、偽像もずれて重ねられ、断層画像Dに結像しないというわけである。この予想は正しい。 If the shadow imaging of the X-ray grid 5 occurs on the reference cut surface MA, the tomographic image D may be generated with a cut surface other than the reference cut surface MA. According to the explanation of FIG. 2, the tomographic image D in the cut surface other than the reference cut surface MA should be generated by superimposing the X-ray images P1, P2, P3,. When the X-ray images P1, P2, P3,... P74 are shifted at the time of superimposing, the false images are also shifted and superimposed, and the tomographic image D is not formed. This expectation is correct.
 しかし、基準裁断面MAは、視野が最大の断層画像Dが取得できる特別な裁断面である。偽像が写り込みやすいという問題があったとしても、他の裁断面が基準裁断面MAの代わりになるとは限らない。 However, the reference cut surface MA is a special cut surface from which the tomographic image D having the maximum field of view can be acquired. Even if there is a problem that the false image is easily reflected, the other cut surface does not always replace the reference cut surface MA.
 そこで、本発明によれば、基準裁断面MAの断層画像Dで偽像が写り込まないような構成を採用している。このような従来装置では考えられない断層撮影は、FPD移動制御部8bと、画像処理部12とによって実現される。 Therefore, according to the present invention, a configuration is adopted in which a false image is not reflected in the tomographic image D of the reference cut surface MA. Such tomography that cannot be considered in the conventional apparatus is realized by the FPD movement control unit 8b and the image processing unit 12.
 <FPD移動制御部8bの動作とそれによる効果>
 まず、FPD移動制御部8bの動作について説明する。FPD移動制御部8bは、撮影中、FPD4の速度が変動するようにFPD移動機構7bを制御する。このときのFPD4の速度の変動の一例は、図11に示されている。図11において点線で示すのは、従来構成がX線画像Pを連写するときのFPD4の移動速度である。本発明のFPD4は、従来の撮影方法におけるFPD4よりも遅くなったり速くなったりしながらも、撮影開始から終了までにFPD4が移動する距離が従来の撮影方法と同じ(または画像処理部12が従来の撮影方法で得られるX線画像P74を再現できる程度にほぼ同じ)となるように設定されている。図11が示す関数は、三角関数に定数を加算したものとなっている。FPD移動制御部8bは、FPD4の速度が周期的関数に定数を加算した図11に示すような合成関数に基づいてX線画像Pの各々に対応する速度を認識してFPD移動機構7bを制御するように構成される。
<Operation of FPD Movement Control Unit 8b and its Effect>
First, the operation of the FPD movement control unit 8b will be described. The FPD movement control unit 8b controls the FPD movement mechanism 7b so that the speed of the FPD 4 varies during shooting. An example of the fluctuation of the speed of the FPD 4 at this time is shown in FIG. In FIG. 11, a dotted line indicates the moving speed of the FPD 4 when the conventional configuration continuously captures the X-ray image P. Although the FPD 4 of the present invention is slower or faster than the FPD 4 in the conventional photographing method, the distance that the FPD 4 moves from the start to the end of the photographing is the same as that of the conventional photographing method (or the image processing unit 12 is conventional). The X-ray image P74 obtained by this imaging method is set to be substantially the same to the extent that it can be reproduced). The function shown in FIG. 11 is obtained by adding a constant to a trigonometric function. The FPD movement control unit 8b controls the FPD movement mechanism 7b by recognizing the speed corresponding to each of the X-ray images P based on the composite function as shown in FIG. 11 in which the speed of the FPD 4 is obtained by adding a constant to the periodic function. Configured to do.
 図12は、本発明のFPD4の移動を視覚的に表している。図12上側は、従来装置に係るFPD4の移動を示し、一連のX線画像Pの連写中にFPD4は等速で移動する。図12下側は、本発明に係る装置のFPD4の移動を示している。実施例1の構成では、一連のX線画像Pの連写中にFPD4は速くなったり遅くなったりを繰り返す。 FIG. 12 visually represents the movement of the FPD 4 of the present invention. The upper side of FIG. 12 shows the movement of the FPD 4 according to the conventional apparatus, and the FPD 4 moves at a constant speed during continuous shooting of a series of X-ray images P. The lower side of FIG. 12 shows the movement of the FPD 4 of the apparatus according to the present invention. In the configuration of the first embodiment, the FPD 4 repeats speeding up and down during continuous shooting of a series of X-ray images P.
 図13は、本発明に係る撮影方法においてX線画像Pの番号1~74とX線画像Pを撮影するときのFPD4の位置との関係を表している。なお、この関係図において、X線画像P1を撮影するときのFPD4は0の位置にあると考えることにする。以降の図18,図20,図22においてもFPD4の位置を同様に定義するものとする。撮影中のFPD4は、点線で示す従来撮影に係るFPD4を追い越したり追い越されたりしながら被検体Mの体軸方向Aに移動していく。 FIG. 13 shows the relationship between the numbers 1 to 74 of the X-ray image P and the position of the FPD 4 when the X-ray image P is imaged in the imaging method according to the present invention. In this relationship diagram, it is assumed that the FPD 4 when the X-ray image P1 is taken is at the 0 position. The position of the FPD 4 is defined similarly in the following FIGS. 18, 20, and 22. The FPD 4 being imaged moves in the body axis direction A of the subject M while passing or overtaking the FPD 4 related to conventional imaging indicated by the dotted line.
 FPD4の速度を変動させる構成とした効果について説明する。図14は、従来装置のFPD4の移動方法で一連のX線画像Pを撮影した場合を示している。一連のX線画像P1,P2,P3,…P74上の破線で示す矩形は、基準裁断面MA上の被検体像を表している。基準裁断面MA上の像は、一連のX線画像P1,P2,P3,…P74において常に同じ位置に写り込んでいる。しかし実際のところは、X線画像Pではそれを視認するのは難しい。 The effect of the configuration for changing the speed of the FPD 4 will be described. FIG. 14 shows a case where a series of X-ray images P are captured by the movement method of the FPD 4 of the conventional apparatus. A rectangle indicated by a broken line on the series of X-ray images P1, P2, P3,... P74 represents a subject image on the reference cut surface MA. The image on the reference cut surface MA is always reflected at the same position in a series of X-ray images P1, P2, P3,. However, in reality, it is difficult to visually recognize it in the X-ray image P.
 一連のX線画像P1,P2,P3,…P74には、同じ位置に同じパターンのX線グリッド5の陰も写り込んでいる。一連のX線画像P1,P2,P3,…P74を通じて基準裁断面MA上の像とX線グリッド5の陰との相対的位置関係には変化がない。したがって、基準裁断面MA上の断層画像Dには、被検体Mの断層像とともにX線グリッド5の陰も写り込む。基準裁断面MA上の像を得ようとして一連のX線画像P1,P2,P3,…P74を重ねると、X線グリッド5の陰も断層画像Dの同じ位置で重ねられてしまうからである。 In the series of X-ray images P1, P2, P3,... P74, the shadow of the X-ray grid 5 having the same pattern is also reflected at the same position. There is no change in the relative positional relationship between the image on the reference cut surface MA and the shadow of the X-ray grid 5 through the series of X-ray images P1, P2, P3,. Accordingly, the tomographic image D on the reference cut surface MA includes the shadow of the X-ray grid 5 together with the tomographic image of the subject M. This is because, when a series of X-ray images P1, P2, P3,... P74 are overlapped in order to obtain an image on the reference cut surface MA, the shadow of the X-ray grid 5 is also overlapped at the same position in the tomographic image D.
 一方、本発明のようにFPD4の移動速度を変動させると、一連のX線画像P1,P2,P3,…P74を通じて基準裁断面MA上の像とX線グリッド5の陰との相対的位置関係に変化がつく。図15は、本発明に係る装置のFPD4の移動方法で一連のX線画像Pを撮影した場合を示している。一連のX線画像P1,P2,P3,…P74上の破線で示す矩形は、基準裁断面MA上の被検体像を表している。 On the other hand, when the moving speed of the FPD 4 is changed as in the present invention, the relative positional relationship between the image on the reference cut surface MA and the shadow of the X-ray grid 5 through a series of X-ray images P1, P2, P3,. Changes. FIG. 15 shows a case where a series of X-ray images P are captured by the method of moving the FPD 4 of the apparatus according to the present invention. A rectangle indicated by a broken line on the series of X-ray images P1, P2, P3,... P74 represents a subject image on the reference cut surface MA.
 本発明のX線画像P1,P2,P3,…P74のそれぞれは、従来の撮影方法で得られる74枚のX線画像Pの各々に対応している。このうち本発明のX線画像P2は、従来の撮影方法で得られるX線画像P2と比べて基準裁断面MA上の像が右側にずれてしまっている。このずれは、FPD4が加速されたことに起因する。従来の撮影のようにFPD4を等速させながらX線画像P2を撮影すれば、基準裁断面MA上の像は、X線画像P1と同じ位置に現れるはずである。しかし、本発明の撮影方法では、FPD4が十分に加速した状態でX線画像P2が撮影されている。本発明におけるX線画像P2は、従来の撮影方法と比べてFPD4の移動量が大きい条件で撮影されたということになる。 Each of the X-ray images P1, P2, P3,... P74 of the present invention corresponds to each of 74 X-ray images P obtained by a conventional imaging method. Among these, the X-ray image P2 of the present invention has the image on the reference cut surface MA shifted to the right as compared with the X-ray image P2 obtained by the conventional imaging method. This deviation is caused by the acceleration of the FPD 4. If the X-ray image P2 is taken while the FPD 4 is moved at a constant speed as in conventional photography, the image on the reference cut surface MA should appear at the same position as the X-ray image P1. However, in the imaging method of the present invention, the X-ray image P2 is captured with the FPD 4 sufficiently accelerated. The X-ray image P2 in the present invention is taken under the condition that the movement amount of the FPD 4 is larger than that in the conventional imaging method.
 また、本発明のX線画像P30は、従来の撮影方法のX線画像P30と比べて基準裁断面MA上の像が左側にずれてしまっている。このずれは、FPD4が減速されたことに起因する。従来の撮影のようにFPD4を等速させながらX線画像P30を撮影すれば、基準裁断面MA上の像は、X線画像P1と同じ位置に現れるはずである。しかし、本発明の撮影方法では、FPD4が十分に減速した状態でX線画像P30が撮影されている。本発明におけるX線画像P30は、従来の撮影方法と比べてFPD4の移動量が小さい条件で撮影されたということになる。 Further, in the X-ray image P30 of the present invention, the image on the reference cut surface MA is shifted to the left as compared with the X-ray image P30 of the conventional imaging method. This shift is caused by the FPD 4 being decelerated. If the X-ray image P30 is taken while the FPD 4 is moved at a constant speed as in conventional photography, the image on the reference cut surface MA should appear at the same position as the X-ray image P1. However, in the imaging method of the present invention, the X-ray image P30 is captured with the FPD 4 sufficiently decelerated. The X-ray image P30 in the present invention is taken under the condition that the movement amount of the FPD 4 is small as compared with the conventional imaging method.
 このように、本発明の撮影方法で得られた一連のX線画像P1,P2,P3,…P74には、基準裁断面MA上の像が同じ位置には写り込んでいない。しかし、X線グリッド像は、そうではない。X線グリッド像は、一連のX線画像P1,P2,P3,…P74において、同じ位置に同じパターンで写り込んでいる。このように、FPD移動制御部8bが撮影中にFPD4の速度が変動するようにFPD移動機構7bを制御することで、X線グリッド像と被検体像との位置を変動させながらX線画像Pの連写することができる。 Thus, in the series of X-ray images P1, P2, P3,... P74 obtained by the imaging method of the present invention, the image on the reference cut surface MA is not reflected at the same position. However, X-ray grid images are not. The X-ray grid image is reflected in the same pattern in the same position in a series of X-ray images P1, P2, P3,. In this way, the FPD movement control unit 8b controls the FPD movement mechanism 7b so that the speed of the FPD 4 changes during imaging, so that the X-ray image P is changed while changing the positions of the X-ray grid image and the subject image. Can be taken continuously.
 したがって、本発明の撮影方法で得られた一連のX線画像P1,P2,P3,…P74を単に重ね合わせて断層画像Dを生成しても、断層画像D上には基準裁断面MA上の被検体像が結像しない。基準裁断面MA上の被検体像が画像に写り込む位置は、一連のX線画像P1,P2,P3,…P74の間で一定ではないからである。一方、X線グリッド像は、一連のX線画像P1,P2,P3,…P74の重ね合わせにより断層画像D上にはっきりと現れる。X線グリッド像が画像に写り込む位置は、一連のX線画像P1,P2,P3,…P74の間で一定だからである。 Therefore, even if a series of X-ray images P1, P2, P3,... P74 obtained by the imaging method of the present invention is simply superimposed, the tomographic image D is generated on the tomographic image D on the reference cut surface MA. The subject image is not formed. This is because the position at which the subject image on the reference cut surface MA appears in the image is not constant between the series of X-ray images P1, P2, P3,. On the other hand, the X-ray grid image clearly appears on the tomographic image D by superimposing a series of X-ray images P1, P2, P3,. This is because the position at which the X-ray grid image appears in the image is constant between a series of X-ray images P1, P2, P3,.
 これらの説明から被検体Mの断層像を得るにはさらなる工夫が必要だということがわかる。本発明によれば画像処理部12を備えることで被検体像が結像した断層画像Dを得るようにしている。 From these explanations, it can be seen that further ingenuity is necessary to obtain a tomographic image of the subject M. According to the present invention, the tomographic image D on which the subject image is formed is obtained by providing the image processing unit 12.
 <画像処理部12の動作>
 画像処理部12には、画像生成部11より一連のX線画像P1,P2,P3,…P74が送られてきている。画像処理部12は、X線画像Pの各々とそれに対応するシフト量およびシフト方向を示すデータとが関連して構成されるテーブルに基づいて、X線画像Pの各々に写り込む像を体軸方向A(FPD4の移動方向)にシフトする画像処理を行い、X線画像Paの各々を生成する。テーブルは、記憶部23に記憶されている。
<Operation of Image Processing Unit 12>
A series of X-ray images P1, P2, P3,... P74 are sent from the image generation unit 11 to the image processing unit 12. The image processing unit 12 converts an image reflected in each of the X-ray images P based on a table formed by associating each of the X-ray images P with the data indicating the shift amount and the shift direction corresponding thereto. Image processing that shifts in the direction A (the movement direction of the FPD 4) is performed, and each of the X-ray images Pa is generated. The table is stored in the storage unit 23.
 画像処理部12は、一連のX線画像P1,P2,P3,…P74にずれて写り込む基準裁断面MA上の像がX線画像Pの間で同じ位置に来るように画像処理を施す。図8における基準裁断面MA上のある点を基準点sとする。FPD4を等速に動かして連写される従来のX線画像P1,P2,P3,…P74においては、この基準点sの像は、すべて画像の中央に現れるものとする。 The image processing unit 12 performs image processing so that the images on the reference cut surface MA that are shifted and displayed in the series of X-ray images P1, P2, P3,. A certain point on the reference cut surface MA in FIG. In the conventional X-ray images P1, P2, P3,... P74 that are continuously shot by moving the FPD 4 at a constant speed, all the images of the reference point s appear in the center of the image.
 画像処理部12は、図16に示すように一連のX線画像P1,P2,P3,…P74の間で位置を変えながら写り込む基準裁断面MA上の基準点sの像が画像の中央に来るような像のシフト処理を行う。一連のX線画像P1,P2,P3,…P74の間で基準点sの像がずれる方向とずれ量は違うので、このようなシフト処理を実現するには、異なるシフト処理をX線画像Pの各々について行う必要がある。画像処理部12は、記憶部23に記憶されているテーブルを参照することによりX線画像Pに対して個別のシフト処理を行う。 As shown in FIG. 16, the image processing unit 12 has an image of the reference point s on the reference cut surface MA that is reflected while changing the position between a series of X-ray images P1, P2, P3,. The image shift process is performed. Since the shift direction and the amount of shift of the image of the reference point s differ between the series of X-ray images P1, P2, P3,... P74, in order to realize such shift processing, different shift processing is applied to the X-ray image P. Need to be done for each. The image processing unit 12 performs individual shift processing on the X-ray image P by referring to the table stored in the storage unit 23.
 FPD移動制御部8bは、X線画像Pの連写中、FPD4の速度が変動するようにFPD移動機構7bを制御する。これに伴いFPD4は変速しながら移動するわけである。とはいえ、その変速の仕方は、撮影の度に変わるわけではなく一定である。X線画像Pの連写を繰り返すとすると、FPD4の速度は、決まって例えば図11のように変動する。したがって、各X線画像P1,P2,P3,…P74を撮影するときのFPD4の位置は、撮影前に予め分かっている。従って、従来のFPD等速移動方式に係るX線画像P2の撮影時点におけるFPD4の位置と比べて、本発明に係るX線画像P2の撮影時点におけるFPD4の位置がどの方向にどの程度ずれているかがわかる。 The FPD movement control unit 8b controls the FPD movement mechanism 7b so that the speed of the FPD 4 varies during continuous shooting of the X-ray image P. Accordingly, the FPD 4 moves while shifting. However, the speed change method is not changed every time the image is taken. If the continuous shooting of the X-ray image P is repeated, the speed of the FPD 4 will fluctuate as shown in FIG. 11, for example. Therefore, the position of the FPD 4 when the X-ray images P1, P2, P3,. Accordingly, in what direction and how much the position of the FPD 4 at the time of photographing the X-ray image P2 according to the present invention is deviated from the position of the FPD 4 at the time of photographing of the X-ray image P2 according to the conventional FPD constant velocity moving method. I understand.
 X線管3と基準裁断面MAとの間の距離、および基準裁断面MAからFPD4までの距離は既知である。したがって、従来のFPD等速移動方式に係るX線画像P2に写り込む被検体Mの基準裁断面MA上の像に対して、本発明に係るX線画像P2に写り込む被検体Mの基準裁断面MA上の像がどの方向にどの程度ずれるかを幾何学計算により算出することができる。このような事情は他のX線画像Pについても同じである。テーブルは、各X線画像P1,P2,P3,…P74に対してこのような幾何学計算を実行することで算出できる。 The distance between the X-ray tube 3 and the reference cut surface MA and the distance from the reference cut surface MA to the FPD 4 are known. Therefore, the reference cutting of the subject M reflected in the X-ray image P2 according to the present invention with respect to the image on the reference cutting plane MA of the subject M reflected in the X-ray image P2 according to the conventional FPD constant velocity moving method. It can be calculated by geometric calculation how much the image on the surface MA is shifted in which direction. Such a situation is the same for the other X-ray images P. The table can be calculated by executing such a geometric calculation for each X-ray image P1, P2, P3,.
 図17は、画像処理部12がX線グリッド像および被検体像が写り込むX線画像P1,P2,P3,…P74に対してシフト処理を行う様子を示している。画像処理部12は、X線画像P1,P2,P3,…P74の各々にシフト処理を施すことにより破線の矩形で示す基準裁断面MA上の被検体像を画像の中央にシフトさせてX線画像P1a,P2a,P3a,…P74aを生成する。これらX線画像P1a,P2a,P3a,…P74aには基準裁断面MA上の被検体像が同じ位置に写り込んでいる。画像処理部12は、同じパターンの偽像を写し込んだ一連のX線画像Pに対して像をシフトさせる画像処理を施すことにより、写り込む位置が一連のX線画像Pによって異なる被検体内部の基準点sが画像上の同じ位置に来るようにシフトさせる。 FIG. 17 shows a state in which the image processing unit 12 performs shift processing on the X-ray images P1, P2, P3,... P74 in which the X-ray grid image and the subject image are reflected. The image processing unit 12 performs a shift process on each of the X-ray images P1, P2, P3,... P74, thereby shifting the subject image on the reference cut surface MA indicated by the dashed rectangle to the center of the image. Images P1a, P2a, P3a,... P74a are generated. In these X-ray images P1a, P2a, P3a,... P74a, the subject image on the reference cut surface MA is reflected at the same position. The image processing unit 12 performs image processing for shifting an image on a series of X-ray images P on which a false image of the same pattern is captured, so that the positions to be captured vary depending on the series of X-ray images P. Are shifted so that the reference point s is at the same position on the image.
 X線画像P1,P2,P3,…P74に写り込むX線グリッド像も画像処理部12のシフト処理を受けてX線画像P1a,P2a,P3a,…P74aに写り込んでいる。ここで注目すべきは、X線画像P1,P2,P3,…P74には、X線グリッド像が同じ位置に同じ方向で写り込んでいることと、X線画像P1,P2,P3,…P74になされるシフト処理は各画像で異なることである。例えば、図17におけるX線画像P2は、FPD4の加速の結果、被検体像が右にずれて写り込んでいる。このずれは、画像処理部12により補正され、その結果、被検体像は、X線画像P2aにおける中央の位置まで移動する。このとき、X線画像P2上のX線グリッドも被検体像に追従して移動する。同様に、X線画像P30は、FPD4の減速の結果、被検体像が左にずれて写り込んでいる。このずれは、画像処理部12により補正され、その結果被検体像は、X線画像P30aにおける中央の位置まで移動する。このとき、X線画像P30上のX線グリッドも被検体像に追従して移動する。 The X-ray grid images reflected in the X-ray images P1, P2, P3,... P74 are also reflected in the X-ray images P1a, P2a, P3a,. It should be noted here that the X-ray images P1, P2, P3,... P74 show that the X-ray grid images are reflected at the same position in the same direction, and that the X-ray images P1, P2, P3,. The shift processing performed is different for each image. For example, in the X-ray image P2 in FIG. 17, the subject image is shifted to the right as a result of the acceleration of the FPD 4. This shift is corrected by the image processing unit 12, and as a result, the subject image moves to a central position in the X-ray image P2a. At this time, the X-ray grid on the X-ray image P2 also moves following the subject image. Similarly, in the X-ray image P30, the subject image is shifted to the left as a result of the deceleration of the FPD 4. This shift is corrected by the image processing unit 12, and as a result, the subject image moves to the center position in the X-ray image P30a. At this time, the X-ray grid on the X-ray image P30 also moves following the subject image.
 したがって、本発明の撮影方法で得られた一連のX線画像P1a,P2a,P3a,…P74aを重ね合わせて断層画像Dを生成しても、断層画像D上にはX線グリッド像が結像しない。X線グリッド像が画像に写り込む位置は、一連のX線画像P1a,P2a,P3a,…P74aの間で一定ではないからである。一方、基準裁断面MA上の被検体像は、一連のX線画像P1a,P2a,P3a,…P74aの重ね合わせにより断層画像D上にはっきりと現れる。基準裁断面MA上の被検体像が画像に写り込む位置は、一連のX線画像P1a,P2a,P3a,…P74aの間で一定だからである。 Therefore, even if a series of X-ray images P1a, P2a, P3a,... P74a obtained by the imaging method of the present invention is superimposed to generate a tomographic image D, an X-ray grid image is formed on the tomographic image D. do not do. This is because the position at which the X-ray grid image appears in the image is not constant among the series of X-ray images P1a, P2a, P3a,. On the other hand, the subject image on the reference cut surface MA clearly appears on the tomographic image D by superimposing a series of X-ray images P1a, P2a, P3a,. This is because the position at which the subject image on the reference cut surface MA appears in the image is constant among the series of X-ray images P1a, P2a, P3a,.
 以上のような画像処理部12が生成する一連のX線画像P1a,P2a,P3a,…P74aは、FPD4が変速せずに従来通り等速で移動ときに得られるX線画像を再現したものとなっている。 A series of X-ray images P1a, P2a, P3a,... P74a generated by the image processing unit 12 as described above are reproduced from X-ray images obtained when the FPD 4 moves at a constant speed as usual without shifting. It has become.
 このように、本発明の装置ではFPD移動制御部8bと画像処理部12とが協働して機能することで基準裁断面MA上の断層画像DであってもX線グリッド像の結像を抑制することができる。このような事情は、X線グリッド像に限られず、一連のX線画像P1,P2,P3,…P74に同じように写り込む図4ないし図6で説明した他の偽像についても同様である。 As described above, in the apparatus of the present invention, the FPD movement control unit 8b and the image processing unit 12 function in cooperation to form an X-ray grid image even in the tomographic image D on the reference cut surface MA. Can be suppressed. Such a situation is not limited to the X-ray grid image, and the same applies to the other false images described with reference to FIGS. 4 to 6 reflected in the same series of X-ray images P1, P2, P3,. .
 <断層画像生成部13の動作>
 一連のX線画像P1a,P2a,P3a,…P74aは、断層画像生成部13に送出される。断層画像生成部13は、これらX線画像Paを重ね合わせて断層画像Dを生成する。X線画像Paに写り込むX線グリッド像は、画像に写り込む位置が互いに異なるので、画像を重ね合わせる際に互いに打ち消し合い、断層画像Dに写り込むことがない。また、この断層画像生成部13は、FPD等速移動方式に係る従来装置に備え付けられているものを流用することができる。一連のX線画像P1a,P2a,P3a,…P74aは、FPD4が変速せずに従来通りの等速で移動ときに得られるX線画像を再現したものとなっている。断層画像生成部13は、シフト画像処理により偽像の出現位置が互いにずらされた一連のX線画像Paを元に基準点sを含む裁断面における被検体Mの断層画像Dを生成する。
<Operation of Tomographic Image Generation Unit 13>
A series of X-ray images P1a, P2a, P3a,... P74a is sent to the tomographic image generation unit 13. The tomographic image generation unit 13 generates a tomographic image D by superimposing these X-ray images Pa. Since the X-ray grid images reflected in the X-ray image Pa are different from each other in the positions reflected in the images, they cancel each other out when they are superimposed, and do not appear in the tomographic image D. The tomographic image generation unit 13 can use the one provided in the conventional apparatus related to the FPD constant speed movement method. A series of X-ray images P1a, P2a, P3a,... P74a are reproductions of X-ray images obtained when the FPD 4 moves at a constant speed as usual without shifting. The tomographic image generation unit 13 generates a tomographic image D of the subject M on the cut surface including the reference point s based on a series of X-ray images Pa in which the appearance positions of the false images are shifted from each other by the shift image processing.
 <FPD4の変速方式の最適化>
 FPD4の変速方式を工夫することでより確実に断層画像Dに偽像を写し込まないようにすることができるので、この点について説明する。図18は、従来通りFPD4を等速で動かしながら一連のX線画像Pを連写する場合を示している。図18の実線は、従来の撮影方法を表していて、撮影時のFPD4の位置を示す値は、X線画像Pの番号に比例している。画像番号とFPD4の位置との関係がこの実線上にあるときに撮影されたX線画像Pには基準裁断面MAの被検体像が画像中央に写り込むものとする。
<Optimization of FPD4 transmission system>
By devising the speed change method of the FPD 4, it is possible to prevent the false image from being imprinted on the tomographic image D, so this point will be described. FIG. 18 shows a case where a series of X-ray images P are continuously shot while the FPD 4 is moved at a constant speed as usual. The solid line in FIG. 18 represents the conventional imaging method, and the value indicating the position of the FPD 4 at the time of imaging is proportional to the number of the X-ray image P. In the X-ray image P taken when the relationship between the image number and the position of the FPD 4 is on the solid line, it is assumed that the subject image of the reference cross section MA is reflected in the center of the image.
 図18の破線も同じくFPD4を従来の撮影方法通りの速度で移動させた場合である。ただし、FPD4の出発のタイミングは、従来の撮影方法よりも早い。画像番号とFPD4の位置との関係がこの破線上にあるとき基準裁断面MAの被検体像はX線画像Pの右側にずれて写り込む。そしてそのずれ量は、画像番号とFPD4の位置との関係がこの破線上にある限り変わらない。このときのX線画像P上に写り込んでいる像をズレ像Faと呼ぶことにする。 18 also shows the case where the FPD 4 is moved at the same speed as the conventional photographing method. However, the departure timing of the FPD 4 is earlier than the conventional photographing method. When the relationship between the image number and the position of the FPD 4 is on this broken line, the subject image of the reference cut surface MA is shifted to the right side of the X-ray image P. The shift amount does not change as long as the relationship between the image number and the position of the FPD 4 is on the broken line. The image reflected on the X-ray image P at this time will be referred to as a shift image Fa.
 図18の一点鎖線も同じくFPD4を従来の撮影方法通りの速度で移動させた場合である。ただし、FPD4の出発のタイミングは、従来の撮影方法よりも遅い。画像番号とFPD4の位置との関係がこの一点鎖線上にあるとき基準裁断面MAの被検体像はX線画像Pの左側にずれて写り込む。そしてそのずれ量は、画像番号とFPD4の位置との関係がこの一点鎖線上にある限り変わらない。このときのX線画像P上に写り込んでいる像をズレ像Daと呼ぶことにする。 18 also shows the case where the FPD 4 is moved at the same speed as the conventional imaging method. However, the departure timing of the FPD 4 is later than the conventional photographing method. When the relationship between the image number and the position of the FPD 4 is on this one-dot chain line, the subject image of the reference cut surface MA is shifted to the left side of the X-ray image P. The amount of deviation does not change as long as the relationship between the image number and the position of the FPD 4 is on this one-dot chain line. The image reflected on the X-ray image P at this time is referred to as a shift image Da.
 画像処理部12がズレ像Faの像を写し込んだX線画像Pにシフト処理を施した場合を考える。画像処理部12は、基準裁断面MAの被検体像を中央に移動させるシフト処理を施すから、ズレ像Faの像は、図19左側に示すように、全体的に左側に移動されることになる。同様に、画像処理部12がズレ像Daの像を写し込んだX線画像Pにシフト処理を施した場合を考える。画像処理部12は、基準裁断面MAの被検体像を中央に移動させるシフト処理を施すから、ズレ像Daの像は、図19右側に示すように、全体的に右側に移動されることになる。画像処理部12がズレ像Faの像を写し込んだX線画像Pに施す像のずらし方をずらし方Fbと呼び、画像処理部12がズレ像Daの像を写し込んだX線画像Pに施す像のずらし方をずらし方Dbと呼ぶことにする。 Consider a case where the image processing unit 12 performs a shift process on the X-ray image P in which the image of the shift image Fa is captured. Since the image processing unit 12 performs a shift process for moving the subject image of the reference cut surface MA to the center, the image of the shift image Fa is moved to the left as shown in the left side of FIG. Become. Similarly, consider a case where the image processing unit 12 performs shift processing on the X-ray image P in which the image of the shift image Da is captured. Since the image processing unit 12 performs a shift process for moving the subject image of the reference cut surface MA to the center, the image of the shift image Da is moved to the right as a whole as shown on the right side of FIG. Become. The method of shifting the image performed by the image processing unit 12 on the X-ray image P in which the image of the shift image Fa is captured is referred to as shift method Fb, and the image processing unit 12 applies to the X-ray image P in which the image of the shift image Da is captured. The method of shifting the image to be applied will be referred to as shifting method Db.
 FPD4の変速を図11に示すような方式にしていると、FPD4の位置と時間の関係は、図20のようになる。すなわち、本発明のFPD4が加速と減速を繰り返すことにより、画像番号とFPD4の位置との関係は、図19で説明した破線上の点と一点鎖線上の点とを何度も往復させられる。 When the shift of the FPD 4 is as shown in FIG. 11, the relationship between the position of the FPD 4 and time is as shown in FIG. That is, when the FPD 4 of the present invention repeats acceleration and deceleration, the relationship between the image number and the position of the FPD 4 can be reciprocated between the point on the broken line and the point on the alternate long and short dash line described in FIG.
 ここで、FPD4が加速から減速に転じる時点について考える。この時点は、速度変化が小さい必要がある。さもないと、FPD4の移動がスムーズでなくなってしまい、装置の振動の原因となる。安全で、撮影のブレがなく、装置本体に与えるダメージも軽減された撮影方法を目指す場合、このような振動は望ましくない。従って、FPD4が加速から減速に転じるときは速度変を穏やかにする必要がある。この事情はFPD4が減速から加速に転じる時点についても同じである。 Here, consider the point in time when the FPD 4 switches from acceleration to deceleration. At this point, the speed change needs to be small. Otherwise, the movement of the FPD 4 will not be smooth, causing vibration of the apparatus. Such vibrations are not desirable when aiming for a shooting method that is safe, free of camera shake, and reduced damage to the apparatus body. Therefore, it is necessary to moderate the speed change when the FPD 4 changes from acceleration to deceleration. This situation is the same when the FPD 4 changes from deceleration to acceleration.
 ここで、FPD4が加速から減速に転じるときにX線画像Pが撮影されるとして、更に、図18に示した座標系において、このX線画像Pの画像番号とFPD4の位置との関係を示す座標は、破線上にあるものとする。そうすると、このX線画像Pには図19で説明したズレ像Faが写り込むことになる。同様に、FPD4が減速から加速に転じるときにX線画像Pが撮影されるとして、更に、図18に示した座標系において、このX線画像Pの画像番号とFPD4の位置との関係を示す座標は、一点鎖線上にあるものとする。すると、このX線画像Pには図19で説明したズレ像Daが写り込むことになる。 Here, assuming that the X-ray image P is captured when the FPD 4 changes from acceleration to deceleration, the relationship between the image number of the X-ray image P and the position of the FPD 4 is further shown in the coordinate system shown in FIG. The coordinates are on the broken line. Then, the deviation image Fa described in FIG. 19 is reflected in the X-ray image P. Similarly, assuming that the X-ray image P is captured when the FPD 4 changes from deceleration to acceleration, the relationship between the image number of the X-ray image P and the position of the FPD 4 is further shown in the coordinate system shown in FIG. It is assumed that the coordinates are on a one-dot chain line. Then, the deviation image Da described in FIG. 19 is reflected in the X-ray image P.
 断層画像Dの元になる一連のX線画像P1,P2,P3,…P74には、実は、ズレ像Faが写り込んだものが多く含まれている。FPD4が加速から減速に転じる前後は、FPD4の変速が穏やかであり、画像番号とFPD4の位置との関係は、図20の網掛けで示す長い期間、破線に近い位置にある。したがって、X線画像Pを連写すると、ズレ像Faかそれによく似た像を写し込んだX線画像Pが多く得られるのである。同様に、連写されたX線画像Pには、ズレ像Daが写り込んだものも多く含まれている。FPD4が減速から加速に転じる前後は、FPD4の変速が穏やかであり、画像番号とFPD4の位置との関係は、図20の斜線で示す長い期間、一点鎖線に近い位置にある。したがって、X線画像Pを連写すると、ズレ像Daかそれによく似た像を写し込んだX線画像Pが多く得られるのである。 Actually, the series of X-ray images P1, P2, P3,... P74 that are the basis of the tomographic image D include many images in which the shift image Fa is reflected. Before and after the FPD 4 changes from acceleration to deceleration, the shift of the FPD 4 is gentle, and the relationship between the image number and the position of the FPD 4 is close to the broken line for a long period indicated by hatching in FIG. Therefore, when the X-ray images P are continuously shot, many X-ray images P on which the shift image Fa or an image similar to that is copied can be obtained. Similarly, the continuously shot X-ray image P includes many images in which the shift image Da is reflected. Before and after the FPD 4 changes from deceleration to acceleration, the speed of the FPD 4 is gentle, and the relationship between the image number and the position of the FPD 4 is close to the alternate long and short dash line for a long period of time indicated by the oblique lines in FIG. Therefore, when the X-ray images P are continuously shot, many X-ray images P on which the shift image Da or an image similar thereto is copied can be obtained.
 図21は、一連のX線画像Pのうち、ズレ像Faまたはそれによく似た像を写し込んだものだけを抜き出して表している。画像処理部12は、ズレ像Faが写り込んだ複数のX線画像Pを同じずらし方Fbでずらすシフト処理を実行してX線画像Paを生成する。本発明の本質は、X線画像PごとにX線グリッド像のずらし方を変えることで断層画像D上にX線グリッド像が結像しないようにするというものである。にもかかわらず、画像処理部12は、異なるX線画像Pを同じずらし方でずらしてシフト処理を実行してしまっている。このような構成となっていると、生成される断層画像Dには、ズレ像Fa上に写り込んでいたX線グリッド像が結像してしまう。X線画像PaのX線グリッド像が移動先で結像してしまうのである。このような事情はズレ像Daについても同じである。 FIG. 21 shows only a portion of the series of X-ray images P on which a shift image Fa or an image similar thereto is extracted. The image processing unit 12 generates a X-ray image Pa by performing a shift process for shifting a plurality of X-ray images P in which the misalignment image Fa appears in the same shifting method Fb. The essence of the present invention is to prevent the X-ray grid image from being formed on the tomographic image D by changing the shifting method of the X-ray grid image for each X-ray image P. Nevertheless, the image processing unit 12 has executed the shift process by shifting different X-ray images P in the same way. With such a configuration, an X-ray grid image reflected on the misalignment image Fa is formed on the generated tomographic image D. The X-ray grid image of the X-ray image Pa is formed at the destination. Such a situation is the same for the displacement image Da.
 図22は、この点を考慮してFPD4の動かし方を工夫した構成となっている。すなわち、本発明の撮影に係る画像番号とFPD4の位置との関係を図22の太線に示すようにするのである。このFPD4の動かし方によれば、FPD4が加速から減速に転じる点が等速移動に係る従来のFPDの速度(画像処理部12により再現されるFPD4の移動方式に係るFPD4の速度)に相当する傾きを有する直線上に配列しないように調整がなされている。このようにすることで、一連のX線画像Pの間でX線グリッド像の写り込む位置が同じものが出現することを極力防ぎ、X線グリッド像が断層画像Dに現れることを防止することができる。 FIG. 22 has a configuration in which the FPD 4 is moved in consideration of this point. That is, the relationship between the image number and the position of the FPD 4 according to the photographing of the present invention is shown by the thick line in FIG. According to this method of moving the FPD 4, the point at which the FPD 4 changes from acceleration to deceleration corresponds to the speed of the conventional FPD related to constant speed movement (the speed of the FPD 4 related to the movement method of the FPD 4 reproduced by the image processing unit 12). Adjustments are made so that they are not arranged on a straight line having an inclination. By doing so, it is possible to prevent as much as possible that the same X-ray grid image appears in a series of X-ray images P, and to prevent the X-ray grid image from appearing in the tomographic image D. Can do.
 このようなFPD4の動かし方を実現するには、画像番号とFPD4の速度を図23のようにすればよい。この図23で示されている関数は、周波数の異なる2つの三角関数の合成関数に更に定数を加えることで生成することができる。このような場合でも、本発明のFPD4は、従来の撮影方法におけるFPD4よりも遅くなったり速くなったりしながらも、撮影開始から終了までにFPD4が移動する距離が従来の撮影方法と同じ(または、画像処理部12が従来の撮影方法で得られるX線画像P74を再現できる程度にほぼ同じ)となるように設定されている。 In order to realize such a method of moving the FPD 4, the image number and the speed of the FPD 4 may be set as shown in FIG. The function shown in FIG. 23 can be generated by further adding a constant to a composite function of two trigonometric functions having different frequencies. Even in such a case, the FPD 4 of the present invention is slower or faster than the FPD 4 in the conventional photographing method, but the distance that the FPD 4 moves from the start to the end of the photographing is the same as the conventional photographing method (or The image processing unit 12 is set so that the X-ray image P74 obtained by the conventional imaging method can be reproduced.
 このようなFPD4の移動を実現するのは、FPD移動制御部8bである。FPD移動制御部8bは、図22,図23で説明したような方式でFPD4が移動するようにFPD移動機構7bを制御することにより、FPD4が加速から減速に転じる際に撮影されたX線画像Pの間で基準点sの写り込む位置が互いに異なるようにする。同様に、FPD移動制御部8bは、FPD4が減速から加速に転じる際に撮影されたX線画像Pの間で基準点sの写り込む位置が互いに異なるようにする。FPD移動制御部8bは、FPD4の速度が周期的関数に定数を加算した図23に示すような合成関数に基づいてX線画像Pの各々に対応する速度を認識してFPD移動機構7bを制御するように構成される。 The movement of the FPD 4 is realized by the FPD movement control unit 8b. The FPD movement control unit 8b controls the FPD moving mechanism 7b so that the FPD 4 moves in the manner described with reference to FIGS. 22 and 23, so that the X-ray image taken when the FPD 4 changes from acceleration to deceleration. The positions where the reference point s is reflected between P are different from each other. Similarly, the FPD movement control unit 8b makes the positions at which the reference point s is reflected between the X-ray images P captured when the FPD 4 changes from deceleration to acceleration. The FPD movement control unit 8b controls the FPD movement mechanism 7b by recognizing the speed corresponding to each of the X-ray images P based on a composite function as shown in FIG. 23 in which the speed of the FPD 4 adds a constant to a periodic function. Configured to do.
 以上のように、本発明によれば、断層画像Dに偽像が結像しないX線断層撮影装置1が提供できる。すなわち、本発明に係るX線断層撮影装置1は、X線管3とFPD4とが互いに反対方向に移動されながら連写された一連のX線画像Pを撮影する際に、FPD4の速度が変更される。これにより裁断面上の基準点の写り込む位置が一連のX線画像Pの間で変化する。一方、偽像の写り込む位置は一連のX線画像Pの間で同じである。基準点が画像上の同じ位置に来るようにシフトさせる画像処理を施した一連のX線画像Pに基づいて断層画像Dを生成すれば、断層画像Dには確実に基準点を含む裁断面における被検体Mの断層像が写り込む。一方、断層画像Dには、偽像が写り込むことがない。一連のX線画像Pに写り込む偽像は、画像処理により出現位置がシフトされ、断層画像生成の際に互いに相殺されるからである。 As described above, according to the present invention, it is possible to provide the X-ray tomography apparatus 1 in which a false image is not formed on the tomographic image D. That is, when the X-ray tomography apparatus 1 according to the present invention captures a series of X-ray images P taken while the X-ray tube 3 and the FPD 4 are moved in opposite directions, the speed of the FPD 4 changes. Is done. As a result, the position of the reference point on the cut surface changes between a series of X-ray images P. On the other hand, the position where the false image appears is the same between the series of X-ray images P. If the tomographic image D is generated on the basis of a series of X-ray images P subjected to image processing for shifting so that the reference point comes to the same position on the image, the tomographic image D is surely in the cut surface including the reference point. A tomographic image of the subject M is reflected. On the other hand, no false image appears in the tomographic image D. This is because the appearance positions of the false images that appear in the series of X-ray images P are shifted by image processing and cancel each other out when generating the tomographic image.
 また、FPD4が加速と減速を繰り返すようにFPD4を動かせば、FPD4の速度が変更しつつ断層画像Dの生成に必要な一連のX線画像Pの撮影を確実に実行することができる。FPD4の平均速度を検出手段等速移動に係る従来装置におけるFPD4の速度にすることができるからである。 Further, if the FPD 4 is moved so that the FPD 4 repeats acceleration and deceleration, a series of X-ray images P necessary for generating the tomographic image D can be reliably executed while the speed of the FPD 4 is changed. This is because the average speed of the FPD 4 can be made the speed of the FPD 4 in the conventional apparatus related to the detection means constant speed movement.
 X線画像Pの間で基準点の写り込む位置は、FPD4が加速から減速に転じる際に撮影された画像の間で特に類似しやすい。このような状態を放置すると、断層画像上に偽像が出現することを確実に抑制できない場合がある。この問題はFPD4が減速から加速に転じる際にも生じる。そこで、上述の構成はこの問題に着目して、FPD4が加速から減速に転じる際に撮影されたX線画像Pの間で基準点の写り込む位置が互いに異なるようにFPD4の移動様式が選択される。同様にFPD4が減速から加速に転じる際に撮影されたX線画像Pの間で基準点の写り込む位置が互いに異なるようにFPD4の移動様式が選択される。これにより、断層画像上に偽像が出現することが確実に抑制できる。 The position where the reference point is reflected between the X-ray images P tends to be particularly similar between images taken when the FPD 4 changes from acceleration to deceleration. If such a state is left as it is, it may not be possible to reliably suppress the appearance of a false image on the tomographic image. This problem also occurs when the FPD 4 changes from deceleration to acceleration. Therefore, the above configuration pays attention to this problem, and the movement mode of the FPD 4 is selected so that the positions where the reference points are reflected are different between the X-ray images P taken when the FPD 4 changes from acceleration to deceleration. The Similarly, the movement mode of the FPD 4 is selected so that the positions at which the reference points are captured differ between the X-ray images P taken when the FPD 4 changes from deceleration to acceleration. Thereby, it can suppress reliably that a false image appears on a tomographic image.
 図11に示すように、FPD4をFPD4の速度が周期的関数に定数を加算した合成関数に基づいた速度で動かせば、FPD4の加速と減速が確実に繰り返される。 As shown in FIG. 11, if the FPD 4 is moved at a speed based on a composite function in which the speed of the FPD 4 is obtained by adding a constant to a periodic function, acceleration and deceleration of the FPD 4 are reliably repeated.
 図23に示すように、FPD4を互いに周期の異なる2つの周期的関数と定数を加算した合成関数に基づいた速度で動かせば、FPD4が加速から減速(または減速から加速)に転じる際に撮影されたX線画像Pの間で基準点の写り込む位置が確実に互いに異なるようになる。 As shown in FIG. 23, if the FPD 4 is moved at a speed based on a combined function obtained by adding two periodic functions having different periods and a constant, the FPD 4 is photographed when the FPD 4 changes from acceleration to deceleration (or from deceleration to acceleration). In addition, the positions where the reference points are reflected between the X-ray images P are surely different from each other.
 本発明の構成は、上述の構成に限られず、以下のように変形実施することができる。 The configuration of the present invention is not limited to the above-described configuration, and can be modified as follows.
 (1)実施例1のFPD4の速度は、図11または図23に示すような関数で表される構成となっていたが、本発明はこの構成に限られない。これら以外の関数を用いてFPD4の速度を決定するようにしてもよい。 (1) Although the speed of the FPD 4 of the first embodiment has a configuration represented by a function as shown in FIG. 11 or FIG. 23, the present invention is not limited to this configuration. You may make it determine the speed of FPD4 using functions other than these.
 (2)実施例1のFPD4の変速の方法は、一種類であったが、本発明はこの構成に限られない。FPD4の変速の方法を複数のモードから選択するようにしてもよい。本変形例の画像処理部12は、このモードの選択に合わせて参照するテーブルを変更するように構成することができる。 (2) Although the method of shifting the FPD 4 of the first embodiment is one type, the present invention is not limited to this configuration. The method of shifting the FPD 4 may be selected from a plurality of modes. The image processing unit 12 of this modification can be configured to change the table to be referred to in accordance with the selection of this mode.
 (3)図23に示したFPD4の変速の方式は、本発明の一例に過ぎない。FPD移動制御部8bは、図23以外の関数によってFPD4の速度を認識してもよい。 (3) The shifting method of the FPD 4 shown in FIG. 23 is only an example of the present invention. The FPD movement control unit 8b may recognize the speed of the FPD 4 by a function other than that shown in FIG.
 (4)実施例1のFPD4の速度は、三角関数に基づいて算出されていたが、本発明はこの構成に限られない。三角関数に代えて任意の周期的関数を算出に用いることができる。用いる関数としては、微分不可能な特異点を有しないものが望ましい。このような特異点があると、FPD4が移動によりがたついてしまうからである。 (4) Although the speed of the FPD 4 of the first embodiment is calculated based on a trigonometric function, the present invention is not limited to this configuration. An arbitrary periodic function can be used for the calculation instead of the trigonometric function. As a function to be used, a function having no non-differentiable singularity is desirable. This is because if there is such a singular point, the FPD 4 will rattle due to movement.
 (5)上述の構成では、断層像の再構成法として一連のX線画像を重ね合わせるフィルタードバックプロジェクション法であるとしたが、よく知られるシフト加算法、逐次近似法を用いてもよい。 (5) In the above-described configuration, the filtered back projection method in which a series of X-ray images are superimposed is used as a tomographic reconstruction method. However, a well-known shift addition method or successive approximation method may be used.
 (6)実施例1のFPD4の変速の方法は、加速と減速とを繰り返すものであったが、本発明はこの構成に限られない。一連のX線画像Pの撮影中、FPD4を加速し続けるように動かすようにしてもよい。このようにすれば、撮影中にFPD4ががたついて振動を生じてしまうことがなくなり、安全で被検体Mおよび装置自身に対して負担の少ないX線断層撮影装置1が提供できる。なお、このようなFPD4の移動は、FPD移動制御部8bがFPD4を加速し続けるようにFPD移動機構7bの制御を実行することで実現される。 (6) Although the method of shifting the FPD 4 in the first embodiment repeats acceleration and deceleration, the present invention is not limited to this configuration. During imaging of a series of X-ray images P, the FPD 4 may be moved so as to continue to accelerate. In this way, the FPD 4 does not rattle during imaging and vibrations can be prevented, and the X-ray tomography apparatus 1 that is safe and less burdensome on the subject M and the apparatus itself can be provided. Note that such movement of the FPD 4 is realized by the FPD movement control unit 8b executing control of the FPD movement mechanism 7b so as to continuously accelerate the FPD 4.
 (7)実施例1の基準点sは、基準裁断面上にあったが、本発明はこの構成限られない。基準点sを基準裁断面以外の裁断面上に設定することもできる。 (7) Although the reference point s in Example 1 was on the reference section, the present invention is not limited to this configuration. The reference point s can be set on a cut surface other than the reference cut surface.
 本発明は、以上のように医用分野に適している。 The present invention is suitable for the medical field as described above.
3     X線管(放射線源)
4     FPD(検出手段)
7a   X線管移動機構(放射線源移動手段)
7b   FPD移動機構(検出器移動手段)
8a   X線管移動制御部(放射線源移動制御手段)
8b   FPD移動制御部(検出器移動制御手段)
11   画像生成部(画像生成手段)
12   画像処理部(シフト画像処理手段)
13   断層画像生成部(断層画像生成手段)
 
 
3 X-ray tube (radiation source)
4 FPD (detection means)
7a X-ray tube moving mechanism (radiation source moving means)
7b FPD moving mechanism (detector moving means)
8a X-ray tube movement control unit (radiation source movement control means)
8b FPD movement control unit (detector movement control means)
11 Image generation unit (image generation means)
12 Image processing unit (shifted image processing means)
13 Tomographic image generating unit (tomographic image generating means)

Claims (7)

  1.  被写体に放射線を照射する放射線源と、
     前記被写体を透過してきた放射線を検出する検出手段と、
     前記放射線源を前記被写体に対して移動させる放射線源移動手段と、
     前記放射線源の移動を制御する放射線源移動制御手段と、
     前記検出手段を前記被写体に対して移動させる検出器移動手段と、
     前記検出手段の出力に基づいて被写体像とともに偽像が写り込んでいる放射線画像を生成する画像生成手段と、
     前記放射線源と前記検出手段とが互いに反対方向に移動されながら連写された一連の放射線画像を撮影する際に、前記検出手段の速度が変更されるように前記検出器移動手段を制御する検出器移動制御手段と、
     同じパターンの偽像を写し込んだ一連の放射線画像に対して像をシフトさせる画像処理を施すことにより、写り込む位置が一連の放射線画像によって異なる被写体内部の基準点が画像上の同じ位置に来るようにシフトさせるシフト画像処理手段と、
     シフト画像処理により偽像の出現位置が互いにずらされた一連の放射線画像を元に前記基準点を含む裁断面における前記被写体の断層画像を生成する断層画像生成手段とを備えることを特徴とする放射線断層撮影装置。
    A radiation source for irradiating the subject with radiation;
    Detecting means for detecting radiation transmitted through the subject;
    Radiation source moving means for moving the radiation source relative to the subject;
    Radiation source movement control means for controlling movement of the radiation source;
    Detector moving means for moving the detection means relative to the subject;
    Image generating means for generating a radiographic image in which a false image is reflected together with the subject image based on the output of the detecting means;
    Detection that controls the detector moving means so that the speed of the detecting means is changed when taking a series of radiographic images continuously taken while the radiation source and the detecting means are moved in opposite directions. Movement control means,
    By applying image processing that shifts the image to a series of radiographic images that contain the same pattern of false images, the reference points inside the subject that are different depending on the series of radiographic images are located at the same position on the image. Shifted image processing means for shifting
    Radiation comprising: a tomographic image generation means for generating a tomographic image of the subject in a cut plane including the reference point based on a series of radiation images in which the appearance positions of false images are shifted from each other by shift image processing Tomography equipment.
  2.  請求項1に記載の放射線断層撮影装置において、
     前記検出器移動制御手段は、前記検出手段が加速と減速を繰り返すように前記検出器移動手段を制御することを特徴とする放射線断層撮影装置。
    The radiation tomography apparatus according to claim 1,
    The radiation tomography apparatus according to claim 1, wherein the detector movement control means controls the detector movement means so that the detection means repeats acceleration and deceleration.
  3.  請求項2に記載の放射線断層撮影装置において、
     前記検出器移動制御手段は、前記検出手段が加速から減速に転じる際に撮影された放射線画像の間で前記基準点の写り込む位置が互いに異なるように前記検出器移動手段を制御することを特徴とする放射線断層撮影装置。
    The radiation tomography apparatus according to claim 2,
    The detector movement control means controls the detector movement means so that the positions at which the reference points are reflected differ between the radiographic images taken when the detection means changes from acceleration to deceleration. Radiation tomography equipment.
  4.  請求項2または請求項3に記載の放射線断層撮影装置において、
     前記検出器移動制御手段は、前記検出手段が減速から加速に転じる際に撮影された放射線画像の間で前記基準点の写り込む位置が互いに異なるように前記検出器移動手段を制御することを特徴とする放射線断層撮影装置。
    The radiation tomography apparatus according to claim 2 or 3,
    The detector movement control means controls the detector movement means so that positions where the reference points are reflected are different between radiographic images taken when the detection means changes from deceleration to acceleration. Radiation tomography equipment.
  5.  請求項2ないし請求項4のいずれかに記載の放射線断層撮影装置において、
     前記検出器移動制御手段は、互いに周期の異なる2つの周期的関数と定数を加算した合成関数に基づいて放射線画像の各々に対応する速度を認識して前記検出器移動手段を制御することを特徴とする放射線断層撮影装置。
    The radiation tomography apparatus according to any one of claims 2 to 4,
    The detector movement control means controls the detector movement means by recognizing a speed corresponding to each of the radiographic images based on a composite function obtained by adding two periodic functions having different periods and a constant. Radiation tomography equipment.
  6.  請求項1に記載の放射線断層撮影装置において、
     前記検出器移動制御手段は、前記検出手段の速度が周期的関数に定数を加算した合成関数に基づいて放射線画像の各々に対応する速度を認識して前記検出器移動手段を制御することを特徴とする放射線断層撮影装置。
    The radiation tomography apparatus according to claim 1,
    The detector movement control means controls the detector movement means by recognizing the speed corresponding to each of the radiographic images based on a composite function in which the speed of the detection means is a periodic function plus a constant. Radiation tomography equipment.
  7.  請求項1に記載の放射線断層撮影装置において、
     前記検出器移動制御手段は、前記検出手段が加速し続けるように前記検出器移動手段を制御することを特徴とする放射線断層撮影装置。
     
    The radiation tomography apparatus according to claim 1,
    The radiation tomography apparatus according to claim 1, wherein the detector movement control means controls the detector movement means so that the detection means continues to accelerate.
PCT/JP2014/084425 2014-12-25 2014-12-25 Radiation imaging apparatus WO2016103427A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/084425 WO2016103427A1 (en) 2014-12-25 2014-12-25 Radiation imaging apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/084425 WO2016103427A1 (en) 2014-12-25 2014-12-25 Radiation imaging apparatus

Publications (1)

Publication Number Publication Date
WO2016103427A1 true WO2016103427A1 (en) 2016-06-30

Family

ID=56149520

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/084425 WO2016103427A1 (en) 2014-12-25 2014-12-25 Radiation imaging apparatus

Country Status (1)

Country Link
WO (1) WO2016103427A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010092615A1 (en) * 2009-02-10 2010-08-19 株式会社島津製作所 Radiation imaging device
JP2011062276A (en) * 2009-09-16 2011-03-31 Fujifilm Corp Radiation imaging apparatus
US20120170711A1 (en) * 2010-12-29 2012-07-05 Henri Souchay Process and device for deploying an anti-scattering grid

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010092615A1 (en) * 2009-02-10 2010-08-19 株式会社島津製作所 Radiation imaging device
JP2011062276A (en) * 2009-09-16 2011-03-31 Fujifilm Corp Radiation imaging apparatus
US20120170711A1 (en) * 2010-12-29 2012-07-05 Henri Souchay Process and device for deploying an anti-scattering grid

Similar Documents

Publication Publication Date Title
US20130148779A1 (en) Radiation tomography apparatus
JP5549595B2 (en) Radiography equipment
US9770215B2 (en) Process and device for deploying an anti-scattering grid
JP5136478B2 (en) Radiography equipment
JP5675117B2 (en) X-ray CT apparatus and control program for X-ray CT apparatus
WO2013035255A1 (en) Image processing device and radiation imaging apparatus comprising same
JP2011101686A (en) Radiographic apparatus
JP6791404B2 (en) Radiation phase difference imaging device
JP5141832B2 (en) Radiation tomography equipment
WO2016103427A1 (en) Radiation imaging apparatus
JP6459627B2 (en) Radiography equipment
JP5584995B2 (en) Radiation imaging apparatus and calibration data acquisition method
JP2009291548A (en) Radiographic device
JP5380916B2 (en) Radiation tomography apparatus and noise removal method in radiation tomography apparatus
JP5880850B2 (en) Radiography equipment
JP5559648B2 (en) Radiation imaging apparatus, method and program
JP4946927B2 (en) X-ray tomography equipment
JP2017023469A (en) Radiation phase difference imaging apparatus
JP2012090872A (en) Radiographic device
JP2015167722A (en) radiographic apparatus
JP2016036671A (en) Radiographic apparatus and deviation calculation method
JP6327365B2 (en) Radiography equipment
JP2016171919A (en) Information processing device, program, and radiographic apparatus
JP5821695B2 (en) Image processing apparatus and radiation tomography apparatus including the same
JP6372614B2 (en) Radiation source and radiation phase contrast imaging apparatus having the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14909034

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14909034

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP