WO2016103298A1 - Robot system - Google Patents

Robot system Download PDF

Info

Publication number
WO2016103298A1
WO2016103298A1 PCT/JP2014/006476 JP2014006476W WO2016103298A1 WO 2016103298 A1 WO2016103298 A1 WO 2016103298A1 JP 2014006476 W JP2014006476 W JP 2014006476W WO 2016103298 A1 WO2016103298 A1 WO 2016103298A1
Authority
WO
WIPO (PCT)
Prior art keywords
holding shaft
screw
male screw
robot
shaft
Prior art date
Application number
PCT/JP2014/006476
Other languages
French (fr)
Japanese (ja)
Inventor
潤 竹林
修平 倉岡
裕之 水本
山根 秀士
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Priority to PCT/JP2014/006476 priority Critical patent/WO2016103298A1/en
Priority to KR1020177019101A priority patent/KR101989122B1/en
Priority to JP2016565598A priority patent/JP6397510B2/en
Priority to CN201480084306.8A priority patent/CN107000139B/en
Publication of WO2016103298A1 publication Critical patent/WO2016103298A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P19/00Machines for simply fitting together or separating metal parts or objects, or metal and non-metal parts, whether or not involving some deformation; Tools or devices therefor so far as not provided for in other classes
    • B23P19/04Machines for simply fitting together or separating metal parts or objects, or metal and non-metal parts, whether or not involving some deformation; Tools or devices therefor so far as not provided for in other classes for assembling or disassembling parts
    • B23P19/06Screw or nut setting or loosening machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • B25J11/005Manipulators for mechanical processing tasks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/02Sensing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/02Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian coordinate type
    • B25J9/04Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian coordinate type by rotating at least one arm, excluding the head movement itself, e.g. cylindrical coordinate type or polar coordinate type
    • B25J9/041Cylindrical coordinate type
    • B25J9/042Cylindrical coordinate type comprising an articulated arm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/106Programme-controlled manipulators characterised by positioning means for manipulator elements with articulated links
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1628Programme controls characterised by the control loop
    • B25J9/1633Programme controls characterised by the control loop compliant, force, torque control, e.g. combined with position control

Definitions

  • the present invention relates to a robot system.
  • Patent Document 1 an apparatus for fastening a screw by a robot is known (for example, see Patent Document 1).
  • This device is connected to the robot main body, the nut runner controlled by the nut runner control section, the robot main body and the nut runner control section, and outputs a command signal to the robot main body and the nut runner control section.
  • a robot system is configured such that a tip is formed in a shape complementary to a head of a male screw, and the male screw is engaged with the head of the male screw.
  • a screw turning mechanism having a holding shaft in which a positional relationship around the axis of the male screw is fixed, and a holding shaft drive unit that drives the holding shaft to rotate about the axis of the holding shaft, and the screw turning mechanism
  • a robot main body that holds and moves the screw turning mechanism; and a robot controller that controls the robot main body and controls the holding shaft driving unit as an external shaft that performs work in cooperation with the robot main body.
  • the robot controller that controls the robot body also controls the holding axis drive unit, communication according to a predetermined protocol for communication between the two controllers as in the prior art becomes unnecessary. And the delay in the cooperative operation between the screw turning mechanism and the screw turning mechanism can be reduced. Therefore, the screw turning operation can be performed at high speed and finely.
  • the configuration of the screw turning mechanism can be simplified, which is advantageous for manufacturing and low in manufacturing cost.
  • the robot body may be an articulated robot.
  • the screw tightening robot can be controlled during the control of the articulated robot.
  • the robot controller controls at least one of a rotation angle position and a rotation speed of the holding shaft when performing a tightening operation of the male screw engaged with the holding portion, and the holding shaft driving portion controls the holding shaft.
  • the screw turning mechanism may be controlled so as to stop the rotational driving of the holding shaft based on the determination as to whether or not the current for rotational driving has reached the limit current corresponding to the target torque.
  • the robot controller further includes an engaging portion that engages with the holding shaft and detects a load torque of the engaging portion, and the robot controller moves the holding shaft to move the holding shaft.
  • the holding shaft and the engaging portion are engaged, and control is performed so that a predetermined current is supplied to the holding shaft driving portion, and the current and the load torque detected by the torque sensor are associated to create the table.
  • the limit current may be calculated based on the table.
  • the robot controller when screwing the male screw into the female screw after screwing the male screw and the female screw hole corresponding to the male screw, from the screwing operation start position of the male screw. While the male screw is positioned at the reference position between the screwing operation start position and the screwing operation end position, the rotation speed is higher than the rotation speed from the reference position to the screwing operation end position.
  • the holding shaft driving unit may be controlled.
  • the screw can be fastened quickly.
  • the holding shaft is configured to be capable of receiving a rotational force with respect to the holding shaft driving unit and movable relative to the holding shaft driving unit by a predetermined distance in an axial direction of the holding shaft. And an urging portion that urges in the direction from the tip to the tip, and a position detection portion that detects a relative position of the holding shaft with respect to the holding shaft driving portion in the axial direction of the holding shaft. .
  • a control method of a robot system is such that a tip is formed in a shape complementary to a head of a male screw and is engaged with the head of the male screw.
  • a screw turning mechanism comprising: a holding shaft in which a positional relationship around the axis of the male screw relative to the male screw is fixed; and a holding shaft driving unit that rotationally drives the holding shaft about the axis of the holding shaft; and the screw A robot body that holds a turning mechanism and moves the screw turning mechanism; a robot controller that controls the robot body and controls the holding shaft drive unit as an external shaft that performs work in cooperation with the robot body; The robot controller controls at least one of a position and a rotation speed at a rotation angle position of the holding shaft when performing a tightening operation of the male screw engaged with the holding portion; and The screw turning mechanism to stop the rotation driving of the holding shaft based on the determination as to whether or not the current for driving the holding shaft to rotate the holding shaft has reached the limit current corresponding to
  • the robot controller further includes an engaging portion that engages with the holding shaft and detects a load torque of the engaging portion, and the robot controller moves the holding shaft to move the holding shaft.
  • the holding shaft and the engaging portion are engaged, and control is performed so that a predetermined current is supplied to the holding shaft driving portion, and the current and the load torque detected by the torque sensor are associated to create the table.
  • the limit current may be calculated based on the table.
  • the robot controller when screwing the male screw into the female screw after screwing the male screw and the female screw hole corresponding to the male screw, from the screwing operation start position of the male screw. While the male screw is located at the reference position between the screwing operation start position and the screwing operation end position, the speed is higher than the rotational speed from the reference position to the screwing operation end position.
  • the holding shaft driving unit may be controlled.
  • the screw can be fastened quickly.
  • the present invention has an effect that the screw turning operation can be performed at high speed and finely.
  • FIG. 2 is a block diagram schematically showing a configuration example of a robot controller of the robot system of FIG. 1. It is a flowchart which shows the operation example of the robot system of FIG. It is a flowchart which shows the operation example of the robot system of FIG. It is a flowchart which shows the operation example of the robot system of FIG. It is a flowchart which shows the operation example of the robot system of FIG. It is a flowchart which shows the operation example of the robot system of FIG. It is a flowchart which shows the operation example of the robot system of FIG. It is a figure which shows the operation example of the robot system of FIG. 1, and is a figure which shows the operation example of screw removal operation
  • FIG. 1 shows changes in the current value output to the holding shaft drive unit detected by the current detection unit of the servo amplifier and changes in the position of the holding shaft detected by the holding shaft position detection unit in the operation example of the robot system of FIG. It is a graph and is a graph which shows the change in temporary fastening operation.
  • the screw tightening operation generally includes temporary tightening and final tightening, rotation speed adjustment when the screw is screwed into the screw hole, tightening torque management, and the like.
  • the plurality of screws are temporarily tightened and then finally tightened in order to uniformly disperse the tightening force.
  • the nut runner is screwed while moving the nut runner sequentially to a plurality of screw tightening locations by the robot.To that end, the robot notifies the nut runner that the screw tightening location has been reached each time the screw is tightened, and The nut runner needs to notify the robot that the screw tightening operation has been completed.
  • the screw when the screw is screwed into the screw hole, the screw is screwed into the screw hole at a low rotational speed in order to ensure that the axial center of the screw and the central axis of the screw hole coincide with each other. Tighten the screw by increasing the rotation speed to. In this case, the screw advances as the screw tightening proceeds. If the nut runner is moved by a robot in order to follow the advance of the screw, the socket, which is the transmission part of the rotational force to the screw in the nut runner, information on the advance of the screw (rotation speed, screw) The nut runner must provide the robot with the real-time position of the robot in real time. In order to ensure the quality of screw tightening, the tightening torque is managed. In this case, the nut runner needs to detect the tightening torque and notify the robot that it is within the allowable range.
  • the nut runner and the robot are controlled by separate controllers, and exchange of commands and data between the two controllers is performed by communication according to a predetermined protocol. Therefore, since it takes time to exchange commands and data between the two controllers, it is difficult to coordinate the nut runner and the robot at high speed and finely.
  • the present inventors have formed a tip having a shape complementary to the head of the male screw and engaged with the head of the male screw.
  • a screw turning mechanism having a holding shaft in which a positional relationship around the axis of the male screw is fixed, and a holding shaft drive unit that drives the holding shaft to rotate about the axis of the holding shaft, and the screw turning mechanism
  • a robot main body that holds and moves the screw turning mechanism; and a robot controller that controls the robot main body and controls the holding shaft driving unit as an external shaft that performs work in cooperation with the robot main body. He came up with the invention of the robot system.
  • the robot controller that controls the robot body since the robot controller that controls the robot body also controls the holding shaft drive unit, communication according to a predetermined protocol for communication between the two controllers as in the prior art becomes unnecessary. And the delay in the cooperative operation between the screw turning mechanism and the screw turning mechanism can be reduced. Therefore, the screw turning operation can be performed at high speed and finely. Further, the configuration of the screw turning mechanism can be simplified, which is advantageous for manufacturing and low in manufacturing cost.
  • FIG. 1 is a diagram schematically showing a configuration example of a robot system 100 according to the first embodiment of the present invention.
  • the robot system 100 can be used for screw tightening work.
  • the robot system 100 includes a screw turning mechanism 1, a robot body 2, and a robot controller 3.
  • the robot body 2 is, for example, an articulated industrial robot (articulated robot).
  • the robot body 2 includes a base 21, an articulated arm 22, and an arm driving unit 23 (see FIG. 3).
  • the base 21 is a table installed on a mounting surface such as a floor surface and supports the arm 22.
  • the arm 22 includes, for example, a plurality of joints, and a base end portion is rotatably connected to the base portion 21.
  • the arm driving unit 23 drives the joint shaft of the arm 22 to move the screw turning mechanism 1 so that the screw turning mechanism 1 is positioned at a predetermined position in the operation region by rotating the drive shaft.
  • the arm drive unit 23 includes an encoder 23e (see FIG. 3) that detects the rotation angle position and rotation speed of the drive shaft of the arm drive unit 23.
  • FIG. 2 is a cross-sectional view of an essential part showing a configuration example of the screw turning mechanism 1 of the robot system 100.
  • the screw turning mechanism 1 includes a holding shaft 11 and a holding shaft driving unit 13.
  • the screw turning mechanism 1 includes a shaft support portion 12, a holding shaft position detection portion 14, and a support frame 15.
  • the holding shaft 11 has an engaging portion 11a that engages with the head 8a of the male screw 8 at the tip.
  • the engaging portion 11a is formed in a substantially regular hexagonal convex shape, for example, when viewed from the extending direction of the axis L1 of the holding shaft 11. Further, when viewed from the axial direction of the male screw 8, a substantially regular hexagonal groove is formed in the head 8a of the male screw 8, and is formed in a shape complementary to the engaging portion 11a. That is, the engaging portion 11a and the head portion 8a of the male screw 8 can be engaged with each other by matching the axis and the angular position (phase) around the axis L1.
  • the relative positional relationship around the axis of the male screw 8 with respect to the male screw 8 is fixed.
  • a plurality of holding shafts 11 are prepared according to the type of male screw 8 to be used so that the engaging portion 11a of the holding shaft 11 has a shape corresponding to the shape of the head 8a of the male screw 8.
  • the holding shaft 11 has a connecting portion 11b configured to be detachable from a distal end portion of a shaft support portion 12 described later at a proximal end portion.
  • the holding shaft 11 is a magnet and is configured to be able to draw the male screw 8 made of a magnetic material. Therefore, the male screw 8 can be locked to the holding shaft 11 by engaging the engaging portion 11 a with the head 8 a of the male screw 8.
  • the shaft support unit 12 supports the holding shaft 11 and transmits the rotational driving force of the holding shaft driving unit 13 to the holding shaft 11.
  • the shaft support portion 12 includes a fixed shaft 31, a movable shaft 32, and a spring 33.
  • the fixed shaft 31 is formed in a rod shape extending in the extending direction of the axis L1.
  • the movable shaft 32 is formed in a rod shape extending in the extending direction of the axis L1.
  • the movable shaft 32 has a connection portion 32a at the tip.
  • the connecting portion 32a is configured to be detachable from the connecting portion 11b of the holding shaft 11, so that the holding shaft 11 can be replaced with a shape corresponding to the type of male screw 8 used by the shape of the engaging portion 11a. It has become.
  • the connecting portion 32a of the movable shaft 32 and the engaging portion 11a of the holding shaft 11 are attached with the connecting portion 11b of the holding shaft 11 to the connecting portion 32a of the movable shaft 32, so that at least relative to the axis L1.
  • the positional relationship is fixed. Therefore, when the movable shaft 32 is rotated, the holding shaft 11 is also rotated at the same time.
  • the movable shaft 32 has an engaging recess 32b at the base end.
  • the engagement recess 32b is configured to be fitted to the distal end portion of the fixed shaft 31 as viewed from the extending direction of the axis L1 and to be slid with respect to the fixed shaft 31 in the extending direction of the axis L1.
  • the holding shaft 11 is moved in the direction from the first position P1 to the base end of the holding shaft 11 on the axis L1 from the first position P1, and the second position P2 close to the base end of the fixed shaft 31. It is configured to be able to move between.
  • the holding shaft 11 is configured to be able to receive a rotational force with respect to the holding shaft driving unit 13 and to be movable relative to the distance D1 in the axial direction of the holding shaft 11.
  • the engaging recess 32b of the movable shaft 32 is formed in a shape complementary to the distal end portion of the fixed shaft 31 when viewed from the extending direction of the axis L1, and the movable shaft 32 and the fixed shaft 31 are formed around the axis L1.
  • the relative positional relationship is fixed.
  • the engaging recess 32b and the distal end of the fixed shaft 31 have a non-circular cross section (for example, a polygon, a circle having irregularities on the outer periphery, etc.) that fits with a minute gap therebetween. It is formed. Therefore, when the fixed shaft 31 is rotated, the movable shaft 32 and the holding shaft 11 are configured to rotate together with the fixed shaft 31.
  • the spring 33 is a compression coil spring and is fitted to the fixed shaft 31 so as to be located outside the fixed shaft 31 and between the proximal end portion of the fixed shaft 31 and the proximal end portion of the movable shaft 32.
  • the portions are in contact with the base end of the fixed shaft 31 and the base end of the movable shaft 32, respectively. Accordingly, the spring 33 biases the base end portion of the fixed shaft 31 and the base end portion of the movable shaft 32 so as to be separated from each other.
  • the movable shaft 32 in a normal state, the movable shaft 32 is configured to be positioned at the first position P1, and the biasing force of the spring 33 is pressed by pressing the holding shaft 11 from the first position P1 toward the second position P2. against this, the holding shaft 11 is configured to move from the first position P1 toward the second position P2.
  • the spring 33 is not limited to a compression coil spring.
  • the movable shaft 32 is configured to be positioned at the first position P1 in a normal state using a tension coil spring, and the holding shaft 11 is pressed from the first position P1 toward the second position P2. Accordingly, the holding shaft 11 may be configured to move from the first position P1 toward the second position P2 against the urging force of the spring 33.
  • the spring 33 is not limited to a coil spring, and may be a gas spring.
  • the movable shaft 32 located at the first position P1 contacts the guide portion 15a of the support frame 15 or a portion in the vicinity thereof, and moves from the second position P2 to the first position P1 in the direction of the axis L1. It is prescribed by being regulated not to move to the side.
  • the holding shaft driving unit 13 rotationally drives the holding shaft 11 around the axis L1 via the shaft support unit 12.
  • the holding shaft driving unit 13 is, for example, a servo motor.
  • the drive shaft 13 a of the holding shaft drive unit 13 is fixedly connected to the base end portion of the fixed shaft 31. Therefore, the holding shaft drive unit 13 rotates the fixed shaft 31, the movable shaft 32, and the holding shaft 11 by the driving force, thereby performing the screw fastening operation of the male screw 8 that engages with the holding shaft 11. It is configured to be able to.
  • the drive shaft 13a includes an encoder 13e (see FIG. 3) that detects an angular position and a rotation speed of the drive shaft 13a.
  • the support frame 15 is configured in a cylindrical shape, for example, and is fitted on the outside of the fixed shaft 31 and the movable shaft 32.
  • the base end portion of the support frame 15 supports the holding shaft driving unit 13. As described above, since the drive shaft 13a of the holding shaft drive unit 13 and the fixed shaft 31 are fixed, the relative positional relationship in the extending direction of the axis L1 between the support frame 15 and the fixed shaft 31 is fixed. Yes.
  • the holding shaft position detector 14 detects a relative position of the holding shaft 11 with respect to the shaft support 12 in the extending direction of the axis L1.
  • the guide portion 15 a is provided so as to be interposed between the tip end portion of the support frame 15 and the movable shaft 32.
  • the guide portion 15a guides the movable shaft 32 so as to be movable in the axial direction of the axis L1 with respect to the support frame 15, and guides it so as to be rotatable around the axis L1.
  • the holding shaft position detector 14 includes, for example, a sensor main body 41 that is a laser displacement meter, a reflector 42, and a reflector support 43.
  • the sensor main body 41 is disposed on an axis L2 extending in parallel with the axis L1, irradiates the reflecting plate 42 with laser light, and detects the distance from the reflecting plate 42 by the reflected light from the reflecting plate 42. It is configured to be able to.
  • the sensor body 41 is attached to the support frame 15. Therefore, the sensor body 41 has a fixed relative positional relationship in the extending direction of the axis L1 with respect to the fixed shaft 31.
  • the reflection plate 42 is disposed on the axis L2 and is attached to the support frame 15 via the reflection plate support portion 43.
  • the reflector support portion 43 includes a support shaft 43a, a support shaft connection portion 43b, and a support shaft guide portion 43c.
  • the support shaft 43a extends along an axis L2 extending in parallel with the axis L1, and a reflection plate 42 is attached to the base end portion.
  • the support shaft connecting portion 43b is attached to the movable shaft 32 via a bearing. Therefore, the support shaft connecting portion 43b is configured to rotate relative to the movable shaft 32 around the axis L1.
  • the support shaft connecting portion 43b is fixed and attached to the movable shaft 32 so as not to move in the extending direction of the axis L1. And the front-end
  • the support shaft guide portion 43 c is fixed to the support frame 15.
  • the support shaft guide 43c has an insertion hole coaxial with the axis L2, and the support shaft 43a is inserted through the insertion hole. Therefore, the support shaft guide portion 43c is configured to guide the support shaft 43a in the extending direction of the axis L2.
  • the support shaft guide 43c restricts the support shaft 43a from moving on a plane orthogonal to the extending direction of the axis L2.
  • the support shaft connecting portion 43b is fixed and attached to the movable shaft 32 so as not to move in the extending direction of the axis L1, and the support shaft guide portion 43c further attaches the support shaft 43a to the axis L2. Since the holding shaft 11 and the movable shaft 32 are moved relative to the support frame 15 in the extending direction of the axis L1, the support shaft 11 and the movable shaft 32 are supported together. The shaft connecting portion 43b, the support shaft 43a, and the reflection plate 42 move relative to the support frame 15 in the extending direction of the axis L1. On the other hand, since the sensor body 41 is attached to the support frame 15 as described above, it does not move with the movement of the holding shaft 11 and the movable shaft 32.
  • the holding shaft position detection unit 14 is configured to detect the relative position of the holding shaft 11 with respect to the holding shaft driving unit 13 in the extending direction of the axis L1.
  • the support shaft connecting portion 43b is configured to rotate relative to the movable shaft 32 around the axis L1
  • the support shaft guide portion 43c further includes the support shaft 43a extending in the extending direction of the axis L2. Since it is restricted so that it does not move on the orthogonal plane, the reflector 42 and the reflector support part 43 are configured not to rotate with the movable shaft 32 even if the movable shaft 32 rotates around the axis L1. Therefore, the reflecting plate 42 does not come off from the axis L2.
  • FIG. 3 is a block diagram schematically showing the configuration of the robot controller 3.
  • the control system of the robot system 100 will be described with reference to FIG.
  • the robot controller 3 is arranged around the robot body 2 and performs position control, speed control, or current control of joint axes of the robot body 2 and control target axes other than the robot body 2.
  • the control target axis other than the robot body 2 constitutes an external axis of the robot controller 3.
  • the robot controller 3 controls the drive shaft 13a of the holding shaft drive unit 13 as an external shaft. Therefore, the robot controller 3 is configured to be able to control the drive shaft 13 a of the holding shaft drive unit 13 of the screw turning mechanism 1 so as to control the joint axis of the robot body 2.
  • the screw turning mechanism 1 can be controlled using an operation command similar to the operation command for the robot body 2, and the screw tightening robot is controlled in the control of the articulated robot. Can be controlled. Therefore, the configuration of the robot system 100 can be simplified as compared with the case where the screw turning mechanism 1 operates based on a unique operation command. Therefore, it is advantageous for manufacturing and the manufacturing cost is low.
  • the configuration of the robot controller 3 will be described in detail.
  • the robot controller 3 includes, for example, a control unit 51 having a computing unit such as a CPU, a storage unit 54 having a memory such as a ROM and a RAM, and a servo amplifier 52 corresponding to the arm driving unit 23 and the holding shaft driving unit 13. I have.
  • a control unit 51 having a computing unit such as a CPU
  • a storage unit 54 having a memory such as a ROM and a RAM
  • a servo amplifier 52 corresponding to the arm driving unit 23 and the holding shaft driving unit 13. I have.
  • the control unit 51 determines the target angular position, the target rotation speed, or the target torque, and controls the driving of the arm driving unit 23 and the holding shaft driving unit 13 via the servo amplifier.
  • the control unit 51 may be configured by a single controller that performs centralized control, or may be configured by a plurality of controllers that perform distributed control in cooperation with each other.
  • the servo amplifier 52 performs servo control of the arm drive unit 23 and the holding shaft drive unit 13 which are servo motors. That is, the servo amplifier 52 performs follow-up control so that the deviation from the current value with respect to the target angular position, target rotational speed, or target torque determined by the control unit 51 is zero.
  • the servo amplifier 52 includes a current detection unit (not shown) that detects a current value output to the arm drive unit 23 and the holding shaft drive unit 13.
  • the rotational angle position information and rotational speed information output from the encoder 23e (see FIG. 3) of the arm drive unit 23 and the encoder 13e of the holding shaft drive unit 13, and the position of the holding shaft 11 output from the holding shaft position detection unit 14.
  • Information is input to the control unit 51.
  • the current value information of the current output from the servo amplifier 52 detected by the current detection unit of the servo amplifier 52 to the arm driving unit 23 and the holding shaft driving unit 13 is also input to the control unit 51.
  • a predetermined control program is stored in the storage unit 54, and when the control unit reads and executes these control programs, the operations of the screw turning mechanism 1 and the robot body 2 are controlled. Further, the storage unit 54 has a limit current calculation table indicating the relationship between the current value output from the servo amplifier 52 to the holding shaft driving unit 13 and the tightening torque of the holding shaft driving unit 13 corresponding to the current value. T is memorized.
  • a screw removing approach position Pa a screw removing position Pb, a screw removing retracting position Pc, a temporary fastening approach position Pf, a temporary fastening approach position Pg, a final fastening approach position Ps, which will be described later, of the screw turning mechanism 1.
  • the final fastening position Pt is stored.
  • the storage unit 54 stores a third position P3, a fifth position P5, and a sixth position P6 of the holding shaft 11.
  • FIG. 4A is a flowchart showing an operation example of the robot system 100 according to the embodiment of the present invention.
  • the control unit 51 performs a screw removing operation for moving the screw turning mechanism 1 and holding the male screw 8 set (held) on the screw mounting table 110 on the holding shaft 11 (step S1). ).
  • the male screw 8 is inserted into the insertion hole 110a of the screw mounting table 110 (see FIG. 6A) and held by the screw mounting table 110.
  • the insertion hole 110a is formed to have a diameter slightly larger than the diameter of the screw shaft of the male screw 8, and is configured so that the male screw 8 can be easily pulled out.
  • step S2 when the male screw 8 is held on the holding shaft 11, the male screw 8 is then carried to a position where the female screw hole 9 to be screwed with the male screw 8 is provided, and the male screw 8 and the female screw hole 9 are moved. Are temporarily tightened and screwed (step S2).
  • step S3 a final tightening operation for tightening the male screw 8 with a predetermined tightening torque is performed (step S3).
  • the details of the screw removing operation, the temporary fastening operation, and the final fastening operation will be described.
  • FIG. 4B is a flowchart illustrating an example of the operation of the robot system 100 and describes the screw removal operation.
  • FIG. 5A to 5C are diagrams showing an operation example of the robot system 100.
  • FIG. 5A to 5C are diagrams showing an operation example of the robot system 100.
  • the control unit 51 controls the robot body 2 to position the screw turning mechanism 1 at the screw removal approach position Pa (step S11).
  • the screw removal approach position Pa is a position where the engaging portion 11a of the holding shaft 11 faces the head 8a of the male screw 8 held by the screw mounting base 110, and the axis of the male screw 8 and the axis of the holding shaft 11 This is the position where L1 matches.
  • the control unit 51 controls the robot body 2 to move the screw turning mechanism 1 along the axis L1, and position the screw turning mechanism 1 at the screw removal position Pb (step S12). ).
  • the screw removal position Pb is set on the side (the side from the base end of the holding shaft 11 toward the tip) that brings the holding shaft 11 closer to the male screw 8 in the extending direction of the axis L1 of the screw taking approach position Pa. If the angular positions around the axis L1 of the engaging portion 11a of the eleventh and the head 8a of the male screw 8 coincide, the holding shaft 11 is moved from the first position P1 to the second position against the urging force of the spring 33. It is a position that engages with the male screw 8 in a state where it is located at the third position P3 that is slightly pushed in the direction toward P2.
  • the angular position around the axis of the male screw 8 is normally set at random, so that the engaging portion 11a of the holding shaft 11 and the head 8a of the male screw 8 are set.
  • the angular positions around the axis line L1 of the two do not match.
  • the engaging portion 11 a of the holding shaft 11 of the screw turning mechanism 1 located at the screw removing position Pb does not fit into the groove of the head 8 a of the male screw 8, and does not fit into the head 8 a. It rides and is pushed further in the direction from the first position P1 to the second position P2 than the third position P3.
  • the control unit 51 determines whether or not the holding shaft 11 is located at the third position P3 based on the position information of the holding shaft 11 output from the holding shaft position detection unit 14 (step S13). As described above, if the engaging portion 11a of the holding shaft 11 and the head 8a of the male screw 8 are engaged, the holding shaft 11 is located at the third position P3. On the other hand, if the holding shaft 11 and the male screw 8 are not engaged, the holding shaft 11 is pushed further in the direction from the first position P1 to the second position P2 than the third position P3 by the distance d1. Therefore, by performing the determination, it can be determined whether the engaging portion 11a of the holding shaft 11 and the head portion 8a of the male screw 8 are engaged.
  • control unit 51 determines that the holding shaft 11 is not located at the third position P3 (No in step S13)
  • the control unit 51 then rotates the holding shaft 11 (step S14).
  • the engaging portion 11a of the holding shaft 11 is moved by the urging force of the spring 33.
  • the engaging portion 11a of the holding shaft 11 and the head 8a of the male screw 8 engage. Then, it is determined again whether or not the holding shaft 11 is positioned at the third position P3.
  • the holding shaft 11 is rotated until the angular positions around the axis L1 of the engaging portion 11a of the holding shaft 11 and the head portion 8a of the male screw 8 coincide. Thereby, the holding shaft 11 and the male screw 8 can be engaged.
  • the holding shaft 11 that is a magnet pulls the male screw 8 made of a magnetic material, and the holding shaft 11 is held by the male screw 8.
  • control unit 51 determines that the holding shaft 11 is located at the third position P3 (Yes in step S13), the control unit 51 positions the screw turning mechanism 1 at the screw removal / retraction position Pc (step S13). S15). As a result, the male screw 8 is pulled out of the screw mounting table 110. Then, the screw removing operation is finished.
  • FIG. 4C is a flowchart illustrating an operation example of the robot system 100, and describes the temporary fastening operation.
  • FIG. 6A to 6D are diagrams showing an operation example of the robot system 100.
  • FIG. 6A to 6D are diagrams showing an operation example of the robot system 100.
  • FIG. 8 shows changes in the current value output to the holding shaft drive unit 13 detected by the current detection unit of the servo amplifier 52 and the holding shaft 11 detected by the holding shaft position detection unit 14 in the operation example of the robot system 100. It is a graph which shows the change of the position of, and is a graph which shows the change in temporary fastening operation
  • the control unit 51 controls the robot body 2 to position the screw turning mechanism 1 that holds the male screw 8 on the holding shaft 11 at the temporary fastening approach position Pf (step S21).
  • the temporary fastening approach position Pf is set at a position where the tip of the male screw 8 held by the holding shaft 11 faces the end of the female screw hole 9, and the axis of the female screw hole 9 to which the male screw 8 is screwed is held. This is the position where the axis L1 of the shaft 11 coincides.
  • the control unit 51 controls the robot body 2 to move the screw turning mechanism 1 along the axis L1, and to position the screw turning mechanism 1 at the temporary fastening position Pg (step S22). ).
  • the temporary fastening position Pg is set on the side where the male screw 8 approaches the female screw hole 9 in the extending direction of the axis L1 of the temporary fastening approach position Pf (the side from the proximal end to the distal end of the holding shaft 11), and is further held. This is the position where the tip of the male screw 8 held on the shaft 11 and the end of the female screw hole 9 abut.
  • the temporary fastening position Pg is configured so that the holding shaft 11 is located at a position where the holding shaft 11 is largely pushed in the direction from the first position P1 toward the second position P2 against the urging force of the spring 33.
  • This position is preferably configured such that the distance from the first position P1 is longer than the length of the threaded portion of the screw shaft of the male screw 8.
  • the control unit 51 stores the position in the axis L1 direction of the holding shaft 11 input from the holding shaft position detection unit 14 in the storage unit 54 as the fourth position P4.
  • control unit 51 drives the holding shaft driving unit 13 to rotate the holding shaft 11 at a low speed in the tightening direction of the male screw 8 (step S23). This is a hooking operation in which the male screw 8 and the female screw hole 9 are screwed together. At this time, the control unit 51 controls at least one of the rotation angle position and the rotation speed of the holding shaft 11.
  • the control unit 51 moves the holding shaft 11 until it determines that the difference (displacement) between the position of the holding shaft 11 input from the holding shaft position detection unit 14 and the fourth position P4 is larger than a predetermined value.
  • the male screw 8 is rotated at a low speed in the tightening direction (step S24).
  • the predetermined value is preferably set to a value corresponding to the thread depth when the male screw 8 and the female screw hole 9 are securely engaged.
  • the predetermined value is 1 of the screw pitch of the male screw 8.
  • the value is / 2.
  • the holding shaft 11 is urged from the second position P2 to the first position P1 by the spring 33. Therefore, when the male screw 8 sinks into the female screw hole 9, the holding shaft 11 follows this.
  • the holding shaft 11 is configured to move from the second position P2 toward the first position P1. Therefore, the engagement state between the engagement portion 11a of the holding shaft 11 and the head portion 8a of the male screw 8 is maintained even when the female screw hole 9 is separated from the screw rotation mechanism 1. Therefore, it is possible to perform screw tightening while the screw turning mechanism 1 is positioned at a predetermined position. Therefore, the control content by the robot controller 3 can be simplified.
  • the position (rotational angle position) of the male screw 8 when the male screw 8 and the female screw hole 9 are screwed together constitutes a screwing operation start position.
  • control unit 51 rotates the holding shaft 11 in the tightening direction of the male screw 8 at a speed V1 (see FIG. 8) (step S25). At this time, the control unit 51 controls at least one of the rotation angle position and the rotation speed of the holding shaft 11.
  • the control unit 51 rotates the holding shaft 11 at the speed V1 until the holding shaft 11 is located at the fifth position P5 (step S26).
  • the position of the holding shaft 11 at the fifth position P5 is detected based on, for example, the rotational angle position of the holding shaft 11 or the position of the holding shaft 11 in the direction of the axis L1 input from the holding shaft position detector 14. .
  • control part 51 determines with the holding
  • the speed V2 is a speed lower than the speed V1 (see FIG. 8).
  • the control unit 51 controls at least one of the rotation angle position and the rotation speed of the holding shaft 11.
  • the position of the male screw 8 when the holding shaft 11 is located at the fifth position P5 constitutes the reference position.
  • control unit 51 engages the male screw 8 with the female screw hole 9 and then inserts the male screw 8 into the female screw hole 9 from the position where the male screw 8 is inserted. While the male screw is located between the reference position and the reference position, the rotation speed is higher than the rotation speed from the reference position to the screwing operation end position. Thereby, the male screw 8 and the female screw hole 9 can be quickly screwed together.
  • the control unit 51 determines whether or not the current value Ir has reached the temporary fastening current threshold value Ia (step S28). This determination is to determine whether the seating surface of the head 8a of the male screw 8 is seated as shown in FIG. 6D. That is, as shown in FIG. 8, when the seating surface of the head 8a of the male screw 8 is seated, the rotational speed of the male screw 8 is rapidly reduced or the rotation of the male screw 8 is stopped. Therefore, the difference between the target rotation angle position or target rotation speed and the current value is suddenly increased, and the servo amplifier 52 that controls the holding shaft drive unit 13 by position control or speed control is able to obtain The current supplied to the holding shaft driving unit 13 is rapidly increased so as to reduce the deviation from the current value.
  • the control unit 51 compares this value with the current value Ir using the current threshold value Ia set to a value that can capture the rapidly increasing current value, and the current value Ir is determined as the temporary fastening current.
  • the threshold value Ia By determining whether or not the threshold value Ia has been reached, it can be determined whether or not the seating surface of the head 8a of the male screw 8 has been seated.
  • the temporary fastening current threshold value Ia is set to be smaller than a final fastening current threshold value Ib described later. Accordingly, it is possible to prevent the male screw 8 from being tightened with an excessive torque, and the male screw 8 or the female screw hole 9 from being damaged.
  • the speed V2 is configured to be lower than the speed V1
  • the period from when the seating surface of the head 8a of the male screw 8 is seated to when the temporary fastening operation is finished. Therefore, it is possible to prevent the male screw 8 from being tightened by excessive torque and the male screw 8 or the female screw hole 9 from being damaged.
  • step S28 the control unit 51 rotates the holding shaft 11 (step S27), and the current value When Ir reaches the final fastening current threshold value Ib (limit current) (Yes in step S28), the rotation of the holding shaft 11 is stopped (step S29).
  • the position (rotational angle position) of the male screw 8 when the rotation of the holding shaft 11 is stopped constitutes the screwing operation end position.
  • the control unit 51 is screwed in from the screwing operation start position of the male screw 8. While the male screw 8 is located at the reference position between the start position and the screwing operation end position, the holding shaft drive is performed so that the rotation speed is higher than the rotation speed from the reference position to the screwing operation end position. It is comprised so that a part may be controlled.
  • FIG. 4D is a flowchart illustrating an operation example of the robot system 100 and describes the final fastening operation.
  • FIG. 7A and 7B are diagrams showing an example of the operation of the robot system 100.
  • FIG. 7A and 7B are diagrams showing an example of the operation of the robot system 100.
  • FIG. 9 shows changes in the current value output to the holding shaft drive unit 13 detected by the current detection unit of the servo amplifier 52 and the holding shaft 11 detected by the holding shaft position detection unit 14 in the operation example of the robot system 100. It is a graph which shows the change of this position, and is a graph which shows the change in this fastening operation
  • the control unit 51 controls the robot body 2 to position the screw turning mechanism 1 at the final fastening approach position Ps (step S31).
  • the final fastening approach position Ps is a position where the engaging portion 11a of the holding shaft 11 faces the head 8a of the male screw 8 that is screwed into the female screw hole 9, and the axis of the male screw 8 and the axis of the holding shaft 11 This is the position where L1 matches.
  • the control unit 51 controls the robot body 2 to move the screw turning mechanism 1 along the axis L1, and to position the screw turning mechanism 1 at the final fastening position Pt (step S32). ).
  • the final tightening position Pt is set on the side where the holding shaft 11 approaches the male screw 8 in the extending direction of the axis L1 of the final tightening approach position Ps (the side from the proximal end to the distal end of the holding shaft 11). If the angular positions around the axis L1 of the engaging portion 11a of the eleventh and the head 8a of the male screw 8 coincide, the holding shaft 11 is moved from the first position P1 to the second position against the urging force of the spring 33. It is a position that engages with the male screw 8 in a state of being in the sixth position P6 pushed in the direction toward P2.
  • control unit 51 executes Steps S33 to S34 to engage the holding shaft 11 and the male screw 8.
  • the operation is the same as Steps S13 to S14, and the description thereof is omitted. .
  • control unit 51 slowly rotates the holding shaft 11 in the tightening direction (step S35). At this time, the control unit 51 controls at least one of the rotation angle position and the rotation speed of the holding shaft 11.
  • control unit 51 determines whether or not the current value Ir has reached the final fastening current threshold Ib (limit current) and the holding shaft 11 has not been rotated (step S36). That is, the control unit 51 performs a determination including a determination as to whether or not the current required for the holding shaft driving unit 13 to rotationally drive the holding shaft 11 has reached the final fastening current threshold value Ib.
  • the final fastening current threshold value Ib is a value determined based on a current value corresponding to a predetermined tightening torque of the male screw 8. It is.
  • the final tightening current threshold value Ib refers to the current corresponding to the tightening torque of the male screw 8 defined in advance by referring to the limit current calculation table T stored in the storage unit 54 by the control unit 51. It is calculated by calculating. Therefore, the control unit 51 compares the final fastening current threshold value Ib with the current value Ir, and determines whether or not the current value Ir has reached the final fastening current threshold value Ib. It can be determined whether or not the male screw 8 is tightened. Further, in the present embodiment, the control unit 51 also determines whether or not the holding shaft 11 is rotating, so that the male screw 8 is tightened with a predetermined tightening torque more reliably. It can be determined whether or not.
  • the robot system 100 detects the tightening torque of the male screw 8 using the drive current of the holding shaft driving unit 13 as the external shaft of the robot controller 3, the screw tightening can be performed finely and a dedicated screw can be used. A torque sensor is unnecessary.
  • the control unit 51 can tighten the male screw 8 more accurately by simultaneously determining whether or not the displacement of the holding shaft 11 is not detected, for example, in addition to the above determination.
  • the controller 51 determines that the holding shaft 11 does not reach the final fastening current threshold value Ib (limit current) or the current value Ir has reached the final fastening current threshold value Ib (limit current). While it is determined that it is rotating (No in step S36), the holding shaft 11 is rotated (step S35), the current value Ir reaches the final fastening current threshold Ib (limit current), and the holding shaft 11 rotates. If it determines with having not carried out (in step S36 Yes), rotation of the holding shaft 11 will be stopped (step S37). The rotation of the holding shaft 11 is stopped by, for example, setting the target rotation speed to zero. In addition, it is not restricted to this, The control part 51 controls the brake device for stopping rotation of the holding shaft 11, and stops the rotation of the holding shaft 11 by applying a brake to the holding shaft 11. Also good.
  • control part 51 complete
  • control unit 51 may rotate the holding shaft 11 in the loosening direction before finishing the final tightening operation. Thereby, the engaging portion 11a of the holding shaft 11 can be easily pulled out from the groove of the head 8a of the male screw 8.
  • the robot controller 3 that controls the robot body 2 also controls the holding shaft drive unit 13. Communication according to a predetermined protocol becomes unnecessary, and the delay in the cooperative operation between the robot body 2 and the screw turning mechanism 1 can be reduced. Therefore, the screw turning operation can be performed at high speed and finely.
  • the configuration of the screw turning mechanism 1 can be simplified, which is advantageous for manufacturing and low in manufacturing cost.
  • FIG. 10 is a diagram schematically showing a configuration example of the robot system 200 according to the second embodiment of the present invention.
  • FIG. 11 is a block diagram schematically showing the configuration of the robot controller 3.
  • the robot system 200 includes a screw turning mechanism 1, a robot body 2, a robot controller 3, and a torque sensor 204.
  • the configurations of the screw turning mechanism 1, the robot main body 2, and the robot controller 3 are the same as those in the first embodiment, and a description thereof will be omitted.
  • the torque sensor 204 has an engaging portion 205 that engages with the holding shaft 11 of the screw turning mechanism 1. And the torque sensor 204 is comprised so that the load torque of the engaging part 205 may be detected. As shown in FIG. 11, the load torque value detected by the torque sensor 204 is input to the control unit 51.
  • control unit 51 controls the robot body 2 to move the holding shaft 11 to engage the holding shaft 11 with the engaging unit 205.
  • control unit 51 determines a first current value to be supplied to the holding shaft driving unit 13 and controls the current to be supplied to the holding shaft driving unit 13 at the first current value.
  • the holding shaft 11 rotates, the engaging portion 205 is tightened with a predetermined torque, and the torque sensor 204 detects the load torque.
  • control unit 51 associates the load torque value detected by the torque sensor 204 with the first current value.
  • the robot system 200 can automatically prevent a deviation between the target tightening torque of the screw and the actual tightening torque.
  • the screw turning mechanism 1 is configured such that the holding shaft 11 is urged by the spring 33 from the second position P2 toward the first position P1, and the male screw 8 is inserted into the female screw hole 9.
  • the holding shaft 11 is configured to move from the second position P2 toward the first position P1 following this.
  • the robot body 2 urges the holding shaft 11 from the second position P2 toward the first position P1, and the male screw 8 sinks into the female screw hole 9, the screw turning mechanism follows this.
  • the control unit 51 may control the robot body 2 such that one holding shaft 11 moves from the second position P2 toward the first position P1.
  • the position of the holding shaft 11 of the screw turning mechanism 1 is detected based on the angle axis of the joint axis of the robot body 2. May be.
  • the holding shaft 11 is configured to be urged by the spring 33 from the second position P2 toward the first position P1.
  • the holding shaft 11 may be configured to be biased from the second position P2 toward the first position P1 by a driving force of a driving unit such as a servo motor. Accordingly, the holding shaft 11 can be urged with an arbitrary urging force, so that the screw turning operation can be performed more finely.
  • control unit 51 replaces the screw turning mechanism 1 and the robot main body 2 so that the holding shaft 11 attached to the movable shaft 32 is replaced with one having a shape corresponding to the type of the male screw 8. It may be configured to control.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Robotics (AREA)
  • Human Computer Interaction (AREA)
  • Manipulator (AREA)

Abstract

This robot system is equipped with: a screw-driving mechanism (1) that has a holding shaft (11) with a leading end formed in a shape complementary to the head (8a) of an external thread (8) so that when engaged with the head of the external thread, the positional relation with the external thread about the axis of the external thread is fixed, and a holding shaft drive unit (13) rotatively driving the holding shaft about the axis of the holding shaft; a robot body (2) that holds and moves the screw-driving mechanism; and a robot controller (3) that controls the robot body and controls the holding shaft drive unit as an external shaft which performs work in cooperation with the robot body.

Description

ロボットシステムRobot system
 本発明は、ロボットシステムに関する。 The present invention relates to a robot system.
 従来からロボットにより螺子の締付を行う装置が知られている(例えば特許文献1参照)。 2. Description of the Related Art Conventionally, an apparatus for fastening a screw by a robot is known (for example, see Patent Document 1).
 この装置は、ロボット本体と、ナットランナー制御部によって制御されるナットランナーと、ロボット本体及びナットランナー制御部に接続され、ロボット本体及びナットランナー制御部に指令信号を出力することによりナットランナー制御部を介してナットランナーを制御するロボット制御部を備える。これによって、螺子の締め付けを自動で行うことができる。 This device is connected to the robot main body, the nut runner controlled by the nut runner control section, the robot main body and the nut runner control section, and outputs a command signal to the robot main body and the nut runner control section. A robot control unit for controlling the nut runner via the. As a result, the screw can be automatically tightened.
特開2002-331428号公報JP 2002-331428 A
 一方、近年、ロボットによる螺子の締付をますます高速に且つきめ細かく行うことが求められている。しかし、従来の装置では、ナットランナーとロボットとの協調を高速に且つきめ細かく行うことが困難であるという課題があった。 On the other hand, in recent years, it has been demanded that the screw tightening by the robot be performed more rapidly and finely. However, the conventional apparatus has a problem that it is difficult to perform the cooperation between the nut runner and the robot at high speed and finely.
 上記課題を解決するため、本発明のある態様に係るロボットシステムは、先端が雄螺子の頭部と相補的な形状に形成され、該雄螺子の頭部と係合することによって、前記雄螺子に対する前記雄螺子の軸線周りの位置関係が固定される保持軸と、前記保持軸を該保持軸の軸線周りに回転駆動する保持軸駆動部と、を有する螺子回し機構と、前記螺子回し機構を保持し、前記螺子回し機構を移動させるロボット本体と、前記ロボット本体を制御し、且つ前記ロボット本体と協調して作業を行う外部軸として前記保持軸駆動部を制御するロボットコントローラと、を備える。 In order to solve the above-described problem, a robot system according to an aspect of the present invention is configured such that a tip is formed in a shape complementary to a head of a male screw, and the male screw is engaged with the head of the male screw. A screw turning mechanism having a holding shaft in which a positional relationship around the axis of the male screw is fixed, and a holding shaft drive unit that drives the holding shaft to rotate about the axis of the holding shaft, and the screw turning mechanism A robot main body that holds and moves the screw turning mechanism; and a robot controller that controls the robot main body and controls the holding shaft driving unit as an external shaft that performs work in cooperation with the robot main body.
 この構成によれば、ロボット本体を制御するロボットコントローラが保持軸駆動部をも制御するので、従来技術のような2つのコントローラ間のやりとりのための所定のプロトコルによる通信が不要になり、ロボット本体と螺子回し機構との協調動作の遅延を少なくすることができる。よって、螺子回し作業を高速に且つきめ細かく行うことができる。 According to this configuration, since the robot controller that controls the robot body also controls the holding axis drive unit, communication according to a predetermined protocol for communication between the two controllers as in the prior art becomes unnecessary. And the delay in the cooperative operation between the screw turning mechanism and the screw turning mechanism can be reduced. Therefore, the screw turning operation can be performed at high speed and finely.
 また、螺子回し機構の構成を簡素化することができ、製造に有利、且つ製造コストも安価となる。 Also, the configuration of the screw turning mechanism can be simplified, which is advantageous for manufacturing and low in manufacturing cost.
 前記ロボット本体は、多関節ロボットであってもよい。 The robot body may be an articulated robot.
 この構成によれば、多関節ロボットの制御の中で、螺子締めロボットを制御することができる。 According to this configuration, the screw tightening robot can be controlled during the control of the articulated robot.
 前記ロボットコントローラは、前記保持部と係合した雄螺子の締め動作を行う際に、前記保持軸の回転角度位置及び回転速度の少なくとも一方を制御し、且つ前記保持軸駆動部が前記保持軸を回転駆動するための電流が目標トルクに対応する制限電流に達したか否かの判定に基づいて前記保持軸の回転駆動を停止するように前記螺子回し機構を制御してもよい。 The robot controller controls at least one of a rotation angle position and a rotation speed of the holding shaft when performing a tightening operation of the male screw engaged with the holding portion, and the holding shaft driving portion controls the holding shaft. The screw turning mechanism may be controlled so as to stop the rotational driving of the holding shaft based on the determination as to whether or not the current for rotational driving has reached the limit current corresponding to the target torque.
 この構成によれば、ロボットコントローラの外部軸としての保持軸駆動部の駆動電流を利用して螺子の締め付けトルクを検出するので、螺子締めをきめ細かく行うことができ、且つ専用のトルクセンサが不要になる。 According to this configuration, since the tightening torque of the screw is detected using the drive current of the holding shaft drive unit as the external shaft of the robot controller, the screw tightening can be performed finely and a dedicated torque sensor is not required. Become.
 前記ロボットコントローラに接続され、前記保持軸と係合する係合部を有し、該係合部の負荷トルクを検出するトルクセンサを更に備え、前記ロボットコントローラは、前記保持軸を移動させて該保持軸と前記係合部とを係合させ、前記保持軸駆動部に所定の電流が供給されるよう制御し、該電流と前記トルクセンサが検出した前記負荷トルクとを関連付けて前記テーブルを作成し、該テーブルに基づいて前記制限電流を算出してもよい。 The robot controller further includes an engaging portion that engages with the holding shaft and detects a load torque of the engaging portion, and the robot controller moves the holding shaft to move the holding shaft. The holding shaft and the engaging portion are engaged, and control is performed so that a predetermined current is supplied to the holding shaft driving portion, and the current and the load torque detected by the torque sensor are associated to create the table. The limit current may be calculated based on the table.
 この構成によれば、螺子の目標締付トルクと実際の締付トルクの乖離を自動で防止することができる。 According to this configuration, the deviation between the target tightening torque of the screw and the actual tightening torque can be automatically prevented.
 前記ロボットコントローラは、前記雄螺子と該雄螺子に対応する雌螺子孔とを螺合させた後に前記雄螺子を前記雌螺子に螺入させる際に、前記雄螺子の螺入動作開始位置から該螺入動作開始位置と螺入動作終了位置との間の基準位置に前記雄螺子が位置している間は該基準位置から螺入動作終了位置までの回転速度よりも回転速度が高くなるように前記保持軸駆動部を制御してもよい。 The robot controller, when screwing the male screw into the female screw after screwing the male screw and the female screw hole corresponding to the male screw, from the screwing operation start position of the male screw. While the male screw is positioned at the reference position between the screwing operation start position and the screwing operation end position, the rotation speed is higher than the rotation speed from the reference position to the screwing operation end position. The holding shaft driving unit may be controlled.
 この構成によれば、螺子締めを迅速に行うことができる。 According to this configuration, the screw can be fastened quickly.
 前記保持軸は、前記保持軸駆動部に対し、回転力受け取り可能で且つ該保持軸の軸線方向に所定距離相対的に移動可能に構成され、前記保持軸駆動部に対し前記保持軸を基端から先端に向う方向に付勢する付勢部と、前記保持軸の軸線方向における前記保持軸の前記保持軸駆動部に対する相対的な位置を検出する位置検出部と、を更に備えていてもよい。 The holding shaft is configured to be capable of receiving a rotational force with respect to the holding shaft driving unit and movable relative to the holding shaft driving unit by a predetermined distance in an axial direction of the holding shaft. And an urging portion that urges in the direction from the tip to the tip, and a position detection portion that detects a relative position of the holding shaft with respect to the holding shaft driving portion in the axial direction of the holding shaft. .
 この構成によれば、螺子締め中に保持軸駆動部を所定位置に位置させたまま螺子締めを行うことができるので、ロボットコントローラによる制御を簡素化することができる。 According to this configuration, since the screw tightening can be performed while the holding shaft driving unit is positioned at a predetermined position during the screw tightening, the control by the robot controller can be simplified.
 上記課題を解決するため、本発明のある態様に係るロボットシステムの制御方法は、先端が雄螺子の頭部と相補的な形状に形成され、該雄螺子の頭部と係合することによって、前記雄螺子に対する前記雄螺子の軸線周りの位置関係が固定される保持軸と、前記保持軸を該保持軸の軸線周りに回転駆動する保持軸駆動部と、を有する螺子回し機構と、前記螺子回し機構を保持し、前記螺子回し機構を移動させるロボット本体と、前記ロボット本体を制御し、且つ前記ロボット本体と協調して作業を行う外部軸として前記保持軸駆動部を制御するロボットコントローラと、を備え、前記ロボットコントローラは、前記保持部と係合した雄螺子の締め動作を行う際に、前記保持軸の回転角度位置に位置及び回転速度の少なくとも一方を制御し、且つ前記保持軸駆動部が前記保持軸を回転駆動するための電流が目標トルクに対応する制限電流に達したか否かの判定に基づいて前記保持軸の回転駆動を停止するように前記螺子回し機構を制御するよう構成されている。 In order to solve the above problems, a control method of a robot system according to an aspect of the present invention is such that a tip is formed in a shape complementary to a head of a male screw and is engaged with the head of the male screw. A screw turning mechanism comprising: a holding shaft in which a positional relationship around the axis of the male screw relative to the male screw is fixed; and a holding shaft driving unit that rotationally drives the holding shaft about the axis of the holding shaft; and the screw A robot body that holds a turning mechanism and moves the screw turning mechanism; a robot controller that controls the robot body and controls the holding shaft drive unit as an external shaft that performs work in cooperation with the robot body; The robot controller controls at least one of a position and a rotation speed at a rotation angle position of the holding shaft when performing a tightening operation of the male screw engaged with the holding portion; and The screw turning mechanism to stop the rotation driving of the holding shaft based on the determination as to whether or not the current for driving the holding shaft to rotate the holding shaft has reached the limit current corresponding to the target torque. Is configured to control.
 この構成によれば、ロボットコントローラの外部軸としての保持軸駆動部の駆動電流を利用して螺子の締め付けトルクを検出するので、螺子締めをきめ細かく行うことができ、且つ専用のトルクセンサが不要になる。 According to this configuration, since the tightening torque of the screw is detected using the drive current of the holding shaft drive unit as the external shaft of the robot controller, the screw tightening can be performed finely and a dedicated torque sensor is not required. Become.
  前記ロボットコントローラに接続され、前記保持軸と係合する係合部を有し、該係合部の負荷トルクを検出するトルクセンサを更に備え、前記ロボットコントローラは、前記保持軸を移動させて該保持軸と前記係合部とを係合させ、前記保持軸駆動部に所定の電流が供給されるよう制御し、該電流と前記トルクセンサが検出した前記負荷トルクとを関連付けて前記テーブルを作成し、該テーブルに基づいて前記制限電流を算出してもよい。 The robot controller further includes an engaging portion that engages with the holding shaft and detects a load torque of the engaging portion, and the robot controller moves the holding shaft to move the holding shaft. The holding shaft and the engaging portion are engaged, and control is performed so that a predetermined current is supplied to the holding shaft driving portion, and the current and the load torque detected by the torque sensor are associated to create the table. The limit current may be calculated based on the table.
 この構成によれば、螺子の目標締付トルクと実際の締付の乖離を自動で防止することができる。 According to this configuration, it is possible to automatically prevent a deviation between the target tightening torque of the screw and the actual tightening.
 前記ロボットコントローラは、前記雄螺子と該雄螺子に対応する雌螺子孔とを螺合させた後に前記雄螺子を前記雌螺子に螺入させる際に、前記雄螺子の螺入動作開始位置から該螺入動作開始位置と螺入動作終了位置との間の基準位置に前記雄螺子が位置している間は該基準位置から螺入動作終了位置までの回転速度よりも速度が高くなるように前記保持軸駆動部を制御してもよい。 The robot controller, when screwing the male screw into the female screw after screwing the male screw and the female screw hole corresponding to the male screw, from the screwing operation start position of the male screw. While the male screw is located at the reference position between the screwing operation start position and the screwing operation end position, the speed is higher than the rotational speed from the reference position to the screwing operation end position. The holding shaft driving unit may be controlled.
 この構成によれば、螺子締めを迅速に行うことができる。 According to this configuration, the screw can be fastened quickly.
 本発明は、螺子回し作業を高速に且つきめ細かく行うことができるという効果を奏する。 The present invention has an effect that the screw turning operation can be performed at high speed and finely.
本発明の実施の形態1に係るロボットシステムの構成例を概略的に示す図である。It is a figure which shows roughly the structural example of the robot system which concerns on Embodiment 1 of this invention. 図1のロボットシステムの螺子回し機構の構成例を示す要部断面図であるIt is principal part sectional drawing which shows the structural example of the screwing mechanism of the robot system of FIG. 図1のロボットシステムのロボットコントローラの構成例を概略的に示すブロック図である。FIG. 2 is a block diagram schematically showing a configuration example of a robot controller of the robot system of FIG. 1. 図1のロボットシステムの動作例を示すフローチャートである。It is a flowchart which shows the operation example of the robot system of FIG. 図1のロボットシステムの動作例を示すフローチャートである。It is a flowchart which shows the operation example of the robot system of FIG. 図1のロボットシステムの動作例を示すフローチャートである。It is a flowchart which shows the operation example of the robot system of FIG. 図1のロボットシステムの動作例を示すフローチャートである。It is a flowchart which shows the operation example of the robot system of FIG. 図1のロボットシステムの動作例を示す図であり、螺子取り動作の動作例を示す図である。It is a figure which shows the operation example of the robot system of FIG. 1, and is a figure which shows the operation example of screw removal operation | movement. 図1のロボットシステムの動作例を示す図であり、螺子取り動作の動作例を示す図である。It is a figure which shows the operation example of the robot system of FIG. 1, and is a figure which shows the operation example of screw removal operation | movement. 図1のロボットシステムの動作例を示す図であり、螺子取り動作の動作例を示す図である。It is a figure which shows the operation example of the robot system of FIG. 1, and is a figure which shows the operation example of screw removal operation | movement. 図1のロボットシステムの動作例を示す図であり、仮締め動作の動作例を示す図である。It is a figure which shows the operation example of the robot system of FIG. 1, and is a figure which shows the operation example of temporary fastening operation | movement. 図1のロボットシステムの動作例を示す図であり、仮締め動作の動作例を示す図である。It is a figure which shows the operation example of the robot system of FIG. 1, and is a figure which shows the operation example of temporary fastening operation | movement. 図1のロボットシステムの動作例を示す図であり、仮締め動作の動作例を示す図である。It is a figure which shows the operation example of the robot system of FIG. 1, and is a figure which shows the operation example of temporary fastening operation | movement. 図1のロボットシステムの動作例を示す図であり、仮締め動作の動作例を示す図である。It is a figure which shows the operation example of the robot system of FIG. 1, and is a figure which shows the operation example of temporary fastening operation | movement. 図1のロボットシステムの動作例を示す図であり、本締め動作の動作例を示す図である。示す図である。It is a figure which shows the operation example of the robot system of FIG. 1, and is a figure which shows the operation example of this fastening operation | movement. FIG. 図1のロボットシステムの動作例を示す図であり、本締め動作の動作例を示す図である。It is a figure which shows the operation example of the robot system of FIG. 1, and is a figure which shows the operation example of this fastening operation | movement. 図1のロボットシステムの動作例における、サーボアンプの電流検出部が検出した保持軸駆動部に対して出力する電流値の変化、及び保持軸位置検出部が検出した保持軸の位置の変化を示すグラフであり、仮締め動作における変化を示すグラフである。1 shows changes in the current value output to the holding shaft drive unit detected by the current detection unit of the servo amplifier and changes in the position of the holding shaft detected by the holding shaft position detection unit in the operation example of the robot system of FIG. It is a graph and is a graph which shows the change in temporary fastening operation. 図1のロボットシステムの動作例における、サーボアンプの電流検出部が検出した保持軸駆動部に対して出力する電流値の変化、及び保持軸位置検出部が検出した保持軸の位置の変化を示すグラフであり、本締め動作における変化を示すグラフである。1 shows changes in the current value output to the holding shaft drive unit detected by the current detection unit of the servo amplifier and changes in the position of the holding shaft detected by the holding shaft position detection unit in the operation example of the robot system of FIG. It is a graph and is a graph which shows the change in this fastening operation | movement. 本発明の実施の形態2に係るロボットシステムの制御方法の構成例を概略的に示す図である。It is a figure which shows roughly the structural example of the control method of the robot system which concerns on Embodiment 2 of this invention. 図10のロボットシステムの制御方法のロボットコントローラの構成例を概略的に示すブロック図である。It is a block diagram which shows roughly the structural example of the robot controller of the control method of the robot system of FIG. 図10のロボットシステムの制御方法の制限電流算出テーブルを示す図である。It is a figure which shows the limiting current calculation table of the control method of the robot system of FIG.
 (本発明の着眼点)
 本発明者等は、ロボットによる螺子の締付を高速に且つきめ細かく行うことを鋭意検討した。そして、従来技術には以下の欠点が存在することに着眼した。
(Focus point of the present invention)
The present inventors have intensively studied to perform screw tightening by a robot at high speed and finely. The conventional technology has been observed to have the following drawbacks.
 螺子締め作業は、一般的に、仮締め及び本締め、螺子の螺子孔への螺入時における回転速度調整、締め付けトルクの管理等を含む。具体的に説明すると、2つの物品を複数の螺子を用いて締結する場合、締付力を均一に分散するために、複数の螺子を仮締めした後本締めする。この場合、ナットランナーをロボットにより複数の螺子締め箇所へ順次移動させながら螺子締めを行うが、そのためには、螺子締めの都度、螺子締め箇所に到達したことをロボットがナットランナーに通知し、且つ螺子締め作業が終了したことをナットランナーがロボットに通知する必要がある。また、螺子を螺子孔に螺入する場合、確実に螺子の軸心と螺子孔の中心軸とを一致させるために、低い回転速度で螺子を螺子孔に螺入し、その後、回転速度を所定の回転速度に上げて螺子を締め付ける。この場合、螺子締めが進行するに連れて螺子が前進する。もし、ナットランナーにおける螺子への回転力の伝達部位であるソケットを螺子の前進に追従させるためにナットランナーをロボットによって移動させる方法を採用するのであれば、螺子の前進に関する情報(回転速度、螺子の位置等)をリアルタイムでナットランナーがロボットに提供する必要がある。また、螺子締めの質を担保するために、締め付けトルクを管理するが、この場合、ナットランナーが、締め付けトルクを検知してそれが許容範囲内にあることをロボットに通知する必要がある。 The screw tightening operation generally includes temporary tightening and final tightening, rotation speed adjustment when the screw is screwed into the screw hole, tightening torque management, and the like. Specifically, when two articles are fastened using a plurality of screws, the plurality of screws are temporarily tightened and then finally tightened in order to uniformly disperse the tightening force. In this case, the nut runner is screwed while moving the nut runner sequentially to a plurality of screw tightening locations by the robot.To that end, the robot notifies the nut runner that the screw tightening location has been reached each time the screw is tightened, and The nut runner needs to notify the robot that the screw tightening operation has been completed. Further, when the screw is screwed into the screw hole, the screw is screwed into the screw hole at a low rotational speed in order to ensure that the axial center of the screw and the central axis of the screw hole coincide with each other. Tighten the screw by increasing the rotation speed to. In this case, the screw advances as the screw tightening proceeds. If the nut runner is moved by a robot in order to follow the advance of the screw, the socket, which is the transmission part of the rotational force to the screw in the nut runner, information on the advance of the screw (rotation speed, screw) The nut runner must provide the robot with the real-time position of the robot in real time. In order to ensure the quality of screw tightening, the tightening torque is managed. In this case, the nut runner needs to detect the tightening torque and notify the robot that it is within the allowable range.
 このように、ナットランナーをロボットに装着して螺子締め作業を行う場合、ナットランナーとロボットとが協調する必要がある。 As described above, when the nut runner is attached to the robot and the screw fastening operation is performed, it is necessary that the nut runner and the robot cooperate.
 しかし、ナットランナーとロボットとは、それぞれ別個のコントローラによって制御され、且つ2つのコントローラ間の指令やデータ等のやりとりは所定のプロトコルによる通信によって行われる。そのため、2つのコントローラ間の指令やデータ等のやりとりに時間を要することから、ナットランナーとロボットとの協調を高速に且つきめ細かく行うことが困難である。 However, the nut runner and the robot are controlled by separate controllers, and exchange of commands and data between the two controllers is performed by communication according to a predetermined protocol. Therefore, since it takes time to exchange commands and data between the two controllers, it is difficult to coordinate the nut runner and the robot at high speed and finely.
 そこで、本発明者等は、この従来技術の欠点を克服すべく、先端が雄螺子の頭部と相補的な形状に形成され、該雄螺子の頭部と係合することによって、前記雄螺子に対する前記雄螺子の軸線周りの位置関係が固定される保持軸と、前記保持軸を該保持軸の軸線周りに回転駆動する保持軸駆動部と、を有する螺子回し機構と、前記螺子回し機構を保持し、前記螺子回し機構を移動させるロボット本体と、前記ロボット本体を制御し、且つ前記ロボット本体と協調して作業を行う外部軸として前記保持軸駆動部を制御するロボットコントローラと、を備える、ロボットシステムの発明を想到した。 In order to overcome the disadvantages of the prior art, the present inventors have formed a tip having a shape complementary to the head of the male screw and engaged with the head of the male screw. A screw turning mechanism having a holding shaft in which a positional relationship around the axis of the male screw is fixed, and a holding shaft drive unit that drives the holding shaft to rotate about the axis of the holding shaft, and the screw turning mechanism A robot main body that holds and moves the screw turning mechanism; and a robot controller that controls the robot main body and controls the holding shaft driving unit as an external shaft that performs work in cooperation with the robot main body. He came up with the invention of the robot system.
 本発明によれば、ロボット本体を制御するロボットコントローラが保持軸駆動部をも制御するので、従来技術のような2つのコントローラ間のやりとりのための所定のプロトコルによる通信が不要になり、ロボット本体と螺子回し機構との協調動作の遅延を少なくすることができる。よって、螺子回し作業を高速に且つきめ細かく行うことができる。また、螺子回し機構の構成を簡素化することができ、製造に有利、且つ製造コストも安価となる。 According to the present invention, since the robot controller that controls the robot body also controls the holding shaft drive unit, communication according to a predetermined protocol for communication between the two controllers as in the prior art becomes unnecessary. And the delay in the cooperative operation between the screw turning mechanism and the screw turning mechanism can be reduced. Therefore, the screw turning operation can be performed at high speed and finely. Further, the configuration of the screw turning mechanism can be simplified, which is advantageous for manufacturing and low in manufacturing cost.
 以下、本発明の実施の形態について、図面を参照しながら説明する。なお、本実施の形態によって本発明が限定されるものではない。また、以下では、全ての図を通じて、同一又は相当する要素には同一の参照符号を付して、その重複する説明を省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the present embodiment. In the following description, the same or corresponding elements are denoted by the same reference symbols throughout the drawings, and redundant description thereof is omitted.
 (実施の形態1)
 図1は、本発明の実施の形態1に係るロボットシステム100の構成例を概略的に示す図である。
(Embodiment 1)
FIG. 1 is a diagram schematically showing a configuration example of a robot system 100 according to the first embodiment of the present invention.
 ロボットシステム100は、螺子の締付作業に用いることができるものである。 The robot system 100 can be used for screw tightening work.
 図1に示すように、ロボットシステム100は、螺子回し機構1と、ロボット本体2と、ロボットコントローラ3とを備える。 As shown in FIG. 1, the robot system 100 includes a screw turning mechanism 1, a robot body 2, and a robot controller 3.
 [ロボット本体]
 ロボット本体2は、例えば、多関節型の産業用ロボット(多関節ロボット)である。ロボット本体2は、基部21と、多関節のアーム22と、アーム駆動部23(図3参照)とを有する。
[Robot body]
The robot body 2 is, for example, an articulated industrial robot (articulated robot). The robot body 2 includes a base 21, an articulated arm 22, and an arm driving unit 23 (see FIG. 3).
 基部21は、床面等の載置面に設置される台であり、アーム22を支えている。 The base 21 is a table installed on a mounting surface such as a floor surface and supports the arm 22.
 アーム22は、例えば、複数の関節を備え、基端部が基部21に対して回動可能に連結されている。 The arm 22 includes, for example, a plurality of joints, and a base end portion is rotatably connected to the base portion 21.
 アーム駆動部23は、駆動軸を回転駆動させることにより、螺子回し機構1を動作領域内の所定位置に位置させるようにアーム22の関節軸を駆動し、螺子回し機構1を移動させる。アーム駆動部23は、アーム駆動部23の駆動軸の回転角度位置、回転速度を検出するエンコーダ23e(図3参照)を備える。 The arm driving unit 23 drives the joint shaft of the arm 22 to move the screw turning mechanism 1 so that the screw turning mechanism 1 is positioned at a predetermined position in the operation region by rotating the drive shaft. The arm drive unit 23 includes an encoder 23e (see FIG. 3) that detects the rotation angle position and rotation speed of the drive shaft of the arm drive unit 23.
 [螺子回し機構]
 図2は、ロボットシステム100の螺子回し機構1の構成例を示す要部断面図である。
[Screw turning mechanism]
FIG. 2 is a cross-sectional view of an essential part showing a configuration example of the screw turning mechanism 1 of the robot system 100.
 図2に示すように、螺子回し機構1は、保持軸11と、保持軸駆動部13とを備える。また、本実施の形態において、螺子回し機構1は、軸支持部12と、保持軸位置検出部14と、支持枠15を備える。 As shown in FIG. 2, the screw turning mechanism 1 includes a holding shaft 11 and a holding shaft driving unit 13. In the present embodiment, the screw turning mechanism 1 includes a shaft support portion 12, a holding shaft position detection portion 14, and a support frame 15.
 保持軸11は、先端部に雄螺子8の頭部8aと係合する係合部11aを有する。係合部11aは、保持軸11の軸線L1の延在方向から見て、例えば略正六角形の凸状に形成されている。また、雄螺子8の頭部8aには雄螺子8の軸方向から見て、略正六角形の溝が形成され、係合部11aと相補的な形状に形成されている。すなわち、係合部11a及び雄螺子8の頭部8aは、互いの軸線及び軸線L1周りの角度位置(位相)を一致させることにより、係合させることができるようになっている。そして、係合部11aと雄螺子8の頭部8aを係合させることによって、雄螺子8に対する雄螺子8の軸線周りの相対的な位置関係が固定されるように構成されている。通常、保持軸11の係合部11aが雄螺子8の頭部8aの形状に応じた形状となるように、保持軸11は使用する雄螺子8の種類に応じて複数用意される。 The holding shaft 11 has an engaging portion 11a that engages with the head 8a of the male screw 8 at the tip. The engaging portion 11a is formed in a substantially regular hexagonal convex shape, for example, when viewed from the extending direction of the axis L1 of the holding shaft 11. Further, when viewed from the axial direction of the male screw 8, a substantially regular hexagonal groove is formed in the head 8a of the male screw 8, and is formed in a shape complementary to the engaging portion 11a. That is, the engaging portion 11a and the head portion 8a of the male screw 8 can be engaged with each other by matching the axis and the angular position (phase) around the axis L1. Then, by engaging the engaging portion 11a with the head 8a of the male screw 8, the relative positional relationship around the axis of the male screw 8 with respect to the male screw 8 is fixed. Usually, a plurality of holding shafts 11 are prepared according to the type of male screw 8 to be used so that the engaging portion 11a of the holding shaft 11 has a shape corresponding to the shape of the head 8a of the male screw 8.
 また、保持軸11は、基端部に後述する軸支持部12の先端部に着脱可能に構成された接続部11bを有する。 Also, the holding shaft 11 has a connecting portion 11b configured to be detachable from a distal end portion of a shaft support portion 12 described later at a proximal end portion.
 また、保持軸11は、磁石であり、磁性体で構成された雄螺子8を引き寄せることができるように構成されている。よって、係合部11aと雄螺子8の頭部8aとを係合させることによって、雄螺子8を保持軸11に係止することができる。 Further, the holding shaft 11 is a magnet and is configured to be able to draw the male screw 8 made of a magnetic material. Therefore, the male screw 8 can be locked to the holding shaft 11 by engaging the engaging portion 11 a with the head 8 a of the male screw 8.
 軸支持部12は、保持軸11を支持し、保持軸駆動部13の回転駆動力を保持軸11に伝達する。本実施の形態において、軸支持部12は、固定軸31と、可動軸32と、ばね33とを有する。 The shaft support unit 12 supports the holding shaft 11 and transmits the rotational driving force of the holding shaft driving unit 13 to the holding shaft 11. In the present embodiment, the shaft support portion 12 includes a fixed shaft 31, a movable shaft 32, and a spring 33.
 固定軸31は、軸線L1の延在方向に延びる棒状に形成されている。 The fixed shaft 31 is formed in a rod shape extending in the extending direction of the axis L1.
 可動軸32は、軸線L1の延在方向に延びる棒状に形成されている。可動軸32は、先端部に、接続部32aを有する。接続部32aは、保持軸11の接続部11bに着脱可能に構成され、保持軸11を係合部11aの形状が使用する雄螺子8の種類に応じた形状のものに交換することができるようになっている。 The movable shaft 32 is formed in a rod shape extending in the extending direction of the axis L1. The movable shaft 32 has a connection portion 32a at the tip. The connecting portion 32a is configured to be detachable from the connecting portion 11b of the holding shaft 11, so that the holding shaft 11 can be replaced with a shape corresponding to the type of male screw 8 used by the shape of the engaging portion 11a. It has become.
 また、可動軸32の接続部32a、及び保持軸11を係合部11aは、可動軸32の接続部32aに保持軸11の接続部11bを取り付けることによって、少なくとも、軸線L1周りの相対的な位置関係が固定されるように構成されている。したがって、可動軸32を回転させると、同時に保持軸11も回転するように構成されている。 Further, the connecting portion 32a of the movable shaft 32 and the engaging portion 11a of the holding shaft 11 are attached with the connecting portion 11b of the holding shaft 11 to the connecting portion 32a of the movable shaft 32, so that at least relative to the axis L1. The positional relationship is fixed. Therefore, when the movable shaft 32 is rotated, the holding shaft 11 is also rotated at the same time.
 また、可動軸32は、基端部に係合凹部32bを有する。係合凹部32bは、軸線L1の延在方向から見て、固定軸31の先端部に嵌められ、固定軸31に対して軸線L1の延在方向に摺動させることができるように構成されている。これによって、保持軸11は、第1位置P1と、第1位置P1から軸線L1の保持軸11の先端から基端に向かう方向に動かし、固定軸31の基端に近づけた第2位置P2との間を動かすことができるように構成されている。すなわち、保持軸11は、保持軸駆動部13に対し、回転力受け取り可能で且つ保持軸11の軸線方向に距離D1相対的に移動可能に構成されている。 Further, the movable shaft 32 has an engaging recess 32b at the base end. The engagement recess 32b is configured to be fitted to the distal end portion of the fixed shaft 31 as viewed from the extending direction of the axis L1 and to be slid with respect to the fixed shaft 31 in the extending direction of the axis L1. Yes. As a result, the holding shaft 11 is moved in the direction from the first position P1 to the base end of the holding shaft 11 on the axis L1 from the first position P1, and the second position P2 close to the base end of the fixed shaft 31. It is configured to be able to move between. In other words, the holding shaft 11 is configured to be able to receive a rotational force with respect to the holding shaft driving unit 13 and to be movable relative to the distance D1 in the axial direction of the holding shaft 11.
 そして、可動軸32の係合凹部32bは、軸線L1の延在方向から見て、固定軸31の先端部と相補的な形状に形成され、可動軸32と固定軸31とは、軸線L1周りの相対的な位置関係が固定されるように構成されている。具体的には、係合凹部32b及び固定軸31の先端部が、互いに微小な隙間を有して嵌合する非円形(例えば多角形、外周に凹凸を有する円形等)の断面を有するように形成される。したがって、固定軸31を回転させると、固定軸31と共に可動軸32及び保持軸11が回転するように構成されている。 The engaging recess 32b of the movable shaft 32 is formed in a shape complementary to the distal end portion of the fixed shaft 31 when viewed from the extending direction of the axis L1, and the movable shaft 32 and the fixed shaft 31 are formed around the axis L1. The relative positional relationship is fixed. Specifically, the engaging recess 32b and the distal end of the fixed shaft 31 have a non-circular cross section (for example, a polygon, a circle having irregularities on the outer periphery, etc.) that fits with a minute gap therebetween. It is formed. Therefore, when the fixed shaft 31 is rotated, the movable shaft 32 and the holding shaft 11 are configured to rotate together with the fixed shaft 31.
 ばね33は、圧縮コイルばねであり、固定軸31の外側であって、固定軸31の基端部と可動軸32の基端部との間に位置するように固定軸31に嵌められ、両端部がそれぞれ固定軸31の基端部及び可動軸32の基端部に当接している。したがって、ばね33は、固定軸31の基端部と可動軸32の基端部とを互いに離間するように付勢している。したがって、通常の状態において、可動軸32は、第1位置P1に位置するように構成され、保持軸11が第1位置P1から第2位置P2に向かって押し付けられることによって、ばね33の付勢力に抗して保持軸11が第1位置P1から第2位置P2に向かって移動するように構成されている。 The spring 33 is a compression coil spring and is fitted to the fixed shaft 31 so as to be located outside the fixed shaft 31 and between the proximal end portion of the fixed shaft 31 and the proximal end portion of the movable shaft 32. The portions are in contact with the base end of the fixed shaft 31 and the base end of the movable shaft 32, respectively. Accordingly, the spring 33 biases the base end portion of the fixed shaft 31 and the base end portion of the movable shaft 32 so as to be separated from each other. Accordingly, in a normal state, the movable shaft 32 is configured to be positioned at the first position P1, and the biasing force of the spring 33 is pressed by pressing the holding shaft 11 from the first position P1 toward the second position P2. Against this, the holding shaft 11 is configured to move from the first position P1 toward the second position P2.
 なお、ばね33は、圧縮コイルばねに限定されない。例えば、引張コイルばねを用いて、通常の状態において、可動軸32は、第1位置P1に位置するように構成され、保持軸11が第1位置P1から第2位置P2に向かって押し付けられることによって、ばね33の付勢力に抗して保持軸11が第1位置P1から第2位置P2に向かって移動するように構成してもよい。また、ばね33は、コイルばねに限定されるものではなく、ガスばねでもよい。 Note that the spring 33 is not limited to a compression coil spring. For example, the movable shaft 32 is configured to be positioned at the first position P1 in a normal state using a tension coil spring, and the holding shaft 11 is pressed from the first position P1 toward the second position P2. Accordingly, the holding shaft 11 may be configured to move from the first position P1 toward the second position P2 against the urging force of the spring 33. The spring 33 is not limited to a coil spring, and may be a gas spring.
 なお、第1位置P1は、第1位置P1に位置する可動軸32が支持枠15のガイド部15a又はその近傍の部位に当接し、軸線L1方向において第2位置P2から第1位置P1に向かう側に移動しないように規制されることによって規定されている。 In the first position P1, the movable shaft 32 located at the first position P1 contacts the guide portion 15a of the support frame 15 or a portion in the vicinity thereof, and moves from the second position P2 to the first position P1 in the direction of the axis L1. It is prescribed by being regulated not to move to the side.
 保持軸駆動部13は、軸支持部12を介して、保持軸11を軸線L1周りに回転駆動する。保持軸駆動部13は、例えばサーボモータである。保持軸駆動部13の駆動軸13aは、固定軸31の基端部に固定的に連結されている。したがって、保持軸駆動部13は、その駆動力によって、固定軸31、可動軸32、及び保持軸11を回転させ、これによって、保持軸11と係合する雄螺子8の螺子締め作業を行うことができるように構成されている。また、駆動軸13aは、駆動軸13aの角度位置及び回転速度を検出するエンコーダ13e(図3参照)を備える。 The holding shaft driving unit 13 rotationally drives the holding shaft 11 around the axis L1 via the shaft support unit 12. The holding shaft driving unit 13 is, for example, a servo motor. The drive shaft 13 a of the holding shaft drive unit 13 is fixedly connected to the base end portion of the fixed shaft 31. Therefore, the holding shaft drive unit 13 rotates the fixed shaft 31, the movable shaft 32, and the holding shaft 11 by the driving force, thereby performing the screw fastening operation of the male screw 8 that engages with the holding shaft 11. It is configured to be able to. The drive shaft 13a includes an encoder 13e (see FIG. 3) that detects an angular position and a rotation speed of the drive shaft 13a.
 支持枠15は、例えば円筒状に構成され、固定軸31及び可動軸32の外側に嵌められている。そして、支持枠15の基端部は、保持軸駆動部13を支持している。上述の通り、保持軸駆動部13の駆動軸13aと固定軸31とは固定されているので、支持枠15と固定軸31との軸線L1の延在方向における相対的な位置関係は固定されている。 The support frame 15 is configured in a cylindrical shape, for example, and is fitted on the outside of the fixed shaft 31 and the movable shaft 32. The base end portion of the support frame 15 supports the holding shaft driving unit 13. As described above, since the drive shaft 13a of the holding shaft drive unit 13 and the fixed shaft 31 are fixed, the relative positional relationship in the extending direction of the axis L1 between the support frame 15 and the fixed shaft 31 is fixed. Yes.
 保持軸位置検出部14は、軸線L1の延在方向における保持軸11の軸支持部12に対する相対的な位置を検出するものである。 The holding shaft position detector 14 detects a relative position of the holding shaft 11 with respect to the shaft support 12 in the extending direction of the axis L1.
 また、ガイド部15aが支持枠15の先端部と可動軸32との間に介在するように設けられている。ガイド部15aは、可動軸32が支持枠15に対して軸線L1の軸線方向に移動可能に案内すると共に、軸線L1周りに回転可能に案内する。 Further, the guide portion 15 a is provided so as to be interposed between the tip end portion of the support frame 15 and the movable shaft 32. The guide portion 15a guides the movable shaft 32 so as to be movable in the axial direction of the axis L1 with respect to the support frame 15, and guides it so as to be rotatable around the axis L1.
 保持軸位置検出部14は、例えば、レーザー変位計であるセンサ本体41と、反射板42と、反射板支持部43とを有する。 The holding shaft position detector 14 includes, for example, a sensor main body 41 that is a laser displacement meter, a reflector 42, and a reflector support 43.
 センサ本体41は、軸線L1と平行に伸びる軸線L2上に配設され、反射板42に対してレーザー光を照射し、反射板42からの反射光によって反射板42との距離を検出することができるように構成されている。センサ本体41は、支持枠15に取り付けられている。したがって、センサ本体41は、固定軸31に対する軸線L1の延在方向における相対的な位置関係は固定されている。 The sensor main body 41 is disposed on an axis L2 extending in parallel with the axis L1, irradiates the reflecting plate 42 with laser light, and detects the distance from the reflecting plate 42 by the reflected light from the reflecting plate 42. It is configured to be able to. The sensor body 41 is attached to the support frame 15. Therefore, the sensor body 41 has a fixed relative positional relationship in the extending direction of the axis L1 with respect to the fixed shaft 31.
 反射板42は、軸線L2上に配設され、反射板支持部43を介して支持枠15に取り付けられている。 The reflection plate 42 is disposed on the axis L2 and is attached to the support frame 15 via the reflection plate support portion 43.
 反射板支持部43は、支持軸43aと、支持軸連結部43bと、支持軸案内部43cと、を備える。支持軸43aは、軸線L1と平行に伸びる軸線L2に沿って延び、基端部に反射板42が取り付けられている。支持軸連結部43bは、可動軸32に軸受けを介して取り付けられている。よって、支持軸連結部43bは可動軸32に対して軸線L1周りに相対的に回転するように構成されている。一方、支持軸連結部43bは可動軸32に対して軸線L1の延在方向に動かないように固定されて取り付けられている。そして、支持軸43aの先端が支持軸連結部43bに取り付けられている。支持軸案内部43cは、支持枠15に固着されている。また、支持軸案内部43cは、軸線L2と同軸の挿通孔を有し、当該挿通孔には支持軸43aが挿通されている。よって、支持軸案内部43cは、支持軸43aを軸線L2の延在方向に案内するように構成されている。一方、支持軸案内部43cは、支持軸43aが軸線L2の延在方向と直交する平面において動かないように規制している。 The reflector support portion 43 includes a support shaft 43a, a support shaft connection portion 43b, and a support shaft guide portion 43c. The support shaft 43a extends along an axis L2 extending in parallel with the axis L1, and a reflection plate 42 is attached to the base end portion. The support shaft connecting portion 43b is attached to the movable shaft 32 via a bearing. Therefore, the support shaft connecting portion 43b is configured to rotate relative to the movable shaft 32 around the axis L1. On the other hand, the support shaft connecting portion 43b is fixed and attached to the movable shaft 32 so as not to move in the extending direction of the axis L1. And the front-end | tip of the support shaft 43a is attached to the support shaft connection part 43b. The support shaft guide portion 43 c is fixed to the support frame 15. The support shaft guide 43c has an insertion hole coaxial with the axis L2, and the support shaft 43a is inserted through the insertion hole. Therefore, the support shaft guide portion 43c is configured to guide the support shaft 43a in the extending direction of the axis L2. On the other hand, the support shaft guide 43c restricts the support shaft 43a from moving on a plane orthogonal to the extending direction of the axis L2.
 したがって、上述の通り、支持軸連結部43bは可動軸32に対して軸線L1の延在方向に動かないように固定されて取り付けられ、更に支持軸案内部43cは、支持軸43aを軸線L2の延在方向に案内するように構成されているので、保持軸11及び可動軸32が支持枠15に対して軸線L1の延在方向に相対的に移動すると、保持軸11及び可動軸32と共に支持軸連結部43b、支持軸43a、及び反射板42が支持枠15に対して軸線L1の延在方向に相対的に移動する。一方、センサ本体41は、上述の通り、支持枠15に取り付けられているので、保持軸11及び可動軸32の移動に伴って移動しない。よって、軸線L1の延在方向におけるセンサ本体41と反射板42との距離が変化し、当該距離の変化をセンサ本体41が検出するように構成されている。すなわち、保持軸位置検出部14は、軸線L1の延在方向における保持軸11の保持軸駆動部13に対する相対的な位置を検出することができるように構成されている。 Therefore, as described above, the support shaft connecting portion 43b is fixed and attached to the movable shaft 32 so as not to move in the extending direction of the axis L1, and the support shaft guide portion 43c further attaches the support shaft 43a to the axis L2. Since the holding shaft 11 and the movable shaft 32 are moved relative to the support frame 15 in the extending direction of the axis L1, the support shaft 11 and the movable shaft 32 are supported together. The shaft connecting portion 43b, the support shaft 43a, and the reflection plate 42 move relative to the support frame 15 in the extending direction of the axis L1. On the other hand, since the sensor body 41 is attached to the support frame 15 as described above, it does not move with the movement of the holding shaft 11 and the movable shaft 32. Therefore, the distance between the sensor main body 41 and the reflecting plate 42 in the extending direction of the axis L1 is changed, and the sensor main body 41 detects the change in the distance. That is, the holding shaft position detection unit 14 is configured to detect the relative position of the holding shaft 11 with respect to the holding shaft driving unit 13 in the extending direction of the axis L1.
 また、上述の通り、支持軸連結部43bは可動軸32に対して軸線L1周りに相対的に回転するように構成され、更に支持軸案内部43cは支持軸43aが軸線L2の延在方向と直交する平面において動かないように規制しているので、可動軸32が軸線L1周りに回転しても反射板42及び反射板支持部43は可動軸32と共に回転しないように構成されている。よって、反射板42が軸線L2上から外れないようになっている。 Further, as described above, the support shaft connecting portion 43b is configured to rotate relative to the movable shaft 32 around the axis L1, and the support shaft guide portion 43c further includes the support shaft 43a extending in the extending direction of the axis L2. Since it is restricted so that it does not move on the orthogonal plane, the reflector 42 and the reflector support part 43 are configured not to rotate with the movable shaft 32 even if the movable shaft 32 rotates around the axis L1. Therefore, the reflecting plate 42 does not come off from the axis L2.
 [ロボットコントローラ]
 図3は、ロボットコントローラ3の構成を概略的に表すブロック図である。以下、図3を参照しながら、ロボットシステム100の制御系統について説明する。
[Robot controller]
FIG. 3 is a block diagram schematically showing the configuration of the robot controller 3. Hereinafter, the control system of the robot system 100 will be described with reference to FIG.
 ロボットコントローラ3は、ロボット本体2の周辺に配置され、ロボット本体2の関節軸及びロボット本体2以外の制御対象軸の位置制御、速度制御、又は電流制御を行う。このロボット本体2以外の制御対象軸がロボットコントローラ3の外部軸を構成する。そして、本実施の形態において、ロボットコントローラ3は、外部軸として、保持軸駆動部13の駆動軸13aの制御を行う。したがって、ロボットコントローラ3は、ロボット本体2の関節軸の制御を行うように、螺子回し機構1の保持軸駆動部13の駆動軸13aの制御も行うことができるように構成されている。すなわち、ロボット本体2を操作する者からみて、ロボット本体2に対する動作命令と同様の動作命令を用いて螺子回し機構1を制御することができ、多関節ロボットの制御の中で、螺子締めロボットを制御することができる。よって、螺子回し機構1が独自の動作命令に基づいて動作する場合と比較してロボットシステム100の構成を簡素なものとすることができる。よって、製造に有利、且つ製造コストも安価となる。以下、ロボットコントローラ3の構成について詳述する。 The robot controller 3 is arranged around the robot body 2 and performs position control, speed control, or current control of joint axes of the robot body 2 and control target axes other than the robot body 2. The control target axis other than the robot body 2 constitutes an external axis of the robot controller 3. In this embodiment, the robot controller 3 controls the drive shaft 13a of the holding shaft drive unit 13 as an external shaft. Therefore, the robot controller 3 is configured to be able to control the drive shaft 13 a of the holding shaft drive unit 13 of the screw turning mechanism 1 so as to control the joint axis of the robot body 2. That is, from the viewpoint of a person operating the robot body 2, the screw turning mechanism 1 can be controlled using an operation command similar to the operation command for the robot body 2, and the screw tightening robot is controlled in the control of the articulated robot. Can be controlled. Therefore, the configuration of the robot system 100 can be simplified as compared with the case where the screw turning mechanism 1 operates based on a unique operation command. Therefore, it is advantageous for manufacturing and the manufacturing cost is low. Hereinafter, the configuration of the robot controller 3 will be described in detail.
 ロボットコントローラ3は、例えば、CPU等の演算器を有する制御部51と、ROM及びRAM等のメモリを有する記憶部54と、アーム駆動部23及び保持軸駆動部13に対応するサーボアンプ52とを備えている。 The robot controller 3 includes, for example, a control unit 51 having a computing unit such as a CPU, a storage unit 54 having a memory such as a ROM and a RAM, and a servo amplifier 52 corresponding to the arm driving unit 23 and the holding shaft driving unit 13. I have.
 制御部51は、目標角度位置、目標回転速度、又は目標トルクを決定し、サーボアンプを介して、アーム駆動部23及び保持軸駆動部13の駆動を制御する。制御部51は、集中制御する単独の制御器で構成されていてもよく、互いに協働して分散制御する複数の制御器で構成されてもよい。 The control unit 51 determines the target angular position, the target rotation speed, or the target torque, and controls the driving of the arm driving unit 23 and the holding shaft driving unit 13 via the servo amplifier. The control unit 51 may be configured by a single controller that performs centralized control, or may be configured by a plurality of controllers that perform distributed control in cooperation with each other.
 サーボアンプ52は、サーボモータであるアーム駆動部23及び保持軸駆動部13のサーボ制御を行うものである。すなわち、サーボアンプ52は、制御部51において決定された目標角度位置、目標回転速度、又は目標トルクに対する現在値との偏差を0にするように追従制御を行う。そして、サーボアンプ52は、アーム駆動部23及び保持軸駆動部13に対して出力する電流値を検出する電流検出部(図示せず)を備える。 The servo amplifier 52 performs servo control of the arm drive unit 23 and the holding shaft drive unit 13 which are servo motors. That is, the servo amplifier 52 performs follow-up control so that the deviation from the current value with respect to the target angular position, target rotational speed, or target torque determined by the control unit 51 is zero. The servo amplifier 52 includes a current detection unit (not shown) that detects a current value output to the arm drive unit 23 and the holding shaft drive unit 13.
 アーム駆動部23のエンコーダ23e(図3参照)及び保持軸駆動部13のエンコーダ13eから出力された回転角度位置情報及び回転速度情報、並びに保持軸位置検出部14から出力された保持軸11の位置情報は、制御部51に入力される。また、サーボアンプ52の電流検出部で検出されたサーボアンプ52からアーム駆動部23及び保持軸駆動部13に対して出力された電流の電流値情報も制御部51に入力される。 The rotational angle position information and rotational speed information output from the encoder 23e (see FIG. 3) of the arm drive unit 23 and the encoder 13e of the holding shaft drive unit 13, and the position of the holding shaft 11 output from the holding shaft position detection unit 14. Information is input to the control unit 51. The current value information of the current output from the servo amplifier 52 detected by the current detection unit of the servo amplifier 52 to the arm driving unit 23 and the holding shaft driving unit 13 is also input to the control unit 51.
 記憶部54には所定の制御プログラムが記憶されていて、制御部がこれらの制御プログラムを読み出して実行することにより、螺子回し機構1及びロボット本体2の動作が制御される。また、記憶部54には、サーボアンプ52から保持軸駆動部13に対して出力された電流値と、当該電流値に対応する保持軸駆動部13の締め付けトルクとの関係を示す制限電流算出テーブルTを記憶している。 A predetermined control program is stored in the storage unit 54, and when the control unit reads and executes these control programs, the operations of the screw turning mechanism 1 and the robot body 2 are controlled. Further, the storage unit 54 has a limit current calculation table indicating the relationship between the current value output from the servo amplifier 52 to the holding shaft driving unit 13 and the tightening torque of the holding shaft driving unit 13 corresponding to the current value. T is memorized.
 更に、記憶部54には、螺子回し機構1の後述する螺子取りアプローチ位置Pa、螺子取り位置Pb、螺子取り退避位置Pc、仮締めアプローチ位置Pf、仮締め位置Pg、本締めアプローチ位置Ps、及び本締め位置Ptが記憶されている。また、記憶部54には、保持軸11の第3位置P3、第5位置P5、及び第6位置P6が記憶されている。 Further, in the storage unit 54, a screw removing approach position Pa, a screw removing position Pb, a screw removing retracting position Pc, a temporary fastening approach position Pf, a temporary fastening approach position Pg, a final fastening approach position Ps, which will be described later, of the screw turning mechanism 1. The final fastening position Pt is stored. The storage unit 54 stores a third position P3, a fifth position P5, and a sixth position P6 of the holding shaft 11.
 [動作例]
 次に、ロボットシステム100の動作例を説明する。
[Operation example]
Next, an operation example of the robot system 100 will be described.
 図4Aは、本発明の実施の形態におけるロボットシステム100の動作例を示すフローチャートである。 FIG. 4A is a flowchart showing an operation example of the robot system 100 according to the embodiment of the present invention.
 まず、図4Aに示すように、制御部51は、螺子回し機構1を移動させ螺子置台110にセット(保持)されている雄螺子8を保持軸11に保持させる螺子取り動作を行う(ステップS1)。例えば、雄螺子8は、螺子置台110(図6A参照)の挿通孔110aに挿通されて螺子置台110に保持されている。挿通孔110aは、雄螺子8の螺子軸の径よりも少し大きい径に形成され、雄螺子8を容易に引き抜くことができるように構成されている。 First, as shown in FIG. 4A, the control unit 51 performs a screw removing operation for moving the screw turning mechanism 1 and holding the male screw 8 set (held) on the screw mounting table 110 on the holding shaft 11 (step S1). ). For example, the male screw 8 is inserted into the insertion hole 110a of the screw mounting table 110 (see FIG. 6A) and held by the screw mounting table 110. The insertion hole 110a is formed to have a diameter slightly larger than the diameter of the screw shaft of the male screw 8, and is configured so that the male screw 8 can be easily pulled out.
 そして、保持軸11に雄螺子8が保持されると、次に、雄螺子8と螺合する雌螺子孔9が設けられている位置に雄螺子8を運び、雄螺子8と雌螺子孔9とを螺合及び螺入させる仮締め動作を行う(ステップS2)。 Then, when the male screw 8 is held on the holding shaft 11, the male screw 8 is then carried to a position where the female screw hole 9 to be screwed with the male screw 8 is provided, and the male screw 8 and the female screw hole 9 are moved. Are temporarily tightened and screwed (step S2).
 次に、雄螺子8を所定の締め付けトルクで締め付ける本締め動作を行う(ステップS3)。なお、その後任意の退避位置に螺子回し機構1を移動させてもよい。以下、螺子取り動作、仮締め動作、及び本締め動作の詳細について説明する。 Next, a final tightening operation for tightening the male screw 8 with a predetermined tightening torque is performed (step S3). In addition, you may move the screwing mechanism 1 to arbitrary retreat positions after that. Hereinafter, the details of the screw removing operation, the temporary fastening operation, and the final fastening operation will be described.
 <螺子取り動作>
 図4Bは、ロボットシステム100の動作例を示すフローチャートであり、螺子取り動作について説明するものである。
<Screw removal operation>
FIG. 4B is a flowchart illustrating an example of the operation of the robot system 100 and describes the screw removal operation.
 図5A~Cは、ロボットシステム100の動作例を示す図である。 5A to 5C are diagrams showing an operation example of the robot system 100. FIG.
 まず、図5Aに示すように、制御部51は、ロボット本体2を制御して、螺子取りアプローチ位置Paに螺子回し機構1を位置させる(ステップS11)。螺子取りアプローチ位置Paは、保持軸11の係合部11aが螺子置台110に保持されている雄螺子8の頭部8aと対峙する位置であり、且つ雄螺子8の軸線と保持軸11の軸線L1とが一致する位置である。 First, as shown in FIG. 5A, the control unit 51 controls the robot body 2 to position the screw turning mechanism 1 at the screw removal approach position Pa (step S11). The screw removal approach position Pa is a position where the engaging portion 11a of the holding shaft 11 faces the head 8a of the male screw 8 held by the screw mounting base 110, and the axis of the male screw 8 and the axis of the holding shaft 11 This is the position where L1 matches.
 次に、図5Bに示すように、制御部51は、ロボット本体2を制御して、軸線L1に沿って螺子回し機構1を動かし、螺子取り位置Pbに螺子回し機構1を位置させる(ステップS12)。螺子取り位置Pbは、螺子取りアプローチ位置Paの軸線L1の延在方向において保持軸11を雄螺子8に近づける側(保持軸11の基端から先端に向かう側)に設定され、更に、保持軸11の係合部11a及び雄螺子8の頭部8aの軸線L1周りの角度位置が一致していれば、保持軸11は、ばね33の付勢力に抗して第1位置P1から第2位置P2に向かう方向に少し押し込まれた第3位置P3に位置した状態で雄螺子8と係合する位置である。 Next, as shown in FIG. 5B, the control unit 51 controls the robot body 2 to move the screw turning mechanism 1 along the axis L1, and position the screw turning mechanism 1 at the screw removal position Pb (step S12). ). The screw removal position Pb is set on the side (the side from the base end of the holding shaft 11 toward the tip) that brings the holding shaft 11 closer to the male screw 8 in the extending direction of the axis L1 of the screw taking approach position Pa. If the angular positions around the axis L1 of the engaging portion 11a of the eleventh and the head 8a of the male screw 8 coincide, the holding shaft 11 is moved from the first position P1 to the second position against the urging force of the spring 33. It is a position that engages with the male screw 8 in a state where it is located at the third position P3 that is slightly pushed in the direction toward P2.
 なお、雄螺子8を螺子置台110にセットする際は、通常、雄螺子8の軸線周りの角度位置はランダムにセットされるため、保持軸11の係合部11a及び雄螺子8の頭部8aの軸線L1周りの角度位置が一致しない可能性がある。この場合、図5Cに示すように、螺子取り位置Pbに位置する螺子回し機構1の保持軸11の係合部11aは、雄螺子8の頭部8aの溝に嵌らずに頭部8aに乗り上げ、第3位置P3よりも更に第1位置P1から第2位置P2に向かう方向に押し込まれる。 When the male screw 8 is set on the screw mounting base 110, the angular position around the axis of the male screw 8 is normally set at random, so that the engaging portion 11a of the holding shaft 11 and the head 8a of the male screw 8 are set. There is a possibility that the angular positions around the axis line L1 of the two do not match. In this case, as shown in FIG. 5C, the engaging portion 11 a of the holding shaft 11 of the screw turning mechanism 1 located at the screw removing position Pb does not fit into the groove of the head 8 a of the male screw 8, and does not fit into the head 8 a. It rides and is pushed further in the direction from the first position P1 to the second position P2 than the third position P3.
 次に、制御部51は、保持軸位置検出部14から出力された保持軸11の位置情報に基づき、保持軸11が第3位置P3に位置するか否かを判定する(ステップS13)。上述の通り、保持軸11の係合部11aと雄螺子8の頭部8aとが係合していれば保持軸11は第3位置P3に位置する。一方、保持軸11と雄螺子8とが係合してなければ保持軸11は第3位置P3よりも更に第1位置P1から第2位置P2に向かう方向に距離d1押し込まれる。よって、当該判定を行うことによって、保持軸11の係合部11aと雄螺子8の頭部8aとが係合しているかを判定することができる。 Next, the control unit 51 determines whether or not the holding shaft 11 is located at the third position P3 based on the position information of the holding shaft 11 output from the holding shaft position detection unit 14 (step S13). As described above, if the engaging portion 11a of the holding shaft 11 and the head 8a of the male screw 8 are engaged, the holding shaft 11 is located at the third position P3. On the other hand, if the holding shaft 11 and the male screw 8 are not engaged, the holding shaft 11 is pushed further in the direction from the first position P1 to the second position P2 than the third position P3 by the distance d1. Therefore, by performing the determination, it can be determined whether the engaging portion 11a of the holding shaft 11 and the head portion 8a of the male screw 8 are engaged.
 そして、制御部51は、保持軸11が第3位置P3に位置してないと判定すると(ステップS13においてNo)、次に、制御部51は、保持軸11を回転させる(ステップS14)。このとき、保持軸11の係合部11a及び雄螺子8の頭部8aの軸線L1周りの角度位置が一致すると、ばね33の付勢力によって、保持軸11の係合部11aは雄螺子8の頭部8aの溝に押し込まれ、保持軸11の係合部11aと雄螺子8の頭部8aとが係合する。そして、再度、保持軸11が第3位置P3に位置するか否かを判定する。すなわち、保持軸11の係合部11a及び雄螺子8の頭部8aの軸線L1周りの角度位置が一致するまで保持軸11を回転させる。これによって、保持軸11と雄螺子8とを係合させることができる。そして、保持軸11と雄螺子8とが係合すると、磁石である保持軸11は、磁性体で構成された雄螺子8を引き寄せ、保持軸11は雄螺子8に保持される。 If the control unit 51 determines that the holding shaft 11 is not located at the third position P3 (No in step S13), the control unit 51 then rotates the holding shaft 11 (step S14). At this time, when the angular positions around the axis L1 of the engaging portion 11a of the holding shaft 11 and the head portion 8a of the male screw 8 coincide, the engaging portion 11a of the holding shaft 11 is moved by the urging force of the spring 33. Pushed into the groove of the head 8a, the engaging portion 11a of the holding shaft 11 and the head 8a of the male screw 8 engage. Then, it is determined again whether or not the holding shaft 11 is positioned at the third position P3. That is, the holding shaft 11 is rotated until the angular positions around the axis L1 of the engaging portion 11a of the holding shaft 11 and the head portion 8a of the male screw 8 coincide. Thereby, the holding shaft 11 and the male screw 8 can be engaged. When the holding shaft 11 and the male screw 8 are engaged, the holding shaft 11 that is a magnet pulls the male screw 8 made of a magnetic material, and the holding shaft 11 is held by the male screw 8.
 そして、制御部51は、保持軸11が第3位置P3に位置していると判定すると(ステップS13においてYes)、制御部51は、螺子回し機構1を螺子取り退避位置Pcに位置させる(ステップS15)。これによって、雄螺子8は螺子置台110から引き抜かれる。そして、螺子取り動作を終了する。 If the control unit 51 determines that the holding shaft 11 is located at the third position P3 (Yes in step S13), the control unit 51 positions the screw turning mechanism 1 at the screw removal / retraction position Pc (step S13). S15). As a result, the male screw 8 is pulled out of the screw mounting table 110. Then, the screw removing operation is finished.
 <仮締め動作>
 図4Cは、ロボットシステム100の動作例を示すフローチャートであり、仮締め動作について説明するものである。
<Temporary tightening operation>
FIG. 4C is a flowchart illustrating an operation example of the robot system 100, and describes the temporary fastening operation.
 図6A~Dは、ロボットシステム100の動作例を示す図である。 6A to 6D are diagrams showing an operation example of the robot system 100. FIG.
 図8は、ロボットシステム100の動作例における、サーボアンプ52の電流検出部が検出した保持軸駆動部13に対して出力する電流値の変化、及び保持軸位置検出部14が検出した保持軸11の位置の変化を示すグラフであり、仮締め動作における変化を示すグラフである。 FIG. 8 shows changes in the current value output to the holding shaft drive unit 13 detected by the current detection unit of the servo amplifier 52 and the holding shaft 11 detected by the holding shaft position detection unit 14 in the operation example of the robot system 100. It is a graph which shows the change of the position of, and is a graph which shows the change in temporary fastening operation | movement.
 まず、図6Aに示すように、制御部51は、ロボット本体2を制御して、仮締めアプローチ位置Pfに雄螺子8を保持軸11に保持させた螺子回し機構1を位置させる(ステップS21)。仮締めアプローチ位置Pfは、保持軸11が保持する雄螺子8の先端が雌螺子孔9の端部と対峙する位置に設定され、且つ雄螺子8を螺合させる雌螺子孔9の軸線と保持軸11の軸線L1とが一致する位置である。 First, as shown in FIG. 6A, the control unit 51 controls the robot body 2 to position the screw turning mechanism 1 that holds the male screw 8 on the holding shaft 11 at the temporary fastening approach position Pf (step S21). . The temporary fastening approach position Pf is set at a position where the tip of the male screw 8 held by the holding shaft 11 faces the end of the female screw hole 9, and the axis of the female screw hole 9 to which the male screw 8 is screwed is held. This is the position where the axis L1 of the shaft 11 coincides.
 次に、図6Bに示すように、制御部51は、ロボット本体2を制御して、軸線L1に沿って螺子回し機構1を動かし、仮締め位置Pgに螺子回し機構1を位置させる(ステップS22)。仮締め位置Pgは、仮締めアプローチ位置Pfの軸線L1の延在方向において雄螺子8を雌螺子孔9に近づける側(保持軸11の基端から先端に向かう側)に設定され、更に、保持軸11に保持されている雄螺子8の先端と雌螺子孔9の端部とが当接する位置である。この状態において、保持軸11は、ばね33の付勢力に抗して第1位置P1から第2位置P2に向かう方向に大きく押し込まれた位置に位置するように仮締め位置Pgは構成される。この位置は、第1位置P1からの距離が、雄螺子8の螺子軸の螺子溝が切られた部分の長さよりも長くなるように構成されるのが好ましい。そして、制御部51は、保持軸位置検出部14から入力された保持軸11の軸線L1方向における位置を、第4位置P4として、記憶部54に格納する。 Next, as shown in FIG. 6B, the control unit 51 controls the robot body 2 to move the screw turning mechanism 1 along the axis L1, and to position the screw turning mechanism 1 at the temporary fastening position Pg (step S22). ). The temporary fastening position Pg is set on the side where the male screw 8 approaches the female screw hole 9 in the extending direction of the axis L1 of the temporary fastening approach position Pf (the side from the proximal end to the distal end of the holding shaft 11), and is further held. This is the position where the tip of the male screw 8 held on the shaft 11 and the end of the female screw hole 9 abut. In this state, the temporary fastening position Pg is configured so that the holding shaft 11 is located at a position where the holding shaft 11 is largely pushed in the direction from the first position P1 toward the second position P2 against the urging force of the spring 33. This position is preferably configured such that the distance from the first position P1 is longer than the length of the threaded portion of the screw shaft of the male screw 8. Then, the control unit 51 stores the position in the axis L1 direction of the holding shaft 11 input from the holding shaft position detection unit 14 in the storage unit 54 as the fourth position P4.
 次に、制御部51は、保持軸駆動部13を駆動し、保持軸11を雄螺子8の締め方向に低速で回転させる(ステップS23)。これは、雄螺子8と雌螺子孔9とを螺合させるかかり動作である。このとき、制御部51は、保持軸11の回転角度位置及び回転速度の少なくとも一方を制御する。 Next, the control unit 51 drives the holding shaft driving unit 13 to rotate the holding shaft 11 at a low speed in the tightening direction of the male screw 8 (step S23). This is a hooking operation in which the male screw 8 and the female screw hole 9 are screwed together. At this time, the control unit 51 controls at least one of the rotation angle position and the rotation speed of the holding shaft 11.
 そして、雄螺子8の螺子山の先端と雌螺子孔9の螺子溝の先端の軸線L1周りの角度位置が一致し、雄螺子8と雌螺子孔9とが螺合する(かかる)と、雄螺子8が雌螺子孔9に螺入していく。これによって、保持軸位置検出部14から入力された保持軸11の位置と第4位置P4との差が大きくなる。 Then, when the angular position around the axis L1 of the tip of the screw thread of the male screw 8 and the tip of the screw groove of the female screw hole 9 coincides, and the male screw 8 and the female screw hole 9 are screwed together (this applies), The screw 8 is screwed into the female screw hole 9. As a result, the difference between the position of the holding shaft 11 input from the holding shaft position detector 14 and the fourth position P4 increases.
 次に、制御部51は、保持軸位置検出部14から入力された保持軸11の位置と第4位置P4との差(変位)が所定の値よりも大きくなったと判定するまで保持軸11を雄螺子8の締め方向に低速で回転させる(ステップS24)。当該所定の値は、雄螺子8と雌螺子孔9とが確実に螺合したときの螺入深さ寸法に応じた値に設定されることが好ましく、例えば、雄螺子8の螺子ピッチの1/2の値である。 Next, the control unit 51 moves the holding shaft 11 until it determines that the difference (displacement) between the position of the holding shaft 11 input from the holding shaft position detection unit 14 and the fourth position P4 is larger than a predetermined value. The male screw 8 is rotated at a low speed in the tightening direction (step S24). The predetermined value is preferably set to a value corresponding to the thread depth when the male screw 8 and the female screw hole 9 are securely engaged. For example, the predetermined value is 1 of the screw pitch of the male screw 8. The value is / 2.
 なお、上述の通り、保持軸11は、ばね33によって、第2位置P2から第1位置P1に向かって付勢されているので、雄螺子8が雌螺子孔9に沈み込むと、これに追従して保持軸11は第2位置P2から第1位置P1に向かって移動するように構成されている。よって、雌螺子孔9が螺子回し機構1から離れても保持軸11の係合部11aと雄螺子8の頭部8aとの係合状態が維持されるように構成されている。したがって、螺子回し機構1を所定位置に位置させたまま螺子締めを行うことができる。よって、ロボットコントローラ3による制御内容を簡素化することができる。なお、雄螺子8と雌螺子孔9とが螺合した際の雄螺子8の位置(回転角度位置)が螺入動作開始位置を構成する。 As described above, the holding shaft 11 is urged from the second position P2 to the first position P1 by the spring 33. Therefore, when the male screw 8 sinks into the female screw hole 9, the holding shaft 11 follows this. The holding shaft 11 is configured to move from the second position P2 toward the first position P1. Therefore, the engagement state between the engagement portion 11a of the holding shaft 11 and the head portion 8a of the male screw 8 is maintained even when the female screw hole 9 is separated from the screw rotation mechanism 1. Therefore, it is possible to perform screw tightening while the screw turning mechanism 1 is positioned at a predetermined position. Therefore, the control content by the robot controller 3 can be simplified. The position (rotational angle position) of the male screw 8 when the male screw 8 and the female screw hole 9 are screwed together constitutes a screwing operation start position.
 次に、雄螺子8が雌螺子孔9にかかると、制御部51は、保持軸11を雄螺子8の締め方向に速度V1(図8参照)で回転させる(ステップS25)。このとき、制御部51は、保持軸11の回転角度位置及び回転速度の少なくとも一方を制御する。 Next, when the male screw 8 is engaged with the female screw hole 9, the control unit 51 rotates the holding shaft 11 in the tightening direction of the male screw 8 at a speed V1 (see FIG. 8) (step S25). At this time, the control unit 51 controls at least one of the rotation angle position and the rotation speed of the holding shaft 11.
 次に、図6Cに示すように、制御部51は、第5位置P5に保持軸11が位置するまで保持軸11を速度V1で回転させる(ステップS26)。第5位置P5に保持軸11が位置したことは、例えば、保持軸11の回転角度位置、又は保持軸位置検出部14から入力された保持軸11の軸線L1方向における位置に基づいて検出される。 Next, as shown in FIG. 6C, the control unit 51 rotates the holding shaft 11 at the speed V1 until the holding shaft 11 is located at the fifth position P5 (step S26). The position of the holding shaft 11 at the fifth position P5 is detected based on, for example, the rotational angle position of the holding shaft 11 or the position of the holding shaft 11 in the direction of the axis L1 input from the holding shaft position detector 14. .
 そして、制御部51は、保持軸11が第5位置P5に位置したと判定すると、次に、保持軸11を頭部8aの締め方向に速度V2で回転させる(ステップS27)。速度V2は、速度V1よりも低い速度である(図8参照)。このとき、制御部51は、保持軸11の回転角度位置及び回転速度の少なくとも一方を制御する。なお、保持軸11が第5位置P5に位置している時の雄螺子8の位置が基準位置を構成する。 And if the control part 51 determines with the holding | maintenance axis | shaft 11 having been located in the 5th position P5, it will next rotate the holding | maintenance axis | shaft 11 at the speed V2 in the tightening direction of the head 8a (step S27). The speed V2 is a speed lower than the speed V1 (see FIG. 8). At this time, the control unit 51 controls at least one of the rotation angle position and the rotation speed of the holding shaft 11. The position of the male screw 8 when the holding shaft 11 is located at the fifth position P5 constitutes the reference position.
 このように、制御部51は、雄螺子8と雌螺子孔9とを螺合させた後、雄螺子8を雌螺子孔9に螺入させる際に、雄螺子8の螺入動作開始位置から基準位置との間に前記雄螺子が位置している間は基準位置から螺入動作終了位置までの回転速度よりも回転速度が高くなるように構成されている。これによって、雄螺子8と雌螺子孔9の螺合を速やかに行うことができる。 As described above, the control unit 51 engages the male screw 8 with the female screw hole 9 and then inserts the male screw 8 into the female screw hole 9 from the position where the male screw 8 is inserted. While the male screw is located between the reference position and the reference position, the rotation speed is higher than the rotation speed from the reference position to the screwing operation end position. Thereby, the male screw 8 and the female screw hole 9 can be quickly screwed together.
 次に、制御部51は、電流値Irが仮締め電流閾値Iaに到達したか否かを判定する(ステップS28)。この判定は、図6Dに示すように、雄螺子8の頭部8aの座着面が着座したかを判定するものである。すなわち、図8に示すように、雄螺子8の頭部8aの座着面が着座すると、雄螺子8の回転速度が急激に低下又は雄螺子8の回転が停止する。よって、目標回転角度位置又は目標回転速度と現在値との差が急拡大し、位置制御又は速度制御によって保持軸駆動部13の制御を行っているサーボアンプ52は、目標回転角度位置又は目標速度に対する現在値との偏差を縮小させようと保持軸駆動部13に供給する電流を急激に増大させる。よって、制御部51は、この急激に増大する電流値を捕捉することができる値に設定された電流閾値Iaを用いて、この値と電流値Irとを比較し、電流値Irが仮締め電流閾値Iaに到達したか否かを判定することによって、雄螺子8の頭部8aの座着面が着座したかを判定することができる。なお、仮締め電流閾値Iaは、後述する本締め電流閾値Ibよりも小さい値となるように設定される。これによって、過大なトルクで雄螺子8が締め付けられ、雄螺子8又は雌螺子孔9が破損することを防止することができる。 Next, the control unit 51 determines whether or not the current value Ir has reached the temporary fastening current threshold value Ia (step S28). This determination is to determine whether the seating surface of the head 8a of the male screw 8 is seated as shown in FIG. 6D. That is, as shown in FIG. 8, when the seating surface of the head 8a of the male screw 8 is seated, the rotational speed of the male screw 8 is rapidly reduced or the rotation of the male screw 8 is stopped. Therefore, the difference between the target rotation angle position or target rotation speed and the current value is suddenly increased, and the servo amplifier 52 that controls the holding shaft drive unit 13 by position control or speed control is able to obtain The current supplied to the holding shaft driving unit 13 is rapidly increased so as to reduce the deviation from the current value. Therefore, the control unit 51 compares this value with the current value Ir using the current threshold value Ia set to a value that can capture the rapidly increasing current value, and the current value Ir is determined as the temporary fastening current. By determining whether or not the threshold value Ia has been reached, it can be determined whether or not the seating surface of the head 8a of the male screw 8 has been seated. The temporary fastening current threshold value Ia is set to be smaller than a final fastening current threshold value Ib described later. Accordingly, it is possible to prevent the male screw 8 from being tightened with an excessive torque, and the male screw 8 or the female screw hole 9 from being damaged.
 また、上述の通り、速度V2は速度V1よりも低い速度となるように構成されているので、雄螺子8の頭部8aの座着面が着座してから仮締め動作を終了させるまでの間に過大なトルクで雄螺子8が締め付けられ、雄螺子8又は雌螺子孔9が破損することを防止することができる。 Further, as described above, since the speed V2 is configured to be lower than the speed V1, the period from when the seating surface of the head 8a of the male screw 8 is seated to when the temporary fastening operation is finished. Therefore, it is possible to prevent the male screw 8 from being tightened by excessive torque and the male screw 8 or the female screw hole 9 from being damaged.
 そして、制御部51は、電流値Irが本締め電流閾値Ib(制限電流)に到達していないと判定する間は(ステップS28においてNo)、保持軸11を回転させ(ステップS27)、電流値Irが本締め電流閾値Ib(制限電流)に到達すると(ステップS28においてYes)、保持軸11の回転を停止する(ステップS29)。なお、保持軸11の回転を停止した際の雄螺子8の位置(回転角度位置)が螺入動作終了位置を構成する。 Then, while determining that the current value Ir has not reached the final fastening current threshold Ib (limit current) (No in step S28), the control unit 51 rotates the holding shaft 11 (step S27), and the current value When Ir reaches the final fastening current threshold value Ib (limit current) (Yes in step S28), the rotation of the holding shaft 11 is stopped (step S29). The position (rotational angle position) of the male screw 8 when the rotation of the holding shaft 11 is stopped constitutes the screwing operation end position.
 したがって、制御部51は、雄螺子8と雌螺子孔9とを螺合させた後に雄螺子8を雌螺子孔9に螺入させる際に、雄螺子8の螺入動作開始位置から螺入動作開始位置と螺入動作終了位置との間の基準位置に雄螺子8が位置している間は基準位置から螺入動作終了位置までの回転速度よりも回転速度が高くなるように前記保持軸駆動部を制御するように構成されている。 Therefore, when the male screw 8 is screwed into the female screw hole 9 after the male screw 8 and the female screw hole 9 are screwed together, the control unit 51 is screwed in from the screwing operation start position of the male screw 8. While the male screw 8 is located at the reference position between the start position and the screwing operation end position, the holding shaft drive is performed so that the rotation speed is higher than the rotation speed from the reference position to the screwing operation end position. It is comprised so that a part may be controlled.
 そして、仮締め動作を終了する。 Then, the temporary fastening operation is finished.
 <本締め動作>
 図4Dは、ロボットシステム100の動作例を示すフローチャートであり、本締め動作について説明するものである。
<Tightening action>
FIG. 4D is a flowchart illustrating an operation example of the robot system 100 and describes the final fastening operation.
 図7A、図7Bは、ロボットシステム100の動作例を示す図である。 7A and 7B are diagrams showing an example of the operation of the robot system 100. FIG.
 図9は、ロボットシステム100の動作例における、サーボアンプ52の電流検出部が検出した保持軸駆動部13に対して出力する電流値の変化、及び保持軸位置検出部14が検出した保持軸11の位置の変化を示すグラフであり、本締め動作における変化を示すグラフである。 FIG. 9 shows changes in the current value output to the holding shaft drive unit 13 detected by the current detection unit of the servo amplifier 52 and the holding shaft 11 detected by the holding shaft position detection unit 14 in the operation example of the robot system 100. It is a graph which shows the change of this position, and is a graph which shows the change in this fastening operation | movement.
 まず、図7Aに示すように、制御部51は、ロボット本体2を制御して、本締めアプローチ位置Psに螺子回し機構1を位置させる(ステップS31)。本締めアプローチ位置Psは、保持軸11の係合部11aが雌螺子孔9と螺合する雄螺子8の頭部8aと対峙する位置であり、且つ雄螺子8の軸線と保持軸11の軸線L1とが一致する位置である。 First, as shown in FIG. 7A, the control unit 51 controls the robot body 2 to position the screw turning mechanism 1 at the final fastening approach position Ps (step S31). The final fastening approach position Ps is a position where the engaging portion 11a of the holding shaft 11 faces the head 8a of the male screw 8 that is screwed into the female screw hole 9, and the axis of the male screw 8 and the axis of the holding shaft 11 This is the position where L1 matches.
 次に、図7Bに示すように、制御部51は、ロボット本体2を制御して、軸線L1に沿って螺子回し機構1を動かし、本締め位置Ptに螺子回し機構1を位置させる(ステップS32)。本締め位置Ptは、本締めアプローチ位置Psの軸線L1の延在方向において保持軸11を雄螺子8に近づける側(保持軸11の基端から先端に向かう側)に設定され、更に、保持軸11の係合部11a及び雄螺子8の頭部8aの軸線L1周りの角度位置が一致していれば、保持軸11は、ばね33の付勢力に抗して第1位置P1から第2位置P2に向かう方向に押し込まれた第6位置P6に位置した状態で雄螺子8と係合する位置である。 Next, as shown in FIG. 7B, the control unit 51 controls the robot body 2 to move the screw turning mechanism 1 along the axis L1, and to position the screw turning mechanism 1 at the final fastening position Pt (step S32). ). The final tightening position Pt is set on the side where the holding shaft 11 approaches the male screw 8 in the extending direction of the axis L1 of the final tightening approach position Ps (the side from the proximal end to the distal end of the holding shaft 11). If the angular positions around the axis L1 of the engaging portion 11a of the eleventh and the head 8a of the male screw 8 coincide, the holding shaft 11 is moved from the first position P1 to the second position against the urging force of the spring 33. It is a position that engages with the male screw 8 in a state of being in the sixth position P6 pushed in the direction toward P2.
 次に、制御部51は、ステップS33~S34を実行し、保持軸11と雄螺子8とを係合させるが、当該動作は、上記ステップS13~S14と同様であるので、その説明を省略する。 Next, the control unit 51 executes Steps S33 to S34 to engage the holding shaft 11 and the male screw 8. The operation is the same as Steps S13 to S14, and the description thereof is omitted. .
 なお、仮締め動作が終了した後、保持軸11と雄螺子8とを係合させたまま本締め動作を行う場合は、上記動作を省略することができる。 When the final fastening operation is performed with the holding shaft 11 and the male screw 8 engaged after the temporary fastening operation is completed, the above operation can be omitted.
 次に、制御部51は保持軸11を締め方向にゆっくりと回転させる(ステップS35)。このとき、制御部51は、保持軸11の回転角度位置及び回転速度の少なくとも一方を制御する。 Next, the control unit 51 slowly rotates the holding shaft 11 in the tightening direction (step S35). At this time, the control unit 51 controls at least one of the rotation angle position and the rotation speed of the holding shaft 11.
 次に、制御部51は、電流値Irが本締め電流閾値Ib(制限電流)に到達し、且つ保持軸11が回転していないか否かを判定する(ステップS36)。すなわち、制御部51は、保持軸駆動部13が保持軸11を回転駆動するための電流が本締め電流閾値Ibが達したか否かの判定を含む判定を行う。 Next, the control unit 51 determines whether or not the current value Ir has reached the final fastening current threshold Ib (limit current) and the holding shaft 11 has not been rotated (step S36). That is, the control unit 51 performs a determination including a determination as to whether or not the current required for the holding shaft driving unit 13 to rotationally drive the holding shaft 11 has reached the final fastening current threshold value Ib.
 図9に示すように、本締め電流閾値Ibは、上記本締め電流閾値Ibは、予め決定される値であり、予め規定されている雄螺子8の締付トルクに対応する電流値に基づく値である。本実施の形態において、本締め電流閾値Ibは、制御部51が記憶部54に記憶されている制限電流算出テーブルTを参照し、予め規定されている雄螺子8の締付トルクに対応する電流を算出することによって算出される。したがって、制御部51は、本締め電流閾値Ibと電流値Irとを比較し、電流値Irが本締め電流閾値Ibに到達したか否かを判定することによって、予め規定されている締付トルクで雄螺子8が締め付けられているか否かを判定することができる。更に、本実施の形態において、制御部51は、保持軸11が回転していないか否かの判定も行っているので、より確実に予め規定されている締付トルクで雄螺子8が締め付けられているか否かを判定することができる。 As shown in FIG. 9, the final fastening current threshold value Ib is a value determined based on a current value corresponding to a predetermined tightening torque of the male screw 8. It is. In the present embodiment, the final tightening current threshold value Ib refers to the current corresponding to the tightening torque of the male screw 8 defined in advance by referring to the limit current calculation table T stored in the storage unit 54 by the control unit 51. It is calculated by calculating. Therefore, the control unit 51 compares the final fastening current threshold value Ib with the current value Ir, and determines whether or not the current value Ir has reached the final fastening current threshold value Ib. It can be determined whether or not the male screw 8 is tightened. Further, in the present embodiment, the control unit 51 also determines whether or not the holding shaft 11 is rotating, so that the male screw 8 is tightened with a predetermined tightening torque more reliably. It can be determined whether or not.
 そして、ロボットシステム100は、ロボットコントローラ3の外部軸としての保持軸駆動部13の駆動電流を利用して雄螺子8の締め付けトルクを検出するので、螺子締めをきめ細かく行うことができ、且つ専用のトルクセンサが不要になる。 Since the robot system 100 detects the tightening torque of the male screw 8 using the drive current of the holding shaft driving unit 13 as the external shaft of the robot controller 3, the screw tightening can be performed finely and a dedicated screw can be used. A torque sensor is unnecessary.
 なお、制御部51は、上記判断に加え、例えば保持軸11の変位が検出されない状態にあるか否かについても同時に判断すれば、更に正確に雄螺子8を締め付けることができる。 The control unit 51 can tighten the male screw 8 more accurately by simultaneously determining whether or not the displacement of the holding shaft 11 is not detected, for example, in addition to the above determination.
 そして、制御部51は、電流値Irが本締め電流閾値Ib(制限電流)に到達していない、又は電流値Irが本締め電流閾値Ib(制限電流)に到達していても保持軸11が回転していると判定する間は(ステップS36においてNo)、保持軸11を回転させ(ステップS35)、電流値Irが本締め電流閾値Ib(制限電流)に到達し、且つ保持軸11が回転していないと判定すると(ステップS36においてYes)、保持軸11の回転を停止する(ステップS37)。保持軸11の回転の停止は、例えば、目標回転速度を0にすることによって行われる。なお、これに限られるものではなく、制御部51が保持軸11の回転を停止するためのブレーキ装置を制御して、保持軸11にブレーキをかけることによって、保持軸11の回転を停止させてもよい。 Then, the controller 51 determines that the holding shaft 11 does not reach the final fastening current threshold value Ib (limit current) or the current value Ir has reached the final fastening current threshold value Ib (limit current). While it is determined that it is rotating (No in step S36), the holding shaft 11 is rotated (step S35), the current value Ir reaches the final fastening current threshold Ib (limit current), and the holding shaft 11 rotates. If it determines with having not carried out (in step S36 Yes), rotation of the holding shaft 11 will be stopped (step S37). The rotation of the holding shaft 11 is stopped by, for example, setting the target rotation speed to zero. In addition, it is not restricted to this, The control part 51 controls the brake device for stopping rotation of the holding shaft 11, and stops the rotation of the holding shaft 11 by applying a brake to the holding shaft 11. Also good.
 そして、制御部51は、保持軸11の制御を終了し、本締め動作を終了する。 And the control part 51 complete | finishes control of the holding shaft 11, and complete | finishes this fastening operation | movement.
 なお、本締め動作を終了する前に、制御部51は保持軸11を緩め方向に回転させてもよい。これによって、保持軸11の係合部11aを雄螺子8の頭部8aの溝から容易に抜くことができる。 It should be noted that the control unit 51 may rotate the holding shaft 11 in the loosening direction before finishing the final tightening operation. Thereby, the engaging portion 11a of the holding shaft 11 can be easily pulled out from the groove of the head 8a of the male screw 8.
 以上に説明したように、本発明のロボットシステム100は、ロボット本体2を制御するロボットコントローラ3が保持軸駆動部13をも制御するので、従来技術のような2つのコントローラ間のやりとりのための所定のプロトコルによる通信が不要になり、ロボット本体2と螺子回し機構1との協調動作の遅延を少なくすることができる。よって、螺子回し作業を高速に且つきめ細かく行うことができる。 As described above, in the robot system 100 according to the present invention, the robot controller 3 that controls the robot body 2 also controls the holding shaft drive unit 13. Communication according to a predetermined protocol becomes unnecessary, and the delay in the cooperative operation between the robot body 2 and the screw turning mechanism 1 can be reduced. Therefore, the screw turning operation can be performed at high speed and finely.
 また、螺子回し機構1の構成を簡素化することができ、製造に有利、且つ製造コストも安価となる。 Also, the configuration of the screw turning mechanism 1 can be simplified, which is advantageous for manufacturing and low in manufacturing cost.
 (実施の形態2)
 図10は、本発明の実施の形態2に係るロボットシステム200の構成例を概略的に示す図である。図11は、ロボットコントローラ3の構成を概略的に表すブロック図である。
(Embodiment 2)
FIG. 10 is a diagram schematically showing a configuration example of the robot system 200 according to the second embodiment of the present invention. FIG. 11 is a block diagram schematically showing the configuration of the robot controller 3.
 図10に示すように、ロボットシステム200は、螺子回し機構1と、ロボット本体2と、ロボットコントローラ3と、トルクセンサ204とを備える。螺子回し機構1、ロボット本体2、及びロボットコントローラ3の構成は、上記実施の形態1と同様であるので、その説明を省略する。 As shown in FIG. 10, the robot system 200 includes a screw turning mechanism 1, a robot body 2, a robot controller 3, and a torque sensor 204. The configurations of the screw turning mechanism 1, the robot main body 2, and the robot controller 3 are the same as those in the first embodiment, and a description thereof will be omitted.
 トルクセンサ204は、螺子回し機構1の保持軸11と係合する係合部205を有する。そして、トルクセンサ204は、係合部205の負荷トルクを検出するように構成されている。図11に示すように、トルクセンサ204が検出した負荷トルク値は、制御部51に入力される。 The torque sensor 204 has an engaging portion 205 that engages with the holding shaft 11 of the screw turning mechanism 1. And the torque sensor 204 is comprised so that the load torque of the engaging part 205 may be detected. As shown in FIG. 11, the load torque value detected by the torque sensor 204 is input to the control unit 51.
 [動作例]
 次に、ロボットシステム200の動作例を説明する。
[Operation example]
Next, an operation example of the robot system 200 will be described.
 まず、制御部51は、ロボット本体2を制御して保持軸11を移動させて、保持軸11と係合部205とを係合させる。 First, the control unit 51 controls the robot body 2 to move the holding shaft 11 to engage the holding shaft 11 with the engaging unit 205.
 次に、制御部51は、保持軸駆動部13に供給する第1の電流値を決定し、保持軸駆動部13に第1の電流値で電流が供給されるよう制御する。これによって、保持軸11が回転し、係合部205を所定のトルクで締め付け、トルクセンサ204が負荷トルクを検出する。 Next, the control unit 51 determines a first current value to be supplied to the holding shaft driving unit 13 and controls the current to be supplied to the holding shaft driving unit 13 at the first current value. As a result, the holding shaft 11 rotates, the engaging portion 205 is tightened with a predetermined torque, and the torque sensor 204 detects the load torque.
 次に、制御部51は、トルクセンサ204が検出した負荷トルク値と第1の電流値とを関連付ける。 Next, the control unit 51 associates the load torque value detected by the torque sensor 204 with the first current value.
 そして、上記動作を繰り返し実行し、異なる電流値である第1~第Nの電流値と、これらの電流値にそれぞれ関連付けられた負荷トルク値とを得る。 Then, the above operation is repeatedly executed to obtain first to Nth current values which are different current values and load torque values respectively associated with these current values.
 そして、上記第1~第Nの電流値と、これらの電流値にそれぞれ関連付けられた負荷トルク値に基づいて近似式を算出し、これを、図12に示すように制限電流算出テーブルTとして決定する。 Then, an approximate expression is calculated based on the first to Nth current values and the load torque values associated with these current values, and this is determined as a limited current calculation table T as shown in FIG. To do.
 このように、ロボットシステム200は、螺子の目標締付トルクと実際の締付トルクの乖離を自動で防止することができる。 As described above, the robot system 200 can automatically prevent a deviation between the target tightening torque of the screw and the actual tightening torque.
 (実施の形態3)
 上記実施の形態1において、螺子回し機構1は、ばね33によって保持軸11を第2位置P2から第1位置P1に向かって付勢されるように構成し、雄螺子8が雌螺子孔9に沈み込むと、これに追従して保持軸11は第2位置P2から第1位置P1に向かって移動するように構成した。これに代えて、ロボット本体2が保持軸11を第2位置P2から第1位置P1に向かって付勢し、雄螺子8が雌螺子孔9に沈み込むと、これに追従して螺子回し機構1の保持軸11が第2位置P2から第1位置P1に向かって移動するように、制御部51がロボット本体2を制御してもよい。このとき、保持軸位置検出部14による保持軸11の位置の検出に代えて、ロボット本体2の関節軸の角度軸に基づいて螺子回し機構1の保持軸11の位置を検出するように構成されてもよい。
(Embodiment 3)
In the first embodiment, the screw turning mechanism 1 is configured such that the holding shaft 11 is urged by the spring 33 from the second position P2 toward the first position P1, and the male screw 8 is inserted into the female screw hole 9. When sinking, the holding shaft 11 is configured to move from the second position P2 toward the first position P1 following this. Instead, when the robot body 2 urges the holding shaft 11 from the second position P2 toward the first position P1, and the male screw 8 sinks into the female screw hole 9, the screw turning mechanism follows this. The control unit 51 may control the robot body 2 such that one holding shaft 11 moves from the second position P2 toward the first position P1. At this time, instead of detecting the position of the holding shaft 11 by the holding shaft position detecting unit 14, the position of the holding shaft 11 of the screw turning mechanism 1 is detected based on the angle axis of the joint axis of the robot body 2. May be.
 このように構成することによって、更に螺子回し作業を高速に且つきめ細かく行うことができる。 With this configuration, the screwing operation can be further performed at high speed and finely.
 (実施の形態4)
 上記実施の形態1において、保持軸11は、ばね33によって、第2位置P2から第1位置P1に向かって付勢されるように構成した。これに代えて、保持軸11は、サーボモータ等の駆動部の駆動力によって、第2位置P2から第1位置P1に向かって付勢されるように構成してもよい。これによって、任意の付勢力で保持軸11を付勢することができるので螺子回し作業を更にきめ細かく行うことができる。
(Embodiment 4)
In the first embodiment, the holding shaft 11 is configured to be urged by the spring 33 from the second position P2 toward the first position P1. Instead, the holding shaft 11 may be configured to be biased from the second position P2 toward the first position P1 by a driving force of a driving unit such as a servo motor. Accordingly, the holding shaft 11 can be urged with an arbitrary urging force, so that the screw turning operation can be performed more finely.
 (実施の形態5)
 上記実施の形態1において、制御部51は、可動軸32に装着されている保持軸11を、雄螺子8の種類に応じた形状のものに交換するように螺子回し機構1及びロボット本体2を制御するように構成されていてもよい。
(Embodiment 5)
In the first embodiment, the control unit 51 replaces the screw turning mechanism 1 and the robot main body 2 so that the holding shaft 11 attached to the movable shaft 32 is replaced with one having a shape corresponding to the type of the male screw 8. It may be configured to control.
 上記説明から、当業者にとっては、本発明の多くの改良や他の実施形態が明らかである。従って、上記説明は、例示としてのみ解釈されるべきであり、本発明を実行する最良の態様を当業者に教示する目的で提供されたものである。本発明の精神を逸脱することなく、その構造及び/又は機能の詳細を実質的に変更できる。 From the above description, many modifications and other embodiments of the present invention are apparent to persons skilled in the art. Accordingly, the foregoing description should be construed as illustrative only and is provided for the purpose of teaching those skilled in the art the best mode of carrying out the invention. The details of the structure and / or function may be substantially changed without departing from the spirit of the invention.
 Ia 仮締め電流閾値
 Ib 本締め電流閾値
 Ir 電流値
 L1 軸線
 L2 軸線
 P1 第1位置
 P2 第2位置
 P3 第3位置
 P4 第4位置
 P5 第5位置
 P6 第6位置
 Pa 螺子取りアプローチ位置
 Pb 螺子取り位置
 Pc 螺子取り退避位置
 Pf 仮締めアプローチ位置
 Pg 仮締め位置
 Ps 本締めアプローチ位置
 Pt 本締め位置
 T 制限電流算出テーブル
 1 螺子回し機構
 2 ロボット本体
 3 ロボットコントローラ
 8 雄螺子
 8a 頭部
 9 雌螺子孔
 11 保持軸
 11a 係合部
 11b 接続部
 12 軸支持部
 13 保持軸駆動部
 13a 駆動軸
 13e エンコーダ
 14 保持軸位置検出部
 15 支持枠
 21 基部
 22 アーム
 23 アーム駆動部
 23e エンコーダ
 24 アーム駆動部
 31 固定軸
 32 可動軸
 32a 接続部
 32b 係合凹部
 33 ばね
 41 センサ本体
 42 反射板
 43 反射板支持部
 43a 支持軸
 43b 支持軸連結部
 43c 支持軸案内部
 51 制御部
 52 サーボアンプ
 54 記憶部
 100 ロボットシステム
 110 螺子置台
 110a 挿通孔
 200 ロボットシステム
 204 トルクセンサ
 205 係合部
Ia Temporary fastening current threshold value Ib Final fastening current threshold value Ir Current value L1 Axis line L2 Axis line P1 First position P2 Second position P3 Third position P4 Fourth position P5 Fifth position P6 Sixth position Pa Screw removal approach position Pb Screw removal position Pc Screw removal retracted position Pf Temporary fastening approach position Pg Temporary fastening position Ps Final fastening approach position Pt Final fastening position T Limit current calculation table 1 Screw turning mechanism 2 Robot body 3 Robot controller 8 Male screw 8a Head 9 Female screw hole 11 Holding Shaft 11a Engaging portion 11b Connection portion 12 Shaft support portion 13 Holding shaft driving portion 13a Driving shaft 13e Encoder 14 Holding shaft position detecting portion 15 Support frame 21 Base portion 22 Arm 23 Arm driving portion 23e Encoder 24 Arm driving portion 31 Fixed shaft 32 Movable Shaft 32a connecting portion 32b engaging recess 33 41 Sensor body 42 Reflector plate 43 Reflector plate support part 43a Support shaft 43b Support shaft connection part 43c Support shaft guide part 51 Control part 52 Servo amplifier 54 Storage part 100 Robot system 110 Screw mount 110a Insertion hole 200 Robot system 204 Torque sensor 205 Engagement Joint

Claims (9)

  1.  先端が雄螺子の頭部と相補的な形状に形成され、該雄螺子の頭部と係合することによって、前記雄螺子に対する前記雄螺子の軸線周りの位置関係が固定される保持軸と、前記保持軸を該保持軸の軸線周りに回転駆動する保持軸駆動部と、を有する螺子回し機構と、
     前記螺子回し機構を保持し、前記螺子回し機構を移動させるロボット本体と、
     前記ロボット本体を制御し、且つ前記ロボット本体と協調して作業を行う外部軸として前記保持軸駆動部を制御するロボットコントローラと、を備える、ロボットシステム。
    A holding shaft, the tip of which is formed in a shape complementary to the head of the male screw and engaged with the head of the male screw, so that the positional relationship around the axis of the male screw with respect to the male screw is fixed; A screw turning mechanism having a holding shaft drive unit that rotationally drives the holding shaft around an axis of the holding shaft;
    A robot body that holds the screw turning mechanism and moves the screw turning mechanism;
    A robot system comprising: a robot controller that controls the robot body and controls the holding shaft drive unit as an external shaft that performs work in cooperation with the robot body.
  2.  前記ロボット本体は、多関節ロボットである、請求項1に記載のロボットシステム。 The robot system according to claim 1, wherein the robot body is an articulated robot.
  3.  前記ロボットコントローラは、前記保持部と係合した雄螺子の締め動作を行う際に、前記保持軸の回転角度位置及び回転速度の少なくとも一方を制御し、且つ前記保持軸駆動部が前記保持軸を回転駆動するための電流が目標トルクに対応する制限電流に達したか否かの判定に基づいて前記保持軸の回転駆動を停止するように前記螺子回し機構を制御する、請求項1又は2に記載のロボットシステム。 The robot controller controls at least one of a rotation angle position and a rotation speed of the holding shaft when performing a tightening operation of the male screw engaged with the holding portion, and the holding shaft driving portion controls the holding shaft. The screw turning mechanism is controlled to stop the rotational driving of the holding shaft based on the determination whether or not the current for rotational driving has reached the limit current corresponding to the target torque. The robot system described.
  4.  前記ロボットコントローラに接続され、前記保持軸と係合する係合部を有し、該係合部の負荷トルクを検出するトルクセンサを更に備え、
     前記ロボットコントローラは、前記保持軸を移動させて該保持軸と前記係合部とを係合させ、前記保持軸駆動部に所定の電流が供給されるよう制御し、該電流と前記トルクセンサが検出した前記負荷トルクとを関連付けて前記テーブルを作成し、該テーブルに基づいて前記制限電流を算出する、請求項3に記載のロボットシステム。
    An engagement portion connected to the robot controller and engaged with the holding shaft, further comprising a torque sensor for detecting a load torque of the engagement portion;
    The robot controller moves the holding shaft to engage the holding shaft with the engaging portion, and controls so that a predetermined current is supplied to the holding shaft driving portion, and the current and the torque sensor The robot system according to claim 3, wherein the table is created in association with the detected load torque, and the limit current is calculated based on the table.
  5.  前記ロボットコントローラは、前記雄螺子と該雄螺子に対応する雌螺子孔とを螺合させた後に前記雄螺子を前記雌螺子に螺入させる際に、前記雄螺子の螺入動作開始位置から該螺入動作開始位置と螺入動作終了位置との間の基準位置に前記雄螺子が位置している間は該基準位置から螺入動作終了位置までの回転速度よりも回転速度が高くなるように前記保持軸駆動部を制御する、請求項1乃至4の何れかに記載のロボットシステム。 The robot controller, when screwing the male screw into the female screw after screwing the male screw and the female screw hole corresponding to the male screw, from the screwing operation start position of the male screw. While the male screw is positioned at the reference position between the screwing operation start position and the screwing operation end position, the rotation speed is higher than the rotation speed from the reference position to the screwing operation end position. The robot system according to claim 1, wherein the holding shaft driving unit is controlled.
  6.  前記保持軸は、前記保持軸駆動部に対し、回転力受け取り可能で且つ該保持軸の軸線方向に所定距離相対的に移動可能に構成され、
     前記保持軸駆動部に対し前記保持軸を基端から先端に向う方向に付勢する付勢部と、前記保持軸の軸線方向における前記保持軸の前記保持軸駆動部に対する相対的な位置を検出する位置検出部と、を更に備える、請求項1乃至5の何れかに記載のロボットシステム。
    The holding shaft is configured to be capable of receiving a rotational force with respect to the holding shaft driving unit and movable relative to a predetermined distance in the axial direction of the holding shaft,
    A biasing portion that biases the holding shaft in a direction from the proximal end toward the distal end with respect to the holding shaft driving portion, and a relative position of the holding shaft in the axial direction of the holding shaft with respect to the holding shaft driving portion is detected. The robot system according to claim 1, further comprising: a position detection unit that performs the operation.
  7.  先端が雄螺子の頭部と相補的な形状に形成され、該雄螺子の頭部と係合することによって、前記雄螺子に対する前記雄螺子の軸線周りの位置関係が固定される保持軸と、前記保持軸を該保持軸の軸線周りに回転駆動する保持軸駆動部と、を有する螺子回し機構と、
     前記螺子回し機構を保持し、前記螺子回し機構を移動させるロボット本体と、
     前記ロボット本体を制御し、且つ前記ロボット本体と協調して作業を行う外部軸として前記保持軸駆動部を制御するロボットコントローラと、を備え、
     前記ロボットコントローラは、前記保持部と係合した雄螺子の締め動作を行う際に、前記保持軸の回転角度位置に位置及び回転速度の少なくとも一方を制御し、且つ前記保持軸駆動部が前記保持軸を回転駆動するための電流が目標トルクに対応する制限電流に達したか否かの判定に基づいて前記保持軸の回転駆動を停止するように前記螺子回し機構を制御する、ロボットシステムの制御方法。
    A holding shaft, the tip of which is formed in a shape complementary to the head of the male screw and engaged with the head of the male screw, so that the positional relationship around the axis of the male screw with respect to the male screw is fixed; A screw turning mechanism having a holding shaft drive unit that rotationally drives the holding shaft around an axis of the holding shaft;
    A robot body that holds the screw turning mechanism and moves the screw turning mechanism;
    A robot controller that controls the robot body and controls the holding shaft drive unit as an external shaft that performs work in cooperation with the robot body;
    The robot controller controls at least one of a position and a rotation speed at a rotation angle position of the holding shaft when performing a fastening operation of the male screw engaged with the holding portion, and the holding shaft driving portion holds the holding shaft. Control of the robot system that controls the screw turning mechanism to stop the rotational drive of the holding shaft based on the determination whether or not the current for rotationally driving the shaft has reached the limit current corresponding to the target torque Method.
  8.  前記ロボットコントローラに接続され、前記保持軸と係合する係合部を有し、該係合部の負荷トルクを検出するトルクセンサを更に備え、
     前記ロボットコントローラは、前記保持軸を移動させて該保持軸と前記係合部とを係合させ、前記保持軸駆動部に所定の電流が供給されるよう制御し、該電流と前記トルクセンサが検出した前記負荷トルクとを関連付けて前記テーブルを作成し、該テーブルに基づいて前記制限電流を算出する、請求項7に記載のロボットシステムの制御方法。
    An engagement portion connected to the robot controller and engaged with the holding shaft, further comprising a torque sensor for detecting a load torque of the engagement portion;
    The robot controller moves the holding shaft to engage the holding shaft with the engaging portion, and controls so that a predetermined current is supplied to the holding shaft driving portion, and the current and the torque sensor The robot system control method according to claim 7, wherein the table is created in association with the detected load torque, and the limit current is calculated based on the table.
  9.  前記ロボットコントローラは、前記雄螺子と該雄螺子に対応する雌螺子孔とを螺合させた後に前記雄螺子を前記雌螺子に螺入させる際に、前記雄螺子の螺入動作開始位置から該螺入動作開始位置と螺入動作終了位置との間の基準位置に前記雄螺子が位置している間は該基準位置から螺入動作終了位置までの回転速度よりも速度が高くなるように前記保持軸駆動部を制御する、請求項7又は8に記載のロボットシステムの制御方法。 The robot controller, when screwing the male screw into the female screw after screwing the male screw and the female screw hole corresponding to the male screw, from the screwing operation start position of the male screw. While the male screw is located at the reference position between the screwing operation start position and the screwing operation end position, the speed is higher than the rotational speed from the reference position to the screwing operation end position. The robot system control method according to claim 7 or 8, wherein the holding shaft drive unit is controlled.
PCT/JP2014/006476 2014-12-25 2014-12-25 Robot system WO2016103298A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2014/006476 WO2016103298A1 (en) 2014-12-25 2014-12-25 Robot system
KR1020177019101A KR101989122B1 (en) 2014-12-25 2014-12-25 Robot system
JP2016565598A JP6397510B2 (en) 2014-12-25 2014-12-25 Robot system
CN201480084306.8A CN107000139B (en) 2014-12-25 2014-12-25 Manipulator system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/006476 WO2016103298A1 (en) 2014-12-25 2014-12-25 Robot system

Publications (1)

Publication Number Publication Date
WO2016103298A1 true WO2016103298A1 (en) 2016-06-30

Family

ID=56149402

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/006476 WO2016103298A1 (en) 2014-12-25 2014-12-25 Robot system

Country Status (4)

Country Link
JP (1) JP6397510B2 (en)
KR (1) KR101989122B1 (en)
CN (1) CN107000139B (en)
WO (1) WO2016103298A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108788705A (en) * 2018-06-11 2018-11-13 无锡智动力机器人有限公司 A kind of the turn of the screw robot that torque is controllable
JP2019188503A (en) * 2018-04-21 2019-10-31 日東精工株式会社 Screw fastening robot
US11850691B2 (en) * 2021-09-08 2023-12-26 Honda Motor Co., Ltd Fastening system and fastening method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108748164A (en) * 2018-07-19 2018-11-06 深圳市慧传科技有限公司 The control method of manipulator automatic clamping dynamics and gripping state
KR102142286B1 (en) * 2018-08-24 2020-08-07 현대자동차 주식회사 System and method for multi-layer component fastening
KR102144969B1 (en) * 2019-01-07 2020-08-14 엘아이지넥스원 주식회사 Apparatus for Disassembling Screw using Hinge Structure
TWI715065B (en) * 2019-06-14 2021-01-01 友創工業股份有限公司 Screw system
CN112756958A (en) * 2021-01-19 2021-05-07 国工信(沧州)机器人有限公司 Automatic screw nut device of twisting of robot

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5246600A (en) * 1975-10-13 1977-04-13 Sanyo Kiko Kk Bolt fastening method
JPH0283123A (en) * 1988-09-20 1990-03-23 Mazda Motor Corp Fastening device for connecting member
JPH08309628A (en) * 1995-05-15 1996-11-26 Nippon Steel Corp Bolt loosening method and device therefor
JPH10328952A (en) * 1997-06-02 1998-12-15 Wako Giken:Kk Control method and device of motor, and screw fastening method and device
JP2001259941A (en) * 2000-03-10 2001-09-25 Nitto Seiko Co Ltd Automatic part fastener
JP2014180719A (en) * 2013-03-19 2014-09-29 Yaskawa Electric Corp Robot device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61164737A (en) * 1985-01-16 1986-07-25 Matsushita Electric Ind Co Ltd Driver insertion detector
JP2894198B2 (en) * 1993-01-13 1999-05-24 株式会社デンソー Screw fastening device
JP2002331428A (en) 2001-09-27 2002-11-19 Honda Motor Co Ltd Screw fastening method and device by force control robot
JP2005001007A (en) * 2003-06-09 2005-01-06 Tamagawa Seiki Co Ltd Screw fastening method without torque sensor
JP2010125528A (en) * 2008-11-25 2010-06-10 Toyota Motor Corp Screw tightening device
CN201424357Y (en) * 2009-06-25 2010-03-17 上海精星仓储设备工程有限公司 Laser ranging stacker
CN101723169B (en) * 2009-11-12 2011-05-18 浙江大学城市学院 Pull-type truck replenishing system of cargo allocation line of distribution center
CN201672907U (en) * 2010-05-27 2010-12-15 刘淑兰 Measuring device of opening height of gate valve for water conservancy project
JP5780896B2 (en) * 2011-09-20 2015-09-16 株式会社マキタ Electric tool
CN103934673B (en) * 2014-03-24 2016-08-17 东莞市聚川装配自动化技术有限公司 Numerical control electric screwdriver based on static torque sensor and control method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5246600A (en) * 1975-10-13 1977-04-13 Sanyo Kiko Kk Bolt fastening method
JPH0283123A (en) * 1988-09-20 1990-03-23 Mazda Motor Corp Fastening device for connecting member
JPH08309628A (en) * 1995-05-15 1996-11-26 Nippon Steel Corp Bolt loosening method and device therefor
JPH10328952A (en) * 1997-06-02 1998-12-15 Wako Giken:Kk Control method and device of motor, and screw fastening method and device
JP2001259941A (en) * 2000-03-10 2001-09-25 Nitto Seiko Co Ltd Automatic part fastener
JP2014180719A (en) * 2013-03-19 2014-09-29 Yaskawa Electric Corp Robot device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019188503A (en) * 2018-04-21 2019-10-31 日東精工株式会社 Screw fastening robot
JP7157548B2 (en) 2018-04-21 2022-10-20 日東精工株式会社 Screw tightening robot
CN108788705A (en) * 2018-06-11 2018-11-13 无锡智动力机器人有限公司 A kind of the turn of the screw robot that torque is controllable
US11850691B2 (en) * 2021-09-08 2023-12-26 Honda Motor Co., Ltd Fastening system and fastening method

Also Published As

Publication number Publication date
CN107000139A (en) 2017-08-01
KR20170103811A (en) 2017-09-13
JP6397510B2 (en) 2018-09-26
KR101989122B1 (en) 2019-06-13
JPWO2016103298A1 (en) 2017-07-27
CN107000139B (en) 2021-01-01

Similar Documents

Publication Publication Date Title
JP6397510B2 (en) Robot system
JP5565550B2 (en) Automatic screw tightening device and control method thereof
US20180071860A1 (en) Friction Stir Welding Device and Friction Stir Welding Method
US20140288712A1 (en) Robot device
CN109093549B (en) Nut screwing device
JP5711550B2 (en) Automatic screwing machine
JP6822290B2 (en) Joining method and joining device
JP6501965B1 (en) Method and apparatus for tightening bolt and nut
JP6241539B2 (en) Screw tightening system and screw tightening method
JP2894198B2 (en) Screw fastening device
JP2009125907A (en) Fastening diagnostic system and fastening diagnostic method
US8468911B2 (en) Feed apparatus
JP6045465B2 (en) Screw tightening device and screw tightening method
JP5209446B2 (en) Tailstock control device
JP2014198357A (en) Automatic screw fastening machine
JP2013018067A5 (en)
JP7425614B2 (en) Automatic screw tightening device
JP4202322B2 (en) Computerized NC machine tool tool correction device
JPH0255174B2 (en)
JP4201553B2 (en) Material guide device and automatic lathe
JP4310584B2 (en) Work phasing method and apparatus for grinding machine
JP2001278386A (en) Method and device for screw cap tightening control
JPH0921712A (en) Method of forming screw bond
JP2007313614A (en) Automatic screwing device
CN217627220U (en) Guide device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14908909

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016565598

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177019101

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14908909

Country of ref document: EP

Kind code of ref document: A1