WO2016102735A1 - Stem cells irradiated for cancer treatment - Google Patents

Stem cells irradiated for cancer treatment Download PDF

Info

Publication number
WO2016102735A1
WO2016102735A1 PCT/ES2015/070951 ES2015070951W WO2016102735A1 WO 2016102735 A1 WO2016102735 A1 WO 2016102735A1 ES 2015070951 W ES2015070951 W ES 2015070951W WO 2016102735 A1 WO2016102735 A1 WO 2016102735A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
radiation
cell
tumor
cancer
Prior art date
Application number
PCT/ES2015/070951
Other languages
Spanish (es)
French (fr)
Inventor
José Mariano RUIZ DE ALMODÓVAR RIVERA
Virginea DE ARAÚJO FARIAS
Jesús Joaquín LÓPEZ PEÑALVER
María del Carmen RUIZ RUIZ
Francisco Javier OLIVER POZO
Borja ALONSO LERMA
Rocío SEGUI JIMÉNEZ
Ana GUERRA-LIBRERO RITE
Beatriz Irene FERNÁNDEZ GIL
Original Assignee
Universidad De Granada
Servicio Andaluz De Salud
Consejo Superior De Investigaciones Científicas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad De Granada, Servicio Andaluz De Salud, Consejo Superior De Investigaciones Científicas filed Critical Universidad De Granada
Publication of WO2016102735A1 publication Critical patent/WO2016102735A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/28Bone marrow; Haematopoietic stem cells; Mesenchymal stem cells of any origin, e.g. adipose-derived stem cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy

Definitions

  • the present invention is within medicine, and more specifically within cell therapy, and refers to the use of stem cells activated by low doses of radiation for the treatment of cancer.
  • Radiotherapy has consistently remained one of the most effective treatments for cancer and approximately 50% of all cancer patients receive radiation therapy in some form, either isolated or in combination with other treatment modalities, at some time during their management. For many tumors and locations, however, a definitive cure cannot be achieved even though cancer treatments are becoming more effective. Reliable information on the relative roles of surgery, radiotherapy, chemotherapy and new areas of cancer drug development is difficult to obtain, but any improvement in the effectiveness of radiotherapy will undoubtedly benefit a significant number. of patients (Begg et al., 201 1. Nat Rev Cancer 1 1, 239-253). Knowledge of the mechanisms by which radiation induces cell death is based on data on cell survival and radiation-induced cell damage (Peacock et al, 1992.
  • Radiotherapy therapy is a very effective tool to eradicate tumor cells.
  • the prescription of a radiotherapy cycle should assess the balance between risk and benefit, whose relative weight will be determinant of therapeutic gain.
  • antineoplastic therapy could have an additional decisive effect: the response of sub-lethally injured tumor cells (Marples et al, 2003; Mothersill and Seymour, 2004; Prise and O'Sullivan, 2009. Nat Rev Cancer 9, 351-360) can be described as an interaction between a ligand and its receptor (Gómez-Millan et al., 2012. Radiotherapy and oncology: journal of the European Society for Therapeutic Radiology and Oncology 102, 450-458).
  • the cells included in the irradiation volume are classified, for operational purposes, as follows:
  • Dead cells Cells that have suffered irreparable injuries; these are those included in the compartment called lethal injury of the Curt ⁇ s model (Curt ⁇ s, Radiat Res. 1986, 106 (2): 252-270)
  • B) Committed cells are cells affected by damage to their DNA and whose fate depends on a competitive process between the repair and fixation of the radio-induced lesions. They are those that are included in the compartment of potentially lethal lesions and responsible for the curvature of the cell survival curves to radiation (Peacock, et al. 1992, BJR Supplement 24, 57-60).
  • C) Activated cells Cells that have been minimally damaged or that have been able to repair the induced lesions to a level of residual damage compatible with the survival of said cells. These cells have been found to be an active source of cytokines, reactive oxygen species and reactive nitrogen species that, through extracellular space or through blood and / or lymphatic circulation, interact and affect the total tumor mass.
  • Unscathed cells Cells that survive after each fraction of the dose and that forces the prolongation of the treatment with successive dose fractions to achieve tumor control. The probability of controlling the tumor depends essentially on the nature and extent of the tumor, on therapeutic factors such as total dose, dose per fraction and time, and on biological factors such as radiosensitivity and likelihood of adverse side effects.
  • the population of cells in compartment C is responsible for: a) the bystander effect of short range (Prise KM &O'Sullivan JM, 2009. Nat Rev Cancer 9 (5): 351-360) that is produced by direct cell-cell contact through the gap-junction and by free radical-mediated communications, and b ) of the distant bystander effect of the tumor - abscopal effect - (Formenti SC & Demaria S, 2009. Lancet Oncol 10 (7): 718-726).
  • the bystander action of radiation should be considered as the overall immune response of the tumor and its metastases, if any, and of healthy peritumoral tissues, to radiation-induced stress on the white volume (López E, et al. (2005) Breast Cancer Res 7 (5): R690-698; Pinar et al. 2007, Radial Res. 168 (4): 415-22.
  • MSC cells have been investigated for the treatment of cancers due to the fact that these cells are able to preferentially lodge in the stroma of tumors and it is known that the incorporation of MSCs into the tumor is increased with antitumor radiotherapy.
  • MSCs can either suppress or promote tumors (Bergfeld et al, 2014; Mol Cancer Ther. 13, 962-75. Yagi and Kitagawa, 2013, Front Genet. 4, 261).
  • the present invention shows a new therapy, based on radiotherapy, useful for the treatment of locally advanced tumors and cancer at the systemic level.
  • a first aspect of the invention relates to a method of obtaining activated stem cells, hereafter referred to as the method of the invention, which comprises administering low doses of radiation to stem cells.
  • the stem cells are irradiated with a dose between 0.03 cGy and 6 Gy, more preferably with a dose between 0.25 Gy and 4Gy, and even more preferably with a dose of approximately 2 Gy.
  • the stem cells are mesenchymal stem cells.
  • a second aspect of the invention relates to an activated stem cell, hereinafter activated stem cell of the invention, obtained or obtainable by the process of the invention. Therefore, an activated stem cell of the invention is understood as a stem cell obtained by the process of the invention.
  • this aspect of the invention relates to a population of activated stem cells, hereinafter population of activated stem cells of the invention, comprising at least one activated stem cell of the invention.
  • the stem cells are mesenchymal stem cells.
  • a third aspect of the invention relates to a composition, hereinafter composition of the invention, comprising at least one activated stem cell of the invention or a population of activated stem cells of the invention.
  • the composition of the invention further comprises a pharmaceutically acceptable carrier.
  • the composition of the invention further comprises another active ingredient.
  • the active ingredient is a PARP (poly (ADP-ribose) polymerase) inhibitor.
  • a fourth aspect of the invention relates to a combined preparation, hereafter combined preparation of the invention, comprising: a) a component A that is at least one activated stem cell or a population of activated stem cells of the invention, or a composition of the invention, and,
  • component B that is a chemotherapeutic agent and / or an antiantiangiogenic agent.
  • the combined preparation of the invention further comprises at least one PARP inhibitor.
  • a fifth aspect of the invention relates to the use of an activated stem cell of the invention, of a composition of the invention, or of the combined preparation of the invention, in the manufacture of a medicament.
  • a sixth aspect of the invention relates to the use of an activated stem cell of the invention, of a composition of the invention, or of the combined preparation of the invention, in the preparation of a medicament for the treatment of cancer.
  • the cancer is a locally advanced or systemic cancer.
  • a seventh aspect of the invention relates to a method of treating cancer, hereinafter the first method of treating cancer of the invention, comprising: a) administering the activated stem cells of the invention, and
  • step (b) comprises administering to the patient a low dose of radiation on the volume occupied by the tumor in an effective amount (2-6 Gy) to activate the tumor cells and favor the tropism of the stem cells towards the tumor
  • the stem cells are mesenchymal stem cells (MSC), and / or the activated stem cells are activated mesenchymal stem cells (MSC *).
  • MSC mesenchymal stem cells
  • MSC * activated mesenchymal stem cells
  • new intravenous administrations can subsequently be made, of activated stem cells, preferably where the stem cells are mesenchymal stem cells, and subsequent administration can be both MSC cells and MSC * cells or cells of the invention, by example, in the days of pause of radiotherapy.
  • the first cancer treatment method of the invention further comprises administering at least one PARP inhibitor.
  • the first cancer treatment method of the invention further comprises administering at least one chemotherapeutic agent and / or an antiangiogenic agent.
  • the cancer is a systemic cancer.
  • An eighth aspect of the invention relates to a method of treating cancer, hereinafter second method of treating cancer of the invention, comprising:
  • the second cancer treatment method of the invention further comprises administering at least one PARP inhibitor.
  • the second cancer treatment method of the invention further comprises administering at least one chemotherapeutic agent and / or an antiangiogenic agent.
  • the cancer is a systemic cancer.
  • the stem cells will be injected the next day and after 24 hours of waiting the radiation treatment will continue. New intravenous administrations of activated stem cells may be made on the days of radiation therapy pause.
  • the stem cells are mesenchymal stem cells.
  • FIG. 1 Quantitative RT-PCR for TRAIL, DR5 and DKK3 mRNA in MSC cells of human umbilical cord stroma in basal conditions and after stimulation of cells with 2 Gy doses of low linear energy transfer radiation (X-rays or ⁇ ).
  • X-rays or ⁇ low linear energy transfer radiation
  • the evolution of the expression levels of each of the genes studied is followed over time (interval between 0 and 30 hours after stimulation) and the differences with respect to the baseline values are calculated using the method 2 ⁇ .
  • the values are mean ⁇ ESM of triplicates of 3 independent trials (* P ⁇ 0.05; ** P ⁇ 0.01; *** P ⁇ 0.001 **** P ⁇ 0.0001) .
  • the values are mean ⁇ ESM of triplicates of 3 independent trials (* P ⁇ 0.05; ** P ⁇ 0.01; *** P ⁇ 0.001 **** P ⁇ 0.0001) .
  • the expression of these genes also changes in the cell lines tested. Most relevant is the up-regulation of DR5 and DKK3 in A361 which indicates a possible radiosensitizing effect and the up-regulation of TRAIL in MCF7. Of great interest is the absence of DKK3 in this cell line. Note that the corresponding graph is missing.
  • FIG. 4 Another quantitative RT-PCR for TRAIL and DR5 and DKK3 mRNA in another trial on human melanoma A375 and G361 cell lines and in MCF7 (human breast cancer) at baseline conditions and after dose cell stimulation 2 Gy of low linear energy transfer radiation (X or ⁇ rays).
  • the evolution of the expression levels of each of the genes studied is followed over time (interval between 0 and 30 hours after stimulation) and the differences with respect to the baseline values are calculated using the method 2 ⁇ .
  • the values are mean ⁇ ESM of triplicates of 3 independent trials (* P ⁇ 0.05; ** P ⁇ 0.01; *** P ⁇ 0.001 **** P ⁇ 0.0001) .
  • the expression of these genes also changes in the cell lines tested.
  • FIG. 5 A, B: Levels of the TRAIL and DKK3 proteins measured in the culture medium of MSC derived from the umbilical cord stroma (MSC-UCSSCs) in a kinetics experiment of release of these proteins after stimulation of the cells with a 2 Gy dose of ionizing radiation (X-ray or ⁇ ). The times at which protein quantification is performed by enzyme-immunoassay were 0, 24 and 48 after treatment.
  • C and D TRAIL and DKK3 levels are represented in whole cells. For this, a method that allows the quantification of proteins by immunoassay in intact cells has been used (Siles et al. British journal of cancer 1996; 73 (5): 581-8).
  • the evolution of the intracellular levels of these proteins was made in the Oh (control) times and 24 and 48 hours after irradiation.
  • the whole cell assay shows the changes in the amount of TRAIL form bound to the cell membrane in control cells and after treatment (0, 24 and 48 h).
  • E shows representative results of the response of the enzyme assay method to measure the evolution of TRAIL expression in the cells in basal conditions and after being irradiated with 2 Gy.
  • the image clearly shows the increase, as a function of time, of the levels of protein in the irradiated cells.
  • the full cell assay, F allows you to measure the baseline levels of TRAIL and its changes after irradiation for amounts of cells as low as 5000 cells per well.
  • FIG. 6 Levels of TRAIL and DKK3 proteins measured in an MSC stimulation experiment with a dose of 6 Gy using low LET radiation (X-ray or ⁇ ).
  • the results obtained after measuring the expression of TRAIL and DKK3 in the culture medium are shown in a and b.
  • the points correspond to the times of Oh (control), 24 and 48 hours after irradiation.
  • the results of the TRAIL measurement by the complete cell assay are shown in c and d.
  • the values are expressed in pg / ml in the enzyme-immunoassay of TRAIL, ng / ml for that of DKK3 and in relative units in the case of the test on whole cells.
  • the induction of the form of the TRAIL protein anchored to the cell membrane (whole cell assay) of mesenchymal cells is evident.
  • FIG. 7 The medium conditioned by irradiation of mesenchymal cells (RCM) used repeatedly as a treatment on A375 and G361 cells produces an effect of cell death that is manifested by the decrease in size colonies formed by these cell lines.
  • RCM mesenchymal cells
  • A375 and G361 cells were grown for 7 days to form colonies. From this point (beginning of the experiment) three conditions were defined: The first in which the colonies were allowed to grow in normal culture medium (experiment control) daily changing the culture medium with fresh medium. In the other two, the culture medium was replaced by RCM obtained after 24 hours and RCM obtained after 48 hours of irradiation of MSC cells.
  • T D for the growth of the colonies of A375 and G361 under Control conditions 42.0 and 45.6 hours respectively
  • T D for the growth of colonies treated with RCM 24h for A375 and G361 61, 2 and 79.3 hours respectively.
  • the value of the slopes of the growth of the tumor cell colonies (Tcg) in the experiments performed in the condition of treatment with RCM 48h turned out to be: 1) a very slow positive slope in the case of the A375 cell line, and 2) a slope of negative value for the G361 cells that indicated the progressive reduction in the size of the surface covered by the colonies of these cells subjected to treatment with RCM 48h. This allows us to conclude that cell loss in both cases exceeds 100%.
  • Figure 8 Representative experiment of the growth of experimental tumors consisting of colonies of melanoma A375 and G361 cell lines grown for 7 days and colonies of MCF-7 breast cancer cells grown for 14 days.
  • mice are divided into two groups: Control: Continuous line and O symbol; Treatment: Continuous lines and symbols ⁇ and The growth kinetics of the irradiated tumor is the line marked with ⁇ , RT 3Gy.
  • the line marked with ⁇ represents the evolution over time of the size of the non-irradiated contralateral tumor, Bystander.
  • the MSCs were injected. After this, the points corresponding to the evolution of the volume of the tumors are clearly separated from the prolongation of the lines that represent tumor growth (dotted lines).
  • FIG. 10 Study of the role of MSCs as tumor suppressor agents when used alone or when used in combination with radiotherapy. Tumor growth is quantified in isolation in four different conditions:
  • Contralateral tumors in the groups of mice treated with RT or with RT + MSC (8 tumors in each of them) are those that are identified as Bystander (RT), V, and Bystander (RT + MSC), ⁇ .
  • FIG. 11 Set of representative images of mice inoculated with 1-10 6 cells of the G361 human melanoma line. Mice with a tumor of approx. 65 mm 3 were treated in different ways for 4 weeks Tumor growth images are taken on days 0 (beginning of treatment), 7, 14, 21 and 28, both for the control group and for the groups of each type of treatment. The black spots that are visible are marks to facilitate the irradiation of the tumor. In the RT group, the tumor on the right side (marked with an arrow) was irradiated, while in the RT + MSC group the irradiated tumor was that on the left (marked with an arrow). The tumors on the opposite side were protected from irradiation and are only affected by the bystander effect.
  • the inventors have investigated the mechanisms that determine cell sensitivity to the bystander effect in more depth, using a set of cancer cell lines and mesenchymal cells derived from umbilical cord stroma (UCSSC), including the activation of UCSSC cells with low dose radiotherapy to increase the expression of TRAIL (TNFS10) and DKK3.
  • UCSSC umbilical cord stroma
  • TNFS10 TRAIL
  • DKK3 TRAIL-induced TRAIL
  • the activation of MSC with radiotherapy achieves effects similar to those previously described (Lee et al., 2012, Cell Stem Cell, 2012, 825-35) and avoids the use of highly toxic molecules such as TNFa.
  • TRAIL and DKK-3 are molecules produced by the tumor and by mesenchymal cells that, as a result of the treatment of cells with low-dose radiation of LET (X-ray or ⁇ ) between 0.2 and 6 Gy, are they secrete to the extracellular environment, where they can act as signaling molecules to produce cell death in non-irradiated tumor cells.
  • LET X-ray or ⁇
  • the use of activated mesenchymal cells enhances the action of radiotherapy applied to the treatment of human cancer models.
  • the administration of mesenchymal cells and radiation, together with PARP inhibitors could lead to an increase in the effectiveness of radiotherapy due to the sum of: i) the action of cytokines released by the MSC * cells to the extracellular medium, ii) the genotoxic actions of radiation and iii) the deterioration of DNA repair mechanisms derived from PARP inhibition. All this translates into the potentiation of short and long-range neighborhood effects (bystander) and, as a consequence, a greater treatment effect.
  • the ionizing radiation used at low doses on MSC, and on tumor cells it induces important changes in the expression of the TRAIL, DR5 and DKK3 genes which is translated, in the MSC, by changes in the levels of the proteins encoded by said genes.
  • the membrane anchored form of TRAIL of the MSCs can be quantified by enzyme-assay on whole cell.
  • a first aspect of the invention relates to a method of obtaining activated stem cells, hereafter referred to as the method of the invention, which comprises administering low doses of radiation to said cells.
  • the dose of radiation administered is between 0.2 and 6 Gy, more preferably between 0.25 and 6 Gy, between 0.2 and 4 Gy, and between 0.5 and 2 Gy.
  • the radiation is administered according to standard techniques known in the state of the art, and with standard megavoltage equipment, such as, for example, but not limited to, AECL Theratron 80, Vary Clinac 4 or Vary Clinac.
  • the maximum radiation field size should not be greater than 300 cm 2 .
  • the radiation therapy employed in the process of the invention may comprise external irradiation administered to a cell or a cell population at a dose of 0.2 to 8 Gy per fraction.
  • a preferred range of irradiation dose is 0.5 to 3 Gy per fraction.
  • the total dose of radiation therapy is less than 80 Gy, such as less than 75 Gy, such as less than 70 Gy, such as less than 65 Gy, such as less than 60 Gy, such as less than 55 Gy, such as less than 50 Gy, such as less than 45 Gy.
  • the dose or radiation therapy is between about 60 to 80 Gy, such as about 40 to 60 Gy, such as about 30 to 50 Gy, such as about 20 to 30 Gy.
  • the irradiation dose is selected from 15 to 30 Gy, such as 10 to 20 Gy.
  • An external irradiation dose can be administered in 1 to 60 fractional doses, such as 5 to 30 fractional doses.
  • the fractionated doses are administered with approximately 1.5 to approximately 2 Gy per fraction, such as approximately 1.5 Gy, such as approximately 1.6 Gy, such as approximately 1.7 Gy, such as approximately 1 , 8 Gy, such as about 1.9 Gy, such as about 2.0 Gy, such as about 2.1 Gy, such as about 2.2 Gy, such as about 2.3 Gy such as about 2.4 Gy , such as about 2.5 Gy per fractional dose.
  • the stem cell would be a cell. mesenchymal mother.
  • radiation therapy is administered in a single dose and not in fractional doses.
  • the single dose can be administered with approximately 10 to 20 Gy per dose.
  • Activated stem cells can be administered with a dose of approximately 1-5 Gy.
  • a radiation sensitizer is administered to a patient and the patient undergoes a single dose of radiation therapy within 10 minutes, in 20 minutes, in 30 minutes, in 40 minutes, within 50 minutes. or one hour after administration of the sensitizer.
  • a second aspect of the invention relates to an isolated activated stem cell, hereinafter activated isolated stem cell of the invention, obtained by the process of the invention.
  • the stem cell of the invention is an adult stem cell, and more preferably, it is a mesenchymal stem cell.
  • adult stem cell refers to that stem cell that is isolated from a tissue or organ of an animal in a state of growth after the embryonic state.
  • the stem cells of the invention are isolated in a postnatal state.
  • they are isolated from a mammal, and more preferably from a human, including neonates, juveniles, adolescents and adults.
  • ⁇ stem cells can be isolated from a wide variety of tissues and organs, such as bone marrow (mesenchymal stem cells, multipotent adult progenitor cells and hematopoietic stem cells), adipose tissue, cartilage, epidermis, hair follicle, skeletal muscle, heart muscle, intestine , liver, neuronal.
  • MSCs can be obtained from, without being limited to, bone marrow, adipose tissue (such as subcutaneous adipose tissue), liver, spleen, testicles, menstrual blood, amniotic fluid, pancreas, periosteum, synovial membrane, skeletal muscle, dermis, pericytes, trabecular bone, human umbilical cord, lung, dental pulp and peripheral blood.
  • adipose tissue such as subcutaneous adipose tissue
  • liver spleen
  • testicles menstrual blood
  • amniotic fluid pancreas
  • periosteum synovial membrane
  • skeletal muscle skeletal muscle
  • dermis pericytes
  • trabecular bone human umbilical cord
  • lung dental pulp and peripheral blood.
  • the activated stem cell of the invention can be genetically modified by any conventional method including, by way of illustration, not limitation, transgenesis processes, deletions or insertions in its genome that modify the expression of genes that are important for its properties. basic (proliferation, migration, differentiation, etc.), or by inserting nucleotide sequences that encode proteins of interest, such as proteins with therapeutic properties. Therefore, in another preferred embodiment, the activated stem cell of the invention has been genetically modified.
  • mesenchymal stem cells are obtained from the umbilical cord, preferably from the human umbilical cord.
  • cell population of the invention comprising at least one stem cell of the invention.
  • the cell population of the invention comprises at least 20%, preferably 40%, and even more preferably 50%, 60%, 80%, 90%, 95%, or 99% of adult stem cells. of the invention.
  • the term "isolated” indicates that the cell or cell population of the invention to which it refers, are not in their natural environment. That is, the cell or cell population has been separated from its surrounding tissue.
  • the activated stem cells of the invention, as well as the cells present in the cell population of the invention, can be autologous, allogeneic or xenogenic cells. In a particular embodiment, said cells are of autologous origin, thereby reducing the potential complications associated with / or antigenic and immunogenic responses of said cells when administered to the individual.
  • a third aspect of the invention relates to a composition, hereafter referred to as a composition of the invention, comprising at least one activated stem cell of the invention.
  • the composition of the invention It also comprises a pharmaceutically acceptable vehicle.
  • the composition of the invention further comprises another active ingredient.
  • the cell composition of the invention has at least 50%, at least 60%, preferably 70%, more preferably 80%, even more preferably, 90%, and, even more preferably , 95% of the activated isolated stem cells of the invention.
  • Said adult cell composition of the invention may contain a medium in which the cells of the invention are found; said medium must be compatible with said cells.
  • a medium in which the cells of the invention are found For example, but not limited to, isotonic solutions, optionally supplemented with serum; cell culture media or, alternatively, a solid, semi-solid, gelatinous or viscous support medium.
  • the composition of the invention preferably, is a pharmaceutical composition for administration to a subject.
  • pharmaceutically acceptable vehicle refers to a vehicle that must be approved by a federal government regulatory agency or a state government or listed in the United States Pharmacopoeia or the European Pharmacopoeia, or other pharmacopoeia generally recognized for use in animals, and more specifically in humans.
  • vehicle refers to a diluent, adjuvant, excipient or carrier with which the cells or the cell population of the invention or of said composition comprising stem cells of the invention obtainable according to the method of the invention should be administered; obviously, said vehicle must be compatible with said cells.
  • Illustrative, non-limiting examples of said vehicle include any physiologically compatible vehicle, for example, isotonic solutions (for example, 0.9% sterile saline NaCI, phosphate buffered saline (PBS), Ringerlactate solution, etc.), optionally supplemented with serum, preferably with autologous serum; cell culture media (eg, DMEM, etc.); or, alternatively, a solid, semi-solid, gelatinous or viscous support medium, such as collagen, collagen-glycosamino-glycan, fibrin, polyvinyl chloride, polyamino acids, such as polylysine, or polynithine, hydrogels, agarose, silicone dextran sulfate.
  • the support medium may, in specific embodiments, contain growth factors or other agents.
  • the cells can be introduced into a liquid phase of the vehicle that is subsequently treated in such a way that it becomes a more solid phase.
  • the pharmaceutical composition of the invention may also contain, when necessary, additives to increase, control or otherwise direct the desired therapeutic effect of the cells, which comprise said pharmaceutical composition, and / or auxiliary substances or Pharmaceutically acceptable substances, such as buffering agents, surfactants, cosolvents, preservatives, etc. Also, to stabilize the cell suspension, it is possible to add metal chelators.
  • the stability of the cells in the liquid medium of the pharmaceutical composition of the invention can be improved by the addition of additional substances, such as, for example, aspartic acid, glutamic acid, and so on.
  • additional substances such as, for example, aspartic acid, glutamic acid, and so on.
  • Such pharmaceutically acceptable substances that can be used in the pharmaceutical composition of the invention are generally known to those skilled in the art and are normally used in the preparation of cellular compositions.
  • active ingredient means any component that potentially provides a pharmacological activity or other different diagnostic effect, cure, mitigation, treatment, or prevention of a disease, or that affects the structure or function of the body of man or other animals.
  • active ingredient means any component that potentially provides a pharmacological activity or other different diagnostic effect, cure, mitigation, treatment, or prevention of a disease, or that affects the structure or function of the body of man or other animals.
  • the term includes those components that promote a chemical change in the preparation of the drug and are present therein in a modified form intended to provide the specific activity or effect.
  • the active ingredient is selected from the list consisting of: a poly (ADP-ribose) polymerase (PARP) inhibitor; a radiosensitizer such as nitroimidazole; a growth factor or GF (from English, "growth factor”); an agent directed at the epidermal growth factor receptor (RFCE); a radiolabeled antibody; a remainder of addressing; chemotherapeutic agents, which include, but are not limited to, compounds that induce apoptosis, compounds that reduce lifespan or compounds that make cells sensitive to stress; bacteria, modified or not genetically; or any of its combinations.
  • the active ingredient is a poly (ADP-ribose) polymerase (PARP) inhibitor.
  • the active ingredient is a growth factor.
  • the growth factor is a granulocyte colony stimulating factor or G-CSF (Granulocyte colony-stimulating factor), and even more preferably, lenograstim and / or filgrastim.
  • a fourth aspect of the invention relates to a combined preparation, hereafter combined preparation of the invention, comprising:
  • component B that is a chemotherapeutic agent and / or an antiantiangiogenic agent.
  • the combined preparation of the invention further comprises at least one PARP (poly (ADP-ribose) polymerase) inhibitor.
  • PARP poly (ADP-ribose) polymerase
  • PARP ADP-ribose polymerase
  • RFCE epidermal growth factor receptor
  • chemotherapeutic agents which include, but are not limited to, compounds that induce apoptosis, compounds that reduce lifespan or compounds that make cells sensitive to stress; bacteria, modified or not genetically; or any of the combinations of the active ingredients mentioned.
  • a fifth aspect of the invention relates to the use of an activated stem cell of the invention, of a composition of the invention, or of the combined preparation of the invention, in the manufacture of a medicament.
  • the term "medication”, as used herein, refers to any substance used for prevention, diagnosis, relief, treatment or cure of diseases in man and animals.
  • the disease is a cancer, and more preferably it is a systemic cancer.
  • the pharmaceutical composition of the invention will contain a prophylactic or therapeutically effective amount of the cells of the invention or of the cell population of the invention, preferably, a substantially homogeneous cell population, to provide the desired therapeutic effect.
  • the term "therapeutically or prophylactically effective amount” refers to the amount of cells of the invention contained in the pharmaceutical composition that is capable of producing the desired therapeutic effect and, in general, will be determined, among other factors, due to the characteristics of the cells and the desired therapeutic effect sought.
  • the therapeutically effective amount of cells of the invention to be administered will depend, among other factors, on the subject's own characteristics, the severity of the disease, the manner of administration, etc. For this reason, the doses mentioned in this invention should be taken into account only as a guide for the person skilled in the art, who should adjust this dose depending on the factors described above.
  • the pharmaceutical composition of the invention can be administered as a single dose, containing approximately between 1x10 5 and 10x10 6 cells of the invention per kilo of body weight of the recipient, and more preferably between 5x10 5 and 5x10 6 cells of the invention per kilo of the body weight of the recipient, in a more preferred embodiment even said pharmaceutical composition will contain approximately between 1x10 6 and 2x10 6 cells of the invention per kilo of the body weight of the recipient, depending on the factors described above. .
  • the dose of cells of the invention can be repeated, depending on the condition and evolution of the patient, in temporary intervals of days, weeks or months that the specialist must establish in each case.
  • a sixth aspect of the invention relates to the use of an activated stem cell of the invention, of a composition of the invention, or of the combined preparation of the invention, in the preparation of a medicament for the treatment of cancer.
  • the cancer is a systemic cancer.
  • a seventh aspect of the invention relates to a method of treating cancer, of hereinafter the first method of cancer treatment of the invention, comprising: a) administering the activated stem cells of the invention, and
  • step (b) comprises administering to the patient a low dose of radiation on the volume occupied by the tumor in an effective amount (2-6 Gy) to activate the tumor cells and favor the tropism of the mesenchymal cells towards the tumor
  • the stem cells of the invention are mesenchymal stem cells.
  • new intravenous administrations can be made subsequently, both of MSC cells and MSC * cells or stem cells of the invention, for example, on the days of radiation therapy pause.
  • the first method of cancer treatment of the invention further comprises administering an active ingredient such as: a poly (ADP-ribose) polymerase (PARP) inhibitor; a radiosensitizer such as nitroimidazole; a growth factors or GF; an agent directed at the epidermal growth factor receptor (RFCE); a radiolabeled antibody; a remainder of addressing; chemotherapeutic agents, which include, but are not limited to, compounds that induce apoptosis, compounds that reduce lifespan or compounds that make cells sensitive to stress; bacteria, modified or not genetically; or any of the combinations of the active ingredients mentioned.
  • an active ingredient such as: a poly (ADP-ribose) polymerase (PARP) inhibitor; a radiosensitizer such as nitroimidazole; a growth factors or GF; an agent directed at the epidermal growth factor receptor (RFCE); a radiolabeled antibody; a remainder of addressing; chemotherapeutic agents, which include, but are not limited to, compounds
  • the first method of cancer treatment of the invention further comprises administering at least one PARP (poly (ADP-ribose) polymerase) inhibitor.
  • the first cancer treatment method of the invention further comprises administering at least one chemotherapeutic agent and / or an antiangiogenic agent.
  • the cancer is a systemic cancer.
  • An eighth aspect of the invention relates to a method of treating cancer, hereinafter second method of treating cancer of the invention, comprising:
  • step (b) administer radiotherapy at conventional doses following the usual protocols, and more preferably, at low doses, to activate the stem cells inside the patient.
  • 24 hours pass between step (a) and step (b) of the invention to allow the cells to bio-distribute.
  • the first method of cancer treatment of the invention further comprises administering an active ingredient such as: a poly (ADP-ribose) polymerase (PARP) inhibitor; a radiosensitizer such as nitroimidazole; a growth factors or GF; an agent directed at the epidermal growth factor receptor (RFCE); a radiolabeled antibody; a remainder of addressing; chemotherapeutic agents, which include, but are not limited to, compounds that induce apoptosis, compounds that reduce lifespan or compounds that make cells sensitive to stress; bacteria, modified or not genetically; or any of the combinations of the active ingredients mentioned.
  • an active ingredient such as: a poly (ADP-ribose) polymerase (PARP) inhibitor; a radiosensitizer such as nitroimidazole; a growth factors or GF; an agent directed at the epidermal growth factor receptor (RFCE); a radiolabeled antibody; a remainder of addressing; chemotherapeutic agents, which include, but are not limited to, compounds
  • the first method of cancer treatment of the invention further comprises administering at least one PARP (poly (ADP-ribose) polymerase) inhibitor.
  • the first cancer treatment method of the invention further comprises administering at least one chemotherapeutic agent and / or an antiangiogenic agent.
  • the cancer is a systemic cancer.
  • the source of energy used for radiation therapy can be selected from X-rays or gamma rays, which are the two forms of electromagnetic radiation.
  • the energy source for radiation therapy can be selected from particle beams, which use fast-moving subatomic particles instead of photons. This type of radiation can be referred to as particle beam radiation therapy or particle radiation.
  • the term "ionizing radiation” means radiation that comprises particles or photons that have sufficient energy or can produce enough energy through nuclear interactions to produce ionization, that is, the gain or loss of electrons.
  • the amount of ionizing radiation needed to kill a given cell generally depends on the nature of that cell. Means for determining an effective amount of radiation are well known in the art.
  • an effective dose of ionizing radiation means a dose of ionizing radiation that causes an increase in cellular damage.
  • radiation therapy comprises ionizing radiation, particularly electron beam radiation.
  • An electron beam can be delivered intraoperatively to the tumor site using an electron beam therapeutic system such as that described in US Pat. No.
  • the therapeutic electron beam system of the invention provides adequate protection to healthy tissue for the primary x-rays generated by the system, as well as for scattering radiation.
  • particle beam therapy is proton beam therapy. Protons deposit their energy in a very small volume, which is called the Bragg peak. Bragg's beak can be used to target high doses of proton beam therapy to a tumor while doing less damage to normal tissues in front of and behind the tumor. Proton therapy is generally reserved for cancers that are difficult or dangerous to treat with surgery, such as a chondrosarcoma at the base of the skull, or it is combined with other types of radiation.
  • the radiation therapy is stereotactic (or stereotactic) radiosurgery that uses a large dose of radiation to destroy the tumor tissue.
  • the patient's head may be placed in a special frame, which is attached or mounted on the patient's skull.
  • the plot is used to target high dose radiation beams directly at the tumor in the patient's head.
  • the dose and radiation reception area are coordinated very precisely resulting in little damage to nearby tissues.
  • a head frame is not needed.
  • real-time imaging systems are used in conjunction with the throttle movement, allowing computer adjustments of the throttle path to compensate for any movement of the patient's head.
  • the energy used in internal radiation can come from a variety of sources.
  • the radioactive isotope can be radioactive iodine, for example, iodine 125 or iodine 131, strontium 89, phosphorus, palladium, cesium, iridium, phosphate, cobalt, or any other isotope known in the art.
  • internal radiation is administered as brachytherapy, a radiation treatment based on implanted radioactive seeds emitting radiation from each seed.
  • the invention comprises the methods for planning the External radiation therapy in order to target cancer cells and limit exposure to healthy cells.
  • radiation treatment planning is carried out in two dimensions (width and height) or three dimensions, for example, with three-dimensional (3-D), conformal radiation therapy.
  • 3-D conformal radiotherapy uses computer technology to allow physicians to more accurately determine a tumor with radiation rays (with width, height and depth).
  • a 3-D image of a tumor can be achieved by computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), or single photon emission tomography (SPECT).
  • CT computed tomography
  • MRI magnetic resonance imaging
  • PET positron emission tomography
  • SPECT single photon emission tomography
  • special computer programs can design radiation beams that "fit" the shape of the tumor.
  • IMRT intensity modulated radiotherapy
  • IMRT is a type of 3-D conformal radiation therapy that uses radiation beams, for example, X-rays of different intensities to deliver different doses of radiation to small areas of tissue at the same time.
  • the technology allows the administration of higher doses of radiation in the tumor and lower doses to nearby healthy tissue.
  • the radiation is administered by a linear accelerator that is equipped with a multilayer collimator (a collimator helps shape or sculpt the radiation beams).
  • a collimator helps shape or sculpt the radiation beams.
  • the equipment can be rotated around the patient so that the radiation beams can be sent from the best angles.
  • the beams conform as closely as possible to the shape of the tumor.
  • this technology is used to treat tumors in the brain, head and neck, nasopharynx, breast, liver, lung, prostate, and uterus.
  • PARP inhibitors are a group of pharmacological inhibitors of the enzyme poly ADP ribose polymerase (PARP). They are developed for multiple indications; The most important is cancer treatment. Several forms of cancer are more dependent on PARP than normal cells, making PARP an attractive target for cancer therapy.
  • PARP inhibitors are, but not limited to, iniparib (BSI 201), BMN-673, olaparib (AZD-2281), rucaparib (AG014699, PF-01367338), veliparib (ABT-888), CEP 9722, MK 4827, BGB-290, 3-aminobenzamide, or any combination thereof.
  • the invention provides methods of administering reduced doses of radiation by combining intraoperative radiation with radiation sensitizers.
  • Brown et al. (Int. J. Biol. Radiation Oncology. Phys., 2010, 78 (1): 323-327) provide model data in favor of the use of the ethanidazole sensitizer (ethanidazole radiosensitizer ET), in combination with ablative stereotactic radiotherapy (SABR ).
  • SABR ablative stereotactic radiotherapy
  • the radiation is reduced by up to 1%, up to 5%, up to 10%, up to 15%>, up to 20%>, up to 25%>, up to 30%, up to 35%, up to 40%, up to 45%, up to 50%, up to 55%, up to 60%, up to 65%, up to 70%, up to 75%, up to 80%, up to 85%, up to 90%, up to 95%, and up to 99% compared to intraoperative radiation therapy without sensitizers.
  • the radiation dose in intraoperative radiation therapy can be reduced by 25-50% with respect to the amount of external radiation therapy that may be necessary to treat the disease without the sensitizer.
  • the invention also provides a method for administering reduced doses of radiation to a patient by combining the IORT, SBRT or SRS with a radiation sensitizer selected from nitroimidazoles, in which the radiation is reduced by up to 75 % with respect to radiation therapy administered without sensitizers.
  • Radiation therapy can be used in conjunction with hyperthermia, that is, the use of heat.
  • the combination of heat and radiation may increase the response rate of some tumors.
  • a radiosensitizer can be administered in combination with an additional agent.
  • a nitroimidazole can be administered in combination with an additional agent such as a targeting agent, a chemotherapeutic agent or a second radiosensitizer.
  • Nitroimidazole can be attached to the targeting agent through covalent or non-covalent attachments.
  • nitroimidazoles such as 2-nitroimidazoles
  • nitroimidazoles may be linked to a targeting agent through ionic interactions.
  • the radiosensitizer and the additional agent may be wrapped within a liposome.
  • Other radiation sensitizers are, but are not limited to, misonidazole, metronidazole, tirapazamine, trans sodium crocetinate, or any combination thereof. Radiolabeled Antibodies and Antibodies
  • radioimmunotherapy treatments are selected from ibritumomab tiuxetan (Zevalin ®) and tositumomab and iodine 131 tositumomab (Bexxar ®).
  • Radioimmunotherapy can be used in the treatment of advanced non-Hodgkin lymphoma (NHL) adults.
  • immunotherapy is used in the treatment of cancers such as leukemia, NHL, colorectal cancer, and liver, lung, brain, prostate, thyroid, breast, ovarian and pancreas cancer.
  • the cells or other agents of the invention are associated with an addressing element.
  • the addressing element may be covalently bound to nitroimidazole, or associated with nitroimidazole although non-covalent forces, such as ionic bonds, hydrogen bonds, or through encapsulation within a liposome.
  • the addressing element which assists the cell of the invention or other agent in the location of a particular target region, enters a cell (s) of the target tumor, and / or the location within or proximal to the cell, is You can select based on the particular cell type that is being targeted.
  • the addressing element may further comprise any of a number of different chemical entities. In one embodiment, the addressing element is a small molecule.
  • Molecules that may be suitable for use as targeting moieties in the present invention include haptens, epitopes and dsDNA fragments and analogs and derivatives thereof. Such elements specifically bind to antibodies, fragments or analogs thereof, including mimetics (for haptens and epitopes), and zinc finger proteins (for double stranded DNA fragments).
  • Nutrients believed to trigger endocytosis Mediated by receptor and targeting moieties, therefore useful include biotin, folic acid, riboflavin, carnitine, inositol, lipoic acid, niacin, pantothenic acid, thiamine, pyridoxal, ascorbic acid, and lipid soluble in vitamins A, D, E and K.
  • Another exemplary type of moiety that chooses a small molecule target includes steroid lipids, such as cholesterol and steroid hormones, such as estradiol, testosterone, etc.
  • Addressing elements may also comprise one or more proteins. Particular types of proteins can be selected based on known characteristics of the target zone or target cells.
  • the probe can be a monoclonal or polyclonal antibody, where a corresponding antigen is shown at the target site.
  • the targeting element may comprise a peptidomimetic protein or ligand capable of binding to that receptor.
  • Known cell surface receptor ligand proteins include low density lipoproteins, transferrin, insulin, fibrinolytic enzymes, anti-HER2, platelet-binding proteins such as annexins, and biological response modifiers (including interleukin, interferon, erythropoietin and stimulating factor of colonies).
  • a series of monoclonal antibodies that bind to a specific type of cells have been developed, including specific monoclonal antibodies to tumor associated antigens in humans.
  • monoclonal antibodies such that can be used are anti-CT, or other interleukin-2 receptor antibodies; 9.2.27 and NR-ML-05 at 250 kilodaltons proteoglycan associated with human melanoma; and NR-LU-10 to a pancarcinoma glycoprotein.
  • An antibody employed in the present invention may be an intact (complete) molecule, a fragment thereof, or a functional equivalent thereof. Examples of antibody fragments are F (ab ') 2, Fab', Fab, and Fv fragments, which can be produced by conventional methods or by genetic or protein engineering.
  • addressing elements include sugars, for example, glucose, fucose, galactose, mannose, which are recognized by specific target receptors.
  • some constructs can be glycosylated with mannose residues, for example, which is attached as C-heterosides to a free nitrogen, to produce specific constructions and with greater affinity for binding to tumors expressing ma ⁇ osa receptors, for example, glioblastomas and gangliocytomas and bacteria, which are also known to express ma ⁇ osa receptors (Bertozzi, CR and MD Bednarski Carbohydrate Research 223: 243 (1992); J. Am. Chem. Soc. 1 14: 2242,5543 (1992)), as well as potentially other infectious remains.
  • Certain cells such as malignant cells and blood cells (for example, A, AB, B, etc.) show particular carbohydrates, for which a corresponding lectin can serve as a targeting element.
  • chemotherapeutic agents may be administered in conjunction with the combined cells, compositions or preparations of the invention.
  • Chemotherapeutic agents include, but are not limited to, those compounds with anti-cancer activity, for example, compounds that induce apoptosis, compounds that reduce lifespan or compounds that make cells sensitive to stress and include: aminoglutethimide, amsacrine, anastrozole , asparaginase, Beg, bicalutamide, bleomycin, buserelin, busulfan, campothecin, capecitabine, carboplatin, carmustine, chlorambucil, cisplatin, cladribine, chlodronate, colchicine, cyclophosphamide, cyproterone, cytarabine, dacarinicorbumin, dacarinicorbumin, dactin-thicorbumin, dactinicorbumin, documin-thicorbumin, dac-thicorbuminin,
  • anti-metabolite / anti-cancer agents such as pyrimidine analogues (5-fluorouracil, floxuridine, capecitabine, gemcitabine and cytarabine) and purine analogues, folate antagonists and related inhibitors (mercaptopurine, thioguanine, pentostatin and 2-chlorodeoxyadenosine (cladribine)); antiproliferative / antimitotic agents, including natural products such as vinca alkaloids (vinblastine, vincristine, and vinorelbine), microtubule disruptors such as taxanes (paclitaxel, docetaxel), vincristine, vinblastine, nocodazole, epothilones, and navelbine, epidipodophyllotoxydiphospidothodoxydiphospid , DNA damaging agents (actinomycin, am
  • Radioprotectors can also be administered to a patient in combination with the combined cells, compositions or preparations described herein.
  • Radioprotectors are drugs that protect normal (non-cancerous) cells from damage caused by radiation therapy. These agents promote the repair of normal cells that are exposed to radiation.
  • Exemplary radioprotectors include amifostine (trade name Ethyol ®).
  • the methods of the invention further comprise administration. of a bacterium such as salmonella or genetic engineering variants thereof.
  • Radiation sensitizers can be formulated in a conventional manner using one or more physiologically acceptable carriers or excipients.
  • they can be formulated for administration by, for example, injection (for example subcutaneous, intramuscular, intraparenteral), inhalation or insufflation (either through the mouth or nose) or oral, oral, sublingual, transdermal administration, nasal, parenteral or rectal.
  • a compound of the invention can be administered locally, at the site where tumor cells are present, that is, in a specific tissue, organ or fluid (e.g., blood, cerebrospinal fluid, etc.)
  • the compounds of the invention are administered intravenously.
  • pharmaceutically acceptable or “physiologically acceptable” is used herein to refer to those ligands, materials, compositions, and / or dosage forms that are, within the scope of medical judgment, are suitable for use in contact with the tissues of human beings and animals without excessive toxicity, irritation, allergic response, or other problem or complication, in accordance with a reasonable benefit / risk ratio.
  • Radiation sensitizers of the invention can be formulated for a variety of modes of administration. Techniques and formulations can generally be found at Remington Pharmaceutical Sciences, Meade Publishing Co., Easton, PA
  • the tests carried out show that the activation of tumor and mesenchymal cells with radiation induces the expression of TRAIL and its DR5 receptor and that the soluble form of TRAIL is secreted to the extracellular space in which the cells have been irradiated; In addition, irradiation of MSC cells with a dose of 2 Gy induces DKK3.
  • the effect of radiation on TRAIL expression is clearly superior in MSC-UCSSCs cells than in tumor cells ( Figures 1 to 4) and the activity of the culture medium from incubation for 24 or 48 hours of MSC cells irradiated with 2 Gy is obvious.
  • the tumor-suppressing activity of MSC cells when activated with TNF- ⁇ , is mainly due to the expression, in these cells, of high levels of the TRAIL form bound to the cell membrane (Lee et al. 2012, Cell Stem Cell, 2012. 11 (6): p. 825-35) in the experiments it has been proven, through the TRAIL enzyme assay in a complete cell, that radiation induces not only the secretion of TRAIL and DKK3 to the medium but also increases the expression, in relevant amounts, of the molecular form of TRAIL-transmembrane that remains bound in the cell (Fig. 5 and 6).
  • MSC cells can be considered as "medicinal" cells (Caplan, Al & Correa, D. 201 1. Cell stem cell 9, 1 1-15); In addition, accepting that among the functional characteristics of MSC cells is their tropism - as a determinant to reach the places of the body where there are lesions - and their immunomodulatory capacity (Ranganath, et al., 2012.
  • the adjuvant role of MSCs to radiotherapy could be thought of as a tool capable of increasing the weight of the second factor ⁇ in square brackets ⁇ of our mathematical model of biological action of radiation on tumors, increasing through of the potentiation of the bystander mechanism the probability of cell death (Gómez-Millán et al., 2012. Journal of the European Society for Therapeutic Radiology and Oncology 102, 450-458; Lara et ai, 2013, Cancer Letters, 2015. 356: p.
  • the RT + MSC combination can be an excellent combination for the treatment of cancer because:
  • Radiation therapy is one of the two most effective cancer treatments and more than half of patients receive radiotherapy at some time during the evolution of their neoplastic process;
  • REIC / DKK3 interferes with the Wnt signaling pathway via Wnt receptors through which they play different roles in the induction of apoptosis and inhibition of the metastatic process and it has been shown that in cells modified to express REIC / DKK3 using adenovirus vector (Ad-REIC) stress occurs in the endoplasmic reticulum system (ER) and specific apoptosis mechanisms are initiated in human prostate and lung cancer cells (Shien, K., et al., 2014. PloS one 9, e879004). It is understood that the release of DKK3 that occurs when MSC-UCCSCs cells are incorporated into the tumor and are activated by radiation could be a useful strategy in the search for the antitumor response of malignant cells.
  • Ad-REIC adenovirus vector
  • the cells Once injected, the cells would accumulate in the environment of the body volume undergoing treatment (Kim, SM, et al., 2010, Stem cells 28, 2217-2228) so that at the end of the break, between weeks of treatment, the Subsequent irradiation of the tumor would activate the MSC cells integrated in the therapeutic volume, and there converted into sources of cytokines and tumor-suppressor proteins would contribute to increasing the effects of antitumor radiotherapy through the potentiation of short and long-range neighborhood effects. . With this procedure it would be possible to avoid the complexities and dangers of using MSC cells genetically modified with viral vectors to express TRAIL or DKK3 or the activation of these cells with molecules with important side effects, such as TNFa.
  • mice with tumors implanted in the upper part of each of the hind legs were used.
  • NOD / SCID mice of 7 to 9 weeks of age that were inoculated with human breast cancer cells (A375, G361 or MCF-7) were used.
  • mice that were treated with: Radiotherapy, Cell Therapy with MSC cells, Radiotherapy plus MSC, and not undergoing any treatment (Control Group) were included in the study.
  • In vivo test Radiation therapy
  • mice anesthetized with ketamine were treated with a dose of 3 Gy.
  • the radiation was administered by an X-ray tube (YXLON, model Y, Tu 320-D03) using a voltage of 240.4 kV, and working with a current of 13.0 mA, with a filter of 0.32 mm Cu , an irradiation focus of 5 mm in diameter, the tumor being located at a distance of 10 cm, the irradiation field being a circle of 0.78 cm 2 , and using a dose administration rate of 1502 ⁇ 0, 3 mGy / min.
  • the mouse tumor was placed in the hole made on an 8 mm thick steel blade that was used as a shield for the rest of the mouse body.
  • the radiation dose that reaches any region of the mouse body located more than 20 mm from the center of the hole that was used to allow the radiation to reach the tumor was equal to or less than 2.0 ⁇ 0.4 mGy / min. This dose rate allows you to calculate that the dose received by the mouse anywhere in your body including the tumor against the side was less than 4.0 mGy.
  • mice in the control group did not receive RT or MSC cell therapy.
  • the expected cell survival value for the therapeutic combination RT + MSC is calculated by multiplying the S F after RT by the S F after MSC therapy.
  • the observed value for the combination (O) results from applying the Steel equation to the data observed for the experiment.
  • the additive model (Valeriote and Lin, Cancer Chemother Rep, 1975. 59 (5): p.
  • the cell loss for radiotherapy treatment is greater than 55% and that the irradiation of the tumor located in the treatment center produces, in the non-irradiated tumor, a cell loss due to the bystander effect of the 15% order.
  • mice, 16 tumors, 8 of them irradiated were randomly selected to be irradiated in the same way as described in the previous paragraph.
  • the therapeutic combination MSC + RT 3 Gy was continued for three more weeks.
  • the other 8 continued to be treated only with MSC for the additional three weeks.
  • mice included in the groups: Control, Radiotherapy, MSC therapy and Radiotherapy plus MSC were followed to control the size of the tumor present in each of its flanks and have sufficient data to calculate the Growth kinetics of each tumor as a function of time and as a function of therapeutic variables.
  • the data corresponding to this experiment are shown in Figure 10 and the evolution of the tumors in Figure 11.
  • the values corresponding to the volume doubling times of each of the series of tumors followed have allowed to calculate the cellular losses derived from each experimental condition in relation to the growth of the Control Group. Note that the graph is marked with a blue line on the day of treatment with MSC and with a red line on the day of treatment with RT.
  • mesenchymal cells are tumor suppressors decreasing cell survival by around 10%, and that, by byderder effect, the contralateral tumor to irradiated decreases their proliferative activity around 30%, and that when the combined RT + MSC therapy is applied, this decrease is enhanced to exceed 35%.
  • Representative growth curves show that these differences, although small, are statistically significant. All these results demonstrate, both in vitro (Figs. 7 and 8) and in vivo (Figs.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Cell Biology (AREA)
  • Veterinary Medicine (AREA)
  • Developmental Biology & Embryology (AREA)
  • Public Health (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Virology (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Hematology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

The invention relates to a method for producing activated stem cells, comprising administering low doses of radiation, and to the uses thereof for producing pharmaceutical compositions that can be used to treat locally advanced tumours and cancer on a systemic level.

Description

CÉLULAS MADRE IRRADIADAS PARA EL TRATAMIENTO DEL CÁNCER  IRRADIATED MOTHER CELLS FOR CANCER TREATMENT
CAMPO DE LA INVENCIÓN FIELD OF THE INVENTION
La presente invención se encuentra dentro de la medicina, y más específicamente dentro de la terapia celular, y se refiere al empleo de células madre activadas mediante bajas dosis de radiación para el tratamiento del cáncer. The present invention is within medicine, and more specifically within cell therapy, and refers to the use of stem cells activated by low doses of radiation for the treatment of cancer.
ANTECEDENTES DE LA INVENCIÓN BACKGROUND OF THE INVENTION
La radioterapia se ha mantenido constantemente como uno de los tratamientos más eficaces para el cáncer y aproximadamente el 50% de todos los pacientes con cáncer reciben radioterapia en alguna forma, ya sea aislada o en combinación con otras modalidades de tratamiento, en algún momento durante su gestión. Para muchos tumores y localizaciones, sin embargo, no se puede lograr una cura definitiva a pesar de que cada vez hay más eficaces tratamientos para el cáncer. La información fiable sobre los papeles relativos de la cirugía, la radioterapia, la quimioterapia y las nuevas áreas de desarrollo de fármacos contra el cáncer es difícil de obtener, pero cualquier mejora en la eficacia de la radioterapia, sin duda, beneficiará a un número significativo de pacientes (Begg et al., 201 1. Nat Rev Cáncer 1 1 , 239-253). El conocimiento de los mecanismos mediante los cuales la radiación induce la muerte celular se basa en datos de la supervivencia celular y del daño celular inducido por la radiación (Peacock et al, 1992. BJR supplement, 24, 57-60; Ruiz de Almodóvar et al, 1994b. International journal of radiation biology 65, 641-649; Steel et al, 1989, International journal of radiation biology 56, 1045-1048) y en las consecuencias que este daño genera tanto en las células tumorales (McMillan y Peacock, 1994. International journal of radiation biology 65, 49-55) como a nivel de los tejidos normales (Ruiz de Almodóvar et al, 1994a. International journal of radiation biology 65, 641-649; López et al, 2005 Breast cáncer resea re h: BCR 7, R690-698; López et al, 2002. Breast cáncer research and treatment 73, 127-134). Radiation therapy has consistently remained one of the most effective treatments for cancer and approximately 50% of all cancer patients receive radiation therapy in some form, either isolated or in combination with other treatment modalities, at some time during their management. For many tumors and locations, however, a definitive cure cannot be achieved even though cancer treatments are becoming more effective. Reliable information on the relative roles of surgery, radiotherapy, chemotherapy and new areas of cancer drug development is difficult to obtain, but any improvement in the effectiveness of radiotherapy will undoubtedly benefit a significant number. of patients (Begg et al., 201 1. Nat Rev Cancer 1 1, 239-253). Knowledge of the mechanisms by which radiation induces cell death is based on data on cell survival and radiation-induced cell damage (Peacock et al, 1992. BJR supplement, 24, 57-60; Ruiz de Almodóvar et al, 1994b. International journal of radiation biology 65, 641-649; Steel et al, 1989, International journal of radiation biology 56, 1045-1048) and in the consequences that this damage generates in both tumor cells (McMillan and Peacock, 1994. International journal of radiation biology 65, 49-55) and at the level of normal tissues (Ruiz de Almodóvar et al, 1994a. International journal of radiation biology 65, 641-649; López et al, 2005 Breast cancer resea re h : BCR 7, R690-698; López et al, 2002. Breast cancer research and treatment 73, 127-134).
Los modelos propuestos hasta ahora para explicar el resultado de la terapia sobre el crecimiento del tumor y los efectos adversos ocasionados, hacen pensar que además de daños en el ADN (McMillan et al., 2001. International journal of radiation oncology, biology, physics 49, 373-377) los procesos de señalización celular promovidos por la radiación y que alcanzan localizaciones situadas fuera de la región irradiada -efectos abscopal y bystander- (Formenti y Demaria 2009. Lancet Oncol 10, 718-726; Mothersill y Seymour, 1997. International journal of radiation biology 71 , 421-427; Mothersill y Seymour, 2004. Nat Rev Cáncer 4, 158-164) pueden ser cruciales en la valoración del efecto global de la radioterapia (Gómez-Millán et al, 2012. Radiotherapy and Oncology, Journal of the European Society for Therapeutic Radiology and Oncology 102, 450-458). Estas evidencias obligan al desarrollo de un nuevo modelo capaz de explicar el efecto de la radiación sobre el tumor y los tejidos sanos simultáneamente (Lambin et al., 2013. Nat Rev Clin Oncol, 10, 27-40;). De hecho, la comunicación entre las células subletalmente dañadas y las indemnes puede conducir a la reducción de la población de las células cancerosas residuales al tratamiento (Prise y O'Sullivan, 2009. Nat Rev Cancer é, 351-360). The models proposed so far to explain the result of the therapy on tumor growth and the adverse effects caused, suggest that in addition to DNA damage (McMillan et al., 2001. International journal of radiation oncology, biology, physics 49 , 373-377) the cellular signaling processes promoted by radiation and reaching locations outside the irradiated region - abscopal and bystander effects (Formenti and Demaria 2009. Lancet Oncol 10, 718-726; Mothersill and Seymour, 1997. International journal of radiation biology 71, 421-427; Mothersill and Seymour, 2004. Nat Rev Cancer 4, 158-164) may be crucial in assessing the overall effect of radiotherapy (Gómez-Millán et al, 2012. Radiotherapy and Oncology , Journal of the European Society for Therapeutic Radiology and Oncology 102, 450-458). These evidences force the development of a new model capable of explaining the effect of radiation on the tumor and healthy tissues simultaneously (Lambin et al., 2013. Nat Rev Clin Oncol, 10, 27-40;). In fact, communication between the sublettally damaged cells and the undamaged ones can lead to the reduction of the population of the residual cancer cells to the treatment (Prise and O'Sullivan, 2009. Nat Rev Cancer é, 351-360).
La radioterapia es una herramienta muy eficaz para erradicar las células tuumorales. Al igual que con muchos otros procedimientos médicos, la prescripción de un ciclo de radioterapia debe valorar el equilibrio entre el riesgo y el beneficio, cuyo peso relativo será determinante de ganancia terapéutica. Hoy entendemos que la terapia antineoplásica podría tener un efecto decisivo adicional: la respuesta de las células tumorales sub-letalmente lesionadas (Marples et al, 2003;. Mothersill y Seymour, 2004; Prise y O'Sullivan, 2009. Nat Rev Cáncer 9, 351-360) puede ser descrita como una interacción entre un ligando y su receptor (Gómez-Millan et al., 2012. Radiotherapy and oncology: journal of the European Society for Therapeutic Radiology and Oncology 102, 450-458). Poco tiempo después de cada sesión de radioterapia, las células incluidas en el volumen de irradiación quedan clasificadas, con propósitos operacionales, en la forma siguiente:  Radiation therapy is a very effective tool to eradicate tumor cells. As with many other medical procedures, the prescription of a radiotherapy cycle should assess the balance between risk and benefit, whose relative weight will be determinant of therapeutic gain. Today we understand that antineoplastic therapy could have an additional decisive effect: the response of sub-lethally injured tumor cells (Marples et al, 2003; Mothersill and Seymour, 2004; Prise and O'Sullivan, 2009. Nat Rev Cancer 9, 351-360) can be described as an interaction between a ligand and its receptor (Gómez-Millan et al., 2012. Radiotherapy and oncology: journal of the European Society for Therapeutic Radiology and Oncology 102, 450-458). Shortly after each radiotherapy session, the cells included in the irradiation volume are classified, for operational purposes, as follows:
A) Células muertas: Células que han sufrido lesiones irreparables; estas son las incluidas en el compartimiento denominado lesión-letal del modelo de Curtís (Curtís, Radiat Res. 1986, 106(2):252-270)  A) Dead cells: Cells that have suffered irreparable injuries; these are those included in the compartment called lethal injury of the Curtís model (Curtís, Radiat Res. 1986, 106 (2): 252-270)
B) Células comprometidas: Son células afectas por daños en su ADN y cuyo destino depende de un proceso competitivo entre la reparación y la fijación de las lesiones radioinducidas. Son las que se incluyen en el compartimiento de lesiones potencialmente-letales y responsables de la curvatura de las curvas de supervivencia celular a la radiación (Peacock, et al. 1992, BJR Supplement 24, 57-60).  B) Committed cells: These are cells affected by damage to their DNA and whose fate depends on a competitive process between the repair and fixation of the radio-induced lesions. They are those that are included in the compartment of potentially lethal lesions and responsible for the curvature of the cell survival curves to radiation (Peacock, et al. 1992, BJR Supplement 24, 57-60).
C) Células activadas: Células que han sido mínimamente dañadas o que han sido capaces de reparar las lesiones inducidas hasta un nivel de daño residual compatible con la supervivencia de dichas células. Estas células son han resultado ser una fuente activa de citoquinas, especies reactivas de oxígeno y especies reactivas de nitrógeno que, través del espacio extracelular o mediante la circulación sanguínea y/o linfática, interaccionan y afectan a la masa total del tumor.  C) Activated cells: Cells that have been minimally damaged or that have been able to repair the induced lesions to a level of residual damage compatible with the survival of said cells. These cells have been found to be an active source of cytokines, reactive oxygen species and reactive nitrogen species that, through extracellular space or through blood and / or lymphatic circulation, interact and affect the total tumor mass.
D) Células indemnes: Células que sobreviven tras cada fracción de la dosis y que obliga a la prolongación del tratamiento con sucesivas fracciones de la dosis para conseguir el control tumoral. La probabilidad de controlar el tumor depende, esencialmente, de la naturaleza y la extensión del tumor, de factores terapéuticos tales como dosis total, dosis por fracción y tiempo, y de factores biológicos como radiosensibilidad y probabilidad de efectos colaterales adversos.  D) Unscathed cells: Cells that survive after each fraction of the dose and that forces the prolongation of the treatment with successive dose fractions to achieve tumor control. The probability of controlling the tumor depends essentially on the nature and extent of the tumor, on therapeutic factors such as total dose, dose per fraction and time, and on biological factors such as radiosensitivity and likelihood of adverse side effects.
La población de células en el compartimiento C es responsable: a) del efecto bystander de corto alcance (Prise KM & O'Sullivan JM, 2009. Nat Rev Cáncer 9(5): 351-360) que se produce por contacto directo célula-célula a través de las gap-junction y por comunicaciones mediadas por radicales libres, y b) del efecto bystander a distancia del tumor -efecto abscopal- (Formenti SC & Demaria S, 2009. Lancet Oncol 10(7): 718-726). The population of cells in compartment C is responsible for: a) the bystander effect of short range (Prise KM &O'Sullivan JM, 2009. Nat Rev Cancer 9 (5): 351-360) that is produced by direct cell-cell contact through the gap-junction and by free radical-mediated communications, and b ) of the distant bystander effect of the tumor - abscopal effect - (Formenti SC & Demaria S, 2009. Lancet Oncol 10 (7): 718-726).
Según este modelo la acción bystander de la radiación debe ser considerada como la respuesta inmunológica global del tumor y de sus metástasis, si las hay, y de los tejidos peritumorales sanos, al estrés inducido por la radiación sobre el volumen blanco (López E, et al. (2005) Breast Cáncer Res 7(5):R690-698; Pinar et al. 2007, Radial Res. 168(4): 415-22. Resultados anteriores apoyan la hipótesis de que el efecto bystander puede ser un fenómeno generalizado que se produce cuando las células tumorales están en contacto con el medio extracelular condicionado por la irradiación de otras células del mismo tipo. Sin embargo, las células normales, representadas en nuestros experimentos previos por células madre mesenquimales derivadas del estroma del cordón umbilical (UCSSC) (Farías et al., 2011. Placenta, 32(1):86-95), aunque extremadamente sensibles a la radiación ionizante, son resistentes a cualquier efecto bystander inducido por el medio condicionado por irradiación de células tumorales (RCM) a dosis comprendidas entre 0 y 8 Gray (Gómez-Millán et al., 2012. Journal of the European Society for Therapeutic Radiology and Oncology 102, 450-458). According to this model, the bystander action of radiation should be considered as the overall immune response of the tumor and its metastases, if any, and of healthy peritumoral tissues, to radiation-induced stress on the white volume (López E, et al. (2005) Breast Cancer Res 7 (5): R690-698; Pinar et al. 2007, Radial Res. 168 (4): 415-22. Previous results support the hypothesis that the bystander effect may be a generalized phenomenon which occurs when tumor cells are in contact with the extracellular medium conditioned by irradiation of other cells of the same type, however, normal cells, represented in our previous experiments by mesenchymal stem cells derived from the umbilical cord stroma (UCSSC) (Farías et al., 2011. Placenta, 32 (1): 86-95), although extremely sensitive to ionizing radiation, are resistant to any bystander effect induced by the irradiated conditioned medium of tumor cells (RCM) at doses between 0 and 8 Gray (Gómez-Millán et al., 2012. Journal of the European Society for Therapeutic Radiology and Oncology 102, 450-458).
Las células MSCs han sido investigadas para el tratamiento de cánceres debido al hecho de estas células son capaces de alojarse preferentemente en el estroma de los tumores y se sabe que la incorporación de MSCs al tumor se incrementa con la radioterapia antitumoral. Existe literatura detallada que apoya el hecho de que para casi todos los vasos sanguíneos en el cuerpo, las células mesenquimales se observan en localizaciones perivasculares (Caplan y Correa, 201 1 ; Cell Stem Cell. 9, 1 1-15; Farias et al, 201 1 , Placenta, 32(1):86-95). Las MSC pueden o bien suprimir o promover tumores (Bergfeld et al, 2014; Mol Cáncer Ther. 13, 962- 75. Yagi and Kitagawa, 2013, Front Genet. 4, 261). La información existente propone que la activación secuencial de las MSC en respuesta a las lesiones tisulares podría tener un papel en la regeneración de los tejidos debido a la activación de estas MSC, movilizadas y activadas, actúan como "medicamento" (MSC*) y secretan factores que organizan un microambiente capaz de promover la terapia celular (Caplan y Dennis, 2006, J Cell Biochem, 98, 1076-84). Se ha descrito que la bioactivación de las MSC se puede lograr mediante diferentes tratamientos y que las moléculas secretadas por las MSC activadas (MSC*), afectan a diversos linajes de células inmunes para establecer un potente microambiente terapéutico (Lee et al., 2012, Cell Stem Cell, 2012, 825-35). Por otro lado también sabemos que las dosis bajas de radiación contribuyen a normalizar la vasculatura tumoral aberrante. Sería, por tanto, importante encontrar métodos alternativos de activación de MSCs para que éstas secreten las moléxulas al medio que favorecen la creación de un microambiente terapéutico. BREVE DESCRIPCIÓN DE LA INVENCIÓN MSC cells have been investigated for the treatment of cancers due to the fact that these cells are able to preferentially lodge in the stroma of tumors and it is known that the incorporation of MSCs into the tumor is increased with antitumor radiotherapy. There is detailed literature that supports the fact that for almost all blood vessels in the body, mesenchymal cells are observed in perivascular locations (Caplan and Correa, 201 1; Cell Stem Cell. 9, 1 1-15; Farias et al, 201 1, Placenta, 32 (1): 86-95). MSCs can either suppress or promote tumors (Bergfeld et al, 2014; Mol Cancer Ther. 13, 962-75. Yagi and Kitagawa, 2013, Front Genet. 4, 261). The existing information proposes that the sequential activation of the MSCs in response to tissue lesions could have a role in tissue regeneration due to the activation of these mobilized and activated MSCs, they act as "medicine" (MSC *) and secrete factors that organize a microenvironment capable of promoting cell therapy (Caplan and Dennis, 2006, J Cell Biochem, 98, 1076-84). It has been described that the bioactivation of the MSCs can be achieved by different treatments and that the molecules secreted by the activated MSCs (MSCs *) affect various immune cell lineages to establish a potent therapeutic microenvironment (Lee et al., 2012, Cell Stem Cell, 2012, 825-35). On the other hand we also know that low doses of radiation contribute to normalize the aberrant tumor vasculature. It would therefore be important to find alternative methods of activating MSCs so that they secrete the molecules into the environment that favors the creation of a therapeutic microenvironment. BRIEF DESCRIPTION OF THE INVENTION
La presente invención muestra una nueva terapia, basada en radioterapia, útil para el tratamiento de tumores localmente avanzado y del cáncer a nivel sistémico. The present invention shows a new therapy, based on radiotherapy, useful for the treatment of locally advanced tumors and cancer at the systemic level.
Un primer aspecto de la invención se refiere a un procedimiento de obtención de células madre activadas, de ahora en adelante procedimiento de la invención, que comprende administrar bajas dosis de radiación a células madre. En una realización preferida de este aspecto de la invención las células madre son irradiadas con una dosis de entre 0,03 cGy y 6 Gy, más preferiblemente con una dosis de entre 0,25 Gy y 4Gy, y aún más preferiblemente con una dosis de aproximadamente 2 Gy. A first aspect of the invention relates to a method of obtaining activated stem cells, hereafter referred to as the method of the invention, which comprises administering low doses of radiation to stem cells. In a preferred embodiment of this aspect of the invention the stem cells are irradiated with a dose between 0.03 cGy and 6 Gy, more preferably with a dose between 0.25 Gy and 4Gy, and even more preferably with a dose of approximately 2 Gy.
En otra realización preferida de este aspecto de la invención, las células madre son células madre mesenquimales. In another preferred embodiment of this aspect of the invention, the stem cells are mesenchymal stem cells.
Un segundo aspecto de la invención se refiere a una célula madre activada, de ahora en adelante célula madre activada de la invención, obtenida u obtenible por el procedimiento de la invención. Por tanto, se entiende como célula madre activada de la invención una célula madre obtenida por el procedimiento de la invención. En una realización más preferida, este aspecto de la invención se refiere a una población de células madre activadas, de ahora en adelante población de células madre activadas de la invención, que comprende al menos una célula madre activada de la invención. En otra realización preferida de este aspecto de la invención, las células madre son células madre mesenquimales. A second aspect of the invention relates to an activated stem cell, hereinafter activated stem cell of the invention, obtained or obtainable by the process of the invention. Therefore, an activated stem cell of the invention is understood as a stem cell obtained by the process of the invention. In a more preferred embodiment, this aspect of the invention relates to a population of activated stem cells, hereinafter population of activated stem cells of the invention, comprising at least one activated stem cell of the invention. In another preferred embodiment of this aspect of the invention, the stem cells are mesenchymal stem cells.
Un tercer aspecto de la invención se refiere a una composición, de ahora en adelante composición de la invención, que comprende al menos una célula madre activada de la invención o una población de células madre activadas de la invención. En una realización preferida de este aspecto, la composición de la invención además comprende un vehículo farmacéuticamente aceptable. En una realización preferida de este aspecto la composición de la invención además comprende otro principio activo. En otra realización más preferida, el principio activo es un inhibidor de PARP (poli (ADP-ribosa) polimerasa). A third aspect of the invention relates to a composition, hereinafter composition of the invention, comprising at least one activated stem cell of the invention or a population of activated stem cells of the invention. In a preferred embodiment of this aspect, the composition of the invention further comprises a pharmaceutically acceptable carrier. In a preferred embodiment of this aspect the composition of the invention further comprises another active ingredient. In another more preferred embodiment, the active ingredient is a PARP (poly (ADP-ribose) polymerase) inhibitor.
Un cuarto aspecto de la invención se refiere a una preparación combinada, de ahora en adelante preparación combinada de la invención, que comprende: a) un componente A que es al menos una célula madre activada o una población de células madre activadas de la invención, o una composición de la invención, y, A fourth aspect of the invention relates to a combined preparation, hereafter combined preparation of the invention, comprising: a) a component A that is at least one activated stem cell or a population of activated stem cells of the invention, or a composition of the invention, and,
b) un componente B que es un agente quimioterápico y/o un agente antiantiangiogénico.  b) a component B that is a chemotherapeutic agent and / or an antiantiangiogenic agent.
En una realización preferida de este aspecto la preparación combinada de la invención además comprende al menos un inhibidor de PARP. In a preferred embodiment of this aspect the combined preparation of the invention further comprises at least one PARP inhibitor.
Un quinto aspecto de la invención se refiere al uso de una célula madre activada de la invención, de una composición de la invención, o de la preparación combinada de la invención, en la elaboración de un medicamento. A fifth aspect of the invention relates to the use of an activated stem cell of the invention, of a composition of the invention, or of the combined preparation of the invention, in the manufacture of a medicament.
Un sexto aspecto de la invención se refiere al uso de una célula madre activada de la invención, de una composición de la invención, o de la preparación combinada de la invención, en la elaboración de un medicamento para el tratamiento del cáncer. En una realización preferida de este aspecto de la invención, el cáncer es un cáncer localmente avanzado o sistémico. A sixth aspect of the invention relates to the use of an activated stem cell of the invention, of a composition of the invention, or of the combined preparation of the invention, in the preparation of a medicament for the treatment of cancer. In a preferred embodiment of this aspect of the invention, the cancer is a locally advanced or systemic cancer.
Un séptimo aspecto de la invención se refiere a un método de tratamiento de cáncer, de ahora en adelante primer método de tratamiento del cáncer de la invención, que comprende: a) administrar las células madre activadas de la invención, y A seventh aspect of the invention relates to a method of treating cancer, hereinafter the first method of treating cancer of the invention, comprising: a) administering the activated stem cells of the invention, and
b) administrar radioterapia a dosis convencionales siguiendo los protocolos habituales. En una realización preferida, el paso (b) comprende administrar al paciente una dosis baja de radiación sobre el volumen ocupado por el tumor en una cantidad eficaz (2-6 Gy) para activar las células tumorales y favorecer el tropismo de las células madre hacia el tumor.  b) administer radiotherapy at conventional doses following the usual protocols. In a preferred embodiment, step (b) comprises administering to the patient a low dose of radiation on the volume occupied by the tumor in an effective amount (2-6 Gy) to activate the tumor cells and favor the tropism of the stem cells towards the tumor
Preferiblemente las células madre son células madre mesenquimales (MSC), y/o las células madre activadas son células madre mesenquimales activadas (MSC*). Preferably the stem cells are mesenchymal stem cells (MSC), and / or the activated stem cells are activated mesenchymal stem cells (MSC *).
En otra realización preferida, se pueden hacer nuevas administraciones intravenosas con posterioridad, de células madre activadas, preferiblemente donde las células madre son células madre mesenquimales, y la administración posterior puede ser tanto de células MSC como células MSC* o células de la invención, por ejemplo, en los días de pausa de la radioterapia. En una realización preferida de este aspecto el primer método de tratamiento del cáncer de la invención además comprende administrar al menos un inhibidor de PARP. En otra realización preferida de este aspecto el primer método de tratamiento del cáncer de la invención además comprende administrar al menos un agente quimioterápico y/o un agente antiangiogénico. En otra realización preferida de este aspecto el cáncer es un cáncer sistémico. In another preferred embodiment, new intravenous administrations can subsequently be made, of activated stem cells, preferably where the stem cells are mesenchymal stem cells, and subsequent administration can be both MSC cells and MSC * cells or cells of the invention, by example, in the days of pause of radiotherapy. In a preferred embodiment of this aspect the first cancer treatment method of the invention further comprises administering at least one PARP inhibitor. In another preferred embodiment of this aspect the first cancer treatment method of the invention further comprises administering at least one chemotherapeutic agent and / or an antiangiogenic agent. In another preferred embodiment of this aspect the cancer is a systemic cancer.
Un octavo aspecto de la invención se refiere a un método de tratamiento de cáncer, de ahora en adelante segundo método de tratamiento del cáncer de la invención, que comprende: An eighth aspect of the invention relates to a method of treating cancer, hereinafter second method of treating cancer of the invention, comprising:
a) administrar células madre sin tratar, dejar que se bio-distribuyan y, tras 24 horas, b) administrar radioterapia a dosis convencionales siguiendo los protocolos habituales. a) administer untreated stem cells, allow them to bio-distribute and, after 24 hours, b) administer radiotherapy at conventional doses following the usual protocols.
En este procedimiento se supone que la activación de las células mesenquimales ocurrirá in situ en coincidencia con la irradiación del tumor.  In this procedure it is assumed that the activation of mesenchymal cells will occur in situ in coincidence with the irradiation of the tumor.
En una realización preferida de este aspecto el segundo método de tratamiento del cáncer de la invención además comprende administrar al menos un inhibidor de PARP. En otra realización preferida de este aspecto el segundo método de tratamiento del cáncer de la invención además comprende administrar al menos un agente quimioterápico y/o un agente antiangiogénico. En otra realización preferida de este aspecto el cáncer es un cáncer sistémico. In a preferred embodiment of this aspect the second cancer treatment method of the invention further comprises administering at least one PARP inhibitor. In another preferred embodiment of this aspect the second cancer treatment method of the invention further comprises administering at least one chemotherapeutic agent and / or an antiangiogenic agent. In another preferred embodiment of this aspect the cancer is a systemic cancer.
En otra realización preferida, las células madre serán inyectadas al día siguiente y tras 24 horas de espera se proseguirá con el tratamiento con radiación. Nuevas administraciones intravenosas de células madre activadas se podrán hacer en los días de pausa de la radioterapia. En una realización más preferida de la invención, las células madre son células madre mesenquimales. In another preferred embodiment, the stem cells will be injected the next day and after 24 hours of waiting the radiation treatment will continue. New intravenous administrations of activated stem cells may be made on the days of radiation therapy pause. In a more preferred embodiment of the invention, the stem cells are mesenchymal stem cells.
DESCRIPCIÓN DE LAS FIGURAS DESCRIPTION OF THE FIGURES
Figura 1. RT-PCR cuantitativa para el mRNA de TRAIL, DR5 y DKK3 en células MSC del estroma de cordón umbilical humano en condiciones básales y tras estimulación de las células con dosis de 2 Gy de radiación de baja transferencia lineal de energía (rayos X o γ). La evolución de los niveles de expresión de cada uno de genes estudiados se sigue a lo largo del tiempo (intervalo comprendido entre 0 y 30 horas tras estímulo) y las diferencias respecto a los valores básales se calculan mediante el método 2_ΔΔα. En el eje de las Y los valores son media ± ESM de triplicados de 3 ensayos independientes (*P<0,05; ** P < 0,01 ; *** P< 0,001 **** P< 0,0001). Los resultados son claramente indicativos de la regulación hacia arriba de TRAIL a 24 y 30 horas, DR5 después de 4 horas y de DKK3 a las 30 horas de la irradiación. Es importante entender que los valores de DKK3 son del orden de 5 veces mayores a las 30 horas del estímulo que los que se encuentran en situación basal de las células. Figure 1. Quantitative RT-PCR for TRAIL, DR5 and DKK3 mRNA in MSC cells of human umbilical cord stroma in basal conditions and after stimulation of cells with 2 Gy doses of low linear energy transfer radiation (X-rays or γ). The evolution of the expression levels of each of the genes studied is followed over time (interval between 0 and 30 hours after stimulation) and the differences with respect to the baseline values are calculated using the method 2 ΔΔα . In the Y axis, the values are mean ± ESM of triplicates of 3 independent trials (* P <0.05; ** P <0.01; *** P <0.001 **** P <0.0001) . The results are clearly indicative of upward regulation of TRAIL at 24 and 30 hours, DR5 after 4 hours and DKK3 at 30 hours of irradiation. It is important Understand that the values of DKK3 are of the order of 5 times greater at 30 hours of the stimulus than those found in basal cells.
Figura 2. RT-PCR cuantitativa para el mRNA de TRAIL and DR5 and DKK3 en células MSC del estroma de cordón umbilical humano en condiciones básales y tras estimulación de las células con dosis de 6 Gy de radiación de baja transferencia lineal de energía (rayos X o γ). La evolución de los niveles de expresión de cada uno de genes estudiados se sigue a lo largo del tiempo (entre 0 y 30 horas tras estímulo) y las diferencias respecto a los valores básales se calculan mediante el método 2_ΔΔα. En el eje de las Y los valores son media ± ESM de triplicados de 3 ensayos independientes (*P<0,05; ** P < 0,01 ; *** P< 0,001 **** P< 0,0001). Tras 6 Gy no se evidencia la regulación hacia arriba de TRAIL mientras que el incremento de componente celular (up-regulation) de DR5 ocurre a las 4, 24 and 30 horas tras tratamiento. La up-regulation de of DKK3 es evidente a las 24 y 30 horas. Figura 3. RT-PCR cuantitativa para el mRNA de TRAIL and DR5 and DKK3 en las líneas celulares A375 y G361 de melanoma humano y en MCF7 (cáncer de mama humano) en condiciones básales y tras estimulación de las células con dosis de 2 Gy de radiación de baja transferencia lineal de energía (rayos X o γ). La evolución de los niveles de expresión de cada uno de genes estudiados se sigue a lo largo del tiempo (entre 0 y 30 horas tras estímulo) y las diferencias respecto a los valores básales se calculan mediante el método 2_ΔΔα. En el eje de las Y los valores son media ± ESM de triplicados de 3 ensayos independientes (*P<0,05; ** P < 0,01 ; *** P< 0,001 **** P< 0,0001). La expresión de estos genes también cambia en las líneas celulares ensayadas. Lo más relevante es la up-regulation of DR5 and DKK3 en A361 lo que indica un posible efecto radiosensibilizante y la up-regulation de TRAIL en MCF7. De gran interés es la ausencia de DKK3 en esta línea celular. Nótese que falta la gráfica correspondiente. Figure 2. Quantitative RT-PCR for TRAIL and DR5 and DKK3 mRNA in MSC cells of human umbilical cord stroma under basal conditions and after stimulation of cells with 6 Gy doses of low linear energy transfer radiation (X-rays) or γ). The evolution of the expression levels of each of the genes studied is followed over time (between 0 and 30 hours after stimulation) and the differences with respect to the baseline values are calculated using the 2 _ΔΔα method. In the Y axis, the values are mean ± ESM of triplicates of 3 independent trials (* P <0.05; ** P <0.01; *** P <0.001 **** P <0.0001) . After 6 Gy the upward regulation of TRAIL is not evidenced while the increase in cellular component (up-regulation) of DR5 occurs at 4, 24 and 30 hours after treatment. The up-regulation of of DKK3 is evident at 24:30. Figure 3. Quantitative RT-PCR for TRAIL and DR5 and DKK3 mRNA in human melanoma A375 and G361 cell lines and in MCF7 (human breast cancer) at baseline conditions and after stimulation of cells with a dose of 2 Gy of Low linear energy transfer radiation (X-ray or γ). The evolution of the expression levels of each of the genes studied is followed over time (between 0 and 30 hours after stimulation) and the differences with respect to the baseline values are calculated using the 2 _ΔΔα method. In the Y axis, the values are mean ± ESM of triplicates of 3 independent trials (* P <0.05; ** P <0.01; *** P <0.001 **** P <0.0001) . The expression of these genes also changes in the cell lines tested. Most relevant is the up-regulation of DR5 and DKK3 in A361 which indicates a possible radiosensitizing effect and the up-regulation of TRAIL in MCF7. Of great interest is the absence of DKK3 in this cell line. Note that the corresponding graph is missing.
Figura 4. Otra RT-PCR cuantitativa para el mRNA de TRAIL and DR5 and DKK3 en otro ensayo sobre las líneas celulares A375 y G361 de melanoma humano y en MCF7 (cáncer de mama humano) en condiciones básales y tras estimulación de las células con dosis de 2 Gy de radiación de baja transferencia lineal de energía (rayos X o γ). La evolución de los niveles de expresión de cada uno de genes estudiados se sigue a lo largo del tiempo (intervalo comprendido entre 0 y 30 horas tras estímulo) y las diferencias respecto a los valores básales se calculan mediante el método 2_ΔΔα. En el eje de las Y los valores son media ± ESM de triplicados de 3 ensayos independientes (*P<0,05; ** P < 0,01 ; *** P< 0,001 **** P< 0,0001). La expresión de estos genes también cambia en las líneas celulares ensayadas. La inducción de TRAIL ocurre a las 24 and 30 horas para la línea A375 and MCF7 y la inducción de DR5 es evidente para todas las líneas celulares tumorales estudiadas aunque hay diferencias en las cinética de expresión de este gen. No fue posible cuantificar la expresión de DKK3 en MCF7, ni a nivel basal ni tras el estímulo. Figure 4. Another quantitative RT-PCR for TRAIL and DR5 and DKK3 mRNA in another trial on human melanoma A375 and G361 cell lines and in MCF7 (human breast cancer) at baseline conditions and after dose cell stimulation 2 Gy of low linear energy transfer radiation (X or γ rays). The evolution of the expression levels of each of the genes studied is followed over time (interval between 0 and 30 hours after stimulation) and the differences with respect to the baseline values are calculated using the method 2 ΔΔα . In the Y axis, the values are mean ± ESM of triplicates of 3 independent trials (* P <0.05; ** P <0.01; *** P <0.001 **** P <0.0001) . The expression of these genes also changes in the cell lines tested. The induction of TRAIL occurs at 24 and 30 hours for the A375 and MCF7 line and the induction of DR5 is evident for all tumor cell lines studied although there are differences in the expression kinetics of this gene. It was not possible to quantify DKK3 expression in MCF7, either at baseline or after stimulation.
Figura 5. A, B: Niveles de las proteínas TRAIL y DKK3 medidos en el medio de cultivo de MSC derivadas del estroma de cordón umbilical (MSC-UCSSCs) en un experimento de cinética de liberación de estas proteínas tras estimulación de las células con una dosis de 2 Gy de radiación ionizante (rayos X o γ). Los tiempos en los que se realiza la cuantificación de proteínas por enzimo-inmuno-ensayo fueron 0, 24 y 48 tras tratamiento. En C y D, se representan los niveles de TRAIL y DKK3 en células completas. Para ello se ha utilizado un método que permite la cuantificación de proteínas mediante inmuno-ensayo en células intactas (Siles et al. British journal of cáncer 1996; 73(5):581-8). La evolución de los niveles intracelulares de estas proteínas se hizo en los tiempos Oh (control) y 24 y 48 horas tras irradiación. El ensayo en célula completa pone de manifiesto los cambios en la cantidad de la forma de TRAIL enlazado a la membrana celular en células control y tras tratamiento (0, 24 y 48 h). E muestra unos resultados representativos de la respuesta del método de enzimo- ensayo para medir la evolución de la expresión de TRAIL en las células en condiciones básales y tras ser irradiadas con 2 Gy. La imagen muestra con claridad el incremento, en función del tiempo, de los niveles de proteína existentes en las células irradiadas. El ensayo en célula completa, F, permite medir los niveles básales de TRAIL y sus cambios tras irradiación para cantidades de células tan bajas como 5000 células por pozo.  Figure 5. A, B: Levels of the TRAIL and DKK3 proteins measured in the culture medium of MSC derived from the umbilical cord stroma (MSC-UCSSCs) in a kinetics experiment of release of these proteins after stimulation of the cells with a 2 Gy dose of ionizing radiation (X-ray or γ). The times at which protein quantification is performed by enzyme-immunoassay were 0, 24 and 48 after treatment. In C and D, TRAIL and DKK3 levels are represented in whole cells. For this, a method that allows the quantification of proteins by immunoassay in intact cells has been used (Siles et al. British journal of cancer 1996; 73 (5): 581-8). The evolution of the intracellular levels of these proteins was made in the Oh (control) times and 24 and 48 hours after irradiation. The whole cell assay shows the changes in the amount of TRAIL form bound to the cell membrane in control cells and after treatment (0, 24 and 48 h). E shows representative results of the response of the enzyme assay method to measure the evolution of TRAIL expression in the cells in basal conditions and after being irradiated with 2 Gy. The image clearly shows the increase, as a function of time, of the levels of protein in the irradiated cells. The full cell assay, F, allows you to measure the baseline levels of TRAIL and its changes after irradiation for amounts of cells as low as 5000 cells per well.
Figura 6. Niveles de las proteínas TRAIL y DKK3 medidas en un experimento de estimulación de MSC con dosis de 6 Gy utilizando radiación de bajo LET (Rayos X o γ). Los resultados obtenidos tras medir la expresión de TRAIL y DKK3 en el medio de cultivo se muestran en a y b. Los puntos corresponden a los tiempos de Oh (control), 24 y 48 horas tras irradiación. Los resultados de la medida de TRAIL mediante el ensayo en célula completa se muestran en c y d. Los valores se expresan en pg/ml en el enzimo-immuno-ensayo de TRAIL, ng/ml para el de DKK3 y en unidades relativas en el caso del ensayo sobre células completas. La inducción de la forma de la proteína TRAIL anclada a la membrana celular (ensayo en célula completa) de las células mesenquimales es evidente. Figure 6. Levels of TRAIL and DKK3 proteins measured in an MSC stimulation experiment with a dose of 6 Gy using low LET radiation (X-ray or γ). The results obtained after measuring the expression of TRAIL and DKK3 in the culture medium are shown in a and b. The points correspond to the times of Oh (control), 24 and 48 hours after irradiation. The results of the TRAIL measurement by the complete cell assay are shown in c and d. The values are expressed in pg / ml in the enzyme-immunoassay of TRAIL, ng / ml for that of DKK3 and in relative units in the case of the test on whole cells. The induction of the form of the TRAIL protein anchored to the cell membrane (whole cell assay) of mesenchymal cells is evident.
Figura 7. El medio condicionado por irradiación de células mesenquimales (RCM) usado en forma reiterada como tratamiento sobre las células A375 y G361 produce una efecto de muerte celular que se manifiesta por la disminución de las colonias tamaño formadas por estas líneas celulares. En este experimento las células A375 y G361 se hicieron crecer durante 7 días para formar colonias. A partir de este punto (inicio del experimento) se definieron tres condiciones: La primera en la que las colonias se dejaron crecer en medio de cultivo normal (experimento control) cambiando diariamente el medio de cultivo por medio fresco. En los otras dos el medio de cultivo se reemplazó por RCM obtenido tras 24 horas y RCM obtenido tras 48 horas de la irradiación de células MSC. En el momento inicial la superficie total cubierta por las colonias de células tumorales se cuantificó tras tinción de las colonias obteniendo una imagen fotográfica que se analizó mediante el software ImageJ (punto 0 en los experimentos de cinética de crecimiento tumoral) y su crecimiento fue monitorizado durante 5 días adicionales. Utilizando los datos de las representaciones gráficas es posible obtener el porcentaje de pérdida celular referido al experimento control, que ocasiona cada tratamiento. Para las líneas celulares G361 and A361 , la comparación de los ajustes de los puntos experimentales a una ecuación exponencial muestra que las curvas de Control, y de tratamiento con RCM 24h y con RCM 48 h son estadísticamente diferentes. Los valores del tiempo de duplicación para cada una de las situaciones experimentales son: TD para el crecimiento de las colonias de A375 y G361 en condiciones Control: 42,0 y 45,6 horas respectivamente; TD para el crecimiento de las colonias tratadas con RCM 24h para A375 y G361 : 61 ,2 y 79,3 horas respectivamente. Estas cifras permiten calcular un porcentaje de pérdida celular del orden de 50% en ambos casos. Finalmente, el valor de las pendientes del crecimiento de las colonias de células tumorales (Tcg) en los experimentos realizados en la condición de tratamiento con RCM 48h resultaron ser: 1 ) una pendiente positiva muy lenta en el caso de la línea celular A375, y 2) una pendiente de valor negativo para las células G361 que indicaba la progresiva reducción del tamaño de la superficie cubierta por las colonias de estas células sometidas a tratamiento con RCM 48h. Esto permite concluir que la pérdida celular en ambos casos supera el 100%. Figura 8. Experimento representativo del crecimiento de los tumores experimentales constituidos por colonias de las líneas celulares A375 y G361 de melanoma crecidas durante 7 días y colonias de células MCF-7 de cáncer de mama crecidas durante 14 días. El estudio del crecimiento de las colonias se hizo en condiciones Control y tras varios tratamientos experimentales con células mesenquimales sin irradiar e irradiadas. También las colonias de las células tumorales se estudiaron sin irradiar y tras irradiación. En todos los casos la irradiación se hizo con una dosis de 2 Gy. La superficie cubierta por las colonias de células tumorales en cada una de las condiciones experimentales ensayadas se midió en el momento inicial (punto 0 en los experimentos de cinética de crecimiento) y la evolución de su tamaño fue seguida durante 5 días adicionales. En el eje Y se representan los valores medios ± SEM de las colonias observadas. Se hicieron tres experimentos diferentes cada uno de ellos por triplicado. Figura 9. Ensayo ¡n vivo en ratones. Resultados obtenidos tras el tratamiento de ratones con la irradiación de uno de los tumores del ratón con 3 Gy una vez por semana (marcado en la gráfica con RT). Los ratones se dividen en dos grupos: Control: Línea continua y símbolo O; Tratamiento: Líneas continuas y símbolos □ y La cinética de crecimiento del tumor irradiado es la línea marcada con□, RT 3Gy. La línea marcada con ^ representa la evolución en el tiempo del tamaño del tumor contralateral no-irradiado, Bystander. El día 19 se inyectaron las MSC. Tras esto los puntos correspondientes a la evolución del volumen de los tumores se separan claramente de la prolongación de las líneas que representan el crecimiento tumoral (Líneas punteadas). Figure 7. The medium conditioned by irradiation of mesenchymal cells (RCM) used repeatedly as a treatment on A375 and G361 cells produces an effect of cell death that is manifested by the decrease in size colonies formed by these cell lines. In this experiment, A375 and G361 cells were grown for 7 days to form colonies. From this point (beginning of the experiment) three conditions were defined: The first in which the colonies were allowed to grow in normal culture medium (experiment control) daily changing the culture medium with fresh medium. In the other two, the culture medium was replaced by RCM obtained after 24 hours and RCM obtained after 48 hours of irradiation of MSC cells. At the initial time, the total area covered by the colonies of tumor cells was quantified after staining the colonies, obtaining a photographic image that was analyzed by ImageJ software (point 0 in the tumor growth kinetics experiments) and its growth was monitored during 5 additional days. Using the data of the graphical representations it is possible to obtain the percentage of cell loss referred to the control experiment, which causes each treatment. For the G361 and A361 cell lines, comparing the settings of the experimental points to an exponential equation shows that the Control curves, and treatment with RCM 24h and with RCM 48h are statistically different. The doubling time values for each of the experimental situations are: T D for the growth of the colonies of A375 and G361 under Control conditions: 42.0 and 45.6 hours respectively; T D for the growth of colonies treated with RCM 24h for A375 and G361: 61, 2 and 79.3 hours respectively. These figures allow to calculate a percentage of cell loss of the order of 50% in both cases. Finally, the value of the slopes of the growth of the tumor cell colonies (Tcg) in the experiments performed in the condition of treatment with RCM 48h turned out to be: 1) a very slow positive slope in the case of the A375 cell line, and 2) a slope of negative value for the G361 cells that indicated the progressive reduction in the size of the surface covered by the colonies of these cells subjected to treatment with RCM 48h. This allows us to conclude that cell loss in both cases exceeds 100%. Figure 8. Representative experiment of the growth of experimental tumors consisting of colonies of melanoma A375 and G361 cell lines grown for 7 days and colonies of MCF-7 breast cancer cells grown for 14 days. The study of the growth of the colonies was done under Control conditions and after several experimental treatments with unenradiated and irradiated mesenchymal cells. Also the colonies of the tumor cells were studied without irradiation and after irradiation. In all cases the irradiation was done with a dose of 2 Gy. The area covered by the colonies of tumor cells in each of the experimental conditions tested was measured at the initial time (point 0 in the growth kinetics experiments) and the evolution of its size was followed for an additional 5 days. The mean values ± SEM of the observed colonies are represented on the Y axis. Three different experiments were done each in triplicate. Figure 9. Live test in mice. Results obtained after the treatment of mice with the irradiation of one of the mouse tumors with 3 Gy once a week (marked on the graph with RT). Mice are divided into two groups: Control: Continuous line and O symbol; Treatment: Continuous lines and symbols □ and The growth kinetics of the irradiated tumor is the line marked with □, RT 3Gy. The line marked with ^ represents the evolution over time of the size of the non-irradiated contralateral tumor, Bystander. On day 19 the MSCs were injected. After this, the points corresponding to the evolution of the volume of the tumors are clearly separated from the prolongation of the lines that represent tumor growth (dotted lines).
Figura 10. Estudio del papel de las MSC como agentes tumor-supresor cuando se utilizan aisladamente o cuando se las usa en combinación con la radioterapia. Se cuantifica aisladamente el crecimiento del tumor en cuatro condiciones diferentes: Figure 10. Study of the role of MSCs as tumor suppressor agents when used alone or when used in combination with radiotherapy. Tumor growth is quantified in isolation in four different conditions:
A) Sin tratamiento (Grupo Control, O), Tiempo de duplicación de volumen: 6,13 días A) Without treatment (Control Group, O), Volume doubling time: 6.13 days
B) Tratados exclusivamente con radioterapia (Grupo RT, Δ, 8 tumores), B) Treated exclusively with radiotherapy (RT Group, Δ, 8 tumors),
C) Tratados solo con células mesenquimales (MSC,♦, 16 tumores),  C) Treated only with mesenchymal cells (MSC, ♦, 16 tumors),
D) Tratados con mesenquimales y radioterapia (RT + MSC, O, 8 tumores)  D) Treated with mesenchymal and radiotherapy (RT + MSC, O, 8 tumors)
Los tumores contralaterales en los grupos de ratones tratados con RT o con RT + MSC (8 tumores en cada uno de ellos) son los que en la gráfica se identifican como Bystander (RT), V, y Bystander (RT+MSC),♦. Contralateral tumors in the groups of mice treated with RT or with RT + MSC (8 tumors in each of them) are those that are identified as Bystander (RT), V, and Bystander (RT + MSC), ♦ .
Figura 11.- Conjunto de imágenes representativas de los ratones inoculados con 1 - 106 células de la línea de melanoma humano G361. Los ratones con un tumor de aprox. 65 mm3 fueron tratados de diferentes formas durante 4 semanas Las imágenes del crecimiento del tumor están tomadas en los días 0 (comienzo del tratamiento), 7, 14, 21 y 28, tanto para el grupo control como para los grupos de cada tipo de tratamiento. Los puntos negros que se aprecian son marcas para facilitar la irradiación del tumor. En el grupo RT, se irradió el tumor del lado derecho (marcado con una flecha), mientras que en el grupo RT + MSC el tumor irradiado fue el de la izquierda (marcado con una flecha). Los tumores del lado opuesto se protegieron de la irradiación y solo se ven afectados por el efecto bystander. Figure 11.- Set of representative images of mice inoculated with 1-10 6 cells of the G361 human melanoma line. Mice with a tumor of approx. 65 mm 3 were treated in different ways for 4 weeks Tumor growth images are taken on days 0 (beginning of treatment), 7, 14, 21 and 28, both for the control group and for the groups of each type of treatment. The black spots that are visible are marks to facilitate the irradiation of the tumor. In the RT group, the tumor on the right side (marked with an arrow) was irradiated, while in the RT + MSC group the irradiated tumor was that on the left (marked with an arrow). The tumors on the opposite side were protected from irradiation and are only affected by the bystander effect.
DESCRIPCIÓN DE LA INVENCIÓN DESCRIPTION OF THE INVENTION
Los resultados de los autores de la presente invención indican que las células mesenquimales activadas con radiación, son fuente de citoquinas y su administración, preferiblemente conjunta con la radioterapia y los inhibidores de PARP, incrementarán los niveles de citoquinas liberadas en seno del tumor, aumentando así la efectividad de la radioterapia a través de la potenciación de la muerte celular por efecto bystander de corto y largo alcance. The results of the authors of the present invention indicate that radiation activated mesenchymal cells are a source of cytokines and their administration, preferably in conjunction with radiotherapy and PARP inhibitors, will increase cytokine levels released within the tumor, thereby increasing the effectiveness of radiotherapy through the potentiation of cell death by short and long range bystander effect.
Para comprobar esta hipótesis los inventores han investigado los mecanismos que determinan la sensibilidad celular al efecto bystander en más profundidad, utilizando un conjunto de líneas de células cancerosas y células mesenquimales derivadas de estroma del cordón umbilical (UCSSC), incluyendo la activación de las células UCSSC con radioterapia en dosis bajas para aumentar la expresión de TRAIL (TNFS10) y de DKK3. La activación de MSC con radioterapia logra efectos similares a los previamente descritos (Lee et al., 2012, Cell Stem Cell, 2012, 825- 35) y evita la utilización de moléculas altamente tóxicas como el TNFa. To verify this hypothesis, the inventors have investigated the mechanisms that determine cell sensitivity to the bystander effect in more depth, using a set of cancer cell lines and mesenchymal cells derived from umbilical cord stroma (UCSSC), including the activation of UCSSC cells with low dose radiotherapy to increase the expression of TRAIL (TNFS10) and DKK3. The activation of MSC with radiotherapy achieves effects similar to those previously described (Lee et al., 2012, Cell Stem Cell, 2012, 825-35) and avoids the use of highly toxic molecules such as TNFa.
La invención se soporta con resultados in vitro que son lo suficientemente consistentes como para demostrar que: The invention is supported by in vitro results that are consistent enough to demonstrate that:
1. TRAIL y DKK-3 son moléculas producidas por el tumor y por las células mesenquimales que, como consecuencia del tratamiento de las células con dosis de radiación de bajo LET (Rayos X o γ) comprendidas entre 0,2 y 6 Gy, se secretan al medio extracelular, donde pueden actuar como moléculas de señalización para producir la muerte celular en las células tumorales no irradiadas.  1. TRAIL and DKK-3 are molecules produced by the tumor and by mesenchymal cells that, as a result of the treatment of cells with low-dose radiation of LET (X-ray or γ) between 0.2 and 6 Gy, are they secrete to the extracellular environment, where they can act as signaling molecules to produce cell death in non-irradiated tumor cells.
2. Es posible aumentar el potencial de muerte de células tumorales usando una combinación de: 1) medio condicionado por la irradiación de células mesenquimales y 2) sustancias que farmacológicamente actúan como inhibidores de la enzima PARP-1 , que puede ser aplicada simultánea, o sucesivamente, sobre el modelo tumoral.  2. It is possible to increase the death potential of tumor cells using a combination of: 1) medium conditioned by irradiation of mesenchymal cells and 2) substances that pharmacologically act as inhibitors of the PARP-1 enzyme, which can be applied simultaneously, or successively, on the tumor model.
3. Se ha demostrado que la activación de las células MSC-UCSSC con radioterapia a baja dosis puede ser una estrategia útil que proporciona elementos celulares con capacidad tumor-supresor.  3. It has been shown that activation of MSC-UCSSC cells with low dose radiotherapy can be a useful strategy that provides cellular elements with tumor-suppressive capacity.
Por lo tanto, tal y como se muestra en los ejemplos de la invención, la utilización de células mesenquimales activadas (MSC*) potencia la acción de la radioterapia aplicada al tratamiento de modelos de cáncer humano. Además, sobre la base de estos resultados se muestra que la administración de células mesenquimales y radiación, junto con los inhibidores de PARP, podría conducir a un aumento en la eficacia de la radioterapia debido a la suma de: i) la acción de las citoquinas liberadas por las células MSC* al medio extracelular, ii) las acciones genotóxicas de la radiación y iii) el deterioro de los mecanismos de reparación del ADN derivados de la inhibición de PARP. Todo ello se traduce en la potenciación de los efectos de vecindad (bystander) de corto y largo alcance y, como consecuencia, en un mayor efecto del tratamiento. Therefore, as shown in the examples of the invention, the use of activated mesenchymal cells (MSC *) enhances the action of radiotherapy applied to the treatment of human cancer models. In addition, based on these results, it is shown that the administration of mesenchymal cells and radiation, together with PARP inhibitors, could lead to an increase in the effectiveness of radiotherapy due to the sum of: i) the action of cytokines released by the MSC * cells to the extracellular medium, ii) the genotoxic actions of radiation and iii) the deterioration of DNA repair mechanisms derived from PARP inhibition. All this translates into the potentiation of short and long-range neighborhood effects (bystander) and, as a consequence, a greater treatment effect.
Así, tal y como se puede ver en las Fig. 1 a 6, la radiación ionizante utilizada a bajas dosis sobre MSC, y sobre células tumorales, induce importantes cambios en la expresión de los genes de TRAIL, DR5 y DKK3 que se traduce, en las MSC, por cambios en los niveles de las proteínas codificadas por dichos genes. La forma de TRAIL anclado a la membrana de las MSC puede ser cuantificada por enzimo-ensayo sobre célula completa. Thus, as can be seen in Figs. 1 to 6, the ionizing radiation used at low doses on MSC, and on tumor cells, it induces important changes in the expression of the TRAIL, DR5 and DKK3 genes which is translated, in the MSC, by changes in the levels of the proteins encoded by said genes. The membrane anchored form of TRAIL of the MSCs can be quantified by enzyme-assay on whole cell.
Por tanto, un primer aspecto de la invención se refiere a un procedimiento de obtención de células madre activadas, de ahora en adelante procedimiento de la invención, que comprende administrar a dichas células bajas dosis de radiación. En una realización preferida de este aspecto de la invención, la dosis de radiación administrada se encuentra entre 0,2 y 6 Gy, más preferiblemente entre 0,25 y 6 Gy, entre 0,2 y 4 Gy, y entre 0,5 y 2 Gy. La radiación se administra de acuerdo con técnicas estándar conocidas en el estado del arte, y con equipos de megavoltaje estándar, tales como, por ejemplo, pero sin limitarnos, AECL Theratron 80, Varían Clinac 4 o Varían Clinac. Preferiblemente, el tamaño máximo del campo de radiación no debe ser mayor a 300 cm2. Therefore, a first aspect of the invention relates to a method of obtaining activated stem cells, hereafter referred to as the method of the invention, which comprises administering low doses of radiation to said cells. In a preferred embodiment of this aspect of the invention, the dose of radiation administered is between 0.2 and 6 Gy, more preferably between 0.25 and 6 Gy, between 0.2 and 4 Gy, and between 0.5 and 2 Gy. The radiation is administered according to standard techniques known in the state of the art, and with standard megavoltage equipment, such as, for example, but not limited to, AECL Theratron 80, Vary Clinac 4 or Vary Clinac. Preferably, the maximum radiation field size should not be greater than 300 cm 2 .
La radioterapia empleada en el procedimiento de la invención puede comprender una irradiación externa administrada a una célula o una población celular en una dosis de 0,2 a 8 Gy por fracción. Un intervalo preferido de la dosis de irradiación es de 0,5 a 3 Gy por fracción. En ciertas realizaciones, la dosis total de la terapia de radiación es menos de 80 Gy, tal como menos de 75 Gy, tal como menos de 70 Gy, tal como menos de 65 Gy, tal como menos de 60 Gy, tal como menos de 55 Gy, tal como menos de 50 Gy, tal como menos de 45 Gy. En ciertas realizaciones, la terapia de dosis o radiación es entre aproximadamente 60 a 80 Gy, tal como de aproximadamente 40 a 60 Gy, tal como de aproximadamente 30 a 50 Gy, tal como aproximadamente de 20 a 30 Gy. En ciertas realizaciones, la dosis de irradiación se selecciona de entre 15 a 30 Gy, tales como 10 a 20 Gy. The radiation therapy employed in the process of the invention may comprise external irradiation administered to a cell or a cell population at a dose of 0.2 to 8 Gy per fraction. A preferred range of irradiation dose is 0.5 to 3 Gy per fraction. In certain embodiments, the total dose of radiation therapy is less than 80 Gy, such as less than 75 Gy, such as less than 70 Gy, such as less than 65 Gy, such as less than 60 Gy, such as less than 55 Gy, such as less than 50 Gy, such as less than 45 Gy. In certain embodiments, the dose or radiation therapy is between about 60 to 80 Gy, such as about 40 to 60 Gy, such as about 30 to 50 Gy, such as about 20 to 30 Gy. In certain embodiments, the irradiation dose is selected from 15 to 30 Gy, such as 10 to 20 Gy.
Una dosis de irradiación externa se puede administrar en 1 a 60 dosis fraccionarias, tales como de 5 a 30 dosis fraccionarias. En ciertas realizaciones, las dosis fraccionado se administran con aproximadamente 1 ,5 a aproximadamente 2 Gy por fracción, tal como de aproximadamente 1 ,5 Gy, tal como aproximadamente 1 ,6 Gy, tal como aproximadamente 1 ,7 Gy, tal como aproximadamente 1 ,8 Gy, tal como aproximadamente 1 ,9 Gy, tales como aproximadamente 2,0 Gy, tal como aproximadamente 2,1 Gy, tal como aproximadamente 2,2 Gy, tal como aproximadamente 2,3 Gy tal como aproximadamente 2,4 Gy, tal como aproximadamente 2,5 Gy por dosis fraccionada. An external irradiation dose can be administered in 1 to 60 fractional doses, such as 5 to 30 fractional doses. In certain embodiments, the fractionated doses are administered with approximately 1.5 to approximately 2 Gy per fraction, such as approximately 1.5 Gy, such as approximately 1.6 Gy, such as approximately 1.7 Gy, such as approximately 1 , 8 Gy, such as about 1.9 Gy, such as about 2.0 Gy, such as about 2.1 Gy, such as about 2.2 Gy, such as about 2.3 Gy such as about 2.4 Gy , such as about 2.5 Gy per fractional dose.
En otra realización preferida de este aspecto de la invención la célula madre sería una célula madre mesenquimal. In another preferred embodiment of this aspect of the invention the stem cell would be a cell. mesenchymal mother.
En otras realizaciones, la radioterapia se administra en una sola dosis y no en dosis fraccionadas. Por ejemplo, la dosis única puede administrarse con aproximadamente 10 a 20 Gy por dosis. Las células madre activadas se pueden administrar con una dosis de aproximadamente 1-5 Gy. En ciertas realizaciones, un sensibilizador a la radiación se administra a un paciente y el paciente se somete a una sola dosis de la terapia de radiación dentro de 10 minutos, en 20 minutos, en 30 minutos, en 40 minutos, dentro de los 50 minutos o una hora después de la administración del sensibilizador. In other embodiments, radiation therapy is administered in a single dose and not in fractional doses. For example, the single dose can be administered with approximately 10 to 20 Gy per dose. Activated stem cells can be administered with a dose of approximately 1-5 Gy. In certain embodiments, a radiation sensitizer is administered to a patient and the patient undergoes a single dose of radiation therapy within 10 minutes, in 20 minutes, in 30 minutes, in 40 minutes, within 50 minutes. or one hour after administration of the sensitizer.
CÉLULAS DE LA INVENCIÓN INVENTION CELLS
Un segundo aspecto de la invención se refiere a una célula madre aislada activada, de ahora en adelante célula madre aislada activada de la invención, obtenida por el procedimiento de la invención. A second aspect of the invention relates to an isolated activated stem cell, hereinafter activated isolated stem cell of the invention, obtained by the process of the invention.
La célula madre de la invención es una célula madre adulta, y más preferiblemente, es una célula madre mesenquimal. El término "célula madre adulta" se refiere a aquella célula madre que es aislada de un tejido o un órgano de un animal en un estado de crecimiento posterior al estado embrionario. Preferiblemente, las células madre de la invención son aisladas en un estado postnatal. Preferiblemente son aisladas de un mamífero, y más preferiblemente de un humano, incluyendo neonatos, juveniles, adolescentes y adultos. Se pueden aislar células madre adultas de una gran variedad de tejidos y órganos, como médula ósea (células madre mesenquimales, células progenitoras adultas multipotentes y células madre hematopoyéticas), tejido adiposo, cartílago, epidermis, folículo piloso, músculo esquelético, músculo cardíaco, intestino, hígado, neuronal. El término "célula madre mesenquimal" o "MSC", tal como se usa en el presente documento, se refiere a una célula de estroma multipotente, originada a partir de la capa germinal mesodermal, que puede diferenciarse en una variedad de tipos de células, incluyendo osteocitos (células de hueso), condrocitos (células de cartílago) y adipocitos (células de grasa). Las MSC pueden ser obtenidas a partir de, sin quedar limitado a, médula ósea, tejido adiposo (tal como el tejido adiposo subcutáneo), hígado, bazo, testículos, sangre menstrual, fluido amniótico, páncreas, periostio, membrana sinovial, músculo esquelético, dermis, pericitos, hueso trabecular, cordón umbilical humano, pulmón, pulpa dental y sangre periférica. Las MSC de acuerdo con la invención pueden obtenerse a partir de cualquiera de los tejidos anteriores, tal como a partir de médula ósea, de tejido adiposo subcutáneo o de cordón umbilical. The stem cell of the invention is an adult stem cell, and more preferably, it is a mesenchymal stem cell. The term "adult stem cell" refers to that stem cell that is isolated from a tissue or organ of an animal in a state of growth after the embryonic state. Preferably, the stem cells of the invention are isolated in a postnatal state. Preferably they are isolated from a mammal, and more preferably from a human, including neonates, juveniles, adolescents and adults. Adult stem cells can be isolated from a wide variety of tissues and organs, such as bone marrow (mesenchymal stem cells, multipotent adult progenitor cells and hematopoietic stem cells), adipose tissue, cartilage, epidermis, hair follicle, skeletal muscle, heart muscle, intestine , liver, neuronal. The term "mesenchymal stem cell" or "MSC", as used herein, refers to a multipotent stromal cell, originating from the mesodermal germ layer, which can be differentiated into a variety of cell types, including osteocytes (bone cells), chondrocytes (cartilage cells) and adipocytes (fat cells). MSCs can be obtained from, without being limited to, bone marrow, adipose tissue (such as subcutaneous adipose tissue), liver, spleen, testicles, menstrual blood, amniotic fluid, pancreas, periosteum, synovial membrane, skeletal muscle, dermis, pericytes, trabecular bone, human umbilical cord, lung, dental pulp and peripheral blood. MSC according to the invention they can be obtained from any of the foregoing tissues, such as from bone marrow, subcutaneous adipose tissue or umbilical cord.
Si se desea, la célula madre activada de la invención puede ser modificada genéticamente por cualquier método convencional incluyendo, a modo ilustrativo, no limitativo, procesos de transgénesis, deleciones o inserciones en su genoma que modifiquen la expresión de genes que sean importantes para sus propiedades básicas (proliferación, migración, diferenciación, etc.), o mediante la inserción de secuencias de nucleótidos que codifiquen proteínas de interés como, por ejemplo, proteínas con propiedades terapéuticas. Por tanto, en otra realización preferida, la célula madre activada de la invención ha sido modificada genéticamente. If desired, the activated stem cell of the invention can be genetically modified by any conventional method including, by way of illustration, not limitation, transgenesis processes, deletions or insertions in its genome that modify the expression of genes that are important for its properties. basic (proliferation, migration, differentiation, etc.), or by inserting nucleotide sequences that encode proteins of interest, such as proteins with therapeutic properties. Therefore, in another preferred embodiment, the activated stem cell of the invention has been genetically modified.
En una realización particular de la invención, las células madre mesenquimales son obtenidas a partir de cordón umbilical, preferiblemente de cordón umbilical humano. Otra realización preferida de este aspecto de la invención se refiere a una población celular aislada, de ahora en adelante población celular de la invención, que comprende al menos una célula madre de la invención. En una realización preferida la población celular de la invención comprende al menos un 20%, preferiblemente un 40%, y aún más preferiblemente un 50%, 60%, 80%, 90%, 95%, o un 99% de células madre adultas de la invención. In a particular embodiment of the invention, mesenchymal stem cells are obtained from the umbilical cord, preferably from the human umbilical cord. Another preferred embodiment of this aspect of the invention relates to an isolated cell population, hereinafter cell population of the invention, comprising at least one stem cell of the invention. In a preferred embodiment the cell population of the invention comprises at least 20%, preferably 40%, and even more preferably 50%, 60%, 80%, 90%, 95%, or 99% of adult stem cells. of the invention.
El término "aislada" indica que la célula o la población celular de la invención a la que se refiere, no se encuentran en su ambiente natural. Esto es, la célula o la población celular ha sido separada de su tejido circundante. Las células madre activadas de la invención, así como las células presentes en la población celular de la invención, pueden ser células de autólogo, alogénico o xenogénico. En una realización particular, dichas células son de origen autólogo, reduciendo así las complicaciones potenciales asociados con / o respuestas antigénicas e inmunogénicas de dichas células cuando se administran al individuo. The term "isolated" indicates that the cell or cell population of the invention to which it refers, are not in their natural environment. That is, the cell or cell population has been separated from its surrounding tissue. The activated stem cells of the invention, as well as the cells present in the cell population of the invention, can be autologous, allogeneic or xenogenic cells. In a particular embodiment, said cells are of autologous origin, thereby reducing the potential complications associated with / or antigenic and immunogenic responses of said cells when administered to the individual.
COMPOSICIÓN DE LA INVENCIÓN COMPOSITION OF THE INVENTION
La célula madre aislada activada de la invención, o la población celular de la invención, pueden formar parte de una composición. Por tanto, un tercer aspecto de la invención se refiere a una composición, de ahora en adelante composición de la invención, que comprende al menos una célula madre activada de la invención. En una realización preferida de este aspecto la composición de la invención además comprende un vehículo farmacéuticamente aceptable. En una realización preferida de este aspecto la composición de la invención además comprende otro principio activo. The activated isolated stem cell of the invention, or the cell population of the invention, can be part of a composition. Therefore, a third aspect of the invention relates to a composition, hereafter referred to as a composition of the invention, comprising at least one activated stem cell of the invention. In a preferred embodiment of this aspect the composition of the invention It also comprises a pharmaceutically acceptable vehicle. In a preferred embodiment of this aspect the composition of the invention further comprises another active ingredient.
Preferiblemente, la composición de células de la invención tiene, al menos, el 50%, al menos, el 60%, preferiblemente el 70%, más preferiblemente el 80%, aún más preferiblemente, el 90%, y, todavía aún más preferiblemente, el 95% de las células madre aisladas activadas de la invención. Preferably, the cell composition of the invention has at least 50%, at least 60%, preferably 70%, more preferably 80%, even more preferably, 90%, and, even more preferably , 95% of the activated isolated stem cells of the invention.
Dicha composición de células adultas de la invención puede contener un medio en el que se encuentran las células de la invención; dicho medio debe ser compatible con dichas células. Por ejemplo, pero sin limitarse, soluciones isotónicas, opcionalmente suplementadas con suero; medios de cultivo celular o, alternativamente, un medio soporte sólido, semisólido, gelatinoso o viscoso. La composición de la invención, preferiblemente, es una composición farmacéutica para su administración a un sujeto. Said adult cell composition of the invention may contain a medium in which the cells of the invention are found; said medium must be compatible with said cells. For example, but not limited to, isotonic solutions, optionally supplemented with serum; cell culture media or, alternatively, a solid, semi-solid, gelatinous or viscous support medium. The composition of the invention, preferably, is a pharmaceutical composition for administration to a subject.
El término "vehículo farmacéuticamente aceptable" se refiere a un vehículo que debe estar aprobado por una agencia reguladora del gobierno federal o un gobierno estatal o enumerado en la Farmacopea Estadounidense o la Farmacopea Europea, u otra farmacopea reconocida generalmente para su uso en animales, y más concretamente en humanos. The term "pharmaceutically acceptable vehicle" refers to a vehicle that must be approved by a federal government regulatory agency or a state government or listed in the United States Pharmacopoeia or the European Pharmacopoeia, or other pharmacopoeia generally recognized for use in animals, and more specifically in humans.
El término "vehículo" se refiere a un diluyente, coadyuvante, excipiente o portador con el que se deben administrar las células o la población celular de la invención o de dicha composición que comprende células madre de la invención obtenible según el procedimiento de la invención; obviamente, dicho vehículo debe ser compatible con dichas células. Ejemplos ilustrativos, no limitativos, de dicho vehículo incluyen cualquier vehículo fisiológicamente compatible, por ejemplo, soluciones isotónicas (por ejemplo, solución salina estéril al 0,9% NaCI, solución salina tamponada con fosfatos (PBS), solución Ringerlactato, etc.), opcionalmente suplementadas con suero, preferiblemente con suero autólogo; medios de cultivo celular (por ejemplo, DMEM, etc.); o, alternativamente, un medio soporte sólido, semisólido, gelatinoso o viscoso, tal como colágeno, colagen-glicosamino-glicano, fibrina, cloruro de polivinilo, poliaminoácidos, tales como polilisina, o poliornitina, hidrogeles, agarosa, sulfato de dextrano silicona. Asimismo, si se desea, el medio de soporte puede, en realizaciones específicas, contener factores de crecimiento u otros agentes. The term "vehicle" refers to a diluent, adjuvant, excipient or carrier with which the cells or the cell population of the invention or of said composition comprising stem cells of the invention obtainable according to the method of the invention should be administered; obviously, said vehicle must be compatible with said cells. Illustrative, non-limiting examples of said vehicle include any physiologically compatible vehicle, for example, isotonic solutions (for example, 0.9% sterile saline NaCI, phosphate buffered saline (PBS), Ringerlactate solution, etc.), optionally supplemented with serum, preferably with autologous serum; cell culture media (eg, DMEM, etc.); or, alternatively, a solid, semi-solid, gelatinous or viscous support medium, such as collagen, collagen-glycosamino-glycan, fibrin, polyvinyl chloride, polyamino acids, such as polylysine, or polynithine, hydrogels, agarose, silicone dextran sulfate. Also, if desired, the support medium may, in specific embodiments, contain growth factors or other agents.
Si el soporte es sólido, semisólido, o gelatinoso, las células pueden ser introducidas en una fase líquida del vehículo que es tratada posteriormente de forma tal que se convierte en una fase más sólida. If the support is solid, semi-solid, or gelatinous, the cells can be introduced into a liquid phase of the vehicle that is subsequently treated in such a way that it becomes a more solid phase.
La composición farmacéutica de la invención, si se desea, puede contener también, cuando sea necesario, aditivos para aumentar, controlar o dirigir de otro modo el efecto terapéutico deseado de las células, los cuales comprenden dicha composición farmacéutica, y/o sustancias auxiliares o sustancias farmacéuticamente aceptables, tales como agentes tamponantes, tensioactivos, codisolventes, conservantes, etc. También, para estabilizar la suspensión celular, es posible añadir quelantes de metales. La estabilidad de las células en el medio líquido de la composición farmacéutica de la invención puede mejorarse mediante la adición de sustancias adicionales, tales como, por ejemplo, ácido aspártico, ácido glutámico, etcétera. Dichas sustancias farmacéuticamente aceptables que pueden usarse en la composición farmacéutica de la invención son conocidas, en general, los técnicos en la materia y se usan normalmente en la elaboración de composiciones celulares. The pharmaceutical composition of the invention, if desired, may also contain, when necessary, additives to increase, control or otherwise direct the desired therapeutic effect of the cells, which comprise said pharmaceutical composition, and / or auxiliary substances or Pharmaceutically acceptable substances, such as buffering agents, surfactants, cosolvents, preservatives, etc. Also, to stabilize the cell suspension, it is possible to add metal chelators. The stability of the cells in the liquid medium of the pharmaceutical composition of the invention can be improved by the addition of additional substances, such as, for example, aspartic acid, glutamic acid, and so on. Such pharmaceutically acceptable substances that can be used in the pharmaceutical composition of the invention are generally known to those skilled in the art and are normally used in the preparation of cellular compositions.
Ejemplos de vehículos farmacéuticos adecuados se describen, por ejemplo, en "Remington's Pharmaceutical Sciences", de E.W. Martin. Puede encontrarse información adicional sobre dichos vehículos en manuales de tecnología farmacéutica (Farmacia Galénica). Como se emplea aquí, el término "principio activo", "sustancia activa", "sustancia farmacéuticamente activa", "ingrediente activo" o "ingrediente farmacéuticamente activo" significa cualquier componente que potencialmente proporcione una actividad farmacológica u otro efecto diferente en el diagnóstico, cura, mitigación, tratamiento, o prevención de una enfermedad, o que afecta a la estructura o función del cuerpo del hombre u otros animales. El término incluye aquellos componentes que promueven un cambio químico en la elaboración del fármaco y están presentes en el mismo de una forma modificada prevista que proporciona la actividad específica o el efecto. Examples of suitable pharmaceutical vehicles are described, for example, in "Remington's Pharmaceutical Sciences" by E.W. Martin. Additional information on these vehicles can be found in pharmaceutical technology manuals (Galenic Pharmacy). As used herein, the term "active ingredient", "active substance", "pharmaceutically active substance", "active ingredient" or "pharmaceutically active ingredient" means any component that potentially provides a pharmacological activity or other different diagnostic effect, cure, mitigation, treatment, or prevention of a disease, or that affects the structure or function of the body of man or other animals. The term includes those components that promote a chemical change in the preparation of the drug and are present therein in a modified form intended to provide the specific activity or effect.
En otra realización preferida, el principio activo se selecciona de la lista que consiste en: un inhibidor de la poli (ADP-ribosa) polimerasa (PARP); un radiosensibilizador como el nitroimidazol; un factores de crecimiento o GF (del inglés, "growth factor"); un agente dirigido al receptor del factor de crecimiento epidérmico (RFCE); un anticuerpo radiomarcado; un resto de direccionamiento; agentes quimioterapéuticos, que incluyen, pero sin limitarse, compuestos que inducen la apoptosis, compuestos que reducen la vida útil o compuestos que hacen que las células sensibles al estrés; bacterias, modificadas o no genéticamente; o cualquiera de sus combinaciones. En otra realización más preferida de este aspecto de la invención, el principio activo es un inhibidor de la poli (ADP-ribosa) polimerasa (PARP). In another preferred embodiment, the active ingredient is selected from the list consisting of: a poly (ADP-ribose) polymerase (PARP) inhibitor; a radiosensitizer such as nitroimidazole; a growth factor or GF (from English, "growth factor"); an agent directed at the epidermal growth factor receptor (RFCE); a radiolabeled antibody; a remainder of addressing; chemotherapeutic agents, which include, but are not limited to, compounds that induce apoptosis, compounds that reduce lifespan or compounds that make cells sensitive to stress; bacteria, modified or not genetically; or any of its combinations. In another more preferred embodiment of this aspect of the invention, the active ingredient is a poly (ADP-ribose) polymerase (PARP) inhibitor.
En otra realización más preferida de este aspecto de la invención, el principio activo es un factor de crecimiento. Más preferiblemente, el factor de crecimiento es un factor estimulante de colonias de granulocitos o G-CSF (por sus siglas en inglés Granulocyte colony-stimulating factor), y aún más preferiblemente, lenograstim y/o filgrastim. In another more preferred embodiment of this aspect of the invention, the active ingredient is a growth factor. More preferably, the growth factor is a granulocyte colony stimulating factor or G-CSF (Granulocyte colony-stimulating factor), and even more preferably, lenograstim and / or filgrastim.
PREPARACIÓN COMBINADA DE LA INVENCIÓN COMBINED PREPARATION OF THE INVENTION
Un cuarto aspecto de la invención se refiere a una preparación combinada, de ahora en adelante preparación combinada de la invención, que comprende: A fourth aspect of the invention relates to a combined preparation, hereafter combined preparation of the invention, comprising:
a) un componente A que es una célula madre activada de la invención  a) a component A that is an activated stem cell of the invention
b) un componente B que es un agente quimioterápico y/o un agente antiantiangiogénico.  b) a component B that is a chemotherapeutic agent and / or an antiantiangiogenic agent.
En una realización preferida de este aspecto la preparación combinada de la invención además comprende al menos un inhibidor de PARP (poli (ADP-ribosa) polimerasa). Tanto el componente A, como el componente B, o cualquier otro componente, pueden estar dispuestos para ser administrados a un sujeto de manera simultánea, combinada o secuencial en un tratamiento. In a preferred embodiment of this aspect the combined preparation of the invention further comprises at least one PARP (poly (ADP-ribose) polymerase) inhibitor. Both component A, as component B, or any other component, may be arranged to be administered to a subject simultaneously, in combination or sequentially in one treatment.
A modo de ejemplo no limitativo, pueden formar parte de los componentes de la invención, como principio activo: un inhibidor de la poli (ADP-ribosa) polimerasa (PARP); un radiosensibilizador como el nitroimidazol; un factores de crecimiento o GF; un agente dirigido al receptor del factor de crecimiento epidérmico (RFCE); un anticuerpo radiomarcado; un resto de direccionamiento; agentes quimioterapéuticos, que incluyen, pero sin limitarse, compuestos que inducen la apoptosis, compuestos que reducen la vida útil o compuestos que hacen que las células sensibles al estrés; bacterias, modificadas o no genéticamente; o cualquiera de las combinaciones de los principios activos mencionados. By way of non-limiting example, the following may be part of the components of the invention: an inhibitor of poly (ADP-ribose) polymerase (PARP); a radiosensitizer such as nitroimidazole; a growth factors or GF; an agent directed at the epidermal growth factor receptor (RFCE); a radiolabeled antibody; a remainder of addressing; chemotherapeutic agents, which include, but are not limited to, compounds that induce apoptosis, compounds that reduce lifespan or compounds that make cells sensitive to stress; bacteria, modified or not genetically; or any of the combinations of the active ingredients mentioned.
USOS MÉDICOS DE LA INVENCIÓN MEDICAL USES OF THE INVENTION
Un quinto aspecto de la invención se refiere al uso de una célula madre activada de la invención, de una composición de la invención, o de la preparación combinada de la invención, en la elaboración de un medicamento. El término "medicamento", tal y como se usa en esta memoria, hace referencia a cualquier sustancia usada para prevención, diagnóstico, alivio, tratamiento o curación de enfermedades en el hombre y los animales. En el contexto de la presente invención, la enfermedad es un cáncer, y más preferiblemente es un cáncer sistémico. A fifth aspect of the invention relates to the use of an activated stem cell of the invention, of a composition of the invention, or of the combined preparation of the invention, in the manufacture of a medicament. The term "medication", as used herein, refers to any substance used for prevention, diagnosis, relief, treatment or cure of diseases in man and animals. In the context of the present invention, the disease is a cancer, and more preferably it is a systemic cancer.
La composición farmacéutica de la invención contendrá una cantidad profiláctica o terapéuticamente efectiva de las células de la invención o de la población celular de la invención, preferentemente, una población celular sustancialmente homogénea, para proporcionar el efecto terapéutico deseado. The pharmaceutical composition of the invention will contain a prophylactic or therapeutically effective amount of the cells of the invention or of the cell population of the invention, preferably, a substantially homogeneous cell population, to provide the desired therapeutic effect.
Tal como se usa en la presente descripción, el término "cantidad terapéutica o profilácticamente efectiva" se refiere a la cantidad de células de la invención contenida en la composición farmacéutica que es capaz de producir el efecto terapéutico deseado y, en general, se determinará, entre otros factores, por las propias características de las células y el efecto terapéutico deseado que se persigue. En general, la cantidad terapéuticamente efectiva de células de la invención que debe administrarse dependerá, entre otros factores, de las propias características del sujeto, la gravedad de la enfermedad, la forma de administración, etc. Por este motivo, las dosis mencionadas en esta invención deben tenerse en cuenta sólo como guía para la persona conocedora de la técnica, que debe ajusfar esta dosis dependiendo de los factores anteriormente descritos. Como ejemplo ilustrativo y no limitativo, la composición farmacéutica de la invención puede administrarse como una dosis única, que contenga aproximadamente entre 1x105 y 10x106 células de la invención por kilo de peso corporal del receptor, y más preferentemente entre 5x105 y 5x106 células de la 25 invención por kilo del peso corporal del receptor, en una forma de realización más preferente aún dicha composición farmacéutica contendrá aproximadamente entre 1x106 y 2x106 células de la invención por kilo del peso corporal del receptor, dependiendo de los factores descritos anteriormente. La dosis de células de la invención puede repetirse, dependiendo del estado y evolución del paciente, en intervalos temporales de días, semanas o meses que debe establecer el especialista en cada caso. As used herein, the term "therapeutically or prophylactically effective amount" refers to the amount of cells of the invention contained in the pharmaceutical composition that is capable of producing the desired therapeutic effect and, in general, will be determined, among other factors, due to the characteristics of the cells and the desired therapeutic effect sought. In general, the therapeutically effective amount of cells of the invention to be administered will depend, among other factors, on the subject's own characteristics, the severity of the disease, the manner of administration, etc. For this reason, the doses mentioned in this invention should be taken into account only as a guide for the person skilled in the art, who should adjust this dose depending on the factors described above. As an illustrative and non-limiting example, the pharmaceutical composition of the invention can be administered as a single dose, containing approximately between 1x10 5 and 10x10 6 cells of the invention per kilo of body weight of the recipient, and more preferably between 5x10 5 and 5x10 6 cells of the invention per kilo of the body weight of the recipient, in a more preferred embodiment even said pharmaceutical composition will contain approximately between 1x10 6 and 2x10 6 cells of the invention per kilo of the body weight of the recipient, depending on the factors described above. . The dose of cells of the invention can be repeated, depending on the condition and evolution of the patient, in temporary intervals of days, weeks or months that the specialist must establish in each case.
Un sexto aspecto de la invención se refiere al uso de una célula madre activada de la invención, de una composición de la invención, o de la preparación combinada de la invención, en la elaboración de un medicamento para el tratamiento del cáncer. En una realización preferida de este aspecto de la invención, el cáncer es un cáncer sistémico. A sixth aspect of the invention relates to the use of an activated stem cell of the invention, of a composition of the invention, or of the combined preparation of the invention, in the preparation of a medicament for the treatment of cancer. In a preferred embodiment of this aspect of the invention, the cancer is a systemic cancer.
MÉTODO DE TRATAMIENTO DE LA INVENCIÓN METHOD OF TREATMENT OF THE INVENTION
Un séptimo aspecto de la invención se refiere a un método de tratamiento de cáncer, de ahora en adelante primer método de tratamiento del cáncer de la invención, que comprende: a) administrar las células madre activadas de la invención, y A seventh aspect of the invention relates to a method of treating cancer, of hereinafter the first method of cancer treatment of the invention, comprising: a) administering the activated stem cells of the invention, and
b) administrar radioterapia a dosis convencionales siguiendo los protocolos habituales.  b) administer radiotherapy at conventional doses following the usual protocols.
En una realización preferida, el paso (b) comprende administrar al paciente una dosis baja de radiación sobre el volumen ocupado por el tumor en una cantidad eficaz (2-6 Gy) para activar las células tumorales y favorecer el tropismo de las células mesenquimales hacia el tumor. In a preferred embodiment, step (b) comprises administering to the patient a low dose of radiation on the volume occupied by the tumor in an effective amount (2-6 Gy) to activate the tumor cells and favor the tropism of the mesenchymal cells towards the tumor
En otra realización preferida, las células madre de la invención son células madre mesenquimales. En otra realización preferida, se pueden hacer nuevas administraciones intravenosas con posterioridad, tanto de células MSC como células MSC* o células madre de la invención, por ejemplo, en los días de pausa de la radioterapia. In another preferred embodiment, the stem cells of the invention are mesenchymal stem cells. In another preferred embodiment, new intravenous administrations can be made subsequently, both of MSC cells and MSC * cells or stem cells of the invention, for example, on the days of radiation therapy pause.
En otra realización preferida de este aspecto el primer método de tratamiento del cáncer de la invención además comprende administrar un principio activo como pueden ser: un inhibidor de la poli (ADP-ribosa) polimerasa (PARP); un radiosensibilizador como el nitroimidazol; un factores de crecimiento o GF; un agente dirigido al receptor del factor de crecimiento epidérmico (RFCE); un anticuerpo radiomarcado; un resto de direccionamiento; agentes quimioterapéuticos, que incluyen, pero sin limitarse, compuestos que inducen la apoptosis, compuestos que reducen la vida útil o compuestos que hacen que las células sensibles al estrés; bacterias, modificadas o no genéticamente; o cualquiera de las combinaciones de los principios activos mencionados. In another preferred embodiment of this aspect, the first method of cancer treatment of the invention further comprises administering an active ingredient such as: a poly (ADP-ribose) polymerase (PARP) inhibitor; a radiosensitizer such as nitroimidazole; a growth factors or GF; an agent directed at the epidermal growth factor receptor (RFCE); a radiolabeled antibody; a remainder of addressing; chemotherapeutic agents, which include, but are not limited to, compounds that induce apoptosis, compounds that reduce lifespan or compounds that make cells sensitive to stress; bacteria, modified or not genetically; or any of the combinations of the active ingredients mentioned.
Aún más preferiblemente otra realización preferida de este aspecto el primer método de tratamiento del cáncer de la invención además comprende administrar al menos un inhibidor de PARP (poli (ADP-ribosa) polimerasa). En otra realización preferida de este aspecto el primer método de tratamiento del cáncer de la invención además comprende administrar al menos un agente quimioterápico y/o un agente antiangiogénico. En otra realización preferida de este aspecto el cáncer es un cáncer sistémico. Even more preferably another preferred embodiment of this aspect, the first method of cancer treatment of the invention further comprises administering at least one PARP (poly (ADP-ribose) polymerase) inhibitor. In another preferred embodiment of this aspect the first cancer treatment method of the invention further comprises administering at least one chemotherapeutic agent and / or an antiangiogenic agent. In another preferred embodiment of this aspect the cancer is a systemic cancer.
Un octavo aspecto de la invención se refiere a un método de tratamiento de cáncer, de ahora en adelante segundo método de tratamiento del cáncer de la invención, que comprende: An eighth aspect of the invention relates to a method of treating cancer, hereinafter second method of treating cancer of the invention, comprising:
a) administrar células madre sin tratar, y  a) administer untreated stem cells, and
b) administrar radioterapia a dosis convencionales siguiendo los protocolos habituales, y más preferiblemente, a dosis bajas, para activar las células madre en el interior del paciente. En otra realización preferida, entre el paso (a) y el paso (b) de la invención transcurren 24 horas para dejar que las células se bio-distribuyan. b) administer radiotherapy at conventional doses following the usual protocols, and more preferably, at low doses, to activate the stem cells inside the patient. In another preferred embodiment, 24 hours pass between step (a) and step (b) of the invention to allow the cells to bio-distribute.
En otra realización preferida de este aspecto el primer método de tratamiento del cáncer de la invención además comprende administrar un principio activo como pueden ser: un inhibidor de la poli (ADP-ribosa) polimerasa (PARP); un radiosensibilizador como el nitroimidazol; un factores de crecimiento o GF; un agente dirigido al receptor del factor de crecimiento epidérmico (RFCE); un anticuerpo radiomarcado; un resto de direccionamiento; agentes quimioterapéuticos, que incluyen, pero sin limitarse, compuestos que inducen la apoptosis, compuestos que reducen la vida útil o compuestos que hacen que las células sensibles al estrés; bacterias, modificadas o no genéticamente; o cualquiera de las combinaciones de los principios activos mencionados. In another preferred embodiment of this aspect, the first method of cancer treatment of the invention further comprises administering an active ingredient such as: a poly (ADP-ribose) polymerase (PARP) inhibitor; a radiosensitizer such as nitroimidazole; a growth factors or GF; an agent directed at the epidermal growth factor receptor (RFCE); a radiolabeled antibody; a remainder of addressing; chemotherapeutic agents, which include, but are not limited to, compounds that induce apoptosis, compounds that reduce lifespan or compounds that make cells sensitive to stress; bacteria, modified or not genetically; or any of the combinations of the active ingredients mentioned.
Aún más preferiblemente otra realización preferida de este aspecto el primer método de tratamiento del cáncer de la invención además comprende administrar al menos un inhibidor de PARP (poli (ADP-ribosa) polimerasa). En otra realización preferida de este aspecto el primer método de tratamiento del cáncer de la invención además comprende administrar al menos un agente quimioterápico y/o un agente antiangiogénico. En otra realización preferida de este aspecto el cáncer es un cáncer sistémico. Even more preferably another preferred embodiment of this aspect, the first method of cancer treatment of the invention further comprises administering at least one PARP (poly (ADP-ribose) polymerase) inhibitor. In another preferred embodiment of this aspect the first cancer treatment method of the invention further comprises administering at least one chemotherapeutic agent and / or an antiangiogenic agent. In another preferred embodiment of this aspect the cancer is a systemic cancer.
Terapia de radiación Radiation therapy
La fuente de energía utilizada para la terapia de radiación se puede seleccionar entre los rayos X o rayos gamma, que son las dos formas de radiación electromagnética. La fuente de energía para la terapia de radiación se puede seleccionar de los haces de partículas, que utilizan en rápido movimiento partículas subatómicas en lugar de fotones. Este tipo de radiación puede ser referido como la radioterapia con haz de partículas o radiación de partículas.  The source of energy used for radiation therapy can be selected from X-rays or gamma rays, which are the two forms of electromagnetic radiation. The energy source for radiation therapy can be selected from particle beams, which use fast-moving subatomic particles instead of photons. This type of radiation can be referred to as particle beam radiation therapy or particle radiation.
En la presente invención, el término "radiación ionizante" la radiación que comprende partículas o fotones que tienen la energía suficiente o pueden producir suficiente energía a través de las interacciones nucleares para producir la ionización, es decir, la ganancia o pérdida de electrones. La cantidad de radiación ionizante necesaria para matar una célula dada generalmente depende de la naturaleza de esa célula. Medios para determinar una cantidad efectiva de radiación son bien conocidos en la técnica. Se utiliza en el presente documento, el término "una dosis efectiva" de la radiación ionizante significa una dosis de radiación ionizante que produce un aumento en el daño celular. En ciertas realizaciones, la terapia de radiación comprende radiación ionizante, radiación de haz de electrones particularmente. Un haz de electrones puede ser entregado intraoperatoriamente para el sitio del tumor usando un sistema terapéutico de rayos de electrones tal como el descrito en la Patente de EE.UU. N 0 5.418.372 y 5.321.271 la revelación completa de la cual se incorpora aquí por referencia. En realizaciones particulares, el sistema terapéutico de rayos de electrones de la invención proporciona una protección adecuada al tejido sano para los rayos X primarios generados por el sistema, así como para la radiación de dispersión. En realizaciones particulares, la terapia con haz de partículas es la terapia de haz de protones. Los protones depositan su energía en un volumen muy pequeño, que se llama el pico de Bragg. El pico de Bragg se puede utilizar para apuntar a dosis altas de la terapia de haz de protones a un tumor mientras se hace menos daño a los tejidos normales en delante de y detrás del tumor. La terapia de protones es generalmente reservado para los cánceres que son difíciles o peligrosas para tratar con cirugía, como un condrosarcoma en la base del cráneo, o se combina con otros tipos de radiación. In the present invention, the term "ionizing radiation" means radiation that comprises particles or photons that have sufficient energy or can produce enough energy through nuclear interactions to produce ionization, that is, the gain or loss of electrons. The amount of ionizing radiation needed to kill a given cell generally depends on the nature of that cell. Means for determining an effective amount of radiation are well known in the art. Used herein, the term "an effective dose" of ionizing radiation means a dose of ionizing radiation that causes an increase in cellular damage. In certain embodiments, radiation therapy comprises ionizing radiation, particularly electron beam radiation. An electron beam can be delivered intraoperatively to the tumor site using an electron beam therapeutic system such as that described in US Pat. No. 0 5,418,372 and 5,321,271 the full disclosure of which is incorporated herein by reference. In particular embodiments, the therapeutic electron beam system of the invention provides adequate protection to healthy tissue for the primary x-rays generated by the system, as well as for scattering radiation. In particular embodiments, particle beam therapy is proton beam therapy. Protons deposit their energy in a very small volume, which is called the Bragg peak. Bragg's beak can be used to target high doses of proton beam therapy to a tumor while doing less damage to normal tissues in front of and behind the tumor. Proton therapy is generally reserved for cancers that are difficult or dangerous to treat with surgery, such as a chondrosarcoma at the base of the skull, or it is combined with other types of radiation.
En algunas formas de realización, la terapia de radiación es estereotáctica (o estereotáxica) radiocirugía que utiliza una gran dosis de radiación para destruir el tejido tumoral. En ciertas realizaciones ejemplares, en el que el cáncer está en el cerebro, la cabeza del paciente se puede colocar en un marco especial, que está unido o se monta en el cráneo del paciente. La trama se utiliza para apuntar los haces de radiación de alta dosis directamente en el tumor en la cabeza del paciente. La dosis y el área de recepción de la radiación se coordinan de manera muy precisa lo que resulta en poco daño a los tejidos cercanos. En algunas aplicaciones de estereotaxia, no se necesita un marco para la cabeza. En ciertas formas de realización, los sistemas de formación de imágenes en tiempo real se utilizan en conjunción con el movimiento del acelerador, permitiendo ajustes por ordenador de la trayectoria del acelerador para compensar cualquier movimiento de la cabeza del paciente. Cuando una fuente de terapia de radiación es interna, la energía utilizada en la radiación interna puede provenir de una variedad de fuentes. Por ejemplo, el isótopo radiactivo puede ser yodo radiactivo, por ejemplo, yodo 125 o yodo 131 , estroncio 89, fósforo, paladio, cesio, iridio, fosfato, cobalto, o cualquier otro isótopo conocido en la técnica. En ciertas formas de realización, la radiación interna se administra como braquiterapia, un tratamiento de radiación sobre la base de semillas radiactivas implantadas emisores de radiación de cada semilla. In some embodiments, the radiation therapy is stereotactic (or stereotactic) radiosurgery that uses a large dose of radiation to destroy the tumor tissue. In certain exemplary embodiments, in which the cancer is in the brain, the patient's head may be placed in a special frame, which is attached or mounted on the patient's skull. The plot is used to target high dose radiation beams directly at the tumor in the patient's head. The dose and radiation reception area are coordinated very precisely resulting in little damage to nearby tissues. In some stereotaxy applications, a head frame is not needed. In certain embodiments, real-time imaging systems are used in conjunction with the throttle movement, allowing computer adjustments of the throttle path to compensate for any movement of the patient's head. When a source of radiation therapy is internal, the energy used in internal radiation can come from a variety of sources. For example, the radioactive isotope can be radioactive iodine, for example, iodine 125 or iodine 131, strontium 89, phosphorus, palladium, cesium, iridium, phosphate, cobalt, or any other isotope known in the art. In certain embodiments, internal radiation is administered as brachytherapy, a radiation treatment based on implanted radioactive seeds emitting radiation from each seed.
En ciertos aspectos, la invención comprende los métodos para la planificación de la radioterapia externa con el fin de dirigirse a las células cancerosas y limitar la exposición a las células sanas. En ciertas realizaciones, la planificación de los tratamientos de radiación se lleva a cabo en dos dimensiones (anchura y altura) o tres dimensiones, por ejemplo, con tridimensional (3-D), la terapia con radiación de conformación. En ciertas realizaciones, la radioterapia conformal 3-D utiliza la tecnología informática para permitir a los médicos a determinar con mayor precisión un tumor con rayos de radiación (con anchura, altura y profundidad). Una imagen 3-D de un tumor se puede conseguir mediante tomografía computarizada (TC), imágenes de resonancia magnética (MRI), tomografía por emisión de positrones (PET), o tomografía por emisión de fotón único (SPECT). Utilizando la información de la imagen, los programas de ordenador especiales pueden diseñar los haces de radiación que "se ajusten" a la forma del tumor. En ciertas formas de realización, debido a que el tejido sano que rodea el tumor se libró en gran medida por esta técnica, las dosis más altas de radiación se pueden utilizar para tratar el cáncer. En ciertas formas de realización particulares, la terapia de radiación es la radioterapia de intensidad modulada (IMRT). IMRT es un tipo de terapia conformal 3-D de radiación que utiliza haces de radiación, por ejemplo, los rayos X de diferentes intensidades para suministrar diferentes dosis de radiación a las pequeñas áreas de tejido al mismo tiempo. La tecnología permite la administración de dosis más altas de radiación en el tumor y menores dosis al tejido sano cercano. Algunas técnicas proporcionan una dosis más alta de radiación para el paciente cada día, potencialmente acortando el tiempo total de tratamiento y mejorar el éxito del tratamiento. La IMRT también puede dar lugar a menos efectos secundarios durante el tratamiento. En realizaciones particulares, la radiación se administra por un acelerador lineal que está equipado con un colimador multiláminas (un colimador ayuda a dar forma o esculpir los haces de radiación). El equipo se puede girar alrededor del paciente de manera que los haces de radiación se pueden enviar desde los mejores ángulos. Las vigas se conforman lo más estrechamente posible a la forma del tumor. En ciertas formas de realización, esta tecnología se utiliza para tratar tumores en el cerebro, cabeza y cuello, nasofaringe, de mama, de hígado, de pulmón, de próstata, y el útero. In certain aspects, the invention comprises the methods for planning the External radiation therapy in order to target cancer cells and limit exposure to healthy cells. In certain embodiments, radiation treatment planning is carried out in two dimensions (width and height) or three dimensions, for example, with three-dimensional (3-D), conformal radiation therapy. In certain embodiments, 3-D conformal radiotherapy uses computer technology to allow physicians to more accurately determine a tumor with radiation rays (with width, height and depth). A 3-D image of a tumor can be achieved by computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), or single photon emission tomography (SPECT). Using the information in the image, special computer programs can design radiation beams that "fit" the shape of the tumor. In certain embodiments, because the healthy tissue surrounding the tumor was largely spared by this technique, higher doses of radiation can be used to treat cancer. In certain particular embodiments, radiation therapy is intensity modulated radiotherapy (IMRT). IMRT is a type of 3-D conformal radiation therapy that uses radiation beams, for example, X-rays of different intensities to deliver different doses of radiation to small areas of tissue at the same time. The technology allows the administration of higher doses of radiation in the tumor and lower doses to nearby healthy tissue. Some techniques provide a higher dose of radiation to the patient each day, potentially shortening the total treatment time and improving the success of the treatment. IMRT can also lead to fewer side effects during treatment. In particular embodiments, the radiation is administered by a linear accelerator that is equipped with a multilayer collimator (a collimator helps shape or sculpt the radiation beams). The equipment can be rotated around the patient so that the radiation beams can be sent from the best angles. The beams conform as closely as possible to the shape of the tumor. In certain embodiments, this technology is used to treat tumors in the brain, head and neck, nasopharynx, breast, liver, lung, prostate, and uterus.
Inhibidores de PARP PARP inhibitors
Los inhibidores de PARP son un grupo de los inhibidores farmacológicos de la enzima poli ADP ribosa polimerasa (PARP). Están desarrollados para múltiples indicaciones; la más importante es el tratamiento del cáncer. Varias formas de cáncer son más dependientes de PARP que las células normales, por lo que PARP un objetivo atractivo para la terapia del cáncer. Entre los inhibidores de PARP se encuentran, pero sin limitarse, iniparib (BSI 201), BMN-673, olaparib (AZD-2281), rucaparib (AG014699, PF-01367338), veliparib (ABT-888), CEP 9722, MK 4827, BGB-290, 3-aminobenzamida, o cualquiera de sus combinaciones. PARP inhibitors are a group of pharmacological inhibitors of the enzyme poly ADP ribose polymerase (PARP). They are developed for multiple indications; The most important is cancer treatment. Several forms of cancer are more dependent on PARP than normal cells, making PARP an attractive target for cancer therapy. Among PARP inhibitors are, but not limited to, iniparib (BSI 201), BMN-673, olaparib (AZD-2281), rucaparib (AG014699, PF-01367338), veliparib (ABT-888), CEP 9722, MK 4827, BGB-290, 3-aminobenzamide, or any combination thereof.
Sensibilizadores de radiación Radiation sensitizers
En algunas formas de realización, la invención proporciona métodos de administración de dosis reducidas de radiación mediante la combinación de radiación intraoperativa con sensibilizadores de radiación. Brown et al. (Int. J. Biol. Oncología Radioterápica. Phys., 2010, 78 (1): 323-327) proporcionan datos de modelos en favor del uso del sensibilizador etanidazol (etanidazol radiosensitizer ET), en combinación con la radioterapia estereotáctica ablativa (SABR). Al calcular el nivel esperado de la muerte celular del tumor después SABR, Brown et al. indican que la administración de ET antes de SABR reducirá la dosis y la frecuencia de irradiación necesaria para tratar tumores y metástasis, especialmente en tumores con altos niveles de hipoxia. Por lo tanto, en realizaciones particulares, la radiación se reduce hasta en un 1 %, hasta 5%, hasta 10%, hasta 15%>, hasta 20%>, hasta 25%>, hasta 30%, hasta al 35%, hasta un 40%, hasta un 45%, hasta el 50%, hasta un 55%, hasta el 60%, hasta un 65%, hasta el 70%, hasta el 75%, hasta un 80%, hasta al 85%, hasta 90%, hasta 95%, y hasta 99% en comparación con la terapia de radiación intraoperativa sin sensibilizadores. Por otra parte, la dosis de radiación en radioterapia intraoperatoria puede reducir en un 25-50% con respecto a la cantidad de radioterapia externa que pueda ser necesaria para tratar la enfermedad sin el sensibilizador. Por consiguiente, la invención también proporciona un método para administrar dosis reducidas de radiación a un paciente mediante la combinación de la IORT, SBRT o SRS con un sensibilizador a la radiación seleccionado de los nitroimidazoles, en el que la radiación se reduce hasta en un 75% con respecto a la terapia de radiación administrada sin sensibilizadores. La terapia de radiación puede ser usada en conjunto con la hipertermia, es decir, el uso de calor. En ciertas realizaciones, la combinación de calor y la radiación puede aumentar la tasa de respuesta de algunos tumores. Un radiosensibilizador se puede administrar en combinación con un agente adicional. Por ejemplo, un nitroimidazol se puede administrar en combinación con un agente adicional tal como un agente de focalización, un agente quimioterapéutico o un segundo radiosensibilizador. Agentes de direccionamiento incluyen cualquier agente adecuado para atacar a las células cancerosas, tales como anticuerpos. Nitroimidazol puede estar unido a la agente de dirección a través de enlaces covalentes o no covalentes archivos adjuntos. Por ejemplo, los nitroimidazoles, tales como 2-nitroimidazoles, pueden estar unidos a un agente de dirección a través de un enlazador tal como un enlazador biodegradable. Alternativamente, los nitroimidazoles pueden estar unidos a un agente de dirección a través de interacciones iónicas. En ciertas realizaciones, el radiosensibilizador y el agente adicional puede ser envuelto dentro de un liposoma. Otros sensibilizadores de radiación son, pero sin limitarnos, misonidazol, metronidazol, tirapazamina, trans sodium crocetinato, o cualquiera de sus combinaciones. Anticuerpos y Anticuerpos radiomarcados In some embodiments, the invention provides methods of administering reduced doses of radiation by combining intraoperative radiation with radiation sensitizers. Brown et al. (Int. J. Biol. Radiation Oncology. Phys., 2010, 78 (1): 323-327) provide model data in favor of the use of the ethanidazole sensitizer (ethanidazole radiosensitizer ET), in combination with ablative stereotactic radiotherapy (SABR ). When calculating the expected level of tumor cell death after SABR, Brown et al. indicate that the administration of ET before SABR will reduce the dose and the frequency of irradiation necessary to treat tumors and metastases, especially in tumors with high levels of hypoxia. Therefore, in particular embodiments, the radiation is reduced by up to 1%, up to 5%, up to 10%, up to 15%>, up to 20%>, up to 25%>, up to 30%, up to 35%, up to 40%, up to 45%, up to 50%, up to 55%, up to 60%, up to 65%, up to 70%, up to 75%, up to 80%, up to 85%, up to 90%, up to 95%, and up to 99% compared to intraoperative radiation therapy without sensitizers. On the other hand, the radiation dose in intraoperative radiation therapy can be reduced by 25-50% with respect to the amount of external radiation therapy that may be necessary to treat the disease without the sensitizer. Accordingly, the invention also provides a method for administering reduced doses of radiation to a patient by combining the IORT, SBRT or SRS with a radiation sensitizer selected from nitroimidazoles, in which the radiation is reduced by up to 75 % with respect to radiation therapy administered without sensitizers. Radiation therapy can be used in conjunction with hyperthermia, that is, the use of heat. In certain embodiments, the combination of heat and radiation may increase the response rate of some tumors. A radiosensitizer can be administered in combination with an additional agent. For example, a nitroimidazole can be administered in combination with an additional agent such as a targeting agent, a chemotherapeutic agent or a second radiosensitizer. Addressing agents include any suitable agent to attack cancer cells, such as antibodies. Nitroimidazole can be attached to the targeting agent through covalent or non-covalent attachments. For example, nitroimidazoles, such as 2-nitroimidazoles, can be linked to a targeting agent through a linker such as a biodegradable linker. Alternatively, nitroimidazoles may be linked to a targeting agent through ionic interactions. In certain embodiments, the radiosensitizer and the additional agent may be wrapped within a liposome. Other radiation sensitizers are, but are not limited to, misonidazole, metronidazole, tirapazamine, trans sodium crocetinate, or any combination thereof. Radiolabeled Antibodies and Antibodies
La radiación puede ser administrada directamente al cáncer y potenciada mediante anticuerpos y/o mediante el uso de anticuerpos radiomarcados, es decir, la radioinmunoterapia.. Algunas células tumorales contienen antígenos específicos que desencadenan la producción de anticuerpos específicos de tumores. Grandes cantidades de estos anticuerpos se pueden producir en el laboratorio y se unen a las sustancias radiactivas, un proceso conocido como radiomarcaje. Una vez inyectado en el cuerpo, los anticuerpos buscan células cancerosas, que se destruyen por la radiación. Este enfoque puede reducir o minimizar el riesgo de daño de la radiación a las células sanas. En ciertas formas de realización, los tratamientos de radioinmunoterapia se seleccionan de ibritumomab tiuxetan (Zevalin ®) y el tositumomab y yodo 131 tositumomab (Bexxar ®). La radioinmunoterapia puede ser utilizada en el tratamiento de adultos avanzado de linfoma no Hodgkin (NHL). En ciertas realizaciones, la inmunoterapia se utiliza en el tratamiento de cánceres como la leucemia, el LNH, el cáncer colorrectal, y cáncer de hígado, pulmón, cerebro, próstata, tiroides, mama, ovario y páncreas.  The radiation can be administered directly to the cancer and enhanced by antibodies and / or by the use of radiolabeled antibodies, that is, radioimmunotherapy. Some tumor cells contain specific antigens that trigger the production of tumor-specific antibodies. Large amounts of these antibodies can be produced in the laboratory and bind to radioactive substances, a process known as radiolabeling. Once injected into the body, the antibodies look for cancer cells, which are destroyed by radiation. This approach can reduce or minimize the risk of radiation damage to healthy cells. In certain embodiments, radioimmunotherapy treatments are selected from ibritumomab tiuxetan (Zevalin ®) and tositumomab and iodine 131 tositumomab (Bexxar ®). Radioimmunotherapy can be used in the treatment of advanced non-Hodgkin lymphoma (NHL) adults. In certain embodiments, immunotherapy is used in the treatment of cancers such as leukemia, NHL, colorectal cancer, and liver, lung, brain, prostate, thyroid, breast, ovarian and pancreas cancer.
Elementos de direccionamiento Addressing elements
En ciertas formas de realización, las células u otros agentes de la invención están asociados con un elemento de direccionamiento. El elemento de direccionamiento puede estar unido covalentemente a la nitroimidazol, o asociado con el nitroimidazol aunque las fuerzas no covalentes, tales como enlaces iónicos, enlaces de hidrógeno, o través de la encapsulación dentro de un liposoma. El elemento de direccionamiento, que asiste a la célula de la invención u otro agente en la localización de una región diana particular, entrar en una célula (s) del tumor diana, y / o la localización dentro de o proximal a la célula, se puede seleccionar sobre la base del tipo de células particular que se va dirigido. El elemento de direccionamiento puede comprender además cualquiera de un número de entidades químicas diferentes. En una realización, el elemento de direccionamiento es una molécula pequeña. Las moléculas que pueden ser adecuados para el uso como restos de direccionamiento en la presente invención incluyen haptenos, epítopos y fragmentos de dsDNA y análogos y derivados de los mismos. Tales elementos se unen específicamente a anticuerpos, fragmentos o análogos de los mismos, incluyendo miméticos (por haptenos y epítopos), y las proteínas de dedos de zinc (para fragmentos de ADN de doble cadena). Nutrientes cree que desencadenan la endocitosis mediada por receptor y restos de direccionamiento, por lo tanto útiles incluyen biotina, ácido fólico, riboflavina, carnitina, inositol, ácido lipoico, niacina, ácido pantoténico, tiamina, piridoxal, ácido ascórbico, y el lípido soluble en vitaminas A, D, E y K. Otro tipo ejemplar de resto que elige diana de molécula pequeña incluye lípidos esteroideos, tales como el colesterol y las hormonas esteroideas, tales como estradiol, testosterona, etc. In certain embodiments, the cells or other agents of the invention are associated with an addressing element. The addressing element may be covalently bound to nitroimidazole, or associated with nitroimidazole although non-covalent forces, such as ionic bonds, hydrogen bonds, or through encapsulation within a liposome. The addressing element, which assists the cell of the invention or other agent in the location of a particular target region, enters a cell (s) of the target tumor, and / or the location within or proximal to the cell, is You can select based on the particular cell type that is being targeted. The addressing element may further comprise any of a number of different chemical entities. In one embodiment, the addressing element is a small molecule. Molecules that may be suitable for use as targeting moieties in the present invention include haptens, epitopes and dsDNA fragments and analogs and derivatives thereof. Such elements specifically bind to antibodies, fragments or analogs thereof, including mimetics (for haptens and epitopes), and zinc finger proteins (for double stranded DNA fragments). Nutrients believed to trigger endocytosis Mediated by receptor and targeting moieties, therefore useful include biotin, folic acid, riboflavin, carnitine, inositol, lipoic acid, niacin, pantothenic acid, thiamine, pyridoxal, ascorbic acid, and lipid soluble in vitamins A, D, E and K. Another exemplary type of moiety that chooses a small molecule target includes steroid lipids, such as cholesterol and steroid hormones, such as estradiol, testosterone, etc.
Elementos de direccionamiento también pueden comprender una o más proteínas. Los tipos particulares de proteínas se pueden seleccionar sobre la base de características conocidas de la zona diana o células diana. Por ejemplo, la sonda puede ser un anticuerpo monoclonal o policlonal, donde un antígeno correspondiente se muestra en el sitio diana. En situaciones en las que un determinado receptor se expresa por las células diana, el elemento de direccionamiento puede comprender una proteína o ligando peptidomimético capaz de unirse a ese receptor. Proteínas ligandos de receptores de la superficie celular conocidos incluyen lipoproteínas de baja densidad, transferrina, insulina, enzimas fibrinolíticas, anti-HER2, proteínas de unión a plaquetas tales como anexinas, y modificadores de respuesta biológica (incluyendo interleuquina, interferón, eritropoyetina y factor estimulante de colonias). Una serie de anticuerpos monoclonales que se unen a un tipo específico de células se han desarrollado, incluyendo anticuerpos monoclonales específicos para los antígenos asociados a tumores en humanos. Entre los muchos anticuerpos monoclonales tales que pueden ser utilizados son anti-TAC, u otros anticuerpos de receptores de interleuquina-2; 9.2.27 y NR-ML-05 a la 250 kilodaltons proteoglicano asociado al melanoma humano; y NR-LU-10 a una glicoproteína pancarcinoma. Un anticuerpo empleado en la presente invención puede ser una molécula intacta (completa), un fragmento de la misma, o un equivalente funcional de la misma. Ejemplos de fragmentos de anticuerpo son F (ab ') 2, Fab', Fab, y fragmentos Fv, que se puede producir por métodos convencionales o por ingeniería genética o de proteínas. Addressing elements may also comprise one or more proteins. Particular types of proteins can be selected based on known characteristics of the target zone or target cells. For example, the probe can be a monoclonal or polyclonal antibody, where a corresponding antigen is shown at the target site. In situations where a particular receptor is expressed by the target cells, the targeting element may comprise a peptidomimetic protein or ligand capable of binding to that receptor. Known cell surface receptor ligand proteins include low density lipoproteins, transferrin, insulin, fibrinolytic enzymes, anti-HER2, platelet-binding proteins such as annexins, and biological response modifiers (including interleukin, interferon, erythropoietin and stimulating factor of colonies). A series of monoclonal antibodies that bind to a specific type of cells have been developed, including specific monoclonal antibodies to tumor associated antigens in humans. Among the many monoclonal antibodies such that can be used are anti-CT, or other interleukin-2 receptor antibodies; 9.2.27 and NR-ML-05 at 250 kilodaltons proteoglycan associated with human melanoma; and NR-LU-10 to a pancarcinoma glycoprotein. An antibody employed in the present invention may be an intact (complete) molecule, a fragment thereof, or a functional equivalent thereof. Examples of antibody fragments are F (ab ') 2, Fab', Fab, and Fv fragments, which can be produced by conventional methods or by genetic or protein engineering.
Otros elementos de direccionamiento preferidos incluyen azúcares, por ejemplo, glucosa, fucosa, galactosa, mañosa, que son reconocidos por receptores específicos de la diana. Por ejemplo, algunas construcciones pueden ser glicosilados con residuos de mañosa, por ejemplo, que se adjunta como C-heterósidos a un nitrógeno libre, para producir construcciones específicas y con mayor afinidad de unión a los tumores que expresan receptores de mañosa, por ejemplo, glioblastomas y gangliocitomas y bacterias, que también se sabe que expresan receptores de mañosa (Bertozzi, CR y MD Bednarski Carbohydrate Research 223:243 (1992); J. Am. Chem. Soc. 1 14:2242,5543 (1992)), así como potencialmente otros restos infecciosas. Ciertas células, como las células malignas y las células de la sangre (por ejemplo, A, AB, B, etc) muestran carbohidratos particulares, para los cuales una lectina correspondiente puede servir como un elemento de direccionamiento. Agentes quimioterapéuticos Other preferred addressing elements include sugars, for example, glucose, fucose, galactose, mannose, which are recognized by specific target receptors. For example, some constructs can be glycosylated with mannose residues, for example, which is attached as C-heterosides to a free nitrogen, to produce specific constructions and with greater affinity for binding to tumors expressing mañosa receptors, for example, glioblastomas and gangliocytomas and bacteria, which are also known to express mañosa receptors (Bertozzi, CR and MD Bednarski Carbohydrate Research 223: 243 (1992); J. Am. Chem. Soc. 1 14: 2242,5543 (1992)), as well as potentially other infectious remains. Certain cells, such as malignant cells and blood cells (for example, A, AB, B, etc.) show particular carbohydrates, for which a corresponding lectin can serve as a targeting element. Chemotherapeutic Agents
En ciertas realizaciones, se pueden administrar agentes quimioterapéuticos conjuntamente con las células, composiciones o preparaciones combinadas de la invención. Los agentesquimioterapéuticos incluyen, pero sin limitarse a, aquellos compuestos con actividad anti-cáncer, por ejemplo, compuestos que inducen la apoptosis, compuestos que reducen la vida útil o compuestos que hacen que las células sensibles al estrés e incluyen: aminoglutetimida, amsacrina, anastrozol, asparaginasa, Beg, bicalutamida, bleomicina, buserelina, busulfán , campothecin, capecitabina, carboplatino, carmustina, clorambucilo, cisplatino, cladribina, clodronato, colchicina, ciclofosfamida, ciproterona, citarabina, dacarbazina, dactinomicina, daunorrubicina, dienestrol, dietilestilbestrol, docetaxel, doxorubicina, epirubicina, estradiol, estramustina, etopósido, exemestano, filgrastim , fludarabina, fludrocortisona, fluorouracilo, fluoximesterona, flutamida, gemcitabina, la genisteína, goserelina, hidroxiurea, idarubicina, ifosfamida, imatinib, el interferón, irinotecan, irinotecán, el letrozol, la leucovorina, leuprolide, levamisol, lomustina, mecloretamina, medroxiprogesterona, megestrol, melfalán, mercaptopurina , mesna, metotrexato, mitomicina, mitotano, mitoxantrona, nilutamida, nocodazole, octreotida, oxaliplatino, paclitaxel, pamidronato, pentostatina, plicamicina, porfímero, procarbazina, raltitrexed, rituximab, estreptozocina, suramina, tamoxifeno, temozolomida, tenipósido, testosterona, tioguanina, tiotepa, dicloruro de titanoceno, topotecán, trastuzumab, tretinoína, vinblastina, vincristina, vindesina, vinorelbina, o cualquiera de sus combinaciones.  In certain embodiments, chemotherapeutic agents may be administered in conjunction with the combined cells, compositions or preparations of the invention. Chemotherapeutic agents include, but are not limited to, those compounds with anti-cancer activity, for example, compounds that induce apoptosis, compounds that reduce lifespan or compounds that make cells sensitive to stress and include: aminoglutethimide, amsacrine, anastrozole , asparaginase, Beg, bicalutamide, bleomycin, buserelin, busulfan, campothecin, capecitabine, carboplatin, carmustine, chlorambucil, cisplatin, cladribine, chlodronate, colchicine, cyclophosphamide, cyproterone, cytarabine, dacarinicorbumin, dacarinicorbumin, dactin-thicorbumin, dactinicorbumin, documin-thicorbumin, dac-thicorbuminin, dactin-thicorbumin, dac-thicorbuminum, dactin-thickenesalbuminase , epirubicin, estradiol, estramustine, etoposide, exemestane, filgrastim, fludarabine, fludrocortisone, fluorouracil, fluoxymesterone, flutamide, gemcitabine, genistein, goserelin, hydroxyurea, idarubicin, ifosfamide, leatinotholcan, iratinotolcan, leatinotholcan, leatinotholcan, leatinotholcan, leatinotholcan, leatinotolcan, leatinotholcan, leatinotholcan, leatinotolcan, leatinotholcan, leatinotholcan, leatinotholcan , leuprolide, levamisole, lomustine, mechlorethamine, medrox iprogesterona, megestrol, melphalan, mercaptopurine, mesna, methotrexate, mitomycin, mitotane, mitoxantrone, nilutamide, nocodazole, octreotide, oxaliplatin, paclitaxel, pamidronate, pentostatin, plicamycin, porfimer, procarbazine, raltitrexed, rituximab, streptozocin, suramin, tamoxifen, temozolomide, teniposide, testosterone, thioguanine, thiotepa, titanocene dichloride, topotecan, trastuzumab, tretinoin, vinblastine, vincristine, vindesine, vinorelbine, or any combination thereof.
Estos agentes quimioterapéuticos se pueden clasificar por su mecanismo de acción, pero sin limitarnos, en, por ejemplo, los grupos siguientes: agentes anti-metabolites/anti-cancer, tales como análogos de pirimidina (5-fluorouracilo, floxuridina, capecitabina, gemcitabina y citarabina) y análogos de la purina, folato antagonistas e inhibidores relacionados (mercaptopurina, tioguanina, pentostatina y 2-clorodeoxiadenosina (cladribina)); agentes antiproliferativos / antimitóticos, incluyendo productos naturales tales como alcaloides de la vinca (vinblastina, vincristina, y vinorelbina), disruptores de microtúbulos tales como taxanos (paclitaxel, docetaxel), vincristina, vinblastina, nocodazol, epotilonas, y navelbina, epidipodophyllotoxms (tenipósido), agentes que dañan el ADN (actinomicina, amsacrina, antraciclinas, bleomicina, busulfán, camptotecina, carboplatino, clorambucilo, cisplatino, ciclofosfamida, Cytoxan, dactinomicina, daunorubicina, docetaxel, doxorubicina, epirubicina, hexametilmelamina, oxaliplatino, ifosfamida, melfalán, merchlorethamine, mitomicina, mitoxantrona, nitrosourea, paclitaxel, plicamicina, procarbazina, tenipósido, trietilentiofosforamida y etopósido (VP 16)); antibióticos tales como dactinomicina (actinomicina D), daunorrubicina, doxorrubicina (adriamicina), idarrubicina, antraciclinas, mitoxantrona, bleomicinas, plicamicina , (mitramicina) y mitomicina; enzimas (L-asparaginasa que metaboliza sistémicamente la L-asparagina y priva a las células que no tienen la capacidad de sintetizar su propia asparagina); antiagregantes plaquetarios; agentes alquilantes antiproliferativos / antimitoticos tales como mostazas de nitrógeno (mecloretamina, ciclofosfamida y análogos, melfalán, clorambucil), etileniminas y metilmelaminas (hexametilmelamina y tiotepa), sulfonatos de alquilo (busulfán), nitrosoureas (carmustina (BCNU) y análogos, estreptozocina), trazenes (por ejemplo, dacarbazinina (DTIC)); antimetabolitos antiproliferativos / antimitoticos tales como análogos de ácido fólico (metotrexato); complejos de coordinación de platino (cisplatino, carboplatino), procarbazina, hidroxiurea, mitotano, aminoglutetimida; hormonas, análogos de hormonas (estrógeno, tamoxifeno, goserelina, bicalutamida, nilutamida) y los inhibidores de la aromatasa(letrozol, anastrozol); anticoagulantes (heparina, sales de heparina sintética y otros inhibidores de trombina); agentes fibrinolíticos (tales como activador de plasminógeno tisular, estreptoquinasa y uroquinasa), aspirina, inhibidores de la COX-2, dipiridamol, ticlopidina, clopidogrel, abciximab; agentes antimigratorio; agentes antisecretores (breveldina); inmunosupresores (ciclosporina, tacrolimus (FK-506), sirolimus (rapamicina), azatioprina, micofenolato mofetilo); compuestos anti-angiogénicos (TNP-470, genisteína) y inhibidores de factores de crecimiento (factor de crecimiento vascular endotelial (VEGF) inhibidores, inhibidores de factores de crecimiento de fibroblastos (FGF), factor de crecimiento epidérmico (EGF) inhibidores); bloqueador del receptor de la angiotensina; donadores de óxido nítrico; oligonucleótidos antisentido; anticuerpos (trastuzumab); inhibidores del ciclo celular e inductores de diferenciación (tretinoína); inhibidores de mTOR, inhibidores de la topoisomerasa (doxorubicina (adriamicina), amsacrina, camptotecina, daunorubicina, dactinomicina eniposide, epirubicina, etopósido, idarrubicina, irinotecan (CPT-1 1) y la mitoxantrona, topotecan, irinotecan), corticosteroides (cortisona, dexametasona, hidrocortisona, metilprednisolona , prednisona y prednisolona); inhibidores de quinasa de transducción de señales del factor de crecimiento; Los inductores de la disfunción mitocondrial y activadores de caspasas; disruptores cromatina. These chemotherapeutic agents can be classified by their mechanism of action, but not limited to, for example, the following groups: anti-metabolite / anti-cancer agents, such as pyrimidine analogues (5-fluorouracil, floxuridine, capecitabine, gemcitabine and cytarabine) and purine analogues, folate antagonists and related inhibitors (mercaptopurine, thioguanine, pentostatin and 2-chlorodeoxyadenosine (cladribine)); antiproliferative / antimitotic agents, including natural products such as vinca alkaloids (vinblastine, vincristine, and vinorelbine), microtubule disruptors such as taxanes (paclitaxel, docetaxel), vincristine, vinblastine, nocodazole, epothilones, and navelbine, epidipodophyllotoxydiphospidothodoxydiphospid , DNA damaging agents (actinomycin, amsacrine, anthracyclines, bleomycin, busulfan, camptothecin, carboplatin, chlorambucil, cisplatin, cyclophosphamide, Cytoxan, dactinomycin, daunorubicin, docetaxel, doxorubicin, epirubinamimethalamine, mothylamylamine, hexirchineamimethalamine, ifirimylamine, thymolimamimamimine, thymmethylimamimine, mothimylamine, thymolimamimamylamine, thymolimamimamylamine, thymolimamimamylamine, mothimalchimethalamine, mothimylamotholimamimine, mothimylamylamotholimamimine, mothromylamine, thickechlolamine, michlorochineamylamine, hexopyrimamine, mothromethamimine, thymolimamylamine, mothromethamineamicamimine, michlorochineamine, methicide agent , mitoxantrone, nitrosourea, paclitaxel, plicamycin, procarbazine, teniposide, triethylene thiophosphoramide and etoposide (VP 16)); antibiotics such as dactinomycin (actinomycin D), daunorubicin, doxorubicin (adriamycin), idarubicin, anthracyclines, mitoxantrone, bleomycins, plicamycin, (mitramycin) and mitomycin; enzymes (L-asparaginase that systemically metabolizes L-asparagine and deprives cells that do not have the ability to synthesize their own asparagine); platelet antiaggregants; antiproliferative / antimitotic alkylating agents such as nitrogen mustards (mechlorethamine, cyclophosphamide and the like, melphalan, chlorambucil), ethylenimines and methylmelamines (hexamethylmelamine and thiotepa), alkyl sulphonates (busulfan), nitrosoureas (streptograms) trazenes (for example, dacarbazinine (DTIC)); antiproliferative / antimitotic antimetabolites such as folic acid analogs (methotrexate); coordination complexes of platinum (cisplatin, carboplatin), procarbazine, hydroxyurea, mitotane, aminoglutethimide; hormones, hormone analogues (estrogen, tamoxifen, goserelin, bicalutamide, nilutamide) and aromatase inhibitors (letrozole, anastrozole); anticoagulants (heparin, synthetic heparin salts and other thrombin inhibitors); fibrinolytic agents (such as tissue plasminogen activator, streptokinase and urokinase), aspirin, COX-2 inhibitors, dipyridamole, ticlopidine, clopidogrel, abciximab; antimigratory agents; antisecretory agents (breveldine); immunosuppressants (cyclosporine, tacrolimus (FK-506), sirolimus (rapamycin), azathioprine, mycophenolate mofetil); anti-angiogenic compounds (TNP-470, genistein) and growth factor inhibitors (vascular endothelial growth factor (VEGF) inhibitors, fibroblast growth factor inhibitors (FGF), epidermal growth factor (EGF) inhibitors); angiotensin receptor blocker; donors of nitric oxide; antisense oligonucleotides; antibodies (trastuzumab); cell cycle inhibitors and differentiation inducers (tretinoin); mTOR inhibitors, topoisomerase inhibitors (doxorubicin (adriamycin), amsacrine, camptothecin, daunorubicin, eniposide dactinomycin, epirubicin, etoposide, idarubicin, irinotecan (CPT-1 1) and mitoxantrone, topotecan, irinotecan), corticosteroids (cortisone, dexamethasone , hydrocortisone, methylprednisolone, prednisone and prednisolone); growth factor signal transduction kinase inhibitors; Mitochondrial dysfunction inducers and caspase activators; chromatin disruptors
Radioprotectores Radioprotectors
También pueden administrarse radioprotectores a un paciente en combinación con las células, composiciones o preparaciones combinadas descritas en el presente documento. Los radioprotectores son fármacos que protegen a las células normales (no cancerosos) de los daños causados por la radioterapia. Estos agentes promueven la reparación de las células normales que están expuestas a la radiación. Radioprotectores ejemplares incluyen amifostina (nombre comercial Ethyol ®). Radioprotectors can also be administered to a patient in combination with the combined cells, compositions or preparations described herein. Radioprotectors are drugs that protect normal (non-cancerous) cells from damage caused by radiation therapy. These agents promote the repair of normal cells that are exposed to radiation. Exemplary radioprotectors include amifostine (trade name Ethyol ®).
En ciertas realizaciones, los métodos de la invención comprenden además la administración de una bacteria tal como la salmonela o variantes de ingeniería genética de los mismos. In certain embodiments, the methods of the invention further comprise administration. of a bacterium such as salmonella or genetic engineering variants thereof.
Los sensibilizadores de radiación se pueden formular de una manera convencional usando uno o más vehículos o excipientes fisiológicamente aceptables. Por ejemplo, pueden formularse para la administración mediante, por ejemplo, inyección (por ejemplo subcutánea, intramuscular, intraparenteral), inhalación o insuflación (ya sea a través de la boca o de la nariz) o administración oral, bucal, sublingual, transdérmica, nasal, parenteral o rectal. En una forma de realización, un compuesto de la invención se puede administrar localmente, en el sitio donde están presentes las células tumorales, es decir, en una específica de tejido, órgano o fluido (por ejemplo, sangre, líquido cefalorraquídeo, etc.) Radiation sensitizers can be formulated in a conventional manner using one or more physiologically acceptable carriers or excipients. For example, they can be formulated for administration by, for example, injection (for example subcutaneous, intramuscular, intraparenteral), inhalation or insufflation (either through the mouth or nose) or oral, oral, sublingual, transdermal administration, nasal, parenteral or rectal. In one embodiment, a compound of the invention can be administered locally, at the site where tumor cells are present, that is, in a specific tissue, organ or fluid (e.g., blood, cerebrospinal fluid, etc.)
Típicamente, los compuestos de la invención se administran por vía intravenosa. La frase "farmacéuticamente aceptable" o "fisiológicamente aceptable" se emplea aquí para referirse a aquellos ligandos, materiales, composiciones, y / o formas de dosificación que son, dentro del alcance del juicio médico, son adecuadas para uso en contacto con los tejidos de humanos seres y animales sin excesiva toxicidad, irritación, respuesta alérgica, u otro problema o complicación, acorde con una relación beneficio / riesgo razonable. Typically, the compounds of the invention are administered intravenously. The phrase "pharmaceutically acceptable" or "physiologically acceptable" is used herein to refer to those ligands, materials, compositions, and / or dosage forms that are, within the scope of medical judgment, are suitable for use in contact with the tissues of human beings and animals without excessive toxicity, irritation, allergic response, or other problem or complication, in accordance with a reasonable benefit / risk ratio.
Sensibilizadores de radiación de la invención pueden formularse para una variedad de modos de administración. Las técnicas y formulaciones generalmente se pueden encontrar en Remington Pharmaceutical Sciences, Meade Publishing Co., Easton, PA Radiation sensitizers of the invention can be formulated for a variety of modes of administration. Techniques and formulations can generally be found at Remington Pharmaceutical Sciences, Meade Publishing Co., Easton, PA
A lo largo de la descripción y las reivindicaciones la palabra "comprende" y sus variantes no pretenden excluir otras características técnicas, aditivos, componentes o pasos. Para los expertos en la materia, otros objetos, ventajas y características de la invención se desprenderán en parte de la descripción y en parte de la práctica de la invención. Los siguientes ejemplos y dibujos se proporcionan a modo de ilustración, y no se pretende que sean limitativos de la presente invención. La notación decimal empleada en el presente documento utiliza el símbolo "," para separar unidades de decimales. Throughout the description and the claims the word "comprises" and its variants are not intended to exclude other technical characteristics, additives, components or steps. For those skilled in the art, other objects, advantages and features of the invention will be derived partly from the description and partly from the practice of the invention. The following examples and drawings are provided by way of illustration, and are not intended to be limiting of the present invention. The decimal notation used in this document uses the symbol "," to separate units of decimals.
EJEMPLOS DE LA INVENCIÓN EXAMPLES OF THE INVENTION
Se describe a continuación un ejemplo de la invención haciendo referencia a las figuras adjuntas. EJEMPLO 1. Ensayos in vitro An example of the invention is described below with reference to the attached figures. EXAMPLE 1. In vitro tests
Los ensayos realizados ponen de manifiesto que la activación de células tumorales y mesenquimales con radiación induce la expresión de TRAIL y su receptor DR5 y que la forma soluble de TRAIL se secreta al espacio extracelular en el que las células han sido irradiadas; además, la irradiación de células MSC con una dosis de 2 Gy induce DKK3. El efecto de la radiación sobre la expresión de TRAIL es claramente superior en las células MSC-UCSSCs que en las tumorales (Figuras 1 a 4) y la actividad del medio de cultivo procedente de la incubación durante 24 o 48 horas de células MSC irradiadas con 2 Gy es evidente.  The tests carried out show that the activation of tumor and mesenchymal cells with radiation induces the expression of TRAIL and its DR5 receptor and that the soluble form of TRAIL is secreted to the extracellular space in which the cells have been irradiated; In addition, irradiation of MSC cells with a dose of 2 Gy induces DKK3. The effect of radiation on TRAIL expression is clearly superior in MSC-UCSSCs cells than in tumor cells (Figures 1 to 4) and the activity of the culture medium from incubation for 24 or 48 hours of MSC cells irradiated with 2 Gy is obvious.
Como consecuencia de la inducción de TRAIL y DKK3 tras irradiación las moléculas de estas proteínas son secretadas al medio de cultivo donde pueden ser cuantificadas como las formas solubles TRAIL (sTRAIL) y DKK3 (Fig. 5 y 6). Nuestros experimentos demuestran el espectacular efecto de UCSSCs-RCM usado como tratamiento reiterado de colonias de A375 y colonias de G361 (Fig. 7). El estudio cuantitativo de las colonias de A375 y G361 en los experimentos de cinética del crecimiento tumoral bajo tratamiento con UCSSCs-RCM pone de manifiesto que en las colonias tratadas la pérdida celular es del orden del 50% de la que existe en los experimentos de crecimiento en condiciones control. As a consequence of the induction of TRAIL and DKK3 after irradiation the molecules of these proteins are secreted to the culture medium where they can be quantified as the soluble forms TRAIL (sTRAIL) and DKK3 (Fig. 5 and 6). Our experiments demonstrate the spectacular effect of UCSSCs-RCM used as repeated treatment of colonies of A375 and colonies of G361 (Fig. 7). The quantitative study of the colonies of A375 and G361 in the kinetics experiments of tumor growth under treatment with UCSSCs-RCM shows that in the treated colonies the cell loss is of the order of 50% of what exists in the growth experiments under control conditions.
Además como es conocido que la actividad tumor-supresora de las células MSC, cuando se activan con TNF-α, se debe fundamentalmente a la expresión, en estas células, de altos niveles de la forma de TRAIL enlazado a la membrana celular (Lee et al. 2012, Cell Stem Cell, 2012. 11 (6): p. 825-35) en los experimentos se ha comprobado, mediante el enzimo-ensayo de TRAIL en célula completa, que la radiación induce no solo la secreción de TRAIL y DKK3 al medio sino que también aumenta la expresión, en cantidades relevantes, de la forma molecular de TRAIL-transmembrana que permanece unida en la célula (Fig. 5 y 6). Los experimentos de co-cultivo de células tumorales y MSC irradiadas o sin irradiar nos han demostrado la mayor actividad tumor-supresora de las células UCSSCs cuando dichas células han sido previamente irradiadas con baja dosis de radiación, 2 Gy (Tabla 1). El análisis de los datos resumidos en la Tabla 1 permite concluir que el tratamiento de modelos tumorales con MSC ocasiona un retraso del crecimiento de los modelos de tumor conseguidos a partir de cualquiera de las tres líneas celulares estudiadas G361 , A375 o MCF7. Este retraso del crecimiento resulta ser función de la activación tanto de las células MSC como de las células tumorales puesto que la radiación induce TRAIL en las MSC mientras que induce también la expresión del receptor de TRAIL (DR5) en las células tumorales. Este mecanismo explica el hecho de que en los experimentos en los que tanto las células MSC-UCSSCs como las células tumorales han sido irradiadas el incremento de componente celular (o "up-regulation') de ambos genes conduzca al incremento de la muerte celular (Tablal). Furthermore, as it is known that the tumor-suppressing activity of MSC cells, when activated with TNF-α, is mainly due to the expression, in these cells, of high levels of the TRAIL form bound to the cell membrane (Lee et al. 2012, Cell Stem Cell, 2012. 11 (6): p. 825-35) in the experiments it has been proven, through the TRAIL enzyme assay in a complete cell, that radiation induces not only the secretion of TRAIL and DKK3 to the medium but also increases the expression, in relevant amounts, of the molecular form of TRAIL-transmembrane that remains bound in the cell (Fig. 5 and 6). The co-culture experiments of irradiated or non-irradiated tumor and MSC cells have shown us the greatest tumor-suppressor activity of UCSSCs when these cells have been previously irradiated with a low dose of radiation, 2 Gy (Table 1). The analysis of the data summarized in Table 1 allows us to conclude that the treatment of tumor models with MSC causes a delay in the growth of tumor models obtained from any of the three cell lines studied G361, A375 or MCF7. This growth retardation turns out to be a function of the activation of both MSC cells and tumor cells since radiation induces TRAIL in MSCs while also inducing TRAIL receptor (DR5) expression in tumor cells. This mechanism explains the fact that in experiments in which both MSC-UCSSCs cells and cells Tumors have been irradiated the increase in cellular component (or "up-regulation") of both genes lead to increased cell death (Tablal).
Figure imgf000032_0001
Figure imgf000032_0001
Tabla 1. Parámetros de la cinética de crecimiento de tumores experimentales in vitro en condiciones Control y tras distintos tratamientos.  Table 1. Growth kinetics parameters of experimental tumors in vitro under control conditions and after different treatments.
Además, puesto que tras la irradiación de MSC las formas solubles de las proteínas TRAIL y DKK3 se secretan al medio extracelular, las células MSC pueden ser consideradas como células "medicinales" (Caplan, A.l. & Correa, D. 201 1. Cell stem cell 9, 1 1-15); además, aceptando que entre las características funcionales de las células MSC está su tropismo - como determinante para alcanzar los lugares del cuerpo en los que existen lesiones- y su capacidad inmunomoduladora (Ranganath, et al., 2012. Cell stem cell 10, 244-258) entendemos que las MSC inyectadas en el organismo puede actuar como "almacenes de productos farmacéuticos", y estas células se pueden emplear en procedimientos de terapia celular como complemento de la radioterapia, puesto que, una vez activadas con radiación se convierten en fuente de citocinas y proteínas tumor-supresor citotóxicas para las células tumorales lo cual puede suponer una importante mejora de la eficacia biológica de la radiación sobre los tumores. Estos datos aparecen como coeficiente MSC-ER en la Tabla 1. Además, los resultados de los ensayos sugieren que el tratamiento con radiación más MSC podría ser usado como una estrategia para conseguir la radiosensibilización de los tumores. Desde un punto de vista teórico el papel adyuvante de las MSC a la radioterapia podría ser pensado como una herramienta capaz de incrementar el peso del segundo factor {entre corchetes} de nuestro modelo matemático de acción biológica de la radiación sobre los tumores, aumentando a través de la potenciación del mecanismo bystander la probabilidad de muerte celular (Gómez-Millán et al., 2012. Journal of the European Society for Therapeutic Radiology and Oncology 102, 450-458; Lara et ai, 2013, Cáncer Letters, 2015. 356: p. 5-16)
Figure imgf000033_0001
En la ecuación anterior S es la fracción de supervivencia, D la dosis, α y β los coeficientes del modelo lineal-cuadrático, χ representa la muerte celular producida por efecto bystander, xmax la máxima probabilidad de muerte producida por efecto bystander para la dosis D, y KBy la constante de asociación entre el receptor de muerte y su ligando. Y esto es biológicamente concebible porque con las células MSC activadas con radiación conseguimos liberar en el seno del tumor las moléculas de TRAIL y DKK3 que actúan como proteínas pro-apoptóticas in situ. Además, la radiación aplicada al tumor induce el incremento de la expresión en sus células de receptores de muerte celular -como DR5-. De esta manera desde el punto de vista teórico, entendemos justificado este efecto. Los datos muestran que se trata de una herramienta terapéutica aplicable al tratamiento sistémico de tumores avanzados.
In addition, since after irradiation of MSC soluble forms of TRAIL and DKK3 proteins are secreted into the extracellular medium, MSC cells can be considered as "medicinal" cells (Caplan, Al & Correa, D. 201 1. Cell stem cell 9, 1 1-15); In addition, accepting that among the functional characteristics of MSC cells is their tropism - as a determinant to reach the places of the body where there are lesions - and their immunomodulatory capacity (Ranganath, et al., 2012. Cell stem cell 10, 244- 258) We understand that the MSC injected into the body can act as "warehouses of pharmaceutical products", and these cells can be used in cell therapy procedures as a complement to radiotherapy, since, once activated with radiation they become a source of cytokines and cytotoxic tumor-suppressor proteins for tumor cells which can lead to a significant improvement in the biological efficacy of radiation on tumors. These data appear as MSC-ER coefficient in Table 1. In addition, the results of the trials suggest that radiation treatment plus MSC could be used as a strategy to achieve radiosensitization of tumors. From a theoretical point of view, the adjuvant role of MSCs to radiotherapy could be thought of as a tool capable of increasing the weight of the second factor {in square brackets} of our mathematical model of biological action of radiation on tumors, increasing through of the potentiation of the bystander mechanism the probability of cell death (Gómez-Millán et al., 2012. Journal of the European Society for Therapeutic Radiology and Oncology 102, 450-458; Lara et ai, 2013, Cancer Letters, 2015. 356: p. 5-16)
Figure imgf000033_0001
In the previous equation S is the survival fraction, D the dose, α and β the coefficients of the linear-quadratic model, χ represents the cell death produced by bystander effect, xmax the maximum probability of death produced by bystander effect for dose D , and KBy the association constant between the death receptor and its ligand. And this is biologically conceivable because with the MSC cells activated with radiation we manage to release TRAIL and DKK3 molecules that act as pro-apoptotic proteins in situ within the tumor. In addition, radiation applied to the tumor induces increased expression in its cell death receptor cells - such as DR5. In this way from the theoretical point of view, we understand this effect justified. The data shows that it is a therapeutic tool applicable to the systemic treatment of advanced tumors.
La combinación RT+MSC puede ser una inmejorable combinación para el tratamiento del cáncer por cuanto: The RT + MSC combination can be an excellent combination for the treatment of cancer because:
i) La radioterapia es uno de los dos tratamientos más eficaces contra el cáncer y más de la mitad de pacientes reciben radioterapia en algún momento de la evolución de su proceso neoplásico;  i) Radiation therapy is one of the two most effective cancer treatments and more than half of patients receive radiotherapy at some time during the evolution of their neoplastic process;
ii) el conocimiento del papel de las MSC en el tratamiento oncológico está aumentado de manera continuada y se sabe que las MSC se incorporan al estroma tumoral y que esta capacidad de integrase en el tumor aumenta cuando el proceso neoplásico está siendo tratado con radioterapia  ii) knowledge of the role of MSCs in cancer treatment is continuously increased and it is known that MSCs are incorporated into the tumor stroma and that this ability to integrate into the tumor increases when the neoplastic process is being treated with radiotherapy
iii) la activación de MSC con 2 Gy (dosis que se ajusta a las más comúnmente utilizadas en oncología radioterápica) induce la expresión de TRAIL y DKK3 y las proteínas que estos genes codifican incrementan su concentración intracelular y se liberan al espacio extracelular donde pueden identificarse de manera cuantitativa (Fig. 5 y 6). La expresión de DKK3 se encuentra significativamente disminuida, o ausente, en muchos tumores experimentales (líneas celulares tumorales, en nuestro caso en la línea celular MCF-7) y clínicos (Tsuji et al. 2000. Biochem. Biophys. Res. Commun. 268, 20-24). La ausencia de expresión del gen se asocia con la hipermetilación de su promotor. Se sabe queiii) the activation of MSC with 2 Gy (dose that fits the most commonly used in radiotherapy oncology) induces the expression of TRAIL and DKK3 and the proteins that these genes encode increase their intracellular concentration and are released into space extracellular where they can be quantitatively identified (Fig. 5 and 6). DKK3 expression is significantly diminished, or absent, in many experimental tumors (tumor cell lines, in our case in the MCF-7 cell line) and clinical (Tsuji et al. 2000. Biochem. Biophys. Res. Commun. 268 , 20-24). The absence of gene expression is associated with hypermethylation of its promoter. It's known that
REIC/DKK3 interfiere con la ruta de señalización de Wnt vía receptores de Wnt a través de la cual juegan diferentes papeles en la inducción de apoptosis y la inhibición del proceso metatásico y se ha demostrado que en células modificadas para expresar REIC/DKK3 utilizando el adenovirus vector (Ad-REIC) se produce estrés en el sistema retículo endoplasmático (ER) y se ponen en marcha mecanismos de apoptosis específicos en células de cáncer humano tanto de próstata como de pulmón (Shien, K., et al., 2014. PloS one 9, e879004). De ello se entiende que la liberación de DKK3 que se produce cuando las células MSC-UCCSCs se incorporan al tumor y son activadas mediante radiación podría ser una estrategia útil en la búsqueda de la respuesta anti- tumoral de las células malignas. REIC / DKK3 interferes with the Wnt signaling pathway via Wnt receptors through which they play different roles in the induction of apoptosis and inhibition of the metastatic process and it has been shown that in cells modified to express REIC / DKK3 using adenovirus vector (Ad-REIC) stress occurs in the endoplasmic reticulum system (ER) and specific apoptosis mechanisms are initiated in human prostate and lung cancer cells (Shien, K., et al., 2014. PloS one 9, e879004). It is understood that the release of DKK3 that occurs when MSC-UCCSCs cells are incorporated into the tumor and are activated by radiation could be a useful strategy in the search for the antitumor response of malignant cells.
iv) Los ejemplos de la invención han permitido demostrar el significativo incremento en la expresión de la forma de la proteína TRAIL-transmembrana cuando las células MSC se tratan con dosis de 2 Gy de radiación ionizante de bajo LET. Considerando el natural tropismo de las células MSCs hacia los tumores, una terapia adecuada sería inyectar células MSCs durante las pausas en que se interrumpe el tratamiento diario con radiación (fines de semana en el curso de un tratamiento estándar de radioterapia por cáncer). Una vez inyectadas, la células se acumularían en el entorno del volumen corporal sometido a tratamiento (Kim, S.M., et al., 2010, Stem cells 28, 2217-2228) con lo que al término del descanso, entre semanas de tratamiento, la subsiguiente irradiación del tumor activaría las células MSC integradas en el volumen terapéutico, y allí convertidas en fuentes de citocinas y proteínas tumor-supresoras contribuirían a incrementar los efectos de la radioterapia antitumoral a través de la potenciación de los efectos de vecindad de corto y largo alcance. Con este procedimiento sería posible evitar las complejidades y los peligros que supone la utilización de células MSC genéticamente modificadas con vectores virales para expresar TRAIL o DKK3 o la activación de estas células con moléculas con importantes efectos secundarios, como es el TNFa. Y esto es así puesto que la radiación que se utilizaría sería la misma que se utiliza de manera normal en los tratamientos en oncología radioterápica y el producto que se añadiría: "MSC activadas mediante radiación", se conseguiría bien antes de la irradiación terapéutica del paciente, bien durante el curso de la misma. Dispondríamos así dentro del tumor de células MSC medicinales de las que, activadas con radiación, se liberarían moléculas con actividad biológica capaz de actuar reforzando las funciones inmunológicas tumor-supresoras dentro del núcleo del propio tumor. Además, no podemos dejar de subrayar que las formas solubles de las moléculas de sTRAIL y DKK3 pueden, vía circulación linfática o sanguínea, alcanzar localizaciones distales de células tumorales contribuyendo así a potenciar los efectos sistémicos de la radioterapia si esta forma de terapia célula se utiliza conjunta y racionalmente con la radioterapia clínica. iv) The examples of the invention have demonstrated the significant increase in the expression of the form of the TRAIL-transmembrane protein when MSC cells are treated with 2 Gy doses of low LET ionizing radiation. Considering the natural tropism of the MSCs cells towards the tumors, an appropriate therapy would be to inject MSCs cells during the breaks in which the daily radiation treatment is interrupted (weekends in the course of a standard cancer radiotherapy treatment). Once injected, the cells would accumulate in the environment of the body volume undergoing treatment (Kim, SM, et al., 2010, Stem cells 28, 2217-2228) so that at the end of the break, between weeks of treatment, the Subsequent irradiation of the tumor would activate the MSC cells integrated in the therapeutic volume, and there converted into sources of cytokines and tumor-suppressor proteins would contribute to increasing the effects of antitumor radiotherapy through the potentiation of short and long-range neighborhood effects. . With this procedure it would be possible to avoid the complexities and dangers of using MSC cells genetically modified with viral vectors to express TRAIL or DKK3 or the activation of these cells with molecules with important side effects, such as TNFa. And this is so since the radiation that would be used would be the same one that is used normally in the treatments in radiotherapeutic oncology and the product that would be added: "MSC activated by radiation", would be achieved well before the therapeutic irradiation of the patient , well during the course of it. We would thus dispose within the tumor of medicinal MSC cells from which, activated with radiation, they would be released molecules with biological activity capable of acting reinforcing the tumor-suppressor immunological functions within the nucleus of the tumor itself. In addition, we cannot fail to underline that the soluble forms of the sTRAIL and DKK3 molecules can, via lymphatic or blood circulation, reach distal locations of tumor cells thus contributing to enhance the systemic effects of radiation therapy if this form of cell therapy is used. jointly and rationally with clinical radiotherapy.
EJEMPLO 2. Ensayo in vivo EXAMPLE 2. In vivo test
Para los ensayos in vivo se emplearon ratones con tumores implantados en la parte superior de cada una de las patas traseras. Se utilizaron ratones NOD/SCID de 7 a 9 semanas de edad que fueron inoculados con células de cáncer de mama humano (A375, G361 o MCF-7).  For in vivo tests, mice with tumors implanted in the upper part of each of the hind legs were used. NOD / SCID mice of 7 to 9 weeks of age that were inoculated with human breast cancer cells (A375, G361 or MCF-7) were used.
Se incluyeron en el estudio grupos de 6 a 8 ratones que fueron tratados con: Radioterapia, Terapia Celular con células MSC, Radioterapia mas MSC, y no sometidos a ningún tratamiento (Grupo Control). Groups of 6 to 8 mice that were treated with: Radiotherapy, Cell Therapy with MSC cells, Radiotherapy plus MSC, and not undergoing any treatment (Control Group) were included in the study.
Todos los experimentos han sido realizados de acuerdo con las recomendaciones de la Guía de Cuidados y Usos para animales de laboratorio del Comité de Bioética de la Universidad de Granada y los protocolos fueron también aprobados por el Comité de ética para animales de experimentación del CSIC. All experiments have been carried out in accordance with the recommendations of the Care and Usage Guide for laboratory animals of the Bioethics Committee of the University of Granada and the protocols were also approved by the CSIC Ethics Committee for experimental animals.
Las células fueron inoculadas en los pliegues de la piel dorsal de los ratones NOD/SCID mice (1-3- 106 células en 0,1 mi de suero salino sobre cada una de las patas traseras del ratón). Los ratones fueron monitorizados cada 2-3 días midiendo dos diámetros perpendiculares de cada uno de los tumores. El volumen tumoral se calculó usando la fórmula v = (π/6)(α2 · b) donde a y b son los valores del diámetro y del diámetro menor respectivamente. Se seleccionaron ratones con tumores superiores a 64 mm3 para los experimentos siguientes: Cells were inoculated into the folds of the dorsal skin of NOD / SCID mice mice (1-3- 10 6 cells in 0.1 ml of saline on each of the rear legs mouse). Mice were monitored every 2-3 days by measuring two perpendicular diameters of each of the tumors. Tumor volume was calculated using the formula v = (π / 6) (α 2 · b) where a and b are the values of the smallest diameter and diameter respectively. Mice with tumors larger than 64 mm 3 were selected for the following experiments:
Ensayo in vivo (I) Radioterapia En este experimento los ratones anestesiados con ketamina fueron tratados con una dosis de 3 Gy. La radiación fue administrada mediante un tubo de Rayos X (YXLON, model Y, Tu 320- D03) usando un voltaje de 240,4 kV, y trabajando con una corriente de 13,0 mA, con un filtro de 0,32 mm Cu, un foco de irradiación de 5 mm de diámetro, estando el tumor situado a una distancia de 10 cm, siendo el campo de irradiación un círculo de 0,78 cm2, y utilizando un ritmo de administración de la dosis de 1502 ± 0,3 mGy/min. El tumor del ratón se colocó en el orificio practicado sobre una hoja de acero de 8 mm de espesor que fue utilizada como blindaje del resto del cuerpo del ratón. La dosis de radiación que alcanza cualquier región del cuerpo del ratón situada a más de 20 mm del centro del orificio que se utilizó para permitir que la radiación alcanzara el tumor fue igual o inferior a 2,0 ± 0,4 mGy /min. Esta tasa de dosis permite calcular que la dosis recibida por el ratón en cualquier lugar de su cuerpo incluyendo el tumor contra lateral fue inferior a 4,0 mGy. In vivo test (I) Radiation therapy In this experiment the mice anesthetized with ketamine were treated with a dose of 3 Gy. The radiation was administered by an X-ray tube (YXLON, model Y, Tu 320-D03) using a voltage of 240.4 kV, and working with a current of 13.0 mA, with a filter of 0.32 mm Cu , an irradiation focus of 5 mm in diameter, the tumor being located at a distance of 10 cm, the irradiation field being a circle of 0.78 cm 2 , and using a dose administration rate of 1502 ± 0, 3 mGy / min. The mouse tumor was placed in the hole made on an 8 mm thick steel blade that was used as a shield for the rest of the mouse body. The radiation dose that reaches any region of the mouse body located more than 20 mm from the center of the hole that was used to allow the radiation to reach the tumor was equal to or less than 2.0 ± 0.4 mGy / min. This dose rate allows you to calculate that the dose received by the mouse anywhere in your body including the tumor against the side was less than 4.0 mGy.
El tratamiento fue repetido cada semana hasta completar tres a cinco semanas (según el experimento realizado). Después de la última dosis se continuó el estudio de los ratones durante 7 días más. Los ratones del grupo control no recibieron RT ni terapia con células MSC. The treatment was repeated every week until three to five weeks were completed (according to the experiment performed). After the last dose the study of the mice was continued for another 7 days. Mice in the control group did not receive RT or MSC cell therapy.
La pérdida de células tumorales derivada de cada tratamiento se calcula utilizando la ecuación propuesta por (Steel, Eur J Cáncer, 1967. 3(4): p. 381-7). Obviamente la fracción de células supervivientes es: (SF = 1 - CL). El valor de supervivencia celular esperado para la combinación terapéutica RT + MSC se calcula multiplicando la SF después de RT por la SF después de terapia con MSC. El valor observado para la combinación (O) resulta de aplicar la ecuación de Steel a los datos observados para el experimento. El modelo aditivo (Valeriote and Lin, Cáncer Chemother Rep, 1975. 59(5): p. 895-900) predice que si los tratamientos combinados muestran efectos aditivos cuando la relación O/E = 0,8-1 ,2; los efectos son subaditivos o antagónicos cuando O/E > 1 ,2, y se dice que la combinación terapéutica tiene efectos sinérgicos cuando la relación O/E < 0,8. Los resultados obtenidos (Figura 9) nos permiten concluir que en las tres líneas celulares tumoral ensayadas in vivo el crecimiento tumoral muestra un patrón ajustable al modelo de crecimiento exponencial; que la radioterapia produce un efecto citoreductor que se traduce por el enlentecimiento del crecimiento del tumor y que el efecto bystander medido sobre el tumor contralateral (no-irradiado) es también claramente manifiesto en los experimentos in vivo. Además, en esa misma figura puede observarse que, tras la inyección de células mesenquimales (día 20 de experimento), hay un cambio notorio en la cinética del crecimiento de los tumores puesto que el volumen medido para ellos los días 21 y 22 se aleja claramente de lo que la función del crecimiento tumoral encontrada para ellos (líneas discontinuas en la figura) predice. Estadísticamente, las tres curvas que se incluyen en la figura 9 son diferentes (P < 0,0001). Consecuentemente conocidos los tiempos de duplicación de volumen de cada una de ellas Control TD = 4.27 (95% Cl: 4, 13 to 4,41); Tratamiento con RT TD = 10,55 (95% Cl: 10,21 to 10,92) y crecimiento de los tumores contralaterales al irradiado (Bystander) TD = 5.07 (95% Cl: 4,82 to 5,33). Con estos datos se puede calcular que la pérdida celular para el tratamiento con radioterapia es mayor del 55% y que la irradiación del tumor situado en el foco de tratamiento produce, en el tumor no-irradiado, una pérdida celular por efecto bystander del orden del 15%. The loss of tumor cells derived from each treatment is calculated using the equation proposed by (Steel, Eur J Cancer, 1967. 3 (4): p. 381-7). Obviously the fraction of surviving cells is: (S F = 1 - C L ). The expected cell survival value for the therapeutic combination RT + MSC is calculated by multiplying the S F after RT by the S F after MSC therapy. The observed value for the combination (O) results from applying the Steel equation to the data observed for the experiment. The additive model (Valeriote and Lin, Cancer Chemother Rep, 1975. 59 (5): p. 895-900) predicts that if the combined treatments show additive effects when the O / E ratio = 0.8-1, 2; The effects are subadditive or antagonistic when O / E> 1, 2, and the therapeutic combination is said to have synergistic effects when the O / E ratio <0.8. The results obtained (Figure 9) allow us to conclude that in the three tumor cell lines tested in vivo, tumor growth shows an adjustable pattern to the exponential growth model; that radiotherapy produces a cytoreductive effect that results in slowing tumor growth and that the measured bystander effect on the contralateral (non-irradiated) tumor is also clearly evident in in vivo experiments. In addition, in the same figure it can be seen that, after the injection of mesenchymal cells (day 20 of experiment), there is a noticeable change in the kinetics of tumor growth since the volume measured for them on days 21 and 22 clearly moves away of what the tumor growth function found for them (dashed lines in the figure) predicts. Statistically, the three curves included in Figure 9 are different (P <0.0001). Consequently, the volume doubling times of each of them are known Control T D = 4.27 (95% Cl: 4, 13 to 4.41); Treatment with RT T D = 10.55 (95% Cl: 10.21 to 10.92) and growth of irradiated contralateral tumors (Bystander) T D = 5.07 (95% Cl: 4.82 to 5.33) . With these data it can be calculated that the cell loss for radiotherapy treatment is greater than 55% and that the irradiation of the tumor located in the treatment center produces, in the non-irradiated tumor, a cell loss due to the bystander effect of the 15% order.
Ensayo in vivo (II) Radioterapia + MSCs In vivo test (II) Radiation therapy + MSCs
Los resultados anteriores han sido confirmados mediante un experimento en el que se ha estudiado el papel de las células MSCs como agentes supresores de tumores cuando se utilizan aisladamente o cuando se las usa en combinación con la radioterapia (Fig. 10). Para ello hemos utilizado un total de 32 ratones en los que se implantaron 3- 106 células G361 en la parte superior de cada una de las dos patas traseras del animal. Cuando los tumores alcanzaron el tamaño de 64 mm3 se establecieron los siguientes grupos: Grupo Control (8 ratones, 16 tumores); Grupo MSC (16 ratones con tumores G361 , 32 tumores) todos ellos fueron tratados con inyecciones intraperitoneales de 106 MSC administradas cada siete días durante 4 semanas sucesivas. Al día siguiente al primer tratamiento la mitad del grupo, (8 ratones, 16 tumores, 8 de ellos irradiados) fueron aleatoriamente seleccionados para ser irradiados de la misma manera que se ha descrito en el párrafo anterior. La combinación terapéutica MSC + RT 3 Gy se continuó durante tres semanas más. Los otros 8 siguieron siendo tratados sólo con MSC durante las tres semanas adicionales. The above results have been confirmed by an experiment in which the role of MSCs cells as tumor suppressing agents when used alone or when used in combination with radiotherapy has been studied (Fig. 10). For this we have used a total of 32 mice in which 3-10 6 G361 cells were implanted in the upper part of each of the two hind legs of the animal. When the tumors reached the size of 64 mm 3 the following groups were established: Control Group (8 mice, 16 tumors); MSC Group (16 mice with G361 tumors, 32 tumors) were all treated with intraperitoneal injections of 10 6 MSC administered every seven days for 4 successive weeks. On the day after the first treatment, half of the group (8 mice, 16 tumors, 8 of them irradiated) were randomly selected to be irradiated in the same way as described in the previous paragraph. The therapeutic combination MSC + RT 3 Gy was continued for three more weeks. The other 8 continued to be treated only with MSC for the additional three weeks.
Durante los intervalos entre cada sesión de tratamiento todos los ratones incluidos en los grupos: Control, Radioterapia, terapia con MSC y Radioterapia mas MSC, fueron seguidos para controlar el tamaño del tumor presente en cada uno de sus flancos y tener datos suficientes para calcular la cinética del crecimiento de cada tumor en función del tiempo y en función de las variables terapéuticas. Los datos correspondientes a este experimento se muestran en la Figura 10 y la evolución de los tumores en la Figura 11. Los valores correspondientes a los tiempos de duplicación de volumen de cada una de las series de tumores seguidas han permitido calcular las pérdidas celulares derivadas de cada condición experimental en relación con el crecimiento del Grupo Control. Nótese que en la gráfica se marca con una línea azul el día del tratamiento con MSC y con una línea roja el día del tratamiento con RT. During the intervals between each treatment session all mice included in the groups: Control, Radiotherapy, MSC therapy and Radiotherapy plus MSC, were followed to control the size of the tumor present in each of its flanks and have sufficient data to calculate the Growth kinetics of each tumor as a function of time and as a function of therapeutic variables. The data corresponding to this experiment are shown in Figure 10 and the evolution of the tumors in Figure 11. The values corresponding to the volume doubling times of each of the series of tumors followed have allowed to calculate the cellular losses derived from each experimental condition in relation to the growth of the Control Group. Note that the graph is marked with a blue line on the day of treatment with MSC and with a red line on the day of treatment with RT.
Parámetro Control MSC RT 3Gy Bys RT+ SC Parameter Control MSC RT 3G and Bys RT + SC
RT RT + MSC Bys  RT RT + MSC Bys
TD (días) 6,13 6,69 1 1 ,55 9,03 22, 13 9,88T D (days) 6.13 6.69 1 1, 55 9.03 22, 13 9.88
CL (%) 0,0 8,3 46,9 32, 1 72,3 38,0C L (%) 0.0 8.3 46.9 32, 1 72.3 38.0
MSC-ER 1 0,68 1 ,5 0,81MSC-ER 1 0.68 1, 5.81
SF (%) 100,0 91 ,7 53, 1 67,9 27,7 62,0S F (%) 100.0 91, 7 53, 1 67.9 27.7 62.0
O/E 0,57 Tabla 2. Valores representativos de la cinética de crecimiento tumoral tras RT, MSC y RT + MSC O / E 0.57 Table 2. Representative values of tumor growth kinetics after RT, MSC and RT + MSC
Aplicando el modelo aditivo los resultados experimentales demuestran concluyentemente que la combinación RT + MSC tiene efecto sinérgico (O/E = 0,57) y que potencia la acción de la RT en un factor de 1 ,5. Applying the additive model, the experimental results conclusively demonstrate that the combination of RT + MSC has a synergistic effect (O / E = 0.57) and that it enhances the action of RT by a factor of 1, 5.
También resulta claro que, para en el modelo utilizado, las células mesenquimales son tumor- supresoras disminuyendo la supervivencia celular en torno al 10%, y que, por efecto bystander, el tumor contralateral al irradiado disminuye su actividad proliferativa en torno al 30%, y que cuando se aplica la terapia combinada RT + MSC esta disminución se potencia hasta superar el 35%. Las curvas representativas del crecimiento muestran que estas diferencias, aunque pequeñas, son estadísticamente significativas. Todos estos resultados demuestran, tanto in vitro (Figs. 7 y 8) como in vivo (Figs. 9, 10 y 11), que el tratamiento de modelos tumorales con células MSC tiene como resultado una acción tumor-supresora y que esta actividad se potencia cuando las células son pre-activadas con radioterapia a bajas dosis y, más claramente, cuando las células son activadas directamente in vivo al tratar el tumor con radioterapia. La prolongación del efecto de la radioterapia a distancia (efectos bystander y abscopal) y su potenciación mediante la presencia de células MSC tanto en el volumen del tumor irradiado como situadas en focos distales al tumor principal, puede ser de enorme interés en Oncología Radioterápica. It is also clear that, in the model used, mesenchymal cells are tumor suppressors decreasing cell survival by around 10%, and that, by byderder effect, the contralateral tumor to irradiated decreases their proliferative activity around 30%, and that when the combined RT + MSC therapy is applied, this decrease is enhanced to exceed 35%. Representative growth curves show that these differences, although small, are statistically significant. All these results demonstrate, both in vitro (Figs. 7 and 8) and in vivo (Figs. 9, 10 and 11), that the treatment of tumor models with MSC cells results in a tumor-suppressing action and that this activity is potency when cells are pre-activated with radiation therapy at low doses and, more clearly, when cells are activated directly in vivo when treating the tumor with radiation therapy. The prolongation of the effect of distance radiotherapy (bystander and abscopal effects) and its potentiation by the presence of MSC cells both in the volume of the irradiated tumor and located in foci distal to the main tumor, can be of great interest in Radiation Oncology.

Claims

REIVINDICACIONES
1. Un procedimiento de obtención de células madre activadas que comprende administrar bajas dosis de radiación. 1. A method of obtaining activated stem cells comprising administering low doses of radiation.
2. El procedimiento de obtención de células madre activadas según la reivindicación anterior, donde las células madre son irradiadas con una dosis de entre 0,03 cGy y 6 Gy. 2. The method of obtaining activated stem cells according to the preceding claim, wherein the stem cells are irradiated with a dose between 0.03 cGy and 6 Gy.
3. Un procedimiento de obtención de células madre activadas según cualquiera de las reivindicaciones 1-2, donde las células madre son irradiadas con una dosis de entre 0,25 Gy y3. A method of obtaining activated stem cells according to any of claims 1-2, wherein the stem cells are irradiated with a dose of between 0.25 Gy and
4 Gy. 4 Gy.
4. Un procedimiento de obtención de células madre activadas según cualquiera de las reivindicaciones 1-3, donde las células madre son irradiadas con una dosis de aproximadamente 2 Gy. 4. A method of obtaining activated stem cells according to any of claims 1-3, wherein the stem cells are irradiated with a dose of about 2 Gy.
5. Un procedimiento de obtención de células madre activadas según cualquiera de las reivindicaciones 1-4, donde las células madre son células madre mesenquimales. 5. A method of obtaining activated stem cells according to any of claims 1-4, wherein the stem cells are mesenchymal stem cells.
6. Una célula madre aislada activada obtenida por un procedimiento según cualquiera de las reivindicaciones 1-5. 6. An activated isolated stem cell obtained by a method according to any of claims 1-5.
7. Una población celular que comprende al menos una célula madre aislada activada según la reivindicación 6. 7. A cell population comprising at least one isolated activated stem cell according to claim 6.
8. Una composición que comprende al menos una célula madre activada según la reivindicación 6, o una población celular según la reivindicación 7. 8. A composition comprising at least one activated stem cell according to claim 6, or a cell population according to claim 7.
9. La composición según la reivindicación anterior, que además comprende un vehículo farmacéuticamente aceptable. 9. The composition according to the preceding claim, further comprising a pharmaceutically acceptable carrier.
10. La composición según cualquiera de las reivindicaciones 8-9, que además comprende otro principio activo. 10. The composition according to any of claims 8-9, which further comprises another active ingredient.
1 1. La composición según cualquiera de las reivindicaciones 8-10, donde el principio activo adicional es un inhibidor de PARP (poli (ADP-ribosa) polimerasa The composition according to any of claims 8-10, wherein the additional active ingredient is a PARP (poly (ADP-ribose) polymerase inhibitor
12. Una preparación combinada que comprende: 12. A combined preparation comprising:
a) un componente A que es una célula madre activada según la reivindicación 6, una población celular según la reivindicación 7, o una composición según cualquiera de las reivindicaciones 8-11 ,  a) a component A which is an activated stem cell according to claim 6, a cell population according to claim 7, or a composition according to any of claims 8-11,
b) un componente B que es un agente quimioterápico y/o un agente antiantiangiogénico.  b) a component B that is a chemotherapeutic agent and / or an antiantiangiogenic agent.
13. La preparación combinada según la reivindicación anterior, que además comprende, al menos, un inhibidor de PARP (poli (ADP-ribosa) polimerasa). 13. The combined preparation according to the preceding claim, further comprising at least one PARP (poly (ADP-ribose) polymerase) inhibitor.
14. El uso de una célula madre activada según la reivindicación 6, de una población celular según la reivindicación 7, de una composición según cualquiera de las reivindicaciones 8-11 , o de la preparación combinada según cualquiera de las reivindicaciones 12-13, en la elaboración de un medicamento. 14. The use of an activated stem cell according to claim 6, of a cell population according to claim 7, of a composition according to any of claims 8-11, or of the combined preparation according to any of claims 12-13, in The preparation of a medicine.
15. El uso de una célula madre según la reivindicación 6, de una población celular según la reivindicación 7, de una composición según cualquiera de las reivindicaciones 8-1 1 , o de la preparación combinada según cualquiera de las reivindicaciones 12-13, en la elaboración de un medicamento para el tratamiento del cáncer. 15. The use of a stem cell according to claim 6, of a cell population according to claim 7, of a composition according to any of claims 8-1 1, or of the combined preparation according to any of claims 12-13, in the development of a medicine for the treatment of cancer.
16. El uso de una célula madre activada, de una población celular, de una composición, o de la preparación combinada según la reivindicación anterior, donde el cáncer es un cáncer sistémico. 16. The use of an activated stem cell, a cell population, a composition, or the combined preparation according to the preceding claim, wherein the cancer is a systemic cancer.
PCT/ES2015/070951 2014-12-23 2015-12-23 Stem cells irradiated for cancer treatment WO2016102735A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201500022 2014-12-23
ES201500022 2014-12-23

Publications (1)

Publication Number Publication Date
WO2016102735A1 true WO2016102735A1 (en) 2016-06-30

Family

ID=56149312

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2015/070951 WO2016102735A1 (en) 2014-12-23 2015-12-23 Stem cells irradiated for cancer treatment

Country Status (1)

Country Link
WO (1) WO2016102735A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018126280A1 (en) * 2016-12-31 2018-07-05 Radiation Barrier Llc Reducing damage from chemotherapy and increasing cancer kill rates by using interweaved low dose radiation
EP3655524A4 (en) * 2017-07-20 2021-07-28 Atomic Energy of Canada Limited/ Énergie Atomique du Canada Limitée Method to improve therapeutic properties of stem cells
US11684802B2 (en) 2016-12-31 2023-06-27 Radiation Barrier Llc Reducing damage from radiation therapy and increasing cancer kill rates by interweaving of low and high dose sessions

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015186465A (en) * 2014-03-27 2015-10-29 株式会社吉田製作所 Stem cell culture apparatus, and stem cell culture method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015186465A (en) * 2014-03-27 2015-10-29 株式会社吉田製作所 Stem cell culture apparatus, and stem cell culture method

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Week 201576, Derwent World Patents Index; AN 2015-66337V *
DE ARAÚJO FARIAS V. ET AL.: "Human mesenchymal stem cells enhance the systemic effects of radiotherapy.", ONCOTARGET UNITED STATES, vol. 6, no. 31, 13 October 2015 (2015-10-13), pages 31164 - 31180, ISSN: 1949-2553 *
GOMEZ-MILLAN J. ET AL.: "The importance of bystander effects in radiation therapy in melanoma skin-cancer cells and umbilical-cord stromal stem cells.", RADIOTHERAPY AND ONCOLOGY: JOURNAL OF THE EUROPEAN SOCIETY FOR THERAPEUTIC RADIOLOGY AND ONCOLOGY, vol. 102, no. 3, March 2012 (2012-03-01), Ireland, pages 450 - 458, ISSN: 1879-0887 *
LIANG X. ET AL.: "The low-dose ionizing radiation stimulates cell proliferation via activation of the MAPK/ERK pathway in rat cultured mesenchymal stem cells.", JOURNAL OF RADIATION RESEARCH, vol. 52, no. 3, 24 March 2011 (2011-03-24), Japan, pages 380 - 386, ISSN: 1349-9157 *
SOKOLOV M. ET AL.: "Effects of low doses of ionizing radiation exposures on stress-responsive gene expression in human embryonic stem cells.", INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, vol. 15, no. 1, 6 January 2014 (2014-01-06), Switzerland, pages 588 - 604, ISSN: 1422-0067 *
TOMULEASA C. ET AL.: "Mesenchymal stem cell irradiation in culture engages differential effect of hyper-fractionated radiotherapy for head and neck cancers.", JOURNAL OF B.U.ON.: OFFICIAL JOURNAL OF THE BALKAN UNION OF ONCOLOGY GREECE 2010 APR-JUN, vol. 15, no. 2, April 2010 (2010-04-01), pages 348 - 356, ISSN: 1107-0625 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018126280A1 (en) * 2016-12-31 2018-07-05 Radiation Barrier Llc Reducing damage from chemotherapy and increasing cancer kill rates by using interweaved low dose radiation
US11684802B2 (en) 2016-12-31 2023-06-27 Radiation Barrier Llc Reducing damage from radiation therapy and increasing cancer kill rates by interweaving of low and high dose sessions
EP3655524A4 (en) * 2017-07-20 2021-07-28 Atomic Energy of Canada Limited/ Énergie Atomique du Canada Limitée Method to improve therapeutic properties of stem cells
US11738054B2 (en) 2017-07-20 2023-08-29 Atomic Energy Of Canada Limited/Energie Atomique Du Canada Limitèe Method to improve therapeutic properties of stem cells

Similar Documents

Publication Publication Date Title
US9656098B2 (en) Radiotherapy combined with hypoxic cell sensitizers
Crosbie et al. Tumor cell response to synchrotron microbeam radiation therapy differs markedly from cells in normal tissues
Biston et al. Cure of Fisher rats bearing radioresistant F98 glioma treated with cis-platinum and irradiated with monochromatic synchrotron X-rays
Chattopadhyay et al. Molecularly targeted gold nanoparticles enhance the radiation response of breast cancer cells and tumor xenografts to X-radiation
Chua et al. Emerging technologies for local cancer treatment
US11389422B2 (en) Combination of micheliolide derivatives or nanoparticles with ionizing radiation and checkpoint inhibitors for cancer therapy
DuRoss et al. Integrating nanomedicine into clinical radiotherapy regimens
Chong et al. Recent advances in radiation therapy and photodynamic therapy
US9155910B1 (en) Device and methods for adaptive resistance inhibiting inverse compton scattering microbeam and nanobeam radiosurgery
US20100034735A1 (en) Targeted nanoparticles for cancer diagnosis and treatment
KR20160017037A (en) Cytotoxic substance for use in combination with radiotherapy in cancer treatment
Hoeben et al. Total body irradiation in haematopoietic stem cell transplantation for paediatric acute lymphoblastic leukaemia: review of the literature and future directions
KR20190141690A (en) Combination Cancer Immunotherapy with Pentaaza Macrocyclic Ring Complexes
WO2016102735A1 (en) Stem cells irradiated for cancer treatment
Régnard et al. Enhancement of survival of 9L gliosarcoma bearing rats following intracerebral delivery of drugs in combination with microbeam radiation therapy
NZ738527A (en) Nanoparticles for use as a therapeutic vaccine
US9555264B1 (en) MEMS based parallel microbeam radiosurgery without adaptive resistance to radiation
Koukourakis et al. Combined Irinotecan, Docetaxel and Conventionally Fractionated Radiotherapy in Locally Advanced Head and Neck Cancer. A. Phase I Dose Escalation Study
CN101984967B (en) Manganoporphyrin-dichloroacetic acid combined medicament for treating Lung cancer
Sesink The molecular and cellular consequences of AsiDNA™ combined with radiotherapy on healthy tissue
Dong et al. Novel combination treatment for melanoma: FLASH radiotherapy and immunotherapy delivered by a radiopaque and radiation responsive hydrogel
Hovis Phase I Clinical Trial Evaluating Calcium Electroporation for Management of Cutaneous Tumors in Dogs
CN101601669B (en) United medicine used for treating tumors
Teicher et al. High‐dose therapy/stem cell support: Comparison of mice and humans
CN102000070B (en) Manganoporphyrin-lonidamine combined drug for treating tumor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15872016

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15872016

Country of ref document: EP

Kind code of ref document: A1