WO2016101116A1 - 一种信道测量和反馈方法、网络设备及系统 - Google Patents

一种信道测量和反馈方法、网络设备及系统 Download PDF

Info

Publication number
WO2016101116A1
WO2016101116A1 PCT/CN2014/094586 CN2014094586W WO2016101116A1 WO 2016101116 A1 WO2016101116 A1 WO 2016101116A1 CN 2014094586 W CN2014094586 W CN 2014094586W WO 2016101116 A1 WO2016101116 A1 WO 2016101116A1
Authority
WO
WIPO (PCT)
Prior art keywords
network device
information
pilot
pilot port
feedback
Prior art date
Application number
PCT/CN2014/094586
Other languages
English (en)
French (fr)
Inventor
刘鹍鹏
刘江华
张雷鸣
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to KR1020177019801A priority Critical patent/KR102024999B1/ko
Priority to PCT/CN2014/094586 priority patent/WO2016101116A1/zh
Priority to EP23199292.6A priority patent/EP4322600A2/en
Priority to CN201480038997.8A priority patent/CN105917609B/zh
Priority to CN201910498365.4A priority patent/CN110278013B/zh
Priority to EP14908687.8A priority patent/EP3226454B1/en
Publication of WO2016101116A1 publication Critical patent/WO2016101116A1/zh
Priority to US15/630,303 priority patent/US10454537B2/en
Priority to US16/567,882 priority patent/US10951276B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • H04L1/0618Space-time coding
    • H04L1/0675Space-time coding characterised by the signaling
    • H04L1/0693Partial feedback, e.g. partial channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/20Arrangements for detecting or preventing errors in the information received using signal quality detector
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/50Reducing energy consumption in communication networks in wire-line communication networks, e.g. low power modes or reduced link rate

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a channel measurement and feedback method, a network device, and a system.
  • Beamforming is a signal processing technique based on the principle of adaptive antennas. The goal is to form the optimal combination or distribution of baseband signals based on system performance specifications.
  • the base station communicates with the User Equipment (UE)
  • the base station generally sends a pilot signal to the UE, and then the UE performs channel measurement according to the pilot signal and feeds the result back to the base station, and then the base station compares the result according to the channel measurement.
  • the antenna is adaptively adjusted so that the main lobe of the beam transmitted by the antenna is aligned with the UE (this process is called beamforming), and the UE is configured accordingly so that the UE can pass the main lobe of the beam aligned with it. Communicate with the base station.
  • the base station communicates with at least two UEs on the same time-frequency resource, and there is interference between each UE, but the UE according to the UE
  • the pilot signal is used for channel measurement, only the channel used for transmitting data between the base station and the UE is measured, and the result is fed back to the base station, and the interference between the UEs is not considered, so that the measurement result received by the base station is not Accurate, which in turn causes the base station to configure the UEs unreasonably.
  • the embodiment of the invention provides a channel measurement and feedback method, a network device and a system.
  • the technical solution is as follows:
  • an embodiment of the present invention provides a channel measurement and feedback method, where the method includes:
  • the first network device receives the pilot port configuration information sent by the second network device, where the pilot port configuration information is used to describe the at least two pilot ports;
  • the first information includes: when the first network device and the third network device communicate with the second network device by spatial multiplexing on the same time-frequency resource, the first information At least one of the second information of the network device and the third information of the third network device, where the second information includes information of a pilot port used by the first network device, and the first network device adopts a rank indicating RI, at least one of a precoding matrix indicator PMI and a channel quality indicator CQI adopted by the first network device, where the third information includes information of a pilot port used by the third network device, At least one of an RI adopted by the third network device, a PMI adopted by the third network device, and a CQI;
  • the pilot port configuration information includes a number of pilot ports, an identifier of a pilot port, a pilot pattern of a pilot signal of a pilot port, and a guide. At least one of a pilot sequence of a pilot signal of a frequency port, a transmission power of a pilot signal of a pilot port, a transmission time of a pilot signal of a pilot port, and a subband of a pilot signal transmitted by a pilot port.
  • the at least two pilot ports are a set of pilot ports or at least two sets of pilot ports, and each group of pilot ports is independently configured.
  • the pilot port configuration information describes that a group of pilot ports includes at least one pilot port.
  • the first network device in the second information is used.
  • the information of the pilot port includes a port number of the at least one pilot port selected by the first network device in the group of pilot ports for the first network device, where the third information is
  • the information of the pilot port used by the third network device includes a port number of the at least one pilot port selected by the first network device for the third network device in the group of pilot ports; or
  • the information of the pilot port used by the first network device in the first information includes that the first network device is in the a group number of at least one set of pilot ports selected by the first network device in the at least two sets of pilot ports, where the information of the pilot ports used by the third network device in the third information includes the a group number of at least one set of pilot ports selected by the network device for the third network device in the at least two sets of pilot ports.
  • the independently configured pilot port configuration information is in one-to-one correspondence with the configuration information of the channel state information process CSI process, and configuration information of each of the CSI processes Configuration of channel state information reference signal CSI-RS including non-zero power The information and channel state information interfere with the configuration information of the measurement reference signal CSI-IM.
  • the first network device in the first information includes a process ID of a CSI process corresponding to the at least one group of pilot ports selected by the first network device in the at least two groups of pilot ports, the first network device, where The information of the pilot port used by the third network device in the three information includes at least one group of pilot ports that the first network device selects for the third network device in the at least two groups of pilot ports.
  • the process number of the CSI process is not limited to the process ID of a CSI process.
  • the information about the pilot port used by the first network device further includes a pilot signal sent by the pilot port of the first network device. At least one of a pilot sequence of a pilot signal of a pilot port used by the first network device, and a transmission power of a pilot signal of a pilot port used by the first network device, the third The information of the pilot port used by the network device further includes a subband of the pilot signal used by the third network device, and a pilot sequence of the pilot signal of the pilot port used by the third network device. And at least one of transmitting power of a pilot signal of a pilot port used by the third network device.
  • the at least two pilot ports include a first type of pilot port and a second type of pilot port, where the first type of pilot port includes at least A set of pilot ports, the second type of pilot ports comprising at least two pilot ports.
  • the first type of pilot port is a pilot port of a periodically transmitted pilot signal
  • the second type of pilot port is aperiodicly transmitted. Pilot port of the pilot signal; or,
  • the first type of pilot port is a pilot port configured for radio resource control RRC signaling
  • the second type of pilot port is a pilot port configured for downlink control signaling
  • the downlink control signaling is a downlink scheduling DL. Grant signaling or uplink scheduling UL grant signaling; or,
  • the first type of pilot port is a pilot port of a pilot signal that is not precoded
  • the second type of pilot port is a pilot port of a precoded pilot signal
  • the first type of pilot port is a CRS pilot port or a CSI-RS pilot port
  • the second type of pilot port is a demodulation reference signal DMRS pilot port
  • the first type of pilot port is a pilot port that transmits a pilot signal on all subbands
  • the second type of pilot port is a pilot port that transmits a pilot signal on a set subband
  • the sub-bands of the first type of pilot port transmitting the pilot signal are fixed, and the second type of pilot port is The subband from which the pilot signal is transmitted is variable.
  • the second type of pilot port includes a first pilot port that transmits a first pilot signal and a second pilot that transmits a second pilot signal.
  • a port, the first pilot signal and the second pilot signal are sent by the second network device by spatial multiplexing on the same time-frequency resource, where the first network device passes the first
  • the pilot signal measures a signal received by the first network device
  • the first network device measures instantaneous interference of a signal received by the first network device by using the second pilot signal, where the instantaneous interference is The interference generated by the third network device and the first network device spatially multiplexed on the same time-frequency resource to the signal received by the first network device.
  • the first pilot signal and the second pilot signal are both non-zero power pilot signals.
  • the first pilot signal and the data signal sent by the second network device to the first network device adopt the same precoding matrix.
  • the second pilot signal uses the same precoding matrix as the data signal sent by the second network device to the third network device.
  • the first pilot signal is a demodulation pilot signal of a data signal sent by the second network device to the first network device; or ,
  • the second pilot signal is a demodulation pilot signal of a data signal sent by the second network device to the third network device;
  • the first pilot signal is a demodulation pilot signal of a data signal sent by the second network device to the first network device
  • the second pilot signal is sent by the second network device to the A demodulation pilot signal of a data signal transmitted by the three network devices.
  • the measuring, by the at least two pilot ports, the pilot signal sent by the second network device includes:
  • the signal sent by the second network device in the first time unit includes the first pilot signal and the second pilot signal, and the signal sent by the second network device in the first time unit is not included. Transmitting, by the first network device, a data signal that is a demodulated pilot signal by using the first pilot signal, and a demodulated pilot signal that is sent to the third network device by using the second pilot signal Data signal; or,
  • the signal sent by the second network device in the first time unit includes the first pilot signal, the second pilot signal, and the first pilot signal sent to the first network device And a data signal for demodulating the pilot signal and the data signal sent to the third network device by using the second pilot signal as a demodulation pilot signal; or
  • the signal sent by the second network device in the first time unit includes the first pilot signal and the second pilot signal, and the first pilot signal sent to the first network device Demodulating the data signal of the pilot signal, and the signal sent by the second network device in the first time unit does not include the demodulation of the second pilot signal sent to the third network device.
  • the signal sent by the second network device in the first time unit includes the first pilot signal and the second pilot signal, and the second pilot signal sent to the third network device Demodulating the data signal of the pilot signal, and the signal sent by the second network device in the first time unit does not include the demodulation of the first pilot signal sent to the first network device.
  • the data signal of the frequency signal includes the first pilot signal and the second pilot signal, and the second pilot signal sent to the third network device Demodulating the data signal of the pilot signal, and the signal sent by the second network device in the first time unit does not include the demodulation of the first pilot signal sent to the first network device.
  • the first time unit is a time slot, a subframe, or a radio frame.
  • the determining, by the first type of pilot port, the determined first information does not include assuming that the first network device and the third network device pass Performing spatial multiplexing on the same time-frequency resource to communicate with the second network device, the first information determined by the second type of pilot port measurement includes assuming the first network device and the third The network device performs CQI when communicating with the second network device by spatial multiplexing on the same time-frequency resource.
  • the first information determined by the first type of pilot port measurement and the first information determined by the second type of pilot port measurement are both included Supposing that the first network device and the third network device determine the CQI when communicating with the second network device by spatial multiplexing on the same time-frequency resource, and determining by using the second type of pilot port measurement
  • the CQI in the first information is associated with the CQI in the first information determined by the first type of pilot port measurement.
  • the CQI in the first information determined by the second type of pilot port measurement and the first determined by the first type of pilot port measurement are associated with each other, including the first information determined by the second type of pilot port measurement
  • the CQI in the CQI is obtained by measuring the CQI difference in the first information determined by the first type of pilot port.
  • the feedback mode of the second information and the third information is independently configured in one or more of the following manners, wherein the feedback mode includes Subband feedback and broadband feedback, the subband feedback is respectively feeding back one of the second information or the third information for each subband, and the broadband feedback is to feed back one of the second information for all subbands or
  • the third information includes Subband feedback and broadband feedback, the subband feedback is respectively feeding back one of the second information or the third information for each subband, and the broadband feedback is to feed back one of the second information for all subbands or The third information:
  • the feedback mode of the second information is subband feedback, and the feedback mode of the third information is broadband feedback;
  • the information of the pilot port used by the first network device in the second information, the RI adopted by the first network device, and the feedback mode of the PMI adopted by the first network device are broadband feedback, and the CQI
  • the feedback mode is subband feedback, or the information of the pilot port used by the first network device in the second information, and the feedback mode of the RI adopted by the first network device is broadband feedback
  • the first network The PMI adopted by the device, the feedback mode of the CQI is subband feedback, or the feedback mode of the information of the pilot port used by the first network device in the second information is broadband feedback
  • the adopted RI, the PMI adopted by the first network device, and the feedback mode of the CQI are subband feedback;
  • the information of the pilot port used by the third network device in the third information, the RI adopted by the third network device, and the feedback mode of the PMI adopted by the third network device are broadband feedback
  • the CQI is The feedback mode is subband feedback, or the information of the pilot port used by the third network device in the third information, and the feedback mode of the RI adopted by the third network device is broadband feedback
  • the adopted RI, the PMI adopted by the third network device, and the feedback mode of the CQI are subband feedback.
  • a subband of information feedback of a pilot port used by the first network device in the second information is independent of the second information.
  • the sub-band of information feedback of the pilot port used by the third network device in the third information is independent of the RI adopted by the third network device in the third information, and the third network device adopts PMI, subband configuration of the CQI feedback; or,
  • the sub-band of information feedback of the pilot port used by the first network device in the second information is independent of the RI adopted by the first network device in the second information, and the PMI adopted by the first network device.
  • a subband configuration of the CQI feedback where the subband of information feedback of the pilot port used by the third network device in the third information is independent of the RI adopted by the third network device in the third information
  • a PMI adopted by the third network device and a subband configuration of the CQI feedback.
  • the feedback period of the second information and the third information is independently configured in one or more of the following manners:
  • the feedback period of the second information is shorter than the feedback period of the third information
  • the information of the pilot port used by the first network device in the second information is longer than the RI adopted by the first network device, the PMI used by the first network device, and the CQI, or
  • the information of the pilot port used by the first network device in the second information, the RI adopted by the first network device is longer than the PMI used by the first network device, and the feedback period of the CQI is long, or
  • the information of the pilot port used by the first network device in the second information, the RI adopted by the first network device, and the PMI adopted by the first network device are longer than the feedback period of the CQI;
  • the information of the pilot port used by the third network device in the third information is longer than the RI adopted by the third network device, the PMI used by the third network device, and the feedback period of the CQI, or
  • the information of the pilot port used by the third network device in the third information, the RI adopted by the third network device is longer than the PMI used by the third network device, and the feedback period of the CQI is long, or
  • the information of the pilot port used by the third network device in the third information, the RI adopted by the third network device, and the PMI adopted by the third network device are longer than the feedback period of the CQI.
  • a period of information feedback of a pilot port used by the first network device in the second information is independent of the foregoing information in the second information.
  • the period of information feedback of the pilot port used by the third network device in the third information is independent of the RI adopted by the third network device in the third information, and the PMI used by the third network device.
  • the periodic configuration of the CQI feedback or,
  • the period of information feedback of the pilot port adopted by the first network device in the second information is independent An RI adopted by the first network device, a PMI adopted by the first network device, and a periodic configuration of the CQI feedback, where the third information is used by the third network device.
  • the period of information feedback of the pilot port is independent of the RI adopted by the third network device in the third information, the PMI adopted by the third network device, and the periodic configuration of the CQI feedback.
  • the first information further includes: when the first network device and the second network device perform single-user multiple-input multiple-output SU-MIMO communication And the fourth information of the first network device, where the fourth information includes configuration information of a pilot port used by the first network device, an RI adopted by the first network device, and the first network device is used. At least one of PMI and CQI.
  • the first information includes the second information, the third information, and the fourth information
  • the second information if the second information, The sum of the information amounts of the third information and the fourth information is greater than the maximum information amount transmitted by the first network device, and the third information is prioritized according to the fourth information, and the third information is prioritized. Discarding the priority of the second information, or,
  • Dedicating, according to the fourth information, the second information, the second information is discarded in preference to the priority of the third information, or
  • the third information is prioritized over the third information, and the third information is discarded in preference to the priority of the fourth information, or
  • the fourth information is prioritized over the fourth information, and the fourth information is discarded in preference to the priority of the third information, or
  • the second information is prioritized over the priority of the fourth information, or the third information is discarded.
  • the fourth information is prioritized over the fourth information, and the fourth information is discarded in preference to the priority of the second information.
  • an embodiment of the present invention provides a channel measurement and feedback method, where the method includes:
  • the second network device sends pilot port configuration information, where the pilot port configuration information is used to describe at least two pilot ports;
  • first information fed back by the first network device where the first information is determined by the first network device measuring, by using the at least two pilot ports, a pilot signal sent by the second network device, where The information includes assuming that the first network device and the third network device communicate with the second network device by spatial multiplexing on the same time-frequency resource, the second information of the first network device and At least one of the third information of the third network device, the second information includes information of a pilot port used by the first network device, a rank indication RI adopted by the first network device, and the The precoding matrix used by the first network device indicates at least one of a PMI and a channel quality indicator CQI, where the third information includes information of a pilot port used by the third network device, and the third network device adopts At least one of a RI, a PMI employed by the third network device, and a CQI.
  • the pilot port configuration information includes a number of pilot ports, an identifier of a pilot port, a pilot pattern of a pilot signal of a pilot port, and a guide. At least one of a pilot sequence of a pilot signal of a frequency port, a transmission power of a pilot signal of a pilot port, a transmission time of a pilot signal of a pilot port, and a subband of a pilot signal transmitted by a pilot port.
  • the at least two pilot ports are a set of pilot ports or at least two sets of pilot ports, and each group of pilot ports is independently configured.
  • the pilot port configuration information describes that a group of pilot ports includes at least one pilot port.
  • the first network device in the second information is used.
  • the information of the pilot port includes a port number of the at least one pilot port selected by the first network device in the group of pilot ports for the first network device, where the third information is
  • the information of the pilot port used by the third network device includes a port number of the at least one pilot port selected by the first network device for the third network device in the group of pilot ports; or
  • the information of the pilot port used by the first network device in the first information includes that the first network device is in the a group number of at least one set of pilot ports selected by the first network device in the at least two sets of pilot ports, where the information of the pilot ports used by the third network device in the third information includes the a group number of at least one set of pilot ports selected by the network device for the third network device in the at least two sets of pilot ports.
  • the independently configured pilot port configuration information is in one-to-one correspondence with the configuration information of the channel state information process CSI process, and configuration information of each of the CSI processes
  • the configuration information of the channel state information reference signal CSI-RS including the non-zero power and the channel state information interfere with the configuration information of the measurement reference signal CSI-IM.
  • the first network device in the first information includes the first network device being the first in the at least two groups of pilot ports. a process ID of a CSI process corresponding to the at least one set of pilot ports selected by the network device, where the information of the pilot port used by the third network device in the third information includes the first network device at the a process ID of a CSI process corresponding to at least one set of pilot ports selected by the third network device in the two sets of pilot ports.
  • the information about the pilot port used by the first network device further includes a pilot signal sent by the pilot port of the first network device. At least one of a pilot sequence of a pilot signal of a pilot port used by the first network device, and a transmission power of a pilot signal of a pilot port used by the first network device, the third The information of the pilot port used by the network device further includes a subband of the pilot signal used by the third network device, and a pilot sequence of the pilot signal of the pilot port used by the third network device. And at least one of transmitting power of a pilot signal of a pilot port used by the third network device.
  • the at least two pilot ports include a first type of pilot port and a second type of pilot port, where the first type of pilot port includes at least A set of pilot ports, the second type of pilot ports comprising at least two pilot ports.
  • the first type of pilot port is a pilot port of a periodically transmitted pilot signal
  • the second type of pilot port is aperiodicly transmitted. Pilot port of the pilot signal; or,
  • the first type of pilot port is a pilot port configured for radio resource control RRC signaling
  • the second type of pilot port is a pilot port configured for downlink control signaling
  • the downlink control signaling is a downlink scheduling DL. Grant signaling or uplink scheduling UL grant signaling; or,
  • the first type of pilot port is a pilot port of a pilot signal that is not precoded
  • the second type of pilot port is a pilot port of a precoded pilot signal
  • the first type of pilot port is a CRS pilot port or a CSI-RS pilot port
  • the second type of pilot port is a demodulation reference signal DMRS pilot port
  • the first type of pilot port is a pilot port that transmits a pilot signal on all subbands
  • the second type of pilot port is a pilot port that transmits a pilot signal on a set subband
  • the sub-bands of the first type of pilot port transmitting the pilot signal are fixed, and the sub-bands of the second type of pilot port transmitting the pilot signal are variable.
  • the second type of pilot port includes a first pilot port that transmits a first pilot signal and a second pilot that transmits a second pilot signal.
  • a port, the first pilot signal and the second pilot signal are the second network device passing at the same time And transmitting, by the first network device, the signal received by the first network device by using the first pilot signal, where the first network device measures by using the second pilot signal.
  • Instantaneous interference to a signal received by the first network device the instantaneous interference being generated by spatial multiplexing of the third network device and the first network device on the same time-frequency resource Interference from a signal received by a network device.
  • the first pilot signal and the second pilot signal are both non-zero power pilot signals.
  • the first pilot signal and the data signal sent by the second network device to the first network device adopt the same precoding matrix.
  • the second pilot signal uses the same precoding matrix as the data signal sent by the second network device to the third network device.
  • the first pilot signal is a demodulation pilot signal of a data signal sent by the second network device to the first network device; or ,
  • the second pilot signal is a demodulation pilot signal of a data signal sent by the second network device to the third network device;
  • the first pilot signal is a demodulation pilot signal of a data signal sent by the second network device to the first network device
  • the second pilot signal is sent by the second network device to the A demodulation pilot signal of a data signal transmitted by the three network devices.
  • the method further includes:
  • the signal sent by the first time unit includes the first pilot signal and the second pilot signal, and the signal sent by the first time unit does not include the signal sent to the first network device.
  • the first pilot signal is a data signal for demodulating a pilot signal and a data signal sent to the third network device and using the second pilot signal as a demodulation pilot signal; or
  • the signal sent by the first time unit includes the first pilot signal, the second pilot signal, and the first pilot signal sent to the first network device is demodulated a data signal of the frequency signal and the data signal sent to the third network device and using the second pilot signal as a demodulation pilot signal; or
  • the signal transmitted in the first time unit includes the first pilot signal and the second pilot signal, and the first pilot signal sent to the first network device is demodulated Frequency signal a data signal, and the signal sent by the first time unit does not include the data signal sent to the third network device by using the second pilot signal as a demodulation pilot signal; or
  • the signal transmitted in the first time unit includes the first pilot signal and the second pilot signal, and the second pilot signal sent to the third network device is demodulated a data signal of the frequency signal, and the signal transmitted in the first time unit does not include the data signal sent to the first network device by using the first pilot signal as a demodulation pilot signal.
  • the first time unit is a time slot, a subframe, or a radio frame.
  • the received first information determined by the second network device by the first type of pilot port measurement does not include assuming the first network device and The third network device receives the CQI when the second network device communicates with the second network device by spatial multiplexing on the same time-frequency resource, and the received second network device determines the second type of pilot port by using the second type of pilot port.
  • the first information includes a CQI when the first network device and the third network device communicate with the second network device by spatial multiplexing on the same time-frequency resource.
  • the received second network device passes the first type of pilot port measurement to determine the first information and the received second network device passes The first information determined by the second type of pilot port measurement includes: assuming that the first network device and the third network device communicate with the second network device by performing spatial multiplexing on the same time-frequency resource. CQI, and the received second network device measures the CQI in the first information determined by the second type of pilot port and the received second network device passes the first type of pilot port measurement The CQIs in the determined first information are related to each other.
  • the received second network device measures, by using the second type of pilot port, the determined CQI in the first information and the received second And determining, by the network device, the CQIs in the first information determined by the first type of pilot port measurement, including the received CQI in the first information determined by the second network device by using the second type of pilot port. And obtaining, by the received second network device, a CQI difference in the first information determined by the first type of pilot port measurement.
  • the feedback mode of the second information and the third information is independently configured by using one or more of the following manners, wherein the feedback mode includes a sub- With feedback and wideband feedback, the subband feedback is to respectively feed back one second information or the third information for each subband, and the broadband feedback is to feed back one second for all subbands.
  • Information or the third information includes a sub- With feedback and wideband feedback, the subband feedback is to respectively feed back one second information or the third information for each subband, and the broadband feedback is to feed back one second for all subbands.
  • the feedback mode of the second information is subband feedback, and the feedback mode of the third information is broadband feedback;
  • the information of the pilot port used by the first network device in the second information, the RI adopted by the first network device, and the feedback mode of the PMI adopted by the first network device are broadband feedback, and the CQI
  • the feedback mode is subband feedback, or the information of the pilot port used by the first network device in the second information, and the feedback mode of the RI adopted by the first network device is broadband feedback
  • the first network The PMI adopted by the device, the feedback mode of the CQI is subband feedback, or the feedback mode of the information of the pilot port used by the first network device in the second information is broadband feedback
  • the adopted RI, the PMI adopted by the first network device, and the feedback mode of the CQI are subband feedback;
  • the information of the pilot port used by the third network device in the third information, the RI adopted by the third network device, and the feedback mode of the PMI adopted by the third network device are broadband feedback
  • the CQI is The feedback mode is subband feedback, or the information of the pilot port used by the third network device in the third information, and the feedback mode of the RI adopted by the third network device is broadband feedback
  • the adopted RI, the PMI adopted by the third network device, and the feedback mode of the CQI are subband feedback.
  • the subband of the information feedback of the pilot port used by the first network device in the second information and the second information in the second information are independently configured. a RI adopted by a network device, a PMI adopted by the first network device, and a subband of the CQI feedback; or
  • the feedback period of the second information and the third information is independently configured by using one or more of the following manners:
  • the feedback period of the second information is shorter than the feedback period of the third information
  • the information of the pilot port used by the first network device in the second information is longer than the RI adopted by the first network device, the PMI used by the first network device, and the CQI, or
  • the information of the pilot port used by the first network device in the second information, the RI adopted by the first network device is longer than the PMI used by the first network device, and the feedback period of the CQI is long, or
  • the information of the pilot port used by the first network device in the second information, the RI adopted by the first network device, and the PMI adopted by the first network device are longer than the feedback period of the CQI;
  • the information of the pilot port used by the third network device in the third information is longer than the RI adopted by the third network device, the PMI used by the third network device, and the feedback period of the CQI, or
  • the information of the pilot port used by the third network device in the third information, the RI adopted by the third network device is longer than the PMI used by the third network device, and the feedback period of the CQI is long, or
  • the information of the pilot port used by the third network device in the third information, the RI adopted by the third network device, and the PMI adopted by the third network device are longer than the feedback period of the CQI.
  • the period of information feedback of the pilot port used by the first network device in the second information and the second information are separately configured.
  • the period of information feedback of the pilot port used by the first network device in the second information and the RI adopted by the first network device in the second information, and the PMI adopted by the first network device are independently configured.
  • the first information further includes: assuming that the first network device and the second network device perform single-user multiple input multiple output
  • the fourth information of the first network device includes configuration information of a pilot port used by the first network device, an RI adopted by the first network device, and the At least one of a PMI and a CQI employed by the first network device.
  • an embodiment of the present invention provides a first network device, where the first network device includes:
  • a receiving module configured to receive pilot port configuration information sent by the second network device, where the pilot port configuration information is used to describe at least two pilot ports;
  • a determining module configured to measure, by using the at least two pilot ports, a pilot signal sent by the second network device, to determine first information, where the first information includes assuming a first network device and a third network device At least one of the second information of the first network device and the third information of the third network device, when communicating with the second network device by spatial multiplexing on the same time-frequency resource,
  • the second information includes information of a pilot port used by the first network device, a rank indication RI adopted by the first network device, a precoding matrix indication PMI adopted by the first network device, and a channel quality indicator CQI.
  • At least one of the third information includes information of a pilot port adopted by the third network device, an RI adopted by the third network device, a PMI adopted by the third network device, and a CQI At least one
  • a sending module configured to feed back the first information to the second network device.
  • the pilot port configuration information includes a number of pilot ports, an identifier of a pilot port, a pilot pattern of a pilot signal of a pilot port, and a guide. At least one of a pilot sequence of a pilot signal of a frequency port, a transmission power of a pilot signal of a pilot port, a transmission time of a pilot signal of a pilot port, and a subband of a pilot signal transmitted by a pilot port.
  • the at least two pilot ports are a set of pilot ports or at least two sets of pilot ports, and each group of pilot ports is independently configured.
  • the pilot port configuration information describes that a group of pilot ports includes at least one pilot port.
  • the first network device in the second information is used.
  • the information of the pilot port includes a port number of the at least one pilot port selected by the first network device in the group of pilot ports for the first network device, where the third information is
  • the information of the pilot port used by the third network device includes a port number of the at least one pilot port selected by the first network device for the third network device in the group of pilot ports; or
  • the information of the pilot port used by the first network device includes a group number of at least one group of pilot ports selected by the first network device for the first network device in the at least two groups of pilot ports, where The information of the pilot port used by the third network device in the third information includes at least one group of pilots selected by the first network device for the third network device in the at least two groups of pilot ports.
  • the group number of the port is the group number of the port.
  • the independently configured pilot port configuration information is in one-to-one correspondence with the configuration information of the channel state information process CSI process, and configuration information of each of the CSI processes
  • the configuration information of the channel state information reference signal CSI-RS including the non-zero power and the channel state information interfere with the configuration information of the measurement reference signal CSI-IM.
  • the first network device in the first information includes a process ID of a CSI process corresponding to the at least one group of pilot ports selected by the first network device in the at least two groups of pilot ports, the first network device, where The information of the pilot port used by the third network device in the three information includes at least one group of pilot ports that the first network device selects for the third network device in the at least two groups of pilot ports.
  • the process number of the CSI process is not limited to the process ID of a CSI process.
  • the information about the pilot port used by the first network device further includes a pilot signal sent by the pilot port of the first network device. At least one of a pilot sequence of a pilot signal of a pilot port used by the first network device, and a transmission power of a pilot signal of a pilot port used by the first network device, the third The information of the pilot port used by the network device further includes a subband of the pilot signal used by the third network device, and a pilot sequence of the pilot signal of the pilot port used by the third network device. And at least one of transmitting power of a pilot signal of a pilot port used by the third network device.
  • the at least two pilot ports include a first type of pilot port and a second type of pilot port, where the first type of pilot port includes at least A set of pilot ports, the second type of pilot ports comprising at least two pilot ports.
  • the first type of pilot port is a pilot port of a periodically transmitted pilot signal
  • the second type of pilot port is a non-periodic transmission. Pilot port of the pilot signal; or,
  • the first type of pilot port is a pilot port configured for radio resource control RRC signaling
  • the second type of pilot port is a pilot port configured for downlink control signaling
  • the downlink control signaling is downlink scheduling.
  • the first type of pilot port is a pilot port of a pilot signal that is not precoded
  • the second type of pilot port is a pilot port of a precoded pilot signal
  • the first type of pilot port is a CRS pilot port or a CSI-RS pilot port
  • the second type of pilot port is a demodulation reference signal DMRS pilot port
  • the first type of pilot port is a pilot port that transmits a pilot signal on all subbands
  • the second type of pilot port is a pilot port that transmits a pilot signal on a set subband
  • the sub-bands of the first type of pilot port transmitting the pilot signal are fixed, and the sub-bands of the second type of pilot port transmitting the pilot signal are variable.
  • the second type of pilot port includes a first pilot port that transmits a first pilot signal and a second pilot that transmits a second pilot signal.
  • a port, the first pilot signal and the second pilot signal are sent by the second network device by spatial multiplexing on the same time-frequency resource, where the first network device passes the first
  • the pilot signal measures a signal received by the first network device
  • the first network device measures instantaneous interference of a signal received by the first network device by using the second pilot signal, where the instantaneous interference is The interference generated by the third network device and the first network device spatially multiplexed on the same time-frequency resource to the signal received by the first network device.
  • the first pilot signal and the second pilot signal are both non-zero power pilot signals.
  • the first pilot signal and the data signal sent by the second network device to the first network device adopt the same precoding matrix.
  • the second pilot signal uses the same precoding matrix as the data signal sent by the second network device to the third network device.
  • the first pilot signal is a demodulation pilot signal of a data signal sent by the second network device to the first network device; or ,
  • the second pilot signal is a demodulation pilot signal of a data signal sent by the second network device to the third network device;
  • the first pilot signal is a demodulation pilot signal of a data signal sent by the second network device to the first network device
  • the second pilot signal is sent by the second network device to the A demodulation pilot signal of a data signal transmitted by the three network devices.
  • the determining module includes:
  • a receiving unit configured to receive a signal sent by the second network device in the first time unit
  • the signal sent by the second network device in the first time unit includes the first pilot signal and the second pilot signal, and the signal sent by the second network device in the first time unit is not included. Transmitting, by the first network device, a data signal that is a demodulated pilot signal by using the first pilot signal, and a demodulated pilot signal that is sent to the third network device by using the second pilot signal Data signal; or,
  • the signal sent by the second network device in the first time unit includes the first pilot signal, the second pilot signal, and the first pilot signal sent to the first network device And a data signal for demodulating the pilot signal and the data signal sent to the third network device by using the second pilot signal as a demodulation pilot signal; or
  • the signal sent by the second network device in the first time unit includes the first pilot signal and the second pilot signal, and the first pilot signal sent to the first network device Demodulating the data signal of the pilot signal, and the signal sent by the second network device in the first time unit does not include the demodulation of the second pilot signal sent to the third network device.
  • the signal sent by the second network device in the first time unit includes the first pilot signal and the second pilot signal, and the second pilot signal sent to the third network device Demodulating the data signal of the pilot signal, and the signal sent by the second network device in the first time unit does not include the demodulation of the first pilot signal sent to the first network device.
  • the data signal of the frequency signal includes the first pilot signal and the second pilot signal, and the second pilot signal sent to the third network device Demodulating the data signal of the pilot signal, and the signal sent by the second network device in the first time unit does not include the demodulation of the first pilot signal sent to the first network device.
  • the first time unit is a time slot, a subframe, or a radio frame.
  • the determining, by the first type of pilot port, the determined first information does not include assuming that the first network device and the third network device pass Performing spatial multiplexing on the same time-frequency resource to communicate with the second network device, the first information determined by the second type of pilot port measurement includes assuming the first network device and the third The network device performs CQI when communicating with the second network device by spatial multiplexing on the same time-frequency resource.
  • the first information determined by the first type of pilot port measurement and the first information determined by the second type of pilot port measurement are both And including assuming that the first network device and the third network device perform CQI when communicating with the second network device by spatial multiplexing on the same time-frequency resource, and measuring by using the second type of pilot port
  • the CQI in the determined first information is associated with the CQI in the first information determined by the first type of pilot port measurement.
  • the CQI in the first information determined by the second type of pilot port measurement and the first determined by the first type of pilot port measurement are associated with each other, including the CQI in the first information determined by the second type of pilot port measurement, which is obtained by using the CQI difference in the first information determined by the first type of pilot port measurement.
  • the feedback mode of the second information and the third information is independently configured by using one or more of the following modes, where the feedback mode includes Subband feedback and broadband feedback, the subband feedback is respectively feeding back one of the second information or the third information for each subband, and the broadband feedback is to feed back one of the second information for all subbands or
  • the third information includes Subband feedback and broadband feedback, the subband feedback is respectively feeding back one of the second information or the third information for each subband, and the broadband feedback is to feed back one of the second information for all subbands or The third information:
  • the feedback mode of the second information is subband feedback, and the feedback mode of the third information is broadband feedback;
  • the information of the pilot port used by the first network device in the second information, the RI adopted by the first network device, and the feedback mode of the PMI adopted by the first network device are broadband feedback, and the CQI
  • the feedback mode is subband feedback, or the information of the pilot port used by the first network device in the second information, and the feedback mode of the RI adopted by the first network device is broadband feedback
  • the first network The PMI adopted by the device, the feedback mode of the CQI is subband feedback, or the feedback mode of the information of the pilot port used by the first network device in the second information is broadband feedback
  • the adopted RI, the PMI adopted by the first network device, and the feedback mode of the CQI are subband feedback;
  • the information of the pilot port used by the third network device in the third information, the RI adopted by the third network device, and the feedback mode of the PMI adopted by the third network device are broadband feedback, where the CQI is The feedback mode is subband feedback, or the information of the pilot port used by the third network device in the third information, and the feedback mode of the RI adopted by the third network device is broadband feedback, and the third network The PMI adopted by the device, the feedback mode of the CQI is subband feedback, or the feedback mode of the information of the pilot port used by the third network device in the third information is broadband feedback, and the third network device
  • the adopted RI, the PMI adopted by the third network device, and the feedback mode of the CQI The formula is sub-band feedback.
  • the subband of information feedback of the pilot port used by the first network device in the second information is independent of the second information.
  • the sub-band of information feedback of the pilot port used by the third network device in the third information is independent of the RI adopted by the third network device in the third information, and the PMI adopted by the third network device.
  • the sub-band of information feedback of the pilot port used by the first network device in the second information is independent of the RI adopted by the first network device in the second information, and the PMI adopted by the first network device.
  • a subband configuration of the CQI feedback where the subband of information feedback of the pilot port used by the third network device in the third information is independent of the RI adopted by the third network device in the third information
  • a PMI adopted by the third network device and a subband configuration of the CQI feedback.
  • the feedback period of the second information and the third information is independently configured in one or more of the following manners:
  • the feedback period of the second information is shorter than the feedback period of the third information
  • the information of the pilot port used by the first network device in the second information is longer than the RI adopted by the first network device, the PMI used by the first network device, and the CQI, or
  • the information of the pilot port used by the first network device in the second information, the RI adopted by the first network device is longer than the PMI used by the first network device, and the feedback period of the CQI is long, or
  • the information of the pilot port used by the first network device in the second information, the RI adopted by the first network device, and the PMI adopted by the first network device are longer than the feedback period of the CQI;
  • the information of the pilot port used by the third network device in the third information is longer than the RI adopted by the third network device, the PMI used by the third network device, and the feedback period of the CQI, or
  • the information of the pilot port used by the third network device in the third information, the RI adopted by the third network device is longer than the PMI used by the third network device, and the feedback period of the CQI is long, or
  • the information of the pilot port used by the third network device in the third information, the RI adopted by the third network device, and the PMI adopted by the third network device are longer than the feedback period of the CQI.
  • the second information is The period of the information feedback of the pilot port used by the first network device is independent of the RI adopted by the first network device in the second information, the PMI adopted by the first network device, and the periodic configuration of the CQI feedback; or,
  • the period of information feedback of the pilot port used by the third network device in the third information is independent of the RI adopted by the third network device in the third information, and the PMI used by the third network device.
  • the periodic configuration of the CQI feedback or,
  • the period of information feedback of the pilot port used by the first network device in the second information is independent of the RI adopted by the first network device in the second information, and the PMI used by the first network device.
  • a periodic configuration of the CQI feedback wherein a period of information feedback of the pilot port used by the third network device in the third information is independent of an RI adopted by the third network device in the third information, The PMI adopted by the third network device, and the periodic configuration of the CQI feedback.
  • the first information further includes: when the first network device and the second network device perform single-user multiple-input multiple-output SU-MIMO communication And the fourth information of the first network device, where the fourth information includes configuration information of a pilot port used by the first network device, an RI adopted by the first network device, and the first network device is used. At least one of PMI and CQI.
  • the first information includes the second information, the third information, and the fourth information
  • the second information if the second information, The sum of the information amounts of the third information and the fourth information is greater than the maximum information amount transmitted by the first network device, and the third information is prioritized according to the fourth information, and the third information is prioritized. Discarding the priority of the second information, or,
  • Dedicating, according to the fourth information, the second information, the second information is discarded in preference to the priority of the third information, or
  • the third information is prioritized over the third information, and the third information is discarded in preference to the priority of the fourth information, or
  • the fourth information is prioritized over the fourth information, and the fourth information is discarded in preference to the priority of the third information, or
  • the second information is prioritized over the priority of the fourth information, or the third information is discarded.
  • the fourth information is prioritized over the fourth information, and the fourth information is discarded in preference to the priority of the second information.
  • the first network device is a first user equipment UE
  • the third network device is a second UE
  • the second network device is a base station
  • the base station controls communication of the first UE and communication of the second UE;
  • the first network device is a first slave base station
  • the third network device is a second slave base station
  • the second network device is a master base station
  • the master base station controls communication of the first slave base station and the Second slave station communication
  • the first network device is a first slave UE
  • the third network device is a second slave UE
  • the second network device is a master UE
  • the master UE controls communication of the first slave UE and the Second communication from the UE.
  • the embodiment of the present invention provides a first network device, where the first network device includes:
  • a receiver configured to receive pilot port configuration information sent by the second network device, where the pilot port configuration information is used to describe at least two pilot ports;
  • a processor configured to measure, by using the at least two pilot ports, a pilot signal sent by the second network device, to determine first information, where the first information includes assuming the first network device and a third At least one of the second information of the first network device and the third information of the third network device when the network device communicates with the second network device by spatial multiplexing on the same time-frequency resource
  • the second information includes information of a pilot port used by the first network device, a rank indication RI adopted by the first network device, a precoding matrix indication PMI adopted by the first network device, and a channel quality.
  • the third information includes information of a pilot port used by the third network device, an RI adopted by the third network device, a PMI adopted by the third network device, and a CQI At least one of them;
  • a transmitter configured to feed back the first information to the second network device.
  • an embodiment of the present invention provides a second network device, where the second network device includes:
  • a sending module configured to send pilot port configuration information, where the pilot port configuration information is used to describe at least two pilot ports;
  • a receiving module configured to receive first information that is fed back by the first network device, where the first information is determined by the first network device by using the at least two pilot ports to measure a pilot signal sent by the second network device
  • the first information includes: when the first network device and the third network device communicate with the second network device by performing spatial multiplexing on the same time-frequency resource, the first network device At least one of the second information and the third information of the third network device, where the second information includes information of a pilot port used by the first network device, and the first network device uses a rank indicator RI, at least one of a precoding matrix indicator PMI and a channel quality indicator CQI adopted by the first network device, where the third information includes information, a location of a pilot port used by the third network device At least one of an RI adopted by the third network device, a PMI adopted by the third network device, and a CQI.
  • the pilot port configuration information includes a number of pilot ports, an identifier of a pilot port, a pilot pattern of a pilot signal of a pilot port, and a guide. At least one of a pilot sequence of a pilot signal of a frequency port, a transmission power of a pilot signal of a pilot port, a transmission time of a pilot signal of a pilot port, and a subband of a pilot signal transmitted by a pilot port.
  • the at least two pilot ports are a set of pilot ports or at least two sets of pilot ports, and each group of pilot ports is independently configured.
  • the pilot port configuration information describes that a group of pilot ports includes at least one pilot port.
  • the first network device in the second information is used.
  • the information of the pilot port includes a port number of the at least one pilot port selected by the first network device in the group of pilot ports for the first network device, where the third information is
  • the information of the pilot port used by the third network device includes a port number of the at least one pilot port selected by the first network device for the third network device in the group of pilot ports; or
  • the information of the pilot port used by the first network device in the first information includes that the first network device is in the a group number of at least one set of pilot ports selected by the first network device in the at least two sets of pilot ports, where the information of the pilot ports used by the third network device in the third information includes the a group number of at least one set of pilot ports selected by the network device for the third network device in the at least two sets of pilot ports.
  • the independently configured pilot port configuration information is in one-to-one correspondence with the configuration information of the channel state information process CSI process, and configuration information of each of the CSI processes
  • the configuration information of the channel state information reference signal CSI-RS including the non-zero power and the channel state information interfere with the configuration information of the measurement reference signal CSI-IM.
  • the first network device in the first information Adopted includes a process ID of the CSI process corresponding to the at least one group of pilot ports selected by the first network device in the at least two groups of pilot ports, the third information.
  • the information of the pilot port used by the third network device includes CSI corresponding to at least one group of pilot ports selected by the first network device for the third network device in the at least two groups of pilot ports. Process number of the process.
  • the information about the pilot port used by the first network device further includes a pilot signal sent by the pilot port of the first network device. At least one of a pilot sequence of a pilot signal of a pilot port used by the first network device, and a transmission power of a pilot signal of a pilot port used by the first network device, the third The information of the pilot port used by the network device further includes a subband of the pilot signal used by the third network device, and a pilot sequence of the pilot signal of the pilot port used by the third network device. And at least one of transmitting power of a pilot signal of a pilot port used by the third network device.
  • the at least two pilot ports include a first type of pilot port and a second type of pilot port, where the first type of pilot port includes at least A set of pilot ports, the second type of pilot ports comprising at least two pilot ports.
  • the first type of pilot port is a pilot port of a periodically transmitted pilot signal
  • the second type of pilot port is aperiodicly transmitted. Pilot port of the pilot signal
  • the first type of pilot port is a pilot port configured for radio resource control RRC signaling
  • the second type of pilot port is a pilot port configured for downlink control signaling
  • the downlink control signaling is a downlink scheduling DL. Grant signaling or uplink scheduling UL grant signaling; or,
  • the first type of pilot port is a pilot port of a pilot signal that is not precoded
  • the second type of pilot port is a pilot port of a precoded pilot signal
  • the first type of pilot port is a CRS pilot port or a CSI-RS pilot port
  • the second type of pilot port is a demodulation reference signal DMRS pilot port
  • the first type of pilot port is a pilot port that transmits a pilot signal on all subbands
  • the second type of pilot port is a pilot port that transmits a pilot signal on a set subband
  • the sub-bands of the first type of pilot port transmitting the pilot signal are fixed, and the sub-bands of the second type of pilot port transmitting the pilot signal are variable.
  • the second type of pilot port includes a first pilot port that transmits a first pilot signal and a second pilot that transmits a second pilot signal.
  • the first pilot signal and the second pilot signal are sent by the second network device by spatial multiplexing on the same time-frequency resource, and the first network device passes the first pilot Signaling a signal received by the first network device, the first network device measuring instantaneous interference of a signal received by the first network device by using the second pilot signal, where the instantaneous interference is the third Interference of the network device with the signal received by the first network device by spatial multiplexing of the first network device on the same time-frequency resource.
  • the first pilot signal and the second pilot signal are both non-zero power pilot signals.
  • the first pilot signal and the data signal sent by the second network device to the first network device adopt the same precoding matrix.
  • the second pilot signal uses the same precoding matrix as the data signal sent by the second network device to the third network device.
  • the first pilot signal is a demodulation pilot signal of a data signal sent by the second network device to the first network device; or ,
  • the second pilot signal is a demodulation pilot signal of a data signal sent by the second network device to the third network device;
  • the first pilot signal is a demodulation pilot signal of a data signal sent by the second network device to the first network device
  • the second pilot signal is sent by the second network device to the A demodulation pilot signal of a data signal transmitted by the three network devices.
  • the method further includes:
  • the signal sent by the first time unit includes the first pilot signal and the second pilot signal, and the signal sent by the first time unit does not include the signal sent to the first network device.
  • the first pilot signal is a data signal for demodulating a pilot signal and a data signal sent to the third network device and using the second pilot signal as a demodulation pilot signal; or
  • the signal sent by the first time unit includes the first pilot signal, the second pilot signal, and the first pilot signal sent to the first network device is demodulated a data signal of the frequency signal and the data signal sent to the third network device and using the second pilot signal as a demodulation pilot signal; or
  • the signal transmitted in the first time unit includes the first pilot signal and the second pilot a signal, the data signal sent to the first network device by using the first pilot signal as a demodulation pilot signal, and the signal sent in the first time unit does not include the a data signal sent by the network device with the second pilot signal as a demodulation pilot signal; or
  • the signal transmitted in the first time unit includes the first pilot signal and the second pilot signal, and the second pilot signal sent to the third network device is demodulated a data signal of the frequency signal, and the signal transmitted in the first time unit does not include the data signal sent to the first network device by using the first pilot signal as a demodulation pilot signal.
  • the first time unit is a time slot, a subframe, or a radio frame.
  • the received first information determined by the second network device by the first type of pilot port measurement does not include assuming the first network device and The third network device receives the CQI when the second network device communicates with the second network device by spatial multiplexing on the same time-frequency resource, and the received second network device determines the second type of pilot port by using the second type of pilot port.
  • the first information includes a CQI when the first network device and the third network device communicate with the second network device by spatial multiplexing on the same time-frequency resource.
  • the received second network device passes the first information determined by the first type of pilot port measurement and the received second network device passes The first information determined by the second type of pilot port measurement includes: assuming that the first network device and the third network device communicate with the second network device by performing spatial multiplexing on the same time-frequency resource. CQI, and the received second network device measures the CQI in the first information determined by the second type of pilot port and the received second network device passes the first type of pilot port measurement The CQIs in the determined first information are related to each other.
  • the received second network device measures the CQI in the first information determined by the second type of pilot port and the received second And determining, by the network device, the CQIs in the first information determined by the first type of pilot port measurement, including the received CQI in the first information determined by the second network device by using the second type of pilot port. And obtaining, by the received second network device, a CQI difference in the first information determined by the first type of pilot port measurement.
  • the feedback mode of the second information and the third information is independently configured by using one or more of the following manners, wherein the feedback mode includes a sub- With feedback and wideband feedback, the subband feedback is to feed back one of the respective sections for each subband The second information or the third information, the broadband feedback is to feed back the second information or the third information for all subbands as a whole:
  • the feedback mode of the second information is subband feedback, and the feedback mode of the third information is broadband feedback; or
  • the information of the pilot port used by the first network device in the second information, the RI adopted by the first network device, and the feedback mode of the PMI adopted by the first network device are broadband feedback, and the CQI
  • the feedback mode is subband feedback, or the information of the pilot port used by the first network device in the second information, and the feedback mode of the RI adopted by the first network device is broadband feedback
  • the first network The PMI adopted by the device, the feedback mode of the CQI is subband feedback, or the feedback mode of the information of the pilot port used by the first network device in the second information is broadband feedback
  • the adopted RI, the PMI adopted by the first network device, and the feedback mode of the CQI are subband feedback;
  • the information of the pilot port used by the third network device in the third information, the RI adopted by the third network device, and the feedback mode of the PMI adopted by the third network device are broadband feedback
  • the CQI is The feedback mode is subband feedback, or the information of the pilot port used by the third network device in the third information, and the feedback mode of the RI adopted by the third network device is broadband feedback
  • the adopted RI, the PMI adopted by the third network device, and the feedback mode of the CQI are subband feedback.
  • the subband of information feedback of the pilot port used by the first network device in the second information and the second information in the second information are independently configured. a RI adopted by a network device, a PMI adopted by the first network device, and a subband of the CQI feedback; or
  • the feedback period of the second information and the third information is independently configured by using one or more of the following manners:
  • the feedback period of the second information is shorter than the feedback period of the third information
  • the information of the pilot port used by the first network device in the second information is longer than the RI adopted by the first network device, the PMI used by the first network device, and the CQI, or
  • the information of the pilot port used by the first network device in the second information, the RI adopted by the first network device is longer than the PMI used by the first network device, and the feedback period of the CQI is long, or
  • the information of the pilot port used by the first network device in the second information, the RI adopted by the first network device, and the PMI adopted by the first network device are longer than the feedback period of the CQI;
  • the information of the pilot port used by the third network device in the third information is longer than the RI adopted by the third network device, the PMI used by the third network device, and the feedback period of the CQI, or
  • the information of the pilot port used by the third network device in the third information, the RI adopted by the third network device is longer than the PMI used by the third network device, and the feedback period of the CQI is long, or
  • the information of the pilot port used by the third network device in the third information, the RI adopted by the third network device, and the PMI adopted by the third network device are longer than the feedback period of the CQI.
  • the period of information feedback of the pilot port used by the first network device in the second information and the second information are separately configured.
  • the period of information feedback of the pilot port used by the first network device in the second information and the RI adopted by the first network device in the second information, and the PMI adopted by the first network device are independently configured.
  • the first information further includes a fourth information of the first network device, where the fourth information includes the first network device, when the first network device performs single-user multiple-input multiple-output SU-MIMO communication with the second network device.
  • the fourth information includes the first network device, when the first network device performs single-user multiple-input multiple-output SU-MIMO communication with the second network device.
  • the first network device is a first user equipment UE
  • the third network device is a second UE
  • the second network device is a base station
  • the base station controls communication of the first UE and communication of the second UE;
  • the first network device is a first slave base station
  • the third network device is a second slave base station
  • the second network device is a master base station
  • the master base station controls communication of the first slave base station and the Second slave station communication
  • the first network device is a first slave UE
  • the third network device is a second slave UE
  • the second network device is a master UE
  • the master UE controls communication of the first slave UE and the Second communication from the UE.
  • the embodiment of the present invention provides a second network device, where the second network device includes:
  • a transmitter configured to send pilot port configuration information, where the pilot port configuration information is used to describe at least two pilot ports;
  • a receiver configured to receive first information that is fed back by the first network device, where the first information is determined by the first network device by using the at least two pilot ports to measure a pilot signal sent by the second network device
  • the first information includes assuming that the first network device and the third network device communicate with the second network device by spatial multiplexing on the same time-frequency resource, the first network device At least one of the second information and the third information of the third network device, the second information includes information of a pilot port used by the first network device, and a rank indication RI adopted by the first network device
  • the precoding matrix used by the first network device indicates at least one of a PMI and a channel quality indicator CQI, where the third information includes information of a pilot port used by the third network device, and the third At least one of an RI employed by the network device, a PMI employed by the third network device, and a CQI.
  • an embodiment of the present invention provides a channel measurement and feedback system, where the system includes a first network device, a second network device, and a third network device, where the first network device is as in the third aspect or the first
  • the first network device of the fourth aspect, the second network device is the second network device according to the fifth aspect or the sixth aspect.
  • the second network device communicates at least one of the second information of the first network device and the third information of the third network device fully considers that the first network device and the third network device pass the same time-frequency resource.
  • the spatial multiplexing is performed to communicate with the second network device, the interference of the third network device to the first network device improves the accuracy of the channel measurement, and the accuracy of the measurement result received by the second network device increases, thereby improving The rationality of the configuration of the first network device and the third network device by the second network device.
  • FIG. 1 is an application scenario diagram of a channel measurement and feedback method according to an embodiment of the present invention
  • FIG. 3 is a flowchart of a channel measurement and feedback method according to Embodiment 2 of the present invention.
  • FIG. 4 is a process interaction diagram of a channel measurement and feedback method according to Embodiment 3 of the present invention.
  • FIG. 5 is a schematic diagram of relationship between a base station antenna and a main beam of a beam according to Embodiment 3 of the present invention.
  • FIG. 6 is a process interaction diagram of a channel measurement and feedback method according to Embodiment 4 of the present invention.
  • FIG. 7 is a schematic diagram of transmitting a pilot signal on a physical resource block PRB according to a first type of pilot port and a second type of pilot port according to Embodiment 4 of the present invention
  • FIGS. 8a-8d are schematic diagrams of signals sent by a second network device on a same PRB according to Embodiment 4 of the present invention.
  • FIG. 9 is a schematic structural diagram of a first network device according to Embodiment 5 of the present invention.
  • FIG. 10 is a schematic structural diagram of a second network device according to Embodiment 6 of the present invention.
  • FIG. 11 is a schematic structural diagram of a channel measurement and feedback system according to Embodiment 7 of the present invention.
  • the base station 2 simultaneously serves at least two UEs (UE 1 and UE 3), and the base station 2 can change the horizontal dimension of the antenna by adjusting the weighting coefficient multiplied by the transmission data according to the location of the served UE.
  • the vertical dimension is such that the main lobe of the beam emitted by the antenna aligns the UE in a three-dimensional (3D) space.
  • ⁇ 1 the angle between the main lobe of the beam aligned with UE 1 in FIG. 1 and the vertical direction
  • ⁇ 2 the angle between the main lobe of the beam aligned with UE 3 and the vertical direction
  • the primary base station serves at least two secondary base stations simultaneously, or the primary UE serves at least two secondary secondary UEs at the same time.
  • An embodiment of the present invention provides a channel measurement and feedback method, where the execution entity of the method is a first network device.
  • the method includes:
  • Step 101 The first network device receives pilot port configuration information sent by the second network device, where the pilot port configuration information is used to describe at least two pilot ports.
  • the pilot port configuration information may include the number of pilot ports, the identifier of the pilot port, the pilot pattern of the pilot signal of the pilot port, the pilot sequence of the pilot signal of the pilot port, and the pilot port. At least one of a transmission power of a pilot signal, a transmission time of a pilot signal of a pilot port, and a subband of a pilot signal transmitted by a pilot port.
  • Step 102 Measure the pilot signal sent by the second network device by using the at least two pilot ports to determine the first information.
  • the first information includes: when the first network device and the third network device communicate with the second network device by performing spatial multiplexing on the same time-frequency resource, the second information of the first network device and the third network device At least one of the third information.
  • the second information includes the information of the pilot port used by the first network device, the Rank Indication (RI) used by the first network device, and the Precoding Matrix Indicator (PMI) used by the first network device. And at least one of a Channel Quality Indicator (CQI).
  • the third information includes at least one of information of a pilot port used by the third network device, an RI adopted by the third network device, a PMI adopted by the third network device, and a CQI.
  • the first network device and the third network device communicate with the second network device by performing spatial multiplexing on the same time-frequency resource, that is, the first network device and the third network device pass through A physical resource block (PRB) performs spatial multiplexing to communicate with the second network device. Since one PRB includes a plurality of resource elements (RE elements), the first network device and the third network device communicate with the second network device by performing spatial multiplexing on the same time-frequency resource, the first network. The device and the third network device may communicate with the second network device by spatial multiplexing on the same RE, or may perform spatial multiplexing on the different REs of the same PRB to communicate with the second network device.
  • PRB physical resource block
  • the first network device is a first UE (such as UE1 shown in FIG. 1)
  • the third network device is a second UE (such as UE 3 shown in FIG. 1)
  • the second network is used.
  • the device is a base station (such as the base station 2 shown in FIG. 1).
  • the base station controls communication between the first UE and the communication of the second UE, and there is no master-slave relationship between the first UE and the second UE.
  • the first network device is a first slave base station
  • the third network device is a second slave base station
  • the second network device is a master base station
  • the master base station controls communication between the first slave base station and the second slave base station.
  • the primary base station is a macro base station
  • the first secondary base station is one micro base station
  • the second secondary base station is another micro base station.
  • the first network device is a first secondary UE
  • the third network device is a second secondary UE
  • the second network device is a primary UE
  • the primary UE controls communication between the first secondary UE and the second secondary UE.
  • the third network device that performs spatial multiplexing on the same time-frequency resource with the first network device and communicates with the second network device may be one or multiple.
  • the second network device may obtain the third information of all the third network devices, or may select only the third network device to obtain the third information.
  • the second network device sends configuration information to the first network device, and the first network device determines, by using the configuration information, whether to start measurement and feedback of the MU MIMO (assuming that the third network device is the same as the first network device) When spatial multiplexing is performed on the time-frequency resource to communicate with the second network device, the first information is measured and fed back).
  • the configuration information further includes a number of third network devices that are assumed to be spatially multiplexed with the second network device on the same time-frequency resource as the first network device.
  • the second network device may separately send the configuration information to the first network device, or may carry the configuration information in the pilot port configuration information and send the configuration information to the first network device.
  • Step 103 Feed the first information to the second network device.
  • the second network device may configure, according to the first information, that the first network device and the third network device communicate with the second network device by performing spatial multiplexing on the same time-frequency resource. Scheduling information to make scheduling information more accurate. The scheduling information is used to configure the first network device and the third network device, so that the first network device and the third network device implement data transmission with the second network device.
  • the second network device can configure the scheduling information in the following manner:
  • the first information includes the second information and the third information
  • the second network device compares the second information and the third information sent by each of the first network devices, when the second network device sends the second information.
  • the matching degree of the information with the third information sent by the other first network device is the highest or greater than the set threshold, which means that the two first network devices perform MU MIMO (spatial multiplexing transmission on the same time-frequency resource) performance.
  • the two first network devices are configured to perform spatial multiplexing on the same time-frequency resource with the network device that communicates with the second network device, and refer to the first information scheduling reported by the two first network devices. These two first network devices.
  • a first network device (such as UE 1 shown in FIG. 1) feeds back to the second network device (base station 2 shown in FIG. 1) that the first network device (UE 1) adopts a PMI of PMI 1, assuming The PMI used by the third network device with which the MU MIMO transmission is performed is the PMI 2, and the first network device (the UE 3 shown in FIG.
  • the second network device ie, the base station
  • the first network device UE3
  • the PMI used is PMI 2
  • the second network device may consider configuring the two first network devices (UE 1 and UE 3) Spatial multiplexing is performed on the same time-frequency resource to communicate with the second network device, and the PMI adopted by the UE 1 is PMI 1, and the PMI adopted by the UE 3 is PMI 2.
  • the first information includes the second information or the third information
  • the second network device may determine each first network by using a zero-forcing algorithm according to the second information or the third information sent by each first network device.
  • the device performs spatial multiplexing scheduling information on the same time-frequency resource. For example, a first network device (such as the UE 1 shown in FIG. 1) feeds back to the second network device (such as the base station 2 shown in FIG. 1) the PMI corresponding to the first network device (ie, UE 1).
  • the matrix is W1, and the precoding matrix corresponding to the PMI adopted by the first network device (ie, UE 3) fed back to the second network device (ie, the base station) by the first network device (ie, the UE 3) is W 2, the second network device determines, according to W 1, W 2, a zero-forcing algorithm, that the precoding matrices used by the two first network devices for spatial multiplexing on the same time-frequency resource are respectively W 1 'and W 2 ', where W 1 ' is the result calculated by the zero-forcing algorithm for W 1 , W 2 ' is W 2 is the result calculated by the zero-forcing algorithm, and the zero-forcing algorithm is an algorithm known to those skilled in the art, This will not be repeated here.
  • the embodiment of the present invention determines the first information by using at least two pilot ports to measure the pilot signal sent by the second network device, where the first information includes: assuming that the first network device and the third network device are performed on the same time-frequency resource.
  • the spatial multiplexing is communicated with the second network device, at least one of the second information of the first network device and the third information of the third network device fully considers the first network device and the third network
  • the interference of the third network device to the first network device improves the accuracy of the channel measurement, and the measurement result received by the second network device The accuracy is improved, which improves the rationality of the configuration of the first network device and the third network device by the second network device.
  • An embodiment of the present invention provides a channel measurement and feedback method, where the execution entity of the method is a second network device.
  • the method includes:
  • Step 201 The second network device sends pilot port configuration information, where the pilot port configuration information is used to describe at least two pilot ports.
  • the pilot port configuration information may include the number of pilot ports, the identifier of the pilot port, the pilot pattern of the pilot signal of the pilot port, the pilot sequence of the pilot signal of the pilot port, and the pilot port. At least one of a transmission power of a pilot signal, a transmission time of a pilot signal of a pilot port, and a subband of a pilot signal transmitted by a pilot port.
  • Step 202 Receive first information fed back by the first network device, where the first information is determined by the first network device measuring the pilot signal sent by the second network device by using at least two pilot ports.
  • the first information includes: when the first network device and the third network device communicate with the second network device by performing spatial multiplexing on the same time-frequency resource, the second information of the first network device and the third network device At least one of the third information.
  • the second information includes at least one of information of a pilot port adopted by the first network device, an RI adopted by the first network device, a PMI adopted by the first network device, and a CQI.
  • the third information includes at least one of information of a pilot port used by the third network device, an RI adopted by the third network device, a PMI adopted by the third network device, and a CQI.
  • the first network device and the third network device communicate with the second network device by performing spatial multiplexing on the same time-frequency resource, that is, the first network device and the third network device perform the same on the same PRB.
  • Spatial multiplexing communicates with the second network device. Since one PRB includes multiple REs, the first network device and the third network device can pass the second network device by performing spatial multiplexing on the same time-frequency resource.
  • the spatial multiplexing on the same RE is performed to communicate with the second network device, and the spatial multiplexing between the different REs of the same PRB may also be performed to communicate with the second network device.
  • the first network device is a first UE (such as UE1 shown in FIG. 1)
  • the third network device is a second UE (such as UE 3 shown in FIG. 1)
  • the second network is used.
  • the device is a base station (such as The base station 2) shown in FIG. 1 controls the communication between the first UE and the communication of the second UE, and there is no master-slave relationship between the first UE and the second UE.
  • the first network device is a first slave base station
  • the third network device is a second slave base station
  • the second network device is a master base station
  • the master base station controls communication between the first slave base station and the second slave base station.
  • the primary base station is a macro base station
  • the first secondary base station is one micro base station
  • the second secondary base station is another micro base station.
  • the first network device is a first secondary UE
  • the third network device is a second secondary UE
  • the second network device is a primary UE
  • the primary UE controls communication between the first secondary UE and the second secondary UE.
  • the third network device that performs spatial multiplexing on the same time-frequency resource with the first network device and communicates with the second network device may be one or multiple.
  • the second network device may obtain the third information of all the third network devices, or may select only the third network device to obtain the third information.
  • the second network device sends configuration information to the first network device, and the first network device determines, by using the configuration information, whether to start measurement and feedback of the MU MIMO (assuming that the third network device is the same as the first network device) When spatial multiplexing is performed on the time-frequency resource to communicate with the second network device, the first information is measured and fed back).
  • the configuration information further includes a number of third network devices that are assumed to be spatially multiplexed with the second network device on the same time-frequency resource as the first network device.
  • the second network device may separately send the configuration information to the first network device, or may carry the configuration information in the pilot port configuration information and send the configuration information to the first network device.
  • the second network device may configure, according to the first information, that the first network device and the third network device communicate with the second network device by performing spatial multiplexing on the same time-frequency resource. Scheduling information to make scheduling information more accurate. The scheduling information is used to configure the first network device and the third network device, so that the first network device and the third network device implement data transmission with the second network device.
  • the second network device can configure the scheduling information in the following manner:
  • the first information includes the second information and the third information
  • the second network device compares the second information and the third information sent by each of the first network devices, when the second network device sends the second information.
  • the matching degree of the information with the third information sent by the other first network device is the highest or greater than the set threshold, which means that the two first network devices perform MU MIMO (spatial multiplexing transmission on the same time-frequency resource) performance.
  • the two first network devices are configured to perform spatial multiplexing on the same time-frequency resource with the network device that communicates with the second network device, and refer to the first information scheduling reported by the two first network devices. These two first network devices.
  • a first network device (such as UE 1 shown in FIG. 1) is directed to the second network device (FIG. 1).
  • the first network device (UE3) fed back to the second network device (ie, the base station) has a PMI of PMI 2
  • the third network device with which MU MIMO transmission is used has a PMI of PMI 1.
  • the second network device may consider configuring the two first network devices (UE 1 and UE 3) on the same time-frequency resource for spatial multiplexing to communicate with the second network device, and the PMI adopted by the UE 1 is PMI 1
  • the PMI used by UE 3 is PMI 2.
  • the first information includes the second information or the third information
  • the second network device may determine each first network by using a zero-forcing algorithm according to the second information or the third information sent by each first network device.
  • the device performs spatial multiplexing scheduling information on the same time-frequency resource. For example, a first network device (such as the UE 1 shown in FIG. 1) feeds back to the second network device (such as the base station 2 shown in FIG. 1) the PMI corresponding to the first network device (ie, UE 1).
  • the matrix is W1, and the precoding matrix corresponding to the PMI adopted by the first network device (ie, UE 3) fed back to the second network device (ie, the base station) by the first network device (ie, the UE 3) is W 2, the second network device determines, according to W 1, W 2, a zero-forcing algorithm, that the precoding matrices used by the two first network devices for spatial multiplexing on the same time-frequency resource are respectively W 1 'and W 2 ', where W 1 ' is the result calculated by the zero-forcing algorithm for W 1 , W 2 ' is W 2 is the result calculated by the zero-forcing algorithm, and the zero-forcing algorithm is an algorithm known to those skilled in the art, This will not be repeated here.
  • the embodiment of the present invention determines the first information by using at least two pilot ports to measure the pilot signal sent by the second network device, where the first information includes: assuming that the first network device and the third network device are performed on the same time-frequency resource.
  • the spatial multiplexing is communicated with the second network device, at least one of the second information of the first network device and the third information of the third network device fully considers that the first network device and the third network device are spatially multiplexed
  • the interference of the third network device to the first network device improves the accuracy of the channel measurement, and the accuracy of the measurement result received by the second network device increases.
  • the rationality of the configuration of the first network device and the third network device by the second network device is improved.
  • the embodiment of the present invention provides a channel measurement and feedback method.
  • at least two pilot ports are a set of pilot ports or at least two sets of pilot ports.
  • the method includes:
  • Step 301 The second network device sends pilot port configuration information, where the pilot port configuration information is used. Describe a set of pilot ports or at least two sets of pilot ports.
  • each set of pilot ports is described by independently configured pilot port configuration information, and one set of pilot ports includes at least one pilot port. That is, the pilot port configuration information sent by the second network device may be one or multiple, and each independently configured pilot port configuration information is used to describe different groups of pilot ports.
  • 16 antenna elements are grouped by 4, and each group of antenna elements forms two pilot ports by two sets of weighting coefficients (shown by small circles in FIG. 5). .
  • the antenna gains of the two pilot ports formed by the same group of antenna elements are different in the vertical direction, and the antenna gains in the horizontal direction are the same.
  • the four antenna arrays form eight pilot port ports 0 to 7 (port 0 to port 7), and the two pilot ports of the same horizontal direction antenna gain formed by the same group of antenna elements are port 0 (port 0) and port 4 (port 0) Port 4), port 1 (port 1) and port 5 (port 5), port 2 (port 2) and port 6 (port 6), port 3 (port 3), and port 7 (port 7).
  • the eight pilot ports can be divided into two groups according to the difference in antenna gain in the vertical direction.
  • the first group of pilot ports is port 0 to port 3 (port 0 to port 3), and the second group of pilot ports is port 4 to port. 7 (port4 to port7).
  • the grouping of the pilot ports may be divided according to the difference of the antenna gains in the horizontal direction, or other principles, and are not exemplified herein.
  • Network devices that perform spatial multiplexing on the same time-frequency resource may use antenna ports with different antenna gains for transmission, for example, antenna ports with different vertical direction antenna gains, and UE 1 shown in FIG. 1 adopts the first group.
  • the pilot port (port0 to port3), and the UE 3 shown in FIG. 1 adopts a second group of pilot ports (port4 to port7).
  • Antenna ports of the same vertical direction antenna gain may also be used.
  • both UE 1 and UE 3 use the first group of pilot ports (port 0 to port 3) for spatial multiplexing by precoding matrices of different vertical directions.
  • the UE measures and feeds back the information of the port used by the network device that performs spatial multiplexing on the same time-frequency resource, and can assist the base station to perform MU MIMO scheduling, so that the transmission performance of the MU MIMO is better.
  • each group of weighting coefficients may be a weighting coefficient of a baseband, or may be a weighting coefficient of a radio frequency driven network. That is to say, the pilot port can be formed by the weighting coefficient of the baseband or by the weighting coefficient of the RF drive network.
  • the angle between the main lobe of the pilot port and the vertical direction formed by the weighting coefficient of the RF drive network is called an electric downtilt angle, that is, the electric downtilt angle is for the radio frequency
  • the vertical direction of the pilot port is The angle between the maximum antenna gain and the vertical direction refers to the electrical downtilt angle.
  • the pilot ports formed by the weighting coefficients of the baseband are mapped to different radio frequency channels, and the pilot ports formed by the weighting coefficients of one baseband can be mapped to one or more radio frequency channels.
  • the track has a one-to-one correspondence with the electric downtilt angle, so the pilot ports formed by the weighting coefficients of the baseband also have different electrical downtilt angles, that is, the electrical downtilt angle can also be for the baseband.
  • the independently configured pilot port configuration information may be in one-to-one correspondence with the configuration information of a channel status indicator process (CSI process), and the configuration information of each CSI process includes Configuration information of a Channel State Information Interference Measurement Reference Signal (CSI-RS) and a configuration information of a Channel State Information Interference Measurement Reference Signal (CSI-IM).
  • CSI-RS Channel State Information Interference Measurement Reference Signal
  • CSI-IM Channel State Information Interference Measurement Reference Signal
  • the configuration information of the CSI process is sent by the second network device to the first network device, and the first network device determines the CSI-RS port and the CSI-IM port according to the configuration information of the received CSI process.
  • the CSI-RS port of the CSI process1 is port 0 to port 3 (port 0 to port 3), the CSI-IM port is port 8 to port 11 (port 8 to port 11), and the CSI process 2 is configured with the CSI-RS port of port 4 to port 7. (port4 to port7), the CSI-IM port is port 12 to port 15 (port 12 to port 15).
  • each CSI process also configures the ratio of the power of the data signal to the CSI-RS.
  • the ratio of the power of the CSI process 1 configuration data signal to the CSI-RS is ⁇ c1
  • the CSI process 2 configures the power of the data signal and the CSI-RS .
  • the ratio is ⁇ c2 .
  • the ratio of the data signal of each CSI process configuration to the power of the CSI-RS may be multiple, and the UE selects one of the multiple ratios to report in the first information.
  • each independently configured pilot port configuration information may include configuration information of a CSI-RS of non-zero power and configuration information of a CSI-RS of zero power.
  • each independently configured pilot port configuration information may include configuration information of the CRS.
  • the step 301 can include:
  • the second network device sends downlink control information (Downlink Control Information, DCI for short), and the DCI includes pilot port configuration information.
  • DCI Downlink Control Information
  • Step 302 The first network device measures the pilot signal sent by the second network device by using a set of pilot ports or at least two sets of pilot ports, and determines the first information.
  • the first information includes: when the first network device and the third network device communicate with the second network device by performing spatial multiplexing on the same time-frequency resource, the second information of the first network device and the third network device At least one of the third information.
  • the second information includes at least one of information of a pilot port adopted by the first network device, an RI adopted by the first network device, a PMI adopted by the first network device, and a CQI.
  • the third information includes information of a pilot port used by the third network device, and a third network design. At least one of the RI, the PMI used by the third network device, and the CQI.
  • the first network device and the third network device communicate with the second network device by performing spatial multiplexing on the same time-frequency resource, that is, the first network device and the third network device are in the same physical resource block ( The Physical Resource Block (PRB) communicates with the second network device. Since one PRB includes a plurality of resource elements (RE elements), the first network device and the third network device communicate with the second network device by performing spatial multiplexing on the same time-frequency resource, the first network. The device and the third network device can communicate with the second network device on the same RE, or can communicate with the second network device on different REs.
  • the Physical Resource Block PRB
  • RE elements resource elements
  • the information of the pilot port used by the first network device in the second information may include the first network device in the The port number of the at least one pilot port selected by the first network device in the group of pilot ports, and the information of the pilot port used by the third network device in the third information may include the first network device in a group of pilot ports.
  • the group number of the at least one set of pilot ports selected by the first network device for the first network device in the at least two groups of pilot ports, and the information of the pilot port used by the third network device in the third information may include the first A group number of at least one set of pilot ports selected by the network device for the third network device in the at least two sets of pilot ports.
  • the second information is used.
  • the information of the pilot port adopted by the first network device may include a port number of the at least one pilot port selected by the first network device for the first network device in the group of pilot ports, and the third network in the third information
  • the information of the pilot port used by the device may include a port number of the at least one pilot port selected by the first network device for the third network device in the group of pilot ports; or, when the at least two pilot ports are at least two groups
  • the information of the pilot port used by the first network device in the first information may include at least one group of pilot ports selected by the first network device for the first network device in the at least two groups of pilot ports.
  • the process ID of the CSI process, the information of the pilot port used by the third network device in the third information may include the first network device being the third network device among the at least two sets of pilot ports. At least one set of frequency selective pilot port corresponding to the process ID of the CSI process.
  • the step 302 may include:
  • the first network device respectively passes through a set of pilot ports or each of at least two sets of pilot ports
  • the frequency port measures the pilot signal sent by the second network device, and obtains channel coefficients corresponding to the respective pilot ports;
  • a channel coefficient corresponding to each pilot port of each group of pilot ports is formed into a channel coefficient matrix corresponding to each group of pilot ports;
  • the channel coefficient matrix corresponding to each group of pilot ports is sequentially multiplied with each precoding matrix in the precoding matrix set corresponding to each group of pilot ports to obtain an equivalent channel coefficient matrix;
  • the largest SINR is selected.
  • the CQI determines, according to the correspondence between the set SINR and the CQI, the information of the pilot port used by the first network device is used by the first network device when calculating the maximum SINR, etc.
  • the information about the pilot port corresponding to the channel coefficient matrix, the PMI used by the first network device is the PMI corresponding to the equivalent channel coefficient matrix used by the first network device when calculating the maximum SINR, and the RI used by the first network device is calculated.
  • the information of the pilot port corresponding to the channel coefficient matrix, the PMI used by the third network device is the PMI corresponding to the equivalent channel coefficient matrix used by the third network device when calculating the maximum SINR, and the RI used by the third network device is calculated.
  • the equivalent channel coefficient matrix used by the first network device is H p *W r p
  • the equivalent channel coefficient matrix used by the third network device is H q *W t q
  • H p represents the channel coefficient matrix corresponding to the p-th group pilot port
  • W r p represents the r-th pre-coding matrix in the pre-coding matrix set corresponding to the p-th group pilot port
  • H q represents the q-th group
  • W t q represents the t-th precoding matrix in the precoding matrix set corresponding to the q- th group pilot port
  • the information of the pilot port used by the first network device is the p-th
  • the PMI used by the first network device is an index of the precoding matrix W r p
  • the RI adopted by the first network device is the rank of the precoding matrix W r
  • each of the precoding matrices in the precoding matrix set corresponding to each group of pilot ports The number is an integer greater than one.
  • the precoding matrix set corresponding to each group of pilot ports includes a precoding matrix with a rank of 1, and the precoding matrix set corresponding to each group of pilot ports may further include a precoding matrix with a rank greater than 1.
  • Step 302 will be specifically described below with reference to examples. It is assumed that the pilot port configuration information sent by the second network device is used to describe the M group of pilot ports, and the number of pilot ports of the mth group of pilot ports (any one of the M groups of pilot ports) is V. m , 1 ⁇ m ⁇ M and m is an integer. The number of receiving antennas of the first network device is V RX , and the channel coefficient matrix H m corresponding to the mth pilot port is as follows:
  • h ij m is the channel coefficient obtained by the ith receiving antenna through the jth pilot port of the mth group of pilot ports, 0 ⁇ i ⁇ V RX and i is an integer, 0 ⁇ j ⁇ V m and j Is an integer.
  • the number of precoding matrices in the precoding matrix set ⁇ W k m ⁇ corresponding to the mth group of pilot ports is K m
  • W k m represents the kth bit in the precoding matrix set corresponding to the mth group of pilot ports.
  • a precoding matrix (any one of the precoding matrix sets corresponding to the mth group of pilot ports), 1 ⁇ k ⁇ K m and k is an integer.
  • the SINRs when the first network device and the third network device adopt respective equivalent channel coefficient matrices are sequentially calculated. For example, assume that the first network device uses the channel coefficient matrix H p corresponding to the p- th pilot port and the r-th pre-coding matrix W r p in the pre-coding matrix set ⁇ W r p ⁇ corresponding to the p- th pilot port.
  • the third network device adopts the channel coefficient matrix H q corresponding to the qth group of pilot ports and the precoding matrix set corresponding to the qth group of pilot ports ⁇ W t
  • the equivalent channel coefficient matrix H q *W t q obtained by multiplying the t-th precoding matrix W t q in q ⁇ , 1 ⁇ p ⁇ M and p is an integer, 1 ⁇ t ⁇ K p and t is an integer, p K p for the first set of pilot ports corresponding to the number of sets of precoding matrix, 1 ⁇ q ⁇ M and q is an integer, 1 ⁇ t ⁇ K q and t is an integer, K q q for the first group corresponding to the pilot ports
  • the number of precoding matrix sets, at which time the signal received by the first network device is y H p *W r p *s 1 +H q *W t q *s 3 +n, where
  • the weights of the received signals are different.
  • the weight P of the received signal can be calculated using the following formula:
  • H [H p *W r p ,H q *W t q ]
  • H is a matrix composed of a matrix of equivalent channel coefficients
  • H p *W r p is an equivalent channel coefficient matrix used by the first network device
  • H q *W t q is an equivalent coefficient matrix used by the third network device
  • y is the received signal
  • x is the transmitted signal
  • n is the noise
  • H H is the transposed conjugate of the matrix H
  • ⁇ 2 is the variance of the noise. Represents an identity matrix of size V RX .
  • the SINR can be calculated by the following formula:
  • the largest SINR is selected.
  • s 1 and s 3 include a power ratio of a plurality of data signals to a pilot signal (or a transmission power of a pilot signal), traversing each group of pilot ports and each group of pilot ports corresponding to a precoding matrix set
  • Each of the precoding matrices also needs to traverse the power ratio of each data signal to the pilot signal (or the transmit power of the pilot signal).
  • the equivalent channel coefficient matrix used by the first network device and the equivalent channel coefficient matrix used by the third network device can be determined when the maximum SINR is obtained. It is also assumed that the first network device adopts the equivalent channel coefficient matrix H p *W r p , and the third network device adopts the equivalent channel coefficient matrix H q *W t q , and the pilot used by the first network device in the second information
  • the information of the port includes the group number p of the p-th group of pilot ports, the PMI used by the first network device is an index of the precoding matrix W r p , and the RI used by the first network device is the rank of the precoding matrix W r p , CQI
  • the information of the pilot port used by the third network device in the third information includes the group number q of the qth group of pilot ports, and the PMI used by the third network device For the index of the precoding matrix W
  • the information about the pilot port used by the first network device further includes a subband of the pilot signal used by the first network device, and a pilot sequence of the pilot signal of the pilot port used by the first network device. At least one of the transmit power of the pilot signal of the pilot port used by the first network device, and the information of the pilot port used by the third network device further includes the pilot signal sent by the pilot port used by the third network device. At least one of a subband, a pilot sequence of a pilot signal of a pilot port used by the third network device, and a transmission power of a pilot signal of a pilot port used by the third network device.
  • the corresponding information may be traversed according to the previous example. For example, when the information of the pilot port used by the first network device further includes the sub-bands sent by the pilot port used by the first network device, the sub-bands may be traversed to find the first network device corresponding to the largest SINR. Sub-band. For example, when the information of the pilot port used by the first network device further includes the pilot sequence of the pilot signal used by the first network device, the pilot sequence can be traversed to find the maximum SINR corresponding. The pilot sequence employed by the first network device.
  • the foregoing example determines the first information by using the SINR maximization criterion.
  • the first information can be determined by using the throughput maximization criterion, which is not detailed herein.
  • the pilot port configuration information may further include indication information, where the indication information is used to indicate the pilot port configuration information that belongs to the first network device and the pilot port configuration information that belongs to the third network device. It can be understood that when the pilot port configuration information includes the indication information, when performing the traversal calculation of the SINR, it is not necessary to traverse each group of pilot ports, and only one set of pilot ports used by the first network device according to the indication information is needed. Each precoding matrix in the corresponding precoding matrix set and each precoding matrix in the precoding matrix set corresponding to a group of pilot ports used by the third network device may be traversed.
  • Step 303 The first network device feeds back the first information to the second network device.
  • the feedback mode of the second information may be different from the feedback mode of the third information, where the second network device independently configures a feedback mode of the second information and a feedback mode of the third information, where the feedback mode includes subband feedback and broadband feedback.
  • the subband feedback is to respectively feed back a second information or a third information for each subband
  • the broadband feedback is to feed back a second information or a third information for all subbands as a whole.
  • the frequency domain of signal transmission can be divided into several sub-bands (referred to as sub-bands). Multiple sub-bands form a broadband. Since the pilot signal is transmitted in the entire frequency domain, the pilot signals of the respective sub-bands are separately measured to determine the channel quality.
  • the second information and the third information determined directly according to the channel quality corresponding to each sub-band are fed back to the second network device by means of sub-band feedback. First, the channel quality corresponding to each sub-band is averaged, and then the second information and the third information determined according to the average channel quality corresponding to the plurality of sub-bands (ie, broadband) are fed back to the second by using broadband feedback.
  • broadband feedback ie, broadband
  • the first network device Due to the limitation of the amount of information transmitted by the first network device, the first network device generally uses a broadband feedback manner to feed back a portion of the first information.
  • the broadband feedback is for the overall feedback of all sub-bands, and the sub-band feedback is more accurate than the broadband feedback, so the sub-band feedback is used to feed back the first Relatively important information in the message.
  • the feedback mode of the second information may be subband feedback
  • the feedback mode of the third information may be broadband feedback
  • the information of the pilot port used by the first network device in the second information, the RI adopted by the first network device, and the feedback mode of the PMI used by the first network device may be broadband feedback, and the feedback mode of the CQI may be Subband feedback; or the information of the pilot port used by the third network device in the third information, the RI adopted by the third network device, and the feedback mode of the PMI adopted by the third network device may be broadband feedback, and the feedback mode of the CQI may be For the sub-band feedback; or the information of the pilot port used by the first network device in the second information, the RI adopted by the first network device, and the PMI adopted by the first network device
  • the feedback mode may be broadband feedback, and the feedback mode of the CQI may be subband feedback, and the information of the pilot port used by the third network device in the third information, the RI adopted by the third network device, and the PMI adopted by the third network device.
  • the feedback mode can be broadband feedback, and the CQI feedback mode can be sub-band feedback.
  • the information of the pilot port used by the first network device in the second information, and the feedback mode of the RI used by the first network device may be broadband feedback, and the feedback mode of the PMI and CQI adopted by the first network device may be subband feedback.
  • the information of the pilot port used by the third network device in the third information, the feedback mode of the RI used by the third network device may be broadband feedback, and the feedback mode of the PMI and CQI adopted by the third network device may be a subband
  • the information of the pilot port used by the first network device in the second information, and the feedback mode of the RI used by the first network device may be broadband feedback, and the feedback mode of the PMI and CQI adopted by the first network device may be With feedback
  • the information of the pilot port used by the third network device in the third information, the feedback mode of the RI adopted by the third network device may be broadband feedback
  • the feedback mode of the PMI and CQI adopted by the third network device may be With feedback.
  • the feedback mode of the information of the pilot port used by the first network device in the second information may be broadband feedback, and the RI adopted by the first network device, the PMI used by the first network device, and the feedback mode of the CQI may be subband feedback.
  • the feedback mode of the information of the pilot port used by the third network device in the third information may be broadband feedback, the RI adopted by the third network device, and the PMI and CQI feedback mode adopted by the third network device may be subbands.
  • the feedback mode of the information of the pilot port used by the first network device in the second information may be broadband feedback, and the RI adopted by the first network device, the PMI used by the first network device, and the feedback mode of the CQI may be sub-
  • the feedback mode with feedback, and the information of the pilot port used by the third network device in the third information may be broadband feedback, and the RI adopted by the third network device and the PMI and CQI feedback mode adopted by the third network device may be sub- With feedback.
  • the information of the pilot port used by the first network device in the second information, the RI adopted by the first network device, and the PMI and CQI feedback mode adopted by the first network device may be subband feedback, and the first network device adopts The sub-band size of the information of the pilot port may be different from the sub-band size of the RI adopted by the first network device, the PMI used by the first network device, and the CQI (for example, the pilot used by the first network device)
  • the sub-band size for the sub-band size is 1M for the sub-band size, the RI for the first network device, the PMI for the first network device, and the sub-band size for the CQI are both 0.5M); or, in the third information
  • the information of the pilot port used by the third network device, the RI adopted by the third network device, the PMI of the third network device, and the feedback mode of the CQI may be subband feedback, and the information of the pilot port used by the third network device
  • the sub-band size that is targeted may be
  • the information of the pilot port used by the first network device in the second information, the RI adopted by the first network device, the PMI used by the first network device, and the feedback mode of the CQI may be subband feedback, and the first network
  • the sub-band size of the information about the pilot port used by the device may be different from the size of the sub-band for the RI used by the first network device, the PMI and the CQI used by the first network device, and the third information.
  • the information of the pilot port used by the third network device, the RI adopted by the third network device, the PMI of the third network device, and the feedback mode of the CQI may be subband feedback, and the information of the pilot port used by the third network device is directed to
  • the subband size may be different from the subband size of the RI adopted by the third network device, the PMI used by the third network device, and the CQI.
  • the subband of the information feedback of the pilot port used by the first network device in the second information may be independent of the RI adopted by the first network device in the second information, the PMI adopted by the first network device, and the subband of the CQI feedback.
  • the configuration is as follows: the information about the pilot port used by the first network device is 1M, the RI used by the first network device, the PMI used by the first network device, and the sub-band size of the CQI are 0.5M. or,
  • the sub-band of information feedback of the pilot port used by the third network device in the third information may be independent of the RI adopted by the third network device in the third information, the PMI used by the third network device, and the sub-band configuration of the CQI feedback; or ,
  • the sub-band of information feedback of the pilot port used by the first network device in the second information may be independent of the RI adopted by the first network device in the second information, the PMI used by the first network device, and the sub-band configuration of the CQI feedback.
  • the sub-band of information feedback of the pilot port used by the third network device in the three information may be independent of the RI adopted by the third network device in the third information, the PMI adopted by the third network device, and the sub-band configuration of the CQI feedback.
  • the feedback period of the second information may be different from the feedback period of the third information, and the second network device independently configures the feedback period of the second information and the feedback period of the third information.
  • the first network device may set a shorter feedback period for the information of relatively higher importance in the first information, and the importance of the first information is relatively lower.
  • the information sets a longer feedback period.
  • the feedback period of the second information may be shorter than the feedback period of the third information.
  • the feedback period of the second information is 5 ms
  • the feedback period of the third information is 10 ms.
  • the information of the pilot port used by the first network device in the second information is longer than the RI of the first network device, the PMI used by the first network device, and the CQI; or, in the third information, The information of the pilot port used by the third network device is higher than that of the third network device.
  • the PMI of the three network devices and the feedback period of the CQI are long; or the information of the pilot port used by the first network device in the second information is smaller than the RI adopted by the first network device, the PMI used by the first network device, and the CQI
  • the feedback period is long, and the information of the pilot port used by the third network device in the third information is longer than the RI of the third network device, the PMI used by the third network device, and the feedback period of the CQI.
  • the RI adopted by the first network device is longer than the PMI and CQI used by the first network device, or the third network device in the third information.
  • the information of the pilot port used, the RI used by the third network device is longer than the PMI and CQI used by the third network device, or the information of the pilot port used by the first network device in the second information, the first The RI of the network device is longer than the PMI and CQI used by the first network device, and the information of the pilot port used by the third network device in the third information and the RI adopted by the third network device are used by the third network device.
  • the feedback period of PMI and CQI is long.
  • the information of the pilot port used by the first network device in the second information, the RI adopted by the first network device, the PMI of the first network device is longer than the feedback period of the CQI, or the third network device in the third information.
  • the information of the pilot port used, the RI adopted by the third network device, and the PMI of the third network device are longer than the feedback period of the CQI; or the information of the pilot port used by the first network device in the second information, the first The RI of the network device, the PMI of the first network device is longer than the feedback period of the CQI, and the information of the pilot port used by the third network device in the third information, the RI adopted by the third network device, and the third network device are adopted.
  • the PMI has a longer feedback period than the CQI.
  • the period of information feedback of the pilot port used by the first network device in the second information may be independent of the RI adopted by the first network device in the second information, the PMI used by the first network device, and the periodic configuration of the CQI feedback.
  • the information feedback period of the pilot port used by the first network device is 10 ms, and the RI used by the first network device and the PMI and CQI feedback period adopted by the first network device are both 5 ms); or
  • the period of the information feedback of the pilot port used by the third network device in the third information may be independent of the RI adopted by the third network device in the third information, and the periodic configuration of the PMI and CQI feedback used by the third network device; or
  • the period of the feedback of the information of the pilot port used by the first network device in the second information may be independent of the RI adopted by the first network device in the second information, the periodic configuration of the PMI and the CQI feedback adopted by the first network device, and the third information.
  • the period of information feedback of the pilot port used by the third network device may be independent of the RI adopted by the third network device in the third information, and the PMI and CQI feedback adopted by the third network device. Cycle configuration.
  • the first information may further include: when the first network device and the second network device perform Single User Multiple Input Multiple Output (SU-MIMO) communication.
  • the fourth information of the first network device where the fourth information includes configuration information of a pilot port used by the first network device, an RI adopted by the first network device, a PMI adopted by the first network device, and at least one of CQIs. .
  • the fourth information may also be included in the first information.
  • the first information includes the second information, the third information, and the fourth information
  • the sum of the information amounts of the second information, the third information, and the fourth information is greater than the maximum information amount transmitted by the first network device. Then, the first network device takes precedence over the third information according to the fourth information, and the third information is discarded according to the priority of the second information.
  • the first information includes the second information, the third information, and the fourth information
  • the sum of the information amounts of the second information, the third information, and the fourth information is greater than the maximum information amount transmitted by the first network device. Then, the first network device takes precedence over the second information according to the fourth information, and the second information is discarded according to the priority of the third information.
  • the first information includes the second information, the third information, and the fourth information
  • the sum of the information amounts of the second information, the third information, and the fourth information is greater than the maximum information amount transmitted by the first network device. Then, the first network device takes precedence over the third information according to the second information, and the third information is discarded according to the priority of the fourth information.
  • the first information includes the second information, the third information, and the fourth information
  • the sum of the information amounts of the second information, the third information, and the fourth information is greater than the maximum information amount transmitted by the first network device. Then, the first network device takes precedence over the fourth information according to the second information, and the fourth information is discarded according to the priority of the third information.
  • the first information includes the second information, the third information, and the fourth information
  • the sum of the information amounts of the second information, the third information, and the fourth information is greater than the maximum information amount transmitted by the first network device. Then, the first network device takes precedence over the second information according to the third information, and the second information is discarded according to the priority of the fourth information.
  • the first information includes the second information, the third information, and the fourth information
  • the sum of the information amounts of the second information, the third information, and the fourth information is greater than the maximum information amount transmitted by the first network device
  • the first network device takes precedence over the fourth information according to the third information
  • the fourth information takes precedence over the priority of the second information. Discard.
  • the embodiment of the present invention determines the first information by using at least two pilot ports to measure the pilot signal sent by the second network device, where the first information includes: assuming that the first network device and the third network device are performed on the same time-frequency resource.
  • the spatial multiplexing is communicated with the second network device, at least one of the second information of the first network device and the third information of the third network device fully considers that the first network device and the third network device pass the same
  • the interference of the third network device to the first network device improves the accuracy of the channel measurement, and the accuracy of the measurement result received by the second network device follows The improvement improves the rationality of the configuration of the first network device and the third network device by the second network device.
  • the embodiment of the present invention provides a channel measurement and feedback method.
  • the at least two pilot ports in the embodiment include a first type of pilot port and a second type of pilot port. Referring to FIG. 6, the method includes:
  • Step 401 The second network device sends pilot port configuration information, where the pilot port configuration information is used to describe at least two pilot ports, and at least two pilot ports include a first type of pilot port and a second type of pilot port. port.
  • the first type of pilot port includes at least one set of pilot ports
  • the second type of pilot port includes at least two pilot ports.
  • Each group of pilot ports is described by independently configured pilot port configuration information, and a group of pilot ports includes at least two pilot ports.
  • the first type of pilot port may be a pilot port of a periodically transmitted pilot signal
  • the second type of pilot port may be a pilot port of a non-periodically transmitted pilot signal.
  • the first type of pilot port may be a pilot port configured by radio resource control (RRC) signaling
  • the second type of pilot port may be a downlink control signal.
  • the downlink control signaling is downlink scheduling DL grant signaling or uplink scheduling UL grant signaling.
  • the first type of pilot port may be a pilot port of a precoded pilot signal
  • the second type of pilot port may be a precoded pilot signal. Frequency port.
  • the first type of pilot port may be a CRS pilot port or a CSI-RS pilot port
  • the second type of pilot port may be a demodulation reference signal (Demodulation Reference Signal, referred to as DMRS) Pilot port.
  • DMRS Demodulation Reference Signal
  • the first type of pilot port may be a pilot port that transmits a pilot signal on all subbands, and the second type of pilot port may be sent on a set subband.
  • the pilot port of the pilot signal may be a pilot port that transmits a pilot signal on all subbands, and the second type of pilot port may be sent on a set subband. The pilot port of the pilot signal.
  • the subband of the first type of pilot port that transmits the pilot signal may be fixed, and the subband of the second type of pilot port that transmits the pilot signal may be variable.
  • the step 401 may include:
  • the second network device simultaneously transmits pilot port configuration information for describing the first type of pilot port and pilot port configuration information for describing the second type of pilot port.
  • the step 401 may include:
  • the second network device separately transmits pilot port configuration information for describing the first type of pilot port and pilot port configuration information for describing the second type of pilot port.
  • the second network device may first send the pilot port configuration information of the first type of pilot port, and the first network device measures the pilot signal of the first type of pilot port by using the first type of pilot port, and determines the first a message is fed back to the second network device (see step 402 and step 403 for details); the first network device sends configuration information of the second type of pilot port, and the first network device measures the second type through the second type of pilot port.
  • the pilot signal of the pilot port determines the first information and feeds back to the second network device (see steps 404 and 405 for details).
  • the pilot port configuration information of the second type of pilot port may be obtained by the second network device according to the first information determined by the first type of pilot port measurement, and the pilot signal of the second type of pilot port is pre-
  • the encoded pilot signal, the PMI used for precoding may be determined by the second network device based on the first information determined by the first type of pilot port measurement.
  • the pilot signal sent by the pilot signal of the pilot port used by the first network device and the pilot signal of the pilot port used by the third network device may also be determined.
  • the transmitted subband, the pilot signal of the second type of pilot port may be sent on the subband determined by the first type of pilot port measurement to determine the first information. That is to say, the measurement on the second type of pilot port is based on the measurement on the first type of pilot port to perform more accurate measurement, calculation and feedback, which improves the accuracy of the first information.
  • the step 401 can include:
  • the second network device sends the DCI, and the DCI includes pilot port configuration information for describing the first type of pilot port or pilot port configuration information for describing the second type of pilot port.
  • the transmission mode of the first type of pilot port may be bandwidth transmission
  • the transmission mode of the second type of pilot port may be subband transmission
  • the broadband transmission is to transmit pilot signals in all subbands
  • the subband transmission is set to The fixed subband transmits a pilot signal.
  • the system bandwidth is 5M and the guard band bandwidth is 0.5M.
  • the first type of pilot port transmits and transmits a pilot signal on a bandwidth of 4.5M (5M-0.5M), and the second type of pilot port is in a set subband ( The pilot signal is transmitted on the sub-band determined as described above when the first information is first determined.
  • the large square shown in Figure 7 represents the PRB. Different PRBs correspond to different sub-bands.
  • the squares represent the first type of pilot ports, the diamonds represent the second type of pilot ports, and the small squares in the large squares represent a PRB.
  • Various time-frequency resources As can be seen from FIG. 7, the first type of pilot port transmits a pilot signal on each PRB included in the full bandwidth, and the second type of pilot port transmits the pilot signal only on a specific subband, such as the first PRB. .
  • the pilot port configuration information used to describe the first type of pilot port may include a group number of at least one group of pilot ports adopted by the first network device and at least one group of pilot ports used by the third network device. Group No.
  • the pilot port configuration information used to describe the first type of pilot port may include a process ID of a CSI process corresponding to at least one group of pilot ports adopted by the first network device, and at least one group adopted by the third network device.
  • the process ID of the CSI process corresponding to the pilot port may include a process ID of a CSI process corresponding to at least one group of pilot ports adopted by the first network device, and at least one group adopted by the third network device.
  • the second type of pilot port may include a first pilot port that transmits the first pilot signal and a second pilot port that transmits the second pilot signal, where the first pilot signal and the second pilot signal are
  • the second network device is configured to perform spatial multiplexing on the same time-frequency resource, and the first network device measures the signal received by the first network device by using the first pilot signal, and the first network device measures the second through the second pilot signal.
  • the instantaneous interference of the signal received by the network device, the interference generated by the third network device and the first network device being spatially multiplexed on the same time-frequency resource to interfere with the signal received by the first network device.
  • the DCI sent by the second network device is as shown in Table 1 below:
  • the first network device may determine that the RI used by the first network device is 1 (1 layer), and the first pilot port is port 7 (port 7).
  • the instantaneous interference measured by the second pilot signal is due to the first network device measured by the first pilot signal generated by spatial multiplexing of the third network device and the first network device at the same time-frequency resource. The interference of the received signal.
  • the first pilot signal and the second pilot signal may both be non-zero power pilot signals.
  • the first pilot signal and the data signal sent by the second network device to the first network device may adopt the same precoding matrix
  • the second pilot signal and the data signal sent by the second network device to the third network device may be Use the same precoding matrix
  • the first pilot signal may be a demodulation pilot signal of the data signal sent by the second network device to the first network device;
  • the second pilot signal may be a demodulation pilot signal of the data signal sent by the second network device to the third network device;
  • the first pilot signal may be a demodulation pilot signal of the data signal sent by the second network device to the first network device
  • the second pilot signal may be a demodulation of the data signal sent by the second network device to the third network device. Pilot signal.
  • the pilot port configuration information used to describe the second type of pilot port may include a port number of a pilot port adopted by the first network device and a port number of a pilot port used by the third network device.
  • the pilot port configuration information used to describe the second type of pilot port may further include a subband of a pilot signal sent by the pilot port used by the first network device, and a pilot port used by the first network device.
  • a pilot sequence of the pilot signal a transmit power of the pilot signal of the pilot port used by the first network device, a subband transmitted by the pilot signal of the pilot port used by the third network device, and a guide used by the third network device At least one of a pilot sequence of a pilot signal of a frequency port and a transmission power of a pilot signal of a pilot port used by a third network device.
  • Step 402 The first network device measures, by using the first type of pilot port, the pilot signal sent by the second network device, and determines the first information.
  • the first information determined by the first type of pilot port measurement includes assuming that the first network device and the third network device communicate with the second network device by performing spatial multiplexing on the same time-frequency resource, the first network device At least one of the second information and the third information of the third network device.
  • the second information includes at least one of information of a pilot port adopted by the first network device, an RI adopted by the first network device, a PMI adopted by the first network device, and a CQI.
  • the third information includes at least one of information of a pilot port used by the third network device, an RI adopted by the third network device, a PMI adopted by the third network device, and a CQI.
  • the second information in the first information determined by the first type of pilot port measurement may include an RI adopted by the first network device, a PMI and a CQI adopted by the first network device, and are determined by using the first type of pilot port measurement.
  • the third information in the first information may include an RI adopted by the third network device and a PMI adopted by the third network device.
  • the second information in the first information determined by the first type of pilot port measurement may include a PMI and a CQI adopted by the first network device, and a third of the first information determined by the first type of pilot port measurement.
  • the information may include the PMI employed by the third network device.
  • the second information in the first information determined by the first type of pilot port measurement may include a PMI adopted by the first network device
  • the third information in the first information determined by the first type of pilot port measurement may be Including the PMI adopted by the third network device.
  • the second information in the first information determined by the first type of pilot port measurement may further include a subband of the pilot signal sent by the pilot port used by the first network device, and a guide used by the first network device.
  • a pilot sequence of a pilot signal of a frequency port, and a pilot signal of a pilot port used by a first network device At least one of the transmit powers, the third information in the first information determined by the first type of pilot port measurement may further include a subband and a third network sent by the pilot signal of the pilot port used by the third network device. At least one of a pilot sequence of a pilot signal of a pilot port used by the device, and a transmission power of a pilot signal of a pilot port used by the third network device.
  • the step 402 may include:
  • the first network device measures the pilot signals sent by the second network device by using the first type of pilot ports of the at least one set of the pilot ports, and obtains channel coefficients corresponding to the first type of pilot ports;
  • the channel coefficients corresponding to the first type of pilot ports in each group of pilot ports are formed into a channel coefficient matrix corresponding to each group of pilot ports;
  • the channel coefficient matrix corresponding to each group of pilot ports is sequentially multiplied with each precoding matrix in the precoding matrix set corresponding to each group of pilot ports to obtain an equivalent channel coefficient matrix;
  • the largest SINR is selected.
  • the CQI determines, according to the correspondence between the set SINR and the CQI, the information of the pilot port used by the first network device is the first network device when the maximum SINR is calculated.
  • the information about the pilot port corresponding to the equivalent channel coefficient matrix, the PMI used by the first network device is the PMI corresponding to the equivalent channel coefficient matrix used by the first network device when calculating the maximum SINR, and the first network device uses
  • the RI is the rank of the precoding matrix corresponding to the equivalent channel coefficient matrix used by the first network device
  • the information of the pilot port used by the third network device is the equivalent channel coefficient matrix used by the third network device when calculating the maximum SINR.
  • the PMI used by the third network device is the PMI corresponding to the equivalent channel coefficient matrix used by the third network device when calculating the maximum SINR, and the RI adopted by the third network device is adopted by the third network device.
  • each group of pilot ports in the M group of pilot ports is sequentially traversed, and each group of pilot ports is traversed, and each of the precoding matrix sets corresponding to each group of pilot ports is sequentially traversed.
  • a precoding matrix when traversing each precoding matrix, multiplying a channel coefficient matrix corresponding to a set of pilot ports traversed by a precoding matrix traversed to obtain an equivalent channel coefficient matrix, and the specific traversal process It will not be described in detail here.
  • Step 403 The first network device feeds back the first information determined by the first type of pilot port measurement to the second network device.
  • Step 404 The first network device measures, by using the second type of pilot port, the pilot signal sent by the second network device, and determines the first information.
  • the first information determined by the second type of pilot port measurement may include a CQI.
  • the step 404 can include:
  • the first network device measures the pilot signal sent by the second network device by using the second type of pilot port used by the first network device and the second type of pilot port used by the third network device, and obtains the first network device, etc.
  • the effective channel coefficient matrix and the equivalent channel coefficient matrix used by the third network device are the effective channel coefficient matrix and the equivalent channel coefficient matrix used by the third network device;
  • the first information is determined a second time according to the calculated SINR, wherein the CQI is determined according to the correspondence between the set SINR and the CQI.
  • the second network device respectively specifies a set of pilot ports or a pilot port for the first network device and the third network device, and because of the second type of pilot port
  • the pilot signal is precoded, and the equivalent channel coefficient matrix or the equivalent channel coefficient can be directly measured in the second type of pilot port, so when the equivalent channel coefficient matrix is obtained, it is not necessary to traverse each group of pilot ports and Each precoding matrix in the precoding matrix set corresponding to each group of pilot ports.
  • the second network device may send the pilot signal of the first type of pilot port once every first configured period, so as to timely replace the channel with good communication quality for the change of the channel, and implement the system. Adaptive. If the first period is 5 ms, the second network device sequentially transmits the pilot signals of the first type of pilot ports at 0 ms, 5 ms, 10 ms, and 15 ms.
  • the second network device may send a pilot signal of the second type of pilot port when the second network device has MU MIMO scheduling requirements, so as to determine a channel with better communication quality in time for each scheduling. If the second network device has a scheduling requirement at the 13th time, the second network device sends the pilot signal of the second type of pilot port at the 13th time, or sends the second type of the pilot port in the first few subframes of 13ms. Port signal.
  • the first information determined by the first type of pilot port measurement may be fed back to the second network device every second set period, or may be fed back to the second network device in time after each determination.
  • the first information determined by the second type of pilot port measurement may be fed back to the second network device in time after each determination.
  • the first information determined by the first type of pilot port measurement does not include assuming that the first network device and the third network device perform space on the same time-frequency resource.
  • the first information determined by the second type of pilot port measurement comprises assuming that the first network device and the third network device perform spatial multiplexing on the same time-frequency resource and The CQI when the network device communicates.
  • the first information determined by the first type of pilot port measurement and the first information determined by the second type of pilot port measurement both include assuming the first network device and the third network.
  • the device determines the CQI in the first information determined by the second type of pilot port measurement by using the CQI when the second network device is spatially multiplexed on the same time-frequency resource, and is determined by the first type of pilot port measurement.
  • the CQIs in the first information are related to each other.
  • the CQI in the first information determined by the second type of pilot port measurement is correlated with the CQI in the first information determined by the first type of pilot port measurement, including determining by using the second type of pilot port measurement.
  • the CQI in the first information is obtained by the CQI difference in the first information determined by the first type of pilot port measurement.
  • the CQI determined by the first type of pilot port measurement is 10 dB
  • the CQI determined by the second type of pilot port measurement is 15.2 dB
  • the step 404 may include:
  • the second network device sends a signal in the first time unit
  • the signal sent by the second network device in the first time unit includes a first pilot signal and a second pilot signal, and the signal sent by the second network device in the first time unit does not include the signal sent to the first network device.
  • the first pilot signal is a data signal for demodulating the pilot signal and a data signal for transmitting the pilot signal to the third network device with the second pilot signal as the demodulation pilot signal.
  • the first pilot signal and the second pilot signal are sent by the second network device by spatial multiplexing on the same time-frequency resource, and the first pilot port measures the signal received by the first network device by using the first pilot signal.
  • the second pilot port measures instantaneous interference with the signal received by the first network device by using the second pilot signal.
  • each small square in the large square represents each time-frequency resource in a PRB
  • the oblique line represents the first pilot signal
  • the vertical line represents the second. Pilot signal. That is to say, a small square with a diagonal line indicates that the first pilot signal is transmitted on the time-frequency resource, and a small square with a vertical line indicates that the second pilot signal is transmitted on the time-frequency resource.
  • the second network device sends the first pilot signal and the second pilot signal on the PRB, but the first pilot signal sent to the first network device is not sent on the PRB. Transmitting a data signal of the pilot signal and transmitting to the third network device
  • the second pilot signal is a data signal for demodulating the pilot signal.
  • the first time unit may be one time slot, one subframe, or one radio frame.
  • the step 404 can include:
  • the second network device sends a signal in the first time unit
  • the signal sent by the second network device in the first time unit includes a first pilot signal, a second pilot signal, a data signal sent to the first network device, where the first pilot signal is a demodulation pilot signal, and
  • the second pilot signal transmitted to the third network device is a data signal for demodulating the pilot signal.
  • the first pilot signal and the second pilot signal are sent by the second network device by spatial multiplexing on the same time-frequency resource, and the first pilot port measures the signal received by the first network device by using the first pilot signal.
  • the second pilot port measures instantaneous interference with the signal received by the first network device by using the second pilot signal.
  • each small square in the large square represents each time-frequency resource in a PRB
  • the oblique line represents the first pilot signal
  • the vertical line represents the second.
  • a pilot signal, a triangle indicating a data signal sent to the first network device with the first pilot signal as a demodulation pilot signal, and a circle indicating a second pilot signal transmitted to the third network device as a demodulation pilot The data signal of the signal. That is to say, a small square with a diagonal line indicates that the first pilot signal is transmitted on the time-frequency resource, and a small square with a vertical line indicates that the second pilot signal is transmitted on the time-frequency resource, and has a small triangle.
  • the square space indicates that the data signal sent to the first network device and the first pilot signal is used as the demodulation pilot signal is sent on the time-frequency resource, and the small square with a circular indicates that the time-frequency resource is sent to the first
  • the second pilot signal sent by the network device is a data signal for demodulating the pilot signal.
  • the second network device sends the first pilot signal, the second pilot signal, and the data signal sent by the first network device to the first network device as the demodulation pilot signal on the PRB.
  • a data signal sent to the third network device with the second pilot signal as a demodulation pilot signal is a data signal for demodulating the pilot signal.
  • the first time unit may be one time slot, one subframe, or one radio frame.
  • the step 404 may include:
  • the second network device sends a signal in the first time unit
  • the signal sent by the second network device in the first time unit includes a first pilot signal, a second pilot signal, and a data signal that is sent to the first network device and uses the first pilot signal as a demodulation pilot signal. And the signal sent by the second network device in the first time unit does not include the data signal that is sent to the third network device and uses the second pilot signal as the demodulation pilot signal.
  • the first pilot signal and the second pilot signal are The second network device is configured to perform spatial multiplexing on the same time-frequency resource, where the first pilot port measures the signal received by the first network device by using the first pilot signal, and the second pilot port passes the second pilot signal. Instantaneous interference to signals received by the first network device is measured. The large square shown in Fig.
  • each small square in the large square represents each time-frequency resource in a PRB
  • the oblique line represents the first pilot signal
  • the vertical line represents the second.
  • the pilot signal, the triangle represents the data signal sent to the first network device with the first pilot signal as the demodulation pilot signal. That is to say, a small square with a diagonal line indicates that the first pilot signal is transmitted on the time-frequency resource, and a small square with a vertical line indicates that the second pilot signal is transmitted on the time-frequency resource, and has a small triangle.
  • the square indicates that the data signal sent to the first network device and using the first pilot signal as the demodulation pilot signal is transmitted on the time-frequency resource. As shown in FIG.
  • the second network device sends the first pilot signal, the second pilot signal, and the data transmitted by the first network device to the first network device as the demodulation pilot signal on the PRB. Signal, but the data signal transmitted to the third network device with the second pilot signal as the demodulation pilot signal is not transmitted on the PRB.
  • the first time unit may be one time slot, one subframe, or one radio frame.
  • the step 404 may include:
  • the second network device sends a signal in the first time unit
  • the signal sent by the second network device in the first time unit includes a first pilot signal, a second pilot signal, and a data signal that is sent to the third network device and uses the second pilot signal as a demodulation pilot signal. And the signal sent by the second network device in the first time unit does not include the data signal that is sent to the first network device and uses the first pilot signal as the demodulation pilot signal.
  • the first pilot signal and the second pilot signal are sent by the second network device by spatial multiplexing on the same time-frequency resource, and the first pilot port measures the signal received by the first network device by using the first pilot signal.
  • the second pilot port measures instantaneous interference with the signal received by the first network device by using the second pilot signal.
  • each small square in the large square represents each time-frequency resource in a PRB
  • the oblique line represents the first pilot signal
  • the vertical line represents the second.
  • the pilot signal, the circle represents the data signal sent to the third network device with the second pilot signal as the demodulation pilot signal. That is, a small square with a diagonal line indicates that the first pilot signal is transmitted on the time-frequency resource, and a small square with a vertical line indicates that the second pilot signal is transmitted on the time-frequency resource, and has a circular shape.
  • the small square indicates that the data signal transmitted to the third network device and using the second pilot signal as the demodulation pilot signal is transmitted on the time-frequency resource.
  • the second network device sends the first pilot signal, the second pilot signal, and the third network to the PRB.
  • the second pilot signal sent by the device is a data signal for demodulating the pilot signal, but the data signal sent to the first network device and using the first pilot signal as the demodulation pilot signal is not transmitted on the PRB.
  • the first time unit may be one time slot, one subframe, or one radio frame.
  • Step 405 The first network device feeds back the first information determined by the second type of pilot port measurement to the second network device.
  • the embodiment of the present invention determines the first information by using at least two pilot ports to measure the pilot signal sent by the second network device, where the first information includes: assuming that the first network device and the third network device are performed on the same time-frequency resource.
  • the spatial multiplexing is communicated with the second network device, at least one of the second information of the first network device and the third information of the third network device fully considers that the first network device and the third network device pass the same
  • the interference of the third network device to the first network device improves the accuracy of the channel measurement, and the accuracy of the measurement result received by the second network device follows The improvement improves the rationality of the configuration of the first network device and the third network device by the second network device.
  • An embodiment of the present invention provides a first network device, where the first network device is the first network device according to any one of Embodiment 1 to Embodiment 4.
  • the first network device includes:
  • the receiving module 501 is configured to receive pilot port configuration information sent by the second network device, where the pilot port configuration information is used to describe at least two pilot ports.
  • a determining module 502 configured to measure, by using at least two pilot ports, a pilot signal sent by the second network device, to determine first information, where the first information includes: assuming that the first network device and the third network device pass at the same time At least one of the second information of the first network device and the third information of the third network device when the spatial multiplexing is performed on the frequency resource, and the second information includes the pilot used by the first network device At least one of the information of the port, the RI adopted by the first network device, the PMI used by the first network device, and the CQI, where the third information includes information of a pilot port used by the third network device, and the third network device uses At least one of a RI, a PMI used by the third network device, and a CQI;
  • the sending module 503 is configured to feed back the first information to the second network device.
  • the receiving module 501 can be implemented by a receiver
  • the determining module 502 can be implemented by a processor
  • the transmitting module 503 can be implemented by a transmitter.
  • the first network device and the third network device pass the same time-frequency resource.
  • the communication between the row space multiplexing and the second network device means that the first network device and the third network device communicate with the second network device by spatial multiplexing on the same PRB.
  • the first network device is the first UE
  • the third network device is the second UE
  • the second network device is the base station
  • the first network device is the first slave base station
  • the third network device is the second slave base station
  • the second network is
  • the device is the primary base station
  • the first network device is the first secondary UE
  • the third network device is the second secondary UE
  • the second network device is the primary UE.
  • the third network device that performs spatial multiplexing on the same time-frequency resource with the first network device and communicates with the second network device may be one or more.
  • the second network device may configure, according to the first information, scheduling information when the first network device and the third network device perform spatial multiplexing on the same time-frequency resource to communicate with the second network device. In order to make the scheduling information more accurate. For details, see Embodiment 1 or Embodiment 2.
  • the content included in the pilot port configuration information may be the same as any of the embodiments in Embodiment 1 to Embodiment 4, and details are not described herein.
  • the at least two pilot ports may be a group of pilot ports or at least two groups of pilot ports.
  • the at least two pilot ports may be a group of pilot ports or at least two groups of pilot ports.
  • the determining module 502 can include:
  • the measuring unit 5021 is configured to measure, by using a set of pilot ports or each of the at least two sets of pilot ports, pilot signals sent by the second network device, to obtain channel coefficients corresponding to the respective pilot ports;
  • the component unit 5022 is configured to form, by using a channel coefficient corresponding to each pilot port of each group of pilot ports, a channel coefficient matrix corresponding to each group of pilot ports;
  • the multiplying unit 5023 is configured to respectively multiply the channel coefficient matrix corresponding to each group of pilot ports by each precoding matrix in the precoding matrix set corresponding to each group of pilot ports to obtain an equivalent channel coefficient matrix;
  • the calculating unit 5024 is configured to sequentially calculate an SINR when the first network device and the third network device adopt respective equivalent channel coefficient matrices;
  • a selecting unit 5025 configured to select a maximum SINR among all calculated SINRs
  • the determining unit 5026 is configured to determine, according to the maximum SINR, the first information, where the CQI determines, according to the correspondence between the set SINR and the CQI, the information of the pilot port used by the first network device is the maximum SINR when the maximum SINR is calculated.
  • the information of the pilot port corresponding to the equivalent channel coefficient matrix used by the network device, the PMI used by the first network device is the PMI corresponding to the equivalent channel coefficient matrix used by the first network device when calculating the maximum SINR, and the first network
  • the RI used by the device is the largest
  • the information of the pilot port used by the third network device is the equivalent channel coefficient matrix used by the third network device when calculating the maximum SINR.
  • the information about the corresponding pilot port, the PMI used by the third network device is the PMI corresponding to the equivalent channel coefficient matrix used by the third network device when calculating the maximum SINR
  • the RI used by the third network device is calculated as the maximum SINR.
  • the measuring unit 5021, the component unit 5022, the multiplying unit 5023, the calculating unit 5024, the selecting unit 5025, and the determining unit 5026 may be implemented by different processors or by the same processor.
  • the measurement unit 5021, the composition unit 5022, the multiplication unit 5023, the calculation unit 5024, the selection unit 5025, and the determination unit 5026 specifically determine the first information. See Embodiment 3 for details.
  • the information about the pilot port used by the first network device may further include a subband transmitted by the pilot signal of the pilot port used by the first network device, and the first network device uses At least one of a pilot sequence of a pilot signal of a pilot port, and a transmit power of a pilot signal of a pilot port used by the first network device, and the information of the pilot port used by the third network device may further include a third The sub-band of the pilot signal transmitted by the pilot port of the network device, the pilot sequence of the pilot signal of the pilot port used by the third network device, and the transmit power of the pilot signal of the pilot port used by the third network device At least one of them.
  • the receiving module 501 can be used to:
  • the at least two pilot ports may include a first type of pilot port and a second type of pilot port.
  • the determining module 502 can include:
  • the receiving unit 5020 is configured to receive a signal sent by the second network device in the first time unit
  • the signal sent by the second network device in the first time unit may include a first pilot signal and a second pilot signal, and the signal sent by the second network device in the first time unit does not include sending to the first network device.
  • the first pilot signal as a data signal for demodulating the pilot signal and the data signal sent to the third network device with the second pilot signal as the demodulation pilot signal; or, the second network device is in the first time unit
  • the transmitted signal may include a first pilot signal, a second pilot signal, a data signal sent to the first network device with the first pilot signal as a demodulation pilot signal, and a second signal sent to the third network device.
  • the pilot signal is a data signal for demodulating the pilot signal; or, the second network device is in the first time
  • the signal sent by the unit may include a first pilot signal and a second pilot signal, a data signal sent by the first network device with the first pilot signal as a demodulation pilot signal, and the second network device is in the first time.
  • the signal sent by the unit does not include the data signal sent to the third network device by using the second pilot signal as the demodulation pilot signal; or the signal sent by the second network device in the first time unit may include the first pilot signal.
  • the transmitted first pilot signal is a data signal for demodulating the pilot signal.
  • the first time unit may be one time slot, one subframe, or one radio frame.
  • the receiving unit 5020 can be implemented by a receiver.
  • the determining module 502 can include:
  • a first determining submodule configured to measure, by using the first type of pilot port, a pilot signal sent by the second network device, and determine the first information
  • a second determining submodule configured to measure, by using the second type of pilot port, the pilot signal sent by the second network device, and determine the first information.
  • the sending module 503 can include:
  • a first feedback submodule configured to feed back the first information determined by the first type of pilot port measurement to the second network device
  • the second feedback submodule is configured to feed back the first information determined by the second type of pilot port measurement to the second network device.
  • the first determining submodule and the second determining submodule may each include a measuring unit 5021, a component unit 5022, a multiplying unit 5023, a calculating unit 5024, a selecting unit 5025, and a determining unit 5026.
  • the receiving module 501 can be used to:
  • the DCI includes pilot port configuration information for describing the first type of pilot port or pilot port configuration information for describing the second type of pilot port.
  • a transmission mode of the first type of pilot port a transmission mode of the second type of pilot port, a pilot port configuration information of the first type of pilot port, and configuration information of the second type of pilot port, and a second type of guide
  • the structure of the frequency port, the feedback manner of the first information determined by the first type of pilot port measurement, and the feedback manner of the first information determined by the second type of pilot port measurement are described in step 401 of Embodiment 4, and More details.
  • the first information determined by the first type of pilot port measurement is measured.
  • the relationship between the first information determined by the second type of pilot port measurement may be the same as that of Embodiment 4, and will not be described in detail herein.
  • the feedback mode of the second information and the third information may be the same as step 303 of Embodiment 3, and details are not described herein again.
  • the feedback period of the second information and the third information may be the same as step 303 of Embodiment 3, and details are not described herein.
  • the first information may further include: fourth information of the first network device when the first network device performs SU-MIMO communication with the second network device, where the fourth information includes the first information.
  • the fourth information may be prioritized over the third information, the third information may be discarded in preference to the priority of the second information, or the fourth information may be prioritized over the second information, and the second information may be prioritized over the priority of the third information.
  • the discarding may be performed, or the third information may be prioritized over the third information according to the second information, or the second information may be prioritized over the fourth information, and the fourth information may be prioritized over the third information.
  • the priority of the information is discarded, or the third information is prioritized over the second information, the second information is discarded in preference to the priority of the fourth information, or the third information is prioritized over the fourth information, and the fourth information is prioritized over the fourth information.
  • the priority of the second information is discarded.
  • the embodiment of the present invention determines the first information by using at least two pilot ports to measure the pilot signal sent by the second network device, where the first information includes: assuming that the first network device and the third network device are performed on the same time-frequency resource.
  • the spatial multiplexing is communicated with the second network device, at least one of the second information of the first network device and the third information of the third network device fully considers that the first network device and the third network device pass the same
  • the interference of the third network device to the first network device improves the accuracy of the channel measurement, and the accuracy of the measurement result received by the second network device follows The improvement improves the rationality of the configuration of the first network device and the third network device by the second network device.
  • the embodiment of the present invention provides a second network device, which is the second network device according to any one of Embodiments 1 to Embodiment 4.
  • the second network device includes:
  • the sending module 601 is configured to send pilot port configuration information, where the pilot port configuration information is used to describe at least two pilot ports;
  • the receiving module 602 is configured to receive first information that is fed back by the first network device, where the first information is determined by the first network device measuring the pilot signal sent by the second network device by using at least two pilot ports, where the first information includes a hypothesis
  • the first network device and the third network device communicate with the second network device by spatial multiplexing on the same time-frequency resource, at least one of the second information of the first network device and the third information of the third network device
  • the second information includes information of a pilot port used by the first network device, an RI adopted by the first network device, a PMI adopted by the first network device, and a CQI, where the third information includes the third network device. At least one of the information of the pilot port used, the RI adopted by the third network device, the PMI adopted by the third network device, and the CQI.
  • the transmitting module 601 can be implemented by a transmitter, and the receiving module 602 can be implemented by a receiver.
  • the first network device and the third network device communicate with the second network device by performing spatial multiplexing on the same time-frequency resource, that is, the first network device and the third network device perform the same on the same PRB. Spatial multiplexing communicates with the second network device.
  • the first network device is the first UE
  • the third network device is the second UE
  • the second network device is the base station
  • the first network device is the first slave base station
  • the third network device is the second slave base station
  • the second network is
  • the device is the primary base station
  • the first network device is the first secondary UE
  • the third network device is the second secondary UE
  • the second network device is the primary UE.
  • the third network device that performs spatial multiplexing on the same time-frequency resource with the first network device and communicates with the second network device may be one or more.
  • the second network device may configure, according to the first information, scheduling information when the first network device and the third network device perform spatial multiplexing on the same time-frequency resource to communicate with the second network device. In order to make the scheduling information more accurate. For details, see Embodiment 1 or Embodiment 2.
  • the content included in the pilot port configuration information may be the same as any of the embodiments in Embodiment 1 to Embodiment 4, and details are not described herein.
  • the at least two pilot ports may be a group of pilot ports or at least two groups of pilot ports.
  • the at least two pilot ports may be a group of pilot ports or at least two groups of pilot ports.
  • the sending module 601 can be used,
  • the DCI is sent, and the DCI includes pilot port configuration information.
  • the at least two pilot ports may include a first type of pilot port and a second type of pilot port.
  • the sending module 601 is further configured to:
  • the signal sent by the first time unit may include the first pilot signal and the second pilot signal, and the signal sent by the first time unit does not include the first pilot signal sent by the first network device. Transmitting the data signal of the pilot signal and the data signal sent to the third network device by using the second pilot signal as the demodulation pilot signal; or the signal transmitted in the first time unit may include the first pilot signal, a second pilot signal, a data signal sent to the first network device with the first pilot signal as a demodulation pilot signal, and a data signal sent to the third network device with the second pilot signal as a demodulation pilot signal Or the signal transmitted in the first time unit may include a first pilot signal and a second pilot signal, and the data signal sent to the first network device by using the first pilot signal as a demodulation pilot signal, and The signal sent by the first time unit does not include the data signal sent to the third network device with the second pilot signal as the demodulation pilot signal; or the signal sent in the first time unit may include the first guide The signal and the second pilot signal, the data signal
  • the first time unit may be one time slot, one subframe, or one radio frame.
  • the receiving module 602 can be used to:
  • the sending module 601 can be used,
  • the DCI is transmitted, and the DCI includes pilot port configuration information for describing the first type of pilot port or pilot port configuration information for describing the second type of pilot port.
  • a transmission mode of the first type of pilot port a transmission mode of the second type of pilot port, a pilot port configuration information of the first type of pilot port, and configuration information of the second type of pilot port, and a second type of guide
  • the structure of the frequency port, the feedback manner of the first information determined by the first type of pilot port measurement, and the feedback manner of the first information determined by the second type of pilot port measurement are described in step 401 of Embodiment 4, and More details.
  • the first information determined by the first type of pilot port measurement is measured.
  • the relationship between the first information determined by the second type of pilot port measurement may be the same as that of Embodiment 4, and will not be described in detail herein.
  • the feedback mode of the second information and the third information may be the same as step 303 of Embodiment 3, and details are not described herein again.
  • the feedback period of the second information and the third information may be the same as step 303 of Embodiment 3, and details are not described herein.
  • the first information may further include: fourth information of the first network device when the first network device performs SU-MIMO communication with the second network device, where the fourth information includes the first information.
  • the embodiment of the present invention determines the first information by using at least two pilot ports to measure the pilot signal sent by the second network device, where the first information includes: assuming that the first network device and the third network device are performed on the same time-frequency resource.
  • the spatial multiplexing is communicated with the second network device, at least one of the second information of the first network device and the third information of the third network device fully considers that the first network device and the third network device pass the same
  • the interference of the third network device to the first network device improves the accuracy of the channel measurement, and the accuracy of the measurement result received by the second network device follows The improvement improves the rationality of the configuration of the first network device and the third network device by the second network device.
  • the embodiment of the present invention provides a channel measurement and feedback system.
  • the system includes a first network device 701, a second network device 702, and a third network device 703.
  • the device 702 and the third network device 703 are the first network device, the second network device, and the third network device, respectively, in any one of Embodiments 1 to 4.
  • the first network device 701 is a first UE (such as UE 1 shown in FIG. 1), and the third network device 703 is a second UE (such as UE 3 shown in FIG. 1).
  • the second network device 702 is a base station (such as the base station 2 shown in FIG. 1).
  • the base station controls communication between the first UE and communication of the second UE, and there is no master-slave relationship between the first UE and the second UE.
  • the first network device 701 is a first slave base station
  • the third network device 703 is a second slave base station
  • the second network device 702 is a master base station
  • the master base station controls communication of the first slave base station and the second slave base station. Communication.
  • the primary base station is a macro base station
  • the first secondary base station is one micro base station
  • the second secondary base station is another micro base station.
  • the first network The network device 701 is a first slave UE
  • the third network device 703 is a second slave UE
  • the second network device 702 is a master UE
  • the master UE controls communication of the first slave UE and communication of the second slave UE.
  • the embodiment of the present invention determines the first information by using at least two pilot ports to measure the pilot signal sent by the second network device, where the first information includes: assuming that the first network device and the third network device are performed on the same time-frequency resource.
  • the spatial multiplexing is communicated with the second network device, at least one of the second information of the first network device and the third information of the third network device fully considers that the first network device and the third network device pass the same
  • the interference of the third network device to the first network device improves the accuracy of the channel measurement, and the accuracy of the measurement result received by the second network device follows The improvement improves the rationality of the configuration of the first network device and the third network device by the second network device.
  • the network device provided by the foregoing embodiment is only illustrated by the division of the foregoing functional modules. In actual applications, the foregoing function allocation may be completed by different functional modules as needed. The internal structure of the device is divided into different functional modules to complete all or part of the functions described above.
  • the network device provided by the foregoing embodiment is in the same concept as the channel measurement and feedback method embodiment, and the specific implementation process is described in detail in the method embodiment, and details are not described herein again.
  • a person skilled in the art may understand that all or part of the steps of implementing the above embodiments may be completed by hardware, or may be instructed by a program to execute related hardware, and the program may be stored in a computer readable storage medium.
  • the storage medium mentioned may be a read only memory, a magnetic disk or an optical disk or the like.

Abstract

本发明实施例提供了一种信道测量和反馈方法、网络设备及系统,涉及通信技术领域,所述方法包括:第一网络设备接收第二网络设备发送的导频端口配置信息,导频端口配置信息用于描述至少两个导频端口;通过至少两个导频端口测量第二网络设备发送的导频信号,确定第一信息;第一信息包括假设第一网络设备和第三网络设备通过在相同的时频资源上进行空间复用与第二网络设备通信时,第一网络设备的第二信息和第三网络设备的第三信息中的至少一种,第二信息、第三信息分别包括第一网络设备、第三网络设备釆用的导频端口的信息、釆用的RI、釆用的PMI、以及CQI中的至少一种;将第一信息反馈给第二网络设备。本发明提高了信道测量的准确性。

Description

一种信道测量和反馈方法、网络设备及系统 技术领域
本发明涉及通信技术领域,特别涉及一种信道测量和反馈方法、网络设备及系统。
背景技术
波束赋形是一种信号处理技术,它基于自适应天线原理,目标是根据系统性能指标,形成对基带信号的最佳组合或者分配。基站与用户设备(User Equipment,简称UE)通信时,一般先由基站向UE发送导频信号,然后UE根据导频信号进行信道测量并将其结果反馈给基站,接着基站根据信道测量的结果对天线进行自适应调整,使天线发射的波束的主瓣对准UE(这一过程即被称为波束赋形),并对UE进行相应地配置,使得UE能够通过对准其的波束的主瓣与基站通信。
在多用户多输入多输出(Multi-User Multiple Input Multiple Output,简称MU MIMO)通信中,基站会在相同的时频资源上与至少两个UE通信,各个UE之间会存在干扰,但UE根据导频信号进行信道测量时,只对基站与该UE之间传输数据所采用的信道进行测量并将结果反馈给基站,并没有考虑到各个UE之间的干扰,导致基站接收到的测量结果不准确,进而导致基站对各个UE的配置不合理。
发明内容
为了解决反馈的信道估计结果不准确,进而导致系统自适应不准确的问题,本发明实施例提供了一种信道测量和反馈方法、网络设备及系统。所述技术方案如下:
第一方面,本发明实施例提供了一种信道测量和反馈方法,所述方法包括:
第一网络设备接收第二网络设备发送的导频端口配置信息,所述导频端口配置信息用于描述至少两个导频端口;
通过所述至少两个导频端口测量所述第二网络设备发送的导频信号,确定 第一信息;其中,所述第一信息包括假设所述第一网络设备和第三网络设备通过在相同的时频资源上进行空间复用与所述第二网络设备通信时,所述第一网络设备的第二信息和所述第三网络设备的第三信息中的至少一种,所述第二信息包括所述第一网络设备采用的导频端口的信息、所述第一网络设备采用的秩指示RI、所述第一网络设备采用的预编码矩阵指示PMI、以及信道质量指标CQI中的至少一种,所述第三信息包括所述第三网络设备采用的导频端口的信息、所述第三网络设备采用的RI、所述第三网络设备采用的PMI、以及CQI中的至少一种;
将所述第一信息反馈给所述第二网络设备。
结合第一方面,在本发明一种可能的实现方式中,所述导频端口配置信息包括导频端口的个数、导频端口的标识、导频端口的导频信号的导频图案、导频端口的导频信号的导频序列、导频端口的导频信号的发送功率、导频端口的导频信号的发送时刻、导频端口的导频信号发送的子带中的至少一种。
结合第一方面,在本发明另一种可能的实现方式中,所述至少两个导频端口为一组导频端口或者至少两组导频端口,各组导频端口分别采用独立配置的所述导频端口配置信息描述,一组导频端口包括至少一个导频端口。
结合第一方面,在本发明又一种可能的实现方式中,当所述至少两个导频端口为所述一组导频端口时,所述第二信息中的所述第一网络设备采用的导频端口的信息包括所述第一网络设备在所述一组导频端口中为所述第一网络设备选择的至少一个导频端口的端口号,所述第三信息中的所述第三网络设备采用的导频端口的信息包括所述第一网络设备在所述一组导频端口中为所述第三网络设备选择的至少一个导频端口的端口号;或者,
当所述至少两个导频端口为所述至少两组导频端口时,所述第一信息中的所述第一网络设备采用的导频端口的信息包括所述第一网络设备在所述至少两组导频端口中为所述第一网络设备选择的至少一组导频端口的组号,所述第三信息中的所述第三网络设备采用的导频端口的信息包括所述第一网络设备在所述至少两组导频端口中为所述第三网络设备选择的至少一组导频端口的组号。
结合第一方面,在本发明又一种可能的实现方式中,所述独立配置的导频端口配置信息与信道状态信息进程CSI process的配置信息一一对应,每个所述CSI process的配置信息包括非零功率的信道状态信息参考信号CSI-RS的配置 信息和信道状态信息干扰测量参考信号CSI-IM的配置信息。
结合第一方面,在本发明又一种可能的实现方式中,当所述至少两个导频端口为所述至少两组导频端口时,所述第一信息中的所述第一网络设备采用的导频端口的信息包括所述第一网络设备在所述至少两组导频端口中为所述第一网络设备选择的至少一组导频端口对应的CSI process的进程号,所述第三信息中的所述第三网络设备采用的导频端口的信息包括所述第一网络设备在所述至少两组导频端口中为所述第三网络设备选择的至少一组导频端口对应的CSI process的进程号。
结合第一方面,在本发明又一种可能的实现方式中,所述第一网络设备采用的导频端口的信息还包括所述第一网络设备采用的导频端口的导频信号发送的子带、所述第一网络设备采用的导频端口的导频信号的导频序列、所述第一网络设备采用的导频端口的导频信号的发送功率中的至少一种,所述第三网络设备采用的导频端口的信息还包括所述第三网络设备采用的导频端口的导频信号发送的子带、所述第三网络设备采用的导频端口的导频信号的导频序列、所述第三网络设备采用的导频端口的导频信号的发送功率中的至少一种。
结合第一方面,在本发明又一种可能的实现方式中,所述至少两个导频端口包括第一类导频端口和第二类导频端口,所述第一类导频端口包括至少一组导频端口,所述第二类导频端口包括至少两个导频端口。
结合第一方面,在本发明又一种可能的实现方式中,所述第一类导频端口为周期发送的导频信号的导频端口,所述第二类导频端口为非周期发送的导频信号的导频端口;或者,
所述第一类导频端口为无线资源控制RRC信令配置的导频端口,所述第二类导频端口为下行控制信令配置的导频端口,所述下行控制信令为下行调度DL grant信令或者上行调度UL grant信令;或者,
所述第一类导频端口为未经过预编码的导频信号的导频端口,所述第二类导频端口为经过预编码的导频信号的导频端口;或者,
所述第一类导频端口为CRS导频端口或者CSI-RS导频端口,所述第二类导频端口为解调参考信号DMRS导频端口;或者,
所述第一类导频端口为在所有子带上发送导频信号的导频端口,所述第二类导频端口为在设定的子带上发送导频信号的导频端口;或者,
所述第一类导频端口发送导频信号的子带是固定的,所述第二类导频端口 发送导频信号的子带是可变的。
结合第一方面,在本发明又一种可能的实现方式中,所述第二类导频端口包括发送第一导频信号的第一导频端口和发送第二导频信号的第二导频端口,所述第一导频信号和所述第二导频信号是所述第二网络设备通过在相同的时频资源上进行空间复用发送的,所述第一网络设备通过所述第一导频信号测量所述第一网络设备接收的信号,所述第一网络设备通过所述第二导频信号测量对所述第一网络设备接收的信号的瞬时干扰,所述瞬时干扰为所述第三网络设备与所述第一网络设备在相同的时频资源上进行空间复用而产生的对所述第一网络设备接收的信号的干扰。
结合第一方面,在本发明又一种可能的实现方式中,所述第一导频信号和所述第二导频信号均为非零功率的导频信号。
结合第一方面,在本发明又一种可能的实现方式中,所述第一导频信号和所述第二网络设备向所述第一网络设备发送的数据信号采用相同的预编码矩阵,所述第二导频信号与所述第二网络设备向所述第三网络设备发送的数据信号采用相同的预编码矩阵。
结合第一方面,在本发明又一种可能的实现方式中,所述第一导频信号为所述第二网络设备向所述第一网络设备发送的数据信号的解调导频信号;或者,
所述第二导频信号为所述第二网络设备向所述第三网络设备发送的数据信号的解调导频信号;或者,
所述第一导频信号为所述第二网络设备向所述第一网络设备发送的数据信号的解调导频信号,所述第二导频信号为所述第二网络设备向所述第三网络设备发送的数据信号的解调导频信号。
结合第一方面,在本发明又一种可能的实现方式中,所述通过所述至少两个导频端口测量所述第二网络设备发送的导频信号,包括:
接收所述第二网络设备在第一时间单元发送的信号;
其中,所述第二网络设备在第一时间单元发送的信号包括所述第一导频信号和所述第二导频信号,且所述第二网络设备在第一时间单元发送的信号不包括向所述第一网络设备发送的以所述第一导频信号为解调导频信号的数据信号和向所述第三网络设备发送的以所述第二导频信号为解调导频信号的数据信号;或者,
所述第二网络设备在第一时间单元发送的信号包括所述第一导频信号、所述第二导频信号、所述向所述第一网络设备发送的以所述第一导频信号为解调导频信号的数据信号和所述向所述第三网络设备发送的以所述第二导频信号为解调导频信号的数据信号;或者,
所述第二网络设备在第一时间单元发送的信号包括所述第一导频信号和所述第二导频信号、所述向所述第一网络设备发送的以所述第一导频信号为解调导频信号的数据信号,且所述第二网络设备在第一时间单元发送的信号不包括所述向所述第三网络设备发送的以所述第二导频信号为解调导频信号的数据信号;或者,
所述第二网络设备在第一时间单元发送的信号包括所述第一导频信号和所述第二导频信号、所述向所述第三网络设备发送的以所述第二导频信号为解调导频信号的数据信号,且所述第二网络设备在第一时间单元发送的信号不包括所述向所述第一网络设备发送的以所述第一导频信号为解调导频信号的数据信号。
结合第一方面,在本发明又一种可能的实现方式中,所述第一时间单元为一个时隙、一个子帧或者一个无线帧。
结合第一方面,在本发明又一种可能的实现方式中,通过所述第一类导频端口测量确定的第一信息不包括假设所述第一网络设备和所述第三网络设备通过在相同的时频资源上进行空间复用与所述第二网络设备通信时的CQI,通过所述第二类导频端口测量确定的第一信息包括假设所述第一网络设备和所述第三网络设备通过在相同的时频资源上进行空间复用与所述第二网络设备通信时的CQI。
结合第一方面,在本发明又一种可能的实现方式中,通过所述第一类导频端口测量确定的第一信息和通过所述第二类导频端口测量确定的第一信息均包括假设所述第一网络设备和所述第三网络设备通过在相同的时频资源上进行空间复用与所述第二网络设备通信时的CQI,且通过所述第二类导频端口测量确定的第一信息中的CQI与通过所述第一类导频端口测量确定的第一信息中的CQI相互关联。
结合第一方面,在本发明又一种可能的实现方式中,通过所述第二类导频端口测量确定的第一信息中的CQI与通过所述第一类导频端口测量确定的第一信息中的CQI相互关联,包括通过所述第二类导频端口测量确定的第一信息 中的CQI,是通过所述第一类导频端口测量确定的第一信息中的CQI差分得到的。
结合第一方面,在本发明又一种可能的实现方式中,所述第二信息和所述第三信息的反馈模式采用以下一种或多种方式进行独立配置,其中,所述反馈模式包括子带反馈和宽带反馈,所述子带反馈为针对各个子带分别反馈一个所述第二信息或所述第三信息,所述宽带反馈为针对所有子带整体反馈一个所述第二信息或所述第三信息:
所述第二信息的反馈模式为子带反馈,所述第三信息的反馈模式为宽带反馈;
所述第二信息中所述第一网络设备采用的导频端口的信息、所述第一网络设备采用的RI、所述第一网络设备采用的PMI的反馈模式为宽带反馈,所述CQI的反馈模式为子带反馈,或者,所述第二信息中所述第一网络设备采用的导频端口的信息、所述第一网络设备采用的RI的反馈模式为宽带反馈,所述第一网络设备采用的PMI、所述CQI的反馈模式为子带反馈,或者,所述第二信息中所述第一网络设备采用的导频端口的信息的反馈模式为宽带反馈,所述第一网络设备采用的RI、所述第一网络设备采用的PMI、所述CQI的反馈模式为子带反馈;
所述第三信息中所述第三网络设备采用的导频端口的信息、所述第三网络设备采用的RI、所述第三网络设备采用的PMI的反馈模式为宽带反馈,所述CQI的反馈模式为子带反馈,或者,所述第三信息中所述第三网络设备采用的导频端口的信息、所述第三网络设备采用的RI的反馈模式为宽带反馈,所述第三网络设备采用的PMI、所述CQI的反馈模式为子带反馈,或者,所述第三信息中所述第三网络设备采用的导频端口的信息的反馈模式为宽带反馈,所述第三网络设备采用的RI、所述第三网络设备采用的PMI、所述CQI的反馈模式为子带反馈。
结合第一方面,在本发明又一种可能的实现方式中,所述第二信息中所述第一网络设备采用的导频端口的信息反馈的子带独立于所述第二信息中所述第一网络设备采用的RI、所述第一网络设备采用的PMI、所述CQI反馈的子带配置;或者,
所述第三信息中所述第三网络设备采用的导频端口的信息反馈的子带独立于所述第三信息中所述第三网络设备采用的RI、所述第三网络设备采用的 PMI、所述CQI反馈的子带配置;或者,
所述第二信息中所述第一网络设备采用的导频端口的信息反馈的子带独立于所述第二信息中所述第一网络设备采用的RI、所述第一网络设备采用的PMI、所述CQI反馈的子带配置,所述第三信息中所述第三网络设备采用的导频端口的信息反馈的子带独立于所述第三信息中所述第三网络设备采用的RI、所述第三网络设备采用的PMI、所述CQI反馈的子带配置。
结合第一方面,在本发明又一种可能的实现方式中,所述第二信息和所述第三信息的反馈周期采用以下一种或多种方式进行独立配置:
所述第二信息的反馈周期比所述第三信息的反馈周期短;
所述第二信息中所述第一网络设备采用的导频端口的信息比所述第一网络设备采用的RI、所述第一网络设备采用的PMI、以及所述CQI的反馈周期长,或者,所述第二信息中所述第一网络设备采用的导频端口的信息、所述第一网络设备采用的RI比所述第一网络设备采用的PMI、所述CQI的反馈周期长,或者,所述第二信息中所述第一网络设备采用的导频端口的信息、所述第一网络设备采用的RI、所述第一网络设备采用的PMI比所述CQI的反馈周期长;
所述第三信息中所述第三网络设备采用的导频端口的信息比所述第三网络设备采用的RI、所述第三网络设备采用的PMI、以及所述CQI的反馈周期长,或者,所述第三信息中所述第三网络设备采用的导频端口的信息、所述第三网络设备采用的RI比所述第三网络设备采用的PMI、所述CQI的反馈周期长,或者,所述第三信息中所述第三网络设备采用的导频端口的信息、所述第三网络设备采用的RI、所述第三网络设备采用的PMI比所述CQI的反馈周期长。
结合第一方面,在本发明又一种可能的实现方式中,所述第二信息中所述第一网络设备采用的导频端口的信息反馈的周期独立于所述第二信息中所述第一网络设备采用的RI、所述第一网络设备采用的PMI、所述CQI反馈的周期配置;或者,
所述第三信息中所述第三网络设备采用的导频端口的信息反馈的周期独立于所述第三信息中所述第三网络设备采用的RI、所述第三网络设备采用的PMI、所述CQI反馈的周期配置;或者,
所述第二信息中所述第一网络设备采用的导频端口的信息反馈的周期独 立于所述第二信息中所述第一网络设备采用的RI、所述第一网络设备采用的PMI、所述CQI反馈的周期配置,所述第三信息中所述第三网络设备采用的导频端口的信息反馈的周期独立于所述第三信息中所述第三网络设备采用的RI、所述第三网络设备采用的PMI、所述CQI反馈的周期配置。
结合第一方面,在本发明又一种可能的实现方式中,所述第一信息还包括假设所述第一网络设备与所述第二网络设备进行单用户多输入多输出SU-MIMO通信时,所述第一网络设备的第四信息,所述第四信息包括所述第一网络设备采用的导频端口的配置信息、所述第一网络设备采用的RI、所述第一网络设备采用的PMI、以及CQI中的至少一种。
结合第一方面,在本发明又一种可能的实现方式中,当所述第一信息包括所述第二信息、所述第三信息和所述第四信息时,若所述第二信息、所述第三信息和所述第四信息的信息量之和大于所述第一网络设备传输的最大信息量,则按照所述第四信息优先于所述第三信息,所述第三信息优先于所述第二信息的优先级进行丢弃,或者,
按照所述第四信息优先于所述第二信息,所述第二信息优先于所述第三信息的优先级进行丢弃,或者,
按照所述第二信息优先于所述第三信息,所述第三信息优先于所述第四信息的优先级进行丢弃,或者,
按照所述第二信息优先于所述第四信息,所述第四信息优先于所述第三信息的优先级进行丢弃,或者,
按照所述第三信息优先于所述第二信息,所述第二信息优先于所述第四信息的优先级进行丢弃,或者,
按照所述第三信息优先于所述第四信息,所述第四信息优先于所述第二信息的优先级进行丢弃。
第二方面,本发明实施例提供了一种信道测量和反馈方法,所述方法包括:
第二网络设备发送导频端口配置信息,所述导频端口配置信息用于描述至少两个导频端口;
接收第一网络设备反馈的第一信息,所述第一信息是所述第一网络设备通过所述至少两个导频端口测量所述第二网络设备发送的导频信号确定的,所述第一信息包括假设所述第一网络设备和第三网络设备通过在相同的时频资源上进行空间复用与所述第二网络设备通信时,所述第一网络设备的第二信息和 所述第三网络设备的第三信息中的至少一种,所述第二信息包括所述第一网络设备采用的导频端口的信息、所述第一网络设备采用的秩指示RI、所述第一网络设备采用的预编码矩阵指示PMI、以及信道质量指标CQI中的至少一种,所述第三信息包括所述第三网络设备采用的导频端口的信息、所述第三网络设备采用的RI、所述第三网络设备采用的PMI、以及CQI中的至少一种。
结合第二方面,在本发明一种可能的实现方式中,所述导频端口配置信息包括导频端口的个数、导频端口的标识、导频端口的导频信号的导频图案、导频端口的导频信号的导频序列、导频端口的导频信号的发送功率、导频端口的导频信号的发送时刻、导频端口的导频信号发送的子带中的至少一种。
结合第二方面,在本发明另一种可能的实现方式中,所述至少两个导频端口为一组导频端口或者至少两组导频端口,各组导频端口分别采用独立配置的所述导频端口配置信息描述,一组导频端口包括至少一个导频端口。
结合第二方面,在本发明又一种可能的实现方式中,当所述至少两个导频端口为所述一组导频端口时,所述第二信息中的所述第一网络设备采用的导频端口的信息包括所述第一网络设备在所述一组导频端口中为所述第一网络设备选择的至少一个导频端口的端口号,所述第三信息中的所述第三网络设备采用的导频端口的信息包括所述第一网络设备在所述一组导频端口中为所述第三网络设备选择的至少一个导频端口的端口号;或者,
当所述至少两个导频端口为所述至少两组导频端口时,所述第一信息中的所述第一网络设备采用的导频端口的信息包括所述第一网络设备在所述至少两组导频端口中为所述第一网络设备选择的至少一组导频端口的组号,所述第三信息中的所述第三网络设备采用的导频端口的信息包括所述第一网络设备在所述至少两组导频端口中为所述第三网络设备选择的至少一组导频端口的组号。
结合第二方面,在本发明又一种可能的实现方式中,所述独立配置的导频端口配置信息与信道状态信息进程CSI process的配置信息一一对应,每个所述CSI process的配置信息包括非零功率的信道状态信息参考信号CSI-RS的配置信息和信道状态信息干扰测量参考信号CSI-IM的配置信息。
结合第二方面,在本发明又一种可能的实现方式中,当所述至少两个导频端口为所述至少两组导频端口时,所述第一信息中的所述第一网络设备采用的导频端口的信息包括所述第一网络设备在所述至少两组导频端口中为所述第 一网络设备选择的至少一组导频端口对应的CSI process的进程号,所述第三信息中的所述第三网络设备采用的导频端口的信息包括所述第一网络设备在所述至少两组导频端口中为所述第三网络设备选择的至少一组导频端口对应的CSI process的进程号。
结合第二方面,在本发明又一种可能的实现方式中,所述第一网络设备采用的导频端口的信息还包括所述第一网络设备采用的导频端口的导频信号发送的子带、所述第一网络设备采用的导频端口的导频信号的导频序列、所述第一网络设备采用的导频端口的导频信号的发送功率中的至少一种,所述第三网络设备采用的导频端口的信息还包括所述第三网络设备采用的导频端口的导频信号发送的子带、所述第三网络设备采用的导频端口的导频信号的导频序列、所述第三网络设备采用的导频端口的导频信号的发送功率中的至少一种。
结合第二方面,在本发明又一种可能的实现方式中,所述至少两个导频端口包括第一类导频端口和第二类导频端口,所述第一类导频端口包括至少一组导频端口,所述第二类导频端口包括至少两个导频端口。
结合第二方面,在本发明又一种可能的实现方式中,所述第一类导频端口为周期发送的导频信号的导频端口,所述第二类导频端口为非周期发送的导频信号的导频端口;或者,
所述第一类导频端口为无线资源控制RRC信令配置的导频端口,所述第二类导频端口为下行控制信令配置的导频端口,所述下行控制信令为下行调度DL grant信令或者上行调度UL grant信令;或者,
所述第一类导频端口为未经过预编码的导频信号的导频端口,所述第二类导频端口为经过预编码的导频信号的导频端口;或者,
所述第一类导频端口为CRS导频端口或者CSI-RS导频端口,所述第二类导频端口为解调参考信号DMRS导频端口;或者,
所述第一类导频端口为在所有子带上发送导频信号的导频端口,所述第二类导频端口为在设定的子带上发送导频信号的导频端口;或者,
所述第一类导频端口发送导频信号的子带是固定的,所述第二类导频端口发送导频信号的子带是可变的。
结合第二方面,在本发明又一种可能的实现方式中,所述第二类导频端口包括发送第一导频信号的第一导频端口和发送第二导频信号的第二导频端口,所述第一导频信号和所述第二导频信号是所述第二网络设备通过在相同的时 频资源上进行空间复用发送的,所述第一网络设备通过所述第一导频信号测量所述第一网络设备接收的信号,所述第一网络设备通过所述第二导频信号测量对所述第一网络设备接收的信号的瞬时干扰,所述瞬时干扰为所述第三网络设备与所述第一网络设备在相同的时频资源上进行空间复用而产生的对所述第一网络设备接收的信号的干扰。
结合第二方面,在本发明又一种可能的实现方式中,所述第一导频信号和所述第二导频信号均为非零功率的导频信号。
结合第二方面,在本发明又一种可能的实现方式中,所述第一导频信号和所述第二网络设备向所述第一网络设备发送的数据信号采用相同的预编码矩阵,所述第二导频信号与所述第二网络设备向所述第三网络设备发送的数据信号采用相同的预编码矩阵。
结合第二方面,在本发明又一种可能的实现方式中,所述第一导频信号为所述第二网络设备向所述第一网络设备发送的数据信号的解调导频信号;或者,
所述第二导频信号为所述第二网络设备向所述第三网络设备发送的数据信号的解调导频信号;或者,
所述第一导频信号为所述第二网络设备向所述第一网络设备发送的数据信号的解调导频信号,所述第二导频信号为所述第二网络设备向所述第三网络设备发送的数据信号的解调导频信号。
结合第二方面,在本发明又一种可能的实现方式中,所述方法还包括:
在第一时间单元发送信号;
其中,在第一时间单元发送的信号包括所述第一导频信号和所述第二导频信号,且所述在第一时间单元发送的信号不包括向所述第一网络设备发送的以所述第一导频信号为解调导频信号的数据信号和向所述第三网络设备发送的以所述第二导频信号为解调导频信号的数据信号;或者,
所述在第一时间单元发送的信号包括所述第一导频信号、所述第二导频信号、所述向所述第一网络设备发送的以所述第一导频信号为解调导频信号的数据信号和所述向所述第三网络设备发送的以所述第二导频信号为解调导频信号的数据信号;或者,
所述在第一时间单元发送的信号包括所述第一导频信号和所述第二导频信号、所述向所述第一网络设备发送的以所述第一导频信号为解调导频信号的 数据信号,且所述在第一时间单元发送的信号不包括所述向所述第三网络设备发送的以所述第二导频信号为解调导频信号的数据信号;或者,
所述在第一时间单元发送的信号包括所述第一导频信号和所述第二导频信号、所述向所述第三网络设备发送的以所述第二导频信号为解调导频信号的数据信号,且所述在第一时间单元发送的信号不包括所述向所述第一网络设备发送的以所述第一导频信号为解调导频信号的数据信号。
结合第二方面,在本发明又一种可能的实现方式中,所述第一时间单元为一个时隙、一个子帧或者一个无线帧。
结合第二方面,在本发明又一种可能的实现方式中,接收的所述第二网络设备通过所述第一类导频端口测量确定的第一信息不包括假设所述第一网络设备和所述第三网络设备通过在相同的时频资源上进行空间复用与所述第二网络设备通信时的CQI,接收的所述第二网络设备通过所述第二类导频端口测量确定的第一信息包括假设所述第一网络设备和所述第三网络设备通过在相同的时频资源上进行空间复用与所述第二网络设备通信时的CQI。
结合第二方面,在本发明又一种可能的实现方式中,接收的所述第二网络设备通过所述第一类导频端口测量确定的第一信息和接收的所述第二网络设备通过所述第二类导频端口测量确定的第一信息均包括假设所述第一网络设备和所述第三网络设备通过在相同的时频资源上进行空间复用与所述第二网络设备通信时的CQI,且接收的所述第二网络设备通过所述第二类导频端口测量确定的第一信息中的CQI与接收的所述第二网络设备通过所述第一类导频端口测量确定的第一信息中的CQI相互关联。
结合第二方面,在本发明又一种可能的实现方式中,接收的所述第二网络设备通过所述第二类导频端口测量确定的第一信息中的CQI与接收的所述第二网络设备通过所述第一类导频端口测量确定的第一信息中的CQI相互关联,包括接收的所述第二网络设备通过所述第二类导频端口测量确定的第一信息中的CQI,是接收的所述第二网络设备通过所述第一类导频端口测量确定的第一信息中的CQI差分得到的。
结合第二方面,在本发明又一种可能的实现方式中,采用以下一种或多种方式独立配置所述第二信息和所述第三信息的反馈模式,其中,所述反馈模式包括子带反馈和宽带反馈,所述子带反馈为针对各个子带分别反馈一个所述第二信息或所述第三信息,所述宽带反馈为针对所有子带整体反馈一个所述第二 信息或所述第三信息:
所述第二信息的反馈模式为子带反馈,所述第三信息的反馈模式为宽带反馈;
所述第二信息中所述第一网络设备采用的导频端口的信息、所述第一网络设备采用的RI、所述第一网络设备采用的PMI的反馈模式为宽带反馈,所述CQI的反馈模式为子带反馈,或者,所述第二信息中所述第一网络设备采用的导频端口的信息、所述第一网络设备采用的RI的反馈模式为宽带反馈,所述第一网络设备采用的PMI、所述CQI的反馈模式为子带反馈,或者,所述第二信息中所述第一网络设备采用的导频端口的信息的反馈模式为宽带反馈,所述第一网络设备采用的RI、所述第一网络设备采用的PMI、所述CQI的反馈模式为子带反馈;
所述第三信息中所述第三网络设备采用的导频端口的信息、所述第三网络设备采用的RI、所述第三网络设备采用的PMI的反馈模式为宽带反馈,所述CQI的反馈模式为子带反馈,或者,所述第三信息中所述第三网络设备采用的导频端口的信息、所述第三网络设备采用的RI的反馈模式为宽带反馈,所述第三网络设备采用的PMI、所述CQI的反馈模式为子带反馈,或者,所述第三信息中所述第三网络设备采用的导频端口的信息的反馈模式为宽带反馈,所述第三网络设备采用的RI、所述第三网络设备采用的PMI、所述CQI的反馈模式为子带反馈。
结合第二方面,在本发明又一种可能的实现方式中,独立配置所述第二信息中所述第一网络设备采用的导频端口的信息反馈的子带和所述第二信息中第一网络设备采用的RI、所述第一网络设备采用的PMI、所述CQI反馈的子带;或者,
独立配置所述第三信息中所述第三网络设备采用的导频端口的信息反馈的子带和所述第三信息中所述第三网络设备采用的RI、所述第三网络设备采用的PMI、所述CQI反馈的子带;或者,
独立配置所述第二信息中所述第一网络设备采用的导频端口的信息反馈的子带和所述第二信息中第一网络设备采用的RI、所述第一网络设备采用的PMI、所述CQI反馈的子带,独立配置所述第三信息中所述第三网络设备采用的导频端口的信息反馈的子带和所述第三信息中所述第三网络设备采用的RI、所述第三网络设备采用的PMI、所述CQI反馈的子带。
结合第二方面,在本发明又一种可能的实现方式中,采用以下一种或多种方式独立配置所述第二信息和所述第三信息的反馈周期:
所述第二信息的反馈周期比所述第三信息的反馈周期短;
所述第二信息中所述第一网络设备采用的导频端口的信息比所述第一网络设备采用的RI、所述第一网络设备采用的PMI、以及所述CQI的反馈周期长,或者,所述第二信息中所述第一网络设备采用的导频端口的信息、所述第一网络设备采用的RI比所述第一网络设备采用的PMI、所述CQI的反馈周期长,或者,所述第二信息中所述第一网络设备采用的导频端口的信息、所述第一网络设备采用的RI、所述第一网络设备采用的PMI比所述CQI的反馈周期长;
所述第三信息中所述第三网络设备采用的导频端口的信息比所述第三网络设备采用的RI、所述第三网络设备采用的PMI、以及所述CQI的反馈周期长,或者,所述第三信息中所述第三网络设备采用的导频端口的信息、所述第三网络设备采用的RI比所述第三网络设备采用的PMI、所述CQI的反馈周期长,或者,所述第三信息中所述第三网络设备采用的导频端口的信息、所述第三网络设备采用的RI、所述第三网络设备采用的PMI比所述CQI的反馈周期长。
结合第二方面,在本发明又一种可能的实现方式中,独立配置所述第二信息中所述第一网络设备采用的导频端口的信息反馈的周期和所述第二信息中所述第一网络设备采用的RI、所述第一网络设备采用的PMI、所述CQI反馈的周期;或者,
独立配置所述第三信息中所述第三网络设备采用的导频端口的信息反馈的周期和所述第三信息中所述第三网络设备采用的RI、所述第三网络设备采用的PMI、所述CQI反馈的周期;或者,
独立配置所述第二信息中所述第一网络设备采用的导频端口的信息反馈的周期和所述第二信息中所述第一网络设备采用的RI、所述第一网络设备采用的PMI、所述CQI反馈的周期,独立配置所述第三信息中所述第三网络设备采用的导频端口的信息反馈的周期和所述第三信息中所述第三网络设备采用的RI、所述第三网络设备采用的PMI、所述CQI反馈的周期。
结合第二方面,在本发明又一种可能的实现方式中,所述第一信息还包括假设所述第一网络设备与所述第二网络设备进行单用户多输入多输出 SU-MIMO通信时,所述第一网络设备的第四信息,所述第四信息包括所述第一网络设备采用的导频端口的配置信息、所述第一网络设备采用的RI、所述第一网络设备采用的PMI、以及CQI中的至少一种。
第三方面,本发明实施例提供了一种第一网络设备,所述第一网络设备包括:
接收模块,用于接收第二网络设备发送的导频端口配置信息,所述导频端口配置信息用于描述至少两个导频端口;
确定模块,用于通过所述至少两个导频端口测量所述第二网络设备发送的导频信号,确定第一信息;其中,所述第一信息包括假设第一网络设备和第三网络设备通过在相同的时频资源上进行空间复用与所述第二网络设备通信时,所述第一网络设备的第二信息和所述第三网络设备的第三信息中的至少一种,所述第二信息包括所述第一网络设备采用的导频端口的信息、所述第一网络设备采用的秩指示RI、所述第一网络设备采用的预编码矩阵指示PMI、以及信道质量指标CQI中的至少一种,所述第三信息包括所述第三网络设备采用的导频端口的信息、所述第三网络设备采用的RI、所述第三网络设备采用的PMI、以及CQI中的至少一种;
发送模块,用于将所述第一信息反馈给所述第二网络设备。
结合第三方面,在本发明一种可能的实现方式中,所述导频端口配置信息包括导频端口的个数、导频端口的标识、导频端口的导频信号的导频图案、导频端口的导频信号的导频序列、导频端口的导频信号的发送功率、导频端口的导频信号的发送时刻、导频端口的导频信号发送的子带中的至少一种。
结合第三方面,在本发明另一种可能的实现方式中,所述至少两个导频端口为一组导频端口或者至少两组导频端口,各组导频端口分别采用独立配置的所述导频端口配置信息描述,一组导频端口包括至少一个导频端口。
结合第三方面,在本发明又一种可能的实现方式中,当所述至少两个导频端口为所述一组导频端口时,所述第二信息中的所述第一网络设备采用的导频端口的信息包括所述第一网络设备在所述一组导频端口中为所述第一网络设备选择的至少一个导频端口的端口号,所述第三信息中的所述第三网络设备采用的导频端口的信息包括所述第一网络设备在所述一组导频端口中为所述第三网络设备选择的至少一个导频端口的端口号;或者,
当所述至少两个导频端口为所述至少两组导频端口时,所述第一信息中的 所述第一网络设备采用的导频端口的信息包括所述第一网络设备在所述至少两组导频端口中为所述第一网络设备选择的至少一组导频端口的组号,所述第三信息中的所述第三网络设备采用的导频端口的信息包括所述第一网络设备在所述至少两组导频端口中为所述第三网络设备选择的至少一组导频端口的组号。
结合第三方面,在本发明又一种可能的实现方式中,所述独立配置的导频端口配置信息与信道状态信息进程CSI process的配置信息一一对应,每个所述CSI process的配置信息包括非零功率的信道状态信息参考信号CSI-RS的配置信息和信道状态信息干扰测量参考信号CSI-IM的配置信息。
结合第三方面,在本发明又一种可能的实现方式中,当所述至少两个导频端口为所述至少两组导频端口时,所述第一信息中的所述第一网络设备采用的导频端口的信息包括所述第一网络设备在所述至少两组导频端口中为所述第一网络设备选择的至少一组导频端口对应的CSI process的进程号,所述第三信息中的所述第三网络设备采用的导频端口的信息包括所述第一网络设备在所述至少两组导频端口中为所述第三网络设备选择的至少一组导频端口对应的CSI process的进程号。
结合第三方面,在本发明又一种可能的实现方式中,所述第一网络设备采用的导频端口的信息还包括所述第一网络设备采用的导频端口的导频信号发送的子带、所述第一网络设备采用的导频端口的导频信号的导频序列、所述第一网络设备采用的导频端口的导频信号的发送功率中的至少一种,所述第三网络设备采用的导频端口的信息还包括所述第三网络设备采用的导频端口的导频信号发送的子带、所述第三网络设备采用的导频端口的导频信号的导频序列、所述第三网络设备采用的导频端口的导频信号的发送功率中的至少一种。
结合第三方面,在本发明又一种可能的实现方式中,所述至少两个导频端口包括第一类导频端口和第二类导频端口,所述第一类导频端口包括至少一组导频端口,所述第二类导频端口包括至少两个导频端口。
结合第三方面,在本发明又一种可能的实现方式中,所述第一类导频端口为周期发送的导频信号的导频端口,所述第二类导频端口为非周期发送的导频信号的导频端口;或者,
所述第一类导频端口为无线资源控制RRC信令配置的导频端口,所述第二类导频端口为下行控制信令配置的导频端口,所述下行控制信令为下行调度 DL grant信令或者上行调度UL grant信令;或者,
所述第一类导频端口为未经过预编码的导频信号的导频端口,所述第二类导频端口为经过预编码的导频信号的导频端口;或者,
所述第一类导频端口为CRS导频端口或者CSI-RS导频端口,所述第二类导频端口为解调参考信号DMRS导频端口;或者,
所述第一类导频端口为在所有子带上发送导频信号的导频端口,所述第二类导频端口为在设定的子带上发送导频信号的导频端口;或者,
所述第一类导频端口发送导频信号的子带是固定的,所述第二类导频端口发送导频信号的子带是可变的。
结合第三方面,在本发明又一种可能的实现方式中,所述第二类导频端口包括发送第一导频信号的第一导频端口和发送第二导频信号的第二导频端口,所述第一导频信号和所述第二导频信号是所述第二网络设备通过在相同的时频资源上进行空间复用发送的,所述第一网络设备通过所述第一导频信号测量所述第一网络设备接收的信号,所述第一网络设备通过所述第二导频信号测量对所述第一网络设备接收的信号的瞬时干扰,所述瞬时干扰为所述第三网络设备与所述第一网络设备在相同的时频资源上进行空间复用而产生的对所述第一网络设备接收的信号的干扰。
结合第三方面,在本发明又一种可能的实现方式中,所述第一导频信号和所述第二导频信号均为非零功率的导频信号。
结合第三方面,在本发明又一种可能的实现方式中,所述第一导频信号和所述第二网络设备向所述第一网络设备发送的数据信号采用相同的预编码矩阵,所述第二导频信号与所述第二网络设备向所述第三网络设备发送的数据信号采用相同的预编码矩阵。
结合第三方面,在本发明又一种可能的实现方式中,所述第一导频信号为所述第二网络设备向所述第一网络设备发送的数据信号的解调导频信号;或者,
所述第二导频信号为所述第二网络设备向所述第三网络设备发送的数据信号的解调导频信号;或者,
所述第一导频信号为所述第二网络设备向所述第一网络设备发送的数据信号的解调导频信号,所述第二导频信号为所述第二网络设备向所述第三网络设备发送的数据信号的解调导频信号。
结合第三方面,在本发明又一种可能的实现方式中,所述确定模块包括:
接收单元,用于接收所述第二网络设备在第一时间单元发送的信号;
其中,所述第二网络设备在第一时间单元发送的信号包括所述第一导频信号和所述第二导频信号,且所述第二网络设备在第一时间单元发送的信号不包括向所述第一网络设备发送的以所述第一导频信号为解调导频信号的数据信号和向所述第三网络设备发送的以所述第二导频信号为解调导频信号的数据信号;或者,
所述第二网络设备在第一时间单元发送的信号包括所述第一导频信号、所述第二导频信号、所述向所述第一网络设备发送的以所述第一导频信号为解调导频信号的数据信号和所述向所述第三网络设备发送的以所述第二导频信号为解调导频信号的数据信号;或者,
所述第二网络设备在第一时间单元发送的信号包括所述第一导频信号和所述第二导频信号、所述向所述第一网络设备发送的以所述第一导频信号为解调导频信号的数据信号,且所述第二网络设备在第一时间单元发送的信号不包括所述向所述第三网络设备发送的以所述第二导频信号为解调导频信号的数据信号;或者,
所述第二网络设备在第一时间单元发送的信号包括所述第一导频信号和所述第二导频信号、所述向所述第三网络设备发送的以所述第二导频信号为解调导频信号的数据信号,且所述第二网络设备在第一时间单元发送的信号不包括所述向所述第一网络设备发送的以所述第一导频信号为解调导频信号的数据信号。
结合第三方面,在本发明又一种可能的实现方式中,所述第一时间单元为一个时隙、一个子帧或者一个无线帧。
结合第三方面,在本发明又一种可能的实现方式中,通过所述第一类导频端口测量确定的第一信息不包括假设所述第一网络设备和所述第三网络设备通过在相同的时频资源上进行空间复用与所述第二网络设备通信时的CQI,通过所述第二类导频端口测量确定的第一信息包括假设所述第一网络设备和所述第三网络设备通过在相同的时频资源上进行空间复用与所述第二网络设备通信时的CQI。
结合第三方面,在本发明又一种可能的实现方式中,通过所述第一类导频端口测量确定的第一信息和通过所述第二类导频端口测量确定的第一信息均 包括假设所述第一网络设备和所述第三网络设备通过在相同的时频资源上进行空间复用与所述第二网络设备通信时的CQI,且通过所述第二类导频端口测量确定的第一信息中的CQI与通过所述第一类导频端口测量确定的第一信息中的CQI相互关联。
结合第三方面,在本发明又一种可能的实现方式中,通过所述第二类导频端口测量确定的第一信息中的CQI与通过所述第一类导频端口测量确定的第一信息中的CQI相互关联,包括通过所述第二类导频端口测量确定的第一信息中的CQI,是通过所述第一类导频端口测量确定的第一信息中的CQI差分得到的。
结合第三方面,在本发明又一种可能的实现方式中,所述第二信息和所述第三信息的反馈模式采用以下一种或多种方式进行独立配置,其中,所述反馈模式包括子带反馈和宽带反馈,所述子带反馈为针对各个子带分别反馈一个所述第二信息或所述第三信息,所述宽带反馈为针对所有子带整体反馈一个所述第二信息或所述第三信息:
所述第二信息的反馈模式为子带反馈,所述第三信息的反馈模式为宽带反馈;
所述第二信息中所述第一网络设备采用的导频端口的信息、所述第一网络设备采用的RI、所述第一网络设备采用的PMI的反馈模式为宽带反馈,所述CQI的反馈模式为子带反馈,或者,所述第二信息中所述第一网络设备采用的导频端口的信息、所述第一网络设备采用的RI的反馈模式为宽带反馈,所述第一网络设备采用的PMI、所述CQI的反馈模式为子带反馈,或者,所述第二信息中所述第一网络设备采用的导频端口的信息的反馈模式为宽带反馈,所述第一网络设备采用的RI、所述第一网络设备采用的PMI、所述CQI的反馈模式为子带反馈;
所述第三信息中所述第三网络设备采用的导频端口的信息、所述第三网络设备采用的RI、所述第三网络设备采用的PMI的反馈模式为宽带反馈,所述CQI的反馈模式为子带反馈,或者,所述第三信息中所述第三网络设备采用的导频端口的信息、所述第三网络设备采用的RI的反馈模式为宽带反馈,所述第三网络设备采用的PMI、所述CQI的反馈模式为子带反馈,或者,所述第三信息中所述第三网络设备采用的导频端口的信息的反馈模式为宽带反馈,所述第三网络设备采用的RI、所述第三网络设备采用的PMI、所述CQI的反馈模 式为子带反馈。
结合第三方面,在本发明又一种可能的实现方式中,所述第二信息中所述第一网络设备采用的导频端口的信息反馈的子带独立于所述第二信息中所述第一网络设备采用的RI、所述第一网络设备采用的PMI、所述CQI反馈的子带配置;或者,
所述第三信息中所述第三网络设备采用的导频端口的信息反馈的子带独立于所述第三信息中所述第三网络设备采用的RI、所述第三网络设备采用的PMI、所述CQI反馈的子带配置;或者,
所述第二信息中所述第一网络设备采用的导频端口的信息反馈的子带独立于所述第二信息中所述第一网络设备采用的RI、所述第一网络设备采用的PMI、所述CQI反馈的子带配置,所述第三信息中所述第三网络设备采用的导频端口的信息反馈的子带独立于所述第三信息中所述第三网络设备采用的RI、所述第三网络设备采用的PMI、所述CQI反馈的子带配置。
结合第三方面,在本发明又一种可能的实现方式中,所述第二信息和所述第三信息的反馈周期采用以下一种或多种方式进行独立配置:
所述第二信息的反馈周期比所述第三信息的反馈周期短;
所述第二信息中所述第一网络设备采用的导频端口的信息比所述第一网络设备采用的RI、所述第一网络设备采用的PMI、以及所述CQI的反馈周期长,或者,所述第二信息中所述第一网络设备采用的导频端口的信息、所述第一网络设备采用的RI比所述第一网络设备采用的PMI、所述CQI的反馈周期长,或者,所述第二信息中所述第一网络设备采用的导频端口的信息、所述第一网络设备采用的RI、所述第一网络设备采用的PMI比所述CQI的反馈周期长;
所述第三信息中所述第三网络设备采用的导频端口的信息比所述第三网络设备采用的RI、所述第三网络设备采用的PMI、以及所述CQI的反馈周期长,或者,所述第三信息中所述第三网络设备采用的导频端口的信息、所述第三网络设备采用的RI比所述第三网络设备采用的PMI、所述CQI的反馈周期长,或者,所述第三信息中所述第三网络设备采用的导频端口的信息、所述第三网络设备采用的RI、所述第三网络设备采用的PMI比所述CQI的反馈周期长。
结合第三方面,在本发明又一种可能的实现方式中,所述第二信息中所述 第一网络设备采用的导频端口的信息反馈的周期独立于所述第二信息中所述第一网络设备采用的RI、所述第一网络设备采用的PMI、所述CQI反馈的周期配置;或者,
所述第三信息中所述第三网络设备采用的导频端口的信息反馈的周期独立于所述第三信息中所述第三网络设备采用的RI、所述第三网络设备采用的PMI、所述CQI反馈的周期配置;或者,
所述第二信息中所述第一网络设备采用的导频端口的信息反馈的周期独立于所述第二信息中所述第一网络设备采用的RI、所述第一网络设备采用的PMI、所述CQI反馈的周期配置,所述第三信息中所述第三网络设备采用的导频端口的信息反馈的周期独立于所述第三信息中所述第三网络设备采用的RI、所述第三网络设备采用的PMI、所述CQI反馈的周期配置。
结合第三方面,在本发明又一种可能的实现方式中,所述第一信息还包括假设所述第一网络设备与所述第二网络设备进行单用户多输入多输出SU-MIMO通信时,所述第一网络设备的第四信息,所述第四信息包括所述第一网络设备采用的导频端口的配置信息、所述第一网络设备采用的RI、所述第一网络设备采用的PMI、以及CQI中的至少一种。
结合第三方面,在本发明又一种可能的实现方式中,当所述第一信息包括所述第二信息、所述第三信息和所述第四信息时,若所述第二信息、所述第三信息和所述第四信息的信息量之和大于所述第一网络设备传输的最大信息量,则按照所述第四信息优先于所述第三信息,所述第三信息优先于所述第二信息的优先级进行丢弃,或者,
按照所述第四信息优先于所述第二信息,所述第二信息优先于所述第三信息的优先级进行丢弃,或者,
按照所述第二信息优先于所述第三信息,所述第三信息优先于所述第四信息的优先级进行丢弃,或者,
按照所述第二信息优先于所述第四信息,所述第四信息优先于所述第三信息的优先级进行丢弃,或者,
按照所述第三信息优先于所述第二信息,所述第二信息优先于所述第四信息的优先级进行丢弃,或者,
按照所述第三信息优先于所述第四信息,所述第四信息优先于所述第二信息的优先级进行丢弃。
结合第三方面,在本发明又一种可能的实现方式中,所述第一网络设备为第一用户设备UE,所述第三网络设备为第二UE,所述第二网络设备为基站,所述基站控制所述第一UE的通信和所述第二UE的通信;或者,
所述第一网络设备为第一从基站,所述第三网络设备为第二从基站,所述第二网络设备为主基站,所述主基站控制所述第一从基站的通信和所述第二从基站的通信;或者,
所述第一网络设备为第一从UE,所述第三网络设备为第二从UE,所述第二网络设备为主UE,所述主UE控制所述第一从UE的通信和所述第二从UE的通信。
第四方面,本发明实施例提供了一种第一网络设备,所述第一网络设备包括:
接收器,用于接收第二网络设备发送的导频端口配置信息,所述导频端口配置信息用于描述至少两个导频端口;
处理器,用于通过所述至少两个导频端口测量所述第二网络设备发送的导频信号,确定第一信息;其中,所述第一信息包括假设所述第一网络设备和第三网络设备通过在相同的时频资源上进行空间复用与所述第二网络设备通信时,所述第一网络设备的第二信息和所述第三网络设备的第三信息中的至少一种,所述第二信息包括所述第一网络设备采用的导频端口的信息、所述第一网络设备采用的秩指示RI、所述第一网络设备采用的预编码矩阵指示PMI、以及信道质量指标CQI中的至少一种,所述第三信息包括所述第三网络设备采用的导频端口的信息、所述第三网络设备采用的RI、所述第三网络设备采用的PMI、以及CQI中的至少一种;
发送器,用于将所述第一信息反馈给所述第二网络设备。
第五方面,本发明实施例提供了一种第二网络设备,所述第二网络设备包括:
发送模块,用于发送导频端口配置信息,所述导频端口配置信息用于描述至少两个导频端口;
接收模块,用于接收第一网络设备反馈的第一信息,所述第一信息是所述第一网络设备通过所述至少两个导频端口测量所述第二网络设备发送的导频信号确定的,所述第一信息包括假设所述第一网络设备和第三网络设备通过在相同的时频资源上进行空间复用与所述第二网络设备通信时,所述第一网络设 备的第二信息和所述第三网络设备的第三信息中的至少一种,所述第二信息包括所述第一网络设备采用的导频端口的信息、所述第一网络设备采用的秩指示RI、所述第一网络设备采用的预编码矩阵指示PMI、以及信道质量指标CQI中的至少一种,所述第三信息包括所述第三网络设备采用的导频端口的信息、所述第三网络设备采用的RI、所述第三网络设备采用的PMI、以及CQI中的至少一种。
结合第五方面,在本发明一种可能的实现方式中,所述导频端口配置信息包括导频端口的个数、导频端口的标识、导频端口的导频信号的导频图案、导频端口的导频信号的导频序列、导频端口的导频信号的发送功率、导频端口的导频信号的发送时刻、导频端口的导频信号发送的子带中的至少一种。
结合第五方面,在本发明另一种可能的实现方式中,所述至少两个导频端口为一组导频端口或者至少两组导频端口,各组导频端口分别采用独立配置的所述导频端口配置信息描述,一组导频端口包括至少一个导频端口。
结合第五方面,在本发明又一种可能的实现方式中,当所述至少两个导频端口为所述一组导频端口时,所述第二信息中的所述第一网络设备采用的导频端口的信息包括所述第一网络设备在所述一组导频端口中为所述第一网络设备选择的至少一个导频端口的端口号,所述第三信息中的所述第三网络设备采用的导频端口的信息包括所述第一网络设备在所述一组导频端口中为所述第三网络设备选择的至少一个导频端口的端口号;或者,
当所述至少两个导频端口为所述至少两组导频端口时,所述第一信息中的所述第一网络设备采用的导频端口的信息包括所述第一网络设备在所述至少两组导频端口中为所述第一网络设备选择的至少一组导频端口的组号,所述第三信息中的所述第三网络设备采用的导频端口的信息包括所述第一网络设备在所述至少两组导频端口中为所述第三网络设备选择的至少一组导频端口的组号。
结合第五方面,在本发明又一种可能的实现方式中,所述独立配置的导频端口配置信息与信道状态信息进程CSI process的配置信息一一对应,每个所述CSI process的配置信息包括非零功率的信道状态信息参考信号CSI-RS的配置信息和信道状态信息干扰测量参考信号CSI-IM的配置信息。
结合第五方面,在本发明又一种可能的实现方式中,当所述至少两个导频端口为所述至少两组导频端口时,所述第一信息中的所述第一网络设备采用的 导频端口的信息包括所述第一网络设备在所述至少两组导频端口中为所述第一网络设备选择的至少一组导频端口对应的CSI process的进程号,所述第三信息中的所述第三网络设备采用的导频端口的信息包括所述第一网络设备在所述至少两组导频端口中为所述第三网络设备选择的至少一组导频端口对应的CSI process的进程号。
结合第五方面,在本发明又一种可能的实现方式中,所述第一网络设备采用的导频端口的信息还包括所述第一网络设备采用的导频端口的导频信号发送的子带、所述第一网络设备采用的导频端口的导频信号的导频序列、所述第一网络设备采用的导频端口的导频信号的发送功率中的至少一种,所述第三网络设备采用的导频端口的信息还包括所述第三网络设备采用的导频端口的导频信号发送的子带、所述第三网络设备采用的导频端口的导频信号的导频序列、所述第三网络设备采用的导频端口的导频信号的发送功率中的至少一种。
结合第五方面,在本发明又一种可能的实现方式中,所述至少两个导频端口包括第一类导频端口和第二类导频端口,所述第一类导频端口包括至少一组导频端口,所述第二类导频端口包括至少两个导频端口。
结合第五方面,在本发明又一种可能的实现方式中,所述第一类导频端口为周期发送的导频信号的导频端口,所述第二类导频端口为非周期发送的导频信号的导频端口;或者,
所述第一类导频端口为无线资源控制RRC信令配置的导频端口,所述第二类导频端口为下行控制信令配置的导频端口,所述下行控制信令为下行调度DL grant信令或者上行调度UL grant信令;或者,
所述第一类导频端口为未经过预编码的导频信号的导频端口,所述第二类导频端口为经过预编码的导频信号的导频端口;或者,
所述第一类导频端口为CRS导频端口或者CSI-RS导频端口,所述第二类导频端口为解调参考信号DMRS导频端口;或者,
所述第一类导频端口为在所有子带上发送导频信号的导频端口,所述第二类导频端口为在设定的子带上发送导频信号的导频端口;或者,
所述第一类导频端口发送导频信号的子带是固定的,所述第二类导频端口发送导频信号的子带是可变的。
结合第五方面,在本发明又一种可能的实现方式中,所述第二类导频端口包括发送第一导频信号的第一导频端口和发送第二导频信号的第二导频端口, 所述第一导频信号和所述第二导频信号是所述第二网络设备通过在相同的时频资源上进行空间复用发送的,所述第一网络设备通过所述第一导频信号测量所述第一网络设备接收的信号,所述第一网络设备通过所述第二导频信号测量对所述第一网络设备接收的信号的瞬时干扰,所述瞬时干扰为所述第三网络设备与所述第一网络设备在相同的时频资源上进行空间复用而产生的对所述第一网络设备接收的信号的干扰。
结合第五方面,在本发明又一种可能的实现方式中,所述第一导频信号和所述第二导频信号均为非零功率的导频信号。
结合第五方面,在本发明又一种可能的实现方式中,所述第一导频信号和所述第二网络设备向所述第一网络设备发送的数据信号采用相同的预编码矩阵,所述第二导频信号与所述第二网络设备向所述第三网络设备发送的数据信号采用相同的预编码矩阵。
结合第五方面,在本发明又一种可能的实现方式中,所述第一导频信号为所述第二网络设备向所述第一网络设备发送的数据信号的解调导频信号;或者,
所述第二导频信号为所述第二网络设备向所述第三网络设备发送的数据信号的解调导频信号;或者,
所述第一导频信号为所述第二网络设备向所述第一网络设备发送的数据信号的解调导频信号,所述第二导频信号为所述第二网络设备向所述第三网络设备发送的数据信号的解调导频信号。
结合第五方面,在本发明又一种可能的实现方式中,所述方法还包括:
在第一时间单元发送信号;
其中,在第一时间单元发送的信号包括所述第一导频信号和所述第二导频信号,且所述在第一时间单元发送的信号不包括向所述第一网络设备发送的以所述第一导频信号为解调导频信号的数据信号和向所述第三网络设备发送的以所述第二导频信号为解调导频信号的数据信号;或者,
所述在第一时间单元发送的信号包括所述第一导频信号、所述第二导频信号、所述向所述第一网络设备发送的以所述第一导频信号为解调导频信号的数据信号和所述向所述第三网络设备发送的以所述第二导频信号为解调导频信号的数据信号;或者,
所述在第一时间单元发送的信号包括所述第一导频信号和所述第二导频 信号、所述向所述第一网络设备发送的以所述第一导频信号为解调导频信号的数据信号,且所述在第一时间单元发送的信号不包括所述向所述第三网络设备发送的以所述第二导频信号为解调导频信号的数据信号;或者,
所述在第一时间单元发送的信号包括所述第一导频信号和所述第二导频信号、所述向所述第三网络设备发送的以所述第二导频信号为解调导频信号的数据信号,且所述在第一时间单元发送的信号不包括所述向所述第一网络设备发送的以所述第一导频信号为解调导频信号的数据信号。
结合第五方面,在本发明又一种可能的实现方式中,所述第一时间单元为一个时隙、一个子帧或者一个无线帧。
结合第五方面,在本发明又一种可能的实现方式中,接收的所述第二网络设备通过所述第一类导频端口测量确定的第一信息不包括假设所述第一网络设备和所述第三网络设备通过在相同的时频资源上进行空间复用与所述第二网络设备通信时的CQI,接收的所述第二网络设备通过所述第二类导频端口测量确定的第一信息包括假设所述第一网络设备和所述第三网络设备通过在相同的时频资源上进行空间复用与所述第二网络设备通信时的CQI。
结合第五方面,在本发明又一种可能的实现方式中,接收的所述第二网络设备通过所述第一类导频端口测量确定的第一信息和接收的所述第二网络设备通过所述第二类导频端口测量确定的第一信息均包括假设所述第一网络设备和所述第三网络设备通过在相同的时频资源上进行空间复用与所述第二网络设备通信时的CQI,且接收的所述第二网络设备通过所述第二类导频端口测量确定的第一信息中的CQI与接收的所述第二网络设备通过所述第一类导频端口测量确定的第一信息中的CQI相互关联。
结合第五方面,在本发明又一种可能的实现方式中,接收的所述第二网络设备通过所述第二类导频端口测量确定的第一信息中的CQI与接收的所述第二网络设备通过所述第一类导频端口测量确定的第一信息中的CQI相互关联,包括接收的所述第二网络设备通过所述第二类导频端口测量确定的第一信息中的CQI,是接收的所述第二网络设备通过所述第一类导频端口测量确定的第一信息中的CQI差分得到的。
结合第五方面,在本发明又一种可能的实现方式中,采用以下一种或多种方式独立配置所述第二信息和所述第三信息的反馈模式,其中,所述反馈模式包括子带反馈和宽带反馈,所述子带反馈为针对各个子带分别反馈一个所述第 二信息或所述第三信息,所述宽带反馈为针对所有子带整体反馈一个所述第二信息或所述第三信息:
所述第二信息的反馈模式为子带反馈,所述第三信息的反馈模式为宽带反馈;或者,
所述第二信息中所述第一网络设备采用的导频端口的信息、所述第一网络设备采用的RI、所述第一网络设备采用的PMI的反馈模式为宽带反馈,所述CQI的反馈模式为子带反馈,或者,所述第二信息中所述第一网络设备采用的导频端口的信息、所述第一网络设备采用的RI的反馈模式为宽带反馈,所述第一网络设备采用的PMI、所述CQI的反馈模式为子带反馈,或者,所述第二信息中所述第一网络设备采用的导频端口的信息的反馈模式为宽带反馈,所述第一网络设备采用的RI、所述第一网络设备采用的PMI、所述CQI的反馈模式为子带反馈;
所述第三信息中所述第三网络设备采用的导频端口的信息、所述第三网络设备采用的RI、所述第三网络设备采用的PMI的反馈模式为宽带反馈,所述CQI的反馈模式为子带反馈,或者,所述第三信息中所述第三网络设备采用的导频端口的信息、所述第三网络设备采用的RI的反馈模式为宽带反馈,所述第三网络设备采用的PMI、所述CQI的反馈模式为子带反馈,或者,所述第三信息中所述第三网络设备采用的导频端口的信息的反馈模式为宽带反馈,所述第三网络设备采用的RI、所述第三网络设备采用的PMI、所述CQI的反馈模式为子带反馈。
结合第五方面,在本发明又一种可能的实现方式中,独立配置所述第二信息中所述第一网络设备采用的导频端口的信息反馈的子带和所述第二信息中第一网络设备采用的RI、所述第一网络设备采用的PMI、所述CQI反馈的子带;或者,
独立配置所述第三信息中所述第三网络设备采用的导频端口的信息反馈的子带和所述第三信息中所述第三网络设备采用的RI、所述第三网络设备采用的PMI、所述CQI反馈的子带;或者,
独立配置所述第二信息中所述第一网络设备采用的导频端口的信息反馈的子带和所述第二信息中第一网络设备采用的RI、所述第一网络设备采用的PMI、所述CQI反馈的子带,独立配置所述第三信息中所述第三网络设备采用的导频端口的信息反馈的子带和所述第三信息中所述第三网络设备采用的RI、 所述第三网络设备采用的PMI、所述CQI反馈的子带。
结合第五方面,在本发明又一种可能的实现方式中,采用以下一种或多种方式独立配置所述第二信息和所述第三信息的反馈周期:
所述第二信息的反馈周期比所述第三信息的反馈周期短;
所述第二信息中所述第一网络设备采用的导频端口的信息比所述第一网络设备采用的RI、所述第一网络设备采用的PMI、以及所述CQI的反馈周期长,或者,所述第二信息中所述第一网络设备采用的导频端口的信息、所述第一网络设备采用的RI比所述第一网络设备采用的PMI、所述CQI的反馈周期长,或者,所述第二信息中所述第一网络设备采用的导频端口的信息、所述第一网络设备采用的RI、所述第一网络设备采用的PMI比所述CQI的反馈周期长;
所述第三信息中所述第三网络设备采用的导频端口的信息比所述第三网络设备采用的RI、所述第三网络设备采用的PMI、以及所述CQI的反馈周期长,或者,所述第三信息中所述第三网络设备采用的导频端口的信息、所述第三网络设备采用的RI比所述第三网络设备采用的PMI、所述CQI的反馈周期长,或者,所述第三信息中所述第三网络设备采用的导频端口的信息、所述第三网络设备采用的RI、所述第三网络设备采用的PMI比所述CQI的反馈周期长。
结合第五方面,在本发明又一种可能的实现方式中,独立配置所述第二信息中所述第一网络设备采用的导频端口的信息反馈的周期和所述第二信息中所述第一网络设备采用的RI、所述第一网络设备采用的PMI、所述CQI反馈的周期;或者,
独立配置所述第三信息中所述第三网络设备采用的导频端口的信息反馈的周期和所述第三信息中所述第三网络设备采用的RI、所述第三网络设备采用的PMI、所述CQI反馈的周期;或者,
独立配置所述第二信息中所述第一网络设备采用的导频端口的信息反馈的周期和所述第二信息中所述第一网络设备采用的RI、所述第一网络设备采用的PMI、所述CQI反馈的周期,独立配置所述第三信息中所述第三网络设备采用的导频端口的信息反馈的周期和所述第三信息中所述第三网络设备采用的RI、所述第三网络设备采用的PMI、所述CQI反馈的周期。
结合第五方面,在本发明又一种可能的实现方式中,所述第一信息还包括 假设所述第一网络设备与所述第二网络设备进行单用户多输入多输出SU-MIMO通信时,所述第一网络设备的第四信息,所述第四信息包括所述第一网络设备采用的导频端口的配置信息、所述第一网络设备采用的RI、所述第一网络设备采用的PMI、以及CQI中的至少一种。
结合第五方面,在本发明又一种可能的实现方式中,所述第一网络设备为第一用户设备UE,所述第三网络设备为第二UE,所述第二网络设备为基站,所述基站控制所述第一UE的通信和所述第二UE的通信;或者,
所述第一网络设备为第一从基站,所述第三网络设备为第二从基站,所述第二网络设备为主基站,所述主基站控制所述第一从基站的通信和所述第二从基站的通信;或者,
所述第一网络设备为第一从UE,所述第三网络设备为第二从UE,所述第二网络设备为主UE,所述主UE控制所述第一从UE的通信和所述第二从UE的通信。
第六方面,本发明实施例提供了一种第二网络设备,所述第二网络设备包括:
发送器,用于发送导频端口配置信息,所述导频端口配置信息用于描述至少两个导频端口;
接收器,用于接收第一网络设备反馈的第一信息,所述第一信息是所述第一网络设备通过所述至少两个导频端口测量所述第二网络设备发送的导频信号确定的,所述第一信息包括假设所述第一网络设备和第三网络设备通过在相同的时频资源上进行空间复用与所述第二网络设备通信时,所述第一网络设备的第二信息和所述第三网络设备的第三信息中的至少一种,所述第二信息包括所述第一网络设备采用的导频端口的信息、所述第一网络设备采用的秩指示RI、所述第一网络设备采用的预编码矩阵指示PMI、以及信道质量指标CQI中的至少一种,所述第三信息包括所述第三网络设备采用的导频端口的信息、所述第三网络设备采用的RI、所述第三网络设备采用的PMI、以及CQI中的至少一种。
第七方面,本发明实施例提供了一种信道测量和反馈系统,所述系统包括第一网络设备、第二网络设备和第三网络设备,所述第一网络设备为如第三方面或第四方面所述的第一网络设备,所述第二网络设备为如第五方面或第六方面所述的第二网络设备。
本发明实施例提供的技术方案的有益效果是:
通过至少两个导频端口测量第二网络设备发送的导频信号,确定第一信息,第一信息包括假设第一网络设备和第三网络设备通过在相同的时频资源上进行空间复用与第二网络设备通信时,第一网络设备的第二信息和第三网络设备的第三信息中的至少一种,充分考虑了第一网络设备和第三网络设备通过在相同的时频资源上进行空间复用与第二网络设备通信时,第三网络设备对第一网络设备的干扰,提高了信道测量的准确性,第二网络设备接收到的测量结果的准确性随之提高,进而提升了第二网络设备对第一网络设备和第三网络设备配置的合理度。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的信道测量和反馈方法的应用场景图;
图2是本发明实施例1提供的一种信道测量和反馈方法的流程图;
图3是本发明实施例2提供的一种信道测量和反馈方法的流程图;
图4是本发明实施例3提供的一种信道测量和反馈方法的流程交互图;
图5是本发明实施例3提供的基站天线与波束主瓣的关系示意图;
图6是本发明实施例4提供的一种信道测量与反馈方法的流程交互图;
图7是本发明实施例4提供的第一类导频端口和第二类导频端口在物理资源块PRB上发送导频信号的示意图;
图8a-图8d是本发明实施例4提供的第二网络设备在同一个PRB上发送的信号的示意图;
图9是本发明实施例5提供的一种第一网络设备的结构示意图;
图10是本发明实施例6提供的一种第二网络设备的结构示意图;
图11是本发明实施例7提供的一种信道测量和反馈系统的结构示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明 实施方式作进一步地详细描述。
下面先结合图1简单介绍一下本发明实施例提供的信道测量和反馈方法的应用场景。如图1所示,基站2同时为至少两个UE(UE 1和UE 3)服务,基站2可以根据被服务的UE的位置,通过调整与传输数据相乘的加权系数改变天线的水平维度和垂直维度,使得天线发射的波束的主瓣在三维(3D)空间内对准UE。例如,图1中对准UE 1的波束的主瓣与垂直方向的夹角为β1,对准UE 3的波束的主瓣与垂直方向的夹角为β2
需要说明的是,上述应用场景仅为举例,本发明并不限制于此。例如,主基站同时为至少两个从基站服务,或者,主UE同时为至少两个从UE服务。
实施例1
本发明实施例提供了一种信道测量和反馈方法,该方法的执行主体为第一网络设备,参见图2,该方法包括:
步骤101:第一网络设备接收第二网络设备发送的导频端口配置信息,该导频端口配置信息用于描述至少两个导频端口。
具体地,导频端口配置信息可以包括导频端口的个数、导频端口的标识、导频端口的导频信号的导频图案、导频端口的导频信号的导频序列、导频端口的导频信号的发送功率、导频端口的导频信号的发送时刻、导频端口的导频信号发送的子带中的至少一种。
步骤102:通过该至少两个导频端口测量第二网络设备发送的导频信号,确定第一信息。
其中,第一信息包括假设第一网络设备和第三网络设备通过在相同的时频资源上进行空间复用与第二网络设备通信时,第一网络设备的第二信息和第三网络设备的第三信息中的至少一种。第二信息包括第一网络设备采用的导频端口的信息、第一网络设备采用的秩指示(Rank Indication,简称RI)、第一网络设备采用的预编码矩阵指示(Precoding Matrix Indicator,简称PMI)、以及信道质量指标(Channel Quality Indicator,简称CQI)中的至少一种。第三信息包括第三网络设备采用的导频端口的信息、第三网络设备采用的RI、第三网络设备采用的PMI、以及CQI中的至少一种。
需要说明的是,第一网络设备和第三网络设备通过在相同的时频资源上进行空间复用与第二网络设备通信是指第一网络设备和第三网络设备通过在同 一个物理资源块(Physical Resource Block,简称PRB)上进行空间复用与第二网络设备通信。由于一个PRB包括多个资源单元(Resource Element,简称RE)时,因此第一网络设备和第三网络设备通过在相同的时频资源上进行空间复用与第二网络设备通信时,第一网络设备和第三网络设备可以通过在相同的RE上进行空间复用与第二网络设备通信,也可以在同一个PRB的不同的RE上进行空间复用与第二网络设备通信。
在实际应用中,第一种情况,第一网络设备为第一UE(如图1所示的UE1),第三网络设备为第二UE(如图1所示的UE 3),第二网络设备为基站(如图1所示的基站2),基站控制第一UE的通信和第二UE的通信,第一UE和第二UE之间不存在主从关系。第二种情况,第一网络设备为第一从基站,第三网络设备为第二从基站,第二网络设备为主基站,主基站控制第一从基站的通信和第二从基站的通信。例如,主基站为宏基站,第一从基站为一个微基站,第二从基站为另一个微基站。第三种情况,第一网络设备为第一从UE,第三网络设备为第二从UE,第二网络设备为主UE,主UE控制第一从UE的通信和第二从UE的通信。
具体地,与第一网络设备在相同的时频资源上进行空间复用与第二网络设备通信的第三网络设备可以为一个,也可以为多个。第二网络设备可以获取所有第三网络设备的第三信息,也可以仅选择部分第三网络设备获取第三信息。
在实际应用中,第二网络设备会发送配置信息给第一网络设备,第一网络设备通过该配置信息确定是否启动MU MIMO的测量和反馈(假设有第三网络设备与第一网络设备在相同的时频资源上进行空间复用与第二网络设备通信时,测量并反馈第一信息)。同时该配置信息还包括假设与第一网络设备在相同的时频资源上进行空间复用与第二网络设备通信的第三网络设备的个数。具体地,第二网络设备可以单独将该配置信息发送给第一网络设备,也可以将该配置信息携带在导频端口配置信息中发送给第一网络设备。
步骤103:将第一信息反馈给第二网络设备。
可以理解地,第二网络设备接收到第一信息之后,可以根据第一信息,配置第一网络设备与第三网络设备通过在相同的时频资源上进行空间复用与第二网络设备通信时的调度信息,以使得调度信息更加准确。其中,调度信息用于配置第一网络设备和第三网络设备,使第一网络设备和第三网络设备实现与第二网络设备之间数据的传输。
具体地,第二网络设备可以按照以下方式配置调度信息:
在第一种情况下,第一信息包括第二信息和第三信息,则第二网络设备比较各个第一网络设备发送的第二信息和第三信息,当一个第一网络设备发送的第二信息与另一个第一网络设备发送的第三信息的匹配度最高或者大于设定阈值,则意味着这两个第一网络设备进行MU MIMO(相同的时频资源上进行空间复用传输)性能比较好,将这两个第一网络设备配置为通过在相同的时频资源上进行空间复用与第二网络设备通信的网络设备,并参考这两个第一网络设备上报的第一信息调度这两个第一网络设备。
例如,一个第一网络设备(如图1所示的UE 1)向第二网络设备(如图1所示的基站2)反馈的第一网络设备(UE 1)采用的PMI为PMI 1,假设与其进行MU MIMO传输的第三网络设备采用的PMI为PMI 2,另一个第一网络设备(如图1所示的UE 3)向第二网络设备(即基站)反馈的第一网络设备(UE3)采用的PMI为PMI 2,假设与其进行MU MIMO传输的第三网络设备采用的PMI为PMI 1,则第二网络设备可以考虑将这两个第一网络设备(UE 1和UE 3)配置在相同的时频资源上进行空间复用与第二网络设备通信,并且UE 1采用的PMI为PMI 1,UE 3采用的PMI为PMI 2。
在第二种情况下,第一信息包括第二信息或第三信息,则第二网络设备可以根据各个第一网络设备发送的第二信息或第三信息,采用迫零算法确定各个第一网络设备在相同的时频资源上进行空间复用的调度信息。例如,一个第一网络设备(如图1所示的UE 1)向第二网络设备(如图1所示的基站2)反馈的第一网络设备(即UE 1)采用的PMI对应的预编码矩阵为W 1,另一个第一网络设备(如图1所示的UE 3)向第二网络设备(即基站)反馈的第一网络设备(即UE 3)采用的PMI对应的预编码矩阵为W 2,则第二网络设备根据W 1,W 2,采用迫零算法确定这两个第一网络设备如果在相同的时频资源上进行空间复用采用的预编码矩阵分别为W 1’和W 2’,其中,W 1’为W 1采用迫零算法计算出的结果,W 2’为W 2为采用迫零算法计算出的结果,迫零算法为本领域技术人员公知的算法,在此不再赘述。
本发明实施例通过至少两个导频端口测量第二网络设备发送的导频信号,确定第一信息,第一信息包括假设第一网络设备和第三网络设备通过在相同的时频资源上进行空间复用与第二网络设备通信时,第一网络设备的第二信息和第三网络设备的第三信息中的至少一种,充分考虑了第一网络设备和第三网络 设备通过在相同的时频资源上进行空间复用与第二网络设备通信时,第三网络设备对第一网络设备的干扰,提高了信道测量的准确性,第二网络设备接收到的测量结果的准确性随之提高,进而提升了第二网络设备对第一网络设备和第三网络设备配置的合理度。
实施例2
本发明实施例提供了一种信道测量和反馈方法,该方法的执行主体为第二网络设备,参见图3,该方法包括:
步骤201:第二网络设备发送导频端口配置信息,该导频端口配置信息用于描述至少两个导频端口。
具体地,导频端口配置信息可以包括导频端口的个数、导频端口的标识、导频端口的导频信号的导频图案、导频端口的导频信号的导频序列、导频端口的导频信号的发送功率、导频端口的导频信号的发送时刻、导频端口的导频信号发送的子带中的至少一种。
步骤202:接收第一网络设备反馈的第一信息,第一信息是第一网络设备通过至少两个导频端口测量第二网络设备发送的导频信号确定的。
其中,第一信息包括假设第一网络设备和第三网络设备通过在相同的时频资源上进行空间复用与第二网络设备通信时,第一网络设备的第二信息和第三网络设备的第三信息中的至少一种。第二信息包括第一网络设备采用的导频端口的信息、第一网络设备采用的RI、第一网络设备采用的PMI、以及CQI中的至少一种。第三信息包括第三网络设备采用的导频端口的信息、第三网络设备采用的RI、第三网络设备采用的PMI、以及CQI中的至少一种。
需要说明的是,第一网络设备和第三网络设备通过在相同的时频资源上进行空间复用与第二网络设备通信是指第一网络设备和第三网络设备通过在同一个PRB上进行空间复用与第二网络设备通信。由于一个PRB包括多个RE时,因此第一网络设备和第三网络设备通过在相同的时频资源上进行空间复用与第二网络设备通信时,第一网络设备和第三网络设备可以通过在相同的RE上进行空间复用与第二网络设备通信,也可以在同一个PRB的不同的RE上进行空间复用与第二网络设备通信。
在实际应用中,第一种情况,第一网络设备为第一UE(如图1所示的UE1),第三网络设备为第二UE(如图1所示的UE 3),第二网络设备为基站(如 图1所示的基站2),基站控制第一UE的通信和第二UE的通信,第一UE和第二UE之间不存在主从关系。第二种情况,第一网络设备为第一从基站,第三网络设备为第二从基站,第二网络设备为主基站,主基站控制第一从基站的通信和第二从基站的通信。例如,主基站为宏基站,第一从基站为一个微基站,第二从基站为另一个微基站。第三种情况,第一网络设备为第一从UE,第三网络设备为第二从UE,第二网络设备为主UE,主UE控制第一从UE的通信和第二从UE的通信。
具体地,与第一网络设备在相同的时频资源上进行空间复用与第二网络设备通信的第三网络设备可以为一个,也可以为多个。第二网络设备可以获取所有第三网络设备的第三信息,也可以仅选择部分第三网络设备获取第三信息。
在实际应用中,第二网络设备会发送配置信息给第一网络设备,第一网络设备通过该配置信息确定是否启动MU MIMO的测量和反馈(假设有第三网络设备与第一网络设备在相同的时频资源上进行空间复用与第二网络设备通信时,测量并反馈第一信息)。同时该配置信息还包括假设与第一网络设备在相同的时频资源上进行空间复用与第二网络设备通信的第三网络设备的个数。具体地,第二网络设备可以单独将该配置信息发送给第一网络设备,也可以将该配置信息携带在导频端口配置信息中发送给第一网络设备。
可以理解地,第二网络设备接收到第一信息之后,可以根据第一信息,配置第一网络设备与第三网络设备通过在相同的时频资源上进行空间复用与第二网络设备通信时的调度信息,以使得调度信息更加准确。其中,调度信息用于配置第一网络设备和第三网络设备,使第一网络设备和第三网络设备实现与第二网络设备之间数据的传输。
具体地,第二网络设备可以按照以下方式配置调度信息:
在第一种情况下,第一信息包括第二信息和第三信息,则第二网络设备比较各个第一网络设备发送的第二信息和第三信息,当一个第一网络设备发送的第二信息与另一个第一网络设备发送的第三信息的匹配度最高或者大于设定阈值,则意味着这两个第一网络设备进行MU MIMO(相同的时频资源上进行空间复用传输)性能比较好,将这两个第一网络设备配置为通过在相同的时频资源上进行空间复用与第二网络设备通信的网络设备,并参考这两个第一网络设备上报的第一信息调度这两个第一网络设备。
例如,一个第一网络设备(如图1所示的UE 1)向第二网络设备(如图1 所示的基站2)反馈的第一网络设备(UE 1)采用的PMI为PMI 1,假设与其进行MU MIMO传输的第三网络设备采用的PMI为PMI 2,另一个第一网络设备(如图1所示的UE 3)向第二网络设备(即基站)反馈的第一网络设备(UE3)采用的PMI为PMI 2,假设与其进行MU MIMO传输的第三网络设备采用的PMI为PMI 1,则第二网络设备可以考虑将这两个第一网络设备(UE 1和UE 3)配置在相同的时频资源上进行空间复用与第二网络设备通信,并且UE 1采用的PMI为PMI 1,UE 3采用的PMI为PMI 2。
在第二种情况下,第一信息包括第二信息或第三信息,则第二网络设备可以根据各个第一网络设备发送的第二信息或第三信息,采用迫零算法确定各个第一网络设备在相同的时频资源上进行空间复用的调度信息。例如,一个第一网络设备(如图1所示的UE 1)向第二网络设备(如图1所示的基站2)反馈的第一网络设备(即UE 1)采用的PMI对应的预编码矩阵为W 1,另一个第一网络设备(如图1所示的UE 3)向第二网络设备(即基站)反馈的第一网络设备(即UE 3)采用的PMI对应的预编码矩阵为W 2,则第二网络设备根据W 1,W 2,采用迫零算法确定这两个第一网络设备如果在相同的时频资源上进行空间复用采用的预编码矩阵分别为W 1’和W 2’,其中,W 1’为W 1采用迫零算法计算出的结果,W 2’为W 2为采用迫零算法计算出的结果,迫零算法为本领域技术人员公知的算法,在此不再赘述。
本发明实施例通过至少两个导频端口测量第二网络设备发送的导频信号,确定第一信息,第一信息包括假设第一网络设备和第三网络设备通过在相同的时频资源上进行空间复用与第二网络设备通信时,第一网络设备的第二信息和第三网络设备的第三信息中的至少一种,充分考虑了第一网络设备和第三网络设备通过空间复用相同的时频资源与第二网络设备通信时,第三网络设备对第一网络设备的干扰,提高了信道测量的准确性,第二网络设备接收到的测量结果的准确性随之提高,进而提升了第二网络设备对第一网络设备和第三网络设备配置的合理度。
实施例3
本发明实施例提供了一种信道测量和反馈方法,本实施例中的至少两个导频端口为一组导频端口或者至少两组导频端口,参见图4,该方法包括:
步骤301:第二网络设备发送导频端口配置信息,该导频端口配置信息用 于描述一组导频端口或者至少两组导频端口。
在本实施例中,各组导频端口分别采用独立配置的导频端口配置信息描述,一组导频端口包括至少一个导频端口。也就是说,第二网络设备发送的导频端口配置信息可以为一个,也可以为多个,各个独立配置的导频端口配置信息用于描述不同组的导频端口。
例如,参见图5,16个天线阵子(图5中用斜线表示)以4个为一组,每组天线阵子通过两组加权系数形成两个导频端口(图5中用小圆圈表示)。同一组天线阵子形成的两个导频端口的垂直方向的天线增益不同,水平方向的天线增益相同。4组天线阵子形成8个导频端口端口0~端口7(port0~port7),同一组天线阵子形成的相同水平方向的天线增益的两个导频端口分别为端口0(port0)和端口4(port4)、端口1(port1)和端口5(port5)、端口2(port2)和端口6(port6)、端口3(port3)和端口7(port7)。将这8个导频端口按照垂直方向的天线增益的不同可以分为两组,第一组导频端口为端口0~端口3(port0~port3),第二组导频端口为端口4~端口7(port4~port7)。需要说明的是,导频端口的分组还可以是按照水平方向的天线增益的不同进行划分,或者其他原则划分,在此不再举例。
在相同的时频资源上进行空间复用的网络设备可以采用具有不同的天线增益的天线端口进行传输,例如采用不同垂直方向的天线增益的天线端口,图1所示的UE 1采用第一组导频端口(port0~port3),图1所示的UE 3采用第二组导频端口(port4~port7)。也可以采用相同垂直方向的天线增益的天线端口,例如UE 1和UE 3都采用第一组导频端口(port0~port3),通过不同垂直方向的预编码矩阵进行空间复用。UE对在相同的时频资源上进行空间复用的网络设备采用的端口的信息进行测量和反馈,可以辅助基站进行MU MIMO的调度,使MU MIMO的传输性能更好。
具体地,各组加权系数可以是基带的加权系数,也可以是射频驱动网络的加权系数。也就是说,导频端口可以由基带的加权系数形成,也可以由射频驱动网络的加权系数形成。一般将射频驱动网络的加权系数形成的导频端口发送波束的主瓣与垂直方向的夹角称为电下倾角,即电下倾角是针对射频来说的,此时导频端口的垂直方向的最大天线增益与垂直方向的夹角指的是电下倾角。基带加权时,通过基带的加权系数形成的导频端口会映射到不同的射频通道,一个基带的加权系数形成的导频端口可以映射到一个或多个射频通道,射频通 道与电下倾角一一对应,因此基带的加权系数形成的导频端口也具有不同的电下倾角,也就是说,电下倾角也可以针对基带来说。
在本实施例的一种实现方式中,独立配置的导频端口配置信息可以与信道状态信息进程(Channel Status Indicator process,简称CSI process)的配置信息一一对应,每个CSI process的配置信息包括非零功率的信道状态信息参考信号(Channel State Indicating Reference Signal,简称CSI-RS)的配置信息和信道状态信息干扰测量参考信号(Channel State Information Interference Measurement reference signal,简称CSI-IM)的配置信息。具体地,CSI process的配置信息是由第二网络设备发送给第一网络设备的,第一网络设备根据接收到的CSI process的配置信息,确定CSI-RS端口和CSI-IM端口。例如CSI process1配置CSI-RS端口为端口0~端口3(port0~port3),CSI-IM端口为端口8~端口11(port8~port11);CSI process 2配置CSI-RS端口为端口4~端口7(port4~port7),CSI-IM端口为端口12~端口15(port12~port15)。同时,每个CSI process还会配置数据信号与CSI-RS的功率的比值,CSI process 1配置数据信号与CSI-RS的功率的比值为ρc1,CSI process 2配置数据信号与CSI-RS的功率的比值为ρc2。进一步地,每个CSI process配置的数据信号与CSI-RS的功率的比值可以为多个,由UE从这多个比值中选择一个在第一信息中上报。
在本实施例的另一种实现方式中,每个独立配置的导频端口配置信息可以包括非零功率的CSI-RS的配置信息和零功率的CSI-RS的配置信息。
在本实施例的又一种实现方式中,每个独立配置的导频端口配置信息可以包括CRS的配置信息。
可选地,该步骤301可以包括:
第二网络设备发送下行控制信息(Downlink Control Information,简称DCI),DCI包括导频端口配置信息。
步骤302:第一网络设备通过一组导频端口或者至少两组导频端口测量第二网络设备发送的导频信号,确定第一信息。
其中,第一信息包括假设第一网络设备和第三网络设备通过在相同的时频资源上进行空间复用与第二网络设备通信时,第一网络设备的第二信息和第三网络设备的第三信息中的至少一种。第二信息包括第一网络设备采用的导频端口的信息、第一网络设备采用的RI、第一网络设备采用的PMI、以及CQI中的至少一种。第三信息包括第三网络设备采用的导频端口的信息、第三网络设 备采用的RI、第三网络设备采用的PMI、以及CQI中的至少一种。
需要说明的是,第一网络设备和第三网络设备通过在相同的时频资源上进行空间复用与第二网络设备通信是指第一网络设备和第三网络设备在同一个物理资源块(Physical Resource Block,简称PRB)与第二网络设备通信。由于一个PRB包括多个资源单元(Resource Element,简称RE)时,因此第一网络设备和第三网络设备通过在相同的时频资源上进行空间复用与第二网络设备通信时,第一网络设备和第三网络设备可以在相同的RE上与第二网络设备通信,也可以在不同的RE上与第二网络设备通信。
在本实施例的一种实现方式中,当至少两个导频端口为一组导频端口时,第二信息中的第一网络设备采用的导频端口的信息可以包括第一网络设备在一组导频端口中为第一网络设备选择的至少一个导频端口的端口号,第三信息中的第三网络设备采用的导频端口的信息可以包括第一网络设备在一组导频端口中为第三网络设备选择的至少一个导频端口的端口号;或者,当至少两个导频端口为至少两组导频端口时,第一信息中的第一网络设备采用的导频端口的信息可以包括第一网络设备在至少两组导频端口中为第一网络设备选择的至少一组导频端口的组号,第三信息中的第三网络设备采用的导频端口的信息可以包括第一网络设备在至少两组导频端口中为第三网络设备选择的至少一组导频端口的组号。
在本实施例的另一种实现方式中,若独立配置的导频端口配置信息与CSI process的配置信息一一对应,则当至少两个导频端口为一组导频端口时,第二信息中的第一网络设备采用的导频端口的信息可以包括第一网络设备在一组导频端口中为第一网络设备选择的至少一个导频端口的端口号,第三信息中的第三网络设备采用的导频端口的信息可以包括第一网络设备在一组导频端口中为第三网络设备选择的至少一个导频端口的端口号;或者,当至少两个导频端口为至少两组导频端口时,第一信息中的第一网络设备采用的导频端口的信息可以包括第一网络设备在至少两组导频端口中为第一网络设备选择的至少一组导频端口对应的CSI process的进程号,第三信息中的第三网络设备采用的导频端口的信息可以包括第一网络设备在至少两组导频端口中为第三网络设备选择的至少一组导频端口对应的CSI process的进程号。
在本实施例的又一种实现方式中,该步骤302可以包括:
第一网络设备分别通过一组导频端口或者至少两组导频端口中的各个导 频端口测量第二网络设备发送的导频信号,得到各个导频端口对应的信道系数;
将各组导频端口中的各个导频端口对应的信道系数组成各组导频端口对应的信道系数矩阵;
分别将各组导频端口对应的信道系数矩阵依次与各组导频端口对应的预编码矩阵集合中的各个预编码矩阵相乘,得到等效信道系数矩阵;
依次计算第一网络设备和第三网络设备采用各个等效信道系数矩阵时的信号与干扰加噪声比(Signal to Interference plus Noise Ratio,简称SINR);
在计算出的所有SINR中,选择最大的SINR;
根据最大的SINR,确定第一信息,其中,CQI根据设定的SINR与CQI的对应关系确定,第一网络设备采用的导频端口的信息为计算出最大的SINR时第一网络设备采用的等效信道系数矩阵对应的导频端口的信息,第一网络设备采用的PMI为计算出最大的SINR时第一网络设备采用的等效信道系数矩阵对应的PMI,第一网络设备采用的RI为计算出最大的SINR时第一网络设备采用的等效信道系数矩阵对应的预编码矩阵的秩,第三网络设备采用的导频端口的信息为计算出最大的SINR时第三网络设备采用的等效信道系数矩阵对应的导频端口的信息,第三网络设备采用的PMI为计算出最大的SINR时第三网络设备采用的等效信道系数矩阵对应的PMI,第三网络设备采用的RI为计算出最大的SINR时第三网络设备采用的等效信道系数矩阵对应的预编码矩阵的秩。
例如,计算最大的SINR时,第一网络设备采用的等效信道系数矩阵为Hp*Wr p,第三网络设备采用的等效信道系数矩阵为Hq*Wt q,其中,p与q可以相等,Hp表示第p组导频端口对应的信道系数矩阵,Wr p表示第p组导频端口对应的预编码矩阵集合中的第r个预编码矩阵,Hq表示第q组导频端口对应的信道系数矩阵,Wt q表示第q组导频端口对应的预编码矩阵集合中的第t个预编码矩阵,因此,第一网络设备采用的导频端口的信息为第p组导频端口的组号p,第一网络设备采用的PMI为预编码矩阵Wr p的索引,第一网络设备采用的RI为预编码矩阵Wr p的秩,第三网络设备采用的导频端口的信息为第q组导频端口的组号q,第三网络设备采用的PMI为预编码矩阵Wt q的索引,第三网络设备采用的RI为预编码矩阵Wt q的秩。
具体地,与各组导频端口一一对应的预编码矩阵集合中的预编码矩阵的个 数为大于1的整数。与各组导频端口一一对应的预编码矩阵集合包括秩为1的预编码矩阵,与各组导频端口一一对应的预编码矩阵集合还可以包括秩大于1的预编码矩阵。
下面结合举例对步骤302进行具体说明。假设第二网络设备发送的导频端口配置信息用于描述M组导频端口,第m组导频端口(M组导频端口中的任意一组导频端口)的导频端口个数为Vm,1≤m≤M且m为整数,第一网络设备接收天线的个数为VRX,则第m个导频端口对应的信道系数矩阵Hm如下:
Figure PCTCN2014094586-appb-000001
其中,hij m为第i个接收天线通过第m组导频端口中的第j个导频端口得到的信道系数,0≤i≤VRX且i为整数,0≤j≤Vm且j为整数。
第m组导频端口对应的预编码矩阵集合{Wk m}中的预编码矩阵的个数为Km,Wk m表示第m组导频端口对应的预编码矩阵集合中的第k个预编码矩阵(第m组导频端口对应的预编码矩阵集合中的任意一个预编码矩阵),1≤k≤Km且k为整数。
依次遍历M组导频端口中的每组导频端口,在遍历每组导频端口时,依次遍历每组导频端口对应的预编码矩阵集合中的每个预编码矩阵,并在遍历到每个预编码矩阵时,将遍历到的一组导频端口对应的信道系数矩阵与遍历到的一个预编码矩阵相乘,得到等效信道系数矩阵。也就是说,在遍历到第m组导频端口(M组导频端口中的任意一组导频端口)的基础上,遍历到第m组导频端口对应的预编码矩阵集合中的第k个预编码矩阵(第m组导频端口对应的预编码矩阵集合中的任意一个预编码矩阵)时,将第m个信道系数矩阵Hm与第m组导频端口对应的预编码矩阵集合{Wk m}中的第k个预编码矩阵Wk m相乘,得到等效信道系数矩阵Hm*Wk m
依次计算第一网络设备和第三网络设备采用各个等效信道系数矩阵时的SINR。例如,假设第一网络设备采用第p组导频端口对应的信道系数矩阵Hp与第p组导频端口对应的预编码矩阵集合{Wr p}中的第r个预编码矩阵Wr p相乘得到的等效信道系数矩阵Hp*Wr p,第三网络设备采用第q组导频端口对应的信 道系数矩阵Hq与第q组导频端口对应的预编码矩阵集合{Wt q}中的第t个预编码矩阵Wt q相乘得到的等效信道系数矩阵Hq*Wt q,1≤p≤M且p为整数,1≤t≤Kp且t为整数,Kp为第p组导频端口对应的预编码矩阵集合的个数,1≤q≤M且q为整数,1≤t≤Kq且t为整数,Kq为第q组导频端口对应的预编码矩阵集合的个数,此时第一网络设备接收的信号为y=Hp*Wr p*s1+Hq*Wt q*s3+n,其中,s1为第一网络设备与第二网络设备通信的信号,s3为第三网络设备与第二网络设备通信的信号,n为噪声。另外,s1、s3可以包括功率信息(如数据信号与导频信号的功率比),如s1=n*S,n为功率大小,S为信号内容。
根据不同的接收机算法(如最小均方误差(Minimum Mean Square Error,简称MMSE),最大似然(Maximum Likelihood,简称ML)等),对接收的信号的权值不同。
例如,对于MMSE,对接收的信号的权值P可以采用如下公式计算:
H=[Hp*Wr p,Hq*Wt q];
y=H*x+n;
x=P*y;
Figure PCTCN2014094586-appb-000002
其中,H为等效信道系数矩阵组成的矩阵,Hp*Wr p为第一网络设备采用的等效信道系数矩阵,Hq*Wt q为第三网络设备采用的等效系数矩阵,y为接收信号,x为发送信号,n为噪声,HH表示矩阵H的转置共轭,σ2为噪声的方差,
Figure PCTCN2014094586-appb-000003
表示大小为VRX的单位矩阵。
假设第一网络设备对接收的信号的权值为P,P为维度等于接收天线的个数VRX的向量,则处理后的信号y’=P*Hp*Wr p*s1+P*Hq*Wt q*s3+P*n。此时SINR可以采用如下公式计算:
Figure PCTCN2014094586-appb-000004
其中,||*||2表示求矩阵*中各元素平方之和的平方根,Hp*Wr p为第一网络设备采用的等效信道系数矩阵,Hq*Wt q为第三网络设备采用的等效系数矩阵,s1为第一网络设备与第二网络设备通信的信号,s3为第三网络设备与第二网络 设备通信的信号,σ2为噪声的方差,
Figure PCTCN2014094586-appb-000005
表示大小为VRX的单位矩阵。
在计算出的所有SINR中,选择最大的SINR。其中,若s1、s3包括多个数据信号与导频信号的功率比(或者导频信号的发送功率)时,遍历各组导频端口和各组导频端口对应的预编码矩阵集合中的各个预编码矩阵时还需要遍历各个数据信号与导频信号的功率比(或者导频信号的发送功率)。
在选出最大的SINR之后,即可确定得到最大的SINR时,第一网络设备采用的等效信道系数矩阵和第三网络设备采用的等效信道系数矩阵。还是假设第一网络设备采用等效信道系数矩阵Hp*Wr p,第三网络设备采用等效信道系数矩阵Hq*Wt q,此时第二信息中第一网络设备采用的导频端口的信息包括第p组导频端口的组号p,第一网络设备采用的PMI为预编码矩阵Wr p的索引,第一网络设备采用的RI为预编码矩阵Wr p的秩,CQI为SINR与CQI的对应关系中与最大的SINR对应的CQI;第三信息中第三网络设备采用的导频端口的信息包括第q组导频端口的组号q,第三网络设备采用的PMI为预编码矩阵Wt q的索引,第三网络设备采用的为预编码矩阵Wt q的秩,CQI为SINR与CQI的对应关系中与最大的SINR对应的CQI。
另外,第一网络设备采用的导频端口的信息还包括第一网络设备采用的导频端口的导频信号发送的子带、第一网络设备采用的导频端口的导频信号的导频序列、第一网络设备采用的导频端口的导频信号的发送功率中的至少一种,第三网络设备采用的导频端口的信息还包括第三网络设备采用的导频端口的导频信号发送的子带、第三网络设备采用的导频端口的导频信号的导频序列、第三网络设备采用的导频端口的导频信号的发送功率中的至少一种。
在具体实现中,如果还需要确定上述任一种信息,可以对相应的信息按照前面的举例进行遍历。例如,当第一网络设备采用的导频端口的信息还包括第一网络设备采用的导频端口发送的子带时,可以对各个子带进行遍历,找到最大的SINR对应的第一网络设备采用的子带。又如,当第一网络设备采用的导频端口的信息还包括第一网络设备采用的导频端口的导频信号的导频序列时,可以对各个导频序列进行遍历,找到最大的SINR对应的第一网络设备采用的导频序列。
可以理解地,上述举例是以SINR最大化为准则确定第一信息,在实际应用中,还可以采用吞吐量最大化为准则确定第一信息,在此不再详述。
可选地,导频端口配置信息还可以包括指示信息,指示信息用于指示属于第一网络设备的导频端口配置信息和属于第三网络设备的导频端口配置信息。可以理解地,当导频端口配置信息包括指示信息时,进行遍历计算SINR时,不需要再对各组导频端口进行遍历,只需要按照指示信息对第一网络设备采用的一组导频端口对应的预编码矩阵集合中的各个预编码矩阵、以及第三网络设备采用的一组导频端口对应的预编码矩阵集合中的各个预编码矩阵进行遍历即可。
步骤303:第一网络设备将第一信息反馈给第二网络设备。
可选地,第二信息的反馈模式与第三信息的反馈模式可以不同,第二网络设备独立配置第二信息的反馈模式和第三信息的反馈模式,反馈模式包括子带反馈和宽带反馈,子带反馈为针对各个子带分别反馈一个第二信息或第三信息,宽带反馈为针对所有子带整体反馈一个第二信息或第三信息。
在实际应用中,信号传输的频率域可以分割为若干个子频带(简称子带)。多个子带组成宽带。由于导频信号会在整个频率域发送,因此会分别测量各个子带的导频信号,确定信道质量。直接根据对应于各个子带的信道质量确定的第二信息和第三信息,就采用子带反馈的方式反馈给第二网络设备。先将对应于各个子带的信道质量求平均值,再根据对应于多个子带(即宽带)的信道质量平均值确定的第二信息和第三信息,就采用宽带反馈的方式反馈给第二网络设备。
由于第一网络设备传输的信息量的限制,第一网络设备一般会采用宽带反馈的方式反馈一部分第一信息。同时,由于子带反馈为为针对各个子带分别反馈,宽带反馈为针对所有子带整体反馈,子带反馈的准确度比宽带反馈的准确度高,因此会采用子带反馈的方式反馈第一信息中相对重要的信息。
优选地,第二信息的反馈模式可以为子带反馈,第三信息的反馈模式可以为宽带反馈。
在实际应用中,第二信息中第一网络设备采用的导频端口的信息、第一网络设备采用的RI、第一网络设备采用的PMI的反馈模式可以为宽带反馈,CQI的反馈模式可以为子带反馈;或者,第三信息中第三网络设备采用的导频端口的信息、第三网络设备采用的RI、第三网络设备采用的PMI的反馈模式可以为宽带反馈,CQI的反馈模式可以为子带反馈;或者,第二信息中第一网络设备采用的导频端口的信息、第一网络设备采用的RI、第一网络设备采用的PMI 的反馈模式可以为宽带反馈,CQI的反馈模式可以为子带反馈,同时第三信息中第三网络设备采用的导频端口的信息、第三网络设备采用的RI、第三网络设备采用的PMI的反馈模式可以为宽带反馈,CQI的反馈模式可以为子带反馈。
或者,第二信息中第一网络设备采用的导频端口的信息、第一网络设备采用的RI的反馈模式可以为宽带反馈,第一网络设备采用的PMI、CQI的反馈模式可以为子带反馈;或者,第三信息中第三网络设备采用的导频端口的信息、第三网络设备采用的RI的反馈模式可以为宽带反馈,第三网络设备采用的PMI、CQI的反馈模式可以为子带反馈;或者,第二信息中第一网络设备采用的导频端口的信息、第一网络设备采用的RI的反馈模式可以为宽带反馈,第一网络设备采用的PMI、CQI的反馈模式可以为子带反馈,同时第三信息中第三网络设备采用的导频端口的信息、第三网络设备采用的RI的反馈模式可以为宽带反馈,第三网络设备采用的PMI、CQI的反馈模式可以为子带反馈。
或者,第二信息中第一网络设备采用的导频端口的信息的反馈模式可以为宽带反馈,第一网络设备采用的RI、第一网络设备采用的PMI、CQI的反馈模式可以为子带反馈;或者,第三信息中第三网络设备采用的导频端口的信息的反馈模式可以为宽带反馈,第三网络设备采用的RI、第三网络设备采用的PMI、CQI的反馈模式可以为子带反馈;或者,第二信息中第一网络设备采用的导频端口的信息的反馈模式可以为宽带反馈,第一网络设备采用的RI、第一网络设备采用的PMI、CQI的反馈模式可以为子带反馈,同时第三信息中第三网络设备采用的导频端口的信息的反馈模式可以为宽带反馈,第三网络设备采用的RI、第三网络设备采用的PMI、CQI的反馈模式可以为子带反馈。
或者,第二信息中第一网络设备采用的导频端口的信息、第一网络设备采用的RI、第一网络设备采用的PMI、CQI的反馈模式可以为子带反馈,且第一网络设备采用的导频端口的信息针对的子带大小可以与第一网络设备采用的RI、第一网络设备采用的PMI、CQI中的至少一个信息针对的子带大小不同(如第一网络设备采用的导频端口的信息针对的子带大小针对的子带为1M,第一网络设备采用的RI、第一网络设备采用的PMI、CQI针对的子带大小均为0.5M);或者,第三信息中第三网络设备采用的导频端口的信息、第三网络设备采用的RI、第三网络设备采用的PMI、CQI的反馈模式可以为子带反馈,且第三网络设备采用的导频端口的信息针对的子带大小可以与第三网络设备采用的RI、第三网络设备采用的PMI、CQI中的至少一个信息针对的子带大小不 同;或者,第二信息中第一网络设备采用的导频端口的信息、第一网络设备采用的RI、第一网络设备采用的PMI、CQI的反馈模式可以为子带反馈,且第一网络设备采用的导频端口的信息针对的子带大小可以与第一网络设备采用的RI、第一网络设备采用的PMI、CQI中的至少一个信息针对的子带大小不同,同时第三信息中第三网络设备采用的导频端口的信息、第三网络设备采用的RI、第三网络设备采用的PMI、CQI的反馈模式可以为子带反馈,且第三网络设备采用的导频端口的信息针对的子带大小可以与第三网络设备采用的RI、第三网络设备采用的PMI、CQI中的至少一个信息针对的子带大小不同。
具体地,第二信息中第一网络设备采用的导频端口的信息反馈的子带可以独立于第二信息中第一网络设备采用的RI、第一网络设备采用的PMI、CQI反馈的子带配置(如第一网络设备采用的导频端口的信息针对的子带大小为1M,第一网络设备采用的RI、第一网络设备采用的PMI、CQI针对的子带大小均为0.5M);或者,
第三信息中第三网络设备采用的导频端口的信息反馈的子带可以独立于第三信息中第三网络设备采用的RI、第三网络设备采用的PMI、CQI反馈的子带配置;或者,
第二信息中第一网络设备采用的导频端口的信息反馈的子带可以独立于第二信息中第一网络设备采用的RI、第一网络设备采用的PMI、CQI反馈的子带配置,第三信息中第三网络设备采用的导频端口的信息反馈的子带可以独立于第三信息中第三网络设备采用的RI、第三网络设备采用的PMI、CQI反馈的子带配置。
可选地,第二信息的反馈周期与第三信息的反馈周期可以不同,第二网络设备独立配置第二信息的反馈周期和第三信息的反馈周期。
同样地,由于第一网络设备传输的信息量的限制,第一网络设备可以对第一信息中重要性相对较高的信息设置较短的反馈周期,对第一信息中重要性相对较低的信息设置较长的反馈周期。
优选地,第二信息的反馈周期可以比第三信息的反馈周期短。例如,第二信息的反馈周期为5ms,第三信息的反馈周期为10ms。
在实际应用中,第二信息中第一网络设备采用的导频端口的信息比第一网络设备采用的RI、第一网络设备采用的PMI、以及CQI的反馈周期长;或者,第三信息中第三网络设备采用的导频端口的信息比第三网络设备采用的RI、第 三网络设备采用的PMI、以及CQI的反馈周期长;或者,第二信息中第一网络设备采用的导频端口的信息比第一网络设备采用的RI、第一网络设备采用的PMI、以及CQI的反馈周期长,同时第三信息中第三网络设备采用的导频端口的信息比第三网络设备采用的RI、第三网络设备采用的PMI、以及CQI的反馈周期长。
或者,第二信息中第一网络设备采用的导频端口的信息、第一网络设备采用的RI比第一网络设备采用的PMI、CQI的反馈周期长;或者,第三信息中第三网络设备采用的导频端口的信息、第三网络设备采用的RI比第三网络设备采用的PMI、CQI的反馈周期长;或者,第二信息中第一网络设备采用的导频端口的信息、第一网络设备采用的RI比第一网络设备采用的PMI、CQI的反馈周期长,同时第三信息中第三网络设备采用的导频端口的信息、第三网络设备采用的RI比第三网络设备采用的PMI、CQI的反馈周期长。
或者,第二信息中第一网络设备采用的导频端口的信息、第一网络设备采用的RI、第一网络设备采用的PMI比CQI的反馈周期长;或者,第三信息中第三网络设备采用的导频端口的信息、第三网络设备采用的RI、第三网络设备采用的PMI比CQI的反馈周期长;或者,第二信息中第一网络设备采用的导频端口的信息、第一网络设备采用的RI、第一网络设备采用的PMI比CQI的反馈周期长,同时第三信息中第三网络设备采用的导频端口的信息、第三网络设备采用的RI、第三网络设备采用的PMI比CQI的反馈周期长。
具体地,第二信息中第一网络设备采用的导频端口的信息反馈的周期可以独立于第二信息中第一网络设备采用的RI、第一网络设备采用的PMI、CQI反馈的周期配置(如第一网络设备采用的导频端口的信息反馈的周期为10ms,第一网络设备采用的RI、第一网络设备采用的PMI、CQI反馈的周期均为5ms);或者,
第三信息中第三网络设备采用的导频端口的信息反馈的周期可以独立于第三信息中第三网络设备采用的RI、第三网络设备采用的PMI、CQI反馈的周期配置;或者,
第二信息中第一网络设备采用的导频端口的信息反馈的周期可以独立于第二信息中第一网络设备采用的RI、第一网络设备采用的PMI、CQI反馈的周期配置,第三信息中第三网络设备采用的导频端口的信息反馈的周期可以独立于第三信息中第三网络设备采用的RI、第三网络设备采用的PMI、CQI反馈的 周期配置。
在本实施例的又一种实现方式中,第一信息还可以包括假设第一网络设备与第二网络设备进行单用户多输入多输出(Single User Multiple Input Multiple Output,简称SU-MIMO)通信时,第一网络设备的第四信息,第四信息包括第一网络设备采用的导频端口的配置信息、第一网络设备采用的RI、第一网络设备采用的PMI、以及CQI中的至少一种。
可以理解地,由于第一网络设备与第二网络设备还可能进行SU-MIMO通信,因此第一信息中还可以包括第四信息。
可选地,当第一信息包括第二信息、第三信息和第四信息时,若第二信息、第三信息和第四信息的信息量之和大于第一网络设备传输的最大信息量,则第一网络设备按照第四信息优先于第三信息,第三信息优先于第二信息的优先级进行丢弃。
可选地,当第一信息包括第二信息、第三信息和第四信息时,若第二信息、第三信息和第四信息的信息量之和大于第一网络设备传输的最大信息量,则第一网络设备按照第四信息优先于第二信息,第二信息优先于第三信息的优先级进行丢弃。
可选地,当第一信息包括第二信息、第三信息和第四信息时,若第二信息、第三信息和第四信息的信息量之和大于第一网络设备传输的最大信息量,则第一网络设备按照第二信息优先于第三信息,第三信息优先于第四信息的优先级进行丢弃。
可选地,当第一信息包括第二信息、第三信息和第四信息时,若第二信息、第三信息和第四信息的信息量之和大于第一网络设备传输的最大信息量,则第一网络设备按照第二信息优先于第四信息,第四信息优先于第三信息的优先级进行丢弃。
可选地,当第一信息包括第二信息、第三信息和第四信息时,若第二信息、第三信息和第四信息的信息量之和大于第一网络设备传输的最大信息量,则第一网络设备按照第三信息优先于第二信息,第二信息优先于第四信息的优先级进行丢弃。
可选地,当第一信息包括第二信息、第三信息和第四信息时,若第二信息、第三信息和第四信息的信息量之和大于第一网络设备传输的最大信息量,则第一网络设备按照第三信息优先于第四信息,第四信息优先于第二信息的优先级 进行丢弃。
本发明实施例通过至少两个导频端口测量第二网络设备发送的导频信号,确定第一信息,第一信息包括假设第一网络设备和第三网络设备通过在相同的时频资源上进行空间复用与第二网络设备通信时,第一网络设备的第二信息和第三网络设备的第三信息中的至少一种,充分考虑了第一网络设备和第三网络设备通过在相同的时频资源上进行空间复用与第二网络设备通信时,第三网络设备对第一网络设备的干扰,提高了信道测量的准确性,第二网络设备接收到的测量结果的准确性随之提高,进而提升了第二网络设备对第一网络设备和第三网络设备配置的合理度。
实施例4
本发明实施例提供了一种信道测量和反馈方法,本实施例中的至少两个导频端口包括第一类导频端口和第二类导频端口,参见图6,该方法包括:
步骤401:第二网络设备发送导频端口配置信息,该导频端口配置信息用于描述至少两个导频端口,且至少两个导频端口包括第一类导频端口和第二类导频端口。
在本实施例中,第一类导频端口包括至少一组导频端口,第二类导频端口包括至少两个导频端口。各组导频端口分别采用独立配置的导频端口配置信息描述,一组导频端口包括至少两个导频端口。
在本实施例的第一种实现方式中,第一类导频端口可以为周期发送的导频信号的导频端口,第二类导频端口可以为非周期发送的导频信号的导频端口。
在本实施例的第二种实现方式中,第一类导频端口可以为无线资源控制(Radio Resource Control,简称RRC)信令配置的导频端口,第二类导频端口可以为下行控制信令配置的导频端口,下行控制信令为下行调度DL grant信令或者上行调度UL grant信令。
在本实施例的第三种实现方式中,第一类导频端口可以为未经过预编码的导频信号的导频端口,第二类导频端口可以为经过预编码的导频信号的导频端口。
在本实施例的第四种实现方式中,第一类导频端口可以为CRS导频端口或者CSI-RS导频端口,第二类导频端口可以为解调参考信号(Demodulation Reference Signal,简称DMRS)导频端口。
在本实施例的第五种实现方式中,第一类导频端口可以为在所有子带上发送导频信号的导频端口,第二类导频端口可以为在设定的子带上发送导频信号的导频端口。
在本实施例的第六种实现方式中,第一类导频端口发送导频信号的子带可以是固定的,第二类导频端口发送导频信号的子带可以是可变的。
在本实施例的一种实现方式中,该步骤401可以包括:
第二网络设备同时发送用于描述第一类导频端口的导频端口配置信息和用于描述第二类导频端口的导频端口配置信息。
在本实施例的另一种实现方式中,该步骤401可以包括:
第二网络设备分别发送用于描述第一类导频端口的导频端口配置信息和用于描述第二类导频端口的导频端口配置信息。
在具体实现中,第二网络设备可以先发送第一类导频端口的导频端口配置信息,第一网络设备通过第一类导频端口测量第一类导频端口的导频信号、确定第一信息并反馈给第二网络设备(详见步骤402和步骤403);第一网络设备再发送第二类导频端口的配置信息,第一网络设备通过第二类导频端口测量第二类导频端口的导频信号、确定第一信息并反馈给第二网络设备(详见步骤404和405)。其中,第二类导频端口的导频端口配置信息可以是第二网络设备根据通过第一类导频端口测量确定的第一信息得到的,第二类导频端口的导频信号是经过预编码的导频信号,预编码采用的PMI可以是第二网络设备根据通过第一类导频端口测量确定的第一信息确定的。另外,通过第一类导频端口测量确定第一信息时,还可以确定第一网络设备采用的导频端口的导频信号发送的子带和第三网络设备采用的导频端口的导频信号发送的子带,第二类导频端口的导频信号可以通过第一类导频端口测量确定第一信息时确定的子带上发送。也就是说,在第二类导频端口上的测量是在第一类导频端口上的测量的基础上进行更精确的测量、计算和反馈,提高了第一信息的精确度。
可选地,该步骤401可以包括:
第二网络设备发送DCI,DCI包括用于描述第一类导频端口的导频端口配置信息或者用于描述第二类导频端口的导频端口配置信息。
优选地,第一类导频端口的发送模式可以为带宽发送,第二类导频端口的发送模式可以为子带发送,宽带发送为在所有子带发送导频信号,子带发送为在设定的子带发送导频信号。
例如系统带宽为5M,保护带带宽为0.5M,第一类导频端口在4.5M(5M-0.5M)的带宽上发送发送导频信号,第二类导频端口在设定的子带(如上述第一次确定第一信息时确定的子带)上发送导频信号。图7所示的大方格表示PRB,不同的PRB对应不同的子带,方形表示第一类导频端口,菱形表示第二类导频端口,大方格里的各个小方格表示一个PRB里的各个时频资源。从图7可以看出,第一类导频端口在全带宽包含的每个PRB上发送导频信号,第二类导频端口只在特定的子带,例如第一个PRB上发送导频信号。
可选地,用于描述第一类导频端口的导频端口配置信息可以包括第一网络设备采用的至少一组导频端口的组号和第三网络设备采用的至少一组导频端口的组号。
可选地,用于描述第一类导频端口的导频端口配置信息可以包括第一网络设备采用的至少一组导频端口对应的CSI process的进程号和第三网络设备采用的至少一组导频端口对应的CSI process的进程号。
优选地,第二类导频端口可以包括发送第一导频信号的第一导频端口和发送第二导频信号的第二导频端口,第一导频信号和第二导频信号是第二网络设备通过在相同的时频资源上进行空间复用发送的,第一网络设备通过第一导频信号测量第一网络设备接收的信号,第一网络设备通过第二导频信号测量对第一网络设备接收的信号的瞬时干扰,瞬时干扰为第三网络设备与第一网络设备在相同的时频资源上进行空间复用而产生的对第一网络设备接收的信号的干扰。
例如,第二网络设备发送的DCI如下表一所示:
表一 第二类导频端口配置信息
Figure PCTCN2014094586-appb-000006
Figure PCTCN2014094586-appb-000007
假设导频端口配置信息中的“状态值”为0对应的状态,则第一网络设备可以确定第一网络设备采用的RI为1(1 layer),第一导频端口为port 7(port 7)、第一导频信号的导频扰码序列的初始化ID为0(nSCID=0),第二导频端口为port7(port 7)、第二导频信号的导频扰码序列的初始化的ID为1(nSCID=1)。其中,假定通过第二导频信号测量的瞬时干扰是由于第三网络设备与第一网络设备在相同的时频资源进行空间复用而产生的对通过第一导频信号测量的第一网络设备接收的信号的干扰。
具体地,第一导频信号和第二导频信号可以均为非零功率的导频信号。
具体地,第一导频信号和第二网络设备向第一网络设备发送的数据信号可以采用相同的预编码矩阵,第二导频信号与第二网络设备向第三网络设备发送的数据信号可以采用相同的预编码矩阵。
可选地,第一导频信号可以为第二网络设备向第一网络设备发送的数据信号的解调导频信号;或者,
第二导频信号可以为第二网络设备向第三网络设备发送的数据信号的解调导频信号;或者,
第一导频信号可以为第二网络设备向第一网络设备发送的数据信号的解调导频信号,第二导频信号可以为第二网络设备向第三网络设备发送的数据信号的解调导频信号。
具体地,用于描述第二类导频端口的导频端口配置信息可以包括第一网络设备采用的导频端口的端口号和第三网络设备采用的导频端口的端口号。
可选地,用于描述第二类导频端口的导频端口配置信息还可以包括第一网络设备采用的导频端口的导频信号发送的子带、第一网络设备采用的导频端口的导频信号的导频序列、第一网络设备采用的导频端口的导频信号的发送功率、第三网络设备采用的导频端口的导频信号发送的子带、第三网络设备采用的导频端口的导频信号的导频序列、第三网络设备采用的导频端口的导频信号的发送功率中的至少一种。
步骤402:第一网络设备通过第一类导频端口测量第二网络设备发送的导频信号并确定第一信息。
其中,通过第一类导频端口测量确定的第一信息包括假设第一网络设备和第三网络设备通过在相同的时频资源上进行空间复用与第二网络设备通信时,第一网络设备的第二信息和第三网络设备的第三信息中的至少一种。第二信息包括第一网络设备采用的导频端口的信息、第一网络设备采用的RI、第一网络设备采用的PMI、以及CQI中的至少一种。第三信息包括第三网络设备采用的导频端口的信息、第三网络设备采用的RI、第三网络设备采用的PMI、以及CQI中的至少一种。
具体地,通过第一类导频端口测量确定的第一信息中的第二信息可以包括第一网络设备采用的RI、第一网络设备采用的PMI和CQI,通过第一类导频端口测量确定的第一信息中的第三信息可以包括第三网络设备采用的RI和第三网络设备采用的PMI。
具体地,通过第一类导频端口测量确定的第一信息中的第二信息可以包括第一网络设备采用的PMI和CQI,通过第一类导频端口测量确定的第一信息中的第三信息可以包括第三网络设备采用的PMI。
具体地,通过第一类导频端口测量确定的第一信息中的第二信息可以包括第一网络设备采用的PMI,通过第一类导频端口测量确定的第一信息中的第三信息可以包括第三网络设备采用的PMI。当第二网络设备只发送导频信号给第一网络设备和第三网络设备时,第一信息中可以不包括CQI。
可选地,通过第一类导频端口测量确定的第一信息中的第二信息还可以包括第一网络设备采用的导频端口的导频信号发送的子带、第一网络设备采用的导频端口的导频信号的导频序列、第一网络设备采用的导频端口的导频信号的 发送功率中的至少一种,通过第一类导频端口测量确定的第一信息中的第三信息还可以包括第三网络设备采用的导频端口的导频信号发送的子带、第三网络设备采用的导频端口的导频信号的导频序列、第三网络设备采用的导频端口的导频信号的发送功率中的至少一种。
具体地,该步骤402可以包括:
第一网络设备分别通过至少一组导频端口中的各个第一类导频端口测量第二网络设备发送的导频信号,得到各个第一类导频端口对应的信道系数;
将各组导频端口中的各个第一类导频端口对应的信道系数组成各组导频端口对应的信道系数矩阵;
分别将各组导频端口对应的信道系数矩阵依次与各组导频端口一一对应的预编码矩阵集合中的各个预编码矩阵相乘,得到等效信道系数矩阵;
依次计算第一网络设备和第三网络设备采用各个等效信道系数矩阵时的SINR;
在计算出的所有SINR中,选择最大的SINR;
根据最大的SINR,第一次确定第一信息,其中,CQI根据设定的SINR与CQI的对应关系确定,第一网络设备采用的导频端口的信息为计算出最大的SINR时第一网络设备采用的等效信道系数矩阵对应的导频端口的信息,第一网络设备采用的PMI为计算出最大的SINR时第一网络设备采用的等效信道系数矩阵对应的PMI,第一网络设备采用的RI为第一网络设备采用的等效信道系数矩阵对应的预编码矩阵的秩,第三网络设备采用的导频端口的信息为计算出最大的SINR时第三网络设备采用的等效信道系数矩阵对应的导频端口的信息,第三网络设备采用的PMI为计算出最大的SINR时第三网络设备采用的等效信道系数矩阵对应的PMI,第三网络设备采用的RI为第三网络设备采用的等效信道系数矩阵对应的预编码矩阵的秩。
其中,得到等效信道系数矩阵时,依次遍历M组导频端口中的每组导频端口,在遍历每组导频端口时,依次遍历每组导频端口对应的预编码矩阵集合中的每个预编码矩阵,在遍历到每个预编码矩阵时,将遍历到的一组导频端口对应的信道系数矩阵与遍历到的一个预编码矩阵相乘,得到等效信道系数矩阵,具体遍历过程在此不再详述。
步骤403:第一网络设备将通过第一类导频端口测量确定的第一信息反馈给第二网络设备。
步骤404:第一网络设备通过第二类导频端口测量第二网络设备发送的导频信号并确定第一信息。
其中,通过第二类导频端口测量确定的第一信息可以包括CQI。
具体地,该步骤404可以包括:
第一网络设备分别通过第一网络设备采用的第二类导频端口和第三网络设备采用的第二类导频端口测量第二网络设备发送的导频信号,得到第一网络设备采用的等效信道系数矩阵和第三网络设备采用的等效信道系数矩阵;
计算第一网络设备和第三网络设备相同的时频资源上与第二网络设备通信时的SINR;
根据计算出的SINR,第二次确定第一信息,其中,CQI根据设定的SINR与CQI的对应关系确定。
其中,第二类导频端口的配置信息中,第二网络设备会为第一网络设备和第三网络设备分别指定一组导频端口或者一个导频端口,并且由于第二类导频端口的导频信号是经过预编码的,在第二类导频端口可以直接测得等效信道系数矩阵或者等效信道系数,因此在得到等效信道系数矩阵时,不需要遍历各组导频端口和各组导频端口对应的预编码矩阵集合中的各个预编码矩阵。
在具体实现中,第二网络设备可以每隔设定的第一周期发送一次第一类导频端口的导频信号,以针对信道的变化情况,及时更换通信质量好的信道进行通信,实现系统自适应。如第一周期为5ms,第二网络设备依次在第0ms、5ms、10ms、15ms时发送第一类导频端口的导频信号。
第二网络设备可以在第二网络设备有MU MIMO调度需要时,发送第二类导频端口的导频信号,以针对每次调度及时确定通信质量较好的信道。如第二网络设备在第13ms时有调度需要,则第二网络设备在第13m时发送第二类导频端口的导频信号,或者在13ms的前几个子帧内发送第二类导频端口的端口信号。
具体地,通过第一类导频端口测量确定的第一信息可以每隔设定的第二周期反馈给第二网络设备,也可以在每次确定之后及时反馈给第二网络设备。通过第二类导频端口测量确定的第一信息可以在每次确定之后及时反馈给第二网络设备。
在本实施例的一种实现方式中,通过第一类导频端口测量确定的第一信息不包括假设第一网络设备和第三网络设备通过在相同的时频资源上进行空间 复用与第二网络设备通信时的CQI,通过第二类导频端口测量确定的第一信息包括假设第一网络设备和第三网络设备通过在相同的时频资源上进行空间复用与第二网络设备通信时的CQI。
在本实施例的另一种实现方式中,通过第一类导频端口测量确定的第一信息和通过第二类导频端口测量确定的第一信息均包括假设第一网络设备和第三网络设备通过在相同的时频资源上进行空间复用与第二网络设备通信时的CQI,且通过第二类导频端口测量确定的第一信息中的CQI与通过第一类导频端口测量确定的第一信息中的CQI相互关联。
可选地,通过第二类导频端口测量确定的第一信息中的CQI与通过第一类导频端口测量确定的第一信息中的CQI相互关联,包括通过第二类导频端口测量确定的第一信息中的CQI,是通过第一类导频端口测量确定的第一信息中的CQI差分得到的。
例如,通过第一类导频端口测量确定的CQI为10dB,通过第二类导频端口测量确定的CQI为15.2dB,则通过第二类导频端口测量确定的第一信息中的CQI为对15.2-10=5.2进行量化后的值。
在本实施例的一种实现方式中,该步骤404可以包括:
第二网络设备在第一时间单元发送信号;
第一网络设备接收第二网络设备在第一时间单元发送的信号;
其中,第二网络设备在第一时间单元发送的信号包括第一导频信号和第二导频信号,且第二网络设备在第一时间单元发送的信号不包括向第一网络设备发送的以第一导频信号为解调导频信号的数据信号和向第三网络设备发送的以第二导频信号为解调导频信号的数据信号。第一导频信号和第二导频信号是第二网络设备通过在相同的时频资源上进行空间复用发送的,第一导频端口通过第一导频信号测量第一网络设备接收的信号,第二导频端口通过第二导频信号测量对第一网络设备接收的信号的瞬时干扰。图8a所示的大方格表示第一时间单元的一个PRB,大方格里的各个小方格表示一个PRB里的各个时频资源,斜线表示第一导频信号,竖线表示第二导频信号。也就是说,具有斜线的小方格表示该时频资源上发送了第一导频信号,具有竖线的小方格表示该时频资源上发送了第二导频信号。从图8a看出,第二网络设备在该PRB上发送了第一导频信号和第二导频信号,但是在该PRB上没有发送向第一网络设备发送的以第一导频信号为解调导频信号的数据信号和向第三网络设备发送的以 第二导频信号为解调导频信号的数据信号。
具体地,第一时间单元可以为一个时隙、一个子帧或者一个无线帧。
在本实施例的另一种实现方式中,该步骤404可以包括:
第二网络设备在第一时间单元发送信号;
第一网络设备接收第二网络设备在第一时间单元发送的信号;
其中,第二网络设备在第一时间单元发送的信号包括第一导频信号、第二导频信号、向第一网络设备发送的以第一导频信号为解调导频信号的数据信号和向第三网络设备发送的以第二导频信号为解调导频信号的数据信号。第一导频信号和第二导频信号是第二网络设备通过在相同的时频资源上进行空间复用发送的,第一导频端口通过第一导频信号测量第一网络设备接收的信号,第二导频端口通过第二导频信号测量对第一网络设备接收的信号的瞬时干扰。图8b所示的大方格表示第一时间单元的一个PRB,大方格里的各个小方格表示一个PRB里的各个时频资源,斜线表示第一导频信号,竖线表示第二导频信号,三角形表示向第一网络设备发送的以第一导频信号为解调导频信号的数据信号,圆形表示向第三网络设备发送的以第二导频信号为解调导频信号的数据信号。也就是说,具有斜线的小方格表示该时频资源上发送了第一导频信号,具有竖线的小方格表示该时频资源上发送了第二导频信号,具有三角形的小方格表示该时频资源上发送了向第一网络设备发送的以第一导频信号为解调导频信号的数据信号,具有圆形的小方格表示该时频资源上发送了向第三网络设备发送的以第二导频信号为解调导频信号的数据信号。从图8b看出,第二网络设备在该PRB上发送了第一导频信号、第二导频信号、向第一网络设备发送的以第一导频信号为解调导频信号的数据信号和向第三网络设备发送的以第二导频信号为解调导频信号的数据信号。
具体地,第一时间单元可以为一个时隙、一个子帧或者一个无线帧。
在本实施例的又一种实现方式中,该步骤404可以包括:
第二网络设备在第一时间单元发送信号;
第一网络设备接收第二网络设备在第一时间单元发送的信号;
其中,第二网络设备在第一时间单元发送的信号包括第一导频信号、第二导频信号、向第一网络设备发送的以第一导频信号为解调导频信号的数据信号,且第二网络设备在第一时间单元发送的信号不包括向第三网络设备发送的以第二导频信号为解调导频信号的数据信号。第一导频信号和第二导频信号是 第二网络设备通过在相同的时频资源上进行空间复用发送的,第一导频端口通过第一导频信号测量第一网络设备接收的信号,第二导频端口通过第二导频信号测量对第一网络设备接收的信号的瞬时干扰。图8c所示的大方格表示第一时间单元的一个PRB,大方格里的各个小方格表示一个PRB里的各个时频资源,斜线表示第一导频信号,竖线表示第二导频信号,三角形表示向第一网络设备发送的以第一导频信号为解调导频信号的数据信号。也就是说,具有斜线的小方格表示该时频资源上发送了第一导频信号,具有竖线的小方格表示该时频资源上发送了第二导频信号,具有三角形的小方格表示该时频资源上发送了向第一网络设备发送的以第一导频信号为解调导频信号的数据信号。从图8c看出,第二网络设备在该PRB上发送了第一导频信号、第二导频信号、向第一网络设备发送的的以第一导频信号为解调导频信号的数据信号,但是在该PRB上没有发送向第三网络设备发送的以第二导频信号为解调导频信号的数据信号。
具体地,第一时间单元可以为一个时隙、一个子帧或者一个无线帧。
在本实施例的又一种实现方式中,该步骤404可以包括:
第二网络设备在第一时间单元发送信号;
第一网络设备接收第二网络设备在第一时间单元发送的信号;
其中,第二网络设备在第一时间单元发送的信号包括第一导频信号、第二导频信号、向第三网络设备发送的以第二导频信号为解调导频信号的数据信号,且第二网络设备在第一时间单元发送的信号不包括向第一网络设备发送的以第一导频信号为解调导频信号的数据信号。第一导频信号和第二导频信号是第二网络设备通过在相同的时频资源上进行空间复用发送的,第一导频端口通过第一导频信号测量第一网络设备接收的信号,第二导频端口通过第二导频信号测量对第一网络设备接收的信号的瞬时干扰。图8d所示的大方格表示第一时间单元的一个PRB,大方格里的各个小方格表示一个PRB里的各个时频资源,斜线表示第一导频信号,竖线表示第二导频信号,圆形表示向第三网络设备发送的以第二导频信号为解调导频信号的数据信号。也就是说,具有斜线的小方格表示该时频资源上发送了第一导频信号,具有竖线的小方格表示该时频资源上发送了第二导频信号,具有圆形的小方格表示该时频资源上发送了向第三网络设备发送的以第二导频信号为解调导频信号的数据信号。从图8d看出,第二网络设备在该PRB上发送了第一导频信号、第二导频信号、向第三网络 设备发送的以第二导频信号为解调导频信号的数据信号,但是在该PRB上没有发送向第一网络设备发送的以第一导频信号为解调导频信号的数据信号。
具体地,第一时间单元可以为一个时隙、一个子帧或者一个无线帧。
步骤405:第一网络设备将通过第二类导频端口测量确定的第一信息反馈给第二网络设备。
本发明实施例通过至少两个导频端口测量第二网络设备发送的导频信号,确定第一信息,第一信息包括假设第一网络设备和第三网络设备通过在相同的时频资源上进行空间复用与第二网络设备通信时,第一网络设备的第二信息和第三网络设备的第三信息中的至少一种,充分考虑了第一网络设备和第三网络设备通过在相同的时频资源上进行空间复用与第二网络设备通信时,第三网络设备对第一网络设备的干扰,提高了信道测量的准确性,第二网络设备接收到的测量结果的准确性随之提高,进而提升了第二网络设备对第一网络设备和第三网络设备配置的合理度。
实施例5
本发明实施例提供了一种第一网络设备,该第一网络设备为实施例1-实施例4任一实施例所述的第一网络设备,参见图9,该第一网络设备包括:
接收模块501,用于接收第二网络设备发送的导频端口配置信息,导频端口配置信息用于描述至少两个导频端口;
确定模块502,用于通过至少两个导频端口测量第二网络设备发送的导频信号,确定第一信息;其中,第一信息包括假设第一网络设备和第三网络设备通过在相同的时频资源上进行空间复用与第二网络设备通信时,第一网络设备的第二信息和第三网络设备的第三信息中的至少一种,第二信息包括第一网络设备采用的导频端口的信息、第一网络设备采用的RI、第一网络设备采用的PMI、以及CQI中的至少一种,第三信息包括第三网络设备采用的导频端口的信息、第三网络设备采用的RI、第三网络设备采用的PMI、以及CQI中的至少一种;
发送模块503,用于将第一信息反馈给第二网络设备。
在实际应用中,接收模块501可以由接收器实现,确定模块502可以由处理器实现,发送模块503可以由发送器实现。
需要说明的是,第一网络设备和第三网络设备通过在相同的时频资源上进 行空间复用与第二网络设备通信是指第一网络设备和第三网络设备通过在同一个PRB上进行空间复用与第二网络设备通信。第一网络设备为第一UE,第三网络设备为第二UE,第二网络设备为基站,或者,第一网络设备为第一从基站,第三网络设备为第二从基站,第二网络设备为主基站,或者,第一网络设备为第一从UE,第三网络设备为第二从UE,第二网络设备为主UE。与第一网络设备在相同的时频资源上进行空间复用与第二网络设备通信的第三网络设备可以为一个,也可以为多个。第二网络设备接收到第一信息之后,可以根据第一信息,配置第一网络设备与第三网络设备通过在相同的时频资源上进行空间复用与第二网络设备通信时的调度信息,以使得调度信息更加准确。具体详见实施例1或实施例2。
具体地,导频端口配置信息包括的内容可以与实施例1-实施例4任一实施例相同,在此不再详述。
在本实施例的一种实现方式中,至少两个导频端口可以为一组导频端口或者至少两组导频端口,具体详见实施例3步骤301,在此不再详述。
在本实施例的另一种实现方式中,确定模块502可以包括:
测量单元5021,用于分别通过一组导频端口或者至少两组导频端口中的各个导频端口测量第二网络设备发送的导频信号,得到各个导频端口对应的信道系数;
组成单元5022,用于将各组导频端口中的各个导频端口对应的信道系数组成各组导频端口对应的信道系数矩阵;
相乘单元5023,用于分别将各组导频端口对应的信道系数矩阵依次与各组导频端口对应的预编码矩阵集合中的各个预编码矩阵相乘,得到等效信道系数矩阵;
计算单元5024,用于依次计算第一网络设备和第三网络设备采用各个等效信道系数矩阵时的SINR;
选择单元5025,用于在计算出的所有SINR中,选择最大的SINR;
确定单元5026,用于根据最大的SINR,确定第一信息,其中,CQI根据设定的SINR与CQI的对应关系确定,第一网络设备采用的导频端口的信息为计算出最大的SINR时第一网络设备采用的等效信道系数矩阵对应的导频端口的信息,第一网络设备采用的PMI为计算出最大的SINR时第一网络设备采用的等效信道系数矩阵对应的PMI,第一网络设备采用的RI为计算出最大的 SINR时第一网络设备采用的等效信道系数矩阵对应的预编码矩阵的秩,第三网络设备采用的导频端口的信息为计算出最大的SINR时第三网络设备采用的等效信道系数矩阵对应的导频端口的信息,第三网络设备采用的PMI为计算出最大的SINR时第三网络设备采用的等效信道系数矩阵对应的PMI,第三网络设备采用的RI为计算出最大的SINR时第三网络设备采用的等效信道系数矩阵对应的预编码矩阵的秩。
在实际应用中,测量单元5021、组成单元5022、相乘单元5023、计算单元5024、选择单元5025、确定单元5026可以分别由不同的处理器实现,也可以由同一个处理器实现。测量单元5021、组成单元5022、相乘单元5023、计算单元5024、选择单元5025、确定单元5026具体如何确定第一信息详见实施例3。
在本实施例的又一种实现方式中,第一网络设备采用的导频端口的信息还可以包括第一网络设备采用的导频端口的导频信号发送的子带、第一网络设备采用的导频端口的导频信号的导频序列、第一网络设备采用的导频端口的导频信号的发送功率中的至少一种,第三网络设备采用的导频端口的信息还可以包括第三网络设备采用的导频端口的导频信号发送的子带、第三网络设备采用的导频端口的导频信号的导频序列、第三网络设备采用的导频端口的导频信号的发送功率中的至少一种。
具体地,接收模块501可以用于,
接收第二网络设备发送的DCI,DCI包括导频端口配置信息。
在本实施例的又一种实现方式中,至少两个导频端口可以包括第一类导频端口和第二类导频端口,具体详见实施例4步骤401,在此不再详述。
可选地,确定模块502可以包括:
接收单元5020,用于接收第二网络设备在第一时间单元发送的信号;
其中,第二网络设备在第一时间单元发送的信号可以包括第一导频信号和第二导频信号,且第二网络设备在第一时间单元发送的信号不包括向第一网络设备发送的以第一导频信号为解调导频信号的数据信号和向第三网络设备发送的以第二导频信号为解调导频信号的数据信号;或者,第二网络设备在第一时间单元发送的信号可以包括第一导频信号、第二导频信号、向第一网络设备发送的以第一导频信号为解调导频信号的数据信号和向第三网络设备发送的以第二导频信号为解调导频信号的数据信号;或者,第二网络设备在第一时间 单元发送的信号可以包括第一导频信号和第二导频信号、向第一网络设备发送的以第一导频信号为解调导频信号的数据信号,且第二网络设备在第一时间单元发送的信号不包括向第三网络设备发送的以第二导频信号为解调导频信号的数据信号;或者,第二网络设备在第一时间单元发送的信号可以包括第一导频信号和第二导频信号、向第三网络设备发送的以第二导频信号为解调导频信号的数据信号,且第二网络设备在第一时间单元发送的信号不包括向第一网络设备发送的以第一导频信号为解调导频信号的数据信号。具体详见实施例4步骤404及图8a-图8d,在此不再详述。
具体地,第一时间单元可以为一个时隙、一个子帧或者一个无线帧。
在实际应用中,接收单元5020可以由接收器实现。
具体地,确定模块502可以包括:
第一确定子模块,用于通过第一类导频端口测量第二网络设备发送的导频信号并确定第一信息;
第二确定子模块,用于通过第二类导频端口测量第二网络设备发送的导频信号并确定第一信息。
相应地,发送模块503可以包括:
第一反馈子模块,用于将通过第一类导频端口测量确定的第一信息反馈给第二网络设备;
第二反馈子模块,用于将通过第二类导频端口测量确定的第一信息反馈给第二网络设备。
更具体地,第一确定子模块、第二确定子模块均可以包括测量单元5021、组成单元5022、相乘单元5023、计算单元5024、选择单元5025、确定单元5026。
具体地,接收模块501可以用于,
接收第二网络设备发送的DCI,DCI包括用于描述第一类导频端口的导频端口配置信息或者用于描述第二类导频端口的导频端口配置信息。
进一步地,第一类导频端口的发送模式和第二类导频端口的发送模式、第一类导频端口的导频端口配置信息和第二类导频端口的配置信息、第二类导频端口的结构、通过第一类导频端口测量确定的第一信息的反馈方式、通过第二类导频端口测量确定的第一信息的反馈方式等详见实施例4步骤401,在此不再详述。
在本实施例的一种实现方式中,通过第一类导频端口测量确定的第一信息 和通过第二类导频端口测量确定的第一信息之间的关系可以与实施例4相同,在此不再详述。
在本实施例的又一种实现方式中,第二信息和第三信息的反馈模式可以与实施例3步骤303相同,在此不再详述。
在本实施例的又一种实现方式中,第二信息和第三信息的反馈周期可以与实施例3步骤303相同,在此不再详述。
在本实施例的又一种实现方式中,第一信息还可以包括假设第一网络设备与第二网络设备进行SU-MIMO通信时,第一网络设备的第四信息,第四信息包括第一网络设备采用的导频端口的配置信息、第一网络设备采用的RI、第一网络设备采用的PMI、以及CQI中的至少一种。
可选地,当第一信息包括第二信息、第三信息和第四信息时,若第二信息、第三信息和第四信息的信息量之和大于第一网络设备传输的最大信息量,则可以按照第四信息优先于第三信息,第三信息优先于第二信息的优先级进行丢弃,或者,可以按照第四信息优先于第二信息,第二信息优先于第三信息的优先级进行丢弃,或者,可以按照第二信息优先于第三信息,第三信息优先于第四信息的优先级进行丢弃,或者,可以按照第二信息优先于第四信息,第四信息优先于第三信息的优先级进行丢弃,或者,按照第三信息优先于第二信息,第二信息优先于第四信息的优先级进行丢弃,或者,按照第三信息优先于第四信息,第四信息优先于第二信息的优先级进行丢弃。
本发明实施例通过至少两个导频端口测量第二网络设备发送的导频信号,确定第一信息,第一信息包括假设第一网络设备和第三网络设备通过在相同的时频资源上进行空间复用与第二网络设备通信时,第一网络设备的第二信息和第三网络设备的第三信息中的至少一种,充分考虑了第一网络设备和第三网络设备通过在相同的时频资源上进行空间复用与第二网络设备通信时,第三网络设备对第一网络设备的干扰,提高了信道测量的准确性,第二网络设备接收到的测量结果的准确性随之提高,进而提升了第二网络设备对第一网络设备和第三网络设备配置的合理度。
实施例6
本发明实施例提供了一种第二网络设备,该第二网络设备为实施例1-实施例4任一实施例所述的第二网络设备,参见图10,该第二网络设备包括:
发送模块601,用于发送导频端口配置信息,导频端口配置信息用于描述至少两个导频端口;
接收模块602,用于接收第一网络设备反馈的第一信息,第一信息是第一网络设备通过至少两个导频端口测量第二网络设备发送的导频信号确定的,第一信息包括假设第一网络设备和第三网络设备通过在相同的时频资源上进行空间复用与第二网络设备通信时,第一网络设备的第二信息和第三网络设备的第三信息中的至少一种,第二信息包括第一网络设备采用的导频端口的信息、第一网络设备采用的RI、第一网络设备采用的PMI、以及CQI中的至少一种,第三信息包括第三网络设备采用的导频端口的信息、第三网络设备采用的RI、第三网络设备采用的PMI、以及CQI中的至少一种。
在实际应用中,发送模块601可以由发送器实现,接收模块602可以由接收器实现。
需要说明的是,第一网络设备和第三网络设备通过在相同的时频资源上进行空间复用与第二网络设备通信是指第一网络设备和第三网络设备通过在同一个PRB上进行空间复用与第二网络设备通信。第一网络设备为第一UE,第三网络设备为第二UE,第二网络设备为基站,或者,第一网络设备为第一从基站,第三网络设备为第二从基站,第二网络设备为主基站,或者,第一网络设备为第一从UE,第三网络设备为第二从UE,第二网络设备为主UE。与第一网络设备在相同的时频资源上进行空间复用与第二网络设备通信的第三网络设备可以为一个,也可以为多个。第二网络设备接收到第一信息之后,可以根据第一信息,配置第一网络设备与第三网络设备通过在相同的时频资源上进行空间复用与第二网络设备通信时的调度信息,以使得调度信息更加准确。具体详见实施例1或实施例2。
具体地,导频端口配置信息包括的内容可以与实施例1-实施例4任一实施例相同,在此不再详述。
在本实施例的一种实现方式中,至少两个导频端口可以为一组导频端口或者至少两组导频端口,具体详见实施例3步骤301,在此不再详述。
具体地,发送模块601可以用于,
发送DCI,DCI包括导频端口配置信息。
在本实施例的又一种实现方式中,至少两个导频端口可以包括第一类导频端口和第二类导频端口,具体详见实施例4步骤401,在此不再详述。
可选地,发送模块601还可以用于,
在第一时间单元发送信号;
其中,在第一时间单元发送的信号可以包括第一导频信号和第二导频信号,且在第一时间单元发送的信号不包括向第一网络设备发送的以第一导频信号为解调导频信号的数据信号和向第三网络设备发送的以第二导频信号为解调导频信号的数据信号;或者,在第一时间单元发送的信号可以包括第一导频信号、第二导频信号、向第一网络设备发送的以第一导频信号为解调导频信号的数据信号和向第三网络设备发送的以第二导频信号为解调导频信号的数据信号;或者,在第一时间单元发送的信号可以包括第一导频信号和第二导频信号、向第一网络设备发送的以第一导频信号为解调导频信号的数据信号,且在第一时间单元发送的信号不包括向第三网络设备发送的以第二导频信号为解调导频信号的数据信号;或者,在第一时间单元发送的信号可以包括第一导频信号和第二导频信号、向第三网络设备发送的以第二导频信号为解调导频信号的数据信号,且在第一时间单元发送的信号不包括向第一网络设备发送的以第一导频信号为解调导频信号的数据信号。具体详见实施例4步骤404及图8a-图8d,在此不再详述。
具体地,第一时间单元可以为一个时隙、一个子帧或者一个无线帧。
具体地,接收模块602可以用于,
接收通过第一类导频端口测量第二网络设备发送的导频信号确定的第一信息;
接收通过第二类导频端口测量第二网络设备发送的导频信号确定的第一信息。
具体地,发送模块601可以用于,
发送DCI,DCI包括用于描述第一类导频端口的导频端口配置信息或者用于描述第二类导频端口的导频端口配置信息。
进一步地,第一类导频端口的发送模式和第二类导频端口的发送模式、第一类导频端口的导频端口配置信息和第二类导频端口的配置信息、第二类导频端口的结构、通过第一类导频端口测量确定的第一信息的反馈方式、通过第二类导频端口测量确定的第一信息的反馈方式等详见实施例4步骤401,在此不再详述。
在本实施例的一种实现方式中,通过第一类导频端口测量确定的第一信息 和通过第二类导频端口测量确定的第一信息之间的关系可以与实施例4相同,在此不再详述。
在本实施例的又一种实现方式中,第二信息和第三信息的反馈模式可以与实施例3步骤303相同,在此不再详述。
在本实施例的又一种实现方式中,第二信息和第三信息的反馈周期可以与实施例3步骤303相同,在此不再详述。
在本实施例的又一种实现方式中,第一信息还可以包括假设第一网络设备与第二网络设备进行SU-MIMO通信时,第一网络设备的第四信息,第四信息包括第一网络设备采用的导频端口的配置信息、第一网络设备采用的RI、第一网络设备采用的PMI、以及CQI中的至少一种。
本发明实施例通过至少两个导频端口测量第二网络设备发送的导频信号,确定第一信息,第一信息包括假设第一网络设备和第三网络设备通过在相同的时频资源上进行空间复用与第二网络设备通信时,第一网络设备的第二信息和第三网络设备的第三信息中的至少一种,充分考虑了第一网络设备和第三网络设备通过在相同的时频资源上进行空间复用与第二网络设备通信时,第三网络设备对第一网络设备的干扰,提高了信道测量的准确性,第二网络设备接收到的测量结果的准确性随之提高,进而提升了第二网络设备对第一网络设备和第三网络设备配置的合理度。
实施例7
本发明实施例提供了一种信道测量和反馈系统,参见图11,该系统包括第一网络设备701、第二网络设备702和第三网络设备703,其中,第一网络设备701、第二网络设备702、第三网络设备703分别为实施例1-实施例4任一实施例所述的第一网络设备、第二网络设备、第三网络设备。
在实际应用中,第一种情况,第一网络设备701为第一UE(如图1所示的UE 1),第三网络设备703为第二UE(如图1所示的UE 3),第二网络设备702为基站(如图1所示的基站2),基站控制第一UE的通信和第二UE的通信,第一UE和第二UE之间不存在主从关系。第二种情况,第一网络设备701为第一从基站,第三网络设备703为第二从基站,第二网络设备702为主基站,主基站控制第一从基站的通信和第二从基站的通信。例如,主基站为宏基站,第一从基站为一个微基站,第二从基站为另一个微基站。第三种情况,第一网 络设备701为第一从UE,第三网络设备703为第二从UE,第二网络设备702为主UE,主UE控制第一从UE的通信和第二从UE的通信。
本发明实施例通过至少两个导频端口测量第二网络设备发送的导频信号,确定第一信息,第一信息包括假设第一网络设备和第三网络设备通过在相同的时频资源上进行空间复用与第二网络设备通信时,第一网络设备的第二信息和第三网络设备的第三信息中的至少一种,充分考虑了第一网络设备和第三网络设备通过在相同的时频资源上进行空间复用与第二网络设备通信时,第三网络设备对第一网络设备的干扰,提高了信道测量的准确性,第二网络设备接收到的测量结果的准确性随之提高,进而提升了第二网络设备对第一网络设备和第三网络设备配置的合理度。
需要说明的是:上述实施例提供的网络设备在信道测量和反馈时,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将设备的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。另外,上述实施例提供的网络设备与信道测量和反馈方法实施例属于同一构思,其具体实现过程详见方法实施例,这里不再赘述。
上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (97)

  1. 一种信道测量和反馈方法,其特征在于,所述方法包括:
    第一网络设备接收第二网络设备发送的导频端口配置信息,所述导频端口配置信息用于描述至少两个导频端口;
    通过所述至少两个导频端口测量所述第二网络设备发送的导频信号,确定第一信息;其中,所述第一信息包括假设所述第一网络设备和第三网络设备通过在相同的时频资源上进行空间复用与所述第二网络设备通信时,所述第一网络设备的第二信息和所述第三网络设备的第三信息中的至少一种,所述第二信息包括所述第一网络设备采用的导频端口的信息、所述第一网络设备采用的秩指示RI、所述第一网络设备采用的预编码矩阵指示PMI、以及信道质量指标CQI中的至少一种,所述第三信息包括所述第三网络设备采用的导频端口的信息、所述第三网络设备采用的RI、所述第三网络设备采用的PMI、以及CQI中的至少一种;
    将所述第一信息反馈给所述第二网络设备。
  2. 根据权利要求1所述的方法,其特征在于,所述导频端口配置信息包括导频端口的个数、导频端口的标识、导频端口的导频信号的导频图案、导频端口的导频信号的导频序列、导频端口的导频信号的发送功率、导频端口的导频信号的发送时刻、导频端口的导频信号发送的子带中的至少一种。
  3. 根据权利要求1或2所述的方法,其特征在于,所述至少两个导频端口为一组导频端口或者至少两组导频端口,各组导频端口分别采用独立配置的所述导频端口配置信息描述,一组导频端口包括至少一个导频端口。
  4. 根据权利要求3所述的方法,其特征在于,当所述至少两个导频端口为所述一组导频端口时,所述第二信息中的所述第一网络设备采用的导频端口的信息包括所述第一网络设备在所述一组导频端口中为所述第一网络设备选择的至少一个导频端口的端口号,所述第三信息中的所述第三网络设备采用的导频端口的信息包括所述第一网络设备在所述一组导频端口中为所述第三网络设备选择的至少一个导频端口的端口号;或者,
    当所述至少两个导频端口为所述至少两组导频端口时,所述第一信息中的所述第一网络设备采用的导频端口的信息包括所述第一网络设备在所述至少两组导频端口中为所述第一网络设备选择的至少一组导频端口的组号,所述第三 信息中的所述第三网络设备采用的导频端口的信息包括所述第一网络设备在所述至少两组导频端口中为所述第三网络设备选择的至少一组导频端口的组号。
  5. 根据权利要求3所述的方法,其特征在于,所述独立配置的导频端口配置信息与信道状态信息进程CSI process的配置信息一一对应,每个所述CSI process的配置信息包括非零功率的信道状态信息参考信号CSI-RS的配置信息和信道状态信息干扰测量参考信号CSI-IM的配置信息。
  6. 根据权利要求5所述的方法,其特征在于,当所述至少两个导频端口为所述至少两组导频端口时,所述第一信息中的所述第一网络设备采用的导频端口的信息包括所述第一网络设备在所述至少两组导频端口中为所述第一网络设备选择的至少一组导频端口对应的CSI process的进程号,所述第三信息中的所述第三网络设备采用的导频端口的信息包括所述第一网络设备在所述至少两组导频端口中为所述第三网络设备选择的至少一组导频端口对应的CSI process的进程号。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述第一网络设备采用的导频端口的信息还包括所述第一网络设备采用的导频端口的导频信号发送的子带、所述第一网络设备采用的导频端口的导频信号的导频序列、所述第一网络设备采用的导频端口的导频信号的发送功率中的至少一种,所述第三网络设备采用的导频端口的信息还包括所述第三网络设备采用的导频端口的导频信号发送的子带、所述第三网络设备采用的导频端口的导频信号的导频序列、所述第三网络设备采用的导频端口的导频信号的发送功率中的至少一种。
  8. 根据权利要求1或2所述的方法,其特征在于,所述至少两个导频端口包括第一类导频端口和第二类导频端口,所述第一类导频端口包括至少一组导频端口,所述第二类导频端口包括至少两个导频端口。
  9. 根据权利要求8所述的方法,其特征在于,所述第一类导频端口为周期发送的导频信号的导频端口,所述第二类导频端口为非周期发送的导频信号的导频端口;或者,
    所述第一类导频端口为无线资源控制RRC信令配置的导频端口,所述第二类导频端口为下行控制信令配置的导频端口,所述下行控制信令为下行调度DL grant信令或者上行调度UL grant信令;或者,
    所述第一类导频端口为未经过预编码的导频信号的导频端口,所述第二类导频端口为经过预编码的导频信号的导频端口;或者,
    所述第一类导频端口为CRS导频端口或者CSI-RS导频端口,所述第二类导频端口为解调参考信号DMRS导频端口;或者,
    所述第一类导频端口为在所有子带上发送导频信号的导频端口,所述第二类导频端口为在设定的子带上发送导频信号的导频端口;或者,
    所述第一类导频端口发送导频信号的子带是固定的,所述第二类导频端口发送导频信号的子带是可变的。
  10. 根据权利要求8或9所述的方法,其特征在于,所述第二类导频端口包括发送第一导频信号的第一导频端口和发送第二导频信号的第二导频端口,所述第一导频信号和所述第二导频信号是所述第二网络设备通过在相同的时频资源上进行空间复用发送的,所述第一网络设备通过所述第一导频信号测量所述第一网络设备接收的信号,所述第一网络设备通过所述第二导频信号测量对所述第一网络设备接收的信号的瞬时干扰,所述瞬时干扰为所述第三网络设备与所述第一网络设备在相同的时频资源上进行空间复用而产生的对所述第一网络设备接收的信号的干扰。
  11. 根据权利要求10所述的方法,其特征在于,所述第一导频信号和所述第二导频信号均为非零功率的导频信号。
  12. 根据权利要求10或11所述的方法,其特征在于,所述第一导频信号和所述第二网络设备向所述第一网络设备发送的数据信号采用相同的预编码矩阵,所述第二导频信号与所述第二网络设备向所述第三网络设备发送的数据信号采用相同的预编码矩阵。
  13. 根据权利要求10-12任一项所述的方法,其特征在于,所述第一导频信号为所述第二网络设备向所述第一网络设备发送的数据信号的解调导频信号;或者,
    所述第二导频信号为所述第二网络设备向所述第三网络设备发送的数据信号的解调导频信号;或者,
    所述第一导频信号为所述第二网络设备向所述第一网络设备发送的数据信号的解调导频信号,所述第二导频信号为所述第二网络设备向所述第三网络设备发送的数据信号的解调导频信号。
  14. 根据权利要求10-13任一项所述的方法,其特征在于,所述通过所述至少两个导频端口测量所述第二网络设备发送的导频信号,包括:
    接收所述第二网络设备在第一时间单元发送的信号;
    其中,所述第二网络设备在第一时间单元发送的信号包括所述第一导频信号和所述第二导频信号,且所述第二网络设备在第一时间单元发送的信号不包括向所述第一网络设备发送的以所述第一导频信号为解调导频信号的数据信号和向所述第三网络设备发送的以所述第二导频信号为解调导频信号的数据信号;或者,
    所述第二网络设备在第一时间单元发送的信号包括所述第一导频信号、所述第二导频信号、所述向所述第一网络设备发送的以所述第一导频信号为解调导频信号的数据信号和所述向所述第三网络设备发送的以所述第二导频信号为解调导频信号的数据信号;或者,
    所述第二网络设备在第一时间单元发送的信号包括所述第一导频信号和所述第二导频信号、所述向所述第一网络设备发送的以所述第一导频信号为解调导频信号的数据信号,且所述第二网络设备在第一时间单元发送的信号不包括所述向所述第三网络设备发送的以所述第二导频信号为解调导频信号的数据信号;或者,
    所述第二网络设备在第一时间单元发送的信号包括所述第一导频信号和所述第二导频信号、所述向所述第三网络设备发送的以所述第二导频信号为解调导频信号的数据信号,且所述第二网络设备在第一时间单元发送的信号不包括所述向所述第一网络设备发送的以所述第一导频信号为解调导频信号的数据信号。
  15. 根据权利要求14所述的方法,其特征在于,所述第一时间单元为一个时隙、一个子帧或者一个无线帧。
  16. 根据权利要求8-15任一项所述的方法,其特征在于,通过所述第一类导频端口测量确定的第一信息不包括假设所述第一网络设备和所述第三网络设备通过在相同的时频资源上进行空间复用与所述第二网络设备通信时的CQI,通过所述第二类导频端口测量确定的第一信息包括假设所述第一网络设备和所述第三网络设备通过在相同的时频资源上进行空间复用与所述第二网络设备通信时的CQI。
  17. 根据权利要求8-15任一项所述的方法,其特征在于,通过所述第一类导频端口测量确定的第一信息和通过所述第二类导频端口测量确定的第一信息均包括假设所述第一网络设备和所述第三网络设备通过在相同的时频资源上进行空间复用与所述第二网络设备通信时的CQI,且通过所述第二类导频端口测 量确定的第一信息中的CQI与通过所述第一类导频端口测量确定的第一信息中的CQI相互关联。
  18. 根据权利要求17所述的方法,其特征在于,通过所述第二类导频端口测量确定的第一信息中的CQI与通过所述第一类导频端口测量确定的第一信息中的CQI相互关联,包括通过所述第二类导频端口测量确定的第一信息中的CQI,是通过所述第一类导频端口测量确定的第一信息中的CQI差分得到的。
  19. 根据权利要求1-18任一项所述的方法,其特征在于,所述第二信息和所述第三信息的反馈模式采用以下一种或多种方式进行独立配置,其中,所述反馈模式包括子带反馈和宽带反馈,所述子带反馈为针对各个子带分别反馈一个所述第二信息或所述第三信息,所述宽带反馈为针对所有子带整体反馈一个所述第二信息或所述第三信息:
    所述第二信息的反馈模式为子带反馈,所述第三信息的反馈模式为宽带反馈;
    所述第二信息中所述第一网络设备采用的导频端口的信息、所述第一网络设备采用的RI、所述第一网络设备采用的PMI的反馈模式为宽带反馈,所述CQI的反馈模式为子带反馈,或者,所述第二信息中所述第一网络设备采用的导频端口的信息、所述第一网络设备采用的RI的反馈模式为宽带反馈,所述第一网络设备采用的PMI、所述CQI的反馈模式为子带反馈,或者,所述第二信息中所述第一网络设备采用的导频端口的信息的反馈模式为宽带反馈,所述第一网络设备采用的RI、所述第一网络设备采用的PMI、所述CQI的反馈模式为子带反馈;
    所述第三信息中所述第三网络设备采用的导频端口的信息、所述第三网络设备采用的RI、所述第三网络设备采用的PMI的反馈模式为宽带反馈,所述CQI的反馈模式为子带反馈,或者,所述第三信息中所述第三网络设备采用的导频端口的信息、所述第三网络设备采用的RI的反馈模式为宽带反馈,所述第三网络设备采用的PMI、所述CQI的反馈模式为子带反馈,或者,所述第三信息中所述第三网络设备采用的导频端口的信息的反馈模式为宽带反馈,所述第三网络设备采用的RI、所述第三网络设备采用的PMI、所述CQI的反馈模式为子带反馈。
  20. 根据权利要求19所述的方法,其特征在于,所述第二信息中所述第一网络设备采用的导频端口的信息反馈的子带独立于所述第二信息中所述第一网 络设备采用的RI、所述第一网络设备采用的PMI、所述CQI反馈的子带配置;或者,
    所述第三信息中所述第三网络设备采用的导频端口的信息反馈的子带独立于所述第三信息中所述第三网络设备采用的RI、所述第三网络设备采用的PMI、所述CQI反馈的子带配置;或者,
    所述第二信息中所述第一网络设备采用的导频端口的信息反馈的子带独立于所述第二信息中所述第一网络设备采用的RI、所述第一网络设备采用的PMI、所述CQI反馈的子带配置,所述第三信息中所述第三网络设备采用的导频端口的信息反馈的子带独立于所述第三信息中所述第三网络设备采用的RI、所述第三网络设备采用的PMI、所述CQI反馈的子带配置。
  21. 根据权利要求1-20任一项所述的方法,其特征在于,所述第二信息和所述第三信息的反馈周期采用以下一种或多种方式进行独立配置:
    所述第二信息的反馈周期比所述第三信息的反馈周期短;
    所述第二信息中所述第一网络设备采用的导频端口的信息比所述第一网络设备采用的RI、所述第一网络设备采用的PMI、以及所述CQI的反馈周期长,或者,所述第二信息中所述第一网络设备采用的导频端口的信息、所述第一网络设备采用的RI比所述第一网络设备采用的PMI、所述CQI的反馈周期长,或者,所述第二信息中所述第一网络设备采用的导频端口的信息、所述第一网络设备采用的RI、所述第一网络设备采用的PMI比所述CQI的反馈周期长;
    所述第三信息中所述第三网络设备采用的导频端口的信息比所述第三网络设备采用的RI、所述第三网络设备采用的PMI、以及所述CQI的反馈周期长,或者,所述第三信息中所述第三网络设备采用的导频端口的信息、所述第三网络设备采用的RI比所述第三网络设备采用的PMI、所述CQI的反馈周期长,或者,所述第三信息中所述第三网络设备采用的导频端口的信息、所述第三网络设备采用的RI、所述第三网络设备采用的PMI比所述CQI的反馈周期长。
  22. 根据权利要求21所述的方法,其特征在于,所述第二信息中所述第一网络设备采用的导频端口的信息反馈的周期独立于所述第二信息中所述第一网络设备采用的RI、所述第一网络设备采用的PMI、所述CQI反馈的周期配置;或者,
    所述第三信息中所述第三网络设备采用的导频端口的信息反馈的周期独立于所述第三信息中所述第三网络设备采用的RI、所述第三网络设备采用的PMI、 所述CQI反馈的周期配置;或者,
    所述第二信息中所述第一网络设备采用的导频端口的信息反馈的周期独立于所述第二信息中所述第一网络设备采用的RI、所述第一网络设备采用的PMI、所述CQI反馈的周期配置,所述第三信息中所述第三网络设备采用的导频端口的信息反馈的周期独立于所述第三信息中所述第三网络设备采用的RI、所述第三网络设备采用的PMI、所述CQI反馈的周期配置。
  23. 根据权利要求1-22任一项所述的方法,其特征在于,所述第一信息还包括假设所述第一网络设备与所述第二网络设备进行单用户多输入多输出SU-MIMO通信时,所述第一网络设备的第四信息,所述第四信息包括所述第一网络设备采用的导频端口的配置信息、所述第一网络设备采用的RI、所述第一网络设备采用的PMI、以及CQI中的至少一种。
  24. 根据权利要求23所述的方法,其特征在于,当所述第一信息包括所述第二信息、所述第三信息和所述第四信息时,若所述第二信息、所述第三信息和所述第四信息的信息量之和大于所述第一网络设备传输的最大信息量,则按照所述第四信息优先于所述第三信息,所述第三信息优先于所述第二信息的优先级进行丢弃,或者,
    按照所述第四信息优先于所述第二信息,所述第二信息优先于所述第三信息的优先级进行丢弃,或者,
    按照所述第二信息优先于所述第三信息,所述第三信息优先于所述第四信息的优先级进行丢弃,或者,
    按照所述第二信息优先于所述第四信息,所述第四信息优先于所述第三信息的优先级进行丢弃,或者,
    按照所述第三信息优先于所述第二信息,所述第二信息优先于所述第四信息的优先级进行丢弃,或者,
    按照所述第三信息优先于所述第四信息,所述第四信息优先于所述第二信息的优先级进行丢弃。
  25. 一种信道测量和反馈方法,其特征在于,所述方法包括:
    第二网络设备发送导频端口配置信息,所述导频端口配置信息用于描述至少两个导频端口;
    接收第一网络设备反馈的第一信息,所述第一信息是所述第一网络设备通 过所述至少两个导频端口测量所述第二网络设备发送的导频信号确定的,所述第一信息包括假设所述第一网络设备和第三网络设备通过在相同的时频资源上进行空间复用与所述第二网络设备通信时,所述第一网络设备的第二信息和所述第三网络设备的第三信息中的至少一种,所述第二信息包括所述第一网络设备采用的导频端口的信息、所述第一网络设备采用的秩指示RI、所述第一网络设备采用的预编码矩阵指示PMI、以及信道质量指标CQI中的至少一种,所述第三信息包括所述第三网络设备采用的导频端口的信息、所述第三网络设备采用的RI、所述第三网络设备采用的PMI、以及CQI中的至少一种。
  26. 根据权利要求25所述的方法,其特征在于,所述导频端口配置信息包括导频端口的个数、导频端口的标识、导频端口的导频信号的导频图案、导频端口的导频信号的导频序列、导频端口的导频信号的发送功率、导频端口的导频信号的发送时刻、导频端口的导频信号发送的子带中的至少一种。
  27. 根据权利要求25或26所述的方法,其特征在于,所述至少两个导频端口为一组导频端口或者至少两组导频端口,各组导频端口分别采用独立配置的所述导频端口配置信息描述,一组导频端口包括至少一个导频端口。
  28. 根据权利要求27所述的方法,其特征在于,当所述至少两个导频端口为所述一组导频端口时,所述第二信息中的所述第一网络设备采用的导频端口的信息包括所述第一网络设备在所述一组导频端口中为所述第一网络设备选择的至少一个导频端口的端口号,所述第三信息中的所述第三网络设备采用的导频端口的信息包括所述第一网络设备在所述一组导频端口中为所述第三网络设备选择的至少一个导频端口的端口号;或者,
    当所述至少两个导频端口为所述至少两组导频端口时,所述第一信息中的所述第一网络设备采用的导频端口的信息包括所述第一网络设备在所述至少两组导频端口中为所述第一网络设备选择的至少一组导频端口的组号,所述第三信息中的所述第三网络设备采用的导频端口的信息包括所述第一网络设备在所述至少两组导频端口中为所述第三网络设备选择的至少一组导频端口的组号。
  29. 根据权利要求27所述的方法,其特征在于,所述独立配置的导频端口配置信息与信道状态信息进程CSI process的配置信息一一对应,每个所述CSI process的配置信息包括非零功率的信道状态信息参考信号CSI-RS的配置信息和信道状态信息干扰测量参考信号CSI-IM的配置信息。
  30. 根据权利要求29所述的方法,其特征在于,当所述至少两个导频端口 为所述至少两组导频端口时,所述第一信息中的所述第一网络设备采用的导频端口的信息包括所述第一网络设备在所述至少两组导频端口中为所述第一网络设备选择的至少一组导频端口对应的CSI process的进程号,所述第三信息中的所述第三网络设备采用的导频端口的信息包括所述第一网络设备在所述至少两组导频端口中为所述第三网络设备选择的至少一组导频端口对应的CSI process的进程号。
  31. 根据权利要求25-30任一项所述的方法,其特征在于,所述第一网络设备采用的导频端口的信息还包括所述第一网络设备采用的导频端口的导频信号发送的子带、所述第一网络设备采用的导频端口的导频信号的导频序列、所述第一网络设备采用的导频端口的导频信号的发送功率中的至少一种,所述第三网络设备采用的导频端口的信息还包括所述第三网络设备采用的导频端口的导频信号发送的子带、所述第三网络设备采用的导频端口的导频信号的导频序列、所述第三网络设备采用的导频端口的导频信号的发送功率中的至少一种。
  32. 根据权利要求25或26所述的方法,其特征在于,所述至少两个导频端口包括第一类导频端口和第二类导频端口,所述第一类导频端口包括至少一组导频端口,所述第二类导频端口包括至少两个导频端口。
  33. 根据权利要求32所述的方法,其特征在于,所述第一类导频端口为周期发送的导频信号的导频端口,所述第二类导频端口为非周期发送的导频信号的导频端口;或者,
    所述第一类导频端口为无线资源控制RRC信令配置的导频端口,所述第二类导频端口为下行控制信令配置的导频端口,所述下行控制信令为下行调度DL grant信令或者上行调度UL grant信令;或者,
    所述第一类导频端口为未经过预编码的导频信号的导频端口,所述第二类导频端口为经过预编码的导频信号的导频端口;或者,
    所述第一类导频端口为CRS导频端口或者CSI-RS导频端口,所述第二类导频端口为解调参考信号DMRS导频端口;或者,
    所述第一类导频端口为在所有子带上发送导频信号的导频端口,所述第二类导频端口为在设定的子带上发送导频信号的导频端口;或者,
    所述第一类导频端口发送导频信号的子带是固定的,所述第二类导频端口发送导频信号的子带是可变的。
  34. 根据权利要求32或33所述的方法,其特征在于,所述第二类导频端 口包括发送第一导频信号的第一导频端口和发送第二导频信号的第二导频端口,所述第一导频信号和所述第二导频信号是所述第二网络设备通过在相同的时频资源上进行空间复用发送的,所述第一网络设备通过所述第一导频信号测量所述第一网络设备接收的信号,所述第一网络设备通过所述第二导频信号测量对所述第一网络设备接收的信号的瞬时干扰,所述瞬时干扰为所述第三网络设备与所述第一网络设备在相同的时频资源上进行空间复用而产生的对所述第一网络设备接收的信号的干扰。
  35. 根据权利要求34所述的方法,其特征在于,所述第一导频信号和所述第二导频信号均为非零功率的导频信号。
  36. 根据权利要求34或35所述的方法,其特征在于,所述第一导频信号和所述第二网络设备向所述第一网络设备发送的数据信号采用相同的预编码矩阵,所述第二导频信号与所述第二网络设备向所述第三网络设备发送的数据信号采用相同的预编码矩阵。
  37. 根据权利要求34-36任一项所述的方法,其特征在于,所述第一导频信号为所述第二网络设备向所述第一网络设备发送的数据信号的解调导频信号;或者,
    所述第二导频信号为所述第二网络设备向所述第三网络设备发送的数据信号的解调导频信号;或者,
    所述第一导频信号为所述第二网络设备向所述第一网络设备发送的数据信号的解调导频信号,所述第二导频信号为所述第二网络设备向所述第三网络设备发送的数据信号的解调导频信号。
  38. 根据权利要求34-37任一项所述的方法,其特征在于,所述方法还包括:
    在第一时间单元发送信号;
    其中,在第一时间单元发送的信号包括所述第一导频信号和所述第二导频信号,且所述在第一时间单元发送的信号不包括向所述第一网络设备发送的以所述第一导频信号为解调导频信号的数据信号和向所述第三网络设备发送的以所述第二导频信号为解调导频信号的数据信号;或者,
    所述在第一时间单元发送的信号包括所述第一导频信号、所述第二导频信号、所述向所述第一网络设备发送的以所述第一导频信号为解调导频信号的数据信号和所述向所述第三网络设备发送的以所述第二导频信号为解调导频信号的数据信号;或者,
    所述在第一时间单元发送的信号包括所述第一导频信号和所述第二导频信号、所述向所述第一网络设备发送的以所述第一导频信号为解调导频信号的数据信号,且所述在第一时间单元发送的信号不包括所述向所述第三网络设备发送的以所述第二导频信号为解调导频信号的数据信号;或者,
    所述在第一时间单元发送的信号包括所述第一导频信号和所述第二导频信号、所述向所述第三网络设备发送的以所述第二导频信号为解调导频信号的数据信号,且所述在第一时间单元发送的信号不包括所述向所述第一网络设备发送的以所述第一导频信号为解调导频信号的数据信号。
  39. 根据权利要求38所述的方法,其特征在于,所述第一时间单元为一个时隙、一个子帧或者一个无线帧。
  40. 根据权利要求32-39任一项所述的方法,其特征在于,接收的所述第二网络设备通过所述第一类导频端口测量确定的第一信息不包括假设所述第一网络设备和所述第三网络设备通过在相同的时频资源上进行空间复用与所述第二网络设备通信时的CQI,接收的所述第二网络设备通过所述第二类导频端口测量确定的第一信息包括假设所述第一网络设备和所述第三网络设备通过在相同的时频资源上进行空间复用与所述第二网络设备通信时的CQI。
  41. 根据权利要求32-39任一项所述的方法,其特征在于,接收的所述第二网络设备通过所述第一类导频端口测量确定的第一信息和接收的所述第二网络设备通过所述第二类导频端口测量确定的第一信息均包括假设所述第一网络设备和所述第三网络设备通过在相同的时频资源上进行空间复用与所述第二网络设备通信时的CQI,且接收的所述第二网络设备通过所述第二类导频端口测量确定的第一信息中的CQI与接收的所述第二网络设备通过所述第一类导频端口测量确定的第一信息中的CQI相互关联。
  42. 根据权利要求41所述的方法,其特征在于,接收的所述第二网络设备通过所述第二类导频端口测量确定的第一信息中的CQI与接收的所述第二网络设备通过所述第一类导频端口测量确定的第一信息中的CQI相互关联,包括接收的所述第二网络设备通过所述第二类导频端口测量确定的第一信息中的CQI,是接收的所述第二网络设备通过所述第一类导频端口测量确定的第一信息中的CQI差分得到的。
  43. 根据权利要求25-42任一项所述的方法,其特征在于,采用以下一种或多种方式独立配置所述第二信息和所述第三信息的反馈模式,其中,所述反馈 模式包括子带反馈和宽带反馈,所述子带反馈为针对各个子带分别反馈一个所述第二信息或所述第三信息,所述宽带反馈为针对所有子带整体反馈一个所述第二信息或所述第三信息:
    所述第二信息的反馈模式为子带反馈,所述第三信息的反馈模式为宽带反馈;或者,
    所述第二信息中所述第一网络设备采用的导频端口的信息、所述第一网络设备采用的RI、所述第一网络设备采用的PMI的反馈模式为宽带反馈,所述CQI的反馈模式为子带反馈,或者,所述第二信息中所述第一网络设备采用的导频端口的信息、所述第一网络设备采用的RI的反馈模式为宽带反馈,所述第一网络设备采用的PMI、所述CQI的反馈模式为子带反馈,或者,所述第二信息中所述第一网络设备采用的导频端口的信息的反馈模式为宽带反馈,所述第一网络设备采用的RI、所述第一网络设备采用的PMI、所述CQI的反馈模式为子带反馈;
    所述第三信息中所述第三网络设备采用的导频端口的信息、所述第三网络设备采用的RI、所述第三网络设备采用的PMI的反馈模式为宽带反馈,所述CQI的反馈模式为子带反馈,或者,所述第三信息中所述第三网络设备采用的导频端口的信息、所述第三网络设备采用的RI的反馈模式为宽带反馈,所述第三网络设备采用的PMI、所述CQI的反馈模式为子带反馈,或者,所述第三信息中所述第三网络设备采用的导频端口的信息的反馈模式为宽带反馈,所述第三网络设备采用的RI、所述第三网络设备采用的PMI、所述CQI的反馈模式为子带反馈。
  44. 根据权利要求43所述的方法,其特征在于,独立配置所述第二信息中所述第一网络设备采用的导频端口的信息反馈的子带和所述第二信息中第一网络设备采用的RI、所述第一网络设备采用的PMI、所述CQI反馈的子带;或者,
    独立配置所述第三信息中所述第三网络设备采用的导频端口的信息反馈的子带和所述第三信息中所述第三网络设备采用的RI、所述第三网络设备采用的PMI、所述CQI反馈的子带;或者,
    独立配置所述第二信息中所述第一网络设备采用的导频端口的信息反馈的子带和所述第二信息中第一网络设备采用的RI、所述第一网络设备采用的PMI、所述CQI反馈的子带,独立配置所述第三信息中所述第三网络设备采用的导频端口的信息反馈的子带和所述第三信息中所述第三网络设备采用的RI、所述第 三网络设备采用的PMI、所述CQI反馈的子带。
  45. 根据权利要求25-44任一项所述的方法,其特征在于,采用以下一种或多种方式独立配置所述第二信息和所述第三信息的反馈周期:
    所述第二信息的反馈周期比所述第三信息的反馈周期短;
    所述第二信息中所述第一网络设备采用的导频端口的信息比所述第一网络设备采用的RI、所述第一网络设备采用的PMI、以及所述CQI的反馈周期长,或者,所述第二信息中所述第一网络设备采用的导频端口的信息、所述第一网络设备采用的RI比所述第一网络设备采用的PMI、所述CQI的反馈周期长,或者,所述第二信息中所述第一网络设备采用的导频端口的信息、所述第一网络设备采用的RI、所述第一网络设备采用的PMI比所述CQI的反馈周期长;
    所述第三信息中所述第三网络设备采用的导频端口的信息比所述第三网络设备采用的RI、所述第三网络设备采用的PMI、以及所述CQI的反馈周期长,或者,所述第三信息中所述第三网络设备采用的导频端口的信息、所述第三网络设备采用的RI比所述第三网络设备采用的PMI、所述CQI的反馈周期长,或者,所述第三信息中所述第三网络设备采用的导频端口的信息、所述第三网络设备采用的RI、所述第三网络设备采用的PMI比所述CQI的反馈周期长。
  46. 根据权利要求45所述的方法,其特征在于,独立配置所述第二信息中所述第一网络设备采用的导频端口的信息反馈的周期和所述第二信息中所述第一网络设备采用的RI、所述第一网络设备采用的PMI、所述CQI反馈的周期;或者,
    独立配置所述第三信息中所述第三网络设备采用的导频端口的信息反馈的周期和所述第三信息中所述第三网络设备采用的RI、所述第三网络设备采用的PMI、所述CQI反馈的周期;或者,
    独立配置所述第二信息中所述第一网络设备采用的导频端口的信息反馈的周期和所述第二信息中所述第一网络设备采用的RI、所述第一网络设备采用的PMI、所述CQI反馈的周期,独立配置所述第三信息中所述第三网络设备采用的导频端口的信息反馈的周期和所述第三信息中所述第三网络设备采用的RI、所述第三网络设备采用的PMI、所述CQI反馈的周期。
  47. 根据权利要求25-46任一项所述的方法,其特征在于,所述第一信息还包括假设所述第一网络设备与所述第二网络设备进行单用户多输入多输出SU-MIMO通信时,所述第一网络设备的第四信息,所述第四信息包括所述第一 网络设备采用的导频端口的配置信息、所述第一网络设备采用的RI、所述第一网络设备采用的PMI、以及CQI中的至少一种。
  48. 一种第一网络设备,其特征在于,所述第一网络设备包括:
    接收模块,用于接收第二网络设备发送的导频端口配置信息,所述导频端口配置信息用于描述至少两个导频端口;
    确定模块,用于通过所述至少两个导频端口测量所述第二网络设备发送的导频信号,确定第一信息;其中,所述第一信息包括假设所述第一网络设备和第三网络设备通过在相同的时频资源上进行空间复用与所述第二网络设备通信时,所述第一网络设备的第二信息和所述第三网络设备的第三信息中的至少一种,所述第二信息包括所述第一网络设备采用的导频端口的信息、所述第一网络设备采用的秩指示RI、所述第一网络设备采用的预编码矩阵指示PMI、以及信道质量指标CQI中的至少一种,所述第三信息包括所述第三网络设备采用的导频端口的信息、所述第三网络设备采用的RI、所述第三网络设备采用的PMI、以及CQI中的至少一种;
    发送模块,用于将所述第一信息反馈给所述第二网络设备。
  49. 根据权利要求48所述的第一网络设备,其特征在于,所述导频端口配置信息包括导频端口的个数、导频端口的标识、导频端口的导频信号的导频图案、导频端口的导频信号的导频序列、导频端口的导频信号的发送功率、导频端口的导频信号的发送时刻、导频端口的导频信号发送的子带中的至少一种。
  50. 根据权利要求48或49所述的第一网络设备,其特征在于,所述至少两个导频端口为一组导频端口或者至少两组导频端口,各组导频端口分别采用独立配置的所述导频端口配置信息描述,一组导频端口包括至少一个导频端口。
  51. 根据权利要求50所述的第一网络设备,其特征在于,当所述至少两个导频端口为所述一组导频端口时,所述第二信息中的所述第一网络设备采用的导频端口的信息包括所述第一网络设备在所述一组导频端口中为所述第一网络设备选择的至少一个导频端口的端口号,所述第三信息中的所述第三网络设备采用的导频端口的信息包括所述第一网络设备在所述一组导频端口中为所述第三网络设备选择的至少一个导频端口的端口号;或者,
    当所述至少两个导频端口为所述至少两组导频端口时,所述第一信息中的所述第一网络设备采用的导频端口的信息包括所述第一网络设备在所述至少两 组导频端口中为所述第一网络设备选择的至少一组导频端口的组号,所述第三信息中的所述第三网络设备采用的导频端口的信息包括所述第一网络设备在所述至少两组导频端口中为所述第三网络设备选择的至少一组导频端口的组号。
  52. 根据权利要求50所述的第一网络设备,其特征在于,所述独立配置的导频端口配置信息与信道状态信息进程CSI process的配置信息一一对应,每个所述CSI process的配置信息包括非零功率的信道状态信息参考信号CSI-RS的配置信息和信道状态信息干扰测量参考信号CSI-IM的配置信息。
  53. 根据权利要求52所述的第一网络设备,其特征在于,当所述至少两个导频端口为所述至少两组导频端口时,所述第一信息中的所述第一网络设备采用的导频端口的信息包括所述第一网络设备在所述至少两组导频端口中为所述第一网络设备选择的至少一组导频端口对应的CSI process的进程号,所述第三信息中的所述第三网络设备采用的导频端口的信息包括所述第一网络设备在所述至少两组导频端口中为所述第三网络设备选择的至少一组导频端口对应的CSI process的进程号。
  54. 根据权利要求48-53任一项所述的第一网络设备,其特征在于,所述第一网络设备采用的导频端口的信息还包括所述第一网络设备采用的导频端口的导频信号发送的子带、所述第一网络设备采用的导频端口的导频信号的导频序列、所述第一网络设备采用的导频端口的导频信号的发送功率中的至少一种,所述第三网络设备采用的导频端口的信息还包括所述第三网络设备采用的导频端口的导频信号发送的子带、所述第三网络设备采用的导频端口的导频信号的导频序列、所述第三网络设备采用的导频端口的导频信号的发送功率中的至少一种。
  55. 根据权利要求48或49所述的第一网络设备,其特征在于,所述至少两个导频端口包括第一类导频端口和第二类导频端口,所述第一类导频端口包括至少一组导频端口,所述第二类导频端口包括至少两个导频端口。
  56. 根据权利要求55所述的第一网络设备,其特征在于,所述第一类导频端口为周期发送的导频信号的导频端口,所述第二类导频端口为非周期发送的导频信号的导频端口;或者,
    所述第一类导频端口为无线资源控制RRC信令配置的导频端口,所述第二类导频端口为下行控制信令配置的导频端口,所述下行控制信令为下行调度DL grant信令或者上行调度UL grant信令;或者,
    所述第一类导频端口为未经过预编码的导频信号的导频端口,所述第二类导频端口为经过预编码的导频信号的导频端口;或者,
    所述第一类导频端口为CRS导频端口或者CSI-RS导频端口,所述第二类导频端口为解调参考信号DMRS导频端口;或者,
    所述第一类导频端口为在所有子带上发送导频信号的导频端口,所述第二类导频端口为在设定的子带上发送导频信号的导频端口;或者,
    所述第一类导频端口发送导频信号的子带是固定的,所述第二类导频端口发送导频信号的子带是可变的。
  57. 根据权利要求55或56所述的第一网络设备,其特征在于,所述第二类导频端口包括发送第一导频信号的第一导频端口和发送第二导频信号的第二导频端口,所述第一导频信号和所述第二导频信号是所述第二网络设备通过在相同的时频资源上进行空间复用发送的,所述第一网络设备通过所述第一导频信号测量所述第一网络设备接收的信号,所述第一网络设备通过所述第二导频信号测量对所述第一网络设备接收的信号的瞬时干扰,所述瞬时干扰为所述第三网络设备与所述第一网络设备在相同的时频资源上进行空间复用而产生的对所述第一网络设备接收的信号的干扰。
  58. 根据权利要求57所述的第一网络设备,其特征在于,所述第一导频信号和所述第二导频信号均为非零功率的导频信号。
  59. 根据权利要求57或58所述的第一网络设备,其特征在于,所述第一导频信号和所述第二网络设备向所述第一网络设备发送的数据信号采用相同的预编码矩阵,所述第二导频信号与所述第二网络设备向所述第三网络设备发送的数据信号采用相同的预编码矩阵。
  60. 根据权利要求57-59任一项所述的第一网络设备,其特征在于,所述第一导频信号为所述第二网络设备向所述第一网络设备发送的数据信号的解调导频信号;或者,
    所述第二导频信号为所述第二网络设备向所述第三网络设备发送的数据信号的解调导频信号;或者,
    所述第一导频信号为所述第二网络设备向所述第一网络设备发送的数据信号的解调导频信号,所述第二导频信号为所述第二网络设备向所述第三网络设备发送的数据信号的解调导频信号。
  61. 根据权利要求57-60任一项所述的第一网络设备,其特征在于,所述确 定模块包括:
    接收单元,用于接收所述第二网络设备在第一时间单元发送的信号;
    其中,所述第二网络设备在第一时间单元发送的信号包括所述第一导频信号和所述第二导频信号,且所述第二网络设备在第一时间单元发送的信号不包括向所述第一网络设备发送的以所述第一导频信号为解调导频信号的数据信号和向所述第三网络设备发送的以所述第二导频信号为解调导频信号的数据信号;或者,
    所述第二网络设备在第一时间单元发送的信号包括所述第一导频信号、所述第二导频信号、所述向所述第一网络设备发送的以所述第一导频信号为解调导频信号的数据信号和所述向所述第三网络设备发送的以所述第二导频信号为解调导频信号的数据信号;或者,
    所述第二网络设备在第一时间单元发送的信号包括所述第一导频信号和所述第二导频信号、所述向所述第一网络设备发送的以所述第一导频信号为解调导频信号的数据信号,且所述第二网络设备在第一时间单元发送的信号不包括所述向所述第三网络设备发送的以所述第二导频信号为解调导频信号的数据信号;或者,
    所述第二网络设备在第一时间单元发送的信号包括所述第一导频信号和所述第二导频信号、所述向所述第三网络设备发送的以所述第二导频信号为解调导频信号的数据信号,且所述第二网络设备在第一时间单元发送的信号不包括所述向所述第一网络设备发送的以所述第一导频信号为解调导频信号的数据信号。
  62. 根据权利要求61所述的第一网络设备,其特征在于,所述第一时间单元为一个时隙、一个子帧或者一个无线帧。
  63. 根据权利要求55-62任一项所述的第一网络设备,其特征在于,通过所述第一类导频端口测量确定的第一信息不包括假设所述第一网络设备和所述第三网络设备通过在相同的时频资源上进行空间复用与所述第二网络设备通信时的CQI,通过所述第二类导频端口测量确定的第一信息包括假设所述第一网络设备和所述第三网络设备通过在相同的时频资源上进行空间复用与所述第二网络设备通信时的CQI。
  64. 根据权利要求55-62任一项所述的第一网络设备,其特征在于,通过所述第一类导频端口测量确定的第一信息和通过所述第二类导频端口测量确定的 第一信息均包括假设所述第一网络设备和所述第三网络设备通过在相同的时频资源上进行空间复用与所述第二网络设备通信时的CQI,且通过所述第二类导频端口测量确定的第一信息中的CQI与通过所述第一类导频端口测量确定的第一信息中的CQI相互关联。
  65. 根据权利要求64所述的第一网络设备,其特征在于,通过所述第二类导频端口测量确定的第一信息中的CQI与通过所述第一类导频端口测量确定的第一信息中的CQI相互关联,包括通过所述第二类导频端口测量确定的第一信息中的CQI,是通过所述第一类导频端口测量确定的第一信息中的CQI差分得到的。
  66. 根据权利要求48-65任一项所述的第一网络设备,其特征在于,所述第二信息和所述第三信息的反馈模式采用以下一种或多种方式进行独立配置,其中,所述反馈模式包括子带反馈和宽带反馈,所述子带反馈为针对各个子带分别反馈一个所述第二信息或所述第三信息,所述宽带反馈为针对所有子带整体反馈一个所述第二信息或所述第三信息:
    所述第二信息的反馈模式为子带反馈,所述第三信息的反馈模式为宽带反馈;
    所述第二信息中所述第一网络设备采用的导频端口的信息、所述第一网络设备采用的RI、所述第一网络设备采用的PMI的反馈模式为宽带反馈,所述CQI的反馈模式为子带反馈,或者,所述第二信息中所述第一网络设备采用的导频端口的信息、所述第一网络设备采用的RI的反馈模式为宽带反馈,所述第一网络设备采用的PMI、所述CQI的反馈模式为子带反馈,或者,所述第二信息中所述第一网络设备采用的导频端口的信息的反馈模式为宽带反馈,所述第一网络设备采用的RI、所述第一网络设备采用的PMI、所述CQI的反馈模式为子带反馈;
    所述第三信息中所述第三网络设备采用的导频端口的信息、所述第三网络设备采用的RI、所述第三网络设备采用的PMI的反馈模式为宽带反馈,所述CQI的反馈模式为子带反馈,或者,所述第三信息中所述第三网络设备采用的导频端口的信息、所述第三网络设备采用的RI的反馈模式为宽带反馈,所述第三网络设备采用的PMI、所述CQI的反馈模式为子带反馈,或者,所述第三信息中所述第三网络设备采用的导频端口的信息的反馈模式为宽带反馈,所述第三网络设备采用的RI、所述第三网络设备采用的PMI、所述CQI的反馈模式为 子带反馈。
  67. 根据权利要求66所述的第一网络设备,其特征在于,所述第二信息中所述第一网络设备采用的导频端口的信息反馈的子带独立于所述第二信息中所述第一网络设备采用的RI、所述第一网络设备采用的PMI、所述CQI反馈的子带配置;或者,
    所述第三信息中所述第三网络设备采用的导频端口的信息反馈的子带独立于所述第三信息中所述第三网络设备采用的RI、所述第三网络设备采用的PMI、所述CQI反馈的子带配置;或者,
    所述第二信息中所述第一网络设备采用的导频端口的信息反馈的子带独立于所述第二信息中所述第一网络设备采用的RI、所述第一网络设备采用的PMI、所述CQI反馈的子带配置,所述第三信息中所述第三网络设备采用的导频端口的信息反馈的子带独立于所述第三信息中所述第三网络设备采用的RI、所述第三网络设备采用的PMI、所述CQI反馈的子带配置。
  68. 根据权利要求48-67任一项所述的第一网络设备,其特征在于,所述第二信息和所述第三信息的反馈周期采用以下一种或多种方式进行独立配置:
    所述第二信息的反馈周期比所述第三信息的反馈周期短;
    所述第二信息中所述第一网络设备采用的导频端口的信息比所述第一网络设备采用的RI、所述第一网络设备采用的PMI、以及所述CQI的反馈周期长,或者,所述第二信息中所述第一网络设备采用的导频端口的信息、所述第一网络设备采用的RI比所述第一网络设备采用的PMI、所述CQI的反馈周期长,或者,所述第二信息中所述第一网络设备采用的导频端口的信息、所述第一网络设备采用的RI、所述第一网络设备采用的PMI比所述CQI的反馈周期长;
    所述第三信息中所述第三网络设备采用的导频端口的信息比所述第三网络设备采用的RI、所述第三网络设备采用的PMI、以及所述CQI的反馈周期长,或者,所述第三信息中所述第三网络设备采用的导频端口的信息、所述第三网络设备采用的RI比所述第三网络设备采用的PMI、所述CQI的反馈周期长,或者,所述第三信息中所述第三网络设备采用的导频端口的信息、所述第三网络设备采用的RI、所述第三网络设备采用的PMI比所述CQI的反馈周期长。
  69. 根据权利要求68所述的第一网络设备,其特征在于,所述第二信息中所述第一网络设备采用的导频端口的信息反馈的周期独立于所述第二信息中所述第一网络设备采用的RI、所述第一网络设备采用的PMI、所述CQI反馈的周 期配置;或者,
    所述第三信息中所述第三网络设备采用的导频端口的信息反馈的周期独立于所述第三信息中所述第三网络设备采用的RI、所述第三网络设备采用的PMI、所述CQI反馈的周期配置;或者,
    所述第二信息中所述第一网络设备采用的导频端口的信息反馈的周期独立于所述第二信息中所述第一网络设备采用的RI、所述第一网络设备采用的PMI、所述CQI反馈的周期配置,所述第三信息中所述第三网络设备采用的导频端口的信息反馈的周期独立于所述第三信息中所述第三网络设备采用的RI、所述第三网络设备采用的PMI、所述CQI反馈的周期配置。
  70. 根据权利要求48-69任一项所述的第一网络设备,其特征在于,所述第一信息还包括假设所述第一网络设备与所述第二网络设备进行单用户多输入多输出SU-MIMO通信时,所述第一网络设备的第四信息,所述第四信息包括所述第一网络设备采用的导频端口的配置信息、所述第一网络设备采用的RI、所述第一网络设备采用的PMI、以及CQI中的至少一种。
  71. 根据权利要求70所述的第一网络设备,其特征在于,当所述第一信息包括所述第二信息、所述第三信息和所述第四信息时,若所述第二信息、所述第三信息和所述第四信息的信息量之和大于所述第一网络设备传输的最大信息量,则按照所述第四信息优先于所述第三信息,所述第三信息优先于所述第二信息的优先级进行丢弃,或者,
    按照所述第四信息优先于所述第二信息,所述第二信息优先于所述第三信息的优先级进行丢弃,或者,
    按照所述第二信息优先于所述第三信息,所述第三信息优先于所述第四信息的优先级进行丢弃,或者,
    按照所述第二信息优先于所述第四信息,所述第四信息优先于所述第三信息的优先级进行丢弃,或者,
    按照所述第三信息优先于所述第二信息,所述第二信息优先于所述第四信息的优先级进行丢弃,或者,
    按照所述第三信息优先于所述第四信息,所述第四信息优先于所述第二信息的优先级进行丢弃。
  72. 根据权利要求48-71任一项所述的第一网络设备,其特征在于,所述第一网络设备为第一用户设备UE,所述第三网络设备为第二UE,所述第二网络 设备为基站,所述基站控制所述第一UE的通信和所述第二UE的通信;或者,
    所述第一网络设备为第一从基站,所述第三网络设备为第二从基站,所述第二网络设备为主基站,所述主基站控制所述第一从基站的通信和所述第二从基站的通信;或者,
    所述第一网络设备为第一从UE,所述第三网络设备为第二从UE,所述第二网络设备为主UE,所述主UE控制所述第一从UE的通信和所述第二从UE的通信。
  73. 一种第二网络设备,其特征在于,所述第二网络设备包括:
    发送模块,用于发送导频端口配置信息,所述导频端口配置信息用于描述至少两个导频端口;
    接收模块,用于接收第一网络设备反馈的第一信息,所述第一信息是所述第一网络设备通过所述至少两个导频端口测量所述第二网络设备发送的导频信号确定的,所述第一信息包括假设所述第一网络设备和第三网络设备通过在相同的时频资源上进行空间复用与所述第二网络设备通信时,所述第一网络设备的第二信息和所述第三网络设备的第三信息中的至少一种,所述第二信息包括所述第一网络设备采用的导频端口的信息、所述第一网络设备采用的秩指示RI、所述第一网络设备采用的预编码矩阵指示PMI、以及信道质量指标CQI中的至少一种,所述第三信息包括所述第三网络设备采用的导频端口的信息、所述第三网络设备采用的RI、所述第三网络设备采用的PMI、以及CQI中的至少一种。
  74. 根据权利要求73所述的第二网络设备,其特征在于,所述导频端口配置信息包括导频端口的个数、导频端口的标识、导频端口的导频信号的导频图案、导频端口的导频信号的导频序列、导频端口的导频信号的发送功率、导频端口的导频信号的发送时刻、导频端口的导频信号发送的子带中的至少一种。
  75. 根据权利要求73或74所述的第二网络设备,其特征在于,所述至少两个导频端口为一组导频端口或者至少两组导频端口,各组导频端口分别采用独立配置的所述导频端口配置信息描述,一组导频端口包括至少一个导频端口。
  76. 根据权利要求75所述的第二网络设备,其特征在于,当所述至少两个导频端口为所述一组导频端口时,所述第二信息中的所述第一网络设备采用的导频端口的信息包括所述第一网络设备在所述一组导频端口中为所述第一网络设备选择的至少一个导频端口的端口号,所述第三信息中的所述第三网络设备 采用的导频端口的信息包括所述第一网络设备在所述一组导频端口中为所述第三网络设备选择的至少一个导频端口的端口号;或者,
    当所述至少两个导频端口为所述至少两组导频端口时,所述第一信息中的所述第一网络设备采用的导频端口的信息包括所述第一网络设备在所述至少两组导频端口中为所述第一网络设备选择的至少一组导频端口的组号,所述第三信息中的所述第三网络设备采用的导频端口的信息包括所述第一网络设备在所述至少两组导频端口中为所述第三网络设备选择的至少一组导频端口的组号。
  77. 根据权利要求75所述的第二网络设备,其特征在于,所述独立配置的导频端口配置信息与信道状态信息进程CSI process的配置信息一一对应,每个所述CSI process的配置信息包括非零功率的信道状态信息参考信号CSI-RS的配置信息和信道状态信息干扰测量参考信号CSI-IM的配置信息。
  78. 根据权利要求77所述的第二网络设备,其特征在于,当所述至少两个导频端口为所述至少两组导频端口时,所述第一信息中的所述第一网络设备采用的导频端口的信息包括所述第一网络设备在所述至少两组导频端口中为所述第一网络设备选择的至少一组导频端口对应的CSI process的进程号,所述第三信息中的所述第三网络设备采用的导频端口的信息包括所述第一网络设备在所述至少两组导频端口中为所述第三网络设备选择的至少一组导频端口对应的CSI process的进程号。
  79. 根据权利要求73-78任一项所述的第二网络设备,其特征在于,所述第一网络设备采用的导频端口的信息还包括所述第一网络设备采用的导频端口的导频信号发送的子带、所述第一网络设备采用的导频端口的导频信号的导频序列、所述第一网络设备采用的导频端口的导频信号的发送功率中的至少一种,所述第三网络设备采用的导频端口的信息还包括所述第三网络设备采用的导频端口的导频信号发送的子带、所述第三网络设备采用的导频端口的导频信号的导频序列、所述第三网络设备采用的导频端口的导频信号的发送功率中的至少一种。
  80. 根据权利要求73或74所述的第二网络设备,其特征在于,所述至少两个导频端口包括第一类导频端口和第二类导频端口,所述第一类导频端口包括至少一组导频端口,所述第二类导频端口包括至少两个导频端口。
  81. 根据权利要求80所述的第二网络设备,其特征在于,所述第一类导频端口为周期发送的导频信号的导频端口,所述第二类导频端口为非周期发送的 导频信号的导频端口;或者,
    所述第一类导频端口为无线资源控制RRC信令配置的导频端口,所述第二类导频端口为下行控制信令配置的导频端口,所述下行控制信令为下行调度DL grant信令或者上行调度UL grant信令;或者,
    所述第一类导频端口为未经过预编码的导频信号的导频端口,所述第二类导频端口为经过预编码的导频信号的导频端口;或者,
    所述第一类导频端口为CRS导频端口或者CSI-RS导频端口,所述第二类导频端口为解调参考信号DMRS导频端口;或者,
    所述第一类导频端口为在所有子带上发送导频信号的导频端口,所述第二类导频端口为在设定的子带上发送导频信号的导频端口;或者,
    所述第一类导频端口发送导频信号的子带是固定的,所述第二类导频端口发送导频信号的子带是可变的。
  82. 根据权利要求80或81所述的第二网络设备,其特征在于,所述第二类导频端口包括发送第一导频信号的第一导频端口和发送第二导频信号的第二导频端口,所述第一导频信号和所述第二导频信号是所述第二网络设备通过在相同的时频资源上进行空间复用发送的,所述第一网络设备通过所述第一导频信号测量所述第一网络设备接收的信号,所述第一网络设备通过所述第二导频信号测量对所述第一网络设备接收的信号的瞬时干扰,所述瞬时干扰为所述第三网络设备与所述第一网络设备在相同的时频资源上进行空间复用而产生的对所述第一网络设备接收的信号的干扰。
  83. 根据权利要求82所述的第二网络设备,其特征在于,所述第一导频信号和所述第二导频信号均为非零功率的导频信号。
  84. 根据权利要求82或83所述的第二网络设备,其特征在于,所述第一导频信号和所述第二网络设备向所述第一网络设备发送的数据信号采用相同的预编码矩阵,所述第二导频信号与所述第二网络设备向所述第三网络设备发送的数据信号采用相同的预编码矩阵。
  85. 根据权利要求82-84任一项所述的第二网络设备,其特征在于,所述第一导频信号为所述第二网络设备向所述第一网络设备发送的数据信号的解调导频信号;或者,
    所述第二导频信号为所述第二网络设备向所述第三网络设备发送的数据信号的解调导频信号;或者,
    所述第一导频信号为所述第二网络设备向所述第一网络设备发送的数据信号的解调导频信号,所述第二导频信号为所述第二网络设备向所述第三网络设备发送的数据信号的解调导频信号。
  86. 根据权利要求82-85任一项所述的第二网络设备,其特征在于,所述方法还包括:
    在第一时间单元发送信号;
    其中,在第一时间单元发送的信号包括所述第一导频信号和所述第二导频信号,且所述在第一时间单元发送的信号不包括向所述第一网络设备发送的以所述第一导频信号为解调导频信号的数据信号和向所述第三网络设备发送的以所述第二导频信号为解调导频信号的数据信号;或者,
    所述在第一时间单元发送的信号包括所述第一导频信号、所述第二导频信号、所述向所述第一网络设备发送的以所述第一导频信号为解调导频信号的数据信号和所述向所述第三网络设备发送的以所述第二导频信号为解调导频信号的数据信号;或者,
    所述在第一时间单元发送的信号包括所述第一导频信号和所述第二导频信号、所述向所述第一网络设备发送的以所述第一导频信号为解调导频信号的数据信号,且所述在第一时间单元发送的信号不包括所述向所述第三网络设备发送的以所述第二导频信号为解调导频信号的数据信号;或者,
    所述在第一时间单元发送的信号包括所述第一导频信号和所述第二导频信号、所述向所述第三网络设备发送的以所述第二导频信号为解调导频信号的数据信号,且所述在第一时间单元发送的信号不包括所述向所述第一网络设备发送的以所述第一导频信号为解调导频信号的数据信号。
  87. 根据权利要求86所述的第二网络设备,其特征在于,所述第一时间单元为一个时隙、一个子帧或者一个无线帧。
  88. 根据权利要求80-87任一项所述的第二网络设备,其特征在于,接收的所述第二网络设备通过所述第一类导频端口测量确定的第一信息不包括假设所述第一网络设备和所述第三网络设备通过在相同的时频资源上进行空间复用与所述第二网络设备通信时的CQI,接收的所述第二网络设备通过所述第二类导频端口测量确定的第一信息包括假设所述第一网络设备和所述第三网络设备通过在相同的时频资源上进行空间复用与所述第二网络设备通信时的CQI。
  89. 根据权利要求80-87任一项所述的第二网络设备,其特征在于,接收的 所述第二网络设备通过所述第一类导频端口测量确定的第一信息和接收的所述第二网络设备通过所述第二类导频端口测量确定的第一信息均包括假设所述第一网络设备和所述第三网络设备通过在相同的时频资源上进行空间复用与所述第二网络设备通信时的CQI,且接收的所述第二网络设备通过所述第二类导频端口测量确定的第一信息中的CQI与接收的所述第二网络设备通过所述第一类导频端口测量确定的第一信息中的CQI相互关联。
  90. 根据权利要求89所述的第二网络设备,其特征在于,接收的所述第二网络设备通过所述第二类导频端口测量确定的第一信息中的CQI与接收的所述第二网络设备通过所述第一类导频端口测量确定的第一信息中的CQI相互关联,包括接收的所述第二网络设备通过所述第二类导频端口测量确定的第一信息中的CQI,是接收的所述第二网络设备通过所述第一类导频端口测量确定的第一信息中的CQI差分得到的。
  91. 根据权利要求73-90任一项所述的第二网络设备,其特征在于,采用以下一种或多种方式独立配置所述第二信息和所述第三信息的反馈模式,其中,所述反馈模式包括子带反馈和宽带反馈,所述子带反馈为针对各个子带分别反馈一个所述第二信息或所述第三信息,所述宽带反馈为针对所有子带整体反馈一个所述第二信息或所述第三信息:
    所述第二信息的反馈模式为子带反馈,所述第三信息的反馈模式为宽带反馈;或者,
    所述第二信息中所述第一网络设备采用的导频端口的信息、所述第一网络设备采用的RI、所述第一网络设备采用的PMI的反馈模式为宽带反馈,所述CQI的反馈模式为子带反馈,或者,所述第二信息中所述第一网络设备采用的导频端口的信息、所述第一网络设备采用的RI的反馈模式为宽带反馈,所述第一网络设备采用的PMI、所述CQI的反馈模式为子带反馈,或者,所述第二信息中所述第一网络设备采用的导频端口的信息的反馈模式为宽带反馈,所述第一网络设备采用的RI、所述第一网络设备采用的PMI、所述CQI的反馈模式为子带反馈;
    所述第三信息中所述第三网络设备采用的导频端口的信息、所述第三网络设备采用的RI、所述第三网络设备采用的PMI的反馈模式为宽带反馈,所述CQI的反馈模式为子带反馈,或者,所述第三信息中所述第三网络设备采用的导频端口的信息、所述第三网络设备采用的RI的反馈模式为宽带反馈,所述第 三网络设备采用的PMI、所述CQI的反馈模式为子带反馈,或者,所述第三信息中所述第三网络设备采用的导频端口的信息的反馈模式为宽带反馈,所述第三网络设备采用的RI、所述第三网络设备采用的PMI、所述CQI的反馈模式为子带反馈。
  92. 根据权利要求91所述的第二网络设备,其特征在于,独立配置所述第二信息中所述第一网络设备采用的导频端口的信息反馈的子带和所述第二信息中第一网络设备采用的RI、所述第一网络设备采用的PMI、所述CQI反馈的子带;或者,
    独立配置所述第三信息中所述第三网络设备采用的导频端口的信息反馈的子带和所述第三信息中所述第三网络设备采用的RI、所述第三网络设备采用的PMI、所述CQI反馈的子带;或者,
    独立配置所述第二信息中所述第一网络设备采用的导频端口的信息反馈的子带和所述第二信息中第一网络设备采用的RI、所述第一网络设备采用的PMI、所述CQI反馈的子带,独立配置所述第三信息中所述第三网络设备采用的导频端口的信息反馈的子带和所述第三信息中所述第三网络设备采用的RI、所述第三网络设备采用的PMI、所述CQI反馈的子带。
  93. 根据权利要求73-92任一项所述的第二网络设备,其特征在于,采用以下一种或多种方式独立配置所述第二信息和所述第三信息的反馈周期:
    所述第二信息的反馈周期比所述第三信息的反馈周期短;
    所述第二信息中所述第一网络设备采用的导频端口的信息比所述第一网络设备采用的RI、所述第一网络设备采用的PMI、以及所述CQI的反馈周期长,或者,所述第二信息中所述第一网络设备采用的导频端口的信息、所述第一网络设备采用的RI比所述第一网络设备采用的PMI、所述CQI的反馈周期长,或者,所述第二信息中所述第一网络设备采用的导频端口的信息、所述第一网络设备采用的RI、所述第一网络设备采用的PMI比所述CQI的反馈周期长;
    所述第三信息中所述第三网络设备采用的导频端口的信息比所述第三网络设备采用的RI、所述第三网络设备采用的PMI、以及所述CQI的反馈周期长,或者,所述第三信息中所述第三网络设备采用的导频端口的信息、所述第三网络设备采用的RI比所述第三网络设备采用的PMI、所述CQI的反馈周期长,或者,所述第三信息中所述第三网络设备采用的导频端口的信息、所述第三网络设备采用的RI、所述第三网络设备采用的PMI比所述CQI的反馈周期长。
  94. 根据权利要求93所述的第二网络设备,其特征在于,独立配置所述第二信息中所述第一网络设备采用的导频端口的信息反馈的周期和所述第二信息中所述第一网络设备采用的RI、所述第一网络设备采用的PMI、所述CQI反馈的周期;或者,
    独立配置所述第三信息中所述第三网络设备采用的导频端口的信息反馈的周期和所述第三信息中所述第三网络设备采用的RI、所述第三网络设备采用的PMI、所述CQI反馈的周期;或者,
    独立配置所述第二信息中所述第一网络设备采用的导频端口的信息反馈的周期和所述第二信息中所述第一网络设备采用的RI、所述第一网络设备采用的PMI、所述CQI反馈的周期,独立配置所述第三信息中所述第三网络设备采用的导频端口的信息反馈的周期和所述第三信息中所述第三网络设备采用的RI、所述第三网络设备采用的PMI、所述CQI反馈的周期。
  95. 根据权利要求73-94任一项所述的第二网络设备,其特征在于,所述第一信息还包括假设所述第一网络设备与所述第二网络设备进行单用户多输入多输出SU-MIMO通信时,所述第一网络设备的第四信息,所述第四信息包括所述第一网络设备采用的导频端口的配置信息、所述第一网络设备采用的RI、所述第一网络设备采用的PMI、以及CQI中的至少一种。
  96. 根据权利要求73-95任一项所述的第二网络设备,其特征在于,所述第一网络设备为第一用户设备UE,所述第三网络设备为第二UE,所述第二网络设备为基站,所述基站控制所述第一UE的通信和所述第二UE的通信;或者,
    所述第一网络设备为第一从基站,所述第三网络设备为第二从基站,所述第二网络设备为主基站,所述主基站控制所述第一从基站的通信和所述第二从基站的通信;或者,
    所述第一网络设备为第一从UE,所述第三网络设备为第二从UE,所述第二网络设备为主UE,所述主UE控制所述第一从UE的通信和所述第二从UE的通信。
  97. 一种信道测量和反馈系统,其特征在于,所述系统包括第一网络设备、第二网络设备和第三网络设备,所述第一网络设备为如权利要求48-72任一项所述的第一网络设备,所述第二网络设备为如权利要求73-96任一项所述的第二网络设备。
PCT/CN2014/094586 2014-12-23 2014-12-23 一种信道测量和反馈方法、网络设备及系统 WO2016101116A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
KR1020177019801A KR102024999B1 (ko) 2014-12-23 2014-12-23 채널 측정 및 피드백 방법, 네트워크 디바이스, 및 시스템
PCT/CN2014/094586 WO2016101116A1 (zh) 2014-12-23 2014-12-23 一种信道测量和反馈方法、网络设备及系统
EP23199292.6A EP4322600A2 (en) 2014-12-23 2014-12-23 Channel measurement and feedback method, network device, and system
CN201480038997.8A CN105917609B (zh) 2014-12-23 2014-12-23 一种信道测量和反馈方法、网络设备及系统
CN201910498365.4A CN110278013B (zh) 2014-12-23 2014-12-23 一种信道测量和反馈方法、网络设备及系统
EP14908687.8A EP3226454B1 (en) 2014-12-23 2014-12-23 Channel measurement and feedback method, network device, and system
US15/630,303 US10454537B2 (en) 2014-12-23 2017-06-22 Channel measurement and feedback method, network device, and system
US16/567,882 US10951276B2 (en) 2014-12-23 2019-09-11 Channel measurement and feedback method, network device, and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/094586 WO2016101116A1 (zh) 2014-12-23 2014-12-23 一种信道测量和反馈方法、网络设备及系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/630,303 Continuation US10454537B2 (en) 2014-12-23 2017-06-22 Channel measurement and feedback method, network device, and system

Publications (1)

Publication Number Publication Date
WO2016101116A1 true WO2016101116A1 (zh) 2016-06-30

Family

ID=56148860

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/094586 WO2016101116A1 (zh) 2014-12-23 2014-12-23 一种信道测量和反馈方法、网络设备及系统

Country Status (5)

Country Link
US (2) US10454537B2 (zh)
EP (2) EP3226454B1 (zh)
KR (1) KR102024999B1 (zh)
CN (2) CN110278013B (zh)
WO (1) WO2016101116A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110278013B (zh) * 2014-12-23 2022-01-14 华为技术有限公司 一种信道测量和反馈方法、网络设备及系统
CN106160948B (zh) * 2015-04-20 2020-11-20 中兴通讯股份有限公司 信道质量指示cqi数量的确定方法及装置
CN107888264B (zh) * 2016-09-30 2022-12-30 中兴通讯股份有限公司 信道信息的反馈方法及装置
CN110266452B (zh) * 2018-03-12 2020-06-30 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN113271130B (zh) * 2018-05-11 2024-04-09 华为技术有限公司 信道估计方法和装置
US11412458B2 (en) * 2020-12-07 2022-08-09 Qualcomm Incorporated Power control techniques for ultra-wide bandwidth beamforming systems
CN115589599A (zh) * 2021-06-23 2023-01-10 华为技术有限公司 传输信息的方法和装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102594526A (zh) * 2011-01-07 2012-07-18 华为技术有限公司 信道质量反馈方法及通信设备
WO2014074914A1 (en) * 2012-11-12 2014-05-15 Apple Inc. Adaptive channel state feedback estimation
CN104144027A (zh) * 2013-05-07 2014-11-12 北京三星通信技术研究有限公司 一种信道状态信息的反馈方法
CN104202073A (zh) * 2014-03-04 2014-12-10 中兴通讯股份有限公司 信道信息的反馈方法、导频及波束发送方法、系统及装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7957486B2 (en) 2002-09-30 2011-06-07 Intel Corporation Transmission link adaptation
CN101753186B (zh) * 2008-12-19 2013-04-03 电信科学技术研究院 一种用于多流波束赋形数据传输的信道质量信息估计方法
CN102088302B (zh) * 2010-02-08 2015-08-19 电信科学技术研究院 闭环多天线系统发送/接收信息的方法及装置
CN102468932B (zh) * 2010-11-16 2016-09-21 株式会社Ntt都科摩 多用户多输入多输出系统的信道质量估计方法和用户设备
US20120207935A1 (en) * 2011-02-14 2012-08-16 Deepak Shukla Photocurable inks and methods of use
RU2564532C2 (ru) * 2011-03-31 2015-10-10 Панасоник Интеллекчуал Проперти Корпорэйшн оф Америка Способ передачи по обратной связи многопользовательского индикатора качества канала в системе связи, устройство точки передачи и пользовательское устройство
CN103503332B (zh) * 2011-05-04 2016-05-18 Lg电子株式会社 在无线通信系统中发射/接收信道状态信息的方法和装置
CN102916785B (zh) * 2011-08-04 2017-04-12 华为技术有限公司 信息反馈方法、用户设备和基站
CN103259615B (zh) * 2012-02-21 2016-06-22 华为技术有限公司 一种信息反馈方法及装置、终端
CN103580812B (zh) * 2012-08-03 2019-08-23 中兴通讯股份有限公司 一种信道状态信息的反馈方法及用户设备
CN103716116B (zh) * 2012-09-28 2019-04-16 中兴通讯股份有限公司 信道状态信息反馈信令的配置方法、基站和终端
CN103840907B (zh) * 2012-11-20 2018-06-05 电信科学技术研究院 一种传输导频信号和信号测量的方法、系统及设备
CN110278013B (zh) * 2014-12-23 2022-01-14 华为技术有限公司 一种信道测量和反馈方法、网络设备及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102594526A (zh) * 2011-01-07 2012-07-18 华为技术有限公司 信道质量反馈方法及通信设备
WO2014074914A1 (en) * 2012-11-12 2014-05-15 Apple Inc. Adaptive channel state feedback estimation
CN104144027A (zh) * 2013-05-07 2014-11-12 北京三星通信技术研究有限公司 一种信道状态信息的反馈方法
CN104202073A (zh) * 2014-03-04 2014-12-10 中兴通讯股份有限公司 信道信息的反馈方法、导频及波束发送方法、系统及装置

Also Published As

Publication number Publication date
EP3226454A1 (en) 2017-10-04
KR20170097136A (ko) 2017-08-25
KR102024999B1 (ko) 2019-09-24
US10951276B2 (en) 2021-03-16
CN110278013B (zh) 2022-01-14
US10454537B2 (en) 2019-10-22
CN105917609B (zh) 2019-06-11
US20200007198A1 (en) 2020-01-02
EP3226454A4 (en) 2017-12-27
EP3226454B1 (en) 2023-10-11
CN105917609A (zh) 2016-08-31
CN110278013A (zh) 2019-09-24
EP4322600A2 (en) 2024-02-14
US20170294945A1 (en) 2017-10-12

Similar Documents

Publication Publication Date Title
CN107567695B (zh) 大规模天线系统中的资源分配设备和方法
CN110832803B (zh) 用于多用户多入多出的干扰测量和信道状态信息反馈
WO2016101116A1 (zh) 一种信道测量和反馈方法、网络设备及系统
US9559828B2 (en) Multiple CQI feedback for cellular networks
JP6019502B2 (ja) 協調マルチポイント送信のためのチャネルフィードバック
WO2016180346A1 (en) Channel state feedback enhancement in downlink multiuser superposition transmission
US9935693B2 (en) Method for communicating in a MIMO network
EP2676380A1 (en) Method of determining a channel state in coordinated multipoint transmission
US9276658B2 (en) Method for communicating in a MIMO network
JP2020504465A (ja) ハイブリッドクラスa/b動作のための高度csiレポーティング
US9119082B1 (en) Reference signal design for interference measurement
EP3776891A1 (en) Communication devices, communication coordinating devices, and communication methods
Guo et al. Adaptive SU/MU-MIMO scheduling for LTE-A downlink cellular networks
KR20120112741A (ko) 무선 통신 시스템에서의 폐루프 송신 피드백
KR20150014479A (ko) 채널 특성의 계산 및 보고
CN107078993B (zh) 一种获取下行信道信息的方法、装置以及网络侧设备
WO2016145952A1 (zh) 信道状态测量导频的处理方法及装置
Tervo Effective channel state acquisition in multi-cell multi-user MIMO system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14908687

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014908687

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177019801

Country of ref document: KR

Kind code of ref document: A