WO2016101101A1 - 网络能效优化方法和装置 - Google Patents

网络能效优化方法和装置 Download PDF

Info

Publication number
WO2016101101A1
WO2016101101A1 PCT/CN2014/094530 CN2014094530W WO2016101101A1 WO 2016101101 A1 WO2016101101 A1 WO 2016101101A1 CN 2014094530 W CN2014094530 W CN 2014094530W WO 2016101101 A1 WO2016101101 A1 WO 2016101101A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
network
power
low
cell
Prior art date
Application number
PCT/CN2014/094530
Other languages
English (en)
French (fr)
Inventor
段晓明
罗璇
张翼德
朱江
王新玲
陈杰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201480084134.4A priority Critical patent/CN107005935B/zh
Priority to PCT/CN2014/094530 priority patent/WO2016101101A1/zh
Publication of WO2016101101A1 publication Critical patent/WO2016101101A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • Embodiments of the present invention relate to the field of wireless communication technologies, and in particular, to a network energy efficiency optimization method and apparatus.
  • HetNet Heterogeneous Network
  • a macro base station and a low power base station such as a micro base station (Pico base station) coexist in the network.
  • the macro base station is used for large-scale coverage
  • the low-power base station is used to increase system capacity and improve small-scale coverage.
  • the sleep and wake-up strategies of the low-power base station are determined according to the traffic load of the low-power base station. For example, when there is no user in the coverage area of a Pico base station or the user traffic load is less than a certain threshold, the Pico base station can be put into a dormant state; once the user or user appears within the coverage of the dormant Pico base station If the service load is greater than the threshold, the Pico base station is immediately awake to enter the working state.
  • controlling the sleep and wake-up of the low-power base station according to the traffic load of the low-power base station can only control the power consumption of the low-power base station.
  • the total energy efficiency of the network is determined according to the sum of the network traffic data of all base stations in the network and the power consumption of all base stations, and the low power is controlled according to the traffic load.
  • the sleep and wake-up of the base station cannot guarantee the energy efficiency of the entire network.
  • Embodiments of the present invention provide a network energy efficiency optimization method and apparatus for improving network energy efficiency optimization performance.
  • the first aspect provides a network energy efficiency optimization apparatus, including:
  • a processing module configured to determine an initial network energy efficiency of a cell to be optimized, where the cell to be optimized includes at least one cell served by a macro base station; and sequentially calculating, sleeping, each low-power base station in a working state of the cell to be optimized Afterwards, the first network of the to-be-optimized cell corresponding to the low-power base station in the working state is energy-efficient; and after estimating, each low-power base station in the dormant state in the cell to be optimized is awake, The second network of the to-be-optimized cell corresponding to the low-power base station in the dormant state is energy-efficient; determining a to-be-sleeped base station and a to-be-awaken base station in the to-be-optimized cell, where the to-be-sleepy base station corresponds to The energy efficiency of the network is greater than the energy efficiency of the initial network, the energy efficiency of the second network corresponding to the base station to be awakened is greater than the energy efficiency
  • a sending module configured to notify the sleeping base station to sleep, and the to-be-awaken base station wakes up.
  • the network energy efficiency optimization apparatus further includes:
  • a receiving module configured to receive data traffic volume and power consumption sent by each low-power base station in the cell to be optimized
  • the processing module is specifically configured to determine an initial network of the to-be-optimized cell according to the network service data quantity and power consumption of the macro base station, and the network service data quantity and power consumption sent by each low-power base station in the to-be-optimized cell. efficiency.
  • the processing module is further configured to determine, in the to-be-optimized cell, the to-be-sleepy base station and the to-be-optimized cell Before the base station is awakened, the corresponding low-power base station with the first network energy efficiency greater than the initial network energy efficiency is used as the optional to-be-sleeped base station in the to-be-optimized cell; and the corresponding second network energy efficiency is greater than the initial Network energy efficient sleepy low power base station as described An optional to-be-awakened base station in the to-be-optimized cell, wherein the to-be-sleeped base station in the to-be-optimized cell is selected from the to-be-optimized cell in the to-be-optimized cell, and the macro base station is in the to-be-optimized cell Selecting the to-be-awaken base station in the to-be-opti
  • the processing module is specifically configured to calculate, after all the optional to-be-sleep base stations in the to-be-optimized cell are dormant Whether the amount of network service data of the macro base station is greater than a maximum network traffic data threshold of the macro base station, and whether the power consumption of the macro base station is greater than a maximum power consumption threshold of the macro base station, and if so, the macro base station After the dormant base station with the lowest energy efficiency of the corresponding first network in the to-be-optimized cell is set as the dormant base station, the macro base station is further calculated after all the optional to-be-sleep base stations in the to-be-optimized cell are dormant.
  • the dormant base station is used as the to-be-sleepy base station; after estimating all the optional to-be-awakened base stations in the to-be-optimized cell, whether the amount of network service data of the macro base station is less than or equal to zero, and the reduced power consumption of the macro base station Whether it is less than or equal to the power consumed by all the optional wake-up base stations after waking up, and if yes, the macro base station sets the optional to-be-awake base station with the lowest energy efficiency of the corresponding second network in the to-be-optimized cell as the banned wake-
  • the processing module is specifically configured to be sequentially calculated by using the following formula After each low-power base station in the working state in the cell to be optimized is dormant, the first to be optimized cell corresponding to each low-power base station in the working state Network energy efficiency:
  • the cell to be optimized includes N low-power base stations, and EE sleep_j indicates that after the j-th low-power base station in the working state is dormant, the first network of the cell to be optimized is energy-efficient.
  • Indicates the amount of network traffic data of the macro base station after the jth low-power base station in the working state is dormant
  • Indicates the power consumption of the macro base station after the jth low-power base station in the working state is dormant
  • Indicates the amount of network traffic data of the i-th low-power base station after the jth low-power base station in operation is asleep
  • Indicates the power consumption of the i-th low-power base station after the jth low-power base station in operation is dormant.
  • the processing module is specifically configured to be sequentially estimated by using the following formula After waking up each low-power base station in the dormant state in the to-be-optimized cell, the second network energy of the to-be-optimized cell corresponding to each low-power base station in the awake state is:
  • the cell to be optimized includes N low-power base stations, and the EE wakeup_j indicates that after the jth low-power base station in the dormant state wakes up, the second network of the cell to be optimized is energy-efficient.
  • Indicates the amount of network traffic data of the macro base station after waking up the jth low-power base station in a dormant state Representing the power consumption of the macro base station after waking up the jth low-power base station in a dormant state, Indicates the amount of network traffic data of the i-th low-power base station after waking up the jth sleepy low-power base station, Indicates the power consumption of the i-th low-power base station after waking up the jth low-power base station in a dormant state.
  • the second aspect provides a network energy efficiency optimization method, including:
  • the macro base station determines an initial network energy efficiency of the cell to be optimized, where the cell to be optimized includes at least one cell served by the macro base station;
  • the macro base station sequentially calculates, after each low-power base station in the working state in the cell to be optimized, sleeps, the small to-be-optimized corresponding to each low-power base station in the working state
  • the macro base station sequentially estimates, after waking up each low-power base station in the dormant state in the to-be-optimized cell, the second network of the to-optimized cell corresponding to each low-power base station in the dormant state efficiency;
  • the first network energy efficiency corresponding to the to-be-sleepy base station is greater than the initial network energy efficiency
  • the second network corresponding to the to-be-awaken base station is more energy efficient than the second network
  • the initial network is energy efficient, and when the to-be-sleepy base station is dormant and the to-be-awakened base station wakes up, the macro network base station's network network service data quantity is greater than zero and less than the maximum base network service data quantity threshold of the macro base station, The power consumption of the macro base station is less than or equal to a maximum power consumption threshold of the macro base station;
  • the macro base station notifies the sleeping base station to sleep, and the to-be-awaken base station wakes up.
  • the macro base station determines initial network energy efficiency of the cell to be optimized, including:
  • the macro base station receives the network network service data quantity and power consumption sent by each low power base station in the cell to be optimized;
  • the macro base station determines an initial network energy efficiency of the to-be-optimized cell according to the network network service data quantity and power consumption of the macro base station and the network network service data quantity and power consumption sent by each low-power base station in the to-be-optimized cell.
  • the macro base station determines, before the to-be-sleeped base station and the base station to be woken up in the to-be-optimized cell, Also includes:
  • the macro base station uses a low-power base station in which the corresponding first network energy efficiency is greater than the energy efficiency of the initial network as an optional to-be-sleep base station in the to-be-optimized cell;
  • the macro base station uses, as the optional to-be-awakened base station in the to-be-optimized cell, the corresponding low-power base station whose second network is more energy efficient than the initial network energy-efficient in the dormant state;
  • the macro base station selects a to-be-sleeved base station in the to-be-optimized cell from the optional to-be-sleeped base stations in the to-be-optimized cell, and the macro base station selects an optional to-be-awakened base station in the to-be-optimized cell. Determining the base station to be awakened in the optimized cell, when the to-be-sleepy base station is dormant and the to-be-awakened base station wakes up, the amount of network network service data of the macro base station is greater than zero and less than or equal to the macro base station. The maximum network network traffic data threshold, the power consumption of the macro base station is less than or equal to the maximum power consumption threshold of the macro base station.
  • the macro base station selects the to-be-optimized cell from the optional to-be-sleeped base stations in the to-be-optimized cell
  • the dormant base station includes:
  • the macro base station calculates whether the network network service data quantity of the macro base station is greater than a maximum network network service data quantity threshold of the macro base station after the all the optional to-be-sleep base stations in the to-be-optimized cell are dormant, and the Whether the power consumption of the macro base station is greater than the maximum power consumption threshold of the macro base station, and if the macro base station sets the optional standby dormant base station with the lowest energy efficiency of the corresponding first network in the to-be-optimized cell as the dormant base station, After calculating whether to sleep all the optional to-be-sleepy base stations in the to-be-optimized cell, whether the network network service data quantity of the macro base station is greater than a maximum network network service data quantity threshold of the macro base station, and the macro base station Whether the power consumption is greater than a maximum power consumption threshold of the macro base station, until the network network service data quantity of the macro base station is less than or equal to a maximum network network service data quantity threshold of
  • the macro base station uses the remaining optional dormant base stations as the to-be-sleep base station;
  • the macro base station selects the to-be-awakened base station in the to-be-optimized cell from the optional to-be-awakened base stations in the to-be-optimized cell, including:
  • the macro base station estimates whether the network network service data quantity of the macro base station is less than or equal to zero after waking up all the optional to-be-awake base stations in the to-be-optimized cell, and whether the reduced power consumption of the macro base station is less than or equal to all Selecting the power consumed by the wake-up base station after waking up, if the macro base station sets the optional to-be-awake base station with the lowest energy efficiency of the corresponding second network in the to-be-optimized cell as the banned wake-up base station, and continues to estimate the to-be-optimized Whether the amount of network network service data of the macro base station is less than or equal to zero, and whether the power consumption reduced by the macro base station is less than or equal to the power consumed by all optional wake-up base stations after waking up, Until the amount of network network service data of the macro base station is greater than zero, and the power consumption reduced by the macro base station is greater than the power consumed by all optional wake-up base stations after waking up;
  • the macro base station uses the remaining optional to-be-awake base stations as the base station to be woken up.
  • the macro base station sequentially calculates the The first network energy efficiency of the to-be-optimized cell corresponding to each low-power base station in the working state after the sleep of each low-power base station in the working state, including:
  • the macro base station sequentially calculates, after the sleep of each low-power base station in the working state in the cell to be optimized, the to-be-optimized cell corresponding to each low-power base station in the working state.
  • the cell to be optimized includes N low-power base stations, and EE sleep_j indicates that after the j-th low-power base station in the working state is dormant, the first network of the cell to be optimized is energy-efficient.
  • Indicates the amount of network network traffic data of the macro base station after the jth low-power base station in the working state is dormant
  • Indicates the power consumption of the macro base station after the jth low-power base station in the working state is dormant
  • Indicates the amount of network network traffic data of the i-th low-power base station after the jth low-power base station in the working state is dormant
  • Indicates the power consumption of the i-th low-power base station after the jth low-power base station in operation is dormant.
  • the macro base station sequentially estimates the cell to be optimized
  • the second network energy efficiency of the to-be-optimized cell corresponding to each low-power base station in the dormant state after the wake-up of each low-power base station in the dormant state includes:
  • the macro base station sequentially estimates, after waking up each low-power base station in the dormant state in the to-be-optimized cell, the to-be-optimized cell corresponding to each low-power base station in the awake state.
  • Second network energy efficiency Second network energy efficiency:
  • the cell to be optimized includes N low-power base stations, and the EE wakeup_j indicates that after the jth low-power base station in the dormant state wakes up, the second network of the cell to be optimized is energy-efficient.
  • Indicates the amount of network network traffic data of the macro base station after waking up the jth low-power base station in a dormant state Representing the power consumption of the macro base station after waking up the jth low-power base station in a dormant state, Indicates the amount of network network traffic data of the i-th low-power base station after waking up the jth sleepy low-power base station, Indicates the power consumption of the i-th low-power base station after waking up the jth low-power base station in a dormant state.
  • the network energy efficiency optimization method and device after determining the initial network energy efficiency of the cell to be optimized, and sequentially calculating, after each low-power base station in the working state in the cell to be optimized is dormant,
  • the first network energy efficiency of the cell to be optimized corresponding to each low-power base station in the working state is determined by sequentially estimating, after the wake-up of each low-power base station in the dormant state in the cell to be optimized,
  • the second network of the to-be-optimized cell corresponding to each low-power base station is energy-efficient, and finally determines the to-be-sleeped base station and the to-be-awakened base station in the to-be-optimized cell, and the first network corresponding to the to-be-sleeped base station is more energy efficient than the
  • the energy efficiency of the second network corresponding to the base station to be awakened is greater than the energy efficiency of the initial network, and when the base station to be dormant is dormant and the base station
  • FIG. 1 is a schematic diagram of a heterogeneous network architecture
  • Embodiment 1 of a network energy efficiency optimization apparatus according to an embodiment of the present invention
  • FIG. 3 is a flowchart of Embodiment 1 of a network energy efficiency optimization method according to an embodiment of the present disclosure
  • FIG. 4 is a flowchart of Embodiment 2 of a network energy efficiency optimization method according to an embodiment of the present invention.
  • a HetNet architecture network there are at least two forms of base stations, which can be classified into a macro base station and a low power base station, wherein the macro base station provides a wide range of coverage, and the low power base station increases the system capacity in the coverage of the macro base station and Improve coverage on a small scale.
  • the low-power base station can be set in a hotspot area in the user concentration, and the low-power base station diverts the traffic of some users in the hotspot area, thereby increasing the cell capacity.
  • the low-power base station in the hotspot area can be turned off, and when the user is in the dormant state, the service traffic of the user can be concentrated into the macro base station for processing, thereby saving energy.
  • FIG. 1 is a schematic diagram of a heterogeneous network architecture.
  • a macro base station 11 covers an area 12, and a low power base station 13 and a low power base station 14 are disposed in the area 12, and a low power base station 13 covers an area 15, and the low power base station 14 Cover area 16.
  • the macro base station 11 and the low power base station 13 are in the working state and the low power base station 14 is in the dormant state, according to the capability of the low power base station 13, some users in the area 15 access the network through the low power base station 13 and transmit service data, the area. All other users in 12 access the network through the macro base station 11 and transmit service data.
  • the macro base station 11 When the number of users accessing the low power base station 13 is too small or the amount of network traffic data is too small, the macro base station 11 will notify the low power base station 13 to sleep from the working state, and the user accessing the low power base station 13 will switch to the macro base station 11 and The macro base station 11 continues to transmit the service data, thereby reducing the power consumption of the low power base station 13; when the number of users in the area 16 is excessive or the amount of network traffic data is excessive, the macro base station 11 will notify the low power base station 14 to wake up from the sleep state. Some of the users in area 16 will switch to low power base station 14 and continue to transmit traffic data through low power base station 14.
  • Network energy efficiency is an important indicator to judge the network optimization effect.
  • the network energy efficiency is equal to the ratio of network service data volume to network energy consumption.
  • the sleep and wake-up of the low-power base station are controlled only according to the traffic load of the coverage area of the low-power base station, and only the power consumption of the low-power base station can be controlled.
  • the power consumption required for the macro base station and the low power base station to process the same service traffic may be different, that is, after the low power base station sleeps, the traffic data traffic is concentrated into the macro base station, although the power consumption of the low power base station is reduced.
  • the power consumption of the macro base station may increase, and the power consumption increase of the macro base station may be higher than the power consumption of the low power base station.
  • the low-power base station wakes up after the service data traffic of the macro base station is offloaded to the low-power base station, although the power consumption of the macro base station is reduced, the power consumption of the low-power base station is increased, and the power of the low-power base station is increased.
  • the increase in power consumption may be higher than the power consumption reduced by the macro base station. Therefore, the sleep of the low power base station is controlled only according to the traffic load of the coverage area of the low power base station. With wake-up, there is no guarantee that the energy efficiency of the entire network will be improved.
  • the present invention provides a network energy efficiency optimization method and apparatus for improving the energy efficiency of an entire network by using a cell as a granularity.
  • the macro base station in the following embodiments of the present invention may be a macro base station in any wireless communication system
  • the low power base station may also be a low power base station in any wireless communication system, as long as the base station is in the base station.
  • the coverage of the station includes at least one low-power base station, and the low-power base station can offload the service data traffic for the macro base station under the control of the macro base station, and implement sleep and wake-up under the control of the macro base station.
  • FIG. 2 is a schematic structural diagram of Embodiment 1 of a network energy efficiency optimization apparatus according to an embodiment of the present invention. As shown in FIG. 2, the network energy efficiency optimization apparatus of this embodiment includes:
  • the processing module 21 is configured to determine an initial network energy efficiency of the cell to be optimized, where the cell to be optimized includes at least one cell served by the macro base station, and sequentially calculate each low power base station that is in an active state in the cell to be optimized. After the dormancy, the first network of the cell to be optimized corresponding to each low-power base station in the working state is energy-efficient; and it is sequentially estimated to wake up each low-power base station in the dormant state in the cell to be optimized.
  • a second network energy efficiency of the to-be-optimized cell corresponding to the low-power base station in the dormant state determining a to-be-sleeped base station and a to-be-awaken base station in the to-be-optimized cell, where the to-be-sleepy base station corresponds
  • the energy efficiency of the first network is greater than the energy efficiency of the initial network
  • the energy efficiency of the second network corresponding to the base station to be awakened is greater than the energy efficiency of the initial network
  • the base station to be dormant is dormant and the base station to be woken up wakes up
  • the macro base station The amount of network traffic data is greater than zero and less than the maximum network traffic data threshold of the macro base station, and the power consumption of the macro base station is less than or equal to Said maximum power dissipation threshold macro base station.
  • the sending module 22 is configured to notify the sleeping base station to sleep, and the to-be-awaken base station wakes up.
  • the receiving module 23 is configured to receive the amount of network service data and power consumption sent by each low-power base station in the cell to be optimized.
  • the network energy efficiency optimization apparatus provided in this embodiment is disposed in the macro base station; or the network energy efficiency optimization apparatus provided in this embodiment is a macro base station, and each function module or device of the macro base station implements each function.
  • a macro base station in the network may provide at least one serving cell (or sector), and there may be multiple low power base stations in the coverage of each cell.
  • its network energy efficiency can be expressed by the following formula:
  • EE 1 represents the network energy efficiency of the first cell
  • Representing the amount of network traffic data of the macro base station in the first cell Representing the power consumption of the macro base station in the first cell, Indicates the amount of network traffic data of the i-th low-power base station in the first cell
  • the power consumption of the i-th low-power base station in the first cell is included, where the first cell includes N low-power base stations.
  • the unit of the network service data amount is unified into bits
  • the unit of power consumption is unified into Joule (J)
  • the unit of network energy efficiency is bit/J. Calculating network energy efficiency requires measuring the amount of network traffic data and power consumption of the macro base station and all low-power base stations in the cell within a certain period of time.
  • This time is generally a preset fixed value. Since the amount of traffic data in the first cell migrates between the macro base station and the low power base station, the amount of total traffic data in the first cell is constant, that is, It is a fixed value, and the factors affecting the performance of the first cell network are only the power consumption of the macro base station and each low power base station.
  • the optimization of the network energy efficiency also needs to be based on the cell, according to the network service data quantity and power consumption of all base stations in a cell. Optimize network energy efficiency so that network energy efficiency optimization of the entire network can be achieved.
  • the network energy efficiency optimization apparatus includes a processing module 21 and a sending module 22.
  • the processing module 21 first needs to determine the initial network energy efficiency of the cell to be optimized.
  • the cell to be optimized may be at least one cell served by the macro base station, and the macro base station may perform network energy efficiency optimization only for one cell served, or may perform network energy efficiency optimization for all cells served at the same time.
  • the network energy efficiency optimization device Before optimizing the network energy efficiency of the optimized cell, the network energy efficiency optimization device needs to determine an optimization basis. Therefore, the processing module 21 needs to determine the initial network energy efficiency of the cell to be optimized, and the initial network energy efficiency of the cell to be optimized is not optimized by the network energy efficiency. Network energy efficiency.
  • the processing module 21 may determine the initial network energy efficiency of the cell to be optimized by using any method, for example, determining the initial network energy efficiency of the cell to be optimized by measuring the amount of network service data and power consumption of each low-power base station in the macro base station and the cell to be optimized.
  • the network energy efficiency optimization apparatus may further include a receiving module 23, and the receiving module 23 is configured to receive the network service data quantity and power consumption sent by each low-power base station in the cell to be optimized, and the processing module 21 passes the The internal reception of the macro base station acquires the amount of network traffic data and power consumption of the macro base station, so that the processing module 21 can determine the initial network energy efficiency of the cell to be optimized.
  • the processing module 21 sequentially calculates, after the sleep of each low-power base station in the working state in the cell to be optimized, the first network energy efficiency of the cell to be optimized corresponding to each low-power base station in the working state. And the processing module 21 sequentially estimates, after waking up each low-power base station in the dormant state in the cell to be optimized, the second network energy of the cell to be optimized corresponding to each low-power base station in the dormant state.
  • the amount of network data and power consumption in the macro base station and other low-power base stations in the cell to be optimized after the low-power base station in the active state is dormant or the low-power base station in the dormant state is woken up in the cell to be optimized.
  • the processing module 21 needs to calculate the entire to-be-optimized cell after each low-power base station in the working state is dormant, or after each low-power base station in the dormant state wakes up. Network energy efficiency.
  • the processing module 21 When calculating the network energy efficiency of the entire to-be-optimized cell after each low-power base station in the working state in the cell to be optimized sleeps or wakes up each low-power base station in the dormant state, that is, the first network energy efficiency and the second The network energy efficiency, the processing module 21 will determine the dormant base station to be dormant and the to-be-awaken base station that needs to wake up according to the relationship between the first network energy efficiency, the second network energy efficiency and the initial network energy efficiency.
  • the energy efficiency of the first network corresponding to the low power base station or the energy efficiency of the second network is greater than the energy efficiency of the initial network, it means that the network energy efficiency of the cell to be optimized will be improved after the low power base station is dormant or awake, and the low power base station can be A low power base station to be hibernated or to be woken up.
  • the processing module 21 needs to determine after comparing the first network energy efficiency or the second network energy efficiency with the initial network energy efficiency. Whether the amount of network service data of the macro base station is greater than zero and less than the maximum network service data amount threshold of the macro base station, and whether the power consumption of the macro base station is less than or equal to the maximum power consumption threshold of the macro base station, after the dormant base station sleeps and wakes up the base station to wake up.
  • the network traffic data of the low-power base station is concentrated in the macro base station, but the macro base station has the largest network service data volume threshold, and the service data acer base exceeding the threshold The station cannot process; after the low-power base station in the dormant state wakes up, the macro base station will offload part of the service data to the low-power base station, but since the macro base station provides large-scale coverage of the network, the macro base station cannot sleep. Therefore, the amount of network service data of the macro base station cannot be completely transmitted to the low power base station. In summary, the amount of network service data of the macro base station needs to be greater than zero and less than the maximum network service data amount threshold of the macro base station.
  • the network traffic data amount of the low-power base station is concentrated in the macro base station, and the macro base station is The amount of network traffic data transferred by the low power base station will generate additional power consumption, and the sum of the power consumption and the current output power consumption of the macro base station should not exceed the maximum power consumption threshold of the macro base station.
  • the to-be-sleepy base station or the to-be-awakened base station selected by the processing module 21 needs to simultaneously satisfy the first network energy efficiency corresponding to the to-be-sleeped base station, which is greater than the initial network energy efficiency, and the second network corresponding to the wake-up base station is more energy efficient than the initial network energy efficiency;
  • the network service data volume of the macro base station is greater than zero and less than the maximum network service data volume threshold of the macro base station, and the power consumption of the macro base station is less than or equal to the maximum power consumption threshold of the macro base station.
  • the selected low-power base station in the working state can be used as the to-be-sleepy base station, and the low-power base station in the dormant state is used as the base station to be woken up.
  • the amount of network traffic data and power consumption that can be processed by the low-power base station in the dormant state may be processed by the processing module 21 according to the low-power base station.
  • the maximum available radio resources and output power are calculated, but the actual network traffic data processed by the low power base station after waking up and the actual power consumption may not be equal to the amount of network traffic data that can be processed by the low power base station after the macro station calculates wakeup. And the power consumption.
  • the processing module 21 can only estimate the second network energy efficiency of the cell to be optimized corresponding to each low-power base station in the dormant state after waking up the low-power base station in the dormant state, and correspondingly The amount of network traffic data and power consumption of the macro base station.
  • the sending module 22 needs to send a notification message to the to-be-awake base station of the to-be-sleeping base station selected by the processing module 21, to notify the sleeping base station to sleep, and to wake up the base station to wake up.
  • the energy efficiency of the second network corresponding to the base station to be awakened is greater than the initial network energy efficiency, and the base station to be awakened by the base station is dormant and waits. After the wake-up of the base station wakes up, the network performance of the cell to be optimized will be greater than the initial network performance, and finally the optimization of the cell to be optimized is implemented.
  • the network energy efficiency optimization apparatus determines the initial network energy efficiency of the cell to be optimized, and sequentially calculates, after the sleep of each low-power base station in the working state of the to-be-optimized cell, the working state Corresponding to the first network energy efficiency of the cell to be optimized corresponding to each low-power base station; and sequentially estimating, after waking up each low-power base station in the dormant state in the cell to be optimized,
  • the second network of the to-be-optimized cell corresponding to the low-power base station is energy-efficient, and finally determines the to-be-sleeped base station and the to-be-awakened base station in the to-be-optimized cell, where the first network corresponding to the dormant base station is more energy efficient than the initial Network energy efficiency
  • the energy efficiency of the second network corresponding to the station is greater than the energy efficiency of the initial network, and when the base station to be dormant is dormant and the base station to be woken up wakes up,
  • the threshold of the network traffic data, the power consumption of the macro base station is less than or equal to the maximum power consumption threshold of the macro base station, and finally notifys the sleepy base station to sleep, and the base station to be woken up wakes up, thereby improving network energy efficiency of the to-be-optimized cell,
  • the network energy efficiency optimization with cell size is realized.
  • the processing module 21 is further configured to: before determining the to-be-sleeped base station and the base station to be awakened in the to-be-optimized cell, the corresponding first network energy efficiency is greater than the initial network energy efficiency.
  • the data amount threshold, the power consumption of the macro base station is less than or equal to the maximum power consumption threshold of the macro base station.
  • the processing module 21 is divided into two steps when determining the to-be-sleeped base station and the base station to be awakened in the cell to be optimized.
  • the processing module 21 calculates that the low-power base station in the working state is in a sleep state, the corresponding first network energy efficiency, and the corresponding low-power base station whose first network energy efficiency is greater than the initial network energy efficiency of the to-be-optimized cell is regarded as optional sleep.
  • the base station; the processing module 21 calculates that the low-power base station in the dormant state is awake, and the corresponding second network is energy-efficient, and the corresponding low-power base station whose second network energy efficiency is greater than the initial network energy efficiency of the cell to be optimized is regarded as optional Wake up the base station.
  • the processing module 21 selects the to-be-sleeped base station in the optional to-be-sleeped base station, and selects the to-be-awakened base station in the optional to-be-awakened base station, so that the to-be-sleeped base station and the to-be-awakened base station are satisfied: when the to-be-sleeped base station is dormant After the base station wakes up, the amount of network service data of the macro base station is greater than zero and less than or equal to a maximum network traffic data threshold of the macro base station, and the power consumption of the macro base station is less than or equal to a maximum power consumption threshold of the macro base station.
  • the processing module 21 may be configured to select a to-be-sleepy base station in the optional to-be-sleepy base station, and select a to-be-awakened base station in the optional to-be-awakened base station: the processing module 21 is specifically configured to calculate the to-be-optimized cell.
  • the macro base station sets the optional to-be-sleep base station with the lowest energy efficiency of the corresponding first network in the to-be-optimized cell as the dormant base station, and continues to calculate Whether the amount of network service data of the macro base station is greater than a maximum network traffic data threshold of the macro base station, and whether the power consumption of the macro base station is greater than the macro base, after all the optional to-be-sleepy base stations in the cell to be optimized are dormant a maximum power consumption threshold of the station, until the amount of network traffic data of the macro base station is less than or equal to a maximum network traffic data threshold of the macro base station, and the power consumption of the macro base station is less than or equal to
  • the mechanism for selecting the to-be-sleeped base station and the base station to be awakened by the processing module 21 is described in detail below with reference to a specific embodiment.
  • the cell to be optimized in the macro base station includes N low-power base stations, and the initial network energy efficiency value of the to-be-optimized cell is:
  • EE usual represents the initial network energy efficiency of the cell to be optimized
  • C 0 represents the initial network traffic data amount of the macro base station
  • P 0 represents the initial power consumption of the macro base station
  • C i represents the initial network traffic data amount of the i-th low power base station.
  • P i represents the initial power consumption of the ith low power base station.
  • the processing module 21 is specifically configured to calculate, by using the following formula, the first network energy efficiency of the cell to be optimized corresponding to each low-power base station in the working state after the sleep of each low-power base station in the working state in the cell to be optimized :
  • EE sleep_j indicates that after the jth low-power base station in the working state is dormant, the first network of the cell to be optimized is energy-efficient.
  • Indicates the amount of network traffic data of the macro base station after the jth low-power base station in the working state is dormant Indicates the power consumption of the macro base station after the jth low-power base station in the working state is dormant
  • Indicates the power consumption of the i-th low-power base station after the jth low-power base station in operation is dormant.
  • the processing module 21 is specifically configured to sequentially estimate, after the wake-up of each low-power base station in the dormant state in the cell to be optimized, the to-be-optimized corresponding to each low-power base station in the awake state.
  • EE wakeup_j indicates that the second network of the cell to be optimized is energy-efficient after waking up the jth low-power base station in a dormant state, Indicates the amount of network traffic data of the macro base station after waking up the jth low-power base station in a dormant state, Representing the power consumption of the macro base station after waking up the jth low-power base station in a dormant state, Indicates the amount of network traffic data of the i-th low-power base station after waking up the jth sleepy low-power base station, Indicates the power consumption of the i-th low-power base station after waking up the jth low-power base station in a dormant state.
  • the size of EE usual and EE sleep_j may be sequentially determined. If EE sleep_j > EE usual , it means that the first network energy efficiency corresponding to the jth low-power base station in working state It is greater than the initial network energy efficiency. At this time, the jth low-power base station in the working state is set as an optional to-be-sleep base station.
  • EE sleep_j ⁇ EE usual it means that the energy efficiency of the first network corresponding to the jth working low-power base station is less than or equal to the initial network energy efficiency, and the j-th low-power base station sleeping in the working state does not make the network
  • the j-th low-power base station in the working state is set as the sleep-free base station.
  • the maximum power consumption threshold of the macro base station For the maximum network traffic data threshold of the macro base station, for the cell to be optimized, it is determined whether the network traffic data of the macro base station is greater than after all the optional standby dormant base stations are dormant.
  • the method for determining whether the network service data of all optional to-be-sleepy base stations in the cell to be optimized is greater than For the remaining network service data capacity of the macro base station, the sum of the network service data amounts of all the optional standby dormant base stations in the cell is greater than After all the optional dormant base stations are dormant, the amount of network service data of the macro base station will be greater than If one of the above two determinations is true, it means that the macro base station cannot bear the amount of network service data of all the optional dormant base stations, and the macro base station needs to list the optional to-be-sleep base station with the smallest EE sleep_j as sleep-free.
  • the base station then makes the above judgment again.
  • the amount of network service data of the macro base station is less than or equal to
  • the power consumption of the macro base station is less than or equal
  • the optional dormant base station at this time is the dormant base station to determine sleep.
  • the size of EE usual and EE wakeup_j may be sequentially determined. If EE wakeup_j > EE usual , it means that the second network energy efficiency corresponding to the jth sleepy low-power base station More than the initial network energy efficiency, the jth sleepy low power base station is set as an optional base station to be woken up. If EE wakeup_j ⁇ EE usual , it means that the energy efficiency of the second network corresponding to the jth sleepy low-power base station is less than or equal to the initial network energy efficiency. At this time, waking up the jth low-power base station in the dormant state will not cause the network.
  • the j-th sleepy low-power base station is set as the banned wake-up base station.
  • all the low-power base stations in the dormant state in the cell to be optimized perform the foregoing determination, all the optional to-be-awaken base stations in the cell to be optimized are obtained.
  • it is determined whether the amount of network service data of the macro base station is less than or equal to 0 after waking up all the optional to-be-awaken base stations, and whether the reduced power consumption of the macro base station is less than or equal to that consumed by all optional wake-up base stations after waking up. power.
  • the macro base station cannot wake up all the optional wake-up base stations, and the macro base station needs to list the optional wake-up base station with the smallest EE wakeup_j as the forbidden wake-up base station, and then again Make the above judgment.
  • the amount of network service data of the macro base station is greater than zero, and the power consumption reduced by the macro base station is greater than the power consumed by all optional wake-up base stations after wake-up.
  • the optional to-be-awaken base station at this time is the base station to be woken up to determine the wake-up.
  • FIG. 3 is a flowchart of Embodiment 1 of a network energy efficiency optimization method according to an embodiment of the present invention. As shown in FIG. 3, the method in this embodiment includes:
  • Step S301 The macro base station determines an initial network energy efficiency of the cell to be optimized, where the cell to be optimized includes at least one cell served by the macro base station.
  • the network energy efficiency optimization method provided in this embodiment is applied to any heterogeneous network and is executed by a macro base station in the network.
  • the optimization of the network energy efficiency also needs to be based on the cell, according to the network service data quantity and power consumption of all base stations in a cell. Optimize network energy efficiency so that network energy efficiency optimization of the entire network can be achieved.
  • the macro base station In order to optimize the network energy efficiency of the cell to be optimized, the macro base station first needs to determine the initial network energy efficiency of the cell to be optimized.
  • the cell to be optimized may be at least one cell served by the macro base station, and the macro base station may perform network energy efficiency optimization only for one cell served, or may perform network energy efficiency optimization for all cells served at the same time.
  • the network energy efficiency optimization device Before optimizing the network energy efficiency of the optimized cell, the network energy efficiency optimization device needs to determine an optimization basis. Therefore, the macro base station needs to determine the initial network energy efficiency of the cell to be optimized, and the initial network energy efficiency of the cell to be optimized is the network when the network energy efficiency is not optimized. efficiency.
  • the macro base station can determine the initial network energy efficiency of the cell to be optimized by any method, for example, by measuring the amount of network service data of each of the low-power base stations in the macro base station and the to-be-optimized cell, and the power consumption to determine the initial network energy efficiency of the cell to be optimized.
  • Another optional method is: the macro base station can receive the network service data quantity and power consumption sent by each low-power base station in the cell to be optimized, and then the macro base station acquires the network service data quantity and power consumption of the macro base station, so that the macro base The station can determine the initial network energy efficiency of the cell to be optimized.
  • Step S302 the macro base station sequentially calculates, after each low-power base station in the working state in the cell to be optimized is dormant, the cell to be optimized corresponding to each low-power base station in the working state.
  • the first network is energy efficient.
  • Step S303 the macro base station sequentially estimates, after waking up each low-power base station in the dormant state in the to-be-optimized cell, the to-be-optimized cell corresponding to each low-power base station in the dormant state.
  • the second network is energy efficient.
  • the macro base station and other cells in the cell to be optimized The amount of network data and the power consumption in the low-power base station may change. Therefore, the macro base station needs to sequentially calculate, after each of the low-power base stations in the working state, sleeps, and each of the working states.
  • the second network of the cell to be optimized corresponding to each low power base station is energy efficient.
  • Step S304 the macro base station determines the to-be-sleeped base station and the to-be-awakened base station in the to-be-optimized cell, where the first network energy efficiency corresponding to the to-be-sleepy base station is greater than the initial network energy efficiency, and the to-be-awakened base station corresponds to the second
  • the network energy efficiency is greater than the initial network energy efficiency, and when the to-be-sleeping base station is dormant and the to-be-awakened base station wakes up, the macro network station's network service data quantity is greater than zero and less than the maximum network service data quantity threshold of the macro base station.
  • the power consumption of the macro base station is less than or equal to a maximum power consumption threshold of the macro base station.
  • the network energy efficiency of the entire cell to be optimized that is, the first network energy efficiency And the second network energy efficiency.
  • the macro base station determines, according to the relationship between the first network energy efficiency, the second network energy efficiency and the initial network energy efficiency, the dormant base station to be dormant and the to-be-awaken base station that needs to be woken up, when the low-power base station corresponds to the first network energy efficiency or the second network energy efficiency
  • the energy efficiency of the initial network is greater than that of the initial network, it means that the network energy efficiency of the cell to be optimized will be improved after the low power base station is dormant or awake.
  • the low power base station is a low power base station that can be to sleep or to be awakened.
  • the macro base station needs to determine when Whether the amount of network service data of the macro base station is greater than zero and less than the maximum network traffic data threshold of the macro base station, and whether the power consumption of the macro base station is less than or equal to the maximum power consumption threshold of the macro base station, after the dormant base station sleeps and wakes up the base station to wake up.
  • the network traffic data of the low-power base station is concentrated in the macro base station, but the macro base station has the largest network service data volume threshold, and the service data acer base exceeding the threshold The station cannot process; after the low-power base station in the dormant state wakes up, the macro base station will offload part of the service data to the low-power base station, but since the macro base station provides large-scale coverage of the network, the macro base station cannot sleep. Therefore, the amount of network traffic data of the macro base station cannot be completely transmitted to the low power base station. In summary, the amount of network traffic data of the macro base station needs to be greater than zero and smaller than the maximum of the macro base station. Network traffic data volume threshold.
  • the network traffic data amount of the low-power base station will be concentrated in the macro base station, and the macro base station processing the network traffic data transferred by the low-power base station will generate additional power consumption. The sum of these power consumptions and the current output power consumption of the macro base station should not exceed the maximum power consumption threshold of the macro base station.
  • the to-be-sleepy base station and the to-be-awakened base station selected by the processing module 21 need to simultaneously satisfy the first network energy efficiency corresponding to the to-be-sleeped base station, which is greater than the initial network energy efficiency, and the second network corresponding to the wake-up base station is more energy efficient than the initial network energy efficiency;
  • the network service data volume of the macro base station is greater than zero and less than the maximum network service data volume threshold of the macro base station, and the power consumption of the macro base station is less than or equal to the maximum power consumption threshold of the macro base station.
  • the selected low-power base station in the working state can be regarded as the to-be-sleepy base station, and the low-power base station in the dormant state is used as the base station to be woken up.
  • the amount of network traffic data and power consumption that can be processed by the low-power base station in the dormant state can only be the macro base station according to the low-power base station.
  • the maximum available radio resources and output power are calculated, but the actual network traffic data processed by the low power base station after waking up and the actual power consumption may not be equal to that calculated by the macro station. Therefore, the macro base station can only estimate the second network energy efficiency of the cell to be optimized corresponding to each low power base station in the dormant state after waking up the low power base station in the dormant state, and correspondingly the network service of the macro base station. Data volume and power consumption.
  • Step S305 the macro base station notifies the sleeping base station to sleep, and the to-be-awaken base station wakes up.
  • the macro base station needs to send a notification message to the to-be-awakened base station of the determined to-be-sleeping base station, to notify the sleeping base station to sleep, and to wake up the base station to wake up.
  • the energy efficiency of the second network corresponding to the to-be-awaken base station is greater than the initial network energy efficiency, and the base station to be awake base station is more energy efficient than the initial network energy efficiency, and therefore the sleepy base station sleeps and is to be awakened. After the base station wakes up, the network performance of the cell to be optimized will be greater than the initial network performance, and finally the optimization of the cell to be optimized is achieved.
  • the network energy efficiency optimization method determines the initial network energy efficiency of the cell to be optimized, and sequentially calculates, after the sleep of each low-power base station in the working state of the cell to be optimized, Corresponding to the first network energy efficiency of the cell to be optimized corresponding to each low-power base station; and sequentially estimating, after waking up each low-power base station in the dormant state in the cell to be optimized, The cell to be optimized corresponding to a low power base station The second network energy efficiency, and finally determining the to-be-sleeped base station and the to-be-awakened base station in the to-be-optimized cell, the first network energy efficiency corresponding to the to-be-sleepy base station is greater than the initial network energy efficiency, and the to-be-awaken base station corresponds to the second The network energy efficiency is greater than the initial network energy efficiency, and when the to-be-sleeping base station is dormant and the to-be-awakened base station wakes up, the macro
  • the power consumption of the macro base station is less than or equal to the maximum power consumption threshold of the macro base station, and finally, the to-be-sleepy base station is notified to sleep, and the to-be-awakened base station wakes up, thereby improving network energy efficiency of the to-be-optimized cell, and implementing the cell as Granular network energy efficiency optimization.
  • FIG. 4 is a flowchart of Embodiment 2 of a network energy efficiency optimization method according to an embodiment of the present invention. As shown in FIG. 4, the method in this embodiment includes:
  • Step S401 The macro base station receives the amount of network service data and power consumption sent by each low-power base station in the cell to be optimized.
  • Step S402 the macro base station determines, according to the network service data quantity and power consumption of the macro base station, and the network service data quantity and power consumption sent by each low-power base station in the to-be-optimized cell, the initial network energy efficiency of the to-be-optimized cell. .
  • Step S403 the macro base station sequentially calculates, after each low-power base station in the working state in the cell to be optimized is dormant, the cell to be optimized corresponding to each low-power base station in the working state.
  • the first network is energy efficient.
  • Step S404 the macro base station sequentially estimates, after waking up each low-power base station in the dormant state in the to-be-optimized cell, the to-optimized cell corresponding to each low-power base station in the dormant state.
  • the second network is energy efficient.
  • Step S405 The macro base station uses, as the optional to-be-sleep base station in the to-be-optimized cell, the corresponding low-power base station whose first network energy efficiency is greater than the energy efficiency of the initial network.
  • Step S406 The macro base station uses, as the optional to-be-awaken base station in the to-be-optimized cell, the low-power base station in which the corresponding second network energy efficiency is greater than the initial network energy efficiency.
  • Step S407 the macro base station calculates whether the amount of network service data of the macro base station is greater than a threshold value of a maximum network service data volume of the macro base station after all the optional to-be-sleep base stations in the to-be-optimized cell are dormant, and Whether the power consumption of the macro base station is greater than the maximum power consumption threshold of the macro base station.
  • Step S408 the macro base station estimates whether the network traffic data quantity of the macro base station is less than or equal to zero after waking up all the optional to-be-awake base stations in the to-be-optimized cell, and whether the reduced power consumption of the macro base station is less than or equal to The power consumed by all optional wake-up base stations after waking up.
  • Step S409 the macro base station sets the optional to-be-sleep base station with the lowest energy efficiency of the corresponding first network in the to-be-optimized cell as the dormant base station.
  • Step S410 The macro base station sets an optional to-be-awake base station with the lowest energy efficiency of the corresponding second network in the to-be-optimized cell as the forbidden wake-up base station.
  • Step S411 when the amount of network service data of the macro base station is less than or equal to the maximum network traffic data threshold of the macro base station, and the power consumption of the macro base station is less than or equal to the maximum power consumption of the macro base station, the macro base station will The remaining optional dormant base stations are used as the to-be-sleep base station.
  • Step S412 when the amount of network service data of the macro base station is greater than zero, and the power consumption reduced by the macro base station is greater than the power consumed by all optional wake-up base stations after wake-up, the macro base station will wake up the remaining optional to wake up.
  • the base station serves as the base station to be woken up.
  • Step S413 the macro base station notifies the sleeping base station to sleep, and the to-be-awaken base station wakes up.
  • the macro base station sequentially calculates, after the sleep of each low-power base station in the working state of the cell to be optimized, and the working state.
  • the first network energy efficiency of the cell to be optimized corresponding to each low-power base station includes:
  • the macro base station sequentially calculates, after the sleep of each low-power base station in the working state in the cell to be optimized, the to-be-optimized cell corresponding to each low-power base station in the working state.
  • the cell to be optimized includes N low-power base stations, and EE sleep_j indicates that after the j-th low-power base station in the working state is dormant, the first network of the cell to be optimized is energy-efficient.
  • Indicates the amount of network traffic data of the macro base station after the jth low-power base station in the working state is dormant
  • Indicates the power consumption of the macro base station after the jth low-power base station in the working state is dormant
  • Indicates the amount of network traffic data of the i-th low-power base station after the jth low-power base station in operation is asleep
  • Indicates the power consumption of the i-th low-power base station after the jth low-power base station in operation is dormant.
  • the macro base station in step S303 or step S404 sequentially estimates that each low-power base station in the dormant state in the cell to be optimized wakes up, and is in sleep.
  • a second network of the cell to be optimized corresponding to each low power base station of the state Energy efficiency including:
  • the macro base station sequentially estimates, after waking up each low-power base station in the dormant state in the to-be-optimized cell, the to-be-optimized cell corresponding to each low-power base station in the awake state.
  • Second network energy efficiency Second network energy efficiency:
  • the cell to be optimized includes N low-power base stations, and the EE wakeup_j indicates that after the jth low-power base station in the dormant state wakes up, the second network of the cell to be optimized is energy-efficient.
  • Indicates the amount of network traffic data of the macro base station after waking up the jth low-power base station in a dormant state Representing the power consumption of the macro base station after waking up the jth low-power base station in a dormant state, Indicates the amount of network traffic data of the i-th low-power base station after waking up the jth sleepy low-power base station, Indicates the power consumption of the i-th low-power base station after waking up the jth low-power base station in a dormant state.
  • the sending module 22 in the embodiment of the present invention may correspond to the transmitter of the macro base station, and may also correspond to the transceiver of the macro base station.
  • the receiving module 23 may correspond to a receiver of the macro base station, or may correspond to a transceiver of the macro base station.
  • the processing module 21 may correspond to a processor of the macro base station, where the processor may be a central processing unit (CPU), or an application specific integrated circuit (ASIC), or implement an embodiment of the present invention. One or more integrated circuits.
  • the macro base station may further include a memory for storing the instruction code, and the processor calls the instruction code of the memory to control the processing module 21, the transmitting module 22, and the receiving module 23 in the embodiment of the present invention to perform the above operations.
  • the aforementioned program can be stored in a computer readable storage medium.
  • the program when executed, performs the steps including the foregoing method embodiments; and the foregoing storage medium includes various media that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.

Abstract

本发明提供一种网络效能优化方法和装置,该方法包括以下步骤:宏基站确定待优化小区的初始网络能效;宏基站依次计算将待优化的小区中处于工作状态的每一低功率基站休眠后,与处于工作状态的每一低功率基站对应的待优化的小区的第一网络能效(S302);宏基站依次估算将待优化的小区中处于休眠状态的每一低功率基站唤醒后,与处于休眠状态的每一低功率基站对应的待优化的小区的第二网络能效(S303);宏基站确定待优化小区中的待休眠基站和待唤醒基站,待休眠基站对应的第一网络能效大于初始网络能效,待唤醒基站对应的第二网络能效大于初始网络能效;宏基站通知带休眠基站休眠、待唤醒基站唤醒。

Description

网络能效优化方法和装置 技术领域
本发明实施例涉及无线通信技术领域,尤其涉及一种网络能效优化方法和装置。
背景技术
随着移动通信进入第四代(4Generation,4G)发展时代,蜂窝网络引入了更有效的增加系统容量和改善覆盖深度的异构网络(Heterogeneous Network,HetNet)。在HetNet架构中,宏基站和低功率基站(如微基站(Pico基站))共存于网络中。其中宏基站用于大范围覆盖,低功率基站用于增加系统容量以及改善小范围的覆盖。
在HetNet构架中,低功率基站的出现,能够有效满足热点区域宽带数据业务的需求,不仅提高了频谱效率,还可增加小区容量,实现整个网络能效的提升。虽然低功率基站的引入可有效解决热点地区的容量需求问题,但同时也带来了新的问题。大量研究表明,热点地区具有明显的潮汐效应。比如,白天上班期间,住宅区的业务量很小,而商业区的通信业务量很大;晚上下班以后,情况正好相反。由于低功率基站的部署都是按照峰值业务量来规划的,这就导致了很多小区的峰值容量没有得到充分利用,因此,在某些小区业务量很低甚至完全为零的场景下,可以通过关闭低功率基站来减少其能耗,从而提高整个网络的能效。
目前的HetNet架构中,根据低功率基站的业务负载来确定低功率基站的休眠与唤醒策略。例如,当某个Pico基站的覆盖区域内没有用户或者用户业务负载小于设定的某一门限值时,可让该Pico基站进入休眠状态;一旦该休眠的Pico基站覆盖范围内出现用户或用户业务负载大于该门限值,则立刻唤醒该Pico基站进入工作状态。
但是,根据低功率基站的业务负载来控制低功率基站的休眠与唤醒,仅能控制该低功率基站的功耗。而网络的总能效是根据网络中所有基站的网络业务数据量之和以及所有基站的功耗之和确定的,根据业务负载在控制低功 率基站的休眠与唤醒,无法保证提高整个网络的能效。
发明内容
本发明实施例提供一种网络能效优化方法和装置,用于提高网络能效优化性能。
第一方面提供一种网络能效优化装置,包括:
处理模块,用于确定待优化的小区的初始网络能效,所述待优化的小区包括宏基站服务的至少一个小区;依次计算将所述待优化的小区中处于工作状态的每一低功率基站休眠后,与所述处于工作状态的每一低功率基站对应的所述待优化的小区的第一网络能效;依次估算将所述待优化的小区中处于休眠状态的每一低功率基站唤醒后,与所述处于休眠状态的每一低功率基站对应的所述待优化的小区的第二网络能效;确定所述待优化小区中的待休眠基站和待唤醒基站,所述待休眠基站对应的第一网络能效大于所述初始网络能效,所述待唤醒基站对应的第二网络能效大于所述初始网络能效,并且当所述待休眠基站休眠、所述待唤醒基站唤醒后,所述宏基站的网络业务数据量大于零并小于所述宏基站的最大网络业务数据量阈值、所述宏基站的功耗小于等于所述宏基站的最大功耗阈值;
发送模块,用于通知所述待休眠基站休眠、所述待唤醒基站唤醒。
结合第一方面,在第一方面第一种可能的实现方式中,所述网络能效优化装置还包括:
接收模块,用于接收所述待优化的小区中各低功率基站发送的网络业务数据量和功耗;
所述处理模块,具体用于根据所述宏基站的网络业务数据量和功耗以及所述待优化小区中各低功率基站发送的网络业务数据量和功耗确定所述待优化小区的初始网络能效。
结合第一方面或第一方面第一种可能的实现方式,在第一方面第二种可能的实现方式中,所述处理模块还用于在确定所述待优化小区中的待休眠基站和待唤醒基站之前,将对应的第一网络能效大于所述初始网络能效的处于工作状态的低功率基站作为所述待优化小区中的可选待休眠基站;将对应的第二网络能效大于所述初始网络能效的处于休眠状态的低功率基站作为所述 待优化小区中的可选待唤醒基站;从所述待优化小区中的可选待休眠基站中选择所述待优化小区中的待休眠基站,所述宏基站从所述待优化小区中的可选待唤醒基站中选择所述待优化小区中的待唤醒基站,当所述待休眠基站休眠、所述待唤醒基站唤醒后,所述宏基站的网络业务数据量大于零并小于等于所述宏基站的最大网络业务数据量阈值、所述宏基站的功耗小于等于所述宏基站的最大功耗阈值。
结合第一方面第二种可能的实现方式,在第一方面第三种可能的实现方式中,所述处理模块,具体用于计算将所述待优化小区中的所有可选待休眠基站休眠后,所述宏基站的网络业务数据量是否大于所述宏基站的最大网络业务数据量阈值,以及所述宏基站的功耗是否大于所述宏基站的最大功耗阈值,若是则所述宏基站将所述待优化小区中对应的第一网络能效最低的可选待休眠基站设为禁休眠基站后,继续计算将所述待优化小区中的所有可选待休眠基站休眠后,所述宏基站的网络业务数据量是否大于所述宏基站的最大网络业务数据量阈值,以及所述宏基站的功耗是否大于所述宏基站的最大功耗阈值,直到所述宏基站的网络业务数据量小于等于所述宏基站的最大网络业务数据量阈值,以及所述宏基站的功耗小于等于所述宏基站的最大功耗;将剩余的可选待休眠基站作为所述待休眠基站;估算将所述待优化小区中的所有可选待唤醒基站唤醒后,所述宏基站的网络业务数据量是否小于等于零,以及所述宏基站减少的功耗是否小于等于所有可选待唤醒基站唤醒后消耗的功率,若是则所述宏基站将所述待优化小区中对应的第二网络能效最低的可选待唤醒基站设为禁唤醒基站后,继续估算将所述待优化小区中的所有可选待唤醒基站唤醒后,所述宏基站的网络业务数据量是否小于等于零,以及所述宏基站减少的功耗是否小于等于所有可选待唤醒基站唤醒后消耗的功率,直到所述宏基站的网络业务数据量大于零,以及所述宏基站减少的功耗大于所有可选待唤醒基站唤醒后消耗的功率;将剩余的可选待唤醒基站作为所述待唤醒基站。
结合第一方面至第一方面第三种可能的实现方式中任一种可能的实现方式,在第一方面第四种可能的实现方式中,所述处理模块具体用于通过如下公式依次计算将所述待优化的小区中处于工作状态的每一低功率基站休眠后,与所述处于工作状态的每一低功率基站对应的所述待优化的小区的第一 网络能效:
Figure PCTCN2014094530-appb-000001
其中设所述待优化的小区中包括N个低功率基站,EEsleep_j表示将第j个处于工作状态的低功率基站休眠后,所述待优化的小区的第一网络能效,
Figure PCTCN2014094530-appb-000002
表示将第j个处于工作状态的低功率基站休眠后宏基站的网络业务数据量,
Figure PCTCN2014094530-appb-000003
表示将第j个处于工作状态的低功率基站休眠后宏基站的功耗,
Figure PCTCN2014094530-appb-000004
表示将第j个处于工作状态的低功率基站休眠后第i个低功率基站的网络业务数据量,
Figure PCTCN2014094530-appb-000005
表示将第j个处于工作状态的低功率基站休眠后第i个低功率基站的功耗。
结合第一方面至第一方面第三种可能的实现方式中任一种可能的实现方式,在第一方面第五种可能的实现方式中,所述处理模块,具体用于通过如下公式依次估算将所述待优化的小区中处于休眠状态的每一低功率基站唤醒后,与所述处于唤醒状态的每一低功率基站对应的所述待优化的小区的第二网络能效:
Figure PCTCN2014094530-appb-000006
其中设所述待优化的小区中包括N个低功率基站,EEwakeup_j表示将第j个处于休眠状态的低功率基站唤醒后,所述待优化的小区的第二网络能效,
Figure PCTCN2014094530-appb-000007
表示将第j个处于休眠状态的低功率基站唤醒后宏基站的网络业务数据量,
Figure PCTCN2014094530-appb-000008
表示将第j个处于休眠状态的低功率基站唤醒后宏基站的功耗,
Figure PCTCN2014094530-appb-000009
表示将第j个处于休眠状态的低功率基站唤醒后第i个低功率基站的网络业务数据量,
Figure PCTCN2014094530-appb-000010
表示将第j个处于休眠状态的低功率基站唤醒后第i个低功率基站的功耗。
第二方面提供一种网络能效优化方法,包括:
宏基站确定待优化的小区的初始网络能效,所述待优化的小区包括所述宏基站服务的至少一个小区;
所述宏基站依次计算将所述待优化的小区中处于工作状态的每一低功率基站休眠后,与所述处于工作状态的每一低功率基站对应的所述待优化的小 区的第一网络能效;
所述宏基站依次估算将所述待优化的小区中处于休眠状态的每一低功率基站唤醒后,与所述处于休眠状态的每一低功率基站对应的所述待优化的小区的第二网络能效;
所述宏基站确定所述待优化小区中的待休眠基站和待唤醒基站,所述待休眠基站对应的第一网络能效大于所述初始网络能效,所述待唤醒基站对应的第二网络能效大于所述初始网络能效,并且当所述待休眠基站休眠、所述待唤醒基站唤醒后,所述宏基站的网络网络业务数据量大于零并小于所述宏基站的最大网络网络业务数据量阈值、所述宏基站的功耗小于等于所述宏基站的最大功耗阈值;
所述宏基站通知所述待休眠基站休眠、所述待唤醒基站唤醒。
结合第二方面,在第二方面第一种可能的实现方式中,所述宏基站确定待优化的小区的初始网络能效,包括:
所述宏基站接收所述待优化的小区中各低功率基站发送的网络网络业务数据量和功耗;
所述宏基站根据所述宏基站的网络网络业务数据量和功耗以及所述待优化小区中各低功率基站发送的网络网络业务数据量和功耗确定所述待优化小区的初始网络能效。
结合第二方面或第二方面第一种可能的实现方式,在第二方面第二种可能的实现方式中,所述宏基站确定所述待优化小区中的待休眠基站和待唤醒基站之前,还包括:
所述宏基站将对应的第一网络能效大于所述初始网络能效的处于工作状态的低功率基站作为所述待优化小区中的可选待休眠基站;
所述宏基站将对应的第二网络能效大于所述初始网络能效的处于休眠状态的低功率基站作为所述待优化小区中的可选待唤醒基站;
所述宏基站确定所述待优化小区中的待休眠基站和待唤醒基站,包括:
所述宏基站从所述待优化小区中的可选待休眠基站中选择所述待优化小区中的待休眠基站,所述宏基站从所述待优化小区中的可选待唤醒基站中选择所述待优化小区中的待唤醒基站,当所述待休眠基站休眠、所述待唤醒基站唤醒后,所述宏基站的网络网络业务数据量大于零并小于等于所述宏基站 的最大网络网络业务数据量阈值、所述宏基站的功耗小于等于所述宏基站的最大功耗阈值。
结合第二方面第二种可能的实现方式,在第二方面第三种可能的实现方式中,所述宏基站从所述待优化小区中的可选待休眠基站中选择所述待优化小区中的待休眠基站,包括:
所述宏基站计算将所述待优化小区中的所有可选待休眠基站休眠后,所述宏基站的网络网络业务数据量是否大于所述宏基站的最大网络网络业务数据量阈值,以及所述宏基站的功耗是否大于所述宏基站的最大功耗阈值,若是则所述宏基站将所述待优化小区中对应的第一网络能效最低的可选待休眠基站设为禁休眠基站后,继续计算将所述待优化小区中的所有可选待休眠基站休眠后,所述宏基站的网络网络业务数据量是否大于所述宏基站的最大网络网络业务数据量阈值,以及所述宏基站的功耗是否大于所述宏基站的最大功耗阈值,直到所述宏基站的网络网络业务数据量小于等于所述宏基站的最大网络网络业务数据量阈值,以及所述宏基站的功耗小于等于所述宏基站的最大功耗;
所述宏基站将剩余的可选待休眠基站作为所述待休眠基站;
所述宏基站从所述待优化小区中的可选待唤醒基站中选择所述待优化小区中的待唤醒基站,包括:
所述宏基站估算将所述待优化小区中的所有可选待唤醒基站唤醒后,所述宏基站的网络网络业务数据量是否小于等于零,以及所述宏基站减少的功耗是否小于等于所有可选待唤醒基站唤醒后消耗的功率,若是则所述宏基站将所述待优化小区中对应的第二网络能效最低的可选待唤醒基站设为禁唤醒基站后,继续估算将所述待优化小区中的所有可选待唤醒基站唤醒后,所述宏基站的网络网络业务数据量是否小于等于零,以及所述宏基站减少的功耗是否小于等于所有可选待唤醒基站唤醒后消耗的功率,直到所述宏基站的网络网络业务数据量大于零,以及所述宏基站减少的功耗大于所有可选待唤醒基站唤醒后消耗的功率;
所述宏基站将剩余的可选待唤醒基站作为所述待唤醒基站。
结合第二方面至第二方面第三种可能的实现方式中任一种可能的实现方式,在第二方面第四种可能的实现方式中,所述宏基站依次计算将所述待优 化的小区中处于工作状态的每一低功率基站休眠后,与所述处于工作状态的每一低功率基站对应的所述待优化的小区的第一网络能效,包括:
所述宏基站通过如下公式依次计算将所述待优化的小区中处于工作状态的每一低功率基站休眠后,与所述处于工作状态的每一低功率基站对应的所述待优化的小区的第一网络能效:
Figure PCTCN2014094530-appb-000011
其中设所述待优化的小区中包括N个低功率基站,EEsleep_j表示将第j个处于工作状态的低功率基站休眠后,所述待优化的小区的第一网络能效,
Figure PCTCN2014094530-appb-000012
表示将第j个处于工作状态的低功率基站休眠后宏基站的网络网络业务数据量,
Figure PCTCN2014094530-appb-000013
表示将第j个处于工作状态的低功率基站休眠后宏基站的功耗,
Figure PCTCN2014094530-appb-000014
表示将第j个处于工作状态的低功率基站休眠后第i个低功率基站的网络网络业务数据量,
Figure PCTCN2014094530-appb-000015
表示将第j个处于工作状态的低功率基站休眠后第i个低功率基站的功耗。
结合第二方面至第二方面第三种可能的实现方式中任一种可能的实现方式,在第二方面第五种可能的实现方式中,所述宏基站依次估算将所述待优化的小区中处于休眠状态的每一低功率基站唤醒后,与所述处于休眠状态的每一低功率基站对应的所述待优化的小区的第二网络能效,包括:
所述宏基站通过如下公式依次估算将所述待优化的小区中处于休眠状态的每一低功率基站唤醒后,与所述处于唤醒状态的每一低功率基站对应的所述待优化的小区的第二网络能效:
Figure PCTCN2014094530-appb-000016
其中设所述待优化的小区中包括N个低功率基站,EEwakeup_j表示将第j个处于休眠状态的低功率基站唤醒后,所述待优化的小区的第二网络能效,
Figure PCTCN2014094530-appb-000017
表示将第j个处于休眠状态的低功率基站唤醒后宏基站的网络网络业务数据量,
Figure PCTCN2014094530-appb-000018
表示将第j个处于休眠状态的低功率基站唤醒后宏基站的功耗,
Figure PCTCN2014094530-appb-000019
表示将第j个处于休眠状态的低功率基站唤醒后第i个低功率基站的网络网络业 务数据量,
Figure PCTCN2014094530-appb-000020
表示将第j个处于休眠状态的低功率基站唤醒后第i个低功率基站的功耗。
本实施例提供的网络能效优化方法和装置,通过确定待优化的小区的初始网络能效,并依次计算将所述待优化的小区中处于工作状态的每一低功率基站休眠后,与所述处于工作状态的每一低功率基站对应的所述待优化的小区的第一网络能效;依次估算将所述待优化的小区中处于休眠状态的每一低功率基站唤醒后,与所述处于休眠状态的每一低功率基站对应的所述待优化的小区的第二网络能效,最后确定所述待优化小区中的待休眠基站和待唤醒基站,所述待休眠基站对应的第一网络能效大于所述初始网络能效,所述待唤醒基站对应的第二网络能效大于所述初始网络能效,并且当所述待休眠基站休眠、所述待唤醒基站唤醒后,所述宏基站的网络业务数据量大于零并小于所述宏基站的最大网络业务数据量阈值、所述宏基站的功耗小于等于所述宏基站的最大功耗阈值,最终通知所述待休眠基站休眠、所述待唤醒基站唤醒,从而提高待优化小区的网络能效,实现了以小区为粒度的网络能效优化。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为异构网架构示意图;
图2为本发明实施例提供的网络能效优化装置实施例一的结构示意图;
图3为本发明实施例提供的网络能效优化方法实施例一的流程图;
图4为本发明实施例提供的网络能效优化方法实施例二的流程图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获 得的所有其他实施例,都属于本发明保护的范围。
在HetNet架构的网络中,存在至少两种形式的基站,可以将其分类为宏基站和低功率基站,其中宏基站提供大范围的覆盖,低功率基站在宏基站的覆盖范围中增加系统容量并改善小范围的覆盖。低功率基站可以设置在用户集中的热点地区,由低功率基站分流热点地区中部分用户的业务流量,从而增加小区容量。当热点地区中的用户减少时,则可以关闭热点地区的低功率基站,使其处于休眠状态时,可以将用户的业务流量集中到宏基站中处理,从而节约能耗。
图1为异构网架构示意图,如图1所示,宏基站11覆盖区域12,在区域12中设置有低功率基站13和低功率基站14,低功率基站13覆盖区域15,低功率基站14覆盖区域16。当宏基站11和低功率基站13处于工作状态、低功率基站14处于休眠状态时,根据低功率基站13的能力,区域15中的部分用户通过低功率基站13接入网络并传输业务数据,区域12中的其他所有用户通过宏基站11接入网络并传输业务数据。当低功率基站13中接入的用户过少或网络业务数据量过少时,宏基站11将通知低功率基站13从工作状态休眠,接入低功率基站13的用户将切换至宏基站11中并继续通过宏基站11传输业务数据,从而减少低功率基站13的功耗;当区域16中的用户数量过多或网络业务数据量过多时,宏基站11将通知低功率基站14从休眠状态唤醒,区域16中的部分用户将切换至低功率基站14中并继续通过低功率基站14传输业务数据。
网络能效是判断网络优化效果的重要指标,网络能效等于网络业务数据量与网络能耗的比值。在图1所示的异构网架构中,仅根据低功率基站覆盖区域的业务负载来控制低功率基站的休眠与唤醒,仅能控制低功率基站的功耗。但宏基站和低功率基站处理相同业务流量所需的功耗可能是不同的,也就是说,低功率基站休眠后,将业务数据流量集中到宏基站中后,虽然低功率基站的功耗降低了,但宏基站的功耗会增加,并且宏基站的功耗增加量可能高于低功率基站降低的功耗。反过来说,低功率基站唤醒后,将宏基站的业务数据流量分流到低功率基站中后,虽然宏基站的功耗降低了,但低功率基站的功耗会增加,并且低功率基站的功耗增加量可能高于宏基站降低的功耗。因此,仅根据低功率基站覆盖区域的业务负载来控制低功率基站的休眠 与唤醒,无法保证提高整个网络的能效。
因此,本发明提供一种网络能效优化方法和装置,用于以小区为粒度,提高整个网络的能效。
需要说明的是,本发明下述各实施例中的宏基站可以为任一种无线通信系统中的宏基站,低功率基站也可以为任一种无线通信系统中的低功率基站,只要在宏基站的覆盖范围内包括至少一个低功率基站,低功率基站可以在宏基站的控制下为宏基站分流业务数据流量,并且在宏基站的控制下实现休眠和唤醒。
图2为本发明实施例提供的网络能效优化装置实施例一的结构示意图,如图2所示,本实施例的网络能效优化装置包括:
处理模块21,用于确定待优化的小区的初始网络能效,所述待优化的小区包括宏基站服务的至少一个小区;依次计算将所述待优化的小区中处于工作状态的每一低功率基站休眠后,与所述处于工作状态的每一低功率基站对应的所述待优化的小区的第一网络能效;依次估算将所述待优化的小区中处于休眠状态的每一低功率基站唤醒后,与所述处于休眠状态的每一低功率基站对应的所述待优化的小区的第二网络能效;确定所述待优化小区中的待休眠基站和待唤醒基站,所述待休眠基站对应的第一网络能效大于所述初始网络能效,所述待唤醒基站对应的第二网络能效大于所述初始网络能效,并且当所述待休眠基站休眠、所述待唤醒基站唤醒后,所述宏基站的网络业务数据量大于零并小于所述宏基站的最大网络业务数据量阈值、所述宏基站的功耗小于等于所述宏基站的最大功耗阈值。
发送模块22,用于通知所述待休眠基站休眠、所述待唤醒基站唤醒。
接收模块23,用于接收所述待优化的小区中各低功率基站发送的网络业务数据量和功耗。
具体地,本实施例提供的网络能效优化装置设置于宏基站中;或者本实施例提供的网络能效优化装置为宏基站,由宏基站的各功能模块或器件实现各功能。
网络中的宏基站可以提供至少一个服务小区(或扇区),每个小区的覆盖范围中可能存在多个低功率基站。针对一个小区而言,其网络能效可以用如下公式来表示:
Figure PCTCN2014094530-appb-000021
其中,EE1表示第一小区的网络能效,
Figure PCTCN2014094530-appb-000022
表示宏基站在第一小区中的网络业务数据量,
Figure PCTCN2014094530-appb-000023
表示宏基站在第一小区中的功耗,
Figure PCTCN2014094530-appb-000024
表示第一小区中第i个低功率基站的网络业务数据量,
Figure PCTCN2014094530-appb-000025
表示第一小区中第i个低功率基站的功耗,其中第一小区中包括N个低功率基站。在上式中,网络业务数据量的单位统一为比特(bit),功耗的单位统一为焦耳(J),网络能效的单位为bit/J。计算网络能效需要在一定时间内统计小区内宏基站以及所有低功率基站的网络业务数据量以及功耗,这个时间一般是一个预设的固定值。由于无论第一小区中的业务数据量如何在宏基站和低功率基站之间迁移,第一小区中的总业务数据量是不变的,也就是说,
Figure PCTCN2014094530-appb-000026
是一个定值,影响第一小区网络效能的因素仅为宏基站以及各低功率基站的功耗。
由于网络业务数据可以以小区为单位,在宏基站和低功率基站之间实现切换,因此对于网络能效的优化也需要以小区为单位,根据一个小区内所有基站的网络业务数据量以及功耗来优化网络能效,从而可以实现整个网络的网络能效优化。
在本实施例中,网络能效优化装置包括处理模块21和发送模块22。处理模块21首先需要确定待优化小区的初始网络能效。待优化小区可以是宏基站服务的至少一个小区,宏基站可以仅对服务的一个小区进行网络能效优化,也可以同时对服务的所有小区统一进行网络能效优化。在对待优化小区进行网络能效优化之前,网络能效优化装置需要确定一个优化基础,因此处理模块21需要确定待优化小区的初始网络能效,待优化小区的初始网络能效即为未经过网络能效优化时的网络能效。处理模块21可以通过任一种方法确定待优化的小区的初始网络能效,例如通过测量宏基站以及待优化小区中各低功率基站的网络业务数据量以及功耗确定待优化的小区的初始网络能效。另一种可选的方法是:网络能效优化装置还可以包括接收模块23,接收模块23用于接收待优化的小区中各低功率基站发送的网络业务数据量和功耗,处理模块21再通过宏基站的内部接收获取宏基站的网络业务数据量和功耗,从而处理模块21可以确定待优化的小区的初始网络能效。
接下来,处理模块21依次计算将待优化的小区中处于工作状态的每一低功率基站休眠后,与处于工作状态的每一低功率基站对应的待优化的小区的第一网络能效。以及处理模块21依次估算将待优化的小区中处于休眠状态的每一低功率基站唤醒后,与处于休眠状态的每一低功率基站对应的待优化的小区的第二网络能效。由于在待优化的小区中,将处于工作状态的低功率基站休眠或者将处于休眠状态的低功率基站唤醒后,宏基站以及待优化的小区中的其它低功率基站中的网络数据量以及功耗可能都会发生变化,因此,处理模块21需要计算将待优化的小区中的每一处于工作状态的低功率基站休眠后、或者将每一处于休眠状态的低功率基站唤醒后的整个待优化小区的网络能效。
当计算了待优化的小区中每一处于工作状态的低功率基站休眠后、或者将每一处于休眠状态的低功率基站唤醒后的整个待优化小区的网络能效,即第一网络能效和第二网络能效,处理模块21将根据第一网络能效、第二网络能效与初始网络能效的关系,确定需要休眠的待休眠基站以及需要唤醒的待唤醒基站。当低功率基站对应的第一网络能效或第二网络能效大于初始网络能效时,意味着将该低功率基站休眠或唤醒后,待优化小区的网络能效将提高,这种低功率基站即为可以待休眠或待唤醒的低功率基站。
进一步地,由于宏基站或低功率基站的网络业务数据最大处理能力以及最大功耗都有限制,因此在比较了第一网络能效或第二网络能效与初始网络能效后,处理模块21还需要判断当待休眠基站休眠、待唤醒基站唤醒后,宏基站的网络业务数据量是否大于零并小于宏基站的最大网络业务数据量阈值、宏基站的功耗是否小于等于宏基站的最大功耗阈值。当待优化小区中处于工作状态的低功率基站休眠后,该低功率基站的网络业务数据量将集中到宏基站中,但宏基站有最大的网络业务数据量阈值,超过该阈值的业务数据宏基站是无法处理的;当待优化小区中处于休眠状态的低功率基站唤醒后,宏基站将向该低功率基站分流部分业务数据,但由于宏基站提供网络的大范围覆盖,因此宏基站不能休眠,所以宏基站的网络业务数据量不能全部分流至低功率基站,综上所述,宏基站的网络业务数据量需要大于零并小于宏基站的最大网络业务数据量阈值。另外,当待优化小区中处于工作状态的低功率基站休眠,该低功率基站的网络业务数据量将集中到宏基站中,宏基站处 理低功率基站转移的网络业务数据量将产生额外的功耗,这些功耗与宏基站当前的输出功耗之和,应不超过宏基站的最大功耗阈值。总的来说,处理模块21选择的待休眠基站或待唤醒基站需要同时满足待休眠基站对应的第一网络能效大于初始网络能效,待唤醒基站对应的第二网络能效大于初始网络能效;并且当待休眠基站休眠、待唤醒基站唤醒后,宏基站的网络业务数据量大于零并小于宏基站的最大网络业务数据量阈值、宏基站的功耗小于等于宏基站的最大功耗阈值。当处理模块21选择的低功率基站同时满足上述条件时,即可将所选择的处于工作状态的低功率基站作为待休眠基站,将处于休眠状态的低功率基站作为待唤醒基站。
需要说明的是,由于在待优化小区中处于休眠状态的低功率基站被唤醒前,处于休眠状态的低功率基站能够处理的网络业务数据量以及功耗可以由处理模块21根据该低功率基站的最大可用无线资源和输出功率进行计算,但是该低功率基站在唤醒后处理的实际网络业务数据量以及实际功耗可能并不等于宏站所计算的低功率基站唤醒后能够处理的网络业务数据量以及功耗,因此,处理模块21在这里只能估算将处于休眠状态的低功率基站唤醒后,与处于休眠状态的每一低功率基站对应的待优化的小区的第二网络能效,以及相应地宏基站的网络业务数据量以及功耗。
最后,发送模块22需要向处理模块21选择的待休眠基站的待唤醒基站发送通知消息,通知待休眠基站休眠,待唤醒基站唤醒。
由于处理模块21选择的待休眠基站和待唤醒基站满足待休眠基站对应的第一网络能效大于初始网络能效,待唤醒基站对应的第二网络能效大于初始网络能效,因此在待休眠基站休眠、待唤醒基站唤醒后,待优化小区的网络效能将大于初始网络效能,最终实现对待优化小区的优化。
本实施例提供的网络能效优化装置,通过确定待优化的小区的初始网络能效,并依次计算将所述待优化的小区中处于工作状态的每一低功率基站休眠后,与所述处于工作状态的每一低功率基站对应的所述待优化的小区的第一网络能效;依次估算将所述待优化的小区中处于休眠状态的每一低功率基站唤醒后,与所述处于休眠状态的每一低功率基站对应的所述待优化的小区的第二网络能效,最后确定所述待优化小区中的待休眠基站和待唤醒基站,所述待休眠基站对应的第一网络能效大于所述初始网络能效,所述待唤醒基 站对应的第二网络能效大于所述初始网络能效,并且当所述待休眠基站休眠、所述待唤醒基站唤醒后,所述宏基站的网络业务数据量大于零并小于所述宏基站的最大网络业务数据量阈值、所述宏基站的功耗小于等于所述宏基站的最大功耗阈值,最终通知所述待休眠基站休眠、所述待唤醒基站唤醒,从而提高待优化小区的网络能效,实现了以小区为粒度的网络能效优化。
进一步地,在图2所示实施例中,处理模块21还用于在确定所述待优化小区中的待休眠基站和待唤醒基站之前,将对应的第一网络能效大于所述初始网络能效的处于工作状态的低功率基站作为所述待优化小区中的可选待休眠基站;将对应的第二网络能效大于所述初始网络能效的处于休眠状态的低功率基站作为所述待优化小区中的可选待唤醒基站;从所述待优化小区中的可选待休眠基站中选择所述待优化小区中的待休眠基站,所述宏基站从所述待优化小区中的可选待唤醒基站中选择所述待优化小区中的待唤醒基站,当所述待休眠基站休眠、所述待唤醒基站唤醒后,所述宏基站的网络业务数据量大于零并小于等于所述宏基站的最大网络业务数据量阈值、所述宏基站的功耗小于等于所述宏基站的最大功耗阈值。
也就是说,处理模块21在确定待优化小区中的待休眠基站和待唤醒基站时,分为两个步骤。首先处理模块21计算待优化小区中处于工作状态的低功率基站休眠时,对应的第一网络能效,将对应的第一网络能效大于待优化小区的初始网络能效的低功率基站作为可选待休眠基站;处理模块21计算待优化小区中处于休眠状态的低功率基站唤醒时,对应的第二网络能效,将对应的第二网络能效大于待优化小区的初始网络能效的低功率基站作为可选待唤醒基站。然后处理模块21在可选待休眠基站中选择待休眠基站,在可选待唤醒基站中选择待唤醒基站,使待休眠基站和待唤醒基站满足:当所述待休眠基站休眠、所述待唤醒基站唤醒后,所述宏基站的网络业务数据量大于零并小于等于所述宏基站的最大网络业务数据量阈值、所述宏基站的功耗小于等于所述宏基站的最大功耗阈值。
具体地,处理模块21可采用如下方法在可选待休眠基站中选择待休眠基站,在可选待唤醒基站中选择待唤醒基站:处理模块21,具体用于计算将所述待优化小区中的所有可选待休眠基站休眠后,所述宏基站的网络业务数据量是否大于所述宏基站的最大网络业务数据量阈值,以及所述宏基站的功耗 是否大于所述宏基站的最大功耗阈值,若是则所述宏基站将所述待优化小区中对应的第一网络能效最低的可选待休眠基站设为禁休眠基站后,继续计算将所述待优化小区中的所有可选待休眠基站休眠后,所述宏基站的网络业务数据量是否大于所述宏基站的最大网络业务数据量阈值,以及所述宏基站的功耗是否大于所述宏基站的最大功耗阈值,直到所述宏基站的网络业务数据量小于等于所述宏基站的最大网络业务数据量阈值,以及所述宏基站的功耗小于等于所述宏基站的最大功耗;将剩余的可选待休眠基站作为所述待休眠基站;估算将所述待优化小区中的所有可选待唤醒基站唤醒后,所述宏基站的网络业务数据量是否小于等于零,以及所述宏基站减少的功耗是否小于等于所有可选待唤醒基站唤醒后消耗的功率,若是则所述宏基站将所述待优化小区中对应的第二网络能效最低的可选待唤醒基站设为禁唤醒基站后,继续估算将所述待优化小区中的所有可选待唤醒基站唤醒后,所述宏基站的网络业务数据量是否小于等于零,以及所述宏基站减少的功耗是否小于等于所有可选待唤醒基站唤醒后消耗的功率,直到所述宏基站的网络业务数据量大于零,以及所述宏基站减少的功耗大于所有可选待唤醒基站唤醒后消耗的功率;将剩余的可选待唤醒基站作为所述待唤醒基站。
下面以一具体实施例对处理模块21选择待休眠基站和待唤醒基站的机制进行详细说明。
设宏基站中待优化的小区中包括N个低功率基站,待优化小区的初始网络能效值为:
Figure PCTCN2014094530-appb-000027
其中,EEusual表示待优化小区的初始网络能效,C0表示宏基站的初始网络业务数据量,P0表示宏基站的初始功耗,Ci表示第i个低功率基站的初始网络业务数据量,Pi表示第i个低功率基站的初始功耗。
处理模块21具体用于通过如下公式依次计算将待优化的小区中处于工作状态的每一低功率基站休眠后,与处于工作状态的每一低功率基站对应的待优化的小区的第一网络能效:
Figure PCTCN2014094530-appb-000028
其中EEsleep_j表示将第j个处于工作状态的低功率基站休眠后,待优化的小区的第一网络能效,
Figure PCTCN2014094530-appb-000029
表示将第j个处于工作状态的低功率基站休眠后宏基站的网络业务数据量,
Figure PCTCN2014094530-appb-000030
表示将第j个处于工作状态的低功率基站休眠后宏基站的功耗,
Figure PCTCN2014094530-appb-000031
表示将第j个处于工作状态的低功率基站休眠后第i个低功率基站的网络业务数据量,
Figure PCTCN2014094530-appb-000032
表示将第j个处于工作状态的低功率基站休眠后第i个低功率基站的功耗。
处理模块21,具体用于通过如下公式依次估算将所述待优化的小区中处于休眠状态的每一低功率基站唤醒后,与所述处于唤醒状态的每一低功率基站对应的所述待优化的小区的第二网络能效:
Figure PCTCN2014094530-appb-000033
其中EEwakeup_j表示将第j个处于休眠状态的低功率基站唤醒后,待优化的小区的第二网络能效,
Figure PCTCN2014094530-appb-000034
表示将第j个处于休眠状态的低功率基站唤醒后宏基站的网络业务数据量,
Figure PCTCN2014094530-appb-000035
表示将第j个处于休眠状态的低功率基站唤醒后宏基站的功耗,
Figure PCTCN2014094530-appb-000036
表示将第j个处于休眠状态的低功率基站唤醒后第i个低功率基站的网络业务数据量,
Figure PCTCN2014094530-appb-000037
表示将第j个处于休眠状态的低功率基站唤醒后第i个低功率基站的功耗。
对于待优化小区中处于工作状态的低功率基站,可以依次判断EEusual和EEsleep_j的大小,若EEsleep_j>EEusual,则意味着第j个处于工作状态的低功率基站对应的第一网络能效大于初始网络能效,此时将第j个处于工作状态的低功率基站设为可选的待休眠基站。若EEsleep_j≤EEusual,则意味着第j个处于工作状态的低功率基站对应的第一网络能效小于等于初始网络能效,此时将第j个处于工作状态的低功率基站休眠不会使网络能效提高,则此时将第j个处于工作状态的低功率基站设为禁休眠基站。将待优化的小区中所有处于工作状态的低功率基站都进行上述判断后,即可得到待优化的小区中所有的可选待休眠基站。接着,设
Figure PCTCN2014094530-appb-000038
为宏基站的最大功耗阈值,
Figure PCTCN2014094530-appb-000039
为宏基站的最大网络业务 数据量阈值,对于待优化小区,判断将所有可选待休眠基站休眠后,宏基站的网络业务数据量是否大于
Figure PCTCN2014094530-appb-000040
以及宏基站的功耗是否大于
Figure PCTCN2014094530-appb-000041
具体判断的方法可以判断待优化小区中所有可选待休眠基站的网络业务数据量之和是否大于
Figure PCTCN2014094530-appb-000042
为宏基站剩余的网络业务数据容量,优化小区中所有可选待休眠基站的网络业务数据量之和大于
Figure PCTCN2014094530-appb-000043
则将所有可选待休眠基站休眠后,宏基站的网络业务数据量将大于
Figure PCTCN2014094530-appb-000044
若上述两个判断中有一个成立,则意味着宏基站无法承受所有可选待休眠基站的网络业务数据量,此时宏基站需要将对应的EEsleep_j最小的可选待休眠基站列为禁休眠基站,然后再次进行上述判断。直至待优化小区中,将所有可选待休眠基站休眠后,宏基站的网络业务数据量小于等于
Figure PCTCN2014094530-appb-000045
以及宏基站的功耗小于等于
Figure PCTCN2014094530-appb-000046
此时的可选待休眠基站即为确定休眠的待休眠基站。
对于待优化小区中处于休眠状态的低功率基站,可以依次判断EEusual和EEwakeup_j的大小,若EEwakeup_j>EEusual,则意味着第j个处于休眠状态的低功率基站对应的第二网络能效大于初始网络能效,此时将第j个处于休眠状态的低功率基站设为可选的待唤醒基站。若EEwakeup_j≤EEusual,则意味着第j个处于休眠状态的低功率基站对应的第二网络能效小于等于初始网络能效,此时将第j个处于休眠状态的低功率基站唤醒不会使网络能效提高,则此时将第j个处于休眠状态的低功率基站设为禁唤醒基站。将待优化的小区中所有处于休眠状态的低功率基站都进行上述判断后,即可得到待优化的小区中所有的可选待唤醒基站。接着,对于待优化小区,判断将所有可选待唤醒基站唤醒后,宏基站的网络业务数据量是否小于等于0,以及宏基站减少的功耗是否小于等于所有可选待唤醒基站唤醒后消耗的功率。若上述两个判断中有一个成立,则意味着宏基站无法将所有可选待唤醒基站唤醒,此时宏基站需要将对应的EEwakeup_j最小的可选待唤醒基站列为禁唤醒基站,然后再次进行上述判断。直至待优化小区中,将所有可选待唤醒基站唤醒后,宏基站的网络业务数据量大于零,以及宏基站减少的功耗大于所有可选待唤醒基站唤醒后消耗的功率。此时的可选待唤醒基站即为确定唤醒的待唤醒基站。
需要说明的是,如果在上述判断过程中,对待优化小区的所有低功率基站都进行了判断后,仍然没有满足条件的待休眠基站和待唤醒基站,则将保持待优化小区中所有低功率基站的状态不变。
图3为本发明实施例提供的网络能效优化方法实施例一的流程图,如图3所示,本实施例的方法包括:
步骤S301,宏基站确定待优化的小区的初始网络能效,所述待优化的小区包括所述宏基站服务的至少一个小区。
具体地,本实施例提供的网络能效优化方法应用于任一种异构网,由网络中的宏基站执行。
由于网络业务数据可以以小区为单位,在宏基站和低功率基站之间实现切换,因此对于网络能效的优化也需要以小区为单位,根据一个小区内所有基站的网络业务数据量以及功耗来优化网络能效,从而可以实现整个网络的网络能效优化。
为了对待优化的小区的网络能效进行优化,宏基站首先需要确定待优化小区的初始网络能效。待优化小区可以是宏基站服务的至少一个小区,宏基站可以仅对服务的一个小区进行网络能效优化,也可以同时对服务的所有小区统一进行网络能效优化。在对待优化小区进行网络能效优化之前,网络能效优化装置需要确定一个优化基础,因此宏基站需要确定待优化小区的初始网络能效,待优化小区的初始网络能效即为未经过网络能效优化时的网络能效。宏基站可以通过任一种方法确定待优化的小区的初始网络能效,例如通过测量宏基站以及待优化小区中各低功率基站的网络业务数据量以及功耗确定待优化的小区的初始网络能效。另一种可选的方法是:宏基站可以接收待优化的小区中各低功率基站发送的网络业务数据量和功耗,然后宏基站再获取宏基站的网络业务数据量和功耗,从而宏基站可以确定待优化的小区的初始网络能效。
步骤S302,所述宏基站依次计算将所述待优化的小区中处于工作状态的每一低功率基站休眠后,与所述处于工作状态的每一低功率基站对应的所述待优化的小区的第一网络能效。
步骤S303,所述宏基站依次估算将所述待优化的小区中处于休眠状态的每一低功率基站唤醒后,与所述处于休眠状态的每一低功率基站对应的所述待优化的小区的第二网络能效。
具体地,由于在待优化的小区中,将处于工作状态的低功率基站休眠或者将处于休眠状态的低功率基站唤醒后,宏基站以及待优化的小区中的其它 低功率基站中的网络数据量以及功耗可能都会发生变化,因此,宏基站需要依次计算将待优化的小区中的每一处于工作状态的低功率基站休眠后,与所述处于工作状态的每一低功率基站对应的所述待优化的小区的第一网络能效;宏基站还需要依次估算将所述待优化的小区中处于休眠状态的每一低功率基站唤醒后,与所述处于休眠状态的每一低功率基站对应的所述待优化的小区的第二网络能效。
步骤S304,所述宏基站确定所述待优化小区中的待休眠基站和待唤醒基站,所述待休眠基站对应的第一网络能效大于所述初始网络能效,所述待唤醒基站对应的第二网络能效大于所述初始网络能效,并且当所述待休眠基站休眠、所述待唤醒基站唤醒后,所述宏基站的网络业务数据量大于零并小于所述宏基站的最大网络业务数据量阈值、所述宏基站的功耗小于等于所述宏基站的最大功耗阈值。
具体地,当计算了待优化的小区中每一处于工作状态的低功率基站休眠后、或者将每一处于休眠状态的低功率基站唤醒后,整个待优化小区的网络能效,即第一网络能效和第二网络能效。宏基站将根据第一网络能效、第二网络能效与初始网络能效的关系,确定需要休眠的待休眠基站以及需要唤醒的待唤醒基站,当低功率基站对应的第一网络能效或第二网络能效大于初始网络能效时,意味着将该低功率基站休眠或唤醒后,待优化小区的网络能效将提高,这种低功率基站即为可以待休眠或待唤醒的低功率基站。
进一步地,由于宏基站或低功率基站的网络业务数据最大处理能力以及最大功耗都有限制,因此在比较了第一网络能效或第二网络能效与初始网络能效后,宏基站还需要判断当待休眠基站休眠、待唤醒基站唤醒后,宏基站的网络业务数据量是否大于零并小于宏基站的最大网络业务数据量阈值、宏基站的功耗是否小于等于宏基站的最大功耗阈值。当待优化小区中处于工作状态的低功率基站休眠后,该低功率基站的网络业务数据量将集中到宏基站中,但宏基站有最大的网络业务数据量阈值,超过该阈值的业务数据宏基站是无法处理的;当待优化小区中处于休眠状态的低功率基站唤醒后,宏基站将向该低功率基站分流部分业务数据,但由于宏基站提供网络的大范围覆盖,因此宏基站不能休眠,所以宏基站的网络业务数据量不能全部分流至低功率基站,综上所述,宏基站的网络业务数据量需要大于零并小于宏基站的最大 网络业务数据量阈值。另外,当待优化小区中处于工作状态的低功率基站休眠,该低功率基站的网络业务数据量将集中到宏基站中,宏基站处理低功率基站转移的网络业务数据量将产生额外的功耗,这些功耗与宏基站当前的输出功耗之和,应不超过宏基站的最大功耗阈值。总的来说,处理模块21选择的待休眠基站和待唤醒基站需要同时满足待休眠基站对应的第一网络能效大于初始网络能效,待唤醒基站对应的第二网络能效大于初始网络能效;并且当待休眠基站休眠、待唤醒基站唤醒后,宏基站的网络业务数据量大于零并小于宏基站的最大网络业务数据量阈值、宏基站的功耗小于等于宏基站的最大功耗阈值。当宏基站选择的低功率基站同时满足上述条件时,即可将所选择的处于工作状态的低功率基站作为待休眠基站,将处于休眠状态的低功率基站作为待唤醒基站。
需要说明的是,由于在待优化小区中处于休眠状态的低功率基站被唤醒前,处于休眠状态的低功率基站能够处理的网络业务数据量以及功耗只能是宏基站根据该低功率基站的最大可用无线资源和输出功率进行计算,但是该低功率基站在唤醒后处理的实际网络业务数据量以及实际功耗可能并不等于宏站所计算的。因此,宏基站在这里只能估算将处于休眠状态的低功率基站唤醒后,与处于休眠状态的每一低功率基站对应的待优化的小区的第二网络能效,以及相应地宏基站的网络业务数据量以及功耗。
步骤S305,所述宏基站通知所述待休眠基站休眠、所述待唤醒基站唤醒。
具体地,宏基站需要向确定的待休眠基站的待唤醒基站发送通知消息,通知待休眠基站休眠,待唤醒基站唤醒。
由于宏基站选择的待休眠基站和待唤醒基站满足待休眠基站对应的第一网络能效大于初始网络能效,待唤醒基站对应的第二网络能效大于初始网络能效,因此在待休眠基站休眠、待唤醒基站唤醒后,待优化小区的网络效能将大于初始网络效能,最终实现对待优化小区的优化。
本实施例提供的网络能效优化方法,通过确定待优化的小区的初始网络能效,并依次计算将所述待优化的小区中处于工作状态的每一低功率基站休眠后,与所述处于工作状态的每一低功率基站对应的所述待优化的小区的第一网络能效;依次估算将所述待优化的小区中处于休眠状态的每一低功率基站唤醒后,与所述处于休眠状态的每一低功率基站对应的所述待优化的小区 的第二网络能效,最后确定所述待优化小区中的待休眠基站和待唤醒基站,所述待休眠基站对应的第一网络能效大于所述初始网络能效,所述待唤醒基站对应的第二网络能效大于所述初始网络能效,并且当所述待休眠基站休眠、所述待唤醒基站唤醒后,所述宏基站的网络业务数据量大于零并小于所述宏基站的最大网络业务数据量阈值、所述宏基站的功耗小于等于所述宏基站的最大功耗阈值,最终通知所述待休眠基站休眠、所述待唤醒基站唤醒,从而提高待优化小区的网络能效,实现了以小区为粒度的网络能效优化。
图4为本发明实施例提供的网络能效优化方法实施例二的流程图,如图4所示,本实施例的方法包括:
步骤S401,宏基站接收所述待优化的小区中各低功率基站发送的网络业务数据量和功耗。
步骤S402,所述宏基站根据所述宏基站的网络业务数据量和功耗以及所述待优化小区中各低功率基站发送的网络业务数据量和功耗确定所述待优化小区的初始网络能效。
步骤S403,所述宏基站依次计算将所述待优化的小区中处于工作状态的每一低功率基站休眠后,与所述处于工作状态的每一低功率基站对应的所述待优化的小区的第一网络能效。
步骤S404,所述宏基站依次估算将所述待优化的小区中处于休眠状态的每一低功率基站唤醒后,与所述处于休眠状态的每一低功率基站对应的所述待优化的小区的第二网络能效。
步骤S405,所述宏基站将对应的第一网络能效大于所述初始网络能效的处于工作状态的低功率基站作为所述待优化小区中的可选待休眠基站。
步骤S406,所述宏基站将对应的第二网络能效大于所述初始网络能效的处于休眠状态的低功率基站作为所述待优化小区中的可选待唤醒基站。
步骤S407,所述宏基站计算将所述待优化小区中的所有可选待休眠基站休眠后,所述宏基站的网络业务数据量是否大于所述宏基站的最大网络业务数据量阈值,以及所述宏基站的功耗是否大于所述宏基站的最大功耗阈值。
步骤S408,所述宏基站估算将所述待优化小区中的所有可选待唤醒基站唤醒后,所述宏基站的网络业务数据量是否小于等于零,以及所述宏基站减少的功耗是否小于等于所有可选待唤醒基站唤醒后消耗的功率。
步骤S409,所述宏基站将所述待优化小区中对应的第一网络能效最低的可选待休眠基站设为禁休眠基站。
步骤S410,所述宏基站将所述待优化小区中对应的第二网络能效最低的可选待唤醒基站设为禁唤醒基站。
步骤S411,当宏基站的网络业务数据量小于等于所述宏基站的最大网络业务数据量阈值,以及所述宏基站的功耗小于等于所述宏基站的最大功耗时,所述宏基站将剩余的可选待休眠基站作为所述待休眠基站。
步骤S412,当所述宏基站的网络业务数据量大于零,以及所述宏基站减少的功耗大于所有可选待唤醒基站唤醒后消耗的功率时,所述宏基站将剩余的可选待唤醒基站作为所述待唤醒基站。
步骤S413,所述宏基站通知所述待休眠基站休眠、所述待唤醒基站唤醒。
进一步地,图3或图4所示实施例中,步骤S302或步骤S403,宏基站依次计算将所述待优化的小区中处于工作状态的每一低功率基站休眠后,与所述处于工作状态的每一低功率基站对应的所述待优化的小区的第一网络能效,具体包括:
所述宏基站通过如下公式依次计算将所述待优化的小区中处于工作状态的每一低功率基站休眠后,与所述处于工作状态的每一低功率基站对应的所述待优化的小区的第一网络能效:
Figure PCTCN2014094530-appb-000047
其中设所述待优化的小区中包括N个低功率基站,EEsleep_j表示将第j个处于工作状态的低功率基站休眠后,所述待优化的小区的第一网络能效,
Figure PCTCN2014094530-appb-000048
表示将第j个处于工作状态的低功率基站休眠后宏基站的网络业务数据量,
Figure PCTCN2014094530-appb-000049
表示将第j个处于工作状态的低功率基站休眠后宏基站的功耗,
Figure PCTCN2014094530-appb-000050
表示将第j个处于工作状态的低功率基站休眠后第i个低功率基站的网络业务数据量,
Figure PCTCN2014094530-appb-000051
表示将第j个处于工作状态的低功率基站休眠后第i个低功率基站的功耗。
进一步地,图3或图4所示实施例中,步骤S303或步骤S404所述宏基站依次估算将所述待优化的小区中处于休眠状态的每一低功率基站唤醒后,与所述处于休眠状态的每一低功率基站对应的所述待优化的小区的第二网络 能效,包括:
所述宏基站通过如下公式依次估算将所述待优化的小区中处于休眠状态的每一低功率基站唤醒后,与所述处于唤醒状态的每一低功率基站对应的所述待优化的小区的第二网络能效:
Figure PCTCN2014094530-appb-000052
其中设所述待优化的小区中包括N个低功率基站,EEwakeup_j表示将第j个处于休眠状态的低功率基站唤醒后,所述待优化的小区的第二网络能效,
Figure PCTCN2014094530-appb-000053
表示将第j个处于休眠状态的低功率基站唤醒后宏基站的网络业务数据量,
Figure PCTCN2014094530-appb-000054
表示将第j个处于休眠状态的低功率基站唤醒后宏基站的功耗,
Figure PCTCN2014094530-appb-000055
表示将第j个处于休眠状态的低功率基站唤醒后第i个低功率基站的网络业务数据量,
Figure PCTCN2014094530-appb-000056
表示将第j个处于休眠状态的低功率基站唤醒后第i个低功率基站的功耗。
需要说明的是,本发明实施例中的发送模块22可以与宏基站的发送器对应,也可以对应宏基站的收发器。接收模块23可以与宏基站的接收器对应,也可以对应宏基站的收发器。处理模块21可以与宏基站的处理器对应,这里处理器可以是一个中央处理器(Central Processing Unit,CPU),或者是特定集成电路(Application Specific Integrated Circuit,ASIC),或者完成实施本发明实施例的一个或多个集成电路。宏基站还可以包括存储器,存储器用于存储指令代码,处理器调用存储器的指令代码,控制本发明实施例中的处理模块21、发送模块22和接收模块23执行上述操作。
本领域普通技术人员可以理解:实现上述各方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成。前述的程序可以存储于一计算机可读取存储介质中。该程序在执行时,执行包括上述各方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (12)

  1. 一种网络能效优化装置,其特征在于,包括:
    处理模块,用于确定待优化的小区的初始网络能效,所述待优化的小区包括宏基站服务的至少一个小区;依次计算将所述待优化的小区中处于工作状态的每一低功率基站休眠后,与所述处于工作状态的每一低功率基站对应的所述待优化的小区的第一网络能效;依次估算将所述待优化的小区中处于休眠状态的每一低功率基站唤醒后,与所述处于休眠状态的每一低功率基站对应的所述待优化的小区的第二网络能效;确定所述待优化小区中的待休眠基站和待唤醒基站,所述待休眠基站对应的第一网络能效大于所述初始网络能效,所述待唤醒基站对应的第二网络能效大于所述初始网络能效,并且当所述待休眠基站休眠、所述待唤醒基站唤醒后,所述宏基站的网络业务数据量大于零并小于所述宏基站的最大网络业务数据量阈值、所述宏基站的功耗小于等于所述宏基站的最大功耗阈值;
    发送模块,用于通知所述待休眠基站休眠、所述待唤醒基站唤醒。
  2. 根据权利要求1所述的网络能效优化装置,其特征在于,还包括:
    接收模块,用于接收所述待优化的小区中各低功率基站发送的网络业务数据量和功耗;
    所述处理模块,具体用于根据所述宏基站的网络业务数据量和功耗以及所述待优化小区中各低功率基站发送的网络业务数据量和功耗确定所述待优化小区的初始网络能效。
  3. 根据权利要求1或2所述的网络能效优化装置,其特征在于,所述处理模块还用于在确定所述待优化小区中的待休眠基站和待唤醒基站之前,将对应的第一网络能效大于所述初始网络能效的处于工作状态的低功率基站作为所述待优化小区中的可选待休眠基站;将对应的第二网络能效大于所述初始网络能效的处于休眠状态的低功率基站作为所述待优化小区中的可选待唤醒基站;从所述待优化小区中的可选待休眠基站中选择所述待优化小区中的待休眠基站,所述宏基站从所述待优化小区中的可选待唤醒基站中选择所述待优化小区中的待唤醒基站,当所述待休眠基站休眠、所述待唤醒基站唤醒后,所述宏基站的网络业务数据量大于零并小于等于所述宏基站的最大网络业务数据量阈值、所述宏基站的功耗小于等于所述宏基站的最大功耗阈值。
  4. 根据权利要求3所述的网络能效优化装置,其特征在于,所述处理模块,具体用于计算将所述待优化小区中的所有可选待休眠基站休眠后,所述宏基站的网络业务数据量是否大于所述宏基站的最大网络业务数据量阈值,以及所述宏基站的功耗是否大于所述宏基站的最大功耗阈值,若是则所述宏基站将所述待优化小区中对应的第一网络能效最低的可选待休眠基站设为禁休眠基站后,继续计算将所述待优化小区中的所有可选待休眠基站休眠后,所述宏基站的网络业务数据量是否大于所述宏基站的最大网络业务数据量阈值,以及所述宏基站的功耗是否大于所述宏基站的最大功耗阈值,直到所述宏基站的网络业务数据量小于等于所述宏基站的最大网络业务数据量阈值,以及所述宏基站的功耗小于等于所述宏基站的最大功耗;将剩余的可选待休眠基站作为所述待休眠基站;估算将所述待优化小区中的所有可选待唤醒基站唤醒后,所述宏基站的网络业务数据量是否小于等于零,以及所述宏基站减少的功耗是否小于等于所有可选待唤醒基站唤醒后消耗的功率,若是则所述宏基站将所述待优化小区中对应的第二网络能效最低的可选待唤醒基站设为禁唤醒基站后,继续估算将所述待优化小区中的所有可选待唤醒基站唤醒后,所述宏基站的网络业务数据量是否小于等于零,以及所述宏基站减少的功耗是否小于等于所有可选待唤醒基站唤醒后消耗的功率,直到所述宏基站的网络业务数据量大于零,以及所述宏基站减少的功耗大于所有可选待唤醒基站唤醒后消耗的功率;将剩余的可选待唤醒基站作为所述待唤醒基站。
  5. 根据权利要求1~4任一项所述的网络能效优化装置,其特征在于,所述处理模块具体用于通过如下公式依次计算将所述待优化的小区中处于工作状态的每一低功率基站休眠后,与所述处于工作状态的每一低功率基站对应的所述待优化的小区的第一网络能效:
    Figure PCTCN2014094530-appb-100001
    其中设所述待优化的小区中包括N个低功率基站,EEsleep_j表示将第j个处于工作状态的低功率基站休眠后,所述待优化的小区的第一网络能效,
    Figure PCTCN2014094530-appb-100002
    表示将第j个处于工作状态的低功率基站休眠后宏基站的网络业务数据量,
    Figure PCTCN2014094530-appb-100003
    表示将第j个处于工作状态的低功率基站休眠后宏基站的功耗,
    Figure PCTCN2014094530-appb-100004
    表示将第j 个处于工作状态的低功率基站休眠后第i个低功率基站的网络业务数据量,
    Figure PCTCN2014094530-appb-100005
    表示将第j个处于工作状态的低功率基站休眠后第i个低功率基站的功耗。
  6. 根据权利要求1~4任一项所述的网络能效优化装置,其特征在于,所述处理模块,具体用于通过如下公式依次估算将所述待优化的小区中处于休眠状态的每一低功率基站唤醒后,与所述处于唤醒状态的每一低功率基站对应的所述待优化的小区的第二网络能效:
    Figure PCTCN2014094530-appb-100006
    其中设所述待优化的小区中包括N个低功率基站,EEwakeup_j表示将第j个处于休眠状态的低功率基站唤醒后,所述待优化的小区的第二网络能效,
    Figure PCTCN2014094530-appb-100007
    表示将第j个处于休眠状态的低功率基站唤醒后宏基站的网络业务数据量,
    Figure PCTCN2014094530-appb-100008
    表示将第j个处于休眠状态的低功率基站唤醒后宏基站的功耗,
    Figure PCTCN2014094530-appb-100009
    表示将第j个处于休眠状态的低功率基站唤醒后第i个低功率基站的网络业务数据量,
    Figure PCTCN2014094530-appb-100010
    表示将第j个处于休眠状态的低功率基站唤醒后第i个低功率基站的功耗。
  7. 一种网络能效优化方法,其特征在于,包括:
    宏基站确定待优化的小区的初始网络能效,所述待优化的小区包括所述宏基站服务的至少一个小区;
    所述宏基站依次计算将所述待优化的小区中处于工作状态的每一低功率基站休眠后,与所述处于工作状态的每一低功率基站对应的所述待优化的小区的第一网络能效;
    所述宏基站依次估算将所述待优化的小区中处于休眠状态的每一低功率基站唤醒后,与所述处于休眠状态的每一低功率基站对应的所述待优化的小区的第二网络能效;
    所述宏基站确定所述待优化小区中的待休眠基站和待唤醒基站,所述待休眠基站对应的第一网络能效大于所述初始网络能效,所述待唤醒基站对应的第二网络能效大于所述初始网络能效,并且当所述待休眠基站休眠、所述待唤醒基站唤醒后,所述宏基站的网络网络业务数据量大于零并小于所述宏基站的最大网络网络业务数据量阈值、所述宏基站的功耗小于等于所述宏基 站的最大功耗阈值;
    所述宏基站通知所述待休眠基站休眠、所述待唤醒基站唤醒。
  8. 根据权利要求7所述的方法,其特征在于,所述宏基站确定待优化的小区的初始网络能效,包括:
    所述宏基站接收所述待优化的小区中各低功率基站发送的网络网络业务数据量和功耗;
    所述宏基站根据所述宏基站的网络网络业务数据量和功耗以及所述待优化小区中各低功率基站发送的网络网络业务数据量和功耗确定所述待优化小区的初始网络能效。
  9. 根据权利要求7或8所述的方法,其特征在于,所述宏基站确定所述待优化小区中的待休眠基站和待唤醒基站之前,还包括:
    所述宏基站将对应的第一网络能效大于所述初始网络能效的处于工作状态的低功率基站作为所述待优化小区中的可选待休眠基站;
    所述宏基站将对应的第二网络能效大于所述初始网络能效的处于休眠状态的低功率基站作为所述待优化小区中的可选待唤醒基站;
    所述宏基站确定所述待优化小区中的待休眠基站和待唤醒基站,包括:
    所述宏基站从所述待优化小区中的可选待休眠基站中选择所述待优化小区中的待休眠基站,所述宏基站从所述待优化小区中的可选待唤醒基站中选择所述待优化小区中的待唤醒基站,当所述待休眠基站休眠、所述待唤醒基站唤醒后,所述宏基站的网络网络业务数据量大于零并小于等于所述宏基站的最大网络网络业务数据量阈值、所述宏基站的功耗小于等于所述宏基站的最大功耗阈值。
  10. 根据权利要求9所述的方法,其特征在于,所述宏基站从所述待优化小区中的可选待休眠基站中选择所述待优化小区中的待休眠基站,包括:
    所述宏基站计算将所述待优化小区中的所有可选待休眠基站休眠后,所述宏基站的网络网络业务数据量是否大于所述宏基站的最大网络网络业务数据量阈值,以及所述宏基站的功耗是否大于所述宏基站的最大功耗阈值,若是则所述宏基站将所述待优化小区中对应的第一网络能效最低的可选待休眠基站设为禁休眠基站后,继续计算将所述待优化小区中的所有可选待休眠基站休眠后,所述宏基站的网络网络业务数据量是否大于所述宏基站的最大网 络网络业务数据量阈值,以及所述宏基站的功耗是否大于所述宏基站的最大功耗阈值,直到所述宏基站的网络网络业务数据量小于等于所述宏基站的最大网络网络业务数据量阈值,以及所述宏基站的功耗小于等于所述宏基站的最大功耗;
    所述宏基站将剩余的可选待休眠基站作为所述待休眠基站;
    所述宏基站从所述待优化小区中的可选待唤醒基站中选择所述待优化小区中的待唤醒基站,包括:
    所述宏基站估算将所述待优化小区中的所有可选待唤醒基站唤醒后,所述宏基站的网络网络业务数据量是否小于等于零,以及所述宏基站减少的功耗是否小于等于所有可选待唤醒基站唤醒后消耗的功率,若是则所述宏基站将所述待优化小区中对应的第二网络能效最低的可选待唤醒基站设为禁唤醒基站后,继续估算将所述待优化小区中的所有可选待唤醒基站唤醒后,所述宏基站的网络网络业务数据量是否小于等于零,以及所述宏基站减少的功耗是否小于等于所有可选待唤醒基站唤醒后消耗的功率,直到所述宏基站的网络网络业务数据量大于零,以及所述宏基站减少的功耗大于所有可选待唤醒基站唤醒后消耗的功率;
    所述宏基站将剩余的可选待唤醒基站作为所述待唤醒基站。
  11. 根据权利要求7~10任一项所述的方法,其特征在于,所述宏基站依次计算将所述待优化的小区中处于工作状态的每一低功率基站休眠后,与所述处于工作状态的每一低功率基站对应的所述待优化的小区的第一网络能效,包括:
    所述宏基站通过如下公式依次计算将所述待优化的小区中处于工作状态的每一低功率基站休眠后,与所述处于工作状态的每一低功率基站对应的所述待优化的小区的第一网络能效:
    Figure PCTCN2014094530-appb-100011
    其中设所述待优化的小区中包括N个低功率基站,EEsleep_j表示将第j个处于工作状态的低功率基站休眠后,所述待优化的小区的第一网络能效,
    Figure PCTCN2014094530-appb-100012
    表示将第j个处于工作状态的低功率基站休眠后宏基站的网络网络业务数据量,
    Figure PCTCN2014094530-appb-100013
    表示将第j个处于工作状态的低功率基站休眠后宏基站的功耗,
    Figure PCTCN2014094530-appb-100014
    表示将第j个处于工作状态的低功率基站休眠后第i个低功率基站的网络网络业务数据量,
    Figure PCTCN2014094530-appb-100015
    表示将第j个处于工作状态的低功率基站休眠后第i个低功率基站的功耗。
  12. 根据权利要求7~10任一项所述的方法,其特征在于,所述宏基站依次估算将所述待优化的小区中处于休眠状态的每一低功率基站唤醒后,与所述处于休眠状态的每一低功率基站对应的所述待优化的小区的第二网络能效,包括:
    所述宏基站通过如下公式依次估算将所述待优化的小区中处于休眠状态的每一低功率基站唤醒后,与所述处于唤醒状态的每一低功率基站对应的所述待优化的小区的第二网络能效:
    Figure PCTCN2014094530-appb-100016
    其中设所述待优化的小区中包括N个低功率基站,EEwakeup_j表示将第j个处于休眠状态的低功率基站唤醒后,所述待优化的小区的第二网络能效,
    Figure PCTCN2014094530-appb-100017
    表示将第j个处于休眠状态的低功率基站唤醒后宏基站的网络网络业务数据量,
    Figure PCTCN2014094530-appb-100018
    表示将第j个处于休眠状态的低功率基站唤醒后宏基站的功耗,
    Figure PCTCN2014094530-appb-100019
    表示将第j个处于休眠状态的低功率基站唤醒后第i个低功率基站的网络网络业务数据量,
    Figure PCTCN2014094530-appb-100020
    表示将第j个处于休眠状态的低功率基站唤醒后第i个低功率基站的功耗。
PCT/CN2014/094530 2014-12-22 2014-12-22 网络能效优化方法和装置 WO2016101101A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480084134.4A CN107005935B (zh) 2014-12-22 2014-12-22 网络能效优化方法和装置
PCT/CN2014/094530 WO2016101101A1 (zh) 2014-12-22 2014-12-22 网络能效优化方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/094530 WO2016101101A1 (zh) 2014-12-22 2014-12-22 网络能效优化方法和装置

Publications (1)

Publication Number Publication Date
WO2016101101A1 true WO2016101101A1 (zh) 2016-06-30

Family

ID=56148846

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/094530 WO2016101101A1 (zh) 2014-12-22 2014-12-22 网络能效优化方法和装置

Country Status (2)

Country Link
CN (1) CN107005935B (zh)
WO (1) WO2016101101A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114980287A (zh) * 2022-05-23 2022-08-30 辽宁邮电规划设计院有限公司 一种多频段无线网络设备智能节能方法和装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110708745A (zh) * 2018-07-09 2020-01-17 普天信息技术有限公司 一种适用于5g场景的基站休眠方法和基站设备
WO2022126347A1 (zh) * 2020-12-14 2022-06-23 华为技术有限公司 通信方法、装置及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103037485A (zh) * 2012-12-19 2013-04-10 北京航空航天大学 一种异构网中的低能耗协作传输方法
CN103347291A (zh) * 2013-06-28 2013-10-09 浙江大学 基于双门限的异构网络中小基站的开启/睡眠状态控制方法
WO2014137975A1 (en) * 2013-03-04 2014-09-12 Qualcomm Incorporated Mtc device association schemes
US20140266718A1 (en) * 2013-03-13 2014-09-18 Micah Bongberg Centralized management and emergency allocation of deployed defibrillators each having associated communication modules

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2432284B1 (en) * 2010-09-21 2019-03-20 Provenance Asset Group LLC A macrocell base station, a telecommunications network, and a femtocell base station, and a method of switching a femtocell base station between a dormant mode and an active mode
CN102413554B (zh) * 2011-12-23 2014-10-15 浙江大学 一种基于异构蜂窝无线网络的节能方法及其实现结构
CN104144478B (zh) * 2013-05-09 2018-11-13 华为技术有限公司 基站非连续发送节能控制方法、小站、宏站及异构网络

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103037485A (zh) * 2012-12-19 2013-04-10 北京航空航天大学 一种异构网中的低能耗协作传输方法
WO2014137975A1 (en) * 2013-03-04 2014-09-12 Qualcomm Incorporated Mtc device association schemes
US20140266718A1 (en) * 2013-03-13 2014-09-18 Micah Bongberg Centralized management and emergency allocation of deployed defibrillators each having associated communication modules
CN103347291A (zh) * 2013-06-28 2013-10-09 浙江大学 基于双门限的异构网络中小基站的开启/睡眠状态控制方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114980287A (zh) * 2022-05-23 2022-08-30 辽宁邮电规划设计院有限公司 一种多频段无线网络设备智能节能方法和装置
CN114980287B (zh) * 2022-05-23 2023-12-22 辽宁邮电规划设计院有限公司 一种多频段无线网络设备智能节能方法和装置

Also Published As

Publication number Publication date
CN107005935A (zh) 2017-08-01
CN107005935B (zh) 2020-05-26

Similar Documents

Publication Publication Date Title
Liu et al. Small cell base station sleep strategies for energy efficiency
WO2018192374A1 (zh) 一种站点唤醒方法及站点
EP2262327B1 (en) Method and apparatus for managing power of wlan module in portable terminal
US20130210481A1 (en) Methods and apparatus for intelligent wirless technology selection
Tantubay et al. A review of power conservation in wireless mobile adhoc network (MANET)
Ogbebor et al. Energy efficient design techniques in next-generation wireless communication networks: emerging trends and future directions
WO2018059462A1 (zh) 一种状态转换方法及装置
CN104137612A (zh) 移动通信网络中ue偏好指示以及辅助信息
US11627529B2 (en) Intelligent power saving
JP5374165B2 (ja) ユーザ装置の利用可能な電力によるパラメータの設定方法及び装置
JP2014150529A (ja) 基地局及びドーマント制御方法
CN106550440B (zh) 一种联合用户和基站的休眠策略及阈值确定方法
Keshav et al. Energy efficient scheduling in 4G smart phones for mobile hotspot application
CN105578579A (zh) 基于业务流量预测的蜂窝网基站和中继站联合休眠调度方法
WO2021139323A1 (zh) 基站控制方法、运营支撑系统0ss、分布式基站系统dbs
Lee et al. MAC sleep mode control considering downlink traffic pattern and mobility
CN115669088A (zh) 基于流量预测来调整电信网络中的功耗
WO2016101101A1 (zh) 网络能效优化方法和装置
KR101214618B1 (ko) Ieee 802.11 기반 무선랜 액세스포인트에서의전력 절약 방법
CN103945510A (zh) 站点区分广播帧与组播帧的方法
CN101998599B (zh) 一种睡眠模式下业务传输的方法及控制装置
Xiao et al. A load-balancing energy consumption minimization scheme in 5G heterogeneous small cell wireless networks under coverage probability analysis
US20230008354A1 (en) Idle mode processing method, user equipment and chip
WO2022242368A1 (zh) 网络连接的控制方法、终端设备及存储介质
Pan et al. Traffic-aware energy optimizing strategies for multi-cell coordinated green cellular networks

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14908672

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14908672

Country of ref document: EP

Kind code of ref document: A1