WO2016101086A1 - 用于平台载荷一体化的卫星结构 - Google Patents

用于平台载荷一体化的卫星结构 Download PDF

Info

Publication number
WO2016101086A1
WO2016101086A1 PCT/CN2014/001170 CN2014001170W WO2016101086A1 WO 2016101086 A1 WO2016101086 A1 WO 2016101086A1 CN 2014001170 W CN2014001170 W CN 2014001170W WO 2016101086 A1 WO2016101086 A1 WO 2016101086A1
Authority
WO
WIPO (PCT)
Prior art keywords
satellite
upper plate
platform
plate
bottom plate
Prior art date
Application number
PCT/CN2014/001170
Other languages
English (en)
French (fr)
Inventor
谷松
金光
张雷
安源
高飞
徐振
徐伟
Original Assignee
中国科学院长春光学精密机械与物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院长春光学精密机械与物理研究所 filed Critical 中国科学院长春光学精密机械与物理研究所
Publication of WO2016101086A1 publication Critical patent/WO2016101086A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/10Artificial satellites; Systems of such satellites; Interplanetary vehicles

Definitions

  • the invention relates to the field of aerospace technology. Specifically, it relates to a structure for platform load integrated satellite, which can realize integrated high integration of high-performance small satellite platform and load structure, and at the same time take into account the requirements of different types of small satellite modularization and standardized function expansion tasks.
  • Satellites are typically constructed of payloads and satellite platforms (or common bays). Traditional satellite designs often use a common satellite platform and different payload combinations to meet different satellite missions.
  • the so-called satellite platform is a common cabin that can adapt to different payload configurations and complete their specific flight missions.
  • the black box design method is mostly used to create separate independent on-board working units. Then, these units are assembled into a connection structure to form a satellite. These independent units have their own The support structure and the control circuit, the components and the control circuit cannot be shared. Eventually, the satellite structures overlap and the number of control components increases, resulting in an increase in the weight of the satellite. Ground equipment is not a problem, but it greatly increases the launch cost and reduces the reliability for satellites.
  • a typical example is the famous US MMS satellite platform.
  • the entire satellite platform consists of four compartments, namely the attitude control sub-system compartment 11, the power compartment 14, the communication and manifold compartment 13 and the propulsion compartment 14.
  • Each compartment has its own support structure and steering control circuits. These compartments are manufactured separately and then connected together by the MMS support structure 16.
  • the MMS support structure acts to connect and transfer loads, thus forming a complete Satellite platform.
  • the payload is connected to the satellite platform via an adapter 15, which is a completely separate system, although this design allows the platform to adapt to different loads, but it also undoubtedly increases the envelope space of the satellite.
  • the invention proposes the idea of integrating the design of the satellite platform structure and the load structure, and organically combines the load structure and the platform structure, which is not only the bearing structure of the payload, but also an inseparable part of the satellite platform, and the same structure serves as the same structure.
  • Two roles have improved the functional density set of the satellite structure, reducing satellite quality, reducing size, and reducing costs.
  • the honeycomb sandwich panel structure is adopted, and the heat pipe is pre-buried in the board to realize machine-heat integration, and the design is simple and convenient, thereby improving the functional density of the satellite.
  • the finite element numerical simulation results show that the proposed structural form can meet the relevant structural performance requirements of satellites and can be used as a reference structure for the development of related satellites in the future.
  • the invention solves the problem that the existing satellite structure system adopts the platform and the load independent design method, and has the problems of low resource utilization rate and high structural redundancy, resulting in heavy mass and large volume of the system, and provides a satellite for platform load integration. structure.
  • the satellite structure for platform load integration includes an upper plate, a central bearing tube, a side plate, a docking ring, and a bottom plate; and a docking ring is used as an assembly reference, a bottom plate is mounted on the docking ring, and a center is installed on the bottom plate
  • the bearing plate is mounted on the central bearing tube, and the side plate is fixed on the side of the upper plate and the bottom plate.
  • a plurality of upper plate brackets are uniformly disposed in a circumferential direction of the central bearing tube, and the upper plate is mounted on the central bearing tube through a plurality of upper plate brackets.
  • the present invention includes a plurality of side panels, each side of which is provided with a rod through which the side panels are coupled to the heart bearing cylinder.
  • the invention further comprises three rod brackets, three side panels, three rods on both sides of each side panel, the three rod brackets are evenly arranged in the circumferential direction of the central bearing cylinder, the adjacent sides The first two rods on the adjacent side of the plate are fixed to the same rod bracket, and the third rod on the adjacent side of each adjacent side plate is connected to the bottom plate.
  • Both the bottom plate and the upper plate of the present invention adopt a honeycomb sandwich structure.
  • the present invention changes the traditional design method for the topology design of the platform load integrated satellite structure, and does not adopt the design method of the traditional satellite structure sub-segment, and arranges each sub-system in different Wei-Yi cabins.
  • all the satellite cabins are combined to form a completed satellite, but beyond the boundaries between the subsystems, the resource sharing idea is adopted, and the platform and the load structure are considered as a whole, and a platform load is designed.
  • the versatile structure of the integrated satellite is
  • the present invention proposes a satellite structure for platform load integration, which has the following features: compact structure, small volume, light weight; high functional density of structure; high rigidity, structure High safety margin and high reliability.
  • FIG. 1 is an exploded perspective view showing the structure of a platform load integrated satellite according to the present invention
  • FIG. 2 is a schematic diagram of a combination of structures for a platform load integrated satellite according to the present invention
  • FIG. 3 is a schematic exploded view of the existing US MMS satellite platform.
  • FIG. 1 and FIG. 2 which is composed of an upper plate 1, a central bearing tube 2, a side plate 3, a docking ring 7, and a bottom plate 8.
  • the three rod brackets 9 are composed of twelve upper plate brackets 10.
  • the docking ring 7 is made of aluminum with a standard star-and-arrow interface; the bottom plate 8 is mounted on the docking ring 7, and the bottom plate 8 adopts a honeycomb sandwich structure, and the honeycomb sandwich structure has the advantages of light weight and lightness.
  • the rigidity is high; the central bearing cylinder 2 is installed on the bottom plate 8, and the central bearing cylinder 2 is made of carbon fiber composite material, which is not only the main bearing structure of the satellite, but also plays the role of eliminating the flash in the camera; Install 12 upper plate brackets and three rod brackets in the circumferential direction of 2; install the upper plate 1 on the twelve upper plate brackets 10, the upper plate 1 also adopts a honeycomb sandwich structure; three side plates are installed, and the side plates 3 pass The screws are fixed to the side surfaces of the bottom plate 8 and the upper plate 1; the three side plates are connected to the central bearing tube 2 through the rods 1, the rods 2 and the rods 3 on both sides of each side plate 3, and serve as auxiliary supports.
  • the bottom plate 8, the upper plate 1 and the three side plates 3 are used to mount the on-board equipment.
  • each side plate 3 Three rods are disposed on both sides of each side plate 3 in the present embodiment, and the three rod brackets 9 are evenly disposed in the circumferential direction of the central bearing tube 2, and the phases on each adjacent side plate 3 The first two rods on the adjacent side are fixed to the same rod bracket 9, and the third rod on the adjacent side of each adjacent side plate 3 is connected to the bottom plate 8.
  • the specific functions of the satellite structure for platform load integration described in this embodiment include: bearing the load, withstanding the load generated by the satellite during ground operation and transportation, and withstanding the acceleration, vibration, shock and noise generated by the satellite during the launching process.
  • the load is subjected to the impact load generated by the action of the satellite mechanism, and is subjected to the load caused by the temperature change, the vacuum state and the orbital movement during the customary on-orbit operation: the installation equipment, the satellite structure needs to provide a fixed installation interface for the on-board instrument equipment and maintain Certain precision, satellite heat
  • the installation of the control components also needs to be implemented through the structure, the satellite structure should provide protection for the satellite-borne equipment; provide the configuration, the skeleton of the satellite-structured satellite, provide the structural shape for the whole star, provide an interface for the connection between the satellite and the launch vehicle, and extend the satellite
  • the connection of the accessory provides an interface; eliminates astigmatism, blocks part of the gas and other stray light from entering the window glass and the camera lens, and utilizes the
  • the spaceborne integrated satellite structure not only plays the role of the satellite structure platform to bear the load, install the equipment and provide the configuration, but also plays the role of the camera structure hood to eliminate stray light.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Laminated Bodies (AREA)
  • Body Structure For Vehicles (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

用于平台载荷一体化的卫星结构,包括上板(2)、中心承力筒(3)、侧板(3)、对接环(7)、底板(8);以对接环(7)作为装配基准,在所述对接环(7)上安装底板(8),在所述底板(8)上安装中心承力筒(2),所述上板(1)安装在中心承力筒(2)上,侧板(3)固定在上板(1)和底板(8)的侧面。所述的中心承力筒(7)的周向上均匀设置有多个上板支架(10),上板(1)通过多个上板支架(10)安装在中心承力筒(2)上,该卫星结构紧凑、体积小、质量轻;结构功能密集度高;刚度高,结构安全裕度大,可靠性高。

Description

用于平台载荷一体化的卫星结构 技术领域
本发明涉及航天航空技术领域。具体涉及一种用于平台载荷一体化卫星的结构,可实现高性能小卫星平台与载荷结构的一体化高度集成,同时兼顾不同型号小卫星模块化和标准化功能扩展任务需求。
背景技术
卫星一般由有效载荷和卫星平台(或称公用舱)构成。传统的卫星设计多采用通用的卫星平台与不同有效载荷组合的方式来满足不同的卫星使命。所谓卫星平台就是一个能适应不同有效载荷配置,完成各自特定飞行使命,通用性较强的公用舱。基于这种设计理念,在卫星制造过程中,多是采用黑匣子的设计方法,先制造出各个独立的星上工作单元,然后,将这些单元组装到连接结构上组成卫星,这些独立单元具有自己的支承结构和操纵控制电路,零部件和控制电路无法共用,最终,使得卫星结构重叠,控制元器件数量增多,导致卫星重量的增加。地面设备这样做尚无大碍,但对卫星则大大提高发射成本,降低可靠度。
比较典型的例子如著名的美国MMS卫星平台,如图1所示,整个卫星平台由四段舱组成,分别是姿态控制分系统舱11、电源舱14、通信与数管舱13和推进舱14,每个舱都有自己的支承结构和操纵控制电路,这些舱被单独制造,然后通过MMS支撑结构16连接到一起,MMS支撑结构起到连接与传递载荷的作用,这样就组成了一个完整的卫星平台。有效载荷与卫星平台通过适配器15相连,他们是完全独立的两个系统,虽然这样的设计可以使平台适应不同的载荷,但是无疑也增大了卫星的包络空间。
80年代中期以来,以高技术为基础的现代小卫星的发展十分迅速,并带动卫星向小型化方向发展。小卫星具有重量轻、体积小、成本低、研制周期短、功能密度高五大优点,这种采用卫星平台和有效载荷舱设计的卫星,虽然卫星平台的使用可以避免不同卫星所需保障系统的重新研制,但是其针对性较差,其载荷与服务系统分舱设计,包络空间和质量都较大,不适合于小卫星小型化、轻量化的设计思想。
本发明提出了种卫星平台结构与载荷结构一体化设计的思想,它将载荷结构与平台结构有机结合于一体,既是有效载荷的承力结构,同时也是卫星平台不可分割的一部分,同一个结构担任两种角色,提高了卫星结构的功能密度集,减轻了卫星质量、缩小体积、降低成本。
采用蜂窝夹层板式结构,板内预埋热管,做到机-热一体化,设计简单方便,提高了卫星的功能密度。有限元数值模拟结果表明,本发明提出的结构形式,能够满足卫星的有关结构性能要求,可以作为未来相关卫星研制的参考结构形式。
发明内容
本发明为解决现有卫星结构系统采用平台与载荷独立设计的方法,存在资源利用率低以及结构冗余度高,导致系统质量重体积大等问题,提供一种用于平台载荷一体化的卫星结构。
用于平台载荷一体化的卫星结构,包括上板、中心承力筒、侧板、对接环、底板;以对接环作为装配基准,在所述对接环上安装底板,在所述底板上安装中心承力筒,所述上板安装在中心承力筒上,侧板固定在上板与底板的侧面。
所述的中心承力筒的周向上均匀设置多个上板支架,上板通过多个上板支架安装在中心承力筒上。
本发明包括多个侧板,每个侧板的两侧设有杆,通过所述杆使侧板与心承力筒连接。
本发明还包括三个杆支架,侧板为三个,每个侧板的两侧设有三个杆,所述三个杆支架均匀设置在中心承力筒的周向上,所述每相邻侧板上的相邻一侧的前两个杆固定在同一个杆支架上,每相邻侧板上的相邻一侧的第三个杆与底板相连。
本发明所述的底板和上板均采用蜂窝夹层结构。
本发明的有益效果:本发明针对平台载荷一体化卫星结构在拓扑结构设计上改变了传统的设计方法,不采用传统卫星结构分舱段的设计方式,将各分系统布置在不同的卫是舱内,再将所有的卫星舱组合在一起构成一个完成的卫星,而是超越各分系统间界限,采用资源共享思想,将平台与载荷结构作为一个整体进行考虑,设计出一种用于平台载荷一体化卫星的多功能结构。
本发明为了解决现有采用资源共享理念,提出了一种用于平台载荷一体化的卫星结构,该结构具备以下特点:结构紧凑、体积小、质量轻;结构功能密度集高;刚度高,结构安全裕度大,可靠性高。
附图说明
图1为本发明所述的用于平台载荷一体化卫星的结构的分解示意图;
图2为本发明所述的用于平台载荷一体化卫星的结构的组合示意图;
图3为现有美国MMS卫星平台结构分解示意图。
具体实施方式
具体实施方式一、结合图1和图2说明本实施方式,用于平台载荷一体化的卫星结构,该结构由上板1、中心承力筒2、侧板3、对接环7、底板8、三个杆支架9与十二个上板支架10组成。
以对接环7作为装配基准,对接环7采用标准星箭接口,用铝材加工而成;在对接环7上安装底板8,底板8采用蜂窝夹层结构,蜂窝夹层结构的优点是质量轻、比刚度高;在底板8上安装中心承力筒2,中心承力筒2采用碳纤维复合材料,它们既是卫星的主承力结构,又在相机中起到消杂闪光的作用;在中心承力筒2的周向上安装十二个上板支架及三个杆支架;在十二个上板支架10上安装上板1,上板1同样采用蜂窝夹层结构;安装三块侧板,侧板3通过螺钉固定在底板8及上板1的侧面;通过每块侧板3两侧的杆1、杆2及杆3将三块侧板与中心承力筒2相连,起到辅助支撑的作用。底板8、上板1及三块侧板3用于安装星上设备。
本实施方式中所述的每个侧板3的两侧设有三个杆,所述三个杆支架9均匀设置在中心承力筒2的周向上,所述每相邻侧板3上的相邻一侧的前两个杆固定在同一个杆支架9上,每相邻侧板3上的相邻一侧的第三个杆与底板8相连。
本实施方式所述的用于平台载荷一体化的卫星结构具体功能包括:承受载荷,承受卫星在地面操作和运输过程中产生的载荷,承受卫星在发射过程中产生的加速度、振动、冲击和噪声载荷,承受卫星机构动作产生的冲击载荷,承受为习惯在轨运行时由于温度交变、真空状态和变轨运动产生的载荷:安装设备,卫星结构需要为星载仪器设备提供固定安装界面并保持一定精度,卫星热 控部件的安装也需要通过结构来实施,卫星结构应对星载设备提供保护;提供构型,卫星结构式卫星的骨架,为整星提供构造外形,为卫星和运载火箭的连接提供接口,为卫星伸展附件的连接提供接口;消杂散光,遮挡部分地气光和其它杂光进入窗口玻璃和相机镜头,利用表面材料特性,最大限度地吸收已进入遮光罩的杂散光,保证较高的信噪比。
综上,星载一体化卫星结构既起到卫星结构平台承受载荷、安装设备和提供构型的作用,又起到相机结构遮光罩消杂散光的作用。

Claims (5)

  1. 用于平台载荷一体化的卫星结构,包括上板(1)、中心承力筒(2)、侧板(3)、对接环(7)、底板(8);其特征是,以对接环(7)作为装配基准,在所述对接环(7)上安装底板(8),在所述底板(8)上安装中心承力筒(2),所述上板(1)安装在中心承力筒(2)上,侧板(3)固定在上板(1)与底板(8)的侧面。
  2. 根据权利要求1所述的用于平台载荷一体化的卫星结构,其特征在于,中心承力筒(2)的周向上均匀设置多个上板支架(10),上板(1)通过多个上板支架(10)安装在中心承力筒(2)上。
  3. 根据权利要求1或2所述的用于平台载荷一体化的卫星结构,其特征在于,侧板(3)为多个,每个侧板(3)的两侧设有杆,通过所述杆使侧板(3)与心承力筒(2)连接。
  4. 根据权利要求3所述的用于平台载荷一体化的卫星结构,其特征在于,还包括三个杆支架(9),侧板(3)为三个,每个侧板(3)的两侧设有三个杆,所述三个杆支架(9)均匀设置在中心承力筒(2)的周向上,所述每相邻侧板(3)上的相邻一侧的前两个杆固定在同一个杆支架(9)上,每相邻侧板(3)上的相邻一侧的第三个杆与底板(8)相连。
  5. 根据权利要求1所述的用于平台载荷一体化的卫星结构,其特征在于,所述底板(8)和上板(1)均采用蜂窝夹层结构。
PCT/CN2014/001170 2014-12-23 2014-12-25 用于平台载荷一体化的卫星结构 WO2016101086A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410809601.7A CN104648693B (zh) 2014-12-23 2014-12-23 用于平台载荷一体化的卫星结构
CN201410809601.7 2014-12-23

Publications (1)

Publication Number Publication Date
WO2016101086A1 true WO2016101086A1 (zh) 2016-06-30

Family

ID=53240425

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/001170 WO2016101086A1 (zh) 2014-12-23 2014-12-25 用于平台载荷一体化的卫星结构

Country Status (2)

Country Link
CN (1) CN104648693B (zh)
WO (1) WO2016101086A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106218921A (zh) * 2016-07-25 2016-12-14 西北工业大学 一种柔性可伸缩碰撞触发的抓捕机构及方法
CN112498742A (zh) * 2021-01-13 2021-03-16 北京工商大学 采用笼屉式封闭箱体结构的电子学舱
CN112977882A (zh) * 2021-03-12 2021-06-18 上海卫星工程研究所 中心承力筒式贮箱并联平铺的高轨卫星平台构型
CN113911397A (zh) * 2021-09-30 2022-01-11 北京空间飞行器总体设计部 一种桁架式光学遥感载荷舱主结构
CN114162350A (zh) * 2021-12-01 2022-03-11 上海宇航系统工程研究所 一种适用于空间站的对日定向装置主结构
CN115626301A (zh) * 2022-09-05 2023-01-20 深圳航天东方红卫星有限公司 一种载荷结构一体化开敞式卫星构型
CN115743602A (zh) * 2022-09-28 2023-03-07 北京微纳星空科技有限公司 卫星平台
CN116513487A (zh) * 2023-07-05 2023-08-01 北京未来宇航空间科技研究院有限公司 多功能上面级构型及航天运载器

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104648693B (zh) * 2014-12-23 2017-01-11 中国科学院长春光学精密机械与物理研究所 用于平台载荷一体化的卫星结构
FR3041939B1 (fr) 2015-10-02 2017-10-20 Airbus Defence & Space Sas Satellite comprenant un instrument optique de prise de vue
CN105235916B (zh) * 2015-10-27 2017-10-27 上海微小卫星工程中心 一种紧凑布局的一体化卫星
CN105527685A (zh) * 2016-01-28 2016-04-27 长光卫星技术有限公司 一种用于光学微小卫星主承力构件与光学相机的共结构
CN106253967B (zh) * 2016-07-28 2019-04-30 航天东方红卫星有限公司 适用于微卫星平台与载荷信息一体化设计的数据维护方法
CN106428651A (zh) * 2016-11-29 2017-02-22 上海卫星工程研究所 一种天基大口径多约束系外类地行星探测器构型
CN106742063A (zh) * 2016-11-30 2017-05-31 上海卫星工程研究所 内含式卫星构型
CN106742064A (zh) * 2016-11-30 2017-05-31 上海卫星工程研究所 一种无舱板开放式一体化探测器构型
CN106843248B (zh) * 2017-01-24 2019-05-31 上海航天控制技术研究所 一种卫星发射入轨后单机安装偏差估计和修正方法
CN107065395B (zh) * 2017-05-24 2019-10-22 北京空间机电研究所 一种用于地球静止轨道遥感相机的遮光罩结构
CN107380483B (zh) * 2017-07-05 2023-09-01 上海宇航系统工程研究所 一种航天器构型
CN107458629A (zh) * 2017-07-05 2017-12-12 上海宇航系统工程研究所 一种航天器载荷舱的构型
CN107505799B (zh) * 2017-09-18 2020-04-10 北京空间飞行器总体设计部 一种集中点式受力的载荷支撑结构
CN107967393B (zh) * 2017-12-07 2021-02-26 上海宇航系统工程研究所 基于多约束条件下的航天器双筒并联结构承载设计方法
CN108860659A (zh) * 2018-05-31 2018-11-23 北京空间飞行器总体设计部 一种基于可展开平板相控阵天线的一体化卫星
CN109795717A (zh) * 2019-03-05 2019-05-24 四川星空年代网络通信有限公司 一种具备自动储能利用的卫星
CN112061425B (zh) * 2020-09-08 2022-04-08 上海航天控制技术研究所 一种敏捷小卫星星敏感器受地气光干扰的规避方法
CN112373726B (zh) * 2020-11-24 2022-07-05 中国空间技术研究院 一种杆板式全电推卫星平台构型
CN114408215B (zh) * 2021-12-27 2024-02-09 航天东方红卫星有限公司 一种适用于快速机动超稳成像的卫星构型

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4009851A (en) * 1974-12-23 1977-03-01 Rca Corporation Spacecraft structure
EP0665162B1 (en) * 1994-01-28 1998-04-08 FINMECCANICA S.p.A. Structural adaptor for the loading bay of a carrier rocket
US6131857A (en) * 1998-10-30 2000-10-17 Hebert; Barry Francis Miniature spacecraft
CN103387058A (zh) * 2012-05-11 2013-11-13 波音公司 多航天器发射系统
CN104015937A (zh) * 2013-02-28 2014-09-03 波音公司 具有开放侧面的航天器
CN104648693A (zh) * 2014-12-23 2015-05-27 中国科学院长春光学精密机械与物理研究所 用于平台载荷一体化的卫星结构

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4682744A (en) * 1985-04-08 1987-07-28 Rca Corporation Spacecraft structure
US6206327B1 (en) * 1999-03-31 2001-03-27 Lockheed Martin Corporation Modular spacecraft bus
FR2959490B1 (fr) * 2010-04-28 2012-07-13 Astrium Sas Satellite a structure simplifiee, allegee et economique, et son procede de mise en oeuvre
CN102009746B (zh) * 2010-11-08 2012-11-14 航天东方红卫星有限公司 八边形体装电池阵立柱式微小卫星构型
CN102717899B (zh) * 2012-06-26 2014-10-29 上海卫星工程研究所 金星探测器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4009851A (en) * 1974-12-23 1977-03-01 Rca Corporation Spacecraft structure
EP0665162B1 (en) * 1994-01-28 1998-04-08 FINMECCANICA S.p.A. Structural adaptor for the loading bay of a carrier rocket
US6131857A (en) * 1998-10-30 2000-10-17 Hebert; Barry Francis Miniature spacecraft
CN103387058A (zh) * 2012-05-11 2013-11-13 波音公司 多航天器发射系统
CN104015937A (zh) * 2013-02-28 2014-09-03 波音公司 具有开放侧面的航天器
CN104648693A (zh) * 2014-12-23 2015-05-27 中国科学院长春光学精密机械与物理研究所 用于平台载荷一体化的卫星结构

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106218921A (zh) * 2016-07-25 2016-12-14 西北工业大学 一种柔性可伸缩碰撞触发的抓捕机构及方法
CN112498742A (zh) * 2021-01-13 2021-03-16 北京工商大学 采用笼屉式封闭箱体结构的电子学舱
CN112498742B (zh) * 2021-01-13 2022-07-19 北京工商大学 采用笼屉式封闭箱体结构的电子学舱
CN112977882A (zh) * 2021-03-12 2021-06-18 上海卫星工程研究所 中心承力筒式贮箱并联平铺的高轨卫星平台构型
CN113911397A (zh) * 2021-09-30 2022-01-11 北京空间飞行器总体设计部 一种桁架式光学遥感载荷舱主结构
CN113911397B (zh) * 2021-09-30 2024-04-02 北京空间飞行器总体设计部 一种桁架式光学遥感载荷舱主结构
CN114162350A (zh) * 2021-12-01 2022-03-11 上海宇航系统工程研究所 一种适用于空间站的对日定向装置主结构
CN114162350B (zh) * 2021-12-01 2023-09-29 上海宇航系统工程研究所 一种适用于空间站的对日定向装置主结构
CN115626301A (zh) * 2022-09-05 2023-01-20 深圳航天东方红卫星有限公司 一种载荷结构一体化开敞式卫星构型
CN115743602A (zh) * 2022-09-28 2023-03-07 北京微纳星空科技有限公司 卫星平台
CN116513487A (zh) * 2023-07-05 2023-08-01 北京未来宇航空间科技研究院有限公司 多功能上面级构型及航天运载器
CN116513487B (zh) * 2023-07-05 2023-09-15 北京未来宇航空间科技研究院有限公司 多功能上面级构型及航天运载器

Also Published As

Publication number Publication date
CN104648693A (zh) 2015-05-27
CN104648693B (zh) 2017-01-11

Similar Documents

Publication Publication Date Title
WO2016101086A1 (zh) 用于平台载荷一体化的卫星结构
CN108674692B (zh) 一种遥感微小卫星
CN109484673B (zh) 一种载荷平台分离式遥感微小卫星构型及其装配方法
CN100575191C (zh) 一种新型航天器主承力结构
EA025867B1 (ru) Система вывода на орбиту нескольких космических аппаратов
EA031358B1 (ru) Модульная центральная конструкция для сдвоенного запуска космических летательных аппаратов
CN111703592B (zh) 一种大型商业遥感卫星平台构型及装配方法
CN111003211B (zh) 一种可在轨组装扩展的航天器构型
CN103935529B (zh) 一种快速响应卫星结构
Peral et al. RainCube, a Ka-band precipitation radar in a 6U CubeSat
CN103264774A (zh) 一种火星轨道的微小探测器
CN106628252A (zh) 一种基于并联布局有效载荷适配器的留轨飞行器结构
CN102139757A (zh) 一种适用于无人机和模型飞机的构架式前中机身
RU2688630C2 (ru) Космическая платформа
CN105775166A (zh) 工字形卫星平台
Barnett et al. Multifunctional structures for advanced spacecraft
CN109823514A (zh) 一种可调节安装角的易拆卸尾翼结构
CN110562499B (zh) 一种壁挂式主频可调变截面一箭多星发射小卫星结构
CN108791953B (zh) 一种适应搭载的梯形式小卫星结构
RU2569658C2 (ru) Космическая платформа
Wang et al. Design and Application Prospect of China’s Tiangong Space Station
RU2648520C2 (ru) Космическая платформа
CN111409871A (zh) 带有可伸展桁架节点舱的卫星平台构型
CN115352651A (zh) 一种适于批产的模块化机热一体化业务立方星系统
CN104290918B (zh) 小型化轨道拖船卫星构型与布局设计方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14908657

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14908657

Country of ref document: EP

Kind code of ref document: A1