WO2016101082A1 - Masterbatch composition that can be used in the production of dental prostheses and production method thereof - Google Patents

Masterbatch composition that can be used in the production of dental prostheses and production method thereof Download PDF

Info

Publication number
WO2016101082A1
WO2016101082A1 PCT/CL2015/000068 CL2015000068W WO2016101082A1 WO 2016101082 A1 WO2016101082 A1 WO 2016101082A1 CL 2015000068 W CL2015000068 W CL 2015000068W WO 2016101082 A1 WO2016101082 A1 WO 2016101082A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanowires
masterbatch
dental prostheses
nws
composition
Prior art date
Application number
PCT/CL2015/000068
Other languages
Spanish (es)
French (fr)
Inventor
Manuel Francisco MELÉNDREZ CASTRO
Paulo Andrés FLORES VEGA
Carlos Andrés MEDINA MUÑOZ
Eduardo Gerardo PÉREZ TIJERINA
Verónica Antonieta TORRES QUEZADA
Original Assignee
Universidad de Concepción
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad de Concepción filed Critical Universidad de Concepción
Publication of WO2016101082A1 publication Critical patent/WO2016101082A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/24Heavy metals; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/24Heavy metals; Compounds thereof
    • A61K33/28Mercury; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/80Preparations for artificial teeth, for filling teeth or for capping teeth
    • A61K6/884Preparations for artificial teeth, for filling teeth or for capping teeth comprising natural or synthetic resins

Definitions

  • the technology is oriented to the chemical area, more specifically, it corresponds to a composition of a masterbatch useful in the elaboration of dental prostheses.
  • the dentures are intended to replace the lost organs of the natural dentition, as well as the structures associated with the maxilla and the jaw with the aim of recovering the aesthetics and preserving the emotional health of the patient.
  • the material with which dental prostheses are currently manufactured is based on acrylic resins, mainly composed of a polymer called PMMA polymethylmethacrylate, whose monomer is MMA (methyl methacrylate).
  • PMMA is a thermoplastic that can be of the linear type or with few ramifications.
  • Acrylic resin is nothing more than a mixture of monomer (MMA), an initiator and a previously polymerized PMMA polymer.
  • dyes in the form of threads are added to simulate blood vessels and give good appearance to the material when used for the manufacture of permanent dentures.
  • the physicochemical properties of PMMA play a fundamental role, mainly surface roughness, flexural strength, porosity and solubility. Since, being different properties from each other, they are closely related and contribute to microbial adhesion and retention on the surface of the prosthesis.
  • Acrylic resins have good mechanical properties and good chemical resistance which prevents corrosion of the prosthesis.
  • one of the problems that present the most is the dimensional stability over time, property that certain materials have that when subjected to changes in temperature and humidity do not lose their shape and maintain their original dimensions. This causes the teeth of the prosthesis to be released or loosened and that the user has discomfort due to the deformation of the material.
  • nanoparticles the antimicrobial properties of silver and copper have received the most attention, being used as a coating or incorporated in various materials, including PMMA.
  • PMMA a coating or incorporated in various materials
  • nanoparticle size an inverse relationship between nanoparticle size and antimicrobial activity has been demonstrated.
  • nanoparticles can offer other advantages for the biomedical field by improving biocompatibility. Even bacteria are less likely to acquire resistance against metal nanoparticles than other antibiotics.
  • silver nanoparticles are being evaluated to be incorporated into prosthetic materials and orthodontic adhesives. It has been shown that the amount of silver nanoparticles incorporated into the matrix of a polymer can influence the physical properties of these materials.
  • Ahmad Sodagar et al., (2012) proposed to study the effects produced by silver nanoparticles (Ag-NPs) on the flexural strength of acrylic resins. Since nanoparticles have the possibility of imparting mechanical properties to some dental materials, they assumed that the addition of Ag-NPs to acrylic resins would affect their mechanical characteristics. Therefore, although the addition of Ag-NPs has an antimicrobial advantage, they were also disturbed by its effects on the flexural strength in the PMMA resin.
  • ZnO-NPs zinc oxide nanoparticles
  • biofilm culture test systems it has been tested in vitro with zinc oxide nanoparticles (ZnO-NPs) in biofilm culture test systems. Finding that these ZnO-NPs mixed in a variety of composite materials, have excellent properties to significantly inhibit the growth of Streptococcus sobrinus biofilms in concentrations of not less than 10% (w / w) in a three-day trial period. However, at this concentration, the impact of the structural characteristics of composite materials is pending. (Allaker, 2010). ZnO-NPs have also been tested on the mechanisms of antibacterial activity, which include the generation of reactive oxygen species and damage to the cell membrane, with the consequent interaction of nanoparticles with intracellular content, (Allaker et al. , 2014).
  • ZrO2-NTs zirconium dioxide nanotubes
  • This oxide possesses a variety of advantageous properties such as excellent toughness and mechanical strength, resistance to abrasion and physical corrosion, and biocompatibility. It has been applied in clinical materials, especially for artificial denture and bone repair. However, there is still no study focused as a reinforcement of PMMA for prosthetic base.
  • the present technology corresponds to a composition of a masterbatch (concentrate) of thermo-curable and self-curable composite acrylic resins that include within the polymer matrix nanowires of silver (Ag-NWs), copper (Cu-NWs) and oxide of zinc (ZnO-NWs), to increase the useful life of a final forming due to a better control in its dimensional stability.
  • the nanowires reinforce the polymer matrix and provide antimicrobial, antifungal and photocatalytic properties to the final conformation.
  • the applications of this masterbatch range from the manufacture of permanent dentures to implants for medical use, in addition to the manufacture of special and resistant parts also for medical use.
  • These three nanomaterials will present an improved interface with the resin allowing a reinforcement of the resin, and consequently, substantially benefiting its mechanical properties. Especially, it improves the creep over time of the material avoiding deformations, which can be obtained a dimensionally stable prosthesis. In addition, they allow to obtain antimicrobial prostheses that control the bacterial flora that is housed in the spaces that are in contact between the gums and the prosthesis, avoiding the bad smell and also the bacterial plaque.
  • the metal nanowires correspond to a single crystal that has a preferential growth direction, and in particular, the Cu and Ag nanowires have shape memory (Mem-F) effect and pseudo-elastic behavior in single crystals with FCC structure (Cubic face centered).
  • Mem-F is a behavior that is associated with a reversible network reorientation process of the crystalline structure and is driven by surface tension and the high reorientation process of the FCC crystalline structure and the large surface volume ratio of the nanowires The existence of this behavior depends on the twinnability of the material, size of the nanowires and the temperature.
  • Mem-F and pseudo-elastic behavior are clearly a phenomenon that has not been observed in the bulk state of metals (Cu and Ag), and indicates that nanowires can be used as nano and microstructural materials with self- healed
  • Shape memory nanowires constitute an improvement over alloys with SMA shape memory in multiple aspects, including the ability to maintain greater traction, for example, tensions of the order of gigapascals (GPa), experiencing reversible stresses that may exceed 40% compared to 10% for bulk SMAs.
  • GPa gigapascals
  • Another advantage of this type of materials is that it is simple to synthesize unique crystals.
  • the properties of the nano scale are transmitted to the polymer matrix, with which multifunctional nanocomposites are manufactured.
  • the above allows the load to reinforce the matrix, incorporate the antimicrobial, photocatalytic properties, dimensional stability due to the effects of nano-wire shape memory, longer life time of final forming, resistance to thermal changes and prevents the propagation of fissures
  • composition of the acrylic resin masterbatch comprises at least the following components:
  • Silver nanowires (Ag-NWs) with diameters between 20 - 150 nm, shorter lengths between 1 - 30 ⁇ and load ratio between 0.05 - 0.20% (w / w);
  • Copper nanowires with diameters between 20 - 150 nm, shorter lengths between 1 - 30 ⁇ and load ratio between 0.05 - 0.20% (w / w); Y
  • Zinc oxide nanowires with diameters less than 100 nm, lengths between 1 - 30 ⁇ and load ratio between 0.08 - 2.00% (w / w).
  • Methyl methacrylate monomer with inhibitor of the preferred type hydroquinone, nitrobenzene (NB), butylhydroxytoluene (BHT), 2,2-diphenyl- 1-picrylhydrazyl (DPPH), dinitro-ortho-cresol (DNOC), dinitro-sec-butylphenol (DNBP) and dinitrophenols (DNOP), at a concentration between 45-65 ppm; Y
  • the masterbatch is made with the liquid components of the composite acrylic resin and the nanometric charge, in a controlled atmosphere to avoid early polymerization.
  • Silver and copper wires are obtained by hydrothermal synthesis and zinc oxide nanowires are obtained by microwave-assisted thermal decomposition. All the nanowires used as a charge have proven antimicrobial properties, in addition ZnO-NWs are photocatalytic so they can prevent fungal growth.
  • Figures 1, 2 and 3 it is possible to see an image of the silver, copper and zinc oxide nanowires, respectively.
  • the masterbatch process includes at least the following stages:
  • the loads of Cu-NWs and Ag-NWs must be repeatedly washed with analytical grade ethanol to eliminate synthetic waste and growth precursor molecules preferably polyvinylpyrrolidone (PVP).
  • PVP polyvinylpyrrolidone
  • this masterbatch can be mixed to obtain dental prostheses with a solid component of the Polymethylmethacrylate (PMMA) type having an alkyl group with 1 to 20 carbon atoms, n-butyl polymethacrylate, acrylic copolymer, Poly (cyclohexyl methacrylate), poly (glycidyl methacrylate), poly (hydroxyalkyl methylmethacrylate), resins derived from acrylic acid and methacrylic acid.
  • PMMA Polymethylmethacrylate
  • thermo-curable acrylic resins allows to improve aspects of the final forming when used in the manufacture of permanent dentures.
  • Being 1 D nanostructures reinforce the matrix avoiding the propagation of cracks, improve the dimensional stability of the matrix in the final forming, avoid excessive formation of porosities and the deterioration of the resin.
  • the materials used are biocompatible, so they do not pose a risk to people's health and are chemically stable.
  • the composite acrylic resin has better thermal diffusivity, conductive, antimicrobial and dimensional stability properties as it is reinforced by nanowires.
  • Example 1 Procedure for the elaboration of nanocomposites with nanowires of copper, silver and zinc oxides.
  • cross-linking the solution containing all the nanometric charges was stirred for 20 min, during which time 2% w / v of the EDMA crosslinker was added, then the solution was closed under nitrogen atmosphere to avoid possible initiation or retardation of the mixture due to oxygen.
  • Example 2 Preparation of the composite acrylic resin to make permanent dentures.
  • the nanobatch loading masterbatch was previously stirred for 5 minutes using a magnetic stirrer.
  • the sample had to be agitated and homogenized to provide a good dispersion of the load, for which a glass rod and agitation were used vigorous manual.
  • the mixing ratios of the masterbatch and acrylic resin were those conventionally used, that is, 1/3 of masterbatch per 2/3 of resin.
  • the mixture was separated from the mixture of the plaster that filled the MACRIL with a film of HDPE (High Density Polyethylene) and covered until the curing process was finished, the working temperature was 20 ° C.
  • HDPE High Density Polyethylene
  • Pressing MACRIL was placed in a special press with its dimensions and a pressure of 1500 kg / cm 2 was exerted for 2 minutes.
  • Antimicrobial assays were carried out by the hydrothermal method and the method of decomposition assisted by microwaves to the nanowires separately, to verify if these materials had antimicrobial activity.
  • the results of the antimicrobial susceptibility assays by agar diffusion against the Escherichia Coli and Staphylococcus Aureus strains showed positive results (see Table 1).
  • Table 2 shows the result of the FTIR spectrum, where M1 corresponds to the dental laboratory sample, M2 standard resin without elaborated nanowires, M3 and M4 corresponds to the PMMA / NWs nanocomposites made with the masterbatch (performed in duplicate) . From the analysis of the FTIR spectrum it can be seen that there is no significant difference in any of the samples tested. This could also be verified by the consistency and appearance of the samples, which were very similar to the samples made in dental laboratories. The possible oxidation of the Ag-NWs and Cu-NWs due to the humidity of the plaster and the water that was filtered was avoided by the HDPE film.
  • thermosetting MMA monomer (Marche brand) was compared with each of the FTIR spectra of the prepared PMMA / NWs nanocomposites prepared with the masterbatch, where no fingerprints corresponding to residual monomer were found. Similarly to each of the liquid samples where the water absorption tests were performed, they were concentrated in a rotary evaporator and FTIR was performed, resulting negative for residual monomer. Therefore, it was concluded that in the curing process and the proportions used of PMMA and masterbatch are optimal for the curing reaction.
  • thermal diffusivity of the material is determined, corresponding to the rate of change with which a material increases in temperature, when it is brought into contact with the heat source. Therefore, the product of the value of its density and the heat capacity of it is determined through the thermal conductivity of the divided material. Thermal diffusivity is a parameter to determine the ability of the material to blur the temperature.
  • the volumetric resistivity is an intrinsic property of each material, it is defined as the opposition to the passage of current inside a material, for this a Mega Ohm meter Model 1550B FLUKE was used.
  • Table 3 where it is possible to observe that the material reinforced with nanowires is still an insulator, because the volumetric resistance was high. However, the trend shows that as the metal nanowires were added to the thermostable matrix there was a decrease in this. Otherwise it happens when ZnO-NWs are added, because the electrical properties of the material were not substantially improved compared to resins without nanowires. All sample values are expressed in GQ, so the composite acrylic resins (M6) continue to behave with electrical insulation. This benefits the prosthesis against possible corrosive effects and in the protection of artificial teeth.
  • the bending test was carried out on the Machine Per Prove Materiali No. 2710 of the Metro Com Comazzi Oscar Novara Italia company, according to ASTM 790. Rectangular specimens of approximate size 90 mm long, 20 mm wide and 7 were prepared. , 5 mm thick, as shown in Table 4. According to the results, the increase in nanowires within the polymer matrix decreased the mechanical properties of the material, but not significantly, which was probably due to the degree of crosslinking. of the nanocomposite. The PMMA / Cu-NWs and PMMA / Ag-NWs nanocomposites did not change significantly compared to the resin without nanowires, this was mainly due to the low charge of nanowires within the matrix.
  • the material decreased its resistance from 235.02 MPa to 180.00 MPa, maintaining the same order of magnitude. So, the material PMMA nanocomposite / nanowires prepared with the masterbatch, can be used without problem in the manufacture of permanent prostheses, since it improves the dimensional analysis of the pieces with a constant effort as a function of time.
  • This assay is commonly used to measure the sensitivity of a microbial agent against some antimicrobial compound in antibiotics and drugs.
  • polymeric nanocomposites were analyzed in order to know if they possessed antimicrobial activity.
  • the bacterial strain used for the tests was Staphylococcus Aureus.
  • Figure 4 it is possible to see in (a) the bacterial strain Staphylococcus Aureus incubated for 24 hours in Mueller Honton agar and in (b) the sample M6 fitted for the test showing the inibition halo is shown by way of example.
  • the antimicrobial agent diffused from the sample to the outside of the culture producing an inhibition zone, in which a critical concentration of the agent inhibited bacterial growth.

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Plastic & Reconstructive Surgery (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The invention relates to a masterbatch composition that can be used in the production of dental prostheses, comprising: a nanoscale filler formed by between 0.05 - 0.20 wt.-% silver nanowires, between 0.05 - 0.20 wt.-% copper nanowires, and between 0.08 - 2.00 wt.-% zinc oxide nanowires; and liquid components comprising between 45 - 65 ppm methyl methacrylate monomer with an inhibitor, between 0.3 - 1.0 wt.-% ethylene glycol dimethacrylate-type crosslinking agent, and traces of a N,N dimethyl-p-toluidine-type activator. The invention also relates to the production method thereof.

Description

UNA COMPOSICIÓN DE UN MASTERBATCH ÚTIL EN LA ELABORACIÓN DE PRÓTESIS DENTALES Y SU PROCESO DE ELABORACIÓN  A COMPOSITION OF A USEFUL MASTERBATCH IN THE DEVELOPMENT OF DENTAL PROSTHESIS AND ITS PROCESSING PROCESS
Sector Técnico  Technical Sector
La tecnología está orientada al área química, más específicamente, corresponde a una composición de un masterbatch útil en la elaboración de prótesis dentales. The technology is oriented to the chemical area, more specifically, it corresponds to a composition of a masterbatch useful in the elaboration of dental prostheses.
Técnica anterior Prior art
Las prótesis dentales tienen como finalidad remplazar los órganos perdidos de la dentición natural, así como las estructuras asociadas al maxilar y a la mandíbula con el objetivo de recuperar la estética y conservar la salud emocional del paciente. The dentures are intended to replace the lost organs of the natural dentition, as well as the structures associated with the maxilla and the jaw with the aim of recovering the aesthetics and preserving the emotional health of the patient.
El material con que se fabrican actualmente las prótesis dentales está basado en resinas acrílicas, compuestas principalmente de un polímero denominado polimetilmetacrilato PMMA, cuyo monómero es MMA (metilmetacrilato). El PMMA es un termoplástico que puede ser del tipo lineal o con pocas ramificaciones. La resina acrílica no es más que una mezcla de monómero (MMA), un iniciador y un polímero PMMA previamente polimerizado. Además se le agregan colorantes en forma de hilos para simular los vasos sanguíneos y darle buen aspecto al material cuando se usa para la fabricación de prótesis dentales permanentes. The material with which dental prostheses are currently manufactured is based on acrylic resins, mainly composed of a polymer called PMMA polymethylmethacrylate, whose monomer is MMA (methyl methacrylate). PMMA is a thermoplastic that can be of the linear type or with few ramifications. Acrylic resin is nothing more than a mixture of monomer (MMA), an initiator and a previously polymerized PMMA polymer. In addition, dyes in the form of threads are added to simulate blood vessels and give good appearance to the material when used for the manufacture of permanent dentures.
Para el desarrollo de prótesis totales las propiedades fisicoquímicas del PMMA juegan un papel fundamental, principalmente la rugosidad de la superficie, la resistencia a la flexión, la porosidad y la solubilidad. Puesto que, al ser propiedades diferentes entre sí, están en estrecha relación y contribuyen a la adherencia y retención microbiana en la superficie de la prótesis.  For the development of total prostheses, the physicochemical properties of PMMA play a fundamental role, mainly surface roughness, flexural strength, porosity and solubility. Since, being different properties from each other, they are closely related and contribute to microbial adhesion and retention on the surface of the prosthesis.
Las resinas acrílicas tienen buenas propiedades mecánicas y buena resistencia química lo que evita la corrosión de la prótesis. Sin embargo, uno de los problemas que más presentan es la estabilidad dimensional en el tiempo, propiedad que tienen ciertos materiales que al ser sometidos a cambios de temperatura y humedad no pierden su forma y mantiene sus dimensiones originales. Lo anterior hace que se suelten o aflojen los dientes de la prótesis y que el usuario presente molestias debido a la deformación del material.  Acrylic resins have good mechanical properties and good chemical resistance which prevents corrosion of the prosthesis. However, one of the problems that present the most is the dimensional stability over time, property that certain materials have that when subjected to changes in temperature and humidity do not lose their shape and maintain their original dimensions. This causes the teeth of the prosthesis to be released or loosened and that the user has discomfort due to the deformation of the material.
Constantemente se realizan estudios sobre la modificación de las resinas acrílicas para mejorar las propiedades fisicoquímicas, y disminuir la adherencia de microorganismos presentes en la cavidad bucal como la Candida albicans. Para superar algunas limitaciones que presenta el PMMA, se han incorporado a su composición fibras de refuerzos, lo cual incrementa sus propiedades mecánicas y evita de esta manera la propagación de fisuras, ya que la fractura de las bases de dentaduras es un problema recurrente en la práctica odontológica (Acosta et al, 2012). Actualmente existen estudios sobre los componentes óptimos para elaborar acrílico dental, enfocado en diferentes  Studies are constantly carried out on the modification of acrylic resins to improve the physicochemical properties, and decrease the adhesion of microorganisms present in the oral cavity such as Candida albicans. To overcome some limitations presented by the PMMA, reinforcement fibers have been incorporated into its composition, which increases its mechanical properties and thus prevents the propagation of fissures, since fracture of the denture bases is a recurring problem in the dental practice (Acosta et al, 2012). There are currently studies on the optimal components for making dental acrylic, focused on different
i compuestos y en la eliminación de microorganismos (Hanif et al., 2012; Jandt et al., 2009; Gómez et al, 2012). i compounds and in the elimination of microorganisms (Hanif et al., 2012; Jandt et al., 2009; Gómez et al, 2012).
Por otra parte, muchos metales se han utilizados durante siglos como agentes antimicrobianos como plata, cobre, oro, titanio, zinc, los cuales han atraído la atención debido a las distintas propiedades que pueden presentar para la aplicación a la que son destinados. Con respecto a las nanopartículas, las propiedades antimicrobianas de la plata y el cobre han recibido la mayor atención, siendo utilizados como revestimiento o incorporados en diversos materiales, incluyendo el PMMA. Además, se ha demostrado una relación inversa entre el tamaño de las nanopartículas y la actividad antimicrobiana. Como resultado de su pequeño tamaño, las nanopartículas pueden ofrecer otras ventajas para el campo biomédico mediante la mejora de la biocompatibilidad. Incluso, las bacterias son menos propensas a adquirir resistencia contra las nanopartículas metálicas que otros antibióticos.  On the other hand, many metals have been used for centuries as antimicrobial agents such as silver, copper, gold, titanium, zinc, which have attracted attention due to the different properties they can present for the application to which they are intended. With respect to nanoparticles, the antimicrobial properties of silver and copper have received the most attention, being used as a coating or incorporated in various materials, including PMMA. In addition, an inverse relationship between nanoparticle size and antimicrobial activity has been demonstrated. As a result of their small size, nanoparticles can offer other advantages for the biomedical field by improving biocompatibility. Even bacteria are less likely to acquire resistance against metal nanoparticles than other antibiotics.
Como una manera de reducir la adhesión de bacterias y hongos a los materiales orales y dispositivos, las nanopartículas de plata están siendo evaluadas para ser incorporadas en materiales de prótesis y adhesivos de ortodoncia. Se ha logrado demostrar que la cantidad de nanopartículas de plata incorporada dentro de la matriz de un polímero pueden influir sobre las propiedades físicas de estos materiales. Sin embargo, Ahmad Sodagar et al., (2012), propuso estudiar los efectos que produce las nanopartículas de plata (Ag-NPs) sobre las fuerza de flexión de las resinas acrílicas. Como las nanopartículas tienen la posibilidad de impartir propiedades mecánicas a algunos materiales dentales, ellos suponían que la adición de Ag-NPs a resinas acrílicas afectaría sus características mecánicas. Por lo tanto, aunque la adición de Ag-NPs tiene ventaja antimicrobiana, también se inquietaron por sus efectos sobre la fuerza de flexión en la resina de PMMA. As a way to reduce the adhesion of bacteria and fungi to oral materials and devices, silver nanoparticles are being evaluated to be incorporated into prosthetic materials and orthodontic adhesives. It has been shown that the amount of silver nanoparticles incorporated into the matrix of a polymer can influence the physical properties of these materials. However, Ahmad Sodagar et al., (2012), proposed to study the effects produced by silver nanoparticles (Ag-NPs) on the flexural strength of acrylic resins. Since nanoparticles have the possibility of imparting mechanical properties to some dental materials, they assumed that the addition of Ag-NPs to acrylic resins would affect their mechanical characteristics. Therefore, although the addition of Ag-NPs has an antimicrobial advantage, they were also disturbed by its effects on the flexural strength in the PMMA resin.
Zhihui Han, et al, 2014, estudiaron el efecto de las Ag-NPs como material de apoyo en una resina acrílica de poli(metacrilato de metilo), que fue reforzada con nanopartículas de dióxido de zirconio (2r02-NPs) y whiskers (nanobarras) de borato de aluminio (WsBA). Se encontró que las Ag-NPs mostraron un efecto sinérgico cuando se mezclaron con Zr02-NPs y WsBA; y donde estos últimos podrían mejorar la resistencia a la flexión de los materiales compuestos en comparación con el PMMA puro.  Zhihui Han, et al, 2014, studied the effect of Ag-NPs as a support material in an acrylic poly (methyl methacrylate) resin, which was reinforced with zirconium dioxide nanoparticles (2r02-NPs) and whiskers (nanobars ) aluminum borate (WsBA). It was found that Ag-NPs showed a synergistic effect when mixed with Zr02-NPs and WsBA; and where the latter could improve the flexural strength of composite materials compared to pure PMMA.
Por otro lado, es de conocimiento que el crecimiento de biopelículas contribuye a la formación de caries y al fracaso de la resina a base de materiales compuestos dentales. Por lo anterior, es que han sido utilizado los óxido considerados como agentes antimicrobianos entre los que se incluyen cobre, zinc, titanio y tungsteno (Allaker et al., 2014). Dentro de este contexto, se ha ensayado in vitro con nanopartículas de óxido de zinc (ZnO-NPs) en sistemas de prueba de cultivo de biopelículas. Encontrándose que estas ZnO-NPs mezcladas en una variedad de materiales compuestos, presentan excelentes propiedades para inhibir significativamente el crecimiento de biopelículas de Streptococcus sobrinus en concentraciones de no menos de 10 %(p/p) en un período de prueba de tres días. Sin embargo, a esta concentración queda pendiente evaluar el impacto de las características estructurales de los materiales compuestos (Allaker, 2010). También se ha ensayado con ZnO-NPs sobre los mecanismos de actividad antibacteriana, los que incluyen la generación de especies reactivas de oxígeno y el daño a la membrana celular, con la consiguiente interacción de las nanopartículas con el contenido intracelular, (Allaker et al., 2014). On the other hand, it is known that biofilm growth contributes to tooth decay and resin failure based on dental composite materials. Therefore, the oxide considered as antimicrobial agents has been used, including copper, zinc, titanium and tungsten (Allaker et al., 2014). Within this context, it has been tested in vitro with zinc oxide nanoparticles (ZnO-NPs) in biofilm culture test systems. Finding that these ZnO-NPs mixed in a variety of composite materials, have excellent properties to significantly inhibit the growth of Streptococcus sobrinus biofilms in concentrations of not less than 10% (w / w) in a three-day trial period. However, at this concentration, the impact of the structural characteristics of composite materials is pending. (Allaker, 2010). ZnO-NPs have also been tested on the mechanisms of antibacterial activity, which include the generation of reactive oxygen species and damage to the cell membrane, with the consequent interaction of nanoparticles with intracellular content, (Allaker et al. , 2014).
Otros estudios se han llevado a cabo con el propósito de reforzar la resina de PMMA para bases de prótesis con nanotubos de dióxido de zirconio (ZrO2-NTs), (WeiYu, et al, 2014). Determinando que estos nanotubos presentan un mejor efecto de refuerzo que las nanopartículas de ZrO2. Este óxido posee una variedad de propiedades ventajosas tales como excelente tenacidad y resistencia mecánica, resistencia a la abrasión y a la corrosión física, y biocompatibilidad. Se ha aplicado en materiales clínicos, especialmente para la dentadura artificial y la reparación de hueso. Sin embargo, todavía no existe un estudio centrado como refuerzo de PMMA para base de prótesis. Other studies have been carried out with the purpose of reinforcing PMMA resin for prosthetic bases with zirconium dioxide nanotubes (ZrO2-NTs), (WeiYu, et al, 2014). Determining that these nanotubes have a better reinforcing effect than the ZrO2 nanoparticles. This oxide possesses a variety of advantageous properties such as excellent toughness and mechanical strength, resistance to abrasion and physical corrosion, and biocompatibility. It has been applied in clinical materials, especially for artificial denture and bone repair. However, there is still no study focused as a reinforcement of PMMA for prosthetic base.
Otro énfasis ha sido emplear diferentes tipos de fibra (vidrio, polietileno) como material de refuerzo para las resinas de PMMA (Viswambaran et al., 2011), ya que permitirían un incremento de las propiedades mecánicas (Acosta et al., 2012). Ejemplo de lo anterior, es el resultado obtenido por T. Kanie et al. (1999), donde se determinó el efecto que produce el refuerzo con fibras de vidrio tejidas sobre las propiedades mecánicas de la resina de acrílico. En su investigación se demostró que para las muestras que contenían fibras de vidrio silanizadas, la fuerza de flexión y la resistencia al impacto fueron superiores a los de las muestras sin fibra de vidrio (Kanie et al., 2000). De la misma forma Paul Franklin et al., (2004) trabajo en similares condiciones pero con escamas de fibra de vidrio obteniendo resultados parecidos a los mencionados en el trabajo de T. Kanie. En base a estos antecedentes es que aún persiste la necesidad de encontrar materiales que permitan asegurar la calidad y durabilidad de las prótesis dentales, además de evitar la adherencia de microorganismos en la cavidad bucal. Divulgación de la Invención  Another emphasis has been to use different types of fiber (glass, polyethylene) as a reinforcement material for PMMA resins (Viswambaran et al., 2011), since they would allow an increase in mechanical properties (Acosta et al., 2012). An example of the above is the result obtained by T. Kanie et al. (1999), where the effect produced by the reinforcement with woven glass fibers on the mechanical properties of the acrylic resin was determined. In their investigation it was shown that for samples containing silanized glass fibers, the flexural strength and impact resistance were superior to those of samples without fiberglass (Kanie et al., 2000). In the same way, Paul Franklin et al., (2004) worked in similar conditions but with fiberglass scales obtaining results similar to those mentioned in the work of T. Kanie. Based on this background, there is still a need to find materials that ensure the quality and durability of dental prostheses, in addition to preventing the adherence of microorganisms in the oral cavity. Disclosure of the Invention
La presente tecnología corresponde a una composición de un masterbatch (concentrado) de resinas acrílicas compuestas termocurables y autocurables que incluyen dentro de la matriz polimérica nanoalambres (Nanowires) de plata (Ag-NWs), de cobre (Cu-NWs) y de óxido de zinc (ZnO-NWs), para aumentar la vida útil de un conformado final debido a un mejor control en la estabilidad dimensional de éste. Los nanoalambres refuerzan la matriz polimérica y aportan propiedades antimicrobianas, antifúngicas y fotocatalíticas al conformado final. Las aplicaciones de este masterbatch van desde la fabricación de prótesis dentales permanentes hasta implantes de uso médico, además de la fabricación de piezas especiales y resistentes también de uso médico. The present technology corresponds to a composition of a masterbatch (concentrate) of thermo-curable and self-curable composite acrylic resins that include within the polymer matrix nanowires of silver (Ag-NWs), copper (Cu-NWs) and oxide of zinc (ZnO-NWs), to increase the useful life of a final forming due to a better control in its dimensional stability. The nanowires reinforce the polymer matrix and provide antimicrobial, antifungal and photocatalytic properties to the final conformation. The applications of this masterbatch range from the manufacture of permanent dentures to implants for medical use, in addition to the manufacture of special and resistant parts also for medical use.
Estos tres nanomateriales presentaran una interface mejorada con la resina permitiendo un reforzamiento de ésta, y por consiguiente, beneficiando sustancialmente sus propiedades mecánicas. Especialmente, mejora la fluencia en el tiempo del material evitando deformaciones, con lo cual se puede obtener una prótesis estable dimensionalmente. Además, permiten obtener prótesis antimicrobianas que controlan la flora bacteriana que se aloja en los espacios que están en contacto entre las encías y la prótesis, evitando el mal olor y también la placa bacteriana. These three nanomaterials will present an improved interface with the resin allowing a reinforcement of the resin, and consequently, substantially benefiting its mechanical properties. Especially, it improves the creep over time of the material avoiding deformations, which can be obtained a dimensionally stable prosthesis. In addition, they allow to obtain antimicrobial prostheses that control the bacterial flora that is housed in the spaces that are in contact between the gums and the prosthesis, avoiding the bad smell and also the bacterial plaque.
Los nanoalambres metálicos corresponden a un cristal único que tiene una dirección de crecimiento preferencial, y en particular, los nanoalambres de Cu y Ag poseen efecto de memoria de forma (Mem-F) y comportamiento pseudo- elástico en cristales únicos con estructura FCC (Cúbico centrado en las caras). La Mem-F es un comportamiento que está asociado con un proceso de reorientación de red reversible de la estructura cristalina y es impulsado por la tensión superficial y el alto proceso de reorientación de la estructura cristalina de la FCC y la gran relación superficie volumen de los nanoalambres. La existencia de este comportamiento depende de la twinnabilidad del material, tamaño de los nanoalambres y la temperatura. La Mem-F y el comportamiento pseudo-elástico son claramente un fenómeno que no se ha observado en el estado bulk de los metales (Cu y Ag), e indica que los nanoalambres pueden ser usados como materiales nano y microestructurales con propiedades de auto-sanado. The metal nanowires correspond to a single crystal that has a preferential growth direction, and in particular, the Cu and Ag nanowires have shape memory (Mem-F) effect and pseudo-elastic behavior in single crystals with FCC structure (Cubic face centered). Mem-F is a behavior that is associated with a reversible network reorientation process of the crystalline structure and is driven by surface tension and the high reorientation process of the FCC crystalline structure and the large surface volume ratio of the nanowires The existence of this behavior depends on the twinnability of the material, size of the nanowires and the temperature. Mem-F and pseudo-elastic behavior are clearly a phenomenon that has not been observed in the bulk state of metals (Cu and Ag), and indicates that nanowires can be used as nano and microstructural materials with self- healed
Los nanoalambres de memoria de forma constituyen una mejora con respecto a las aleaciones con memoria de forma SMA en aspectos múltiples, incluyendo la capacidad para mantener una tracción mayor, por ejemplo, tensiones del orden de gigapascales (GPa), experimentando reversibles tensiones que pueden exceder el 40% en comparación con el 10% para SMAs en estado bulk. Otra ventaja de este tipo de materiales es que es sencillo sintetizar cristales únicos. Shape memory nanowires constitute an improvement over alloys with SMA shape memory in multiple aspects, including the ability to maintain greater traction, for example, tensions of the order of gigapascals (GPa), experiencing reversible stresses that may exceed 40% compared to 10% for bulk SMAs. Another advantage of this type of materials is that it is simple to synthesize unique crystals.
Por otra parte, al incorporar los nanoalambres en resinas autocurables y termocurables se transmiten las propiedades de la escala nano a la matriz polimérica, con la cual se fabrican nanocompuestos multifuncionales. Lo anterior, permite que la carga refuerce la matriz, incorpore las propiedades antimicrobianas, fotocataliticas, estabilidad dimensional debido a los efectos de memoria de forma de nanoalambres, mayor tiempo de vida útil de conformado final, resistencia a los cambios térmicos y evita la propagación de fisuras. On the other hand, by incorporating the nanowires into self-healing and thermosetting resins, the properties of the nano scale are transmitted to the polymer matrix, with which multifunctional nanocomposites are manufactured. The above, allows the load to reinforce the matrix, incorporate the antimicrobial, photocatalytic properties, dimensional stability due to the effects of nano-wire shape memory, longer life time of final forming, resistance to thermal changes and prevents the propagation of fissures
Específicamente, la composición del masterbatch de resinas acrílicas comprende al menos los siguientes componentes:  Specifically, the composition of the acrylic resin masterbatch comprises at least the following components:
a. Carga nanométrica:  to. Nanometric Load:
• Nanoalambres de plata (Ag-NWs) con diámetros comprendidos entre 20 - 150 nm, longitudes menores entre 1 - 30 μηι y proporción de carga entre 0,05 - 0,20 %(p/p);  • Silver nanowires (Ag-NWs) with diameters between 20 - 150 nm, shorter lengths between 1 - 30 μηι and load ratio between 0.05 - 0.20% (w / w);
• Nanoalambres de cobre (Cu-NWs) con diámetros comprendidos entre 20 - 150 nm, longitudes menores de entre 1 - 30 μιη y proporción de carga entre 0,05 - 0,20 %(p/p); y  • Copper nanowires (Cu-NWs) with diameters between 20 - 150 nm, shorter lengths between 1 - 30 μιη and load ratio between 0.05 - 0.20% (w / w); Y
· Nanoalambres de óxido de zinc (ZnO-NWs) con diámetros menores de 100 nm, longitudes menores de entre 1 - 30 μιτι y proporción de carga entre 0,08 - 2,00 %(p/p).  · Zinc oxide nanowires (ZnO-NWs) with diameters less than 100 nm, lengths between 1 - 30 μιτι and load ratio between 0.08 - 2.00% (w / w).
b. Componentes Líquidos:  b. Liquid Components:
• Monómero metilmetacrilato con inhibidor del tipo preferente: hidroquinona, nitrobenceno (NB), butilhidroxitolueno (BHT), 2,2-difenil- 1-picrilhidrazilo (DPPH), dinitro-orto-cresol (DNOC), dinitro-sec-butil- fenol (DNBP) y dinitrofenoles (DNOP), a una concentración entre 45 - 65 ppm; y • Methyl methacrylate monomer with inhibitor of the preferred type: hydroquinone, nitrobenzene (NB), butylhydroxytoluene (BHT), 2,2-diphenyl- 1-picrylhydrazyl (DPPH), dinitro-ortho-cresol (DNOC), dinitro-sec-butylphenol (DNBP) and dinitrophenols (DNOP), at a concentration between 45-65 ppm; Y
• Entrecruzador del tipo preferente EDMA (Etilenglicoldimetacrilato) entre 0,3 -2,0 % p/v.  • Crosslinker of the preferred type EDMA (Ethylene Glycolmethacrylate) between 0.3 -2.0% w / v.
• Activador del tipo N,N dimetil-p-toluidina en trazas.  • Activator of type N, N dimethyl-p-toluidine in traces.
Donde el ZnO actúa como pasivador del color debido a su color blanco, por esa razón la dispersión final que se obtiene es ligeramente blanca. Usar altas proporciones de Cu-NWs y Ag-NWs en el proceso es contraproducente, debido a que cada uno de estos alambres tiene un color particular (gris para Ag-NWs y rojizo para Cu-NWs). Por tanto, siendo las prótesis dentales permanentes una aplicación directa del masterbatch, ésta debe conservar un buen aspecto estético, el cual se debe conservar al utilizar el masterbatch para la preparación de la resina acrílica compuesta con la que se preparará la prótesis.  Where ZnO acts as a passivator of color due to its white color, for that reason the final dispersion obtained is slightly white. Using high proportions of Cu-NWs and Ag-NWs in the process is counterproductive, because each of these wires has a particular color (gray for Ag-NWs and reddish for Cu-NWs). Therefore, with permanent dentures being a direct application of the masterbatch, it must retain a good aesthetic appearance, which must be preserved when using the masterbatch for the preparation of the composite acrylic resin with which the prosthesis will be prepared.
El masterbatch se elabora con los componentes líquidos de la resina acrílica compuesta y la carga nanométrica, en atmósfera controlada para evitar su polimerización temprana. Los alambres de plata y de cobre se obtienen mediante síntesis hidrotermal y los nanoalambres de óxido de zinc se obtienen por medio de descomposición térmica asistida por microondas. Todos los nanoalambres usados como carga poseen propiedades antimicrobianas comprobadas, además los ZnO-NWs son fotocatalíticos por lo que pueden prevenir la proliferación de hongos. En las Figuras 1 , 2 y 3 es posible apreciar una imagen de los nanoalambres de plata, cobre y óxido de zinc, respectivamente. The masterbatch is made with the liquid components of the composite acrylic resin and the nanometric charge, in a controlled atmosphere to avoid early polymerization. Silver and copper wires are obtained by hydrothermal synthesis and zinc oxide nanowires are obtained by microwave-assisted thermal decomposition. All the nanowires used as a charge have proven antimicrobial properties, in addition ZnO-NWs are photocatalytic so they can prevent fungal growth. In Figures 1, 2 and 3 it is possible to see an image of the silver, copper and zinc oxide nanowires, respectively.
El proceso de elaboración del masterbatch comprende al menos las siguientes etapas:  The masterbatch process includes at least the following stages:
a. adición de componentes líquidos de la resina: en una cámara seca, bajo atmósfera de nitrógeno, se adiciona el monómero MMA y el inhibidor, para evitar que el monómero polimerice en el proceso de mezclado;  to. addition of liquid components of the resin: in a dry chamber, under nitrogen atmosphere, the MMA monomer and the inhibitor are added, to prevent the monomer from polymerizing in the mixing process;
b. lavado de las cargas nanométricas: se deben lavar con etanol grado analítico repetidas veces las cargas de Cu-NWs y Ag-NWs para eliminar desechos de síntesis y moléculas precursoras de crecimiento de preferencia polivinilpirrolidona (PVP). Lo anterior, se debe a que los nanoalambres obtenidos por el método hidrotermal, a diferencia del método de descomposición térmica asistido por microondas, producen residuos que se pegan a la superficie de los nanoalambres. Donde la determinación de la concentración de las dispersiones se realiza por absorción atómica tanto para Cu-NWs y Ag-NWs. Por el contrario, los ZnO-NWs no requieren ser lavados ya que en su síntesis se utiliza un método físico, el cual no requiere de precursores de crecimiento preferencial;  b. washing of the nanometric charges: the loads of Cu-NWs and Ag-NWs must be repeatedly washed with analytical grade ethanol to eliminate synthetic waste and growth precursor molecules preferably polyvinylpyrrolidone (PVP). The above is due to the fact that the nanowires obtained by the hydrothermal method, unlike the microwave-assisted thermal decomposition method, produce residues that stick to the surface of the nanowires. Where the determination of the concentration of the dispersions is performed by atomic absorption for both Cu-NWs and Ag-NWs. On the contrary, ZnO-NWs do not need to be washed since a physical method is used in their synthesis, which does not require preferential growth precursors;
c. alimentación de nanoalambres en la cámara seca: los nanoalambres de plata y cobre purificados se deben dispersar en el monómero MMA; luego se deben pesar y dispersar los ZnO-NWs en la solución. La adición es en este orden debido a que el ZnO es de color blanco, por lo cual permite ajustar el color de la resina con la adición de los nanoalambres de ZnO; y d. adición de entrecruzado!-: la solución conteniendo todas las cargas nanométricas se debe agitar durante 15 - 25 min, periodo en el cual se agrega el entrecruzador y finalmente el activador, después la solución es cerrada hasta su utilización bajo atmósfera de nitrógeno para evitar una posible iniciación o retardación de la mezcla debido al oxígeno. C. feeding of nanowires in the dry chamber: purified silver and copper nanowires should be dispersed in the MMA monomer; then ZnO-NWs must be weighed and dispersed in the solution. The addition is in this order because the ZnO is white in color, so it allows the resin color to be adjusted with the addition of the ZnO nanowires; Y d. crosslinking addition! -: the solution containing all the nanometric charges must be stirred for 15-25 min, during which time the crosslinker is added and finally the activator, then the solution is closed until it is used under a nitrogen atmosphere to avoid possible initiation or retardation of the mixture due to oxygen.
Finalmente, este masterbatch puede ser mezclado para obtener prótesis dentales con un componente sólido del tipo Polimetilmetacrilato (PMMA) teniendo un grupo alquilo con 1 a 20 átomos de carbono, Polimetacrilato de n- butilo, copolímero acrilico, Poli(metacrilato de ciclohexilo), poli(metacrilato de glicidilo), poli(hidroxialquil-metilmetacrilato), resinas derivadas del ácido acrilico y del ácido metacrilico.  Finally, this masterbatch can be mixed to obtain dental prostheses with a solid component of the Polymethylmethacrylate (PMMA) type having an alkyl group with 1 to 20 carbon atoms, n-butyl polymethacrylate, acrylic copolymer, Poly (cyclohexyl methacrylate), poly (glycidyl methacrylate), poly (hydroxyalkyl methylmethacrylate), resins derived from acrylic acid and methacrylic acid.
La incorporación de cargas nanométricas (Ag-NWs, Cu-NWs y ZnO-NWs) a las resinas acrílicas termocurables permite mejorar aspectos del conformado final cuando son utilizadas en la fabricación de prótesis dentales permanentes. Por ser nanoestructuras 1 D refuerzan la matriz evitando la propagación de grietas, mejoran la estabilidad dimensional de la matriz en el conformado final, evita la formación excesiva de porosidades y el deterioro de la resina. Los materiales usados son biocompatibles, por lo que no representan un riesgo para la salud de las personas y son químicamente estables. En comparación con la resina convencional sin carga, la resina acrílica compuesta presenta mejores propiedades de difusividad térmica, conductivas, antimicrobianas y estabilidad dimensional ya que esta reforzada por los nanoalambres. En relación a las propiedades mecánicas estas no varían significativamente en comparación a la resina acrilica convencional, lo que es bueno, ya que por lo general los nanocompuestos basados en nanoestructuras dentro de una matriz polimérica disminuyen las propiedades mecánicas de la matriz. El proceso de curado es similar al convencional, con diferencias mínimas en el mezclado del componente sólido con el masterbatch con los nanoalambres. Los nanocompuestos de PMMA/NWs además presentan propiedades antifúngicas con lo cual se beneficia la elaboración de prótesis dentales. En la Figura 4 es posible apreciar una prótesis dental fija y (b) una prótesis removible elaborada con resina acrílica compuesta basada en PMMA y el Masterbatch de MMA con nanoalambres de Cu, Ag y ZnO. Ejemplos de aplicación  The incorporation of nanometric loads (Ag-NWs, Cu-NWs and ZnO-NWs) to thermo-curable acrylic resins allows to improve aspects of the final forming when used in the manufacture of permanent dentures. Being 1 D nanostructures reinforce the matrix avoiding the propagation of cracks, improve the dimensional stability of the matrix in the final forming, avoid excessive formation of porosities and the deterioration of the resin. The materials used are biocompatible, so they do not pose a risk to people's health and are chemically stable. Compared to conventional resin without charge, the composite acrylic resin has better thermal diffusivity, conductive, antimicrobial and dimensional stability properties as it is reinforced by nanowires. In relation to the mechanical properties these do not vary significantly compared to the conventional acrylic resin, which is good, since in general the nanocomposites based on nanostructures within a polymeric matrix decrease the mechanical properties of the matrix. The curing process is similar to the conventional one, with minimal differences in the mixing of the solid component with the masterbatch with the nanowires. The PMMA / NWs nanocomposites also have antifungal properties, which benefits the development of dentures. In Figure 4 it is possible to see a fixed dental prosthesis and (b) a removable prosthesis made with composite acrylic resin based on PMMA and the MMA Masterbatch with Cu, Ag and ZnO nanowires. Application examples
Ejemplo 1. Procedimiento para la elaboración de nanocompuestos con nanoalambres de cobre, plata y óxidos de zinc. Example 1. Procedure for the elaboration of nanocomposites with nanowires of copper, silver and zinc oxides.
Para el proceso de ensayos con el masterbatch a partir de un monómero y cargas nanométricas, se elaboraron moldes y celdas dimensionadas para replicar el procedimiento convencional seguido en los laboratorios dentales hasta la conformación de una prótesis permanente. Primeramente, se elaboraron probetas con las resinas acrílicas compuestas elaboradas con el componente líquido que es el concentrado o masterbatch que contenía el MMA y los tres diferentes tipos de nanoalambres. El proceso de elaboración del masterbatch comprendió las siguientes etapas: a. adición de componentes líquidos de la resina: en una cámara seca bajo atmósfera de nitrógeno se adicionaron 60 ppm de monómero MMA y 50 ppm de hidroquinona; For the trial process with the masterbatch from a monomer and nanometric loads, molds and sized cells were made to replicate the conventional procedure followed in dental laboratories until the formation of a permanent prosthesis. First, specimens were made with the composite acrylic resins made with the liquid component that is the concentrate or masterbatch that contained the MMA and the three different types of nanowires. The masterbatch preparation process comprised the following stages: a. addition of liquid components of the resin: in a dry chamber under nitrogen atmosphere 60 ppm of MMA monomer and 50 ppm of hydroquinone were added;
b. lavado de las cargas nanométricas: se lavaron 5 veces las cargas de Cu- NWs y Ag-NWs para eliminar desechos de síntesis y moléculas precursoras de crecimiento de polivinilpirrolidona (PVP);  b. washing of the nanometric charges: the Cu-NWs and Ag-NWs loads were washed 5 times to eliminate synthetic wastes and polyvinylpyrrolidone precursor growth molecules (PVP);
c. alimentación de nanoalambres en la cámara seca: los nanoalambres purificados de plata (0,1 p/p) y cobre (0,1 p/p) se dispersaron en el monómero MMA; y luego se dispersaron 1 ,0 p/p ZnO-NWs en la solución.; y  C. feeding of nanowires in the dry chamber: the purified nanowires of silver (0.1 w / w) and copper (0.1 w / w) were dispersed in the MMA monomer; and then 1.0 w / w ZnO-NWs were dispersed in the solution .; Y
d. adición de entrecruzados la solución conteniendo todas las cargas nanométricas se agitó durante 20 min, periodo en el cual se adicionó 2 %p/v del entrecruzador EDMA, después la solución fue cerrada bajo atmósfera de nitrógeno para evitar una posible iniciación o retardación de la mezcla debido al oxígeno.  d. cross-linking the solution containing all the nanometric charges was stirred for 20 min, during which time 2% w / v of the EDMA crosslinker was added, then the solution was closed under nitrogen atmosphere to avoid possible initiation or retardation of the mixture due to oxygen.
Ejemplo 2. Preparación de la resina acrílica compuesta para elaborar prótesis dentales permanentes. Example 2. Preparation of the composite acrylic resin to make permanent dentures.
Para la elaboración de los nanocompuestos (resina acrílica con nanoestructuras) fue necesario diseñar un molde para acrilización (MACRIL) de acero inoxidable, en el cual se colocó una base de yeso y un molde de cera con las dimensiones de 10 x 1 ,3 x 0,3 cm. Este molde de cera fue colocado en la mitad del MACRIL y fue sometido a calentamiento (60 - 80 °C) para que quedara una máscara en las dos caras del yeso. Luego, se retiraron los residuos de cera y se ajustó la máscara que quedó tanto en la parte superior como en la inferior del MACRIL. Terminado esta etapa, el molde quedó listo para el proceso de acrilización, el cual estaba compuesto de 4 etapas: preparación, prensado, polimerización y demuflado. For the elaboration of the nanocomposites (acrylic resin with nanostructures) it was necessary to design a stainless steel acrylization mold (MACRIL), in which a plaster base and a wax mold with the dimensions of 10 x 1, 3 x were placed 0.3 cm This wax mold was placed in the middle of the MACRIL and underwent heating (60 - 80 ° C) so that a mask remained on both sides of the plaster. Then, the wax residues were removed and the mask that remained on both the top and bottom of the MACRIL was adjusted. At the end of this stage, the mold was ready for the acrylization process, which was composed of 4 stages: preparation, pressing, polymerization and demolition.
i) Preparación: se utilizó el masterbatch con carga de nanoalambres previamente agitado por 5 minutos utilizando un agitador magnético. Durante todo el proceso de mezclado con el PMMA (el cual poseía 0,5% de pigmentos de Fe2Ü3) se debió ir agitando y homogenizando la muestra para proveer una buena dispersión de la carga, para lo cual se utilizó una varilla de vidrio y agitación manual vigorosa. Las proporciones de mezclado del masterbatch y de la resina acrílica fueron las usadas convencionalmente, es decir, 1/3 de masterbatch por 2/3 de resina. Al alcanzar la fase plástica del proceso, cuando el material se despegó de las paredes del contenedor aproximadamente 20 minutos después del mezclado, el material estaba listo para el proceso de prensado y posterior polimerización. Para ello, la mezcla se separó de la mezcla del yeso que rellenaba el MACRIL con una película de PEAD (Polietileno de alta densidad) y se tapó hasta terminar el proceso de curado, la temperatura de trabajo fue 20 °C. ii) Prensado: el MACRIL fue colocado en una prensa especial con las dimensiones de éste y se le ejerció una presión de 1500 kg/cm2 durante 2 minutos. i) Preparation: the nanobatch loading masterbatch was previously stirred for 5 minutes using a magnetic stirrer. During the whole process of mixing with the PMMA (which had 0.5% Fe2Ü3 pigments), the sample had to be agitated and homogenized to provide a good dispersion of the load, for which a glass rod and agitation were used vigorous manual. The mixing ratios of the masterbatch and acrylic resin were those conventionally used, that is, 1/3 of masterbatch per 2/3 of resin. Upon reaching the plastic phase of the process, when the material was detached from the walls of the container approximately 20 minutes after mixing, the material was ready for the pressing and subsequent polymerization process. To do this, the mixture was separated from the mixture of the plaster that filled the MACRIL with a film of HDPE (High Density Polyethylene) and covered until the curing process was finished, the working temperature was 20 ° C. ii) Pressing: MACRIL was placed in a special press with its dimensions and a pressure of 1500 kg / cm 2 was exerted for 2 minutes.
iii) Polimerización (acrilizado): para esta etapa se acondicionó una criba vibradora digital de 53 litros de capacidad, la cual fue rellenada con agua hasta la mitad. La agitación evitó la formación de gradientes de temperatura dentro del sistema. El MACRIL fue colocado en el medio de la criba vibradora y se aumentó la temperatura a razón de 5°C/min hasta 90°C para evitar la formación excesiva de porosidades. La mayor parte del MACRIL estaba relleno de yeso para facilitar un adecuado proceso de curado de la resina. El tiempo de acrilización (curado) fue de 60 minutos a 90°C, luego se llevó el sistema a 100°C por 60 minutos más. Transcurrido este tiempo, el sistema fue retirado y enfriado hasta temperatura ambiente (20°C).  iii) Polymerization (acrylic): for this stage a digital vibrating screen of 53 liters capacity was conditioned, which was filled with water halfway. Stirring prevented the formation of temperature gradients within the system. The MACRIL was placed in the middle of the vibrating screen and the temperature was increased at a rate of 5 ° C / min to 90 ° C to avoid excessive porosity formation. Most of the MACRIL was filled with plaster to facilitate a proper resin curing process. The acrylization time (curing) was 60 minutes at 90 ° C, then the system was brought to 100 ° C for an additional 60 minutes. After this time, the system was removed and cooled to room temperature (20 ° C).
iv) Demuflado: la pieza curada fue retirada del MACRIL cuidadosamente para no dañarla, ya que podía estar pegada al yeso.  iv) Demuflado: the cured piece was carefully removed from the MACRIL so as not to damage it, since it could be glued to the plaster.
El procedimiento descrito anteriormente es el mismo utilizado para la conformación de prótesis dentales permanentes (PDP). Se seleccionó este proceso para facilitar el estudio de las propiedades termo-mecánicas del material, ya que cada análisis requiere de diferentes tipos de probetas. Se realizaron estudios de resistividad volumétrica, antimicrobiano, mecánicos y fotoacústicos para determinar la difusividad térmica de la resina, siempre comparando con un patrón que fue la resina convencional sin carga de nanoalambres. Además, se determinó la absorción de agua y verificación del monómero residual. Todos los procedimientos realizados hasta la obtención del nanocompuesto acrílico reforzado, siguieron los requerimientos y las condiciones que exigen las normas ISO 1567 y la norma N°12 de la Asociación Dental Americana, las cuales especifican las pruebas a realizar a las resinas para bases de dentadura.  The procedure described above is the same one used for shaping permanent dentures (PDP). This process was selected to facilitate the study of the thermo-mechanical properties of the material, since each analysis requires different types of specimens. Volumetric, antimicrobial, mechanical and photoacoustic resistivity studies were conducted to determine the thermal diffusivity of the resin, always comparing with a standard that was the conventional resin without nano-wire loading. In addition, water absorption and verification of the residual monomer was determined. All procedures performed until obtaining the reinforced acrylic nanocomposite, followed the requirements and conditions required by ISO 1567 and standard No. 12 of the American Dental Association, which specify the tests to be performed on resins for denture bases .
A. Actividad Antimicrobiana de Nanoalambres de Cu, Ag y ZnO  A. Antimicrobial Activity of Nanoalambres de Cu, Ag and ZnO
Se realizaron ensayos antimicrobianos por el método hidrotermal y método de descomposición asistido por microonadas a los nanoalambres por separado, para verificar si estos materiales presentaban actividad antimicrobiana. Los resultados de los ensayos de susceptibilidad antimicrobiana por difusión en agar frente a las cepas Escherichia Coli y Staphylococcus Aureus mostraron resultados positivos (ver Tabla 1).  Antimicrobial assays were carried out by the hydrothermal method and the method of decomposition assisted by microwaves to the nanowires separately, to verify if these materials had antimicrobial activity. The results of the antimicrobial susceptibility assays by agar diffusion against the Escherichia Coli and Staphylococcus Aureus strains showed positive results (see Table 1).
Tabla 1. Actividad antimicrobiana de los nanoalambres  Table 1. Nano-wire antimicrobial activity
Figure imgf000010_0001
68
Figure imgf000010_0001
68
Se determinó que la actividad de los nanoalambres metálicos fue menor en comparación a la de ZnO-NW. Esto se debió a que en el método utilizado en la síntesis no se empleó ningún tipo de molécula precursora de crecimiento de preferencia. Las diferencias encontradas entre los Cu-NWs y Ag-NWs, se deben a que la interacción de los Ag-NWs con las moléculas de PVP es mucho más fuerte, lo que dificulta la remoción de ésta. Con este ensayo se demostró que los tres nanomateriales usados en la preparación de la resina acrílica compuesta presentan actividad antimicrobiana. It was determined that the activity of the metal nanowires was lower compared to that of ZnO-NW. This was due to the fact that in the method used in the synthesis no type of growth precursor molecule of preference was employed. The differences found between the Cu-NWs and Ag-NWs, are due to the fact that the interaction of the Ag-NWs with the PVP molecules is much stronger, making it difficult to remove it. With this test it was shown that the three nanomaterials used in the preparation of the composite acrylic resin have antimicrobial activity.
B. Resultados y Análisis de los Nanocompuestos acrílicos preparados usando el Masterbatch y la resina de PMMA.  B. Results and Analysis of Acrylic Nanocomposites prepared using the Masterbatch and PMMA resin.
B.1. Absorción de Agua.  B.1. Water absorption.
Estas pruebas se realizaron debido a que el proceso de curado que se seleccionó era sumergiendo el molde de acero inoxidable en el baño termostático, por lo que puede existir filtración de agua, lo que afectaría el curado, y por consiguiente, las propiedades mecánica de las probetas. Estas pruebas se basaron en la norma ASTM D570, para lo cual se tomó como patrón muestras realizadas en dos laboratorios dentales y una preparada como blanco. These tests were carried out because the curing process that was selected was by immersing the stainless steel mold in the thermostatic bath, so that water filtration may exist, which would affect the curing, and therefore, the mechanical properties of the test tubes These tests were based on ASTM D570, for which samples taken in two dental laboratories and one prepared as blank were taken as standard.
En la Tabla 2 se presenta el resultado del espectro FTIR, donde M1 corresponde a la muestra de laboratorio dental, M2 resina patrón sin nanoalambres elaborada, M3 y M4 corresponde a los nanocompuestos de PMMA/NWs elaborados con el masterbatch (se realizó en duplicado). Del análisis del espectro FTIR se puede apreciar que no existe diferencia significativa en ninguna de las muestras ensayadas. Esto también pudo comprobarse por la consistencia y aspecto de las muestras, las cuales fueron muy parecidas a las muestras elaboradas en laboratorio dentales. La posible oxidación de los Ag-NWs y Cu-NWs debido a la humedad del yeso y al agua que se filtraba se evitó por la película de PEAD.Table 2 shows the result of the FTIR spectrum, where M1 corresponds to the dental laboratory sample, M2 standard resin without elaborated nanowires, M3 and M4 corresponds to the PMMA / NWs nanocomposites made with the masterbatch (performed in duplicate) . From the analysis of the FTIR spectrum it can be seen that there is no significant difference in any of the samples tested. This could also be verified by the consistency and appearance of the samples, which were very similar to the samples made in dental laboratories. The possible oxidation of the Ag-NWs and Cu-NWs due to the humidity of the plaster and the water that was filtered was avoided by the HDPE film.
Tabla N° 2. Análisis FTIR de los nanocompuestos a base de PMMA/NWs comparados con las resinas sin relleno. Table No. 2. FTIR analysis of PMMA / NWs based nanocomposites compared to unfilled resins.
Figure imgf000011_0001
Por otra parte, el espectro FTIR del monómero MMA (marca Marche) termocurable se comparó con cada uno de los espectros FTIR de los nanocompuestos preparados de PMMA/NWs preparados con el masterbatch, donde no se encontraron huellas dactilares correspondientes a monómero residual. De igual manera a cada una de las muestras líquidas donde se realizaron los ensayos de absorción de agua, se concentraron en un rotavaporador y se les realizó FTIR, resultando negativo para monómero residual. Por lo que se concluyó que en el proceso de curado y las proporciones usadas de PMMA y masterbatch son óptimas para la reacción de curado.
Figure imgf000011_0001
On the other hand, the FTIR spectrum of the thermosetting MMA monomer (Marche brand) was compared with each of the FTIR spectra of the prepared PMMA / NWs nanocomposites prepared with the masterbatch, where no fingerprints corresponding to residual monomer were found. Similarly to each of the liquid samples where the water absorption tests were performed, they were concentrated in a rotary evaporator and FTIR was performed, resulting negative for residual monomer. Therefore, it was concluded that in the curing process and the proportions used of PMMA and masterbatch are optimal for the curing reaction.
B.2. Espectroscopia Fotoacústica. B.2. Photoacoustic spectroscopy.
Con este análisis se determina la difusividad térmica del material, correspondiente a la tasa de cambio con que un material aumenta de temperatura, al ser puesta en contacto con la fuente de calor. Por tanto, se determina a través de la conductividad térmica del material dividida ente el producto del valor de su densidad y la capacidad calorífica de este mismo. La difusividad térmica es un parámetro para determinar la capacidad que tiene el material para difuminar la temperatura.  With this analysis the thermal diffusivity of the material is determined, corresponding to the rate of change with which a material increases in temperature, when it is brought into contact with the heat source. Therefore, the product of the value of its density and the heat capacity of it is determined through the thermal conductivity of the divided material. Thermal diffusivity is a parameter to determine the ability of the material to blur the temperature.
Los resultados se presentan en la Tabla 2, donde se compararon las resinas curadas del laboratorio dental (M1). Se encontró un aumento en la difusividad térmica en los nanocompuestos PMMA/NWs preparados con el masterbatch, esto se debió a que los tres nanoalambres son buenos conductores de calor lo que permitió una fácil transferencia de calor en el volumen de la muestra, logrando el equilibrio con el entorno más rápidamente. Esto beneficia la durabilidad de la prótesis y mejor estabilidad dimensional. The results are presented in Table 2, where the cured resins of the dental laboratory (M1) were compared. An increase in the thermal diffusivity was found in the PMMA / NWs nanocomposites prepared with the masterbatch, this was due to the fact that the three nanowires are good conductors of heat which allowed an easy transfer of heat in the sample volume, achieving balance with the environment more quickly. This benefits the durability of the prosthesis and better dimensional stability.
Tabla 3. Determinación de la difusividad térmica de las resinas curadas y  Table 3. Determination of thermal diffusivity of cured resins and
nanocompuestos preparados a base de nanoalambres.  prepared nanocomposites based on nanowires.
Figure imgf000012_0001
B.3. Resistencia Volumétrica (pv).
Figure imgf000012_0001
B.3. Volumetric Resistance (p v ).
La resistividad volumétrica es una propiedad intrínseca de cada material, se define como la oposición al paso de corriente en el interior de un material, para ello se utilizó un Mega Ohm metro Modelo 1550B FLUKE. Los resultados se presentan en la Tabla 3, donde es posible observar que el material reforzado con nanoalambres sigue siendo un aislante, debido a que la resistencia volumétrica fue alta. Sin embargo, la tendencia muestra que a medida que se adicionaban los nanoalambres metálicos a la matriz termoestable hubo una disminución de ésta. Caso contrario sucede cuando se adicionan ZnO-NWs, debido a que no se mejoraron sustancialmente las propiedades eléctricas del material en comparación a las resinas sin nanoalambres. Todos los valores de las muestras están expresados en GQ, por lo que las resinas acrílicas compuestas (M6) siguen teniendo un comportamiento con aislante eléctrico. Esto beneficia a la prótesis ante posibles efectos corrosivos y en la protección de los dientes artificiales.  The volumetric resistivity is an intrinsic property of each material, it is defined as the opposition to the passage of current inside a material, for this a Mega Ohm meter Model 1550B FLUKE was used. The results are presented in Table 3, where it is possible to observe that the material reinforced with nanowires is still an insulator, because the volumetric resistance was high. However, the trend shows that as the metal nanowires were added to the thermostable matrix there was a decrease in this. Otherwise it happens when ZnO-NWs are added, because the electrical properties of the material were not substantially improved compared to resins without nanowires. All sample values are expressed in GQ, so the composite acrylic resins (M6) continue to behave with electrical insulation. This benefits the prosthesis against possible corrosive effects and in the protection of artificial teeth.
Tabla 3. Determinación de la resistencia volumétrica de los nanocompuestos y resinas preparadas en el laboratorio.  Table 3. Determination of the volumetric resistance of nanocomposites and resins prepared in the laboratory.
Figure imgf000013_0001
Figure imgf000013_0001
B.4. Ensayos de Flexión. B.4. Flexion tests.
El ensayo de flexión fue realizado en el equipo Machine Per Prove Materiali N°2710 de la compañía Metro Com Comazzi Oscar Novara Italia, según la norma ASTM 790. Se prepararon probetas rectangulares de tamaño aproximado 90 mm de largo, 20 mm de ancho y 7,5 mm de espesor, tal como se muestra en la Tabla 4. Según los resultados, el aumento de nanoalambres dentro de la matriz polimérica disminuyó las propiedades mecánicas del material, pero no en forma significativa, lo que se debió probablemente al grado de entrecruzamiento del nanocompuesto. Los nanocompuestos PMMA/Cu- NWs y PMMA/Ag-NWs, no cambiaron significativamente en comparación a la resina sin nanoalambres, esto se debió principalmente a la baja carga de nanoalambres dentro de la matriz. Por el contrario, con la adición de todos los nanoalambres el material disminuyó su resistencia de 235,02 MPa a 180,00 MPa, mantiendo el mismo orden de magnitud. Por lo que, el material nanocompuesto PMMA/nanoalambres preparado con el masterbatch, puede usarse sin problema en la fabricación de prótesis permanentes, ya que mejora el análisis dimensional de las piezas con un esfuerzo constante en función del tiempo. The bending test was carried out on the Machine Per Prove Materiali No. 2710 of the Metro Com Comazzi Oscar Novara Italia company, according to ASTM 790. Rectangular specimens of approximate size 90 mm long, 20 mm wide and 7 were prepared. , 5 mm thick, as shown in Table 4. According to the results, the increase in nanowires within the polymer matrix decreased the mechanical properties of the material, but not significantly, which was probably due to the degree of crosslinking. of the nanocomposite. The PMMA / Cu-NWs and PMMA / Ag-NWs nanocomposites did not change significantly compared to the resin without nanowires, this was mainly due to the low charge of nanowires within the matrix. On the contrary, with the addition of all the nanowires the material decreased its resistance from 235.02 MPa to 180.00 MPa, maintaining the same order of magnitude. So, the material PMMA nanocomposite / nanowires prepared with the masterbatch, can be used without problem in the manufacture of permanent prostheses, since it improves the dimensional analysis of the pieces with a constant effort as a function of time.
Tabla 4. Resultados de las propiedades de flexión de los nanocompuestos basados en resinas de PMMA y nanoalambres de Cu, Ag y ZnO.  Table 4. Results of the flexural properties of nanocomposites based on PMMA resins and Cu, Ag and ZnO nanowires.
Figure imgf000014_0001
Figure imgf000014_0001
B.5. Susceptibilidad Microbiana por Difusión Agar. B.5. Microbial Susceptibility by Agar Diffusion.
Este ensayo es comúnmente utilizado para medir la sensibilidad de un agente microbiano frente algún compuesto antimicrobiano en antibióticos y drogas. En este caso, se analizaron nanocompuestos poliméricos con el fin de saber si poseían actividad antimicrobiana.  This assay is commonly used to measure the sensitivity of a microbial agent against some antimicrobial compound in antibiotics and drugs. In this case, polymeric nanocomposites were analyzed in order to know if they possessed antimicrobial activity.
La cepa bacteriana utilizada para los ensayos fue Staphylococcus Aureus. En la Figura 4 es posible apreciar en (a) la cepa bacteriana Staphylococcus Aureus incubada durante 24h en agar Mueller Honton y en (b) se muestra a modo de ejemplo la probeta M6 acondicionada para el ensayo que muestra el halo de inibición. El agente antimicrobiano difundió desde la muestra hacia el exterior del cultivo produciendo una zona de inhibición, en la cual una concentración crítica del agente inhibió el crecimiento bacteriano.  The bacterial strain used for the tests was Staphylococcus Aureus. In Figure 4 it is possible to see in (a) the bacterial strain Staphylococcus Aureus incubated for 24 hours in Mueller Honton agar and in (b) the sample M6 fitted for the test showing the inibition halo is shown by way of example. The antimicrobial agent diffused from the sample to the outside of the culture producing an inhibition zone, in which a critical concentration of the agent inhibited bacterial growth.
Los resultados de la Tabla 5 muestran que la resina PMMA sin nanoalambres no presentó actividad antimicrobiana frente a Staphylococcus Aureus. El efecto antimicrobiano fue leve para los nanocompuestos PMMA/Cu-NWs, PMMA/Ag- NWs; lo que se debió a la poca cantidad de nanoalambres en la matriz y a que existía un porcentaje de la superficie metálica pasivado con PVP y CTAB. Sin embargo, un resultado importante se logró con los nanocompuestos de PMMA/Cu, Ag y ZnO NWs, donde el halo de inhibición en el ensayo de susceptibilidad en difusión agarfue de 11 mm. Esto quiere decir que las resinas acrílicas compuestas preparadas con el masterbatch presentaron propiedades antimicrobianas. Tabla 5. Resultados actividad antimicrobiana de las resinas PMMA y nanocompuestos PMMA/NWs, frente a la cepa Staphylococcus Aureus.The results in Table 5 show that the PMMA resin without nanowires did not show antimicrobial activity against Staphylococcus Aureus. The antimicrobial effect was mild for the PMMA / Cu-NWs, PMMA / Ag-NWs nanocomposites; which was due to the small amount of nanowires in the matrix since there was a percentage of the metal surface passivated with PVP and CTAB. However, an important result was achieved with the PMMA / Cu, Ag and ZnO NWs nanocomposites, where the halo of inhibition in the 11 mm agar diffusion susceptibility test. This means that the composite acrylic resins prepared with the masterbatch had antimicrobial properties. Table 5. Results antimicrobial activity of PMMA resins and PMMA / NWs nanocomposites, against Staphylococcus Aureus strain.
Figure imgf000015_0001
Figure imgf000015_0001

Claims

Reivindicaciones Claims
1. Una composición de un masterbatch útil en la elaboración de prótesis dentales CARACTERIZADA porque comprende al menos los siguientes componentes: 1. A composition of a masterbatch useful in the elaboration of CHARACTERIZED dental prostheses because it comprises at least the following components:
a. carga nanométrica: compuesta por nanoalambres de plata entre 0,05 - 0,20 %p/p; nanoalambres de cobre entre 0,05 - 0,20 %p/p; y nanoalambres de óxido de zinc entre 0,08 - 2,00 %p/p; y  to. nanometric charge: composed of silver nanowires between 0.05 - 0.20% w / w; copper nanowires between 0.05 - 0.20% w / w; and zinc oxide nanowires between 0.08-2.00% w / w; Y
b. componentes líquidos: compuestos por monómero metilmetacrilato con un inhibidor entre 45 - 65 ppm; entrecruzador del tipo etilenglicoldimetacrilato entre 0,3 - 2,0% p/v y un activador del tipo N,N dimetil-p-toluidina en trazas.  b. liquid components: composed of methyl methacrylate monomer with an inhibitor between 45-65 ppm; crosslinker of the ethylene glycol dimethacrylate type between 0.3 - 2.0% w / v and an activator of the N, N dimethyl-p-toluidine type in traces.
Una composición de un masterbatch útil en la elaboración de prótesis dentales según reivindicación 1 , CARACTERIZADA porque los nanoalambres presentan diámetros comprendidos entre 20 - 150 nm y longitudes entre 1 - 30 pm. A composition of a masterbatch useful in the preparation of dental prostheses according to claim 1, CHARACTERIZED in that the nanowires have diameters between 20-150 nm and lengths between 1-30 pm.
Una composición de un masterbatch útil en la elaboración de prótesis dentales según reivindicación 1, CARACTERIZADA porque el inhibidor es del tipo hidroquinona, nitrobenceno, butilhidroxitolueno, 2,2-difenil-1- picrilhidrazilo, dinitro-orto-cresol, dinitro-sec-butil-fenol y dinitrofenoles. A composition of a masterbatch useful in the preparation of dental prostheses according to claim 1, CHARACTERIZED in that the inhibitor is of the hydroquinone, nitrobenzene, butylhydroxytoluene, 2,2-diphenyl-1- picrilhydrazyl, dinitro-ortho-cresol, dinitro-sec-butyl type -phenol and dinitrophenols.
Un proceso para elaborar un masterbatch a partir de la composición de la reivindicación 1 CARACTERIZADO porque comprende al menos las siguientes etapas: a. adición de componentes líquidos de la resina: en una cámara seca se adiciona el monómero MMA y el inhibidor; A process for preparing a masterbatch from the composition of claim 1 CHARACTERIZED because it comprises at least the following steps: a. addition of liquid resin components: in a dry chamber the MMA monomer and the inhibitor are added;
b. lavado de las cargas nanométricas: se deben lavar las cargas de nanoalambre de cobre y plata;  b. washing of nanometric charges: copper and silver nano-wire charges should be washed;
c. alimentación de nanoalambres en la cámara seca: primeramente se deben dispersar en los nanoalambres de plata y cobre purificados en el monómero MMA; y luego los nanoalambre de óxido de zinc; y  C. feeding of nanowires in the dry chamber: first they must be dispersed in the purified silver and copper nanowires in the MMA monomer; and then zinc oxide nanowires; Y
d. adición de entrecruzador: la solución conteniendo todas las cargas nanométricas se debe agitar durante 15 - 25 min, periodo en el cual se agrega el entrecruzador, después la solución es cerrada bajo atmósfera de nitrógeno.  d. crosslinker addition: the solution containing all nanometric charges should be stirred for 15-25 min, during which time the crosslinker is added, then the solution is closed under a nitrogen atmosphere.
Un proceso para elaborar un masterbatch a partir de la composición de la reivindicación 1 CARACTERIZADO porque la etapa "a" opera bajo atmósfera de nitrógeno.  A process for preparing a masterbatch from the composition of claim 1 CHARACTERIZED because step "a" operates under a nitrogen atmosphere.
Una resina acrílica compuesta termocurable útil en la elaboración de prótesis dentales, según reivindicación 3 CARACTERIZADA porque comprende el masterbatch obtenido en el proceso de la reivindicación 3 y una resina del tipo polimetilmetacrilato, polimetacrilato de n-butilo, copolímero acrílico, poli(metacrilato de ciclohexilo), poli(metacr¡lato de glicidilo), poli(hidroxialquil-metilmetacrilato), resinas derivadas del ácido acrílico y del ácido metacrilico, en una relación 1 :2. A thermo-curable composite acrylic resin useful in the preparation of dental prostheses, according to claim 3 CHARACTERIZED because it comprises the masterbatch obtained in the process of claim 3 and a resin of the type polymethylmethacrylate, n-butyl polymethacrylate, acrylic copolymer, poly (cyclohexyl methacrylate), poly (glycidyl methacrylate), poly (hydroxyalkyl methyl methacrylate), resins derived from acrylic acid and methacrylic acid, in a 1: 2 ratio
7. Una resina acrílica compuesta termocurable útil en la elaboración de prótesis dentales, según reivindicación 3 CARACTERIZADA porque presenta propiedades antifúngicas y antimicrobianas. 7. A thermo-curable composite acrylic resin useful in the preparation of dental prostheses, according to claim 3 CHARACTERIZED because it has antifungal and antimicrobial properties.
PCT/CL2015/000068 2014-12-24 2015-12-24 Masterbatch composition that can be used in the production of dental prostheses and production method thereof WO2016101082A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CL2014003518A CL2014003518A1 (en) 2014-12-24 2014-12-24 A composition of a masterbatch useful in the elaboration of dental prostheses and its elaboration process.
CL3518-14 2014-12-24

Publications (1)

Publication Number Publication Date
WO2016101082A1 true WO2016101082A1 (en) 2016-06-30

Family

ID=53404125

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CL2015/000068 WO2016101082A1 (en) 2014-12-24 2015-12-24 Masterbatch composition that can be used in the production of dental prostheses and production method thereof

Country Status (2)

Country Link
CL (1) CL2014003518A1 (en)
WO (1) WO2016101082A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2608931A1 (en) * 2017-01-19 2017-04-17 System-Pool, S.A. Procedure for obtaining a photocatalytic polymer (Machine-translation by Google Translate, not legally binding)
US11134687B2 (en) * 2015-12-30 2021-10-05 Universidad De Chile Preparation process of dental and orthopedic acrylic materials with antimicrobial properties using copper nanoparticle technology

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007024652A2 (en) * 2005-08-19 2007-03-01 Premier Dental Products Company Dental compositions based on nanofiber reinforcement
EP2195132B1 (en) * 2007-09-27 2012-06-06 Basf Se Method for preparation of isolable and redispersable transition metal nanoparticles
WO2013174356A1 (en) * 2012-05-23 2013-11-28 Technicka Univerzita V Liberci Antibacterial layer active against pathogenic bacteria, particularly against the mrsa bacterial strain, and the method of its production
WO2014209095A1 (en) * 2013-06-25 2014-12-31 Servicios Administrates Penoles, S.A. De C.V. Bacteriostatic and fungistatic additive in masterbatch for application in plastics, and method for producing same
WO2015006087A1 (en) * 2013-07-08 2015-01-15 3M Innovative Properties Company Hardenable dental composition containing a mixture of agglomerated and aggregated nano-particles, kit of parts and use thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007024652A2 (en) * 2005-08-19 2007-03-01 Premier Dental Products Company Dental compositions based on nanofiber reinforcement
EP2195132B1 (en) * 2007-09-27 2012-06-06 Basf Se Method for preparation of isolable and redispersable transition metal nanoparticles
WO2013174356A1 (en) * 2012-05-23 2013-11-28 Technicka Univerzita V Liberci Antibacterial layer active against pathogenic bacteria, particularly against the mrsa bacterial strain, and the method of its production
WO2014209095A1 (en) * 2013-06-25 2014-12-31 Servicios Administrates Penoles, S.A. De C.V. Bacteriostatic and fungistatic additive in masterbatch for application in plastics, and method for producing same
WO2015006087A1 (en) * 2013-07-08 2015-01-15 3M Innovative Properties Company Hardenable dental composition containing a mixture of agglomerated and aggregated nano-particles, kit of parts and use thereof

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ALLAKER, RP. ET AL.: "Nanoparticles and the control of oral infections.", INTERNATIONAL JOURNAL OF ANTIMICROBIAL AGENTS, vol. 43, February 2014 (2014-02-01), pages 95 - 104, Retrieved from the Internet <URL:http://dx.doi.Org/10.1016/j.ijantimicag.2013.11.002> *
EMAMIFAR. A.: "Applications of Antimicrobial Polymer Nanocomposites in Food Packaging.", ADVANCES IN NANOCOMPOSITE TECHNOLOGY, 2011, pages 7 - 27, Retrieved from the Internet <URL:http:/lwww.intechopen.comlbooksladvances-in-nanocomposite-technology/applications-of-antimicrobial-polymer-nanocomposites-in-food-packaging> *
MANTRI. S ET AL.: "The nano era in dentistry.", JOURNAL OF NATURAL SCIENCE , BIOLOGY, AND MEDICINE., vol. 4, no. 1, 2013, pages 39 - 44 *
MIRAHASHEMI, A. ET AL.: "Antimicrobial effect of nano-zinc oxide and nano-chitosan particles in dental composite used in orthodontics", J. MED BACTERIOL, vol. 2, no. 3 , 4, 2013, pages 1 - 10, Retrieved from the Internet <URL:http://jmb.tums.ac.ir/index.php/jmb/article/view/43> *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11134687B2 (en) * 2015-12-30 2021-10-05 Universidad De Chile Preparation process of dental and orthopedic acrylic materials with antimicrobial properties using copper nanoparticle technology
ES2608931A1 (en) * 2017-01-19 2017-04-17 System-Pool, S.A. Procedure for obtaining a photocatalytic polymer (Machine-translation by Google Translate, not legally binding)
WO2018134450A1 (en) * 2017-01-19 2018-07-26 System-Pool, S.A. Method for obtaining a photocatalytic polymer
WO2018134456A1 (en) * 2017-01-19 2018-07-26 System-Pool, S.A. Method for obtaining a photocatalytic polymer
US11274191B2 (en) 2017-01-19 2022-03-15 System-Pool, S.A. Method for obtaining a photocatalytic polymer

Also Published As

Publication number Publication date
CL2014003518A1 (en) 2015-03-20

Similar Documents

Publication Publication Date Title
Totu et al. Poly (methyl methacrylate) with TiO2 nanoparticles inclusion for stereolitographic complete denture manufacturing− the fututre in dental care for elderly edentulous patients?
Kim et al. Carbon nanotube incorporation in PMMA to prevent microbial adhesion
Ali Sabri et al. A review on enhancements of PMMA denture base material with different nano-fillers
Hassan et al. Thermoset polymethacrylate-based materials for dental applications
Taheri et al. Fluoridated hydroxyapatite nanorods as novel fillers for improving mechanical properties of dental composite: Synthesis and application
Chrysafi et al. Mechanical and thermal properties of PMMA resin composites for interim fixed prostheses reinforced with calcium β-pyrophosphate
Zhang et al. Effect of surface treatment of hydroxyapatite whiskers on the mechanical properties of bis-GMA-based composites
US10610461B2 (en) Process for the production of antimicrobial dental adhesives including graphene and relative product thereof
Ghahremanloo et al. The effect of silver nano particles on Candida albicans and Streptococcus mutans in denture acrylic resins
Altaie et al. Development and characterisation of dental composites containing anisotropic fluorapatite bundles and rods
WO2016101082A1 (en) Masterbatch composition that can be used in the production of dental prostheses and production method thereof
Abdulridha et al. Studying the effect of adding Titanium Dioxide (TiO2) nanoparticles on the compressive strength of chemical and heat-activated acrylic denture base resins
Shetty et al. Comparative evaluation of compressive strength of Ketac Molar, Zirconomer, and Zirconomer Improved
Radhi et al. Investigation mechanical and biological properties of hybrid PMMA composite materials as prosthesis complete denture
Zou et al. A biocompatible silicon nitride dental implant material prepared by digital light processing technology
Desai et al. Polymers, composites and nano biomaterials: Current and future developments
Jamel et al. The efficacy of reinforcement of glass fibers and ZrO2 nanoparticles on the mechanical properties of autopolymerizing provisional restorations (PMMA)
CN104287976B (en) Antibacterial denture powder with excellent anti-bending performance and preparation method thereof
Abd-Ali The effect of adding nanoparticles on the mechanical properties of acrylic removable denture
Teimoorian et al. Effects of adding functionalized graphene oxide nanosheets on physical, mechanical, and anti-biofilm properties of acrylic resin: In vitro-experimental study
Chen et al. The effects of nano-silver loaded zirconium phosphate on antibacterial properties, mechanical properties and biosafety of room temperature curing PMMA materials
Thabet et al. The Effect Of Silver Versus Titanium Dioxide Nanoparticles On Poly methylmethacrylate Denture Base Material
ES2905864T3 (en) Composite material for implants, its use and procedure for its production
Aboshama et al. Effect of Different Nano-Fillers Addition on The Mechanical Properties of Heat-Polymerized Acrylic Resin
Mohanalakshmi et al. Thermal conductivity of graphene incorporated heat activated polymethyl methacryate: A pilot study

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15871400

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15871400

Country of ref document: EP

Kind code of ref document: A1