WO2016099326A1 - Система локализации и охлаждения расплава активной зоны ядерного реактора водоводяного типа - Google Patents

Система локализации и охлаждения расплава активной зоны ядерного реактора водоводяного типа Download PDF

Info

Publication number
WO2016099326A1
WO2016099326A1 PCT/RU2015/000781 RU2015000781W WO2016099326A1 WO 2016099326 A1 WO2016099326 A1 WO 2016099326A1 RU 2015000781 W RU2015000781 W RU 2015000781W WO 2016099326 A1 WO2016099326 A1 WO 2016099326A1
Authority
WO
WIPO (PCT)
Prior art keywords
melt
vessel
layer
filler
heat
Prior art date
Application number
PCT/RU2015/000781
Other languages
English (en)
French (fr)
Inventor
Андрей Борисович НЕДОРЕЗОВ
Александр Стальевич СИДОРОВ
Original Assignee
Акционерное Общество "Атомэнергопроект"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to UAA201707424A priority Critical patent/UA122402C2/ru
Priority to CA2971132A priority patent/CA2971132C/en
Priority to EP15870434.6A priority patent/EP3236472B1/en
Priority to MYPI2017702207A priority patent/MY194315A/en
Priority to KR1020177019500A priority patent/KR102198445B1/ko
Priority to CN201580076173.4A priority patent/CN107210070B/zh
Application filed by Акционерное Общество "Атомэнергопроект" filed Critical Акционерное Общество "Атомэнергопроект"
Priority to US15/536,968 priority patent/US20170323693A1/en
Priority to JP2017532090A priority patent/JP6567055B2/ja
Priority to BR112017013046-7A priority patent/BR112017013046B1/pt
Priority to EA201650092A priority patent/EA032395B1/ru
Publication of WO2016099326A1 publication Critical patent/WO2016099326A1/ru
Priority to ZA2017/04784A priority patent/ZA201704784B/en

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C9/00Emergency protection arrangements structurally associated with the reactor, e.g. safety valves provided with pressure equalisation devices
    • G21C9/016Core catchers
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C13/00Pressure vessels; Containment vessels; Containment in general
    • G21C13/10Means for preventing contamination in the event of leakage, e.g. double wall
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C15/00Cooling arrangements within the pressure vessel containing the core; Selection of specific coolants
    • G21C15/18Emergency cooling arrangements; Removing shut-down heat
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C13/00Pressure vessels; Containment vessels; Containment in general
    • G21C13/02Details
    • G21C13/024Supporting constructions for pressure vessels or containment vessels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the invention relates to the field of nuclear energy, in particular to systems that ensure the safety of nuclear power plants (NPPs), and can be used in severe accidents that lead to the destruction of the reactor vessel and its hermetic shell.
  • NPPs nuclear power plants
  • the greatest radiation hazard is accidents with core melting, which can occur during multiple failure of core cooling systems.
  • the prior art device for the localization and cooling of the corium of a nuclear reactor located in the subreactor space of a concrete mine including a water-cooled casing, briquettes of a diluent material of uranium oxide corium bound with cement mortar and placed in steel blocks in several horizontal layers, the bottom of the lower block is identical in shape to the bottom of the case, the blocks located above it have a central hole, and the attachment points of the blocks to the case and to each other are placed in vertical slots of the blocks (see RF patent N ° 2514419, 04/27/2014).
  • the bottom of the lower block identical in shape to the bottom of the body, does not have a central hole, and the blocks located above it have such holes, therefore, briquettes of the diluent material are “locked” in the lower block upon receipt of the first portion of the core melt, consisting mainly of made of liquid steel and zirconium. Given the angle of inclination of the bottom from 10 to 20 degrees, the mass of "locked" briquettes of the diluent material is from 25 to 35% of the total mass of briquettes located in the housing.
  • the subsequent receipt of the second portion of the core melt consisting mainly of uranium and zirconium oxides, one to three hours after the first portion will not be able to create conditions for thermochemical interaction with briquettes in the lower block, since the steel that has arrived earlier will either freeze in the lower block (and then the interaction of the briquettes with uranium and zirconium oxides will be blocked), or the previously overheated steel will destroy the steel frame of the lower block with all the fasteners (and then the briquettes in it will float, forming slag ovoy cap over the corium);
  • the formula that determines the mass of the diluent material of the uranium-containing oxide corium incorrectly determines the lower limit of the required mass of the diluent material, which is due to incorrect consideration of the ratio of the thickness of the layers of oxides and metals coming from the nuclear reactor.
  • the lower limit should be increased by 35% when blocking briquettes in the lower block and should be increased by another 15% when blocking briquettes with liquid steel in the upper blocks before the inversion of oxide and metal layers. In this way, the lower limit for calculating the mass of the diluent material must be multiplied by a factor of 1.5.
  • the prior art also knows the device wall of the heat exchanger casing, designed for melt localization and cooling, including an inner and outer wall and a filler placed between them made of granular ceramic material chemically similar to a sacrificial material, at least 100 mm thick (see RF Patent for Useful model JSTel00326, 12/10/2010).
  • granular ceramic material does not provide effective protection of the outer wall of the heat exchanger body from thermal shock from the high-temperature melt due to the fact that this material is an effective thermal insulator with thermal conductivity, on average, less than 0.5 W / ( m K), and until the end of its melting, heat practically does not transfer heat to the outer wall of the casing, which increases the risk of destruction of the heat exchanger during convection leaching of granular material with a melt;
  • granular ceramic material does not provide reliable chemical protection of the outer wall of the heat exchanger casing due to the fact that when the inner wall of the heat exchanger casing is destroyed, this material can spill out of the vertical inter-wall space with a flow rate determined by the destruction area, this process empties the inter-wall space, depriving the outer wall of the casing chemical and thermal protection, which increases the risk of destruction of the heat exchanger;
  • the objective of the invention is to eliminate the disadvantages of analogues.
  • the technical result of the invention is to increase the efficiency of heat removal from the melt and increase the reliability of the structure.
  • the specified technical result is achieved due to the fact that the localization and cooling system of the core melt of the water-to-water nuclear reactor contains a funnel-shaped guide plate mounted under the bottom of the reactor vessel, a truss-console installed under the guide plate so that the plate rests on the truss console, a melt trap installed under the console farm and equipped with a cooled shell in the form of a multilayer vessel to protect the external heat exchange wall from dynamic, thermal and chemical influences and a filler for diluting the melt, placed in the aforementioned multilayer vessel, the vessel containing metallic inner and outer layers, between which an intermediate layer in the form of a nonmetallic filler is placed, and force ribs installed with an azimuthal pitch are placed between the inner and outer layers (s mar ) - with a step around the circumference in the diametrical plane of the multilayer vessel, satisfying the condition:
  • a torus composite three-layer shell is installed, providing, on the one hand, a smooth hydrodynamic transition from conical to cylindrical parts of the vessel, and on the other, the temperature expansion of the inner layer regardless of the temperature expansion of the outer layer , - the vessel contains an additional anti-corrosion layer with a thickness
  • the vessel contains an additional layer that increases convective heat transfer to water, a thickness of 0.5-5 mm, deposited on the outer layer.
  • the system under consideration uses a melt trap having a three-layer shell with an external (external) and internal metal walls with a filler, while power ribs with an azimuthal step (3 step ) are installed between the external and internal walls - with a step along the circumference in the diametrical plane multilayer vessel satisfying the condition
  • the indicated ratio of parameters provides an acceptable step for installing power ribs depending on the outer diameter of the vessel, which can vary from 3 to 12 m, and, for larger diameters, a smaller value of the quotient from division is chosen, and for smaller diameters - a larger one.
  • the outer diameter of the vessel is 12 m
  • the quotient of dividing by 15 is selected
  • the outer diameter of the vessel is 3 m
  • the quotient of dividing by 5 is selected, in this case the step of the arrangement of the edges in the azimuthal (diametric) plane is approximately 0.4 up to 0.8m.
  • FIG. 1 schematically shows a system for localization and cooling of the melt
  • FIG. 2 shows the design of the multilayer vessel for the melt trap.
  • the structural elements are indicated in the drawings by the following positions:
  • a guide plate (4) is installed, having the shape of a funnel, which rests on a truss-console (5) equipped with thermal protection (6).
  • a melt trap (8) is installed, which has a cooled shell (case) in the form of a multilayer vessel, including metal outer (1 1) and inner (13) layers (walls), between which a layer of non-metallic aggregate is placed ( 12).
  • a sacrificial filler (10) is placed inside the trap body (8) to dilute the melt.
  • a pit (14) is made to accommodate a corium having a stepped, conical or cylindrical shape.
  • thermal protection (9) of the flange of the multilayer vessel is provided.
  • a service platform (7) is located in the space between the truss console (5) and the trap (8).
  • the guide plate (4) is designed to direct the corium (melt) after the destruction or penetration of the reactor vessel into the trap (8).
  • the guide plate (4) holds large fragments of the internals, fuel assemblies and the bottom of the reactor vessel from falling into the trap and protects the truss console (5) and its communications from destruction when the melt from the reactor vessel (1) enters the trap ( 8).
  • the guide plate (4) also protects the concrete shaft (3) from direct contact with the core melt.
  • the guide plate (4) is divided by power ribs into sectors along which the flow of the melt is ensured. Power ribs hold the bottom of the reactor vessel (2) with the melt, which does not allow the bottom to block the passage sections of the guide plate sectors (4) during its destruction or severe plastic deformation and disrupt the melt runoff.
  • a layer of sacrificial concrete (based on aluminum and iron oxides) is located directly below the surface, and a layer of heat-resistant heat-resistant concrete (based on aluminum oxide) is under the sacrificial concrete.
  • Sacrificial concrete dissolving in an active melt zone provides an increase in the bore in the sectors of the guide plate during the formation of blockades (when the melt solidifies in one or several sectors), which allows to prevent overheating and destruction of the power ribs, that is, complete blocking of the bore and, as a consequence, the destruction of the guide plate.
  • Heat-resistant heat-resistant concrete provides structural strength while reducing the thickness of sacrificial concrete. This concrete protects the underlying equipment from the effects of the melt, preventing the melt from melting or destroying the guide plate (4).
  • the truss console (5) protects not only the trap (8), but also the internal communications of the entire localization and cooling system of the core melt from destruction from the corium side and is a support for the guide plate (4), which transfers static and dynamic effects to the truss console (5), unfastened in the reactor shaft (3).
  • the truss console (5) also ensures the operability of the guide plate (4) in the case of its sector destruction when the bearing capacity of the power ribs is weakened.
  • Farm console (5) contains:
  • channels for the removal of steam, ensuring the removal of steam from the subreactor room of the concrete mine (3) into the containment zone at the stage of cooling the corium in the trap (8); channels ensure the removal of saturated steam without exceeding the permissible pressure in the concrete mine
  • the trap (8) ensures the retention and cooling of the molten core in the subreactor room of the concrete mine (3) during the penetration or destruction of the reactor vessel (1) due to the developed heat exchange surface and heat transfer to water in boiling mode in a large volume.
  • a trap (8) is installed at the base of a concrete shaft (3) on embedded parts.
  • the shell of the trap (8) according to the claimed invention is a multilayer vessel having:
  • the metal inner layer (13) is the inner body formed by the wall and the bottom.
  • the outer layer (11) can be made of steel, for example, grades
  • the inner layer (13) can be made of steel, for example, grades 22K, 20K, 09G2S and have a thickness of 15-40 mm at the walls and 20-40 mm at the bottom.
  • the aggregate layer (12) may be made of a highly heat-conducting or low-heat-conducting material.
  • a material with a melting point of 300-800 ° C, preferably of low-melting concrete, with a melting point of not more than 600 ° C and a thickness of 70-150 mm can be used.
  • a material with a melting point of more than 800 ° C in particular concrete or ceramic filling, can be used.
  • force ribs (15) (see Fig. 3) installed with an azimuthal pitch (s mar ) satisfying the condition:
  • d Hap 15 is the outer diameter of the vessel.
  • the azimuthal step means the step along the outer diameter of the circle in the diametrical plane of the multilayer vessel (in cross section), i.e. the distance between the points of intersection of the force ribs with the outer wall (outer layer) of the vessel (see Fig. 3).
  • These power ribs (15) are rigidly connected to the outer layer (1 1) and may or may not be connected to the inner layer (12).
  • the power ribs can be made of steel 22K and have a width of 10-60 mm, and the azimuthal pitch of the installation is 200-800 mm.
  • a torus composite three-layer shell (18) is additionally installed, providing, on the one hand, a smooth hydrodynamic transition from conical to cylindrical parts of the vessel, and on the other hand, the thermal expansion of the inner layer, regardless of the temperature expansion of the outer layer
  • the multilayer vessel of the trap (8) may contain an additional anti-corrosion layer with a thickness of 0.1-0.5 mm deposited on the outer layer.
  • the vessel may include an additional layer that increases convective heat transfer to water, 0.5-5 mm thick, deposited on the outer surface of the outer layer.
  • the multilayer trap vessel (8) has a flange in the upper part, the outer and inner diameters of which coincide with the outer and inner diameters of the outer and inner walls of the vessel, respectively.
  • Filler (10) provides volumetric dispersion of the corium melt within the trap (8). Designed for additional oxidation of corium and its dilution in order to reduce the volume of energy release and increase the heat transfer surface of the energy-producing corium from the outer layer of the multilayer vessel (1 1), and also helps to create conditions for the flooding of fuel-containing corium fractions above the steel layer.
  • the filler (10) can be made of steel and oxide components containing iron, aluminum, zirconium oxides, with channels for redistributing the corium not only in the cylindrical part, but also in the bottom conical volume.
  • the service platform (7) provides thermal protection for the upper part of the trap (8) and allows external inspection of the reactor vessel (1) during scheduled preventive maintenance, providing access to:
  • the claimed system operates as follows.
  • the core melt under the action of hydrostatic and overpressure begins to flow onto the surface of the guide plate (4) by the supported truss-console (5).
  • the melt flowing down the sectors of the guide plate (4) enters the multilayer vessel of the melt trap (8) and comes into contact with the filler (10).
  • thermal shields (6) of the truss-console (5) and the service platform (7) are melted. Destroyed, these thermal shields, on the one hand, reduce the thermal effect of the core melt on the protected equipment, and on the other hand, reduce the temperature and chemical activity of the melt itself.
  • the melt sequentially first fills the sump (14), and then, as the steel elements of the filler structure (10) melt, it fills the voids between the non-metallic elements of the filler (10).
  • Non-metallic elements of the filler (10) are bonded to each other with special cement, which ensures the sintering of these non-metallic elements among themselves into a structure that excludes the ascent of the elements of the filler (10) in a heavier core melt.
  • the sintering of non-metallic elements among themselves provides sufficient masonry strength during the period of loss of strength from the side of the steel fasteners of the filler (10).
  • a decrease in the strength of the steel elements of the filler (10) with increasing temperature is compensated by an increase in the strength of the masonry of non-metallic elements of the filler (10) during sintering.
  • the surface interaction of non-metallic filler elements (10) with the core melt components begins.
  • the design, physical and chemical properties of the filler are selected in such a way as to ensure maximum dissolution efficiency of the filler in the core melt, to prevent the melt temperature from increasing, to reduce aerosol formation and radiant heat transfer from the melt mirror, and to reduce the formation of hydrogen and other non-condensable gases.
  • iron oxide which has different oxidation states, oxidizes zirconium during the interaction with the core melt, oxidizes uranium and plutonium dioxides, which prevents the formation of their metal phases, provides additional oxidation of the remaining components of the melt, which eliminates the radiolysis of water vapor and blocks sorption of oxygen from the atmosphere over the melt mirror. This, in turn, leads to a significant decrease in hydrogen yield. Iron oxide in this process releases oxygen and can be reduced to metallic iron, inclusive.
  • the process of entering the core melt into the filler (10) takes place in two stages: at the first stage, mainly liquid steel and zirconium with an admixture of oxides are supplied from the reactor vessel (1) to the filler (10), and at the second, the main component of the incoming melt are refractory liquid oxides with an admixture of metals.
  • the core melt and the filler (10) there are two different types of interaction between the core melt and the filler (10): the first is that the metal components of the core melt interact with the filler elements, melting them, and the liquid metal zirconium from the core melt is oxidized during the boundary interaction with non-metallic filler elements, which, when melted float up, forming a layer of light aluminum oxides of iron and zirconium over a layer of molten metals, and the second - oxide components of the melt of the active zone of interactions tvuyut and metal structures and non-metallic elements with filler, melting and dissolving them, and zirconium, chromium and some other liquid metals included in the oxide core melt fraction are oxidized by reacting with non-metallic filler elements.
  • the oxide fraction of the melt is oxidized and the most active ingredients are oxidized from the metal fraction of the melt, a corium appears with predetermined properties that allow its localization in a limited volume and safe effective long-term cooling.
  • both natural and artificial slag caps are used, which is formed both during the melting of special concretes under the influence of thermal radiation from the side of the melt mirror and during the interaction of the liquid corium melt with the filler .
  • the thickness and lifetime of the slag cap are chosen in such a way as to minimize the impact of the upstream equipment from the side of the melt mirror during the most unfavorable initial period of melt localization - during its entry into the filler (10) and accumulation in the trap (8).
  • the period of receipt of the core melt in the trap can reach several hours, moreover, the input of the oxide phase is substantially uneven and may be accompanied by a significant change or temporary cessation of flow.
  • the chemical reactions of the filler (10) with the core melt gradually change the composition and structure of the corium.
  • the core melt can pass from a homogeneous structure to a two-layer structure: at the top, mainly, a mixture of liquid steel and zirconium, below - a melt of refractory oxides with an admixture of metals; the melt density of refractory oxides is, on average, 25% higher than the density of a mixture of liquid metals.
  • the composition of the corium, especially its oxide part changes: the density of liquid oxides decreases more than the density of liquid metals.
  • the initial mass of non-metallic sacrificial filler materials is selected in such a way as to ensure guaranteed dissolution in liquid refractory oxides of the core of such a quantity of non-metallic sacrificial materials so that the resulting density of the new oxide melt was less than the density of the liquid metal fraction of corium.
  • an inversion occurs in the bath of the corium melt: liquid oxides float up, and the liquid-metal fraction of corium drops down.
  • the new corium structure allows safe cooling of the molten mirror with water.
  • cooling water does not pose a threat of vapor explosions, which is associated with the thermophysical features of liquid oxides, and does not enter into chemical reactions with them with the formation of hydrogen, does not experience thermal decomposition due to the relatively low temperature of the melt mirror.
  • Inversion of liquid oxides and metals allows for a more uniform heat flow through the multilayer vessel of the trap to the final heat absorber - water, due to various thermophysical properties of liquid oxides and liquid metals.
  • Heat transfer from the corium to the trap (8) occurs in three stages.
  • the first stage when mainly liquid metals enter the sump (14) of the filler (10), the heat exchange between the layers of the multilayer vessel (11-13) of the trap (8) and the melt does not differ in particular intensity: the heat accumulated by the melt is spent mainly on heating and partial melting of structural elements of the filler (10).
  • the heating of the lower part of the trap (8) is uniform and does not have pronounced features.
  • the conical bottom of the trap (8) has an average thickness of 30% greater than its cylindrical part, and vertical convective heat transfer from top to bottom has significantly lower efficiency than radial convective heat transfer, or vertical convective heat transfer from bottom to top, is a process
  • the bottom of the trap (8) is heated much more slowly than the subsequent heating of its cylindrical part.
  • the level of the corium melt increases significantly (taking into account the dissolution of the sacrificial filler materials).
  • the oxide component of corium is energy-generating.
  • the distribution of energy release between the oxide and metal components of the corium is approximately 9 to 1, which leads to significant heat fluxes from the oxide component of the corium.
  • the oxide crust consisting of a melt of refractory oxides (skull), is formed as a result of cooling of the oxide melt at the oxide-metal interface, as a result of the fact that the metal has an order of magnitude higher thermal conductivity than oxides and can provide higher heat transfer to the final absorber heat to water.
  • This effect is used to reliably localize the melt, preventing the chemical interaction of the corium components with the outer layer of the multilayer vessel (11), cooled by water, and ensuring its thermal protection.
  • Liquid metals, located above the liquid oxides receive energy, mainly due to convective heat transfer with liquid oxides, the direction of convective heat transfer from the bottom up.
  • This factor can lead to overheating of the liquid metal fraction of the corium and a substantially uneven distribution of heat fluxes through the layers of the multilayer vessel (11-13) of the trap (8) to the final heat sink, and, in addition, increase the heat flux density radiation from the melt mirror.
  • the skull In the zone of interaction of the layers of the multilayer vessel (11-13) of the trap (8) with the liquid metal fraction of the corium, the skull does not form and there is no natural barrier from overheating of the multilayer vessel. The solution to this problem is provided by constructive measures.
  • the outer layer of the multilayer vessel (11) from the side of the reactor shaft (3) is filled with water.
  • the melt trap (8) is installed in the reactor shaft (3) and communicates with the pit, in which, during design and beyond design basis accidents, the coolant of the primary circuit of the reactor installation, as well as the water entering the primary circuit from the safety systems, enter.
  • the melt trap (8) is made in the form of a multilayer vessel described above.
  • the main thermal loads are absorbed by the inner layer (13), and the main mechanical loads (shock and pressure) are absorbed by the outer layer (11).
  • the transfer of mechanical loads from the inner layer (13) to the outer layer (11) is provided by ribs mounted on the inner surface of the outer layer (11), to which the inner layer (13) is welded.
  • the inner layer (13) through the ribs transfers forces from thermal deformation to the outer cooled layer (11).
  • the connection between the ribs and the outer layer (11) is made in a special way using thermal damping.
  • aggregate (12) of highly heat-conducting material low-melting concrete
  • it provides heat transfer from the inner layer of the vessel (13) to the outer (11).
  • the inner layer (13) is heated by corium and heat is transferred to the aggregate (12) (low-melting concrete).
  • the aggregate is heated to the melting onset temperature, then, as the width of the molten zone increases, convective heat transfer begins between the inner layer (13) and the still not molten part of the aggregate (12). This process continues until the aggregate (12) is completely melted and the heat flux leaves the inner layer to the outer one.
  • the process of melting of the aggregate (12) is fast enough, due to the high thermal conductivity of the material, therefore, practically, the entire heat flux from the side of the inner layer of the vessel will be absorbed by the aggregate material.
  • the aggregate thickness was chosen so that the following two basic conditions were satisfied: the first — concrete melting time should be significantly less than the critical heating time of the inner layer of the vessel, leading to loss of strength, and the second — this level of convective heat transfer between the inner and outer layers should be ensured so that the heat flux density transferred from the inner layer to the molten concrete decreases from one and a half to two times when transferring from the molten concrete to the outside th layer of the vessel (outer wall) due to convective heat transfer in the molten concrete.
  • the first basic condition is ensured by constructive measures - the choice of the macroporosity of the filler (10), which provides a moderate heat flux to the inner layer of the vessel at the initial stage of interaction of the core melt with the filler, which allows melt concrete without losing the strength of the inner layer of the vessel with increasing temperature.
  • Such macroporosity allows a limited period of time at the initial stage of interaction to exclude the effect of the entire melt of the active zone on the inner surface of the inner layer of the vessel, limiting this effect to about a tenth of the total energy release in the melt provided by residual energy release and chemical reactions with filler components (10).
  • the inner layer of the vessel warms up to the calculated temperature, and in the zone of thermal contact of the corium and the inner layer of the vessel, liquid fusible concrete provides convective heat transfer to the outer layer of the vessel, and then to the final heat sink - water.
  • the second basic condition is ensured by the properties of liquid fusible concrete and the parameters of the space between the layers of the vessel, in which convective heat and mass transfer provides a given decrease in the density of the heat flow stream when it is transferred from the inner layer to the outer one.
  • aggregate (12) from a low-heat-conducting material, it provides thermal insulation of the outer layer (11) of the trap (8) at the initial stage of the arrival of the core melt.
  • the main purpose of the aggregate (12) is to protect against thermal shock and the formation of a skull on the inner surface of the outer layer (11) of the trap (8).
  • the inner layer (13) is heated by the corium and melts, heat is transferred to the filler (12), which, when heated, melts and forms a skull crust on the relatively cold inner surface of the outer layer of the multilayer vessel (11). This process continues until the inner layer (13) and the aggregate (12) of the multilayer vessel are completely melted.
  • the process of melting and dissolving the aggregate (12) in the corium occurs quickly enough, which is due to the low thermal conductivity of the aggregate, therefore, almost all of the heat flux from the corium to the inner layer (13) of the multilayer vessel will be spent on melting the inner layer (13) and the aggregate (12).
  • the scull formed by the aggregate allows you to limit the heat flux to the outer layer (11) of the multilayer vessel, redistribute heat flow along the height of the outer layer (11) and align it with the local differences in height and azimuth.
  • the limitation of the density of the heat flux passing through the outer layer (11) of the multilayer vessel is necessary to ensure stable crisis-free heat transfer to the final heat sink - water washing the melt trap (8). Heat transfer to water is carried out in the "boiling in large volume" mode, which allows for passive heat removal for unlimited time.
  • the function of limiting the heat flux is performed by two elements of the localization and cooling system of the core melt of a nuclear reactor.
  • the first element is a filler (10), which, on the one hand, provides dilution and an increase in the volume of the heat-generating part of the corium, which allows to increase the heat transfer area, thereby reducing the heat flux through the outer layer (11) of the trap (8), and with the other one provides inversion of the oxide and metal components of the corium, in which the oxide component moves up and the liquid metal component drops down, thereby reducing the maximum heat fluxes to the outer layer (11) due to the redistribution of heat outflows in the lower part of the trap (8).
  • the second element is the filler (12) of the multilayer vessel, which ensures the reduction (alignment) of the maximum heat fluxes on the outer layer (11) due to the formation of a refractory skull crust, which redistributes the maximum heat fluxes from the corium side in height and azimuth (in the diametrical plane) of the outer layer (11) traps (8).
  • the heat fluxes gradually equalize: the heat flux through the outer layer (11) becomes equal to the heat flux from the corium surface.
  • the predominance of direct corium cooling can be observed by supplying water into the trap (8), which is possible in the case of the formation of a water-permeable structure during solidification of the corium.
  • the indicated trap (8) of the localization and cooling system for the melt of the core of a water-water type nuclear reactor as a whole allows one to increase the efficiency of heat removal from the melt while maintaining the integrity of the outer layer of the multilayer vessel (11).

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

Изобретение относится к области атомной энергетики, в частности к системам, обеспечивающим безопасность атомных электростанций (АЭС), и может быть использовано при тяжелых авариях, приводящих к разрушению корпуса реактора и герметичной оболочки АЭС. Система локализации и охлаждения расплава содержит направляющую плиту в форме воронки, установленную под днищем корпуса реактора, ферму-консоль, установленную под направляющей плитой таким образом, что плита опирается на ферму-консоль, ловушку расплава, установленную под фермой-консолью и снабженную охлаждаемой оболочкой в виде многослойного сосуда для защиты наружной теплообменной стенки от динамического, термического и химического воздействий, и наполнитель для разбавления расплава, размещенный в упомянутом многослойном сосуде. При этом указанный многослойный сосуд содержит металлические внутренний и наружный слои, между которыми размещен промежуточный слой в виде неметаллического заполнителя, причем между внутренним и наружным слоем размещены силовые ребра, установленные с азимутальным шагом (sшаг), удовлетворяющим условию: dнар/15<sшагdнар/5, где dнар - наружный диаметр сосуда. Технический результат - повышение эффективности отвода тепла от расплава и повышение надежности конструкции.

Description

Система локализации и охлаждения расплава активной зоны ядерного реактора водоводяного типа
ОПИСАНИЕ Изобретение относится к области атомной энергетики, в частности к системам, обеспечивающим безопасность атомных электростанций (АЭС), и может быть использовано при тяжелых авариях, приводящих к разрушению корпуса реактора и его герметичной оболочки.
Наибольшую радиационную опасность представляют аварии с расплавлением активной зоны, которые могут происходить при множественном отказе систем охлаждения активной зоны.
При таких авариях расплав активной зоны - кориум, расплавляя внутриреакторные конструкции и корпус реактора, вытекает за его пределы и вследствие сохраняющегося в нем остаточного тепловыделения может нарушить целостность герметичной оболочки АЭС - последнего барьера на пути выхода радиоактивных продуктов в окружающую среду.
Для исключения этого необходимо локализовать вытекший кориум и обеспечить его непрерывное охлаждение вплоть до полной кристаллизации. Эту функцию выполняют система локализации и охлаждения расплава активной зоны реактора (кориума), которая предотвращает повреждения герметичной оболочки АЭС и тем самым защищает население и окружающую среду от радиационного воздействия при тяжелых авариях ядерных реакторов.
Из уровня техники известно устройство локализации и охлаждения кориума ядерного реактора, расположенное в подреакторном пространстве бетонной шахты, включающее охлаждаемый водой корпус, брикеты материала-разбавителя урансодержащего оксидного кориума, связанные цементным раствором и размещенные в стальных блоках в несколько горизонтальных слоев, днище нижнего блока идентично по форме днищу корпуса, расположенные над ним блоки имеют центральное отверстие, а узлы крепления блоков к корпусу и между собой размещены в вертикальных прорезях блоков (см. патент РФ N° 2514419, 27.04.2014).
Указанный аналог имеет ряд недостатков:
- днище нижнего блока, идентичное по форме днищу корпуса, не имеет центрального отверстия, а расположенные над ним блоки такие отверстия имеют, поэтому происходит "запирание" брикетов материала- разбавителя в нижнем блоке при поступлении первой порции расплава активной зоны, состоящей, в основном, из жидкой стали и циркония. С учётом угла наклона днища от 10 до 20 градусов масса "запертых" брикетов материала-разбавителя составляет от 25 до 35% от общей массы брикетов, расположенных в корпусе. Последующее поступление второй порции расплава активной зоны, состоящей, в основном, из оксидов урана и циркония, через один-три часа после первой порции не сможет создать условия для термохимического взаимодействия с брикетами в нижнем блоке, так как поступившая ранее сталь либо застынет в нижнем блоке (и тогда взаимодействие брикетов с оксидами урана и циркония будет блокировано), либо поступившая ранее перегретая сталь разрушит стальной каркас нижнего блока со всеми креплениями (и тогда находящиеся в нём брикеты всплывут, образуя шлаковую шапку над кориумом);
формула, определяющая массу материала-разбавителя ураносодержащего оксидного кориума, неверно определяет нижнюю границу необходимой массы материала-разбавителя, что связано с неправильным учётом соотношения толщины слоев оксидов и металлов, поступающих из ядерного реактора. Нижняя граница по этой формуле должна быть увеличена на 35% при блокировании брикетов в нижнем блоке и должна быть увеличена ещё на 15% при блокировании брикетов жидкой сталью в верхних блоках до начала инверсии оксидных и металлических слоев. Таким образом, нижняя граница для расчёта массы материала-разбавителя должна быть умножена на коэффициент, равный 1,5.
максимальная масса остаточной воды в массовых процентах в цементном связующем брикетов материала-разбавителя - не выше 8%, что представляется ошибочным. Как показали результаты экспериментальных исследований (см. «Исследование условий, обеспечивающих сцепления жертвенной керамики ПОЖА с кладочным раствором ЦКС». Техническая справка. МОН РФ ГОУ ВПО Санкт-Петербургский технологический институт (технический университет), 2013 [1]) для эффективного сцепления брикетов, обеспечивающих их проектную работоспособность, массовая доля химически связанной воды должна составлять 10%, в противном случае монолитность кладки брикетов будет нарушена, а работоспособность брикетов не гарантирована. Тезис об уменьшении доли воды в цементном связующем для уменьшения выхода водорода ошибочен, что связано с некорректным учётом взаимодействия пара с пористой структурой кладки брикетов.
Из уровня техники также известно устройство стенки корпуса теплообменника, предназначенного для устройства локализации и охлаждения расплава, включающая внутреннюю и наружную стенку и размещенный между ними заполнитель из гранулированного керамического материала, химически подобного жертвенному материалу, толщиной не менее 100 мм (см. Патент РФ на полезную модель JSTel00326, 10.12.2010).
Недостатки данной конструкции сосуда заключаются в следующем: гранулированный керамический материал не обеспечивает эффективной защиты наружной стенки корпуса теплообменника от термоударов со стороны высокотемпературного расплава в связи с тем, что этот материал является эффективным тепловым изолятором с теплопроводностью, в среднем, меньше 0,5 Вт/(м К), и до окончания своего плавления тепло наружной стенке корпуса практически не передаёт, что повышает риск разрушения теплообменника при конвекционном вымывании гранулированного материала расплавом;
гранулированный керамический материал не обеспечивает надёжную химическую защиту наружной стенки корпуса теплообменника в связи с тем, что при разрушении внутренней стенки корпуса теплообменника этот материал может высыпаться из вертикального межстеночного пространства с расходом, определяемым площадью разрушения, этот процесс опустошает межстеночное пространство, лишая наружную стенку корпуса необходимой химической и тепловой защиты, что повышает риск разрушения теплообменника;
- большая толщина зазора, не менее 100 м, между наружной и внутренней стенками теплообменника при плавлении гранулированного керамического материала, состоящего из оксидов железа и алюминия, приводит к значительному перераспределению тепловых потоков - основной тепловой поток идёт не через наружную стенку корпуса теплообменника, а через незащищённую свободную поверхность зеркала расплава, увеличивая среднюю температуру расплава в теплообменнике, следствием чего являются следующие процессы: повышенное образование аэрозолей, высокий выход неконденсируемых газов, повышенное тепловое излучение, дополнительный нагрев и обрушение расположенного выше оборудования, - и, как следствие этого, перелив расплава за охлаждаемые границы, что ведёт к разрушению теплообменника.
Поэтому использование гранулированных керамических засыпок без прочной теплопроводной связи с наружной стенкой теплообменника неэффективно.
Задачей изобретения является устранение недостатков аналогов.
Технический результат изобретения заключается в повышении эффективности отвода тепла от расплава и повышении надежности конструкции. Указанный технический результат достигается за счет того, что система локализации и охлаждения расплава активной зоны ядерного реактора водоводяного типа содержит направляющую плиту в форме воронки, установленную под днищем корпуса реактора, ферму-консоль, установленную под направляющей плитой таким образом, что плита опирается на ферму-консоль, ловушку расплава, установленную под фермой- консолью и снабженную охлаждаемой оболочкой в виде многослойного сосуда для защиты наружной теплообменной стенки от динамического, термического и химического воздействий и наполнитель для разбавления расплава, размещенный в упомянутом многослойном сосуде, причем сосуд содержит металлические внутренний и наружный слои, между которыми размещен промежуточный слой в виде неметаллического заполнителя, причем между внутренним и наружним слоем размещены силовые ребра, установленные с азимутальным шагом (smar) - с шагом по окружности в диаметральной плоскости многослойного сосуда, удовлетворяющим условию:
dHap/15<smar<dHap/5, где dHap 15 - наружный диаметр сосуда.
Кроме того, указанный технический результат достигается в частных вариантах реализации изобретения за счет того, что:
- силовые ребра жестко связаны с наружным слоем и не связаны с внутренним слоем,
- силовые ребра жестко связаны с наружным и внутренним слоями,
- силовые ребра установлены с радиальными и азимутальными тепловыми зазорами,
- в нижней части сосуда, соединяющей верхнюю цилиндрическую и нижнюю коническую части, установлена торовая составная трехслойная обечайка, обеспечивающая, с одной стороны, плавный гидродинамический переход от конической к цилиндрической частям сосуда, а с другой - температурные расширения внутреннего слоя независимо от температурных расширений наружного слоя, - сосуд содержит дополнительный антикоррозионный слой толщиной
0,1-0,5 мм, нанесенный на наружный слой,
- сосуд содержит дополнительный слой, увеличивающий конвективную теплоотдачу к воде, толщиной 0,5-5 мм, нанесенный на наружный слой.
В отличие от аналогов в рассматриваемой системе используют ловушку расплава, имеющую трехслойную оболочку с наружной (внешней) и внутренней металлическими стенками заполнителем, при этом между наружной и внутренней стенками установлены силовые ребра с азимутальным шагом (зшаг) - с шагом по окружности в диаметральной плоскости многослойного сосуда, удовлетворяющим условию
Figure imgf000008_0001
где dHap - наружный диаметр сосуда, м.
Указанное соотношение параметров обеспечивает приемлемый шаг установки силовых рёбер в зависимости от наружного диаметра сосуда, который может колебаться в пределах от 3 до 12 м, причём, для больших диаметров выбирается меньшее значение частного от деления, а для меньших диаметров - большее. Иными словами, при наружном диаметре сосуда 12 м выбирается частное от деления на 15, а при наружном диаметре сосуда 3 м выбирается частное от деления на 5, в этом случае шаг расположения рёбер в азимутальной (диаметральной) плоскости составляет, примерно, от 0,4 до 0,8м.
Изобретение поясняется чертежами:
на фиг. 1 схематично показана система локализации и охлаждения расплава,
на фиг. 2 показан конструкция многослойного сосуда ловушки расплава, Элементы конструкции обозначены на чертежах следующими позициями:
1 - корпус реактора;
2 - днище корпуса реактора;
3 - бетонная шахта (шахта реактора); 4 - направляющая плита;
5 - ферма-консоль;
6 - тепловая защита фермы-консоли;
7 - площадка обслуживания;
8 - ловушка расплава;
9 - тепловая защита фланца многослойного сосуда (корпуса);
10 - наполнитель;
11 - наружный слой многослойного сосуда (корпуса);
12 - заполнитель многослойного сосуда (корпуса);
13 - внутренний слой многослойного сосуда (корпуса);
14 - ступенчатый, конический или цилиндрический приямок для размещения кориума;
15 - силовое ребро;
16 - цилиндрическая часть сосуда,
17- коническая часть сосуда,
18 - трехслойая торовая обечайка.
Согласно заявленному изобретению под днищем (2) корпуса реактора (1), размещенного в бетонной шахте (3), установлена направляющая плита (4), имеющая форму воронки, которая опирается на ферму-консоль (5), снабженную тепловой защитой (6).
Под фермой-консолью (5), установлена ловушка расплава (8), имеющая охлаждаемую оболочку (корпус) в виде многослойного сосуда, включающего металлические наружный (1 1) и внутренний (13) слои (стенки), между которыми размещен слой неметаллического заполнителя (12). Внутри корпуса ловушки (8) размещен жертвенный наполнитель (10) для разбавления расплава. При этом в наполнителе (1 1) выполняется приямок (14) для размещения кориума, имеющий ступенчатую, коническую или цилиндрическую форму.
Кроме того, в корпусе ловушки (8) предусмотрена тепловая защита (9) фланца многослойного сосуда.
В пространстве между фермой-консолью (5) и ловушкой (8) размещена площадка обслуживания (7).
Направляющая плита (4) предназначена для направления кориума (расплава) после разрушения или проплавления корпуса реактора в ловушку (8). Кроме того, направляющая плита (4) удерживает крупногабаритные обломки внутрикорпусных устройств, тепловыделяющих сборок и днища корпуса реактора от падения в ловушку и обеспечивает защиту фермы- консоли (5) и её коммуникаций от разрушения при поступлении расплава из корпуса реактора (1) в ловушку (8). Направляющая плита (4) также предохраняет бетонную шахту (3) от прямого контакта с расплавом активной зоны. Направляющая плита (4) разделена силовыми рёбрами на сектора, по которым обеспечивается стекание расплава. Силовые рёбра удерживают днище корпуса реактора (2) с расплавом, что не позволяет днищу в процессе своего разрушения или сильного пластического деформирования перекрыть проходные сечения секторов направляющей плиты (4) и нарушить процесс стекания расплава. Под поверхностью воронки направляющей плиты расположено два слоя бетона: непосредственно под поверхностью находится слой жертвенного бетона (на основе оксидов алюминия и железа), а под жертвенным бетоном - слой термопрочного жаростойкого бетона (на основе оксида алюминия). Жертвенный бетон, растворяясь в расплаве активной зоны, обеспечивает увеличение проходного сечения в секторах направляющей плиты при образовании блокад (при застывании расплава в одном или нескольких секторах), что позволяет не допустить перегрева и разрушения силовых рёбер, то есть полной блокировки проходного сечения и, как следствие этого - разрушения направляющей плиты. Термопрочный жаростойкий бетон обеспечивает прочность конструкции при уменьшении толщины жертвенного бетона. Этот бетон защищает нижележащее оборудование от воздействия расплава, не позволяя расплаву проплавить или разрушить направляющую плиту (4).
Ферма-консоль (5) защищает не только ловушку (8), но и внутренние коммуникации всей системы локализации и охлаждения расплава активной зоны от разрушения со стороны кориума и является опорой для направляющей плиты (4), которая передаёт статические и динамические воздействия на ферму-консоль (5), раскрепленную в шахте реактора (3). Ферма-консоль (5) также обеспечивает работоспособность направляющей плиты (4) в случае её секторного разрушения при ослаблении несущей способности силовых рёбер.
Ферма-консоль (5) содержит:
- трубы-чехлы, обеспечивающие подключение датчиков контрольно- измерительных приборов (КИП);
- каналы орошения кориума (коллектор с раздающими трубопроводами), обеспечивающие подключение подачи охлаждающей воды от внешних источников, охлаждающая вода по каналам орошения поступает через ферму-консоль сверху на кориум;
- каналы для отвода пара, обеспечивающие отвод пара из подреакторного помещения бетонной шахты (3) в гермозону на стадии охлаждения кориума в ловушке (8); каналы обеспечивают отвод насыщенного пара без превышения допустимого давления в бетонной шахте
(3); - каналы для подвода воздуха, обеспечивающие поступление воздуха на охлаждение направляющей плиты (4) при нормальной эксплуатации.
Ловушка (8) обеспечивает удержание и охлаждение расплавленной активной зоны в подреакторном помещении бетонной шахты (3) при проплавлении или разрушении корпуса реактора (1) за счёт развитой теплообменной поверхности и передачи тепла к воде в режиме кипения в большом объёме. Ловушка (8) устанавливается в основании бетонной шахты (3) на закладные детали.
При этом оболочка ловушки (8) согласно заявленному изобретению представляет собой многослойный сосуд, имеющий:
- металлический наружный слой (11) - наружный корпус, обрзованный стенкой и днищем,
слой неметаллического заполнителя (12), ,
металлический внутренний слой (13) - внутренний корпус, образованный стенкой и днищем.
Наружный слой (11) может быть выполнен из стали, например, марок
22 , 20К, и иметь толщину 10-70 мм у стенок, и 70-120 мм у днища.
Внутренний слой (13) может быть выполнен из стали, например, марок 22К, 20К, 09Г2С и иметь толщину 15-40 мм у стенок и 20-40 мм у днища.
Слой заполнителя (12) может быть выполнен из высокотеплопроводного или низкотеплопроводного материала.
В качестве высокотеплопроводного материала может быть использован материал с температурой плавления 300 - 800°С, предпочтительно из легкоплавкого бетона, с температурой плавления не более 600°С и толщиной 70-150 мм.
В качестве низкотеплопроводного материала заполнителя может быть использован материал с температурой плавления более 800°С, в частности бетон или керамическая засыпка Между внутренним (13) и наружным (1 1) слоями размещены силовые ребра (15) (см фиг 3), установленные с азимутальным шагом (smar), удовлетворяющим условию:
О-нар/ 15 <-Sular<dHap/5 ,
где dHap 15 - наружный диаметр сосуда.
Под азимутальным шагом подразумевается шаг по внешнему диаметру окружности в диаметральной плоскости многослойного сосуда (в поперечном сечении), т.е расстояние между точками пересечения силовых ребер с внешней стенкой (внешним слоем) сосуда (см. фиг. 3).
Указанные силовые ребра (15) жестко связаны с наружным слоем (1 1) и могут быть связаны или не связаны с внутренним слоем (12).
В частности, силовые ребра могут быть выполнены из стали 22К и иметь ширину 10-60 мм, и азимутальный шаг установки 200-800 мм.
В нижней части сосуда (фиг.2), соединяющей верхнюю цилиндрическую (16) и нижнюю коническую (17) части дополнительно установлена торовая составная трехслойная обечайка (18), обеспечивающая, с одной стороны, плавный гидродинамический переход от конической к цилиндрической частям сосуда, а с другой - температурные расширения внутреннего слоя независимо от температурных расширений наружного слоя
Многослойный сосуд ловушки (8) может содержать дополнительный антикоррозионный слой толщиной 0,1-0,5 мм нанесенный на наружный слой.
Также сосуд может включать дополнительный слой, увеличивающий конвективную теплоотдачу к воде, толщиной 0,5-5 мм, нанесенный на наружную поверхность наружного слоя.
Многослойный сосуд ловушки (8) имеет в верхней части фланец, наружный и внутренний диаметры которого совпадают с наружным и внутренним диаметрами, соответственно, наружной и внутренней стенок сосуда.
Наполнитель (10) обеспечивает объёмное рассредоточение расплава кориума в пределах ловушки (8). Предназначен для доокисления кориума и его разбавления в целях уменьшения объёмного энерговыделения и увеличения поверхности теплообмена энерговыделяющего кориума с наружный слой многослойного сосуда (1 1), а также способствует созданию условий для всплытия топливосодержащих фракций кориума над слоем стали. Наполнитель (10) может быть выполнен из стальных и оксидных компонентов, содержащих оксиды железа, алюминия, циркония, с каналами для перераспределения кориума не только в цилиндрической части, но и в донном коническом объёме.
Площадка обслуживания (7) обеспечивает тепловую защиту верхней части ловушки (8) и позволяет проводить наружный осмотр корпуса реактора (1) при плановых профилактических работах, обеспечивая возможность доступа:
- к наполнителю (10) для ревизии и удаления воды в случае аварийных протечек;
- к узлам герметизации, обеспечивающим защиту наполнителя (10) от аварийных протечек;
- к концевикам труб-чехлов датчиков КИП для обеспечения ремонтных работ или замены датчиков.
Заявленная система функционирует следующим образом.
В момент разрушения корпуса (1) реактора расплав активной зоны под действием гидростатического и избыточного давлений начинает поступать на поверхность направляющей плиты (4) удерживаемой фермой-консолью (5).
Расплав, стекая по секторам направляющей плиты (4) попадает в многослойный сосуд ловушки расплава (8) и входит контакт с наполнителем (10).
При секторном неосесимметричном стекании расплава происходит подплавление тепловых защит (6) фермы-консоли (5) и площадки обслуживания (7). Разрушаясь, эти тепловые защиты, с одной стороны, снижают тепловое воздействие расплава активной зоны на защищаемое оборудование, а с другой - уменьшают температуру и химическую активность самого расплава.
Расплав последовательно заполняет сначала приямок (14), а затем, по мере расплавления стальных элементов конструкции наполнителя (10), заполняет пустоты между неметаллическими элементами наполнителя (10). Неметаллические элементы наполнителя (10) скреплены между собой специальным цементом, обеспечивающим спекание этих неметаллических элементов между собой в структуру, исключающую всплытие элементов наполнителя (10) в более тяжёлом расплаве активной зоны. Спекание неметаллических элементов между собой обеспечивает достаточную прочность кладки в период потери прочности со стороны стальных крепёжных элементов наполнителя (10). Таким образом, уменьшение прочности стальных элементов наполнителя (10) при повышении температуры компенсируется повышением прочности кладки неметаллических элементов наполнителя (10) в процессе спекания. После расплавления и растворения стальных элементов наполнителя (10) в расплаве активной зоны начинается поверхностное взаимодействие неметаллических элементов наполнителя (10) с компонентами расплава активной зоны. Конструкция, физические и химические свойства наполнителя подобраны таким образом, чтобы обеспечить максимальную эффективность растворения наполнителя в расплаве активной зоны, не допустить повышения температуры расплава, уменьшить процессы аэрозолеобразования и лучистый теплообмен с зеркала расплава, снизить образование водорода и других неконденсируемых газов. Один из компонентов наполнителя - оксид железа, имеющий разные степени окисления, в процессе взаимодействия с расплавом активной зоны окисляет цирконий, доокисляет диоксиды урана и плутония, чем препятствует образованию их металлических фаз, обеспечивает доокисление остальных компонентов расплава, что позволяет исключить радиолиз водяного пара и блокировать сорбцию кислорода из атмосферы над зеркалом расплава. Это, в свою очередь, приводит к существенному снижению выхода водорода. Оксид железа в этом процессе отдаёт кислород и может восстановиться до металлического железа включительно.
Процесс поступления расплава активной зоны в наполнитель (10) происходит в два этапа: на первом этапе из корпуса (1) реактора в наполнитель (10) поступают, в основном, жидкие сталь и цирконий с примесью оксидов, а на втором - основным компонентом поступающего расплава являются тугоплавкие жидкие оксиды с примесью металлов. Отсюда два разных типа взаимодействия расплава активной зоны с наполнителем (10): первый - металлические компоненты расплава активной зоны взаимодействуют с элементами наполнителя, расплавляя их, а жидкий металлический цирконий из расплава активной зоны окисляется в процессе пограничного взаимодействия с неметаллическими элементами наполнителя, которые, расплавляясь, всплывают вверх, образуя над слоем расплавленных металлов слой лёгких оксидов алюминия железа и циркония, и второй - оксидные компоненты расплава активной зоны взаимодействуют и с металлическими конструкциями и с неметаллическими элементами наполнителя, расплавляя и растворяя их, а цирконий, хром и некоторые другие жидкие металлы, входящие в состав оксидной фракции расплава активной зоны, окисляются при взаимодействии с неметаллическими элементами наполнителя. В результате такого сложного многоступенчатого взаимодействия происходит доокисление оксидной фракции расплава и окисление наиболее активных ингредиентов из металлической фракции расплава, появляется кориум с заранее заданными свойствами, которые позволяют обеспечить его локализацию в ограниченном объёме и безопасное эффективное длительное охлаждение.
В результате взаимодействия расплава активной зоны с наполнителем (10) температура получившегося кориума снижается, примерно, в полтора - два раза, что позволяет существенно снизить лучистый тепловой поток со стороны зеркала расплава к расположенным выше ферме-консоли, направляющей плите и днищу корпуса реактора. Для более эффективного уменьшения лучистых тепловых потоков со стороны зеркала расплава и уменьшения аэрозолеобразования используется как естественная, так и искусственная шлаковая шапка, которая образуется как при плавлении специальных бетонов под действием теплового излучения со стороны зеркала расплава, так и в процессе взаимодействия жидкого расплава кориума с наполнителем. Толщина и время существования шлаковой шапки выбраны таким образом, чтобы минимизировать воздействие со стороны зеркала расплава на вышерасположенное оборудование в самый неблагоприятный начальный период локализации расплава - в период его поступления в наполнитель (10) и накопления в ловушке (8). Период поступления расплава активной зоны в ловушку может достигать нескольких часов, причём, поступление оксидной фазы является существенно неравномерным и может сопровождаться значительным изменением или временным прекращением расхода.
Химические реакции наполнителя (10) с расплавом активной зоны постепенно изменяют состав и структуру кориума. На начальной стадии расплав активной зоны может перейти из гомогенной структуры в двухслойную: вверху, в основном, смесь жидкой стали и циркония, внизу - расплав тугоплавких оксидов с примесью металлов; плотность расплава тугоплавких оксидов, в среднем, на 25% выше плотности смеси жидких металлов. Постепенно, по мере растворения наполнителя в жидких оксидах активной зоны, состав кориума, особенно его оксидная часть, изменяется: плотность жидких оксидов уменьшается сильнее, чем изменяется плотность жидких металлов. Этот процесс приводит к постоянному уменьшению разности плотностей между жидкими металлической и оксидной фракциями кориума. Исходная масса неметаллических жертвенных материалов наполнителя выбрана таким образом, чтобы обеспечить гарантированное растворение в жидких тугоплавких оксидах активной зоны такого количества неметаллических жертвенных материалов, чтобы результирующая плотность нового оксидного расплава была меньше, чем плотность жидкометаллической фракции кориума. В тот момент, когда плотность жидких оксидов становится меньше плотности жидких металлов, в ванне расплава кориума происходит инверсия: жидкие оксиды всплывают вверх, а жидкометаллическая фракция кориума опускается вниз. Новая структура кориума позволяет осуществлять безопасное охлаждение зеркала расплава водой. При поступлении на поверхность жидких оксидов охлаждающая вода не создаёт угрозы возникновения паровых взрывов, что связано с теплофизическими особенностями жидких оксидов, и не вступает с ними в химические реакции с образованием водорода, не испытывает термического разложения, вследствие относительно низкой температуры зеркала расплава. Инверсия жидких оксидов и металлов позволяет обеспечить более равномерный тепловой поток через многослойный сосуд ловушки к конечному поглотителю тепла - воде, что обусловлено различными теплофизическими свойствами жидких оксидов и жидких металлов.
Теплопередача от кориума к ловушке (8) происходит в три стадии. На первой стадии при поступлении, в основном, жидких металлов в приямок (14) наполнителя (10) теплообмен между слоями многослойного сосуда (11- 13) ловушки (8) и расплавом не отличается особой интенсивностью: аккумулированное расплавом тепло расходуется, в основном, на разогрев и частичное плавление конструкционных элементов наполнителя (10). Прогрев нижней части ловушки (8) носит равномерный характер и не имеет ярко выраженных особенностей. Учитывая, что коническое днище ловушки (8) имеет толщину, в среднем, на 30% большую, чем её цилиндрическая часть, и вертикальный конвективный теплообмен сверху вниз имеет значительно меньшую эффективность, чем радиальный конвективный теплообмен, или вертикальный конвективный теплообмен снизу вверх, - процесс разогрева днища ловушки (8) идёт значительно медленнее, чем последующий разогрев её цилиндрической части. На второй стадии при поступлении, в основном, жидких тугоплавких оксидов уровень расплава кориума существенно повышается (с учётом растворения жертвенных материалов наполнителя). Оксидная составляющая кориума является энерговыделяющей. Распределение энерговыделения между оксидной и металлической составляющими кориума соотносится, примерно, как 9 к 1 , что приводит к значительным тепловым потокам со стороны оксидной составляющей кориума. Так как плотность оксидной составляющей кориума на начальном этапе взаимодействия с наполнителем существенно выше плотности металлического расплава, то возможна стратификация и перераспределение компонентов кориума: вверху - жидкие металлы, внизу - тугоплавкие оксиды. В этом состоянии значительного прогрева днища ловушки (8) со стороны тугоплавких оксидов не происходит в связи с тем, что конвективный теплообмен идёт в направлении сверху вниз, а теплопроводность оксидной корки на границе "стенка корпуса-оксиды" незначительна и, в среднем, не превышает 1 Вт/(м К). Оксидная корка, состоящая из расплава тугоплавких оксидов (гарнисаж), образуется в результате охлаждения расплава оксидов на границе "оксиды-металл", в результате того, что металл имеет на порядок более высокую теплопроводность, чем оксиды и может обеспечить более высокую теплопередачу к конечному поглотителю тепла - воде. Этот эффект используется для надёжной локализации расплава, позволяя предотвратить химическое взаимодействие компонентов кориума с наружным слоем многослойного сосуда (11), охлаждаемым водой, и обеспечить его термическую защиту. Жидкие металлы, находясь над жидкими оксидами, получают энергию, в основном, за счёт конвективного теплообмена с жидкими оксидами, направление конвективной теплопередачи снизу вверх. Этот фактор может привести к перегреву жидкометаллической фракции кориума и существенно неравномерному распределению тепловых потоков через слои многослойного сосуда (11-13) ловушки (8) к конечному поглотителю тепла, и, кроме того, увеличить плотность теплового потока излучением с зеркала расплава. В зоне взаимодействия слоев многослойного сосуда (11-13) ловушки (8) с жидкометаллической фракцией кориума гарнисаж не образуется и не возникает естественного барьера от перегрева многослойного сосуда. Решение этой задачи обеспечивается конструктивными мерами.
На третьей стадии кориум, взаимодействуя с наполнителем (10), выходит на внутренний слой многослойного сосуда (13). К этому моменту наружный слой многослойного сосуда (11) со стороны шахты реактора (3) залит водой. Ловушка расплава (8) установлена в шахте реактора (3) и сообщается с приямком, в который при проектных и запроектных авариях поступает теплоноситель первого контура реакторной установки, а также вода, поступающая в первый контур из систем безопасности. Для предотвращения разрушения теплопередающего наружного слоя многослойного сосуда (11) высокотемпературным расплавом кориума, ловушка расплава (8) выполнена в виде многослойного сосуда, описанной выше конструкции. В этом случае имеется возможность перераспределить термические и механические нагрузки между слоями (11-13) многослойного сосуда: основные термические нагрузки воспринимает внутренний слой (13), а основные механические нагрузки (ударные и давления) воспринимает наружный слой (11). Передача механических нагрузок от внутреннего слоя (13) к наружному слою (11) обеспечивается рёбрами, установленными на внутренней поверхности наружного слоя (11), к которым приваривается внутренний слой (13). При таком конструктивном исполнении внутренний слой (13) через рёбра передаёт усилия от термических деформаций на наружный охлаждаемый слой (11). Для минимизации термических напряжений со стороны внутреннего слоя (13) соединение между рёбрами и наружным слоем (11) выполнено особым образом, с использованием термического демпфирования.
В случае использования заполнителя (12) из высокотеплопроводного материала (легкоплавкий бетон) он обеспечивает передачу тепла от внутреннего слоя сосуда (13) к наружному (11). Внутренний слой (13) нагревается кориумом и тепло передаётся заполнителю (12) (легкоплавкому бетону). Сначала в режиме теплопроводности происходит прогрев заполнителя до температуры начала плавления, затем, по мере увеличения ширины расплавленной зоны, начинается конвективный теплообмен между внутренним слоем (13) и ещё нерасплавившейся частью заполнителя (12). Этот процесс идет до полного расплавления заполнителя (12) и выхода теплового потока с внутреннего слоя на наружный. Процесс плавления заполнителя (12) происходит достаточно быстро, что обусловлено высокой теплопроводностью материала, поэтому, практически, весь тепловой поток со стороны внутреннего слоя сосуда будет поглощаться материалом заполнителя. При этом толщина заполнителя выбрана таким образом, чтобы удовлетворялись следующие два основных условия: первое - время расплавления бетона должно быть существенно меньше времени критического разогрева внутреннего слоя сосуда, приводящего к потере прочности, и второе - должен обеспечиваться такой уровень конвективного теплообмена между внутренним и наружным слоями, чтобы плотность теплового потока, передаваемая от внутреннего слоя к расплавленному бетону, уменьшалась в полтора - два раза при передаче от расплавленного бетона к наружному слою сосуда (наружной стенке) за счёт конвективного тепломассопереноса в расплавленном бетоне. Первое основное условие обеспечивается конструктивными мерами - выбором макропористости наполнителя (10), которая обеспечивает умеренный тепловой поток на внутренний слой сосуда на начальной стадии взаимодействия расплава активной зоны с наполнителем, позволяющий расплавить бетон без потери прочности внутреннего слоя сосуда при повышении его температуры. Такая макропористость позволяет в ограниченный промежуток времени на начальном этапе взаимодействия исключить воздействие всего расплава активной зоны на внутреннюю поверхность внутреннего слоя сосуда, ограничив это воздействие, примерно, десятой частью от общих энерговыделений в расплаве, обеспечиваемых остаточными энерговыделениями и химическими реакциями с компонентами наполнителя (10). На конечном этапе взаимодействия расплава активной зоны с наполнителем (10) внутренний слой сосуда прогревается до расчётной температуры, а в зоне термического контакта кориума и внутреннего слоя сосуда жидкий легкоплавкий бетон обеспечивает конвективную передачу тепла к наружному слою сосуда, и далее - к конечному поглотителю тепла - воде. Второе основное условие обеспечивается свойствами жидкого легкоплавкого бетона и параметрами пространства между слоями сосуда, при которых конвективный тепломассоперенос обеспечивает заданное уменьшение плотности теплового потока потока при его переносе от внутреннего слоя к наружному.
В случае использования заполнителя (12) из низкотеплопроводного материала он обеспечивает термическую изоляцию наружного слоя (11) ловушки (8) на начальной стадии поступления расплава активной зоны. Основным назначением заполнителя (12) является защита от термоударов и образование гарнисажа на внутренней поверхности наружного слоя (11) ловушки (8). Внутренний слой (13) нагревается кориумом и расплавляется, тепло передаётся заполнителю (12), который, нагреваясь, расплавляется и образует гарнисажную корку на относительно холодной внутренней поверхности наружного слоя многослойного сосуда (11). Этот процесс идет до полного расплавления внутреннего слоя (13) и заполнителя (12) многослойного сосуда. Процесс плавления и растворения заполнителя (12) в кориуме происходит достаточно быстро, что обусловлено малой теплопроводностью заполнителя, поэтому, практически, весь тепловой поток со стороны кориума к внутреннему слою (13) многослойного сосуда будет расходоваться на расплавление самого внутреннего слоя (13) и заполнителя (12). Гарнисаж, образованный заполнителем, позволяет ограничить тепловой поток на наружный слой (11) многослойного сосуда, перераспределить тепловой поток по высоте наружного слоя (11) и выровнять его относительно локальных перепадов по высоте и азимуту.
Ограничение плотности теплового потока, проходящего через наружный слой (11) многослойного сосуда, необходимо для обеспечения устойчивой бескризисной теплопередачи к конечному поглотителю тепла - воде, омывающей ловушку расплава (8). Теплопередача к воде осуществляется в режиме "кипения в большом объёме", что позволяет обеспечить пассивный отвод тепла неограниченное время. Функцию ограничения теплового потока выполняют два элемента системы локализации и охлаждения расплава активной зоны ядерного реактора.
Первый элемент - наполнитель (10), который, с одной стороны, обеспечивает разбавление и увеличение объёма тепловыделяющей части кориума, что позволяет увеличить площадь теплообмена, уменьшив, тем самым, плотность теплового потока через наружный слой (11) ловушки (8), а с другой - обеспечивает инверсию оксидной и металлической составляющих кориума, при которой оксидная составляющая перемещается вверх, а жидкометаллическая опускается вниз, тем самым, уменьшая максимальные тепловые потоки на наружный слой (11) за счёт перераспределения тепловых потоков в нижней части ловушки (8). Второй элемент - заполнитель (12) многослойного сосуда, обеспечивающий уменьшение (выравнивание) максимальных тепловых потоков на наружном слое (11) за счёт образования тугоплавкой гарнисажной корки, обеспечивающей перераспределение максимальных тепловых потоков со стороны кориума по высоте и азимуту (в диаметральной плоскости) наружного слоя (11) ловушки (8).
Пар, образующийся на внешней поверхности наружного слоя (11), поднимается вверх и через паросбросные каналы поступает в объём гермозоны, где конденсируется. Конденсат из гермозоны поступает в приямок, связанный проходными сечениями с шахтой реактора (3), в которой установлена ловушка расплава (8). Таким образом, при длительном охлаждении ловушки обеспечивается циркуляция охлаждающей воды и постоянный отвод тепла от наружного слоя (11). Кориум в ловушке (8) постепенно остывает по мере уменьшения аккумулированного тепла и тепла остаточных энерговыделений. На начальной стадии охлаждения расплава, после завершения взаимодействия с наполнителем (10), основной теплообмен осуществляется через наружный слой многослойного сосуда (11). После подачи воды внутрь ловушки (8) происходит постепенное выравнивание тепловых потоков: тепловой поток через наружный слой (11) становится равным тепловому потоку с поверхности кориума. На последней стадии может наблюдаться преобладание прямого охлаждения кориума подачей воды внутрь ловушки (8), что возможно в случае образования проницаемой для воды структуры при затвердевании кориума.
Таким образом, указанная ловушка (8) системы локализации и охлаждения расплава активной зоны ядерного реактора водоводяного типа в целом позволяет повысить эффективность отвода тепла от расплава при сохранении целостности наружного слоя многослойного сосуда (11).

Claims

ФОРМУЛА ИЗОБРЕТЕНИЯ 1. Система локализации и охлаждения расплава активной зоны ядерного реактора водоводяного типа, содержащая
направляющую плиту в форме воронки, установленную под днищем корпуса реактора,
ферму-консоль, установленную под направляющей плитой таким образом, что плита опирается на ферму-консоль,
ловушку расплава, установленную под фермой-консолью и снабженную охлаждаемой оболочкой в виде многослойного сосуда для защиты наружной теплообменной стенки от динамического, термического и химического воздействий,
и наполнитель для разбавления расплава, размещенный в упомянутом многослойном сосуде,
отличающаяся тем, что сосуд содержит металлические внутренний и наружный слои, между которыми размещен промежуточный слой в виде неметаллического заполнителя, причем между внутренним и наружным слоем размещены силовые ребра, установленные с азимутальным шагом smar, удовлетворяющим условию:
Figure imgf000025_0001
где dHap - наружный диаметр сосуда.
2. Система по п.1 , отличающаяся тем, что силовые ребра жестко связаны с наружным слоем и не связаны с внутренним слоем.
3. Система по п.1, отличающаяся тем, что силовые ребра жестко связаны с наружным и внутренним слоями.
4. Система по п.1, отличающаяся тем, что силовые ребра установлены с радиальными и азимутальными тепловыми зазорами.
5. Система по п.1, отличающаяся тем, что в нижней части сосуда, соединяющей верхнюю цилиндрическую и нижнюю коническую части, установлена торовая составная трехслойная обечайка, обеспечивающая температурные расширения внутреннего слоя независимо от температурных расширений наружного слоя.
6. Система по п.1, отличающаяся тем, что содержит дополнительный антикоррозионный слой толщиной 0,1-0,5 мм нанесенный на наружный слой.
7. Система по п.1, отличающаяся тем, что содержит дополнительный слой, увеличивающий конвективную теплоотдачу к воде, толщиной 0,5-5 мм, нанесенный на наружную поверхность наружного слоя.
PCT/RU2015/000781 2014-12-16 2015-11-16 Система локализации и охлаждения расплава активной зоны ядерного реактора водоводяного типа WO2016099326A1 (ru)

Priority Applications (11)

Application Number Priority Date Filing Date Title
CA2971132A CA2971132C (en) 2014-12-16 2015-11-16 Water-cooled water-moderated nuclear reactor core melt cooling and confinement system
EP15870434.6A EP3236472B1 (en) 2014-12-16 2015-11-16 System for confining and cooling melt from the core of a water cooled and moderated reactor
MYPI2017702207A MY194315A (en) 2014-12-16 2015-11-16 Water-cooled water-moderated nuclear reactor core melt cooling and confinement system
KR1020177019500A KR102198445B1 (ko) 2014-12-16 2015-11-16 수냉각 수감속 원자로의 노심 용융물 냉각 및 가둠 시스템
CN201580076173.4A CN107210070B (zh) 2014-12-16 2015-11-16 水冷、水慢化反应堆堆芯熔融物的冷却和封闭系统
UAA201707424A UA122402C2 (ru) 2014-12-16 2015-11-16 Система локализации и охлаждения расплава активной зоны ядерного реактора водоводяного типа
US15/536,968 US20170323693A1 (en) 2014-12-16 2015-11-16 Water-Cooled Water-Moderated Nuclear Reactor Core Melt Cooling and Confinement System
JP2017532090A JP6567055B2 (ja) 2014-12-16 2015-11-16 加圧水型原子炉の溶融炉心を冷却して閉じ込めるシステム
BR112017013046-7A BR112017013046B1 (pt) 2014-12-16 2015-11-16 Sistema de confinamento e resfriamento de material fundido de núcleo de reator nuclear moderado por água e resfriado a água
EA201650092A EA032395B1 (ru) 2014-12-16 2015-11-16 Система локализации и охлаждения расплава активной зоны ядерного реактора водоводяного типа
ZA2017/04784A ZA201704784B (en) 2014-12-16 2017-07-14 System for confining and cooling melt from the core of a water cooled-water modified reactor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2014150938/07A RU2576517C1 (ru) 2014-12-16 2014-12-16 Система локализации и охлаждения расплава активной зоны ядерного реактора водоводяного типа
RU2014150938 2014-12-16

Publications (1)

Publication Number Publication Date
WO2016099326A1 true WO2016099326A1 (ru) 2016-06-23

Family

ID=55654003

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2015/000781 WO2016099326A1 (ru) 2014-12-16 2015-11-16 Система локализации и охлаждения расплава активной зоны ядерного реактора водоводяного типа

Country Status (16)

Country Link
US (1) US20170323693A1 (ru)
EP (1) EP3236472B1 (ru)
JP (1) JP6567055B2 (ru)
KR (1) KR102198445B1 (ru)
CN (1) CN107210070B (ru)
AR (1) AR102994A1 (ru)
BR (1) BR112017013046B1 (ru)
CA (1) CA2971132C (ru)
EA (1) EA032395B1 (ru)
HU (1) HUE047296T2 (ru)
JO (1) JO3698B1 (ru)
MY (1) MY194315A (ru)
RU (1) RU2576517C1 (ru)
UA (1) UA122402C2 (ru)
WO (1) WO2016099326A1 (ru)
ZA (1) ZA201704784B (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018200239A (ja) * 2017-05-29 2018-12-20 株式会社東芝 溶融炉心保持冷却装置及び原子炉格納容器

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2696004C1 (ru) 2018-08-29 2019-07-30 Акционерное Общество "Атомэнергопроект" Система локализации и охлаждения расплава активной зоны ядерного реактора водоводяного типа
RU2700925C1 (ru) * 2018-09-25 2019-09-24 Акционерное Общество "Атомэнергопроект" Устройство локализации расплава активной зоны ядерного реактора
RU2696619C1 (ru) * 2018-09-25 2019-08-05 Акционерное Общество "Атомэнергопроект" Устройство локализации расплава активной зоны ядерного реактора
CN109346197B (zh) * 2018-11-13 2020-01-31 中国核动力研究设计院 一种双重屏障熔融物包容防护系统
RU2734734C1 (ru) * 2020-03-13 2020-10-22 Акционерное Общество "Атомэнергопроект" Направляющее устройство системы локализации и охлаждения расплава активной зоны ядерного реактора
RU2740400C1 (ru) * 2020-03-18 2021-01-14 Акционерное Общество "Атомэнергопроект" Направляющее устройство системы локализации и охлаждения расплава активной зоны ядерного реактора
RU2742583C1 (ru) * 2020-03-18 2021-02-08 Акционерное Общество "Атомэнергопроект" Система локализации и охлаждения расплава активной зоны ядерного реактора
RU2736544C1 (ru) * 2020-03-20 2020-11-18 Акционерное Общество "Атомэнергопроект" Система локализации и охлаждения расплава активной зоны ядерного реактора
RU2736545C1 (ru) 2020-03-20 2020-11-18 Акционерное Общество "Атомэнергопроект" Система локализации и охлаждения расплава активной зоны ядерного реактора
RU2747576C9 (ru) * 2020-11-03 2021-08-17 Игорь Иванович Шмаль Способ уменьшения времени кристаллизации кориума и корпус устройства локализации расплава для его реализации
RU2750230C1 (ru) 2020-11-10 2021-06-24 Акционерное Общество "Атомэнергопроект" Система локализации и охлаждения расплава активной зоны ядерного реактора
RU2749995C1 (ru) 2020-11-10 2021-06-21 Акционерное Общество "Атомэнергопроект" Система локализации и охлаждения расплава активной зоны ядерного реактора
RU2750204C1 (ru) 2020-11-10 2021-06-24 Акционерное Общество "Атомэнергопроект" Система локализации и охлаждения расплава активной зоны ядерного реактора
RU2758496C1 (ru) * 2020-12-29 2021-10-29 Акционерное Общество "Атомэнергопроект" Система локализации и охлаждения расплава активной зоны ядерного реактора
RU2767599C1 (ru) * 2020-12-29 2022-03-17 Акционерное Общество "Атомэнергопроект" Система локализации и охлаждения расплава активной зоны ядерного реактора
RU2771340C1 (ru) * 2021-10-26 2022-04-29 Акционерное Общество "Атомэнергопроект" Опорная система корпуса устройства локализации расплава
RU2771463C1 (ru) * 2021-10-26 2022-05-04 Акционерное Общество "Атомэнергопроект" Опорная система корпуса устройства локализации расплава
WO2023128809A1 (ru) * 2021-12-29 2023-07-06 Акционерное Общество "Атомэнергопроект" Способ изготовления фермы-консоли устройства локализации расплава
KR102649036B1 (ko) * 2022-03-14 2024-03-18 한국수력원자력 주식회사 소형원자로 냉각장치 및 냉각방법
CN116030997B (zh) * 2023-02-14 2024-02-27 上海核工程研究设计院股份有限公司 一种使用牺牲材料缓解核反应堆严重事故的方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4280872A (en) * 1977-06-23 1981-07-28 Commissariat A L'energie Atomique Core catcher device
GB2236210A (en) * 1989-08-30 1991-03-27 Rolls Royce & Ass Core catchers for nuclear reactors
US5307390A (en) * 1992-11-25 1994-04-26 General Electric Company Corium protection assembly
RU2063071C1 (ru) * 1994-05-30 1996-06-27 Опытное Конструкторское Бюро "Гидропресс" Система аварийного охлаждения активной зоны ядерного реактора при ее разрушении

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4036688A (en) * 1975-04-09 1977-07-19 The United States Of America As Represented By The United States Energy Research And Development Administration Apparatus for controlling molten core debris
US5049353A (en) * 1989-04-21 1991-09-17 Westinghouse Electric Corp. Passive containment cooling system
DE4041295A1 (de) * 1990-12-21 1992-07-02 Siemens Ag Kernreaktor-anlage, insbesondere fuer leichtwasserreaktoren, mit einer kernrueckhaltevorrichtung, verfahren zur notkuehlung bei einer solchen kernreaktor-anlage und verwendung turbulenzerzeugender deltafluegel
FR2784785B1 (fr) * 1998-10-14 2000-12-01 Commissariat Energie Atomique Reacteur nucleaire a eau equipe d'un receptacle contenant des structures internes deformables
RU2165108C2 (ru) * 1999-06-15 2001-04-10 Санкт-Петербургский научно-исследовательский и проектно-конструкторский институт АТОМЭНЕРГОПРОЕКТ Система защиты защитной оболочки реакторной установки водо-водяного типа
RU2253914C2 (ru) * 2003-08-18 2005-06-10 Хабенский Владимир Бенцианович Система локализации и охлаждения кориума аварийного ядерного реактора водо-водяного типа
JP5306257B2 (ja) * 2010-02-19 2013-10-02 株式会社東芝 炉心溶融物冷却装置および原子炉格納容器
JP2014025785A (ja) * 2012-07-26 2014-02-06 Toshiba Corp 炉心溶融物の保持装置
CN103594133B (zh) * 2013-10-21 2015-12-02 西安交通大学 模拟核反应堆堆芯熔化后堆内熔融物滞留的实验装置及方法
CN104021824B (zh) * 2014-05-23 2017-05-03 中国核电工程有限公司 核电站事故后堆内熔融物滞留系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4280872A (en) * 1977-06-23 1981-07-28 Commissariat A L'energie Atomique Core catcher device
GB2236210A (en) * 1989-08-30 1991-03-27 Rolls Royce & Ass Core catchers for nuclear reactors
US5307390A (en) * 1992-11-25 1994-04-26 General Electric Company Corium protection assembly
RU2063071C1 (ru) * 1994-05-30 1996-06-27 Опытное Конструкторское Бюро "Гидропресс" Система аварийного охлаждения активной зоны ядерного реактора при ее разрушении

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Na stroitelstve Baltiiskoi AES.", NOVOSTI KONTSERNA ''ROSENERGOATOM''., XP009503907, Retrieved from the Internet <URL:http://www.promved.ru/article.phtml?id=2497&nomer=83> *
See also references of EP3236472A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018200239A (ja) * 2017-05-29 2018-12-20 株式会社東芝 溶融炉心保持冷却装置及び原子炉格納容器

Also Published As

Publication number Publication date
JP6567055B2 (ja) 2019-08-28
US20170323693A1 (en) 2017-11-09
KR102198445B1 (ko) 2021-01-07
BR112017013046A2 (pt) 2019-11-19
EA201650092A1 (ru) 2017-09-29
CN107210070A (zh) 2017-09-26
ZA201704784B (en) 2019-07-31
RU2576517C1 (ru) 2016-03-10
CA2971132A1 (en) 2016-06-23
CA2971132C (en) 2023-05-23
KR20170104474A (ko) 2017-09-15
JP2018503811A (ja) 2018-02-08
AR102994A1 (es) 2017-04-05
MY194315A (en) 2022-11-28
EP3236472B1 (en) 2019-08-07
EP3236472A4 (en) 2018-06-27
UA122402C2 (ru) 2020-11-10
EP3236472A1 (en) 2017-10-25
HUE047296T2 (hu) 2020-04-28
BR112017013046B1 (pt) 2022-12-27
EA032395B1 (ru) 2019-05-31
CN107210070B (zh) 2019-10-11
JO3698B1 (ar) 2020-08-27

Similar Documents

Publication Publication Date Title
RU2576517C1 (ru) Система локализации и охлаждения расплава активной зоны ядерного реактора водоводяного типа
RU2575878C1 (ru) Система локализации и охлаждения расплава активной зоны ядерного реактора водоводяного типа
RU2576516C1 (ru) Система локализации и охлаждения расплава активной зоны ядерного реактора водоводяного типа
US11521759B2 (en) Melt confinement device
RU2165108C2 (ru) Система защиты защитной оболочки реакторной установки водо-водяного типа
RU100326U1 (ru) Устройство стенки корпуса теплообменника

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15870434

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 201650092

Country of ref document: EA

ENP Entry into the national phase

Ref document number: 2971132

Country of ref document: CA

Ref document number: 2017532090

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15536968

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20177019500

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: A201707424

Country of ref document: UA

REEP Request for entry into the european phase

Ref document number: 2015870434

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017013046

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112017013046

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170616