WO2016099096A1 - Organic/inorganic nanocomposite for biochemical material immobilization, method for preparing same, and biosensor or adsorption apparatus comprising same - Google Patents

Organic/inorganic nanocomposite for biochemical material immobilization, method for preparing same, and biosensor or adsorption apparatus comprising same Download PDF

Info

Publication number
WO2016099096A1
WO2016099096A1 PCT/KR2015/013665 KR2015013665W WO2016099096A1 WO 2016099096 A1 WO2016099096 A1 WO 2016099096A1 KR 2015013665 W KR2015013665 W KR 2015013665W WO 2016099096 A1 WO2016099096 A1 WO 2016099096A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal oxide
nanocomposite
film
group
biochemical
Prior art date
Application number
PCT/KR2015/013665
Other languages
French (fr)
Korean (ko)
Inventor
양도현
최성묵
신재섭
Original Assignee
주식회사 피엔에스테크놀로지
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 피엔에스테크놀로지 filed Critical 주식회사 피엔에스테크놀로지
Publication of WO2016099096A1 publication Critical patent/WO2016099096A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/40Apparatus specially designed for the use of free, immobilised, or carrier-bound enzymes, e.g. apparatus containing a fluidised bed of immobilised enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/42Apparatus for the treatment of microorganisms or enzymes with electrical or wave energy, e.g. magnetism, sonic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/573Immunoassay; Biospecific binding assay; Materials therefor for enzymes or isoenzymes

Definitions

  • Organic / inorganic nanocomposite for fixing biochemicals, preparation method thereof and biosensor or adsorption device comprising the same
  • the present invention relates to an organic / inorganic nanocomposite for fixing biochemicals, a method for preparing the same, and a biosensor or adsorption device including the same.
  • the present invention can not only stably hold a large amount of biochemicals while maintaining the activity of the biochemicals, but also shorten the manufacturing time and reduce the manufacturing cost of the organic / inorganic nanocomposite for fixing biochemicals, the preparation thereof A method and a biosensor or adsorption device comprising the same.
  • the covalent bond method by the amide bond has a disadvantage that the biochemical material may lose activity during the covalent bond reaction, since the biochemical must be reacted through the covalent bond.
  • the formation of the laminated thin film by the surface sol-gel method is a simple method using the electrostatic interaction of the metal oxide and the biochemical material, it is possible to uniformly fix the biochemical material on the surface of the metal oxide, metal oxide and biochemical material Biochemicals can be fixed to a plurality of metal oxide thin films laminated through alternating lamination, but the modification of the fixed biochemicals due to the effect of organic solvents used in the adsorption of biochemicals to metal oxides during the multi-layer lamination process The disadvantage is that it is very likely.
  • the method using the mesoporous molecular sieve having a three-dimensional pore structure does not reversibly adsorb / desorb the biochemical to the meso material, and thus has a problem of recovering and recycling the adsorbed biochemical.
  • Korean Patent Laid-Open Publication No. 10-2010-0128110 discloses a biochemical-fixing nanocomposite formed by alternating stacking of a metal oxide film and an ionic polymer film on a solid support to stably fix a large amount of biochemicals. These nanocomposites are used to fix abundant amounts of biochemicals. In order to stack the multilayer film excessively, there is a problem that the manufacturing time is delayed and the manufacturing cost increases.
  • An object of the present invention is to provide a biochemical fixed organic / inorganic nanocomposite, a method for manufacturing the same and a biosensor or adhesion device comprising the same, which can fix a sufficient amount while maintaining the activity of the biochemical.
  • an object of the present invention is to provide an organic / inorganic nanocomposite for fixing a biochemical material, a manufacturing method thereof, and a biosensor or adsorption device including the same, which can reduce manufacturing time and reduce manufacturing cost.
  • Solid support At least one composite thin film including a first metal oxide film formed on the solid support and an electrolyte polymer film formed on the first metal oxide film and being a nanoscale porous film; And a second metal oxide film formed on the composite thin film and being a nanoscale porous film, wherein the polymer forming the electrolyte polymer film has a molecular weight of 500 or more.
  • a nanocomposite for fixing a biochemical characterized in that the molecular weight of the polymer is 2,000 or more.
  • the solid support provides a nano-composite for fixing a biochemical, characterized in that the first metal oxide film can be formed by the surface sol-gel reaction.
  • the surface of the solid support is a plasma treatment, ozone treatment, ultrasonic treatment in an alkali or acid solution and using alkanediol molecules or carboxyl groups
  • a nanocomposite for fixing a biochemical characterized in that at least one treatment selected from the group consisting of self-assembled thin film formation treatments has been performed.
  • the solid support has at least one surface active group selected from the group consisting of active hydrogen, hydroxyl group, carboxyl group, sulfonic acid group, phosphoric acid group, amine group, imine group, ammonium group, pyridine group and functional groups of charged molecules on its surface It provides a nanocomposite for fixing a biochemical, characterized in that is introduced.
  • the metal oxide forming the first metal oxide film, the second metal oxide film, or both thereof may include at least one metal selected from the group consisting of titanium, zirconium, aluminum, boron, silicon, indium, tin, barium, and vanadium.
  • a nanocomposite for fixing a biochemical comprising an oxide.
  • the polymer forming the electrolyte polymer membrane is polyacrylic acid, cationic or negative polysaccharide, nucleic acid, polymethacrylic acid, maleic anhydride copolymer, cationic acrylic acid ester, polyethylene imine, polyamine, polyamideamine, polydiallyldi Methylammonium chloride and derivatives thereof, characterized in that it comprises one or more selected from the group consisting of, biochemicals for fixing nanocomposites.
  • the first metal oxide film, the second metal oxide film, the electrolyte polymer film or all of them are made of a monomolecular film, provides a nano-composite for fixing a biochemical.
  • the combination of the first metal oxide film and the electrolyte polymer film, the combination of the electrolyte polymer film and the second metal oxide film, or both of these are bonds by electrostatic interaction, nano-fixed biochemicals fixed To provide a complex.
  • first metal oxide film on a solid support and then repeating the process of forming an electrolyte polymer film on the first metal oxide film one or more times to form one or more composite thin film is a nano-scale porous film; And forming a second metal oxide film, which is a nanoscale porous film, on the top of the composite thin film.
  • the formation of the first and the second metal oxide film is provided by a surface sol-gel method, provides a method for producing a nano-composite for fixing a biochemical.
  • biochemicals selected from the group consisting of (Peroxidase), Glucoamylase, Gluecose oxidase, Catalase and Cytochrome c, (Cyt. C) Or it provides an adsorption device formed by being fixed to the biochemicals fixing nanocomposite according to claim 2.
  • the organic / inorganic nanocomposite for immobilizing biochemicals according to the present invention has an excellent effect of stably fixing a large amount of biochemicals by alternately stacking a metal oxide film and an electrolyte polymer film on a solid support.
  • the organic / inorganic nanocomposite for fixing the biochemical material according to the present invention is larger than the thin film of the conventional nanocomposite fixing nanocomposite by fixing the biochemical material inside the electrolyte polymer membrane by controlling the molecular weight of the polymer forming the electrolyte polymer membrane. Even a thin film of reduced thickness can fix a large amount of biochemicals, thus reducing the manufacturing time and reducing the manufacturing cost.
  • FIG. 1 schematically illustrates a method for preparing an organic / inorganic nanocomposite for fixing a biochemical according to the present invention.
  • Figure 2 shows the frequency change of the QCM according to the sequential combination of TK0-3 ⁇ 4u) 4 and PAA X.
  • Figure 3 shows the change in the frequency according to the (Ti0 2 / PAA 2 ) 3.5 nanocomposite forming step combined with Cyt.c.
  • Figure 5 (Ti0 2 / PAA45o) 3 Cyt.c combined. 5 shows the change in frequency according to the nanocomposite formation step.
  • FIG. 6 shows the change of the frequency according to the (Ti0 2 ) 4 metal oxide multilayer thin film formation process combining Cyt.c.
  • FIG. 7 shows the change of the frequency according to the (Ti0 2 ) 7 metal oxide multilayer thin film formation process combining Cyt.c.
  • FIG. 8 is a metal oxide multilayer thin film (Ti0 2 / PAA x ) 3 . 5 shows the comparison of Cyt.c binding frequency change according to the PM molecular weight of the nanocomposite including the composite thin film.
  • FIG. 9 illustrates the variation of the frequency of QCM according to the sequential combination of Zr (0- n Pr) 4 and PAA 25
  • Combined Cyt.c (Zr0 2 / PM 25 ) 3 . 5 shows the change in frequency according to the nanocomposite formation step.
  • Figure 10 shows the change of the frequency according to the sequential coupling of PDDA and PAA 25 and the frequency according to the (PDDA / PAA 25 ) 3.5 nanocomposite formation step combined with Cyt.c.
  • 11 is a combination of the frequency change of the QCM and Cyt.c according to the sequential coupling of PEI and PAA 25 (PEI / PM 25 ) 3. 5 shows the change in frequency according to the nanocomposite formation step.
  • FIG. 13 shows the sequential coupling of Ti (0- n Bu) 4 and PAA 2 and the coupling of Cyt.c (Ti0 2 / PM 2 ) 3 .
  • 5 shows the UV-vis spectrometer changes of nanocomposites.
  • 14 shows the sequential coupling of Ti (0— n Bu) 4 and PAA 25 and the coupling of Cyt.c (Ti () 2 / PAA 25 ) 3 .
  • 5 shows the UV-vis spectrometer changes of nanocomposites.
  • FIG. 16 illustrates changes of UV-vis spectrometer according to the (Ti0 2 ) 3 metal oxide multilayer thin film formation step combining Cyt.c.
  • FIG. 17 illustrates changes of UV-vis spectrometer according to the (Ti0 2 ) 6 metal oxide multilayer thin film formation step combining Cyt.c.
  • Cyt.c conjugated (Ti0 2 / PM 25 ) 3 is Cyt.c conjugated (Ti0 2 / PM 25 ) 3 .
  • the UV-vis spectrometer changes due to the desorption of Cyt.c from the 5 nanocomposite thin film.
  • FIG. 24 shows the difference by Amperometric titration of Cyt.c-bonded (Ti0 2 / PM x ) 3.5 composite thin film.
  • FIG. 25 shows AFM images and root-mean-sequare (RMS) roughness of (Ti0 2 ) 3 metal oxide multilayers.
  • FIG. 26 shows AFM images and root-mean-sequare (RMS) roughness of Cyt.c-bonded (Ti0 2 ) 3 metal oxide multilayers.
  • the organic / inorganic nanocomposite for fixing a biochemical according to the present invention is a solid support L
  • the solid support can be used without any particular limitation, such as a conventional non-metal substrate or a metal substrate, for example, a non-metal substrate such as quartz, glass, silicon, Teflon, etc. can be used, the metal gold, Substrates such as silver, copper, aluminum, and metal can be used, and further, quartz crystal microcroba lance (QCM) on which various metals are deposited, and silicon substrates on which gold is deposited : a substrate coated with a conductive material or a gold plate Etc. can also be used. :
  • a polymer support such as polycarbonate (PC), polyethylene terephthalate (PET) or acrylic, or a solid support deposited with gold, silver, platinum, or the like can be used, and paper, cotton, silk, etc., which are natural cellulose can be used as a solid support.
  • PC polycarbonate
  • PET polyethylene terephthalate
  • acrylic acrylic
  • solid support deposited with gold, silver, platinum, or the like can be used, and paper, cotton, silk, etc., which are natural cellulose can be used as a solid support.
  • paper, cotton, silk, etc. which are natural cellulose can be used as a solid support.
  • various solid supports known to be usable in the nanocomposite for fixing biochemicals may be used without particular limitation.
  • the solid support may more stably bond with the first metal oxide through electrostatic interaction and / or chemical bonding with the metal oxide of the first metal oxide film.
  • the means for causing the solid support to have electrostatic interaction and / or chemical bonding with the metal oxide of the first metal oxide film is not particularly limited, and for example, a surface active group may be introduced onto the solid support.
  • the surface-active group is not particularly limited as long as it can be combined with the metal oxide of the first metal oxide film as a functional group having an activity, and for example, active hydrogen, hydroxyl group, carboxyl group, sulfonic acid group, phosphoric acid group, amine group, imine group, It may be selected from an ammonium group, a pyridine group or other functional groups of the charged molecule and the like.
  • the surface active group may be introduced to the surface of the solid support through chemical / physical treatment, for example, the solid support may be a full plasma treatment, ozone treatment, sonication in an alkali or acid solution, or an alkanthi molecule. It may be introduced through a method of forming a self-assembled thin film using a carboxyl group or the like.
  • the first metal oxide film and / or the second metal oxide film constituting the at least one composite thin film is combined with a biochemical to perform the function of fixing the biochemical.
  • the electrolyte polymer film constituting the at least one composite thin film and laminated on the first metal oxide film is laminated on the upper and lower portions thereof through electrostatic attraction, hydrogen bonding, covalent bond or complex formation with metal oxide, respectively.
  • the first metal oxide film and the first metal oxide film deposited thereon and the second metal oxide film stacked thereon may be connected to each other, thereby allowing the nanocomposite to have a stable structure.
  • the electrolyte polymer film may be bonded to the metal oxide film by electrostatic interaction or may be bonded by forming a complex through an active functional group. Since the metal oxide film partially has a negative charge, the metal oxide film may be coupled with a positively charged polyelectrolytes having a positive charge by electrostatic interaction. And, in addition to the bonds caused by electrostatic interaction, there is also a natural group having active functional groups such as active hydrogen, hydroxyl group, carboxyl group, sulfonic acid group, phosphoric acid group, amine group, imine group, ammonium group, pyridine group or other functional group of charged molecule. Alternatively, the polymer may be bonded through the formation of a complex between the synthetic polymer and the metal oxide.
  • the first and second metal oxide films and the electrolyte polymer film may be formed as a stable multi-layered thin film as a nanoscale porous film, and biochemicals to be fixed may not only be used as the porous film but also the surface of the nanocomposite according to the present invention.
  • the formed first and second metal oxide films and the electrolyte polymer film The nanocomposite according to the present invention exhibits an excellent effect of fixing a large amount of biochemicals by being moved and fixed to the inside of the entire lamination film, that is, the metal oxide film disposed below through the numerous micro-scale micropores present.
  • the first and second metal oxide films and the electrolyte polymer film may be formed of a monomolecular film of a metal oxide or an electrolyte polymer.
  • the monomolecular film maintains the inherent binding properties and activity of the metal oxide molecule or the electrolyte polymer, and is useful in the manufacture of biosensors, molecular devices, and the like, because the monomolecular film can properly control the spacing and orientation between molecules.
  • the first and second metal oxide films may include an oxide of a metal selected from the group consisting of back titanium, zirconium, aluminum, boron, silicon, indium, tin, barium, and vanadium or two or more kinds of composite metal oxides.
  • the first and second metal oxide films may be electrostatically bonded to the solid support, the electrolyte polymer film, and the biochemical.
  • the electrolyte polymer membrane includes polyacrylic acid and derivatives thereof, cation and anionic polysaccharides and derivatives thereof, nucleic acids, polymethacrylic acid and derivatives thereof, maleic anhydride copolymers, cationic acrylic esters and copolymers thereof, polyethylene imines, polyamines, polyamides It may include any one or more selected from the group consisting of amine and polydiallyldimethylammonium chloride.
  • the electrolyte polymer membrane may include various polymers capable of interacting with the metal oxide.
  • the inventors of the present invention when the molecular weight of the polymer forming the electrolyte polymer film is about 500 or more, preferably about 2,000, or more, the electrolyte polymer film is the function of connecting the metal oxide film laminated on the upper and lower portions thereof, as well as the metal
  • the present invention was completed by experimentally confirming that the biochemical can be fixed in the same as the oxide film, while the molecular weight of the polymer is about 450,000, and the content of the fixed biochemical is maximized.
  • the electrolyte polymer membrane is capable of fixing a biochemical material therein
  • the electrolyte polymer membrane also includes a (-) charge that can bind to and fix the biochemicals such as cationic enzymes therein,
  • a (-) charge that can bind to and fix the biochemicals such as cationic enzymes therein
  • the organic / inorganic nanocomposite for fixing a biochemical according to the present invention may fix the biochemical within the metal oxide film as well as the electrolyte polymer film by controlling the molecular weight of the polymer forming the electrolyte polymer film.
  • the number of laminated thin films can be significantly reduced compared to conventional biochemicals fixing composites, thereby reducing the manufacturing time and reducing the manufacturing cost of the nanocomposites. .
  • the organic / inorganic nanocomposite for fixing a biochemical according to the present invention does not need to stack biochemicals between the metal oxide films using an organic solvent to stack the first and second metal oxide films. By suppressing the decrease in the activity of the biochemicals by the exhibits an excellent effect that can be stably fixed the biochemicals.
  • the present invention relates to a method for preparing an organic / inorganic nanocomposite for fixing a biochemical.
  • 1 schematically illustrates a method for preparing an organic / inorganic nanocomposite for fixing a biochemical according to the present invention.
  • a method of manufacturing a nanocomposite is repeated one or more times after forming a first metal oxide film on a solid support and then forming an electrolyte polymer film on the first metal oxide film. Thereby forming one or more composite thin films, and forming a second metal oxide film on top of the composite thin film.
  • the first metal oxide film is removed, and then physically excessively adsorbed metal oxide is removed with a solvent and hydrolyzed using distilled water.
  • the first metal oxide film having an activity on the solid support may be formed.
  • the prepared first metal oxide film may be reacted in a polymer electrolyte solution to form a composite thin film including an electrolyte polymer film and a metal oxide film.
  • the formed composite After the thin film is repelled in a metal oxide precursor solution through a surface sol-gel method or the like to form a metal oxide film, an excess of physically bound metal oxide is removed with a solvent and hydrolyzed using distilled water to form a second metal oxide layer.
  • a method for manufacturing a nanocomposite for immobilizing a biochemical may include ultrasonic treatment or self-assembling thin film in a plasma treatment, ozone treatment, alkali or acid solution on the surface of the solid support before forming the first metal oxide film. It may further comprise the step of forming. Through this step, surface active groups such as active hydrogen, hydroxyl group, carboxyl group, sulfonic acid group, phosphoric acid group, amine group, imine group, ammonium group, pyridine group or other functional groups of charged molecules can be introduced into the solid support.
  • the solid support is a non-metal
  • the solid support is a metal
  • the impurities present on the surface are removed by an acidic solution, and then the self-assembled thin film is immersed in a solution containing an alkanethiol (alkanethiol) molecule or a carboxyl group at one end thereof.
  • Surface activity can be introduced by forming a sel f-assembled monolayer (SAM).
  • the forming of the first or second metal oxide may include performing a surface sol-gel reaction on the result of the solid support or the electrolyte polymer film formed in the metal oxide precursor solution.
  • the step of performing the surface sol-gel reaction the resultant on which the solid support or the electrolyte polymer membrane is formed is reacted in a solution in which the metal oxide precursor is dissolved, and then the excess physical adsorption component is removed with an appropriate solvent such as ethanol, and then in distilled water. And hydrolyzing and drying with nitrogen gas.
  • Precursors for the formation of the first and second metal oxide films include ⁇ (0- ⁇ 1) 4 ' Zr ( °- / 2Pr) 4'
  • AKO-flBu B (O-nEt), Ti (acac), Si (OMe), In (0C ⁇ OMe), Sn (O-iPr), InSn (OR), BaTi (OR) or VO (O- metal alkoxides such as iPr) 3 3 2 4 2 4 3 4 4 4 4
  • a variety of materials capable of forming an electrostatic bond with an activator of a biochemical or a solid support and forming a metal oxide may be used as the metal oxide precursor.
  • the forming of the electrolyte polymer film on the first metal oxide film may include reacting the resultant product on which the metal oxide film is formed in the polymer electrolyte solution.
  • the polymer that is unstablely adsorbed on the surface is washed with a suitable solvent such as distilled water and dried using nitrogen gas.
  • a suitable solvent such as distilled water and dried using nitrogen gas.
  • An electrolyte polymer film may be formed on the metal oxide.
  • the polymer electrolyte may include polyacrylic acid and its derivatives, cationic and anionic polysaccharides and polysaccharide derivatives, nucleic acids, polymethacrylic acid and its derivatives, maleic anhydride copolymers, silver esters and copolymers thereof, polyethylene imines, and polyamines. It may include any one or more selected from the group consisting of polyamide amine and polydiallyldimethylammonium chloride.
  • the electrolyte polymer may include various polymers capable of interacting with a metal oxide.
  • the fixed biochemicals can be easily desorbed again, and the nanocomposites in which the biochemicals are immobilized in ammonia solution 5 to 50 ° C., preferably Preferably it can be desorbed at 20 to 45'C for 1 to 60 minutes, preferably for 10 to 20 minutes.
  • the nanocomposite from which the biochemical material is desorbed may be reacted again in a complete layer solution in which the biochemical material is dissolved.
  • the present invention relates to a biosensor or adsorption device including the biocomposite-fixed nanocomposite described above.
  • the biosensor or adsorption device may be prepared by reacting the biochemicals-fixed nanocomposite according to the present invention with a biochemical.
  • the biocomposite-fixed nanocomposite is composed of a plurality of nanoscale porous membranes, as described above, so that not only the outermost second metal oxide film but also the first metal oxide film and the electrolyte polymer film, which are inside the nanocomposite, are biochemicals. Can be combined and fixed.
  • Bio Sensor or Adsorption The device is capable of detecting or adsorbing a substance which reacts with the biochemical.
  • the biochemicals include proteins, enzymes, antigens, antibodies, receptors and ligands, and more specifically, typical biochemicals such as myoglobin, lysozyme, peroxidase : (Peroxi dase), and glycoamylase ( Glucoamyl ase, Gluecose oxi dase, Catalase or Cytochrome c, (Cyt. C).
  • typical biochemicals such as myoglobin, lysozyme, peroxidase : (Peroxi dase), and glycoamylase ( Glucoamyl ase, Gluecose oxi dase, Catalase or Cytochrome c, (Cyt. C).
  • various biochemicals may be fixed to the nanocomposite.
  • the step of fixing the biochemical with the nanocomposite is the nanocomposite in 5 ⁇ 50 ° C, preferably 20 to 45 ° C in a complete solution in which the biochemical is dissolved, 1 to 60 minutes During the reaction, preferably by reacting with each other for 20 to 40 minutes. Most biochemicals show the highest activity at 35 to 45 ° C, and are too low or too low.
  • the buffer solution may be in the range of pH 2 to 10. In general, because biochemicals are greatly affected by pH, the use of a complete solution may maintain activity at the step of binding the biochemical, but may not serve as a complete solution in too acidic or alkaline conditions.
  • Gold-deposited quartz crystal microbalance (QCM) was washed with pi raha solut ion: 96% sulfuric acid /30-35.5% hydrogen peroxide, 3/1, v / v, and then 10 mM 2-mercaptoethanol.
  • a self-assembled thin film was prepared by reacting for 12 hours in a (2—mercaptoethanol) / ethanol solution, which was used as a solid support.
  • This solid support was prepared by ethanol / luene in which titanium butoxide (Ti tani um (IV) -n-but oxi de; (Ti (0-nBu) 4) / Acros Chem, USA) was dissolved at a concentration of 100 mM.
  • the amount of enzyme immobilization of the nanocomposite-fixed nanocomposite thin film of the present invention was controlled by forming an electrolyte polymer film having a different molecular weight.
  • a second metal oxide film was formed on the resultant obtained by the same method as the method of preparing the first metal oxide film.
  • the (Ti02 / PMx) N.5 nanocomposite means that N composite thin films including the first metal oxide film and other PAAs having an X molecular weight are formed and a second metal oxide film is formed on the surface.
  • Zr02 was deposited on a solid support using a zirconium hydroxyside (Zrconium (IV) -nZ propoxide; (Zr (0-nPr) 4) / Aldrich Co., USA) and PAA25 as a metal oxide precursor. /PAA25).3.5 nanocomposites were formed.
  • nanocomposite-fixed nanocomposite prepared by the method of Example 1 was reacted at room temperature for 30 minutes in a complete phosphate solution (pH 7) in which the enzyme cytochrome seed (Cyt.c) was dissolved. Thereafter, unstable immobilized excess enzyme adsorption was removed using distilled water and dried with nitrogen gas to prepare a nanocomposite conjugated with enzyme.
  • the quartz plate was washed with sulfuric acid (3 ⁇ 4SO 4 96.0%), and then ultrasonicated with a K0H solution to introduce an active group onto the surface of the quartz plate to use as a solid support.
  • the solid
  • the support was prepared in the same manner as in Example 1 to prepare a metal oxide film and a PAA film, A nanocomposite including a Ti0 2 / PAA composite thin film was prepared. An enzyme was bound to the prepared nanocomposite by the method of Example 2.
  • a metal oxide multilayer thin film including only the metal oxide film of Ti0 2 was prepared.
  • a metal oxide multilayer thin film by the method of Example 2 Cyt. c was bound.
  • Solid support is polydiallyldimethylammonium as a polymer electrolyte
  • Chloride (poiydial lyldimethyl ammonium chloride, PDDA),
  • the frequency of QCM was measured to confirm the formation of each film during the preparation of the biocomposite-fixed nanocomposite.
  • the frequency of the QCM was measured immediately before and after the formation of the first metal oxide and immediately after the formation of the electrolyte polymer film, thereby obtaining the average frequency change when each film was formed.
  • the frequency change of the QCM is shown.
  • Ti (0- n Bu) 4 bonds The average frequency change AF of 1 cycle by was 21 ⁇ 4 Hz, and the average frequency change AF of 1 cycle by combining PM 2 was 20 Hz 3 Hz.
  • the results were obtained by using a quartz crystal microcrystal (QCM) manufactured by USI system (Japan) and a frequency measuring device of Hewlett Packard (USA), and the average of 10 cycles using Ti0 2 / PAA x composite thin film manufacturing process as one cycle. Frequency change was shown.
  • the crystallite micro low (QCM) has a resonance frequency in proportion to its mass even when a very small amount of nanogram material is adsorbed. Thus, as a result, the composite thin film is uniformly formed at a molecular level on a solid support. It can be confirmed.
  • the formation process of the nanocomposite conjugated with the enzyme prepared in Example 2 was confirmed using a QCM frequency change.
  • the frequency of the QCM was measured by the same method as in Experimental Example 1-1.
  • Cyt.c is combined (Ti0 2 / PM 2 ) 3 .
  • the frequency change of the 5 nanocomposite is shown.
  • Cyt.c is combined (Ti0 2 / PM 25 ) 3 .
  • the frequency change of the 5 nanocomposite is shown.
  • 5 is Cyt.c bound (Ti0 2 / PAA4 50 ) 3 .
  • the frequency change of the 5 nanocomposite is shown.
  • the metal oxide film and the PAA X film are uniformly and stably formed by changing the frequency of the micro-lower (QCM).
  • the enzyme molecules were stably bound to the nanocomposite due to the frequency change caused by the binding of Cyt.c.
  • QCM quartz crystal microbalance
  • Example 8 shows Cyt. In the metal oxide multilayer thin film of Comparative Example 1 and the nanocomposite of Example 1. The difference of the frequency change by combining c is shown. Nanocomposite of Example 1 was confirmed that the increase in the amount of the enzyme bound saturation curve as the molecular weight of PAA increases. These results show that the nanocomposite of Example 1 is different from the metal oxide multilayer thin film of Comparative Example 1, and the enzyme is bound to the inside of the polymer electrolyte membrane. As the molecular weight of PAA increases, the enzyme may bind to the nanocomposite thin film. It shows that more porous spaces (holes, pores) can be created.
  • the frequency of QCM was measured immediately before and after the formation of the first metal oxide and immediately after the formation of the electrolyte polymer film, thereby obtaining the average frequency change when each film was formed.
  • FIG. 18 shows Cyt. In the metal oxide multilayer thin film and nanocomposite of Example 3.
  • FIG. 19 a process of separating the bound enzyme by reacting the enzyme-bound (Ti0 2 / PM 2 ) 3.5 nanocomposite with 1 wt% ammonia water was confirmed using a UV_vis spectrometer change. As shown in FIG. 19, approximately 94% of the bound enzyme was reacted by reacting with ammonia water for about 5 minutes (Ti0 2 / PAA 25 ) 3 . 5 nanocomposite thin films could be removed. In weak base ammonia water and reaction (Ti0 2 / PM 25 ) 3 . By confirming that the characteristic peak due to Ti0 2 of the 5 nanocomposite thin film was not changed, the bound enzyme could be successfully removed without damaging the nanocomposite. 20 is Cyt.c is combined
  • the change in CV was measured by using 'IvinumStat' (Ivium Technologies, The Netherlands) on a QCM electrode in which an enzyme is bound to the nanocomposite prepared by the method of Example 1 in the method of Example 2.
  • the concentration of hydrogen peroxide (3 ⁇ 40 2 ) in the complete phosphate solution (pH 7) was obtained by using the 'IvinumStat' Gvium Technologies, Netherlands, which employs a QCM electrode in which the enzyme is conjugated to the nanocomposite prepared by the method of Example 1. The change in current value due to the increase was measured.
  • FIGS. 25 and 26 are (Ti0 2 ) 3 metal oxide multilayer thin films and (Ti0 2 ) 3 / Cyt.
  • AFM image and root-mean-sequare (RMS) roughness of c nanocomposite are shown, and FIGS. 27 and 28 are respectively (Ti0 2 / PAA4 50 ) 3 . 5 nanocomposite thin films and (Ti0 2 / PAA 45 o) 3.5 / Cyt.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Sustainable Development (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Food Science & Technology (AREA)
  • Cell Biology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Laminated Bodies (AREA)

Abstract

The present invention relates to an organic/inorganic nanocomposite for biochemical material immobilization, a method for preparing the same, and a biosensor or adsorption apparatus comprising the same and, specifically, to an organic/inorganic nanocomposite for biological material immobilization, capable of maintaining activity of the biochemical materials, stably immobilizing a large quantity of biochemical materials, shortening the preparing time, and reducing the preparing costs, to a method for preparing the same, and to a biosensor or adsorption apparatus comprising the same.

Description

【명세서】  【Specification】
【발명의 명칭】  [Name of invention]
생화학물질 고정용 유기 /무기 나노 복합체, 이의 제조방법 및 이를 포함하는 바이오 센서 또는 흡착 장치  Organic / inorganic nanocomposite for fixing biochemicals, preparation method thereof and biosensor or adsorption device comprising the same
【기술분야】  Technical Field
본 발명은 생화학물질 고정용 유기 /무기 나노 복합체, 이의 제조방법 및 이를 포함하는 바이오 센서 또는 흡착 장치에 관한 것이다. 구체적으로, 본 발명은 생화학물질의 활성을 유지하면서 다량의 생화학물질을 안정적으로 고정시킬 수 있을 뿐만 아니라 제조시간이 단축되고 제조비용이 절감될 수 있는 생화학물질 고정용 유기 /무기 나노 복합체, 이의 제조방법 및 이를 포함하는 바이오 센서 또는 흡착 장치에 관한 것이다.  The present invention relates to an organic / inorganic nanocomposite for fixing biochemicals, a method for preparing the same, and a biosensor or adsorption device including the same. Specifically, the present invention can not only stably hold a large amount of biochemicals while maintaining the activity of the biochemicals, but also shorten the manufacturing time and reduce the manufacturing cost of the organic / inorganic nanocomposite for fixing biochemicals, the preparation thereof A method and a biosensor or adsorption device comprising the same.
【발명의 배경이 되는 기술】  [Technique to become background of invention]
단백질이나 효소와 같은 생화학물질을 고정시키는 기술은 지표물질을 이용해서 질병을 진단하는 키트나 단백질 칩, 바이오센서 (biosensor )의 개발 등에서 광범위하게 이용되고 있으며, 고정시킨 생화학물질을 다시 분리하는 기술은 의약품 산업에서 중요한 위치를 차지하고 있다.  Techniques for fixing biochemicals such as proteins and enzymes are widely used in the development of kits, protein chips and biosensors for diagnosing diseases using indicators. It occupies an important position in the pharmaceutical industry.
특히, 생화학물질 중 효소는 생체촉매로서 높은 촉매 활성과 선택도를 가지고 있기 때문에 이를 적당한 고체 지지체에 고정시켜 수집한 후 다시 상기 고체 지지체로부터 물뫼적으로나 화학적으로 쉽게 분리하려는 노력이 시도되고 있다.  In particular, since enzymes in biochemicals have high catalytic activity and selectivity as biocatalysts, efforts have been made to easily separate them from the solid supports by collecting them after fixing them on a suitable solid support.
그러나, 생화학물질이 고체 지지체의 표면에만 고정됨으로써 고정되는 생체분자의 고정량 자체가 적거나, 고체 지지체의 표면에 형성된 다층의 고정용 박막을 통해 생화학물질을 고정시킬 경우, 고정화 과정 중 생화학물질이 변성 및 불활성화되는 문제가 있으며, 생화학물질이 고정된 고체 지지체 자체흩 바이오 센서, 흡착 장치 등으로 사용하는 경우, 상기 고정된 생화학물질과 반웅하는 반웅기질과의 상호작용 및 인식반웅 등을 확인할 수 없다는 등의 단점을 가지고 있다.  However, when the biochemical is fixed only on the surface of the solid support, the amount of biomolecules fixed by itself is small, or when the biochemical is immobilized through a multilayer fixing thin film formed on the surface of the solid support. There is a problem of denaturation and inactivation, and when the biochemical is used as a fixed solid support self-dispersing biosensor, adsorption device, etc., it is possible to confirm the interaction and recognition reaction of the reaction with the fixed biochemical. It has a downside.
종래 상술한 목적으로 생화학물질인 효소나 단백질을 고체표면에 고정시키는 방법으로 아미드결합에 의한 공유결합 방법 (M. Zayats , E. Katz , I . Wi l iner , JACS. , 2002, 124, 14724), 표면 졸-겔 방법을 이용한 금속산화물과 효소의 복합적증박막 (I . Ichinose, R. Takaki, K. Kuroiwa, T. Kunitake, Langmuir , 2003, 19, 3883) , 삼 (세)차원 세공 구조의 메조포러스 분자체를 이용한 방법 (J .M.Kisler , G.W.Stevens , A.J .O' Connor , Mater .Phys .Mech. 2001, 4, 89) 등을 주로 이용하였다. Conventionally, for the above-mentioned purposes, a covalent bond method using an amide bond by immobilizing a biochemical enzyme or protein on a solid surface (M. Zayats, E. Katz, I. Wier, JACS. , 2002, 124, 14724), complex thin film of metal oxide and enzyme using surface sol-gel method (I. Ichinose, R. Takaki, K. Kuroiwa, T. Kunitake, Langmuir, 2003, 19, 3883), 3 The method using the mesoporous molecular sieve of (three) dimensional pore structure (J.M.Kisler, GWStevens, AJ.O 'Connor, Mater. Phys.Mech. 2001, 4, 89), etc. was mainly used.
그러나, 아미드결합에 의한 공유결합 방식은 공유결합을 통하여 생화학물질을 반웅시켜야 하므로, 공유결합 반웅 중 생화학물질이 활성을 잃을 수 있다는 단점을 안고 있다.  However, the covalent bond method by the amide bond has a disadvantage that the biochemical material may lose activity during the covalent bond reaction, since the biochemical must be reacted through the covalent bond.
또한, 표면 졸-겔 방법에 의한 적층 박막의 형성은 금속산화물과 생화학물질의 정전기적 상호작용을 이용한 간단한 방법으로 상기 금속산화물의 표면에 균일하게 생화학물질의 고정이 가능하고, 금속산화물과 생화학물질의 교호 적층을 통해서 적층된 다수의 금속산화물 박막에 생화학물질을 다량 고정시킬 수 있지만, 다층의 적층 과정 중 금속산화물에 대한 생화학물질의 흡착과정에서 사용되는 유기용매의 영향으로 고정된 생화학물질의 변성 가능성이 매우 크다는 단점이 있다.  In addition, the formation of the laminated thin film by the surface sol-gel method is a simple method using the electrostatic interaction of the metal oxide and the biochemical material, it is possible to uniformly fix the biochemical material on the surface of the metal oxide, metal oxide and biochemical material Biochemicals can be fixed to a plurality of metal oxide thin films laminated through alternating lamination, but the modification of the fixed biochemicals due to the effect of organic solvents used in the adsorption of biochemicals to metal oxides during the multi-layer lamination process The disadvantage is that it is very likely.
그리고, 삼 (세)차원 세공 구조의 메조포러스 분자체를 이용한 방법은 상기 메조물질에 대한 생화학물질의 흡 /탈착이 가역적으로 진행되지 않기 때문에, 흡착된 생화학물질의 회수 및 재활용의 문제점이 있다.  In addition, the method using the mesoporous molecular sieve having a three-dimensional pore structure does not reversibly adsorb / desorb the biochemical to the meso material, and thus has a problem of recovering and recycling the adsorbed biochemical.
나아가, 고체 지지체 위에 생화학물질을 안정적으로 다량 고정시키는 방법으로, 생화학물질과 정전기적 상호작용을 하는 전해질 고분자를 이용하여 전해질 고분자와 생화학물질을 교호 적층하는 방법이 이용되고 있지만 (Yuri Lvov: atsuhiko Ariga, Izumi Ichinose , Toy ok i Kuni take , JACS. 1995, 117, 6117) , 이러한 방법은 생화학물질을 덮고 있는 고분자 층에 의하여 생화학물질이 외부와 차단되어 있기 때문에 생화학물질과 반웅기질의 반웅이 방해 받아 바이오 센서, 흡착 장치 등에 바로 적용할 수 없는 문제점이 있다. Furthermore, as a method of stably fixing a large amount of biochemicals on a solid support, a method of alternately stacking electrolyte polymers and biochemicals using an electrolyte polymer that has an electrostatic interaction with the biochemicals is used (Yuri Lvov : atsuhiko Ariga , Izumi Ichinose, Toy ok i Kuni take, JACS. 1995, 117, 6117), this method is blocked by the reaction of biochemicals and reactions because the biochemicals are blocked by the polymer layer covering the biochemicals. There is a problem that can not be directly applied to biosensors, adsorption devices.
한편, 한국공개특허공보 제 10-2010-0128110 호에는 다량의 생화학물질을 안정적으로 고정시키기 위해 고체 지지체 상에 금속산화물막과 이온성 고분자막이 교호 적층됨으로써 형성된 생화학물질 고정용 나노 복합체가 개시되어 있으나 이러한 나노 복합체는 층분한 함량의 생화학물질을 고정시키기 위해서는 과도하게 다층의 막을 적층시켜야 하고, 이로써 제조시간이 지연되고 제조비용이 증가하는 문제가 있다. Meanwhile, Korean Patent Laid-Open Publication No. 10-2010-0128110 discloses a biochemical-fixing nanocomposite formed by alternating stacking of a metal oxide film and an ionic polymer film on a solid support to stably fix a large amount of biochemicals. These nanocomposites are used to fix abundant amounts of biochemicals. In order to stack the multilayer film excessively, there is a problem that the manufacturing time is delayed and the manufacturing cost increases.
따라서, 생화학물질의 활성을 유지한 채로 충분한 양을 고정시킬 수 있을 뿐만 아니라 제조시간이 단축되고 제조비용이 절감될 수 있는 새로운 생화학물질 고정용 복합체의 개발이 절실히 요구되고 있다.  Therefore, there is an urgent need to develop a new biochemical fixing complex that can not only fix a sufficient amount while maintaining the activity of the biochemical, but also shorten the manufacturing time and reduce the manufacturing cost.
【발명의 내용】  [Content of invention]
【해결하고자 하는 과제】  Problem to be solved
본 발명은 생화학물질의 활성을 유지한 채로 충분한 양을 고정시킬 수 있는 생화학물질 고정용 유기 /무기 나노 복합체, 이의 제조방법 및 이를 포함하는 바이오 센서 또는 홉착 장치를 제공하는 것을 목적으로 한다.  An object of the present invention is to provide a biochemical fixed organic / inorganic nanocomposite, a method for manufacturing the same and a biosensor or adhesion device comprising the same, which can fix a sufficient amount while maintaining the activity of the biochemical.
또한, 본 발명은 제조시간이 감축되고 제조비용이 절감될 수 있는 생화학물질 고정용 유기 /무기 나노 복합체, 이의 제조방법 및 이를 포함하는 바이오 센서 또는 흡착 장치를 제공하는 것을 목적으로 한다.  In addition, an object of the present invention is to provide an organic / inorganic nanocomposite for fixing a biochemical material, a manufacturing method thereof, and a biosensor or adsorption device including the same, which can reduce manufacturing time and reduce manufacturing cost.
[과제의 해결 수단]  [Measures to solve the problem]
상기 과제를 해결하기 위해, 본 발명은,  In order to solve the above problems, the present invention,
고체 지지체; 상기 고체 지지체 위에 형성된 제 1 금속산화물막 및 상기 제 1 금속산화물막 위에 형성된 전해질 고분자막을 포함하고 나노 스케일의 다공질막인 하나 이상의 복합 박막; 및 상기 복합 박막 위에 형성되고 나노 스케일의 다공질막인 제 2 금속산화물막을 포함하고, 상기 전해질 고분자막을 형성하는 고분자의 분자량이 500 이상인, 생화학물질 고정용 나노 복합체를 제공한다.  Solid support; At least one composite thin film including a first metal oxide film formed on the solid support and an electrolyte polymer film formed on the first metal oxide film and being a nanoscale porous film; And a second metal oxide film formed on the composite thin film and being a nanoscale porous film, wherein the polymer forming the electrolyte polymer film has a molecular weight of 500 or more.
여기서, 상기 고분자의 분자량이 2,000 이상인 것을 특징으로 하는, 생화학물질 고정용 나노 복합체를 제공한다.  Here, there is provided a nanocomposite for fixing a biochemical, characterized in that the molecular weight of the polymer is 2,000 or more.
또한, 상기 고체 지지체는 이의 위에 제 1 금속산화물막이 표면 졸-겔 반웅에 의해 형성될 수 있는 것을 특징으로 하는 생화학물질 고정용 나노 복합체를 제공한다.  In addition, the solid support provides a nano-composite for fixing a biochemical, characterized in that the first metal oxide film can be formed by the surface sol-gel reaction.
그리고, 상기 고체 지지체는 이의 표면이 폴라즈마 처리, 오존 처리, 알칼리 또는 산 용액에서의 초음파 처리 및 알칸디올 분자나 카르복실기를 이용한 자기조립박막 형성 처리로 이루어진 군으로부터 선택된 하나 이상의 처리가 수행된 것을 특징으로 하는, 생화학물질 고정용나노복합체를 제공한다. In addition, the surface of the solid support is a plasma treatment, ozone treatment, ultrasonic treatment in an alkali or acid solution and using alkanediol molecules or carboxyl groups Provided is a nanocomposite for fixing a biochemical, characterized in that at least one treatment selected from the group consisting of self-assembled thin film formation treatments has been performed.
나아가, 상기 고체 지지체는 이의 표면에 활성수소, 하이드록실기, 카르 복실기, 술폰산기, 인산기, 아민기, 이민기, 암모늄기, 피리딘기 및 전하를 띄는 분자의 작용기로 이루어진 군으로부터 선택된 하나 이상의 표면활성기가 도입된 것을특징으로 하는, 생화학물질 고정용 나노복합체를 제공한다.  Furthermore, the solid support has at least one surface active group selected from the group consisting of active hydrogen, hydroxyl group, carboxyl group, sulfonic acid group, phosphoric acid group, amine group, imine group, ammonium group, pyridine group and functional groups of charged molecules on its surface It provides a nanocomposite for fixing a biochemical, characterized in that is introduced.
또한, 상기 제 1 금속산화물막, 상기 제 2 금속산화물막 또는 이들 모두를 형성하는금속산화물은 티타늄, 지르코늄, 알루미늄, 보론, 실리콘, 인듐, 주석, 바륨 및 바나듐으로 이루어진 군으로부터 선택된 하나 이상의 금속의 산화물을 포함하는 것을특징으로 하는, 생화학물질 고정용 나노복합체를 제공한다.  In addition, the metal oxide forming the first metal oxide film, the second metal oxide film, or both thereof may include at least one metal selected from the group consisting of titanium, zirconium, aluminum, boron, silicon, indium, tin, barium, and vanadium. Provided is a nanocomposite for fixing a biochemical, comprising an oxide.
한편, 상기 전해질 고분자막을 형성하는 고분자는 폴리아크릴산, 양이온 또는 음이은 폴리사카라이드, 핵산, 폴리메타아크릴산, 말레산무수물 공중합체, 양이온 아크릴산 에스터, 폴리에틸렌 이민, 폴리아민, 폴리아마이드아민, 폴리다이알릴다이메틸암모니움 클로라이드 및 이들의 유도체로 이루어진 군으로부터 선택된 1 종 이상을 포함하는 것을 특징으로 하는, 생화학물질 고정용 나노복합체를 제공한다.  On the other hand, the polymer forming the electrolyte polymer membrane is polyacrylic acid, cationic or negative polysaccharide, nucleic acid, polymethacrylic acid, maleic anhydride copolymer, cationic acrylic acid ester, polyethylene imine, polyamine, polyamideamine, polydiallyldi Methylammonium chloride and derivatives thereof, characterized in that it comprises one or more selected from the group consisting of, biochemicals for fixing nanocomposites.
그리고, 상기 제 1 금속산화물막, 상기 제 2 금속산화물막, 상기 전해질 고분자막 또는 이들 모두가 단분자막으로 이루어진 것을 특징으로 하는, 생화학물질 고정용 나노복합체를 제공한다.  In addition, the first metal oxide film, the second metal oxide film, the electrolyte polymer film or all of them are made of a monomolecular film, provides a nano-composite for fixing a biochemical.
: 또한, 상기 계 1 금속산화물막과상기 전해질 고분자막의 결합, 상기 전해질 고분자막과 상기 제 2 금속산화물막의 결합, 또는 이들 모두는 정전기적 상호작용에 의한 결합인 것을 특징으로 하는, 생화학물질 고정용 나노 복합체를 제공한다.  In addition, the combination of the first metal oxide film and the electrolyte polymer film, the combination of the electrolyte polymer film and the second metal oxide film, or both of these are bonds by electrostatic interaction, nano-fixed biochemicals fixed To provide a complex.
한편, 고체 지지체 상에 제 1 금속산화물막을 형성한 후 상기 제 1 금속산화물막 상에 전해질 고분자막을 형성하는 과정을 1 회 이상 반복함으로써 나노 스케일의 다공질막인 하나 이상의 복합 박막을 형성하는 단계; 및 상기 복합 박막의 최상단에 나노 스케일의 다공질막인 제 2 금속산화물막을 형성하는 단계를포함하는, 생화학물질 고정용 나노복합체의 제조방법을 제공한다. 여기서, 상기 제 1 및 제 2 금속산화물막의 형성은 표면 졸-겔 방법에 의해 수행되는 것을 특징으로 하는, 생화학물질 고정용 나노 복합체의 제조방법을 제공한다. On the other hand, by forming a first metal oxide film on a solid support and then repeating the process of forming an electrolyte polymer film on the first metal oxide film one or more times to form one or more composite thin film is a nano-scale porous film; And forming a second metal oxide film, which is a nanoscale porous film, on the top of the composite thin film. Here, the formation of the first and the second metal oxide film is provided by a surface sol-gel method, provides a method for producing a nano-composite for fixing a biochemical.
한편, 미오글로빈 (Myoglobin) , 리소좀 (Lysozyme) , 페록시다아제 (Peroxidase) , 글로코아밀라아제 (Glucoamylase) , 글로코스옥시다아제 (Gluecose oxidase) , 카탈라아제 (Catalase) 및 시토크롬시 (Cytochrome c , (Cyt . c))로 이루어진 군으로부터 선택된 1 종 이상의 생화학물질이 제 1 항 또는 제 2 항에 따른 생화학물질 고정용 나노 복합체에 고정됨으로써 형성된 바이오 센서를 제공한다.  Myoglobin, Lysozyme, Peroxidase, Glucoamylase, Gluecose oxidase, Catalase and Cytochrome c, Cyt c. It provides a biosensor formed by fixing at least one biochemical material selected from the group consisting of)) to the biochemical-fixed nanocomposite according to claim 1 or 2.
또한, 미오글로빈 (Myoglobin) , 리소좀 (Lysozyme) , 페록시다아제 In addition, myoglobin, Lysozyme, peroxidase
(Peroxidase) , 글로코아밀라아제 (Glucoamylase) , 글로코스옥시다아제 (Gluecose oxidase) , 카탈라아제 (Catalase) 및 시토크롬시 (Cytochrome c , (Cyt . c) )로 이루어진 군으로부터 선택된 1 종 이상의 생화학물질이 제 1 항 또는 제 2 항에 따른 생화학물질 고정용 나노 복합체에 고정됨으로써 형성된 흡착 장치를 제공한다. 1 or more biochemicals selected from the group consisting of (Peroxidase), Glucoamylase, Gluecose oxidase, Catalase and Cytochrome c, (Cyt. C) Or it provides an adsorption device formed by being fixed to the biochemicals fixing nanocomposite according to claim 2.
【발명의 효과]  【Effects of the Invention]
본 발명에 따른 생화학물질 고정용 유기 /무기 나노 복합체는 고체 지지체 상에 금속산화물막과 전해질 고분자막의 교호 적층되어 있어 다량의 생화학물질을 안정적으로 고정시킬 수 있는 우수한 효과를 나타낸다.  The organic / inorganic nanocomposite for immobilizing biochemicals according to the present invention has an excellent effect of stably fixing a large amount of biochemicals by alternately stacking a metal oxide film and an electrolyte polymer film on a solid support.
또한, 본 발명에 따른 생화학물질 고정용 유기 /무기 나노 복합체는 상기 전해질 고분자막을 형성하는 고분자의 분자량 조절에 의해 상기 전해질 고분자막 내부에도 생화학물질이 고정되도록 함으로써 종래 생화학물질 고정용 나노 복합체의 박막 대비 크게 감축된 두께의 박막으로도 층분한 양의 생화학물질을 고정시킬 수 있어 제조시간이 감축되고 제조비용이 절감될 수 있는 우수한 효과를 나타낸다.  In addition, the organic / inorganic nanocomposite for fixing the biochemical material according to the present invention is larger than the thin film of the conventional nanocomposite fixing nanocomposite by fixing the biochemical material inside the electrolyte polymer membrane by controlling the molecular weight of the polymer forming the electrolyte polymer membrane. Even a thin film of reduced thickness can fix a large amount of biochemicals, thus reducing the manufacturing time and reducing the manufacturing cost.
[도면의 간단한 설명]  [Brief Description of Drawings]
도 1 은 본 발명에 따른 생화학물질 고정용 유기 /무기 나노 복합체의 제조방법을 개략적으로 도시한 것이다. 도 2 는 TK0-¾u)4 와 PAAX의 순차적 결합에 따른 QCM 의 진동수 변화를 나타낸 것이다. 1 schematically illustrates a method for preparing an organic / inorganic nanocomposite for fixing a biochemical according to the present invention. Figure 2 shows the frequency change of the QCM according to the sequential combination of TK0-¾u) 4 and PAA X.
도 3 은 Cyt.c 를 결합한 (Ti02/PAA2)3.5 나노 복합체 형성 단계에 따른 진동수의 변화를 나타낸 것이다. Figure 3 shows the change in the frequency according to the (Ti0 2 / PAA 2 ) 3.5 nanocomposite forming step combined with Cyt.c.
도 4 는 Cyt.c 를 결합한 (Ti02/PM25)3.5 나노 복합체 형성 단계에 따른 진동수의 변화를 나타낸 것이다. 4 is a combination of Cyt.c (Ti0 2 / PM 25 ) 3 . 5 shows the change in frequency according to the nanocomposite formation step.
도 5 는 Cyt.c 를 결합한 (Ti02/PAA45o)3.5 나노 복합체 형성 단계에 따른 진동수의 변화를 나타낸 것이다. Figure 5 (Ti0 2 / PAA45o) 3 Cyt.c combined. 5 shows the change in frequency according to the nanocomposite formation step.
도 6 는 Cyt.c 를 결합한 (Ti02)4 금속산화물다층박막 형성 단계에 따른 진동수의 변화를 나타낸 것이다. FIG. 6 shows the change of the frequency according to the (Ti0 2 ) 4 metal oxide multilayer thin film formation process combining Cyt.c.
도 7 는 Cyt.c 를 결합한 (Ti02)7 금속산화물다층박막 형성 단계에 따른 진동수의 변화를 나타낸 것이다. FIG. 7 shows the change of the frequency according to the (Ti0 2 ) 7 metal oxide multilayer thin film formation process combining Cyt.c.
도 8 은 금속산화물 다층박막과 (Ti02/PAAx)3.5 복합 박막을 포함하는 나노 복합체의 PM분자량에 따른 Cyt.c결합 진동수 변화를 비교하여 나타낸 것이다. 도 9 는 Zr(0-nPr)4 와 PAA25의 순차적 결합에 따른 QCM 의 진동수 변화와8 is a metal oxide multilayer thin film (Ti0 2 / PAA x ) 3 . 5 shows the comparison of Cyt.c binding frequency change according to the PM molecular weight of the nanocomposite including the composite thin film. FIG. 9 illustrates the variation of the frequency of QCM according to the sequential combination of Zr (0- n Pr) 4 and PAA 25
Cyt.c 를 결합한 (Zr02/PM25)3.5 나노 복합체 형성 단계에 따른 진동수의 변화를 나타낸 것이다. Combined Cyt.c (Zr0 2 / PM 25 ) 3 . 5 shows the change in frequency according to the nanocomposite formation step.
도 10은 PDDA와 PAA25의 순차적 결합에 따른 QCM의 진동수 변화와 Cyt.c를 결합한 (PDDA/PAA25)3.5 나노 복합체 형성 단계에 따른 진동수의 변화를 나타낸 것이다. Figure 10 shows the change of the frequency according to the sequential coupling of PDDA and PAA 25 and the frequency according to the (PDDA / PAA 25 ) 3.5 nanocomposite formation step combined with Cyt.c.
도 11은 PEI 와 PAA25의 순차적 결합에 따른 QCM의 진동수 변화와 Cyt.c를 결합한 (PEI/PM25)3.5 나노 복합체 형성 단계에 따른 진동수의 변화를 나타낸 것이다. 11 is a combination of the frequency change of the QCM and Cyt.c according to the sequential coupling of PEI and PAA 25 (PEI / PM 25 ) 3. 5 shows the change in frequency according to the nanocomposite formation step.
도 12는 PAH와 PAA25의 순차적 결합에 따론 QCM의 진동수 변화와 Cyt.c를 결합한 (ΡΑΗ/ΡΜ25)3.5 나노 복합체 형성 단계에 따른 진동수의 변화를 나타낸 것이다. 12 is a combination of the frequency change of the QCM and Cyt.c according to the sequential coupling of PAH and PAA 25 (ΡΑΗ / ΡΜ 25 ). 5 shows the change in frequency according to the nanocomposite formation step.
도 13 은 Ti(0-nBu)4 와 PAA2 의 순차적 결합 및 Cyt.c 의 결합에 따른 (Ti02/PM2)3.5나노복합체의 UV-vis spectrometer 변화를 나타낸 것이다. 도 14 는 Ti(0— nBu)4 와 PAA25 의 순차적 결합 및 Cyt.c 의 결합에 따른 (Ti()2/PAA25)3.5나노복합체의 UV-vis spectrometer 변화를 나타낸 것이다. FIG. 13 shows the sequential coupling of Ti (0- n Bu) 4 and PAA 2 and the coupling of Cyt.c (Ti0 2 / PM 2 ) 3 . 5 shows the UV-vis spectrometer changes of nanocomposites. 14 shows the sequential coupling of Ti (0— n Bu) 4 and PAA 25 and the coupling of Cyt.c (Ti () 2 / PAA 25 ) 3 . 5 shows the UV-vis spectrometer changes of nanocomposites.
도 15 는 TK0-nBu)4 와 PM450 의 순차적 결합 및 Cyt.c 의 결합에 따른 (ΤΚνΡΑΑ450)3.5나노복합체의 UV-vis spectrometer 변화를 나타낸 것이다. 15 shows the sequential binding of TK0- n Bu) 4 and PM450 and the binding of Cyt.c (ΤΚνΡΑΑ4 50 ) 3 . 5 shows the UV-vis spectrometer changes of nanocomposites.
도 16은 Cyt.c를 결합한 (Ti02)3금속산화물다층박막 형성 단계에 따른 UV- vis spectrometer 변화를 나타낸 것이다. FIG. 16 illustrates changes of UV-vis spectrometer according to the (Ti0 2 ) 3 metal oxide multilayer thin film formation step combining Cyt.c.
도 17은 Cyt.c를 결합한 (Ti02)6금속산화물다층박막 형성 단계에 따른 UV- vis spectrometer 변화를 나타낸 것이다. FIG. 17 illustrates changes of UV-vis spectrometer according to the (Ti0 2 ) 6 metal oxide multilayer thin film formation step combining Cyt.c.
도 18 은 금속산화물 다층박막과 (Ti02/PAAX)3.5 복합 박막을 포함하는 나노 복합체의 PAA 분자량에 따른 Cyt.c 결합에 의한 409nm 에서의 흡광도 변화를 여 나타낸 것이다. 18 is a metal oxide multilayer thin film (Ti0 2 / PAA X ) 3 . 5 shows the change in absorbance at 409 nm due to Cyt.c binding according to the PAA molecular weight of the nanocomposite including the composite thin film.
도 19 는 Cyt.c 가 결합된 (Ti02/PM25)3.5나노 복합 박막으로부터 Cyt.c 의 탈착에 의한 UV-vis spectrometer 변화를 나타낸 것이다. 19 is Cyt.c conjugated (Ti0 2 / PM 25 ) 3 . The UV-vis spectrometer changes due to the desorption of Cyt.c from the 5 nanocomposite thin film.
도 20 은 Cyt.c 가 결합된 (Ti02/PAAX)3.5나노 복합 박막으로부터 Cyt.c 의 탈착에 의한 409nm에서의 흡광도 변화를 나타낸 것이다. 20 is Cyt.c conjugated (Ti0 2 / PAA X ) 3 . The change in absorbance at 409 nm due to the desorption of Cyt.c from the 5 nanocomposite thin film is shown.
도 21 은 Cyt.c 가 결합된 (Ti02/PMx)3.5나노 복합 박막으로부터 Cyt.c 의 탈착에 의한 409nm에서의 흡광도 변화에 대한 재연성을 나타낸 것이다. 21 is Cyt.c bound (Ti0 2 / PM x ) 3 . The reproducibility of the absorbance change at 409 nm due to the desorption of Cyt.c from the 5 nanocomposite thin film.
도 22는 Cyt.c 가결합된 금속산화물 다층박막과 (Ti02/PMx)3.5복합 박막을 포함하는 나노복합체의 전기 화학적 특성의 차이를 나타낸 것이다. 22 is a Cyt.c-coupled metal oxide multilayer thin film and (Ti0 2 / PM x ) 3 . 5 shows the difference in electrochemical properties of the nanocomposite including the composite thin film.
도 23 은 Cyt.c 가 결합된 (Ti02/PMx)3.5복합 박막의 전기 화학적 특성의 차이를 나타낸 것이다. 23 is Cyt.c conjugated (Ti0 2 / PM x ) 3 . 5 shows the difference in electrochemical properties of composite thin films.
도 24 는 Cyt.c 가 결합된 (Ti02/PMx)3.5 복합 박막의 전류적정법 (Amperometric titration)에 의한차이를 나타낸 것이다. FIG. 24 shows the difference by Amperometric titration of Cyt.c-bonded (Ti0 2 / PM x ) 3.5 composite thin film.
도 25 는 (Ti02)3 금속산화물다층박막의 AFM사진과 root— mean-sequare(RMS) roughness를보여준다. FIG. 25 shows AFM images and root-mean-sequare (RMS) roughness of (Ti0 2 ) 3 metal oxide multilayers.
도 26 은 Cyt.c 가 결합된 (Ti02)3 금속산화물다층박막의 AFM 사진과 root- mean— sequare(RMS) roughness를 보여준다. FIG. 26 shows AFM images and root-mean-sequare (RMS) roughness of Cyt.c-bonded (Ti0 2 ) 3 metal oxide multilayers.
도 27 은 (Ti02/PM450 ) 3.5 복합 박막의 AFM 사진과 root— mean-sequare(RMS) roughness를보여준다 . 도 28 은 Cyt . c 가 결합된 (Ti02/PAA450)3.5 복합 박막의 AFM 사진과 root- mean-sequare(RMS) roughness를 보여준다. 27 (Ti0 2 / PM 450 ) 3 . 5 Show the AFM image and root—mean-sequare (RMS) roughness of the composite film. 28 is Cyt. c is bound (Ti0 2 / PAA4 50 ) 3 . It shows an AFM picture and root- mean-sequare (RMS) roughness of the thin film composite 5.
【발명을 실시하기 위한 구체적인 내용】  [Specific contents to carry out invention]
이하, 본 발명의 바람직한 실시예들을 상세히 ᅳ설명하기로 한다. 그러나, 본 발명은 여기서 설명된 실시예들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 오히려, 여기서 소개되는 실시예들은 개시된 내용이 철저하고 완전해질 수 있도록, 그리고 당업자에게 본 발명의 사상이 층분히 전달될 수 있도록 하기 위해 제공 되어지는 것이다.  Hereinafter, preferred embodiments of the present invention will be described in detail. However, the present invention is not limited to the embodiments described herein and may be embodied in other forms. Rather, the embodiments introduced herein are provided to enable the disclosed contents to be thorough and complete, and to fully convey the spirit of the present invention to those skilled in the art.
본 발명에 따른 생화학물질 고정용 유기 /무기 나노 복합체는 고체 지지처 L 상기 고체 지지체 상에 형성되고 제 1 금속산화물막 및 상기 제 1 금속산화물막 위에 적층된 전해질 고분자막으로 이루어진 하나 이상의 복합 박막, 및 상기 하나 이상의 복합 박막 위에 형성된 제 2금속산화물막을 포함할수 있다.  The organic / inorganic nanocomposite for fixing a biochemical according to the present invention is a solid support L One or more composite thin films formed on the solid support and made of a first metal oxide film and an electrolyte polymer film stacked on the first metal oxide film, and It may include a second metal oxide film formed on the at least one composite thin film.
본 발명에 있어서, 상기 고체 지지체는 통상적인 비금속 기판 또는 금속 기판 등을 별다른 제한 없이 사용할 수 있는데, 예를 들어, 비금속류인 석영, 유리, 실리콘, 테프론 등의 기판을 사용할 수 있고, 금속류인 금, 은, 구리, 알루미늄, 쌕금 등의 기판을 사용할 수 있으며, 나아가 각종 금속이 고겋된 수정결정미소저울 (Quartz crystal mi croba lance , QCM) , 금이 증착된 실리콘 기판: 전도성 물질이 코팅된 기판또는 금판 등을 사용할 수도 있다. : In the present invention, the solid support can be used without any particular limitation, such as a conventional non-metal substrate or a metal substrate, for example, a non-metal substrate such as quartz, glass, silicon, Teflon, etc. can be used, the metal gold, Substrates such as silver, copper, aluminum, and metal can be used, and further, quartz crystal microcroba lance (QCM) on which various metals are deposited, and silicon substrates on which gold is deposited : a substrate coated with a conductive material or a gold plate Etc. can also be used. :
그리고, 폴리카보네이트 (PC) , 폴리에틸렌테레프탈레이트 (PET) , 아크릴과 같은 고분자 지지체나 금, 은, 백금 등을 증착한 고체 지지체도 사용할 수 있으며, 천연 셀를로스인 종이, 솜, 비단 등도 고체 지지체로 사용 가능하다. 이와에도, 생화학물질의 고정용 나노 복합체에서 사용 가능한 것으로 알려진 다양한 고체 지지체를 별다른 제한 없이 사용할 수 있다.  In addition, a polymer support such as polycarbonate (PC), polyethylene terephthalate (PET) or acrylic, or a solid support deposited with gold, silver, platinum, or the like can be used, and paper, cotton, silk, etc., which are natural cellulose can be used as a solid support. Can be used In addition, various solid supports known to be usable in the nanocomposite for fixing biochemicals may be used without particular limitation.
상기 고체 지지체는 제 1 금속산화물막의 금속산화물과 정전기적 상호작용 및 /또는 화학적 결합을 통해 상기 제 1 금속산화물과 더욱 안정적으로 결합할 수 있다. 상기 고체 지지체가 상기 제 1 금속산화물막의 금속산화물과 정전기적 상호작용 및 /또는 화학적 결합을 하도록 하는 수단은 특별히 제한되지 않고, 예를 들어, 상기 고체 지지체 상에 표면활성기를 도입할 수 있다. 상기 표면활성기는 활성을 갖는 작용기로서 상기 제 1 금속산화물막의 금속산화물과 결합할 수 있다면 특별히 제한되지 않고, 예를 들어, 활성수소, 하이드록실기, 카르복실기, 술폰산기, 인산기, 아민기, 이민기, 암모늄기, 피리딘기 또는 기타 전하를 띄는 분자의 작용기 등으로부터 선택될 수 있다. 또한, 상기 표면활성기는 상기 고체 지지체 표면에 화학적 /물리적 처리를 통하여 도입될 수 있고, 예를 들어, 상기 고체 지지체는 풀라즈마 처리, 오존 처리, 알카리 또는 산 용액에서의 초음파 처리, 알칸티을 분자나 카르복실기 등을 이용한 자기조립박막 형성의 방법 등을 통해 도입될 수 있다. The solid support may more stably bond with the first metal oxide through electrostatic interaction and / or chemical bonding with the metal oxide of the first metal oxide film. The means for causing the solid support to have electrostatic interaction and / or chemical bonding with the metal oxide of the first metal oxide film is not particularly limited, and for example, a surface active group may be introduced onto the solid support. The surface-active group is not particularly limited as long as it can be combined with the metal oxide of the first metal oxide film as a functional group having an activity, and for example, active hydrogen, hydroxyl group, carboxyl group, sulfonic acid group, phosphoric acid group, amine group, imine group, It may be selected from an ammonium group, a pyridine group or other functional groups of the charged molecule and the like. In addition, the surface active group may be introduced to the surface of the solid support through chemical / physical treatment, for example, the solid support may be a full plasma treatment, ozone treatment, sonication in an alkali or acid solution, or an alkanthi molecule. It may be introduced through a method of forming a self-assembled thin film using a carboxyl group or the like.
본 발명에 있어서, 상기 하나 이상의 복합 박막을 구성하는 제 1 금속산화물막 및 /또는 상기 제 2 금속산화물막은 생화학물질과 결합하여 상기 생화학물질을 고정시키는 기능을 수행한다. 한편, 상기 하나 이상의 복합 박막을 구성하고 상기 제 1 금속산화물막 위에 적층되는 전해질 고분자막은 정전기적 인력, 수소결합, 공유결합 또는 금속산화물과의 착체형성 등을 통해 이의 상부 및 하부에 각각 적층된 상기 계 1 금속산화물막 및 이의 하부에 적충된 상기 제 1 금속산화물막과 이의 상부에 적층된 상기 제 2 금속산화물막을 연결시켜 줄 수 있어서, 상기 나노 복합체가 안정한 구조를 가질 수 있게 한다.  In the present invention, the first metal oxide film and / or the second metal oxide film constituting the at least one composite thin film is combined with a biochemical to perform the function of fixing the biochemical. On the other hand, the electrolyte polymer film constituting the at least one composite thin film and laminated on the first metal oxide film is laminated on the upper and lower portions thereof through electrostatic attraction, hydrogen bonding, covalent bond or complex formation with metal oxide, respectively. The first metal oxide film and the first metal oxide film deposited thereon and the second metal oxide film stacked thereon may be connected to each other, thereby allowing the nanocomposite to have a stable structure.
상기 전해질 고분자막은 금속산화물막과 정전기적 상호작용에 의하여 결합되거나, 활성 작용기를 매개로 착체를 형성하여 결합될 수 있다. 상기 금속산화물막은 부분적으로 (-)전하를 갖기 때문에 (+)전하를 갖는 양전하 고분자 전해질 (cat ioni c polyelectrolytes)과 정전기적 상호작용에 의하여 결합할 수 있다. 그리고, 이러한 정전기적 상호작용에 의한 결합 이외에도, 활성수소, 하이드록실기, 카르복실기, 술폰산기, 인산기, 아민기, 이민기, 암모늄기, 피리딘기 또는 기타 전하를 띄는 분자의 작용기 등의 활성작용기를 가지는 천연 또는 합성 고분자와 금속산화물 사이의 착체 형성을 통하여서도 결합할 수 있다.  The electrolyte polymer film may be bonded to the metal oxide film by electrostatic interaction or may be bonded by forming a complex through an active functional group. Since the metal oxide film partially has a negative charge, the metal oxide film may be coupled with a positively charged polyelectrolytes having a positive charge by electrostatic interaction. And, in addition to the bonds caused by electrostatic interaction, there is also a natural group having active functional groups such as active hydrogen, hydroxyl group, carboxyl group, sulfonic acid group, phosphoric acid group, amine group, imine group, ammonium group, pyridine group or other functional group of charged molecule. Alternatively, the polymer may be bonded through the formation of a complex between the synthetic polymer and the metal oxide.
그리고, 상기 제 1 및 제 2 금속산화물막 및 상기 전해질 고분자막은 나노 스케일의 다공질막으로서 안정한 다층 박막으로 형성될 수 있고, 고정되어야 하는 생화학물질이 본 발명에 따른 나노 복합체의 표면뿐만 아니라 다공질막으로 형성된 상기 제 1 및 제 2 금속산화물막 및 상기 전해질 고분자막의 내부에 존재하는 나노 스케일의 수많은 미세공을 통해 전체 적층막의 내부, 즉 하부에 배치된 금속산화물막에까지 이동하여 고정됨으로써 본 발명에 따른 나노 복합체는 다량의 생화학물질을 고정시킬 수 있는 우수한 효과를 나타낸다. The first and second metal oxide films and the electrolyte polymer film may be formed as a stable multi-layered thin film as a nanoscale porous film, and biochemicals to be fixed may not only be used as the porous film but also the surface of the nanocomposite according to the present invention. The formed first and second metal oxide films and the electrolyte polymer film The nanocomposite according to the present invention exhibits an excellent effect of fixing a large amount of biochemicals by being moved and fixed to the inside of the entire lamination film, that is, the metal oxide film disposed below through the numerous micro-scale micropores present.
상기 제 1 및 제 2 금속산화물막, 그리고 상기 전해질 고분자막은 금속산화물 또는 전해질 고분자의 단분자막으로 이루어질 수 있다. 상기 단분자막은 금속산화물 분자 또는 전해질 고분자의 고유한 결합 특성과 활성이 유지되며, 단분자막에서 분자간의 간격과 배향을 적절히 조절할 수 있기 때문에 바이오 센서, 분자소자 등의 제조에 유용하다. The first and second metal oxide films and the electrolyte polymer film may be formed of a monomolecular film of a metal oxide or an electrolyte polymer. The monomolecular film maintains the inherent binding properties and activity of the metal oxide molecule or the electrolyte polymer, and is useful in the manufacture of biosensors, molecular devices, and the like, because the monomolecular film can properly control the spacing and orientation between molecules.
상기 제 1 및 제 2 금속산화물막은 되타늄, 지르코늄, 알루미늄, 보론, 실리콘, 인듐, 주석, 바륨 및 바나듐으로 이루어진 군에서 선택된 금속의 산화물 또는 2 종 이상의 복합 금속 산화물을 포함할 수 있다. 이러한 제 1 및 제 2 금속산화물막은 고체 지지체, 전해질 고분자막 및 생화학물질과 정전기적 결합을 할 수 있다.  The first and second metal oxide films may include an oxide of a metal selected from the group consisting of back titanium, zirconium, aluminum, boron, silicon, indium, tin, barium, and vanadium or two or more kinds of composite metal oxides. The first and second metal oxide films may be electrostatically bonded to the solid support, the electrolyte polymer film, and the biochemical.
상기 전해질 고분자막은 폴리아크릴산과 이의 유도체, 양이온 및 음이온 폴리사카라이드와 이의 유도체, 핵산, 폴리메타아크릴산과 이의 유도체, 말레산 무수물 공중합체, 양이온 아크릴산 에스터와 이의 공중합체, 폴리에틸렌 이민, 폴리아민, 폴리아마이드아민 및 폴리다이알릴다이메틸암모니움 클로라이드로 이루어진 군에서 선택된 어느 하나 이상을 포함할 수 있다. 이외에도 상기 전해질 고분자막은 금속산화물과 상흐작용이 가능한 다양한 고분자 등을 포함할 수 있다.  The electrolyte polymer membrane includes polyacrylic acid and derivatives thereof, cation and anionic polysaccharides and derivatives thereof, nucleic acids, polymethacrylic acid and derivatives thereof, maleic anhydride copolymers, cationic acrylic esters and copolymers thereof, polyethylene imines, polyamines, polyamides It may include any one or more selected from the group consisting of amine and polydiallyldimethylammonium chloride. In addition, the electrolyte polymer membrane may include various polymers capable of interacting with the metal oxide.
특히, 본 발명자들은 상기 전해질 고분자막을 형성하는 고분자의 분자량이 약 500 이상, 바람직하게는 약 2 , 000 이상인 경우 상기 전해질 고분자막은 이의 상부 및 하부에 적층되는 상기 금속산화물막을 연결시키는 기능뿐만 아니라 상기 금속산화물막과 같이 이의 내부에 생화학물질을 고정시킬 수 있는 한편, 상기 고분자의 분자량이 약 450 ,000 인 경우 고정되는 생화학물질의 함량이 최대가 됨을 실험적으로 확인함으로써 본 발명을 완성하였다.  In particular, the inventors of the present invention, when the molecular weight of the polymer forming the electrolyte polymer film is about 500 or more, preferably about 2,000, or more, the electrolyte polymer film is the function of connecting the metal oxide film laminated on the upper and lower portions thereof, as well as the metal The present invention was completed by experimentally confirming that the biochemical can be fixed in the same as the oxide film, while the molecular weight of the polymer is about 450,000, and the content of the fixed biochemical is maximized.
본 발명자들은, 상기 전해질 고분자막이 이의 내부에 생화학물질을 고정시킬 수 있는 것은 상기 전해질 고분자막 역시 이의 내부에 양이온 효소 등의 생화학물질과 결합하여 이를 고정시킬 수 있는 (-)전하를 포함하고 있고, 상기 전해질 고분자막을 형성하는 고분자의 분자량이 증가할수록 상기 고분자 사슬 사이에 생화학물질을 수용할 수 있는 공간이 더 많이 형성되고, 형성되는 공간은 고분자의 분자량이 약 450 , 000 일 때 최대로 형성되기 때문이라고 추측하고 있다. 따라서, 본 발명에 따른 생화학물질 고정용 유기 /무기 나노 복합체는 상기 전해질 고분자막을 형성하는 고분자의 분자량을 조절함으로써 상기 금속산화물막 뿐만 아니라 상기 전해질 고분자막도 이의 내부에 상기 생화학물질을 고정시킬 수 있어, 동일한 함량의 생화학물질을 고정시키는 것을 전제로 종래 생화학물질 고정용 복합체에 비해 적층되는 박막의 개수를 크게 줄일 수 있기 때문에 상기 나노 복합체의 제조시간을 단축시키고 제조비용을 절감할 수 있는 우수한 효과를 나타낸다. The inventors of the present invention, wherein the electrolyte polymer membrane is capable of fixing a biochemical material therein, the electrolyte polymer membrane also includes a (-) charge that can bind to and fix the biochemicals such as cationic enzymes therein, As the molecular weight of the polymer forming the electrolyte polymer membrane increases, more space for accommodating biochemicals is formed between the polymer chains, and the space formed is maximized when the molecular weight of the polymer is about 450, 000. I guess. Therefore, the organic / inorganic nanocomposite for fixing a biochemical according to the present invention may fix the biochemical within the metal oxide film as well as the electrolyte polymer film by controlling the molecular weight of the polymer forming the electrolyte polymer film. Under the premise of fixing the same amount of biochemicals, the number of laminated thin films can be significantly reduced compared to conventional biochemicals fixing composites, thereby reducing the manufacturing time and reducing the manufacturing cost of the nanocomposites. .
또한, 본 발명에 따른 생화학물질 고정용 유기 /무기 나노 복합체는 제 1 및 제 2 금속산화물막을 적층하기 위해 유기 용매를 이용하여 상기 금속산화물막 사이에 생화학물질을 적층시킬 필요가 없기 때문에 상기 유기 용매에 의한 생화학물질의 활성이 감소되는 것을 억제하여 안정적으로 상기 생화학물질을 고정시킬 수 있는 우수한 효과를 나타낸다.  In addition, the organic / inorganic nanocomposite for fixing a biochemical according to the present invention does not need to stack biochemicals between the metal oxide films using an organic solvent to stack the first and second metal oxide films. By suppressing the decrease in the activity of the biochemicals by the exhibits an excellent effect that can be stably fixed the biochemicals.
본 발명은 생화학물질 고정용 유기 /무기 나노 복합체의 제조 방법에 관한 것이다. 도 1 은 본 발명에 따른 생화학물질 고정용 유기 /무기 나노 복합체의 제조방법을 개략적으로 도시한 것이다.  The present invention relates to a method for preparing an organic / inorganic nanocomposite for fixing a biochemical. 1 schematically illustrates a method for preparing an organic / inorganic nanocomposite for fixing a biochemical according to the present invention.
도 1 에 도시된 바와 같이, 본 발명에 따^나노 복합체의 제조 방법은 고체 지지체 상에 제 1 금속산화물막을 형성한 후 상기 제 1 금속산화물막 상에 전해질 고분자막을 형성하는 과정을 1 회 이상 반복함으로써 하나 이상의 복합 박막을 형성하는 단계, 및 상기 복합 박막의 최상단에 제 2 금속산화물막을 형성하는 단계를 포함할수 있다.  As shown in FIG. 1, according to the present invention, a method of manufacturing a nanocomposite is repeated one or more times after forming a first metal oxide film on a solid support and then forming an electrolyte polymer film on the first metal oxide film. Thereby forming one or more composite thin films, and forming a second metal oxide film on top of the composite thin film.
구체적으로, 상기 고체 지지체를 금속산화물 전구체 용액 내에서 표면 졸-겔 방법 등을 통하여 제 1 금속산화물막을 형성 시킨 후, 물리적으로 과량 흡착한 금속산화물을 용매로 제거하고, 증류수를 이용하여 가수분해 시키면, 고체 지지체 위에 활성을 갖는 제 1 금속산화물막이 형성될 수 있다. 그 후 상기 제조된 제 1 금속산화물막을 고분자 전해질 용액에서 반웅시켜 전해질 고분자막 및 금속산화물막을 포함하는 복합 박막을 형성할 수 있다. 상기 형성된 복합 박막을 금속산화물 전구체 용액 내에서 표면 졸-겔 방법 등을 통하여 반옹시켜서 금속산화물막을 형성한 후, 과량의 물리적으로 홉착한 금속산화물을 용매로 제거하고 증류수를 이용하여 가수분해 시키면 제 2금속산화물층이 형성된다. 본 발명의 하나의 실시예에 따른 생화학물질 고정용 나노 복합체 제조방법은 상기 제 1 금속 산화물막의 형성 단계 전에, 상기 고체 지지체 표면에 플라즈마 처리, 오존 처리, 알카리 또는 산 용액에서 초음파 처리 또는 자기조립박막의 형성 단계를 추가로 포함할 수 있다. 이러한 단계를 통해서 상기 고체 지지체에 활성수소, 하이드록실기, 카르복실기, 술폰산기, 인산기, 아민기, 이민기, 암모늄기, 피리딘기 또는 기타 전하를 띄는 분자의 작용기 등의 표면 활성기를 도입할 수 있다. Specifically, after the solid support is formed in the metal oxide precursor solution through a surface sol-gel method, the first metal oxide film is removed, and then physically excessively adsorbed metal oxide is removed with a solvent and hydrolyzed using distilled water. The first metal oxide film having an activity on the solid support may be formed. Thereafter, the prepared first metal oxide film may be reacted in a polymer electrolyte solution to form a composite thin film including an electrolyte polymer film and a metal oxide film. The formed composite After the thin film is repelled in a metal oxide precursor solution through a surface sol-gel method or the like to form a metal oxide film, an excess of physically bound metal oxide is removed with a solvent and hydrolyzed using distilled water to form a second metal oxide layer. Is formed. According to an embodiment of the present invention, a method for manufacturing a nanocomposite for immobilizing a biochemical may include ultrasonic treatment or self-assembling thin film in a plasma treatment, ozone treatment, alkali or acid solution on the surface of the solid support before forming the first metal oxide film. It may further comprise the step of forming. Through this step, surface active groups such as active hydrogen, hydroxyl group, carboxyl group, sulfonic acid group, phosphoric acid group, amine group, imine group, ammonium group, pyridine group or other functional groups of charged molecules can be introduced into the solid support.
상기 고체 지지체가 비 금속류인 경우는 초음파 세척 후 플라즈마 처리, 오존 처리 등을 하거나 알칼리 또는 산 용액에서 초음파 처리를 하여 활성을 갖는 분자를 도입할 수 있다. 그리고, 상기 고체 지지체가 금속류인 경우는 표면 세척 후 산성 용액으로 표면에 존재하는 불순물을 제거한 후, 한쪽 말단이 수식된 알칸티을 (alkanethiol ) 분자나 카르복실기 등을 포함하는 용액에 침지시켜 자기조립박막 (sel f-assembled monolayer , SAM)을 형성함으로써 표면 활성을 도입할수 있다.  In the case where the solid support is a non-metal, it is possible to introduce a molecule having activity by performing ultrasonic treatment in a plasma treatment, ozone treatment, or ultrasonic treatment in an alkali or acid solution. In addition, when the solid support is a metal, after washing the surface, the impurities present on the surface are removed by an acidic solution, and then the self-assembled thin film is immersed in a solution containing an alkanethiol (alkanethiol) molecule or a carboxyl group at one end thereof. Surface activity can be introduced by forming a sel f-assembled monolayer (SAM).
또한, 상기 제 1 또는 제 2 금속산화물을 형성하는 단계는 고체 지지체나 전해질 고분자막이 형성된 결과물을 금속산화물 전구체 용액 내에서 표면 졸-겔 반웅을 시키는 단계를 포함할 수 있다. 상기 표면 졸-겔 반웅을 시키는 단계에서는 상기 고체 지지체나 전해질 고분자막이 형성된 결과물을 금속산화물 전구체가 용해된 용액 내에서 반웅시킨 후, 에탄올 등의 적절한 용매로 과량의 물리적 흡착분을 제거하고 증류수 내에서 가수분해한 뒤 질소 가스로 건조하는 단계를 포함할 수 있다.  In addition, the forming of the first or second metal oxide may include performing a surface sol-gel reaction on the result of the solid support or the electrolyte polymer film formed in the metal oxide precursor solution. In the step of performing the surface sol-gel reaction, the resultant on which the solid support or the electrolyte polymer membrane is formed is reacted in a solution in which the metal oxide precursor is dissolved, and then the excess physical adsorption component is removed with an appropriate solvent such as ethanol, and then in distilled water. And hydrolyzing and drying with nitrogen gas.
상기 제 1 및 제 2금속산화물막의 형성을 위한 전구체로는 Τί (0- ι1) 4' Zr(°-/2Pr)4'Precursors for the formation of the first and second metal oxide films include Τί (0- ι1) 4 ' Zr ( °- / 2Pr) 4'
AKO-flBu) , B(O-nEt ) , Ti (acac) , Si (OMe) , In(0C Η OMe) , Sn(O-iPr) , InSn(OR) , BaTi (OR) 또는 VO(O-iPr ) 3 3 2 4 2 4 3 4 4 4 4 등의 금속알콕사이드를 사용할 수 있다. 다만, 상기 예 이외에도 생화학물질 또는 고체 지지체의 활성기와 정전기적 결합을 형성할 수 있고, 금속산화물의 형성을 가능케 하는 다양한 물질을 상기 금속산화물 전구체로 사용할 수 있다. 또한, 상기 제 1 금속산화물막 상에 전해질 고분자막을 형성하는 단계는 상기 금속산화물막이 형성된 결과물을 고분자 전해질 용액에서 반웅시키는 단계를 포함할 수 있다. 상기 제 1 금속산화물막이 형성된 결과물을 상온에서 전해질 고분자가 녹아 있는 고분자 전해질 용액에서 반응시킨 후, 표면에 불안정하게 흡착되어 있는 고분자를 증류수 등의 적절한 용매로 세척하고 질소가스를 이용하여 건조시키면 제 1 금속산화물 상에 전해질 고분자막이 형성될 수 있다. AKO-flBu), B (O-nEt), Ti (acac), Si (OMe), In (0C Η OMe), Sn (O-iPr), InSn (OR), BaTi (OR) or VO (O- metal alkoxides such as iPr) 3 3 2 4 2 4 3 4 4 4 4 can be used. However, in addition to the above examples, a variety of materials capable of forming an electrostatic bond with an activator of a biochemical or a solid support and forming a metal oxide may be used as the metal oxide precursor. In addition, the forming of the electrolyte polymer film on the first metal oxide film may include reacting the resultant product on which the metal oxide film is formed in the polymer electrolyte solution. After reacting the resultant product formed with the first metal oxide film in a polymer electrolyte solution in which the electrolyte polymer is dissolved at room temperature, the polymer that is unstablely adsorbed on the surface is washed with a suitable solvent such as distilled water and dried using nitrogen gas. An electrolyte polymer film may be formed on the metal oxide.
상기 고분자 전해질은 폴리아크릴산과 이의 유도체, 양이온 및 음이온 폴리사카라이드와 폴리사카라이드 유도체, 핵산, 폴리메타아크릴산과 이의 유도체, 말레산 무수물 공중합체, 양이은 아크릴산 에스터와 이의 공중합체, 폴리에틸렌 이민, 폴리아민, 폴리아마이드아민 및 폴리다이알릴아다이메틸암모니움 클로라이드로 이루어진 군에서 선택된 어느 하나 이상을 포함할 수 있다. 이외에도 상기 전해질 고분자는 금속산화물과 상호작용이 가능한 다양한 고분자 등을 포함할 수 있다.  The polymer electrolyte may include polyacrylic acid and its derivatives, cationic and anionic polysaccharides and polysaccharide derivatives, nucleic acids, polymethacrylic acid and its derivatives, maleic anhydride copolymers, silver esters and copolymers thereof, polyethylene imines, and polyamines. It may include any one or more selected from the group consisting of polyamide amine and polydiallyldimethylammonium chloride. In addition, the electrolyte polymer may include various polymers capable of interacting with a metal oxide.
또한, 상기 생화학물질 고정용 나노 복합체를 이용해 생화학물질을 고정시킨 후 고정된 생화학물질을 용이하게 다시 탈착시킬 수 있고, 상기 생화학물질이 고정된 나노 복합체를 암모니아 용액 내에서 5 내지 50°C , 바람직하게는 20 내지 45'C에서, 1 내지 60 분 동안, 바람직하게는 10 내지 20 분 동안 반웅시켜 탈착시킬 수 있다. 그리고, 상기 생화학물질이 탈착된 상기 나노 복합체를 다시 생화학물질이 용해되어 있는 완층 용액 내에서 다시 반웅시킬 수 있다. In addition, after fixing the biochemicals using the biocomposite-fixed nanocomposites, the fixed biochemicals can be easily desorbed again, and the nanocomposites in which the biochemicals are immobilized in ammonia solution 5 to 50 ° C., preferably Preferably it can be desorbed at 20 to 45'C for 1 to 60 minutes, preferably for 10 to 20 minutes. In addition, the nanocomposite from which the biochemical material is desorbed may be reacted again in a complete layer solution in which the biochemical material is dissolved.
본 발명은 앞서 기술한 생화학물질 고정용 나노 복합체를 포함하는 바이오 센서 또는 흡착 장치에 관한 것이다. 상기 바이오 센서 또는 흡착 장치는 앞서 기술한 본 발명에 따른 생화학물질 고정용 나노 복합체를 생화학물질과 반웅시킴으로써 제조할 수 있다. The present invention relates to a biosensor or adsorption device including the biocomposite-fixed nanocomposite described above. The biosensor or adsorption device may be prepared by reacting the biochemicals-fixed nanocomposite according to the present invention with a biochemical.
상기 생화학물질 고정용 나노 복합체는 앞서 기술한 바와 같이 복수의 나노 스케일 다공질막으로 이루어져 있기 때문에 최외곽의 제 2 금속산화물막 뿐만 아니라 나노 복합체의 내부인 제 1 금속산화물막과 전해질 고분자막에도 생화학물질이 결합되어 고정될 수 있다. 이렇게 제조된 바이오 센서 또는 흡착 장치는 상기 생화학물질과 반웅하여 결합하는 물질을 검출 또는 흡착할 수 있게 된다. The biocomposite-fixed nanocomposite is composed of a plurality of nanoscale porous membranes, as described above, so that not only the outermost second metal oxide film but also the first metal oxide film and the electrolyte polymer film, which are inside the nanocomposite, are biochemicals. Can be combined and fixed. Bio Sensor or Adsorption The device is capable of detecting or adsorbing a substance which reacts with the biochemical.
상기 생화학물질은 단백질, 효소, 항원, 항체, 리셉터 및 리간드 등이 있고, 보다 구체적으로 전형적인 생화학물질인 미오글로빈 (Myoglobin) , 리소좀 (Lysozyme) , 페록시다아제: (Peroxi dase) , 글로코아밀라아제 (Glucoamyl ase), 글로코스옥시다아제 (Gluecose oxi dase) , 카탈라아제 (Catal ase) 또는 시토크롬 씨 (Cytochrome c, (Cyt . c) ) 등이 있다. 이외에도 다양한 생화학물질들이 상기 나노 복합체에 고정될 수 있다. The biochemicals include proteins, enzymes, antigens, antibodies, receptors and ligands, and more specifically, typical biochemicals such as myoglobin, lysozyme, peroxidase : (Peroxi dase), and glycoamylase ( Glucoamyl ase, Gluecose oxi dase, Catalase or Cytochrome c, (Cyt. C). In addition, various biochemicals may be fixed to the nanocomposite.
구체적으로, 상기 생화학물질을 상기 나노 복합체와 고정시키는 단계는 상기 나노 복합체를 상기 생화학물질이 용해되어 있는 완층 용액 내에서 5 내지 50°C , 바람직하게는 20 내지 45°C에서, 1 내지 60분 동안, 바람직하게는 20내지 40분 동안 서로 반웅시킴으로써 수행될 수 있다. 대부분의 생화학물질은 35 내지 45°C에서 활성이 가장 크게 나타나고, 너무 고은이거나 저은인 경우 활성이 떨어지게 된다. 또한, 상기 완충 용액은 pH 2 내지 10 의 범위 내일 수 있다. 일반적으로 생화학물질은 pH 에 크게 영향을 받게 되기 때문에 완층 용액을 사용하면 생화학물질을 결합하는 단계에서 활성이 유지될 수 있으나, 너무 산성 또는 알카리성 조건에서는 완층 용액으로서 역할을 할 수 없다. Specifically, the step of fixing the biochemical with the nanocomposite is the nanocomposite in 5 ~ 50 ° C, preferably 20 to 45 ° C in a complete solution in which the biochemical is dissolved, 1 to 60 minutes During the reaction, preferably by reacting with each other for 20 to 40 minutes. Most biochemicals show the highest activity at 35 to 45 ° C, and are too low or too low. In addition, the buffer solution may be in the range of pH 2 to 10. In general, because biochemicals are greatly affected by pH, the use of a complete solution may maintain activity at the step of binding the biochemical, but may not serve as a complete solution in too acidic or alkaline conditions.
[실시예 : 생화학물질 고정용 나노 복합체의 제조]  [Example: Preparation of Nanocomposite for Biochemical Fixation]
<실시예 1 QCM을 고체 지지체로 한 나노 복합체 >  Example 1 Nanocomposite with QCM as Solid Support
금이 증착된 수정결정 미소저울 (QCM)을 피라하 용액 (pi raha solut ion : 96% 황산 /30-35.5% 과산화수소, 3/1, v/v)으로 세척 후, 10mM 의 2-머캡토에탄올 (2— mercaptoethanol )/에탄올 용액 내에서 12 시간 동안 반웅시켜 자기조립박막을 제작하고, 이를 고체 지지체로 사용하였다. 이러한 고체 지지체를 티탄부톡사이드 (Ti tani um ( IV)-n-but oxi de ; (Ti (0-nBu)4)/ Acros Chem 사 제품 (미국) )가 lOOmM 의 농도로 용해된 에탄올 /를루엔 ( 1/1, v/v) 용액 내에서 3 분간 반웅시켰다. 그 후, 그 결과물에 과량으로 물리적 흡착한 금속산화물을 에탄올 용액을 이용하여 제거하고, 증류수 내에서 1 분간 가수분해 시켰다. 그리고, 질소 가스로 건조하여 고체 지지체 위에 제 1금속산화물막을 도입하였다. 상기 제 1 금속산화물막이 형성된 결과물을 분자량이 각각 2000(PAA2) , 25000(ΡΑΑ25) , 그리고 450,000(ΡΑΑ450)인 폴리아크릴액시드 (Poly(acryl ic acid) PAA)가 lwt %의 농도로 용해된 증류수 용액에 30 분간 반웅시키고, 표면의 물리적 흡착분을 30 초씩 2 번 증류수로 세척하여 제거하였다. 그 결과물을 질소가스를 이용하여 건조하여 전해질 고분자막 (P 막)을 도입하였다. Gold-deposited quartz crystal microbalance (QCM) was washed with pi raha solut ion: 96% sulfuric acid /30-35.5% hydrogen peroxide, 3/1, v / v, and then 10 mM 2-mercaptoethanol. A self-assembled thin film was prepared by reacting for 12 hours in a (2—mercaptoethanol) / ethanol solution, which was used as a solid support. This solid support was prepared by ethanol / luene in which titanium butoxide (Ti tani um (IV) -n-but oxi de; (Ti (0-nBu) 4) / Acros Chem, USA) was dissolved at a concentration of 100 mM. It was reacted for 3 minutes in (1/1, v / v) solution. Thereafter, the metal oxide adsorbed excessively to the resultant was removed using an ethanol solution and hydrolyzed in distilled water for 1 minute. Then, it was dried with nitrogen gas to introduce a first metal oxide film on the solid support. Distilled water in which the polymetallic acid (Poly (acryl ic acid) PAA) having a molecular weight of 2000 (PAA2), 25000 (ΡΑΑ25), and 450,000 (ΡΑΑ450), respectively, was dissolved at a concentration of 1 wt%. The solution was reacted for 30 minutes, and the surface physical adsorption was washed by distilled water twice for 30 seconds. The resultant was dried using nitrogen gas to introduce an electrolyte polymer membrane (P membrane).
상기의 제 1 금속산화물막과 전해질 고분자막 (PM 막)을 형성하는 과정을 1 사이클로 하여 , 분자량이 다른 전해질 고분자막을 형성시킴으로서 본 발명의 생화학물질 고정용 나노 복합 박막의 효소 고정화량을 조절할 수 있었다. 제By forming the first metal oxide film and the electrolyte polymer film (PM film) as one cycle, the amount of enzyme immobilization of the nanocomposite-fixed nanocomposite thin film of the present invention was controlled by forming an electrolyte polymer film having a different molecular weight. My
1금속산화물막과 전해질 고분자막을 형성하는 과정을 1회 이상 반복하고 난 후, 상기의 제 1 금속산화물막 제조 방법과 동일한 방법을 통하여 제조된 결과물에 제 2금속산화막을 형성하였다. After the process of forming the first metal oxide film and the electrolyte polymer film was repeated one or more times, a second metal oxide film was formed on the resultant obtained by the same method as the method of preparing the first metal oxide film.
이때, (Ti02/PMx)N.5 나노 복합체는 제 1 금속산화물막과 X 분자량의 다른 PAA 를 포함하는복합 박막이 N 개 형성되고, 표면에 제 2 금속산화물막을 형성하여 제조된 것을 의미한다.  In this case, the (Ti02 / PMx) N.5 nanocomposite means that N composite thin films including the first metal oxide film and other PAAs having an X molecular weight are formed and a second metal oxide film is formed on the surface.
또한, 동일 조건에서 금속산화물 전구체로 지르코늄프록시사이드 (Zrconium(IV)-nᅳ propoxide ; (Zr(0-nPr)4)/ Aldri ch 사 제품 (미국) )와 PAA25 을 이용하여 고체 지지체 위에 (Zr02/PAA25) .3.5 나노 복합체를 형성하였다.  Also, under the same conditions, Zr02 was deposited on a solid support using a zirconium hydroxyside (Zrconium (IV) -nZ propoxide; (Zr (0-nPr) 4) / Aldrich Co., USA) and PAA25 as a metal oxide precursor. /PAA25).3.5 nanocomposites were formed.
<실시예 2 : 효소가 결합된 나노 복합체 >  Example 2 Nanocomposite with Enzyme Coupling
실시예 1 의 방법으로 제조된 생화학물질 고정용 나노 복합체를 효소인 사이토크롬 씨 (Cyt . c)가 용해된 인산완층용액 (pH 7) 내에서 30 분간 실온에서 반웅 시켰다. 그 후, 불안정하게 고정화된 과량의 효소 흡착 분을 증류수를 이용하여 제거하고 질소가스로 건조시켜 효소가 결합된 나노 복합체를 제조 하였다.  The nanocomposite-fixed nanocomposite prepared by the method of Example 1 was reacted at room temperature for 30 minutes in a complete phosphate solution (pH 7) in which the enzyme cytochrome seed (Cyt.c) was dissolved. Thereafter, unstable immobilized excess enzyme adsorption was removed using distilled water and dried with nitrogen gas to prepare a nanocomposite conjugated with enzyme.
<실시예 3 : 석영판을 고체 지지체로 한 나노 복합체 >  <Example 3: Nanocomposite using quartz plate as solid support>
석영판을 황산 (¾S04 96.0%)으로 세척한 후, K0H용액으로 초음파 처리하여 석영판표면에 활성기를 도입하여 고체 지지체로 사용하였다. 상기 고체 The quartz plate was washed with sulfuric acid (¾SO 4 96.0%), and then ultrasonicated with a K0H solution to introduce an active group onto the surface of the quartz plate to use as a solid support. The solid
지지체를 실시예 1에서와동일한 방법으로 금속산화물막과 PAA 막을 제조하여, Ti02/PAA복합 박막을 포함하는 나노 복합체를 제조하였다. 제조된 나노 복합체에 실시예 2의 방법으로 효소를 결합시켰다. The support was prepared in the same manner as in Example 1 to prepare a metal oxide film and a PAA film, A nanocomposite including a Ti0 2 / PAA composite thin film was prepared. An enzyme was bound to the prepared nanocomposite by the method of Example 2.
[비교예 : 다층박막의 제조]  Comparative Example: Fabrication of Multilayer Thin Film
<비교예 1 : 금속산화물 다층박막의 제조 >  Comparative Example 1 Manufacture of Metal Oxide Multilayer Thin Film
PM막을 형성시키는 과정을 제외하고 실시예 1과 동일한 방법으로  In the same manner as in Example 1 except for forming a PM film
금속산화물막을 제조하여 , Ti02의 금속산화물막만을 포함하는 금속산화물 다층박막을 제조하였다. 이렇게 제조한 금속산화물 다층박막에 실시예 2의 방법으로 Cyt . c를 결합하였다. By preparing a metal oxide film, a metal oxide multilayer thin film including only the metal oxide film of Ti0 2 was prepared. Thus prepared metal oxide multilayer thin film by the method of Example 2 Cyt. c was bound.
<비교예 2 : 전해질 고분자 다층박막의 제조 >  Comparative Example 2: Fabrication of Electrolyte Polymer Multilayer Thin Film
고체 지지체를 고분자 전해질인 폴리다이알릴다이메틸암모니움  Solid support is polydiallyldimethylammonium as a polymer electrolyte
클로라이드 (poiydial lyldimethyl ammonium chloride, PDDA) , Chloride (poiydial lyldimethyl ammonium chloride, PDDA),
폴리에틸렌이민 (Polyethylenimine, PEI ) , 또는 폴리아릴아민하이드로 Polyethylenimine (PEI), or Polyarylamine Hydro
클로라이드 (Polyal lylamine hydrochloride, PAH)가 lwt %의 농도로 용해된 증류수 용액에 30분간 반웅시키고, 표면의 물리적 흡착분을 30초씩 2번 React in a distilled water solution in which polylylamine hydrochloride (PAH) is dissolved at a concentration of lwt% for 30 minutes, and the physical adsorption on the surface is repeated twice for 30 seconds.
증류수로 세척하여 제거하였다. 그 결과물을 질소가스를 이용하여 건조하여 PDDA, PEI 또는 PAH의 전해질 고분자막을 도입하였다. 상기 제 1 전해질 고분자막이 형성된 결과물에 실시예 1과 동일한 방법으로 PM막을 도입하여 전해질 고분자 다충박막을 제조하였다. 이렇게 제조한 전해질 고분자 다충박막에 실시예 2의 방법으로 Cyt . c를 결합하였다. It was removed by washing with distilled water. The resultant was dried using nitrogen gas to introduce an electrolyte polymer membrane of PDDA, PEI or PAH. A PM membrane was introduced in the same manner as in Example 1 to the resultant in which the first electrolyte polymer membrane was formed, thereby preparing an electrolyte polymer multi-though thin film. Thus prepared electrolyte polymer multi-pump thin film by the method of Example 2 Cyt. c was bound.
[실험예]  Experimental Example
<실험예 1 : QCM의 진동수 변화측정>  Experimental Example 1 Measurement of Frequency Change of QCM
QCM의 진동수를 측정하여 생화학물질 고정용 나노 복합체의 제조 과정에서 각각의 막이 형성되는 모습을 확인하였다. The frequency of QCM was measured to confirm the formation of each film during the preparation of the biocomposite-fixed nanocomposite.
1. 실험예 1-1  Experimental Example 1-1
실시예 1의 나노 복합체 제조과정에서, 제 1금속산화물 형성 과정 직전과 직후, 전해질 고분자막 형성 과정 직후에 QCM의 진동수를 측정하여, 각각의 막이 형성될 때의 평균진동수 변화를 구하였다.  In the nanocomposite fabrication process of Example 1, the frequency of the QCM was measured immediately before and after the formation of the first metal oxide and immediately after the formation of the electrolyte polymer film, thereby obtaining the average frequency change when each film was formed.
도 2에서는 Ti (0-nBu)4와 다양한 분자량의 PAAX의 순차적 형성에 의한 In Figure 2 by the sequential formation of Ti (0- n Bu) 4 and PAA X of various molecular weight
QCM의 진동수 변화를 나타내었다. PAA2 나노복합 박막의 경우, Ti (0-nBu)4결합에 의한 1 사이클의 평균 진동수 변화 AF= 21±4 Hz이었고, PM2의 결합에 의한 1 사이클의 평균 진동수 변화 AF= 20土 3 Hz 이었다. PAA25 나노복합 박막의 경우, Ti (0-nBu)4결합에 의한 1 사이클의 평균 진동수 변화 AF= 29±8 Hz이었고, PM25의 결합에 의한 1 사이클의 평균 진동수 변화 ΔΡ= 26士9 Hz 이었다. P/ so 나노복합 박막의 경우, TK으11 Bu)4결합에 의한 1사이클의 평균 진동수 변화The frequency change of the QCM is shown. For PAA 2 nanocomposite thin films, Ti (0- n Bu) 4 bonds The average frequency change AF of 1 cycle by was 21 ± 4 Hz, and the average frequency change AF of 1 cycle by combining PM 2 was 20 Hz 3 Hz. In the case of the PAA 25 nanocomposite thin film, the average frequency change of one cycle by Ti (0- n Bu) 4 bond AF = 29 ± 8 Hz, and the average frequency change of one cycle by PM 25 bond ΔΡ = 26 士 9 Hz. In case of P / so nanocomposite thin film, the average frequency change of 1 cycle by 11 Bu) 4 bonds with TK
AF= 34土 10 Hz이었고, ? 450의 결합에 의한 1 사이클의 평균 진동수 변화 ᅀ = 36±10 Hz 이었다. 상기 결과는 USI system사 (일본)에서 제작된 수정 결정 미소저을 (QCM)과 Hewlett Packard사 (미국)의 진동수측정기를 이용하였으며, Ti02/PAAx 복합 박막 제조과정을 1사이클로 하여 10사이클의 평균 진동수 변화를 나타내었다. 수정결정 미소저을 (QCM)은 나노그램 정도의 극미량의 물질이 흡착하여도 그 질량에 비례하여 공명 진동수가 변화하므로, 상기의 결과로 보아 고체 지지체 상에 분자수준의 두께로 복합 박막이 균일하게 형성되었음을 확인할 수 있다. AF = 34 土 10 Hz,? The average frequency change of 1 cycle by coupling of 450 was ᅀ = 36 ± 10 Hz. The results were obtained by using a quartz crystal microcrystal (QCM) manufactured by USI system (Japan) and a frequency measuring device of Hewlett Packard (USA), and the average of 10 cycles using Ti0 2 / PAA x composite thin film manufacturing process as one cycle. Frequency change was shown. The crystallite micro low (QCM) has a resonance frequency in proportion to its mass even when a very small amount of nanogram material is adsorbed. Thus, as a result, the composite thin film is uniformly formed at a molecular level on a solid support. It can be confirmed.
2. 실험예 1-2  2. Experimental Example 1-2
실시예 2에서 제작한 효소가 결합된 나노 복합체의 형성 과정을 QCM 진동수 변화를 이용하여 확인하였다. QCM의 진동수는 실험예 1-1에서와 같은 방법으로 측정하였다.  The formation process of the nanocomposite conjugated with the enzyme prepared in Example 2 was confirmed using a QCM frequency change. The frequency of the QCM was measured by the same method as in Experimental Example 1-1.
도 3에는 Cyt.c가 결합한 (Ti02/PM2)3.5 나노 복합체의 진동수 변화를 나타내었다. (Ti02/PM2)3.5 복합 박막의 결합된 Cyt.c의 진동수 변화는 AF= 271±22 Hz였다. 도 4에는 Cyt.c가 결합한 (Ti02/PM25)3.5 나노 복합체의 진동수 변화를 나타내었다. (Ti02/PM25)3.5 복합 박막의 결합된 Cyt.c의 진동수 변화는 AF= 480土 42 Hz였다. 도 5에는 Cyt.c가 결합한 (Ti02/PAA450)3.5 나노 복합체의 진동수 변화를 나타내었다. (Ti02/PAA45o)3.5복합 박막와 결합된 Cyt.c의 진동수 변화는 AF= 735±100 Hz였다. 도 3, 4와 5에서 보여지듯이, 수정결정 In Figure 3 Cyt.c is combined (Ti0 2 / PM 2 ) 3 . The frequency change of the 5 nanocomposite is shown. (Ti0 2 / PM 2 ) 3 . The frequency change of bound Cyt.c of the 5 composite thin films was AF = 271 ± 22 Hz. In Figure 4 Cyt.c is combined (Ti0 2 / PM 25 ) 3 . The frequency change of the 5 nanocomposite is shown. (Ti0 2 / PM 25 ) 3 . The frequency change of bound Cyt.c of the 5 composite thin films was AF = 480 Hz 42 Hz. 5 is Cyt.c bound (Ti0 2 / PAA4 50 ) 3 . The frequency change of the 5 nanocomposite is shown. (Ti0 2 / PAA45o) 3 .5 composite bakmakwa frequency change of the combined Cyt.c was AF = 735 ± 100 Hz. 3, 4 and 5, crystal decision
미소저을 (QCM)의 진동수 변화를 통하여 금속산화물막과 PAAX막이 균일하고 안정적으로 형성되어 가는 것을 확인할 수 있었다. 또한, Cyt.c의 결합에 의한 진동수 변화로 미루어 나노 복합체에 효소분자가 안정하게 결합된 것을 확인할 수 있었다. It was confirmed that the metal oxide film and the PAA X film are uniformly and stably formed by changing the frequency of the micro-lower (QCM). In addition, it was confirmed that the enzyme molecules were stably bound to the nanocomposite due to the frequency change caused by the binding of Cyt.c.
3. 실험예 1-3 비교예 1에서 제작된 금속산화물 다층박막의 형성 과정 및 Cyt . c의 결합을 QCM진흥수 변화를 이용하여 확인하였다. QCM의 진동수는 실험예 1-1에서와 같은 방법으로 측정하였다. 도 6에는 Cyt . c가 결합한 (Ti02)4 금속산화물 다층박막의 진동수 변화를 나타내었다. Ti (0-nBu)4결합에 의한 평균 진동수 변화는 AF= 13士 2 Hz이었고, 결합된 Cyt . c의 진동수 변화는 AF= 144士18 Hz였다. 도 7에는 Cyt . c가 결합한 (Ti02)7금속산화물 다층박막의 진동수 변화를 나타내었다. Ti (0-nBu)4결합에 의한 평균 진동수 변화는 AF= 13士3 Hz이었고, 결합된 Cyt . c의 진동수 변화는 AF= 148± 13 Hz였다. 도 6와 7에서 보여지듯이 수정결정 미소저울 (QCM)의 진동수 변화를 통하여 금속산화물다층 막이 균일하고 안정적으로 형성되어 가는 것을 확인할 수 있었다. 또한, 금속산화물 다층막의 사이클수 (두께)에 상관없이 Cyt . c의 결합에 의한 진동수 변화가 거의 비슷한 것으로 미루어 효소분자가금속산화물 다층막의 표면에만 결합된 것을 확인할수 있었다. 3. Experimental Example 1-3 Formation process of the metal oxide multilayer thin film prepared in Comparative Example 1 and Cyt. The binding of c was confirmed using the QCM promotion number change. The frequency of the QCM was measured by the same method as in Experimental Example 1-1. 6 shows Cyt. The frequency change of the c-bonded (Ti0 2 ) 4 metal oxide multilayer thin film was shown. The average frequency change due to Ti (0- n Bu) 4 binding was AF = 13 cm 2 Hz and the combined Cyt. The frequency change of c was AF = 144 * 18Hz. 7 Cyt. The frequency change of the (Ti0 2 ) 7 metal oxide multilayer thin film bonded with c was shown. The average frequency change due to Ti (0- n Bu) 4 binding was AF = 13 sul 3 Hz and the combined Cyt. The frequency change of c was AF = 148 ± 13 Hz. As shown in FIGS. 6 and 7, it was confirmed that the metal oxide multilayer film was uniformly and stably formed through the frequency change of the quartz crystal microbalance (QCM). In addition, regardless of the number of cycles (thickness) of the metal oxide multilayer film, Cyt. The change in frequency due to the binding of c was almost similar, indicating that the enzyme molecules were bound only to the surface of the metal oxide multilayer.
도 8에는 비교예 1의 금속산화물 다층박막과 실시예 1의 나노 복합체에 Cyt . c를 결합함에 따른 진동수 변화의 차이를 나타내었다. 실시예 1의 나노 복합체는 PAA의 분자량이 증가함에 따라 결합되는 효소의 양도 포화곡선을 그리며 증가함을확인 할 수 있었다. 이러한 결과는 실시예 1의 나노 복합체는 비교예 1의 금속산화물 다층박막과 달리 효소가 전해질 고분자막 내부에까지 이동하여 결합되고 있음을 보여주며, PAA의 분자량이 증가할수록 나노 복합체 박막 내부에 효소가 결합할 수 있는 다공질 공간 (구멍 , 세공)이 더 많이 생성되어 있음을 보여주는 것이다.  8 shows Cyt. In the metal oxide multilayer thin film of Comparative Example 1 and the nanocomposite of Example 1. The difference of the frequency change by combining c is shown. Nanocomposite of Example 1 was confirmed that the increase in the amount of the enzyme bound saturation curve as the molecular weight of PAA increases. These results show that the nanocomposite of Example 1 is different from the metal oxide multilayer thin film of Comparative Example 1, and the enzyme is bound to the inside of the polymer electrolyte membrane. As the molecular weight of PAA increases, the enzyme may bind to the nanocomposite thin film. It shows that more porous spaces (holes, pores) can be created.
4. 실험예 1—4  4. Experimental Example 1—4
실시예 1의 나노 복합체 제조과정에서, 제 1금속산화물 형성 과정 직전과 직후, 전해질 고분자막 형성 과정 직후에 QCM의 진동수를 측정하여, 각각의 막이 형성될 때의 평균진동수 변화를 구하였다.  In the nanocomposite fabrication process of Example 1, the frequency of QCM was measured immediately before and after the formation of the first metal oxide and immediately after the formation of the electrolyte polymer film, thereby obtaining the average frequency change when each film was formed.
도 9에서는 Zr(0-nPr)4와 PAA25의 순차적 형성에 의한 QCM의 진동수 변화를 나타내었다. Zr(0-nPr)4결합에 의한 1 사이클의 평균 진동수 변화 \F= 39士 9In Figure 9 shows the change in the frequency of the QCM by the sequential formation of Zr (0- n Pr) 4 and PAA 25 . Average frequency change in one cycle by Zr (0- n Pr) 4 bond \ F = 39 士 9
Hz이었고, PAA25의 결합에 의한 1사이클의 평균 진동수 변화 AF= 42士 10 Hz 이었다. (Zr02/PAA25)3.5 복합 박막의 결합된 Cyt . c의 진동수 변화는 F= 594±72 Hz였다. 도 9에서 보여지듯이, 수정결정 미소저울 (QCM)의 진동수 변화를 통하여 수정결정 미소저울 (QCM)의 진동수 변화를 통하여 Hz, and the average frequency change AF of 1 cycle by PAA 25 binding was 42 cm 10 Hz. (Zr0 2 / PAA 25 ) 3.5 Combined Cyt of Composite Thin Films. The frequency change of c is F = 594 ± 72 Hz. As shown in Figure 9, through the frequency change of the quartz crystal microbalance (QCM) through the frequency change of the quartz crystal microbalance (QCM)
지르코늄산화물막과 PAA25막이 균일하고 안정적으로 형성되어 가는 것을 확인할 수 있었고, Cyt.c의 결합에 의한 진동수 변화로 미루어 나노 복합체에 It was confirmed that the zirconium oxide film and the PAA 25 film were formed uniformly and stably, and due to the change of frequency caused by the bonding of Cyt.c,
효소분자가 표면 뿐만 아니라 내부에도 안정하게 결합된 것을 확인할 수 있었다. It was confirmed that the enzyme molecules were stably bound not only on the surface but also on the inside.
5. 실험예 1-5  5. Experimental Example 1-5
비교예 2에서 제작된 전해질 고분자 다층박막의 형성 과정 및 Cyt.c의 결합을 QCM진동수 변화를 이용하여 확인하였다. QCM의 진동수는 실험예 1- 1에서와 같은 방법으로 측정하였다. 도 10에는 Cyt.c가 결합한 (PDDA/PM25)3.5 전해질 고분자 다층박막의 진동수 변화를 나타내었다. PDDA결합에 의한 평균 진동수 변화는 ΔΙ= 39土 12 Hz이었고, PM25의 결합에 의한 평균 진동수 변화 AF= 28±16Ήζ 이었다. (PDDA/PAA25)3.5 전해질 고분자 다층박막에 결합된 Formation process of the electrolyte polymer multilayer thin film prepared in Comparative Example 2 and the binding of Cyt.c were confirmed using the QCM frequency change. The frequency of the QCM was measured by the same method as in Experimental Example 1-1. 10 shows Cyt.c bound to (PDDA / PM 25 ) 3. 5 shows the frequency change of the multilayer polymer electrolyte thin film. The average frequency change by PDDA coupling was ΔΙ = 39 Hz 12 Hz and the average frequency change AF = 28 ± 16 Hz by PM 25 coupling. (PDDA / PAA 25 ) 3 . 5 Electrolyte bound to polymer multilayer thin film
Cyt.c의 진동수 변화는 Δί= 13±8 Hz였다. 도 11에는 Cyt.c가 결합한 The frequency change of Cyt.c was Δί = 13 ± 8 Hz. Figure 11 is a combination of Cyt.c
(PEI/PAA25)3.5 전해질 고분자 다층박막의 진동수 변화를 나타내었다. PEI결합에 의한 평균 진동수 변화는 ΔΙ^ 31±10 Hz이었고, PM25의 결합에 의한 평균 진동수 변화 AF= 28±27 Hz 이었다. (PDDA/PM25)3.5 전해질 고분자 다층박막에 결합된 Cyt.c의 진동수 변화는 ᅀ F- 12±7 Hz였다. (PEI / PAA 25) 3 .5 shows the frequency changes of polyelectrolyte multilayers. The average frequency change by PEI binding was ΔΙ ^ 31 ± 10 Hz, and the average frequency change AF = 28 ± 27 Hz by PM 25 binding. (PDDA / PM 25 ) 3 . The frequency change of Cyt.c bound to the 5 electrolyte polymer multilayer thin film was ᅀ F-12 ± 7 Hz.
도 12에는 Cyt.c가 결합한 (ΡΑΗ/ΡΜ25)3.5 전해질 고분자 다층박막의 진동수 변화를 나타내었다. PAH결합에 의한 평균 진동수 변화는 AF= 25土 6 Hz이었고,12 shows Cyt.c bound to (ΡΑΗ / ΡΜ 25 ) 3. 5 shows the frequency change of the multilayer polymer electrolyte thin film. The average frequency change by PAH coupling was AF = 25 Hz 6 Hz,
PM25의 결합에 의한 평균 진동수 변화 AF= 28士 9 Hz 이었다. (PAH/PAA25)3.5 전해질 고분자 다층박막에 결합된 Cyt.c의 진동수 변화는 AF= 40±18Hz였다. 도 10, 11와 12에서 보여지듯이, 수정결정 미소저을 (QCM)의 진동수 변화를 통하여 수정결정 미소저울 (QCM)의 진동수 변화를 통하여 전해질 고분자와 The average frequency change due to the binding of PM 25 was士AF = 28 9 Hz. (PAH / PAA 25 ) 3 . The frequency change of Cyt.c bonded to the 5 electrolyte polymer multilayer thin film was AF = 40 ± 18 Hz. As shown in FIGS. 10, 11, and 12, the crystal micro-crystals (QCM) through the change of the frequency of the quartz crystal microbalance (QCM) through the change of the electrolyte polymer and the
PM25막이 균일하고 안정적으로 형성되어 가는 것을 확인할 수 있었다. 전해질 고분자 다층박막의 Cyt.c의 결합에 의한 진동수 변화로 미루어 효소분자가 표면에 미세하게 홉착을 하고 있을 뿐 내부에는 침투하여 결합하지 못하고 있음을 확인할 수 있었다. 금속산화물을 이용한 복합 박막과 비교하여 P 의 결합량은 비슷하지만 Cyt.c의 결합에 의한진동수 변화는 10배 이상의 차이를 보여주고 있다. 이러한 결과는 금속산화물의 나노복합 박막의 내부는 효소가 결합할수 있는층분한공간이 존재하지만, 전해질 고분자다층막의 경우에는 효소가결합할수 있는공간이나작용기가거의 존재하지 않음을 확인 할수 있었다. It was confirmed that the PM 25 film was formed uniformly and stably. Due to the frequency change caused by the binding of Cyt.c of the electrolyte polymer multilayer thin film, it was confirmed that the enzyme molecules only adhered to the surface finely and could not penetrate and bond inside. Compared with the composite thin film using metal oxide, the bond amount of P is similar, but the frequency change due to the bonding of Cyt.c is more than 10 times. These results indicate that the enzyme inside the nanocomposite thin film of metal oxide Although there is a sufficient space for binding, it can be confirmed that there are almost no spaces or functional groups to which enzymes can bind in the case of an electrolyte polymer multilayer film.
<실험예 2 : 흡광도 변화측정 >  Experimental Example 2 Measurement of Absorbance Change
6. 실험예 2-1  6. Experimental Example 2-1
실시예 3에서 제작된 효소가결합된 나노복합체의 형성은 UV-vi s spectrometer의 흡광도 (효소내의 포르피린 분자에 의한 ( λ∞χ=409ηιιι) 흡광도 변화) 변화를 이용하여 확인하였다. 흡광도의 변화는 UV-vis spectrometerFormation of the enzyme-conjugated nanocomposite prepared in Example 3 was confirmed using a change in absorbance ((λ ∞χ = 409ηιιι) absorbance change by porphyrin molecules in the enzyme) of the UV- vis spectrometer. Change of absorbance is UV-vis spectrometer
(Perk in Elmer사, Lambda 35제품)을 이용하여 확인 하였고, 3회 반복실험 후 평균피크를 나타내었다. (Perk in Elmer, Lambda 35) was confirmed using the average peak after three replicates.
도 13은 Cyt . c가 결합한 (Ti02/PAA2)3.5 나노복합체의 UV_vis spectrometer 변화를 나타내었다. 도 13에 보이는 바와 같이 , Ti (0-nBu)4결합에 의한 250nra 부근에서 Ti02 에 의한특성 피크가사이클수가증가할수록규칙적으로 증가함을보였지만, PAA의 결합시 Ti¾ 에 의한특성 피크가 약간 감소함을 나타내었다. 이것은 PM의 결합시 불안정하게 결합된 Ti02 의 탈착에 의한 것이다. (Ti02/PAA2)3.5나노복합체의 경우 250nm부근에서 (Ti02/PAA2)3.5나노 복합체에 의한특성 피크만존재 하지만, Cyt . c가결합되면 409nm에서 13 shows Cyt. c bonded to (Ti0 2 / PAA 2 ) 3 . The UV_vis spectrometer of 5 nanocomposites is shown. As shown in FIG. 13, the characteristic peak due to Ti0 2 increased regularly as the number of cycles increased around 250 nra due to Ti (0- n Bu) 4 binding, but the characteristic peak due to Ti¾ was slightly decreased when PAA was bonded. Decreased. This is due to the desorption of Ti0 2 which is unstable in bonding with PM. (Ti0 2 / PAA 2 ) 3 . 5 Nanocomposites (Ti0 2 / PAA 2 ) at around 250 nm 3 . 5 Only characteristic peaks due to nanocomposites exist, but Cyt. When c is combined, at 409 nm
Cyt . c내의 포르피린 분자에 의한특성 피크가나타났다 . 이러한 UV-vi s spectrometer의 흡광도 변화로 보아 (Ti02/PM2) 나노복합체에 효소 분자가 안정하게 결합되어 있음을 확인 할수 있었다. 도 14은 Cyt . c가결합한 Cyt. Characteristic peaks due to porphyrin molecules in c are shown. The absorbance change of the UV-vis spectrometer showed that the enzyme molecules were stably bound to the (Ti0 2 / PM 2 ) nanocomposite. 14 is Cyt. c combined
(Ti02/PAA25)3.5나노복합체, 도 15는 Cyt . c가결합한 (Ti¾/PAA450)3.5나노 복합체의 UV-vi s spectrometer 변화를 나타내었다. P 의 분자량이 증가할수톡(Ti0 2 / PAA 25 ) 3.5 nanocomposite, Figure 15 Cyt. c-linked (Ti¾ / PAA4 50 ) 3 . The UV-vis spectrometer of the 5 nanocomposite was shown. Molecular weight of P can increase
Ti02 에 의한특성 피크와 Cyt . c의 결합에 의한특성 피크가증가하였다. 이러한 결과는 QCM진동수 변화와 같은 결과로서 나노복합박막에 안정적으로 효소가 결합하고 있음을 확인할수 있다. Characteristic peak and Cyt by Ti0 2. The characteristic peak by binding of c increased. These results are the same as the QCM frequency change, and it can be confirmed that the enzyme is stably bound to the nanocomposite thin film.
도 16은 Cyt . c가결합한 (Ti02)3금속산화물 다층박막, 도 17는 Cyt . c가 결합한 (Ti02)6금속산화물 다층박막의 UV-vi s spectrometer 변화를 나타내었다.16 is Cyt. c-linked (Ti0 2 ) 3 metal oxide multilayer thin film, Figure 17 is Cyt. The UV-vis spectrometer of c-bonded (Ti0 2 ) 6 metal oxide multilayer thin film was shown.
Ti (0-nBu)4결합에 의한 250nm부근에서 Ti02 에 의한특성 피크가사이클수가 증가할수록규칙적으로 증가함을보였지만, Cyt . c의 결합에 의한 409nra에서의 피크는사이클수에 관계없이 거의 일정하였다. 이러한 결과는 금속산화물의 나노복합박막의 내부는효소가결합할 있는층분한공간이 존재하지만, 금속 산화물 다층막의 경우에는 효소가결합할수 있는 공간이 존재하지 않고 단지 표면에만결합함을 나타내고 있다. The characteristic peaks due to Ti0 2 in the vicinity of 250 nm by Ti (0- n Bu) 4 bond showed a regular increase as the number of cycles increased. at 409 nra by combination of c The peak was almost constant regardless of the number of cycles. These results indicate that the inside of the nanocomposite thin film of the metal oxide has a space in which the enzyme can bind, but in the case of the metal oxide multilayer film, there is no space for the enzyme to bind, but only the surface thereof.
도 18에는실시예 3의 금속산화물 다층박막과나노 복합체에 Cyt . c를 결합함에 따른 UV-vi s spectrometer 변화의 차이를 나타내었다. 나노복합체는 P 의 분자량이 증가함에 따라결합되는 효소의 양도 포화곡선을그리며 증가함을 확인 할수 있었다. 이러한결과는 PAA의 분자량이 증가할수록 나노 복합체 박막 내부에 효소가결합할수 있는 다공질 공간 (구멍, 세공)이 더 많이 생성되어 있음을보여주고 있다.  18 shows Cyt. In the metal oxide multilayer thin film and nanocomposite of Example 3. FIG. The variation of UV-vi s spectrometer according to c binding was shown. As the molecular weight of the P nanocomposites increased, the amount of enzyme bound was increased by drawing a saturation curve. These results show that as the molecular weight of PAA increases, more porous spaces (pores, pores) are formed inside the nanocomposite thin film.
6. 실험예 2-2  6. Experimental Example 2-2
실시예 3에서 제작된 효소가결합된 나노복합체를 1 wt%암모니아수를 이용하여 효소의 제거 및 재결합의 형성을 UV-vis spectrometer의 흡광도  Absorbance of the UV-vis spectrometer using the enzyme-linked nanocomposite prepared in Example 3 using 1 wt% ammonia water to remove enzyme and form recombination.
(효소내의 포르피린 분자에 의한 ( max=409nm) 흡광도 변화) 변화를 이용하여 확인하였다. (( Max = 409 nm) absorbance change by porphyrin molecule in enzyme) was confirmed using the change.
도 19에는 효소가결합된 (Ti02/PM2)3.5나노복합체를 1 wt%암모니아수에 반웅시켜 결합된 효소를분리하는 과정을 UV_vis spectrometer 변화를 이용하여 확인하였다. 도 19에서 보여지듯이, 암모니아수에 약 5분간 반웅시킴으로써 결합된 효소의 약 94%를 (Ti02/PAA25)3.5나노복합 박막으로부터 제거 할수 있었다. 약염기인 암모니아수와 반웅에서 (Ti02/PM25)3.5나노복합박막의 Ti02 에 의한특성 피크는 변화가 없음을 확인 함으로써, 성공적으로나노복합체의 손상 없이 결합한효소를 제거 할수 있었다. 도 20에는 Cyt .c 가 결합된 In FIG. 19, a process of separating the bound enzyme by reacting the enzyme-bound (Ti0 2 / PM 2 ) 3.5 nanocomposite with 1 wt% ammonia water was confirmed using a UV_vis spectrometer change. As shown in FIG. 19, approximately 94% of the bound enzyme was reacted by reacting with ammonia water for about 5 minutes (Ti0 2 / PAA 25 ) 3 . 5 nanocomposite thin films could be removed. In weak base ammonia water and reaction (Ti0 2 / PM 25 ) 3 . By confirming that the characteristic peak due to Ti0 2 of the 5 nanocomposite thin film was not changed, the bound enzyme could be successfully removed without damaging the nanocomposite. 20 is Cyt.c is combined
(Ti02/PAAX)3.5나노복합체들을 1 wt%암모니아수에 반옹시켜 결합된 Cyt . c를 분리하는 과정을 409nm에서의 흡광도 변화토부터 확인하였다. 약 5분 정도에 포화에 도달함을 확인할수 있었다. 20분 암모니아수 와 반웅후, Cyt .c 가 결합된 (Ti02/PMx)3.5나노복합체로부터 Cyt .c의 분리는 (Ti02/PAA2 )3.5나노 복합체의 경우, 약 99.7¾, (Ti02/PAA25)3.5나노 복합체의 경우, 약 96%, (Ti0 2 / PAA X ) 3. 5 Nanocomposites were reacted with 1 wt% ammonia water and bound to Cyt. The process of separating c was confirmed from the change in absorbance at 409 nm. It was confirmed that the saturation was reached in about 5 minutes. After 20 minutes of ammonia and reaction, Cyt .c was combined (Ti0 2 / PM x ) 3 . Isolation of Cyt .c from 5 nanocomposites (Ti0 2 / PAA 2) 3 .5 for nanocomposites, about 99.7¾, (Ti0 2 / PAA 25 ) 3. About 5 % for 5 nanocomposites,
(Ti02/PAA450 ) 3.5나노복합체의 경우, 약 86%의 분리 능력을나타냈다. PAA의 분자량이 증가할수록 나노복합박막으로 부터의 효소의 제거율은 감소 함을 나타내었다. 이러한 결과는 P 의 분자량이 증가 할수록 나노복합 박막에 결합한 효소가 표면으로부터 멀리 떨어져 있고, 좀더 안정적으로 결합되어 있음을 나타내는 것으로 판단된다. 도 21 는 Cyt.c 가 결합된 (Ti02/PMx)3.5나노 복합체로부터 Cyt.c 의 분리에 의한 409nm에서의 흡광도 변화를 이용한 재연성 결과를 나타낸 것이다 . Cyt.c의 결합은 실시예 3과 동일한 방법으로 Cyt.c의 분리는 1 wt%암모니아수에 20분 반웅시킨 결과, 결합과 분리가 일정하게 반복적으로 진행되고 있음을 확인 할 수 있었다. 이러한 결과로부터, 나노복합 박막은 매우 안정적으로 재사용이 가능함을 확인 하였다. (Ti0 2 / PAA4 50 ) 3 . For 5 nanocomposites, the separation capacity was about 86%. As the molecular weight of PAA increases, the removal rate of enzyme from nanocomposite thin film decreases. Indicated. These results indicate that as the molecular weight of P increases, the enzyme bound to the nanocomposite thin film is farther from the surface and more stable. 21 is Cyt.c bound (Ti0 2 / PM x ) 3 . The results of reproducibility using the change of absorbance at 409 nm by the separation of Cyt.c from 5 nanocomposites. As for the binding of Cyt.c, the separation of Cyt.c was repeated for 20 minutes in 1 wt% ammonia water in the same manner as in Example 3, and it was confirmed that the binding and separation proceeded repeatedly repeatedly. From these results, it was confirmed that the nanocomposite thin film can be reused very stably.
<실험예 3 : 사이클릭볼타메트리 (Cyclic voltammetry; CV) 측정 >  Experimental Example 3 Cyclic Voltammetry (CV) Measurement>
효소가 결합된 나노 복합체의 전기화학적 특성을 확인하기 위하여  In order to confirm the electrochemical properties of enzyme-bound nanocomposites
사이클릭볼타메트리 (Cyclic voltammetry)를 이용하였다. Cyclic voltammetry was used.
실시예 1 의 방법으로 제조한 나노 복합체에 실시예 2의 방법으로 효소를 결합한 QCM 전극을 'IvinumStat'(Ivium Technologies사, 네델란드)를 이용하여 CV변화를 측정하였다.  The change in CV was measured by using 'IvinumStat' (Ivium Technologies, The Netherlands) on a QCM electrode in which an enzyme is bound to the nanocomposite prepared by the method of Example 1 in the method of Example 2.
도 22에는 인산완층용액 (pH 7)에서 (Ti02)3, (Ti02)3.5/Cyt.c, 22 shows (Ti0 2 ) 3 , (Ti0 2 ) 3 .5 / Cyt.c, in a complete phosphate solution (pH 7).
(Ti02/PMx)35/Cyt.c나노 복합체의 전기화학적 특성 변화를 나타내었다. Electrochemical properties of (Ti0 2 / PM x ) 35 / Cyt.c nanocomposite were shown.
3사이클의 금속산화물 다층박막 ((Ti02)3)의 경우, 200~300mV부근에서 전류치 변화가 거의 나타나지 않았지만, 효소가 결합된 금속산화물 다층박막 In the case of the 3-cycle metal oxide multilayer thin film ((Ti0 2 ) 3 ), the change of the current value was hardly observed in the vicinity of 200 to 300 mV, but the metal oxide multilayer thin film containing the enzyme was bound.
((Ti02)3/Cyt.c)과나노 복합체 ((Ti02/PAAx)3.5/Cyt.c)의 경우, 효소내의 철분자의 산화?환원 피크가 관찰 되었다. 효소가 결합된 금속산화물 ((Ti0 2) 3 / Cyt.c ) and nanocomposite ((Ti0 2 / PAA x) 3. 5 / Cyt.c) For, the oxidation of iron in the enzyme's? A reduction peak was observed. Metal Oxides with Enzymes
다층박막 ((Ti02)3)보다 효소가 결합된 나노 복합체 ((Ti¾/PMX)3.5/Cyt.c)에서 산화 ·환원 피크의 증가를 확인 하였다. 또한, PAA의 분자량이 증가 할수록 산화 ·환원 피크가 증가 하였다. 이것은 금속산화물 다층박막은 단순히 최외곽의 금속산화물 표면에만효소가 결합되는데 비하여 , Ti02/PAA의 나노 복합체에서는 내부에까지 효소가 이동하여 결합되므로 고정화된 효소의 증가 때문에 효소로 부터의 산화 ·환원 피크 (전류치)가 상대적으로 증가되는 것이다. 이상의 결과로부터, 발명의 일 구현예에 따른 생화학물질 고정용 나노 복합체에서는 생화학물질의 활성을 유지한 상태로 나노 복합체 내부에까지 결합시킬 수 있음을 확인할 수 있었다. <실험예 4 : 전류적정법 (Amperometric titration) 측정 > A multi-layer thin film ((Ti0 2) 3) than the enzyme-linked nanocomposites ((Ti¾ / PM X) 3 . 5 / Cyt.c) oxidation and increase of the reduction in peak was confirmed. In addition, as the molecular weight of PAA increased, the oxidation / reduction peak increased. This is because the metal oxide multilayer thin film simply binds the enzyme to the outermost metal oxide surface, whereas in the nanocomposite of Ti0 2 / PAA, the enzyme moves and binds to the inside, so the oxidation / reduction peak from the enzyme is increased due to the increase of immobilized enzyme. (Current value) is relatively increased. From the above results, it can be seen that the biocomposite-fixed nanocomposite according to the embodiment of the present invention can be bound to the inside of the nanocomposite while maintaining the activity of the biochemical. Experimental Example 4 Amperometric Titration Measurement
효소가결합된 나노복합체의 바이오센서 특성을 확인하기 위하여  Biosensor Characterization of Enzyme-bound Nanocomposites
전류적정법 (Amperometric titration)을 이용하였다. Amperometric titration was used.
실시예 1 의 방법으로 제조한나노복합체에 실시예 2의 방법으로 효소를 결합한 QCM 전극을 'IvinumStat'Gvium Technologies사, 네델란드)를 이용하여 인산완층용액 (pH 7)에 과산화수소 (¾02)의 농도 증가에 의한 전류치 변화를 측정하였다. The concentration of hydrogen peroxide (¾0 2 ) in the complete phosphate solution (pH 7) was obtained by using the 'IvinumStat' Gvium Technologies, Netherlands, which employs a QCM electrode in which the enzyme is conjugated to the nanocomposite prepared by the method of Example 1. The change in current value due to the increase was measured.
도 23에는 ΙμΜ의 과산화수소 용액윷 500mV 인가전압에서 30초 간격으로 첨가하며, (Ti02)3, (Ti02)3.5/Cyt.c, (Ti02/PAAx)3.5/Cyt.c나노복합체의 전류치 변화를측정한 결과를 나타내었다. 3사이클의 금속산화물 다층박막 ((Ti02)3)의 경우, 전류치 변화가나타나지 않았지만, 효소가결합된 금속산화물 다층박막 ((Ti02)3/Cyt.c)과나노복합체 ((Ti02/PAAx)3.5/Cyt.c)의 경우, 과산화수소의 농도 증가에 의한 전류치 증가가관찰되었다. 특히, 결합된 효소량이 많을수록 전류치가증가하였다. 23 is added, and at 30-second intervals from the hydrogen peroxide solution applied voltage of 500mV yut ΙμΜ, (Ti0 2) 3, (Ti0 2) 3 .5 / Cyt.c, (Ti0 2 / PAA x) 3.5 / Cyt.c nano The change in the current value of the composite was measured. In the case of the 3-cycle metal oxide multilayer thin film ((Ti0 2 ) 3 ), no change in current value was observed, but the enzyme-bonded metal oxide multilayer thin film ((Ti0 2 ) 3 / Cyt.c) and the nanocomposite ((Ti0 2 / for PAA x) 3. 5 / Cyt.c ), the current value increased due to increased concentrations of hydrogen peroxide was observed. In particular, the greater the amount of enzyme bound, the greater the current value.
<실험예 5: 원자간력 현미경 (Atomic Force Microscope, AFM)을 이용한표면 관찰〉  Experimental Example 5: Surface Observation Using Atomic Force Microscope (AFM)
표면을 에탄올로 세척한운모 (Mica)를 고체 지지체로 자기초립박막과정을 제외하고 비교예 1과동일한방법으로 제조한금속산화물다층박막과실시예 1과 동일한방법으로 제조한나노복합체에 실시예 2의 방법으로 Cyt.c 를  The surface of the mica (Mica) washed with ethanol as a solid support, except for the self-particulate thin film process, a metal oxide multilayer thin film prepared in the same manner as in Comparative Example 1 and a nanocomposite prepared in the same manner as in Example 1 Cyt.c
결합하였다. 그후, (Ti02)3, (Ti02)3/Cyt.c, (Ti02/PAA450)3.5Combined. Then, (Ti0 2 ) 3 , (Ti0 2 ) 3 / Cyt.c, (Ti0 2 / PAA 450 ) 3 . 5 watts
(TiO2/PM450)3.5/Cyt.c박막들을 원자간력 현미경 (JSPM-5200제품, JE0L사)을 이용하여 표면을 관찰하였다. 그 결과, (Ti02)3금속산화물다층박막의 root-mean- sequare(RMS) roughness는 0.148nm, ((Ti02)3/Cyt . c나노복합체의 root-mean- sequare(RMS) roughness는 1.048nm로 효소가 결합된 나노복합체의 RMS roughness가증가하였다. 또한, (TiO2/PM450)3.5나노복합체의 root— mean- sequare(RMS) roughness는 1.148nm, (Ti()2/PAA450)3.5 /Cyt . c나노복합체의 root- mean-sequare(RMS) roughness는 1.848nm로 효소가 결합된 나노복합체의 RMS roughness 7}증가하였다. 이러한결과는 나노복합체의 표면에 고정된 Cyt.c에 의해 RMS roughness가증가한 것이다. 또한, 약 3nm크기의 Cyt.c가내부에 까지 침투하여 안정하게 고정화되는 점과 하기 원자간력 현미경의 측정결과에서, 나노 복합체의 각각의 막들은 다공질성으로 확인 되었다. (TiO 2 / PM 450 ) 3 . 5 / Cyt.c thin films were observed on the surface using an atomic force microscope (JSPM-5200, JE0L). As a result, the root-mean-sequare (RMS) roughness of the (Ti0 2 ) 3 metal oxide multilayer thin film is 0.148 nm, and the root-mean-sequare (RMS) roughness of the ((Ti0 2 ) 3 / Cyt.c nanocomposite is 1.048. nm RMS roughness was gajeungga of nanocomposite enzyme is coupled in. in addition, (TiO 2 / PM 450) 3. 5 nanocomposite root- mean- sequare (RMS) roughness is 1.148nm, (Ti () 2 / PAA4 50 The root-mean-sequare (RMS) roughness of the 3.5 / Cyt.c nanocomposite was 1.848 nm, which increased the RMS roughness of the enzyme-coupled nanocomposite 7), which resulted in Cyt.c immobilized on the surface of the nanocomposite. RMS roughness has increased, and Cyt.c of about 3nm size From the point of penetration and stable fixation and the results of atomic force microscopy, each membrane of the nanocomposite was confirmed to be porous.
도 25와 26는 각각 (Ti02)3금속산화물다층박막와 (Ti02)3/Cyt . c나노 복합체의 AFM사진과 root-mean-sequare(RMS) roughness를 보여주며, 도 27와 28는 각각 (Ti02/PAA450)3.5나노복합 박막과 (Ti02/PAA45o)3.5/Cyt . c나노 복합체의 AFM사진과 root— mean— sequare(RMS) roughness를 보여주며 25 and 26 are (Ti0 2 ) 3 metal oxide multilayer thin films and (Ti0 2 ) 3 / Cyt. AFM image and root-mean-sequare (RMS) roughness of c nanocomposite are shown, and FIGS. 27 and 28 are respectively (Ti0 2 / PAA4 50 ) 3 . 5 nanocomposite thin films and (Ti0 2 / PAA 45 o) 3.5 / Cyt. AFM photographs of c nanocomposites and root- mean- sequare (RMS) roughness
본 명세서는 본 발명의 바람직한실시예를 참조하여 설명하였지만, 해당 기술분야의 당업자는 이하에서 서술하는 특허청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경 실시할 수 있을 것이다. 그러므로 변형된 실시가 기본적으로 본 발명의  Although the present specification has been described with reference to preferred embodiments of the invention, those skilled in the art may variously modify and change the invention without departing from the spirit and scope of the invention as set forth in the claims set forth below. Could be done. Therefore, a modified implementation is basically of the present invention
특허청구범위의 구성요소를 포함한다면 모두 본 발명의 기술적 범주에 If included in the scope of the claims, all of the technical scope of the present invention
포함된다고 보아야 한다. It should be considered to be included.

Claims

【특허청구범위】 [Patent Claims]
【청구항 11  [Claim 11
고체 지지체;  Solid support;
상기 고체 지지체 위에 형성된 제 1 금속산화물막 및 상기 제 1 금속산화물막 위에 형성된 전해질 고분자막을 포함하고 나노 스케일의 다공질막인 하나 이상의 복합 박막; 및 At least one composite thin film including a first metal oxide film formed on the solid support and an electrolyte polymer film formed on the first metal oxide film and being a nanoscale porous film; And
상기 복합 박막 위에 형성되고 나노 스케일의 다공질막인 제 2 금속산화물막을 포함하고,  A second metal oxide film formed on the composite thin film and being a nanoscale porous film;
상기 전해질 고분자막을 형성하는 고분자의 분자량이 500 이상인, 생화학물질 고정용 나노 복합체.  The molecular weight of the polymer forming the electrolyte polymer membrane is 500 or more, biochemical material fixing nanocomposite.
【청구항 2】  [Claim 2]
제 1항에 있어서,  The method of claim 1,
상기 고분자의 분자량이 2,000 이상인 것을 특징으로 하는, 생화학물질 고정용 나노 복합체 .  Characterized in that the molecular weight of the polymer is 2,000 or more, biochemical material fixing nanocomposite.
【청구항 3】  [Claim 3]
제 1항 또는 제 2항에 있어서 ,  The method of claim 1 or 2,
상기 고체 지지체는 이의 위에 제 1 금속산화물막이 표면 졸-겔 반웅에 의해 형성될 수 있는 것을 특징으로 하는, 생화학물질 고정용 나노 복합체.  The solid support is characterized in that the first metal oxide film can be formed by a surface sol-gel reaction thereon, biochemicals fixed nanocomposite.
【청구항 4】  [Claim 4]
제 1항또는 제 2항에 있어서,  The method according to claim 1 or 2,
상기 고체 지지체는 이의 표면이 플라즈마 처리, 오존 처리, 알칼리 또는 산 용액에서의 초음파 처리 및 알칸디을 분자나 카르복실기를 이용한 자기조립박막 형성 처리로 이루어진 군으로부터 선택된 하나 이상의 처리가 수행된 것을 특징으로 하는, 생화학물질 고정용 나노 복합체.  The solid support is characterized in that the surface thereof is subjected to at least one treatment selected from the group consisting of plasma treatment, ozone treatment, ultrasonic treatment in an alkali or acid solution, and self-assembled thin film formation treatment using alkanedi molecules or carboxyl groups, Nanocomposite for Biochemical Fixation.
【청구항 5】  [Claim 5]
제 4항에 있어서,  The method of claim 4,
상기 고체 지지체는 이의 표면에 활성수소, 하이드록실기, 카르 복실기, 술폰산기 인산기, 아민기, 이민기, 암모늄기, 피리딘기 및 전하를 띄는 분자의 작용기로 이루어진 군으로부터 선택된 하나 이상의 표면활성기가 도입된 것을 특징으로 하는, 생화학물질 고정용 나노복합체. The solid support is formed of an active hydrogen, a hydroxyl group, a carboxyl group, a sulfonic acid group, a phosphate group, an amine group, an imine group, an ammonium group, a pyridine group and a charged molecule on its surface. At least one surface active group selected from the group consisting of functional groups, characterized in that the biochemicals fixed nanocomposite.
【청구항 6】  [Claim 6]
제 1항또는 제 2항에 있어서,  The method according to claim 1 or 2,
상기 제 1금속산화물막, 상기 제 2금속산화물막또는 이들모두를 형성하는 금속산화물은 티타늄, 지르코늄, 알루미늄, 보론, 실리콘, 인듐, 주석, 바륨 및 바나듐으로 이루어진 군으로부터 선택된 하나 이상의 금속의 산화물을 포함하는 것을특징으로 하는, 생화학물질 고정용 나노복합체 .  The metal oxide forming the first metal oxide film, the second metal oxide film, or both thereof includes an oxide of at least one metal selected from the group consisting of titanium, zirconium, aluminum, boron, silicon, indium, tin, barium and vanadium. Biocomposites-fixed nanocomposites, characterized by comprising.
【청구항 7】  [Claim 7]
제 1항또는 제 2항에 있어서,  The method according to claim 1 or 2,
상기 전해질 고분자막을 형성하는 고분자는 폴리아크릴산, 양이온 또는 음이온 폴리사카라이드, 핵산, 폴리메타아크릴산, 말레산 무수물 공중합체, 양이온 아크릴산 에스터, 폴리에틸렌 이민, 폴리아민, 폴리아마이드아민, 폴리다이알릴다이메틸암모니움 클로라이드 및 이들의 유도체로 이루어진 군으로부터 선택된 1 종 이상을 포함하는 것을 특징으로 하는, 생화학물질 고정용 나노복합체.  The polymer forming the electrolyte polymer membrane may be polyacrylic acid, cationic or anionic polysaccharide, nucleic acid, polymethacrylic acid, maleic anhydride copolymer, cationic acrylic acid ester, polyethyleneimine, polyamine, polyamideamine, polydiallyldimethylammonium It characterized in that it comprises one or more selected from the group consisting of chlorides and derivatives thereof, biochemicals for fixing nanocomposites.
【청구항 8】  [Claim 8]
제 1항또는 제 2항에 있어서,  The method according to claim 1 or 2,
상기 제 1 금속산화물막, 상기 제 2 금속산화물막, 상기 전해질 고분자막 또는 이들 모두가 단분자막으로 이루어진 것을 특징으로 하는, 생화학물질 고정용나노복합체 .  The first metal oxide film, the second metal oxide film, the electrolyte polymer film, or both, characterized in that made of a monomolecular film, a biochemical fixed nanocomposite.
【청구항 9】  [Claim 9]
제 1항또는 제 2항에 있어서,  The method according to claim 1 or 2,
상기 제 1 금속산화물막과 상기 전해질 고분자막의 결합, 상기 전해질 고분자막과 상기 제 2 금속산화물막의 결합, 또는 이들 모두는 정전기적 상호작용에 의한 결합인 것을특징으로 하는, 생화학물질 고정용나노복합체.  The combination of the first metal oxide film and the electrolyte polymer film, the combination of the electrolyte polymer film and the second metal oxide film, or both of them characterized in that the bond by the electrostatic interaction, biochemical material fixing nanocomposite.
【청구항 10】 고체 지지체 상에 제 1 금속산화물막을 형성한 후 상기 제 1 금속산화물막 상에 전해질 고분자막을 형성하는 과정을 1 회 이상 반복함으로써 나노 스케일의 다공질막인 하나 이상의 복합 박막을 형성하는 단계; 및 [Claim 10] Forming at least one composite thin film which is a nanoscale porous film by repeating a process of forming an electrolyte polymer film on the first metal oxide film one or more times after forming the first metal oxide film on the solid support; And
상기 복합 박막의 최상단에 나노 스케일의 다공질막인 제 2 금속산화물막을 형성하는 단계를 포함하는, 생화학물질 고정용 나노 복합체의 제조방법 .  And forming a second metal oxide film, which is a nanoscale porous membrane, on the top of the composite thin film.
【청구항 11】  [Claim 11]
제 10항에 있어서  The method of claim 10
상기 제 1 및 제 2금속산화물막의 형성은 표면 졸―겔 방법에 의해 수행되는 것을 특징으로 하는, 생화학물질 고정용 나노 복합체의 제조방법.  Forming the first and the second metal oxide film is characterized in that it is carried out by a surface sol-gel method, a method for producing a nanocomposite for fixing a biochemical.
[청구항 12】  [Claim 12]
미오글로빈 (Myoglobin), 리소좀 (Lysozyme), 페록시다아제 (Peroxidase), 글로코아밀라아제 (Glucoamylase), 글로코스옥시다아제 (Gluecose oxidase), 카탈라아제 (Catalase) 및 시토크롬시 (Cytochrome c, (Cyt.c))로 이루어진 군으로부터 선택된 1 종 이상의 생화학물질이 제 1 항 또는 제 2 항에 따른 생화학물질 고정용 나노 복합체에 고정됨으로써 형성된 바이오 센서 .  Myglobin, Lysozyme, Peroxidase, Glucoamylase, Gluecose oxidase, Catalase and Cytochrome c, (Cyt.c) A biosensor formed by immobilizing at least one biochemical selected from the group consisting of the nanocomposite for fixing a biochemical according to claim 1.
【청구항 13】  [Claim 13]
미오글로빈 (Myoglobin), 리소좀 (Lysozyme), 페록시다아제 (Peroxidase), 글로코아밀라아제 (Glucoamylase), 글로코스옥시다아제 (Gluecose oxidase), 카탈라아제 (Catalase) 및 시토크롬시 (Cytochrome c, (Cyt.c))로 이루어진 군으로부터 선택된 1 종 이상의 생화학물질이 제 1 항 또는 제 2 항에 따른 생화학물질 고정용 나노 복합체에 고정됨으로써 형성된 흡착 장치.  Myglobin, Lysozyme, Peroxidase, Glucoamylase, Gluecose oxidase, Catalase and Cytochrome c, (Cyt.c) At least one biochemical material selected from the group consisting of the adsorption device formed by being fixed to the biochemical-fixing nanocomposite according to claim 1 or 2.
PCT/KR2015/013665 2014-12-17 2015-12-14 Organic/inorganic nanocomposite for biochemical material immobilization, method for preparing same, and biosensor or adsorption apparatus comprising same WO2016099096A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0182126 2014-12-17
KR1020140182126A KR101574251B1 (en) 2014-12-17 2014-12-17 Organic/inorganic nano complex for immobilization of biochemistry material, preparation method of the same, and biosensor or adsorption device comprising the same

Publications (1)

Publication Number Publication Date
WO2016099096A1 true WO2016099096A1 (en) 2016-06-23

Family

ID=54872117

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/013665 WO2016099096A1 (en) 2014-12-17 2015-12-14 Organic/inorganic nanocomposite for biochemical material immobilization, method for preparing same, and biosensor or adsorption apparatus comprising same

Country Status (2)

Country Link
KR (1) KR101574251B1 (en)
WO (1) WO2016099096A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111944688A (en) * 2019-05-14 2020-11-17 深圳先进技术研究院 Biological product manufacturing method, biological product and application

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101871962B1 (en) 2016-03-25 2018-07-02 주식회사 피엔에스테크놀로지 Nanocomposite for combining biomaterial, method of preparing the same and biosensor comprising the same
KR101888150B1 (en) * 2016-04-01 2018-08-13 주식회사 피엔에스테크놀로지 Nanocomposite comprising organic/inorganic alternate ultrathin films having metal nanoparticles, preparation method thereof, and electroactive device comprising the same
KR101953321B1 (en) * 2017-04-28 2019-05-17 양도현 A hydrogen peroxide electrochemical sensor and preparation method of the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005525554A (en) * 2002-05-13 2005-08-25 オレ インガナス、 Polyelectrolyte complexes (eg zwitterionic polythiophene) with receptors (eg polynucleotides, antibodies, etc.) for biosensor applications
KR20100128110A (en) * 2009-05-27 2010-12-07 충북대학교 산학협력단 Nanohybrid composite for immobilizing biomolecule and preparation method of the same
KR20100128111A (en) * 2009-05-27 2010-12-07 충북대학교 산학협력단 Fullerene nanohybrid composite for immobilizing biomolecule and preparation method of the same
CN101948505A (en) * 2007-04-18 2011-01-19 比奥克罗密克斯有限公司 Use the protein of conjugated polyelectrolytes binding of pathological forms

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005525554A (en) * 2002-05-13 2005-08-25 オレ インガナス、 Polyelectrolyte complexes (eg zwitterionic polythiophene) with receptors (eg polynucleotides, antibodies, etc.) for biosensor applications
CN101948505A (en) * 2007-04-18 2011-01-19 比奥克罗密克斯有限公司 Use the protein of conjugated polyelectrolytes binding of pathological forms
KR20100128110A (en) * 2009-05-27 2010-12-07 충북대학교 산학협력단 Nanohybrid composite for immobilizing biomolecule and preparation method of the same
KR20100128111A (en) * 2009-05-27 2010-12-07 충북대학교 산학협력단 Fullerene nanohybrid composite for immobilizing biomolecule and preparation method of the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YANG, SI ET AL.: "Simple Approach for Efficient Encapsulation of Enzyme in Silica Matrix with Retained Bioactivity", ANALYTICAL CHEMISTRY, vol. 81, no. 9, 2009, pages 3478 - 3484 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111944688A (en) * 2019-05-14 2020-11-17 深圳先进技术研究院 Biological product manufacturing method, biological product and application
CN111944688B (en) * 2019-05-14 2023-11-14 深圳先进技术研究院 Method for producing biological product, biological product and application

Also Published As

Publication number Publication date
KR101574251B1 (en) 2015-12-03

Similar Documents

Publication Publication Date Title
Jani et al. Nanoporous anodic aluminium oxide: Advances in surface engineering and emerging applications
Oberhaus et al. Immobilization techniques for aptamers on gold electrodes for the electrochemical detection of proteins: a review
Fang et al. Magnetic bio/nanoreactor with multilayer shells of glucose oxidase and inorganic nanoparticles
Graniel et al. Atomic layer deposition for biosensing applications
Han et al. Genetically engineered phage-templated MnO2 nanowires: synthesis and their application in electrochemical glucose biosensor operated at neutral pH condition
Al-Dhahebi et al. Graphene impregnated electrospun nanofiber sensing materials: A comprehensive overview on bridging laboratory set-up to industry
Lvov et al. Films of manganese oxide nanoparticles with polycations or myoglobin from alternate-layer adsorption
Peng et al. General method for ultrathin free-standing films of nanofibrous composite materials
Hong et al. Carbon-based layer-by-layer nanostructures: from films to hollow capsules
Castillo et al. Detection of cancer cells using a peptide nanotube–folic acid modified graphene electrode
Xu et al. Covalent immobilization of glucose oxidase on well-defined poly (glycidyl methacrylate)− Si (111) hybrids from surface-initiated atom-transfer radical polymerization
Ariga et al. Enzyme-encapsulated layer-by-layer assemblies: current status and challenges toward ultimate nanodevices
WO2016099096A1 (en) Organic/inorganic nanocomposite for biochemical material immobilization, method for preparing same, and biosensor or adsorption apparatus comprising same
Li et al. Surface molecularly imprinted polymers-based electrochemical sensor for bovine hemoglobin recognition
Vilian et al. Simple approach for the immobilization of horseradish peroxidase on poly-L-histidine modified reduced graphene oxide for amperometric determination of dopamine and H 2 O 2
Zhuang et al. Efficient nanobiocatalytic systems of nuclease P1 immobilized on PEG-NH2 modified graphene oxide: effects of interface property heterogeneity
Huang et al. The toolbox of porous anodic aluminum oxide–based nanocomposites: from preparation to application
CN105907844B (en) Electrochemical DNA biosensor based on three-dimensional graphene-dendritic nanogold and preparation method thereof
V Skorb et al. Layer-by-layer approach for design of chemical sensors and biosensors
KR101102002B1 (en) Nanohybrid composite for immobilizing biomolecule and preparation method of the same
Sołoducho et al. Conducting polymers in sensor design
MO et al. Nanoporous membrane for biosensing applications
KR101094366B1 (en) Fullerene nanohybrid composite for immobilizing biomolecule and preparation method of the same
JP4814098B2 (en) Device and method for binding / desorbing targets or objects present in a sample
Bucatariu et al. Single polyelectrolyte multilayers deposited onto silica microparticles and silicon wafers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15870263

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15870263

Country of ref document: EP

Kind code of ref document: A1