WO2016098768A1 - Variable valve system and variable valve control device for internal combustion engine - Google Patents

Variable valve system and variable valve control device for internal combustion engine Download PDF

Info

Publication number
WO2016098768A1
WO2016098768A1 PCT/JP2015/085063 JP2015085063W WO2016098768A1 WO 2016098768 A1 WO2016098768 A1 WO 2016098768A1 JP 2015085063 W JP2015085063 W JP 2015085063W WO 2016098768 A1 WO2016098768 A1 WO 2016098768A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
exhaust
intake
dead center
timing
Prior art date
Application number
PCT/JP2015/085063
Other languages
French (fr)
Japanese (ja)
Inventor
中村 信
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2016098768A1 publication Critical patent/WO2016098768A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a variable valve system for an internal combustion engine, and more particularly to a variable valve system and a variable valve controller for an internal combustion engine that performs an Atkinson cycle.
  • the pressure in the cylinder before the exhaust valve opens is relatively high, and the cylinder pressure becomes the pressure in the exhaust port, for example, the atmospheric pressure level by opening the exhaust valve.
  • the expansion ratio is increased as the Atkinson cycle, the pressure in the cylinder becomes lower than the atmospheric pressure in the latter half of the expansion stroke, and when the exhaust valve is opened thereafter, the pressure in the cylinder rises conversely due to the pressure of the exhaust port. There are times when it comes to. If the expansion ratio is increased to some extent in this way, a pumping loss occurs due to the pressure in the cylinder being equal to or lower than the atmospheric pressure in the latter half of the expansion stroke.
  • an internal combustion engine provided with an air valve that opens only in the latter half of the expansion stroke and sends supercharged air into the cylinder in addition to a normal intake valve. Proposed.
  • the pressure in the cylinder in the latter half of the expansion stroke is increased by the air supplied from the air valve, thereby preventing the pressure in the cylinder from becoming below atmospheric pressure and suppressing the occurrence of pumping loss. Yes.
  • Patent Document 1 a variable compression ratio mechanism capable of changing the mechanical compression ratio and a variable capable of controlling the valve opening timing of the exhaust valve are disclosed.
  • An internal combustion engine having a valve timing mechanism is proposed.
  • the mechanical compression ratio is maximized so that the maximum expansion ratio can be obtained during engine low load operation.
  • the exhaust valve is opened so that the pressure in the cylinder does not fall below atmospheric pressure in the latter half of the expansion stroke.
  • the valve timing is advanced so as to suppress the pumping loss.
  • the opening timing (IVO) of the intake valve is slightly before the top dead center. Therefore, the operating angle (opening period) of the intake valve is large, and the drive friction loss of the intake valve increases, which may reduce the fuel consumption reduction effect.
  • the operating angle is large, the time for generating the friction torque generated by the lift operation of the intake valve is lengthened, which may increase the drive friction loss of the intake valve.
  • An object of the present invention is to perform an Atkinson cycle (low compression ratio / high expansion ratio) by sufficiently retarding the closing timing (IVC) of the intake valve without greatly increasing the operating angle of the intake valve. It is an object of the present invention to provide a variable valve system and a variable valve controller for a new internal combustion engine.
  • the present invention relates to an intake valve timing mechanism for changing and controlling the intake valve opening timing (IVO) and the intake valve closing timing (IVC) while maintaining the intake valve operating angle at a predetermined angle, and the exhaust valve operating angle.
  • the intake valve closing timing (IVC) is set to about 90 ° after the intake bottom dead center or the intake air Control is made to a retarded position exceeding 90 ° after the bottom dead center and the opening timing (IVO) of the intake valve is controlled to be retarded beyond the intake top dead center.
  • Exhaust by variable exhaust operating angle mechanism Enlarge the valve operating angle to advance the exhaust valve opening timing (EVO) from the exhaust bottom dead center, and control the exhaust valve closing timing (EVC) to a position delayed beyond the exhaust top dead center It is characterized by that.
  • the present invention it is possible to perform the Atkinson cycle by sufficiently delaying the closing timing (IVC) of the intake valve without greatly increasing the operation angle of the intake valve, so that the drive friction loss of the intake valve is reduced. As a result, the fuel consumption reduction effect can be improved.
  • IVC closing timing
  • the intake valve opening timing (IVO) is retarded from the intake top dead center
  • the exhaust valve closing timing (EVC) is retarded from the exhaust top dead center.
  • the high-temperature internal EGR gas can be taken into the cylinder from the inside, and this in-cylinder heating effect improves combustion stability at low compression ratio combustion by retarding the opening timing (IVC) of the intake valve Can be expected.
  • a combustion chamber 04 is formed between a cylinder block 01 and a cylinder head 02 via a piston 03, and a spark plug 05 is provided at a substantially central position of the cylinder head 02.
  • the piston 03 is connected to the crankshaft 07 via a connecting rod 06 whose one end is connected to a piston pin.
  • the crankshaft 07 can be automatically started after cooling or after idling is stopped. This is performed by a starter motor 08 through a pinion gear mechanism 09.
  • the crankshaft 07 is detected by a crank angle sensor 010 described later.
  • the cylinder block 01 is provided with a water temperature sensor 011 for detecting the water temperature in the water jacket, and the cylinder head 02 is provided with a fuel injection valve 012 for injecting fuel into the combustion chamber 04. Further, two intake valves 4 and five exhaust valves 5 are slidably provided for each cylinder that opens and closes the intake port 013 and the exhaust port 014 formed inside the cylinder head 02, and are also provided on the intake valve 4 side.
  • a variable valve operating device is provided on the exhaust valve 5 side.
  • a valve timing control mechanism (VTC) 3 is provided on the intake valve side, and a lift control mechanism (VEL) 1 is provided on the exhaust valve side. In some cases, a valve timing control mechanism (VTC) 2 is provided on the exhaust valve side.
  • a sensor signal as shown in the figure is input to the control device 22 and a drive signal for the control element is output.
  • the starter motor 08 shown in FIG. 1 is generally composed of a motor body using a battery as a power source, and a pinion gear mechanism 09 that meshes with a ring gear fitted on the outer periphery of the flywheel to transmit power. is there. Only when the starter motor 08 is energized at the time of starting or restarting, the pinion gear of the pinion gear mechanism 09 moves forward, meshes with the ring gear of the internal combustion engine, transmits the rotation of the starter motor 08 to a known ring gear, and cranking is performed. Done. When the internal combustion engine is successfully started and the energization to the starter motor 08 is stopped, the pinion gear is pushed back and the meshing with the ring gear is released.
  • the present embodiment is intended to control the exhaust valve 5 to a predetermined specific valve opening timing and to control the intake valve 4 to a predetermined specific valve closing timing.
  • the crank pulley may be rotated by belt drive using a starter in which the pinion gear and the ring gear are always meshed, a motor for a hybrid vehicle, or the like.
  • the variable valve operating apparatus includes an exhaust VEL1 that is a lift control mechanism for controlling the valve lift and operating angle (opening period) of the exhaust valve 5 of the internal combustion engine, and the opening / closing timing of the exhaust valve 5.
  • An exhaust VTC 2 that is a valve timing control mechanism that controls (valve timing) and an intake VTC 3 that controls the opening and closing timing of the intake valve 4 are provided. Further, the operations of the exhaust VEL1, the exhaust VTC2, and the intake VTC3 are controlled by the controller 22 in accordance with the engine operating state.
  • the exhaust VEL 1 has the same configuration as that described in, for example, Japanese Patent Application Laid-Open No. 2003-172112 (applied to the intake valve side) previously filed by the present applicant.
  • the intake VTC 3 has the same configuration as that described in, for example, Japanese Patent Application Laid-Open No. 2012-127219, which was previously filed by the present applicant. Refer to this publication for details.
  • Exhaust gas VEL1 will be briefly described with reference to FIGS. 2, 3A, and 3B.
  • a hollow drive shaft 6 rotatably supported by a bearing 27 provided on the upper portion of the cylinder head 02, and an outer peripheral surface of the drive shaft 6 are provided.
  • the rotary cam 7 fixed by press fitting or the like and the outer peripheral surface of the drive shaft 6 are swingably supported, and are in sliding contact with the upper surface of the valve lifter 8 disposed at the upper end of the exhaust valve 5.
  • the rotational force of the rotary cam 7 is converted into a swing motion and the swing cam 9 has a swing force.
  • the drive shaft 6 (exhaust side) receives a rotational force from the crankshaft 07 through a timing sprocket 31A provided at one end by a timing chain.
  • This rotational direction is clockwise (arrow direction) in FIG. Is set.
  • a system in which the phase between the drive shaft 6 and the timing sprocket 31A does not change may be used. In that case, although the exhaust VTC 2 is mounted, it is not used and phase conversion is not performed. Therefore, the exhaust VTC2 may be omitted, and the fixed timing sprocket 31A may be used.
  • the rotary cam 7 on the exhaust side has a substantially ring shape, and is fixed to the drive shaft 6 through a drive shaft insertion hole formed in the internal axis direction.
  • the shaft center Y of the cam body is the axis of the drive shaft 6.
  • the center X is offset by a predetermined amount in the radial direction.
  • the swing cam 9 is integrally provided at both ends of the cylindrical camshaft 10, and the camshaft 10 is rotatably supported on the drive shaft 6 via the inner peripheral surface. Further, a cam surface 9 a made up of a base circle surface, a ramp surface, and a lift surface is formed on the lower surface, and the base circle surface, the ramp surface, and the lift surface are arranged according to the swing position of the swing cam 9. It comes in contact with a predetermined position on the upper surface.
  • the transmission mechanism includes a rocker arm 11 disposed above the drive shaft 6, a link arm 12 that links the one end 11 a of the rocker arm 11 and the rotating cam 7, the other end 11 b of the rocker arm 11, and the swing cam 9.
  • the link rod 13 to be linked is provided.
  • the rocker arm 11 has a cylindrical base portion at the center thereof rotatably supported by a control cam, which will be described later, via a support hole, and one end portion 11 a is rotatably connected to the link arm 12 by a pin 14.
  • the other end portion 11 b is rotatably connected to one end portion 13 a of the link rod 13 via a pin 15.
  • the cam body of the rotary cam 7 is rotatably fitted in a fitting hole at the center position of the annular base end 12a, while the protruding end 12b protruding from the base end 12a is a pin. 14 is connected to one end 11a of the rocker arm.
  • the other end portion 13 b of the link rod 13 is rotatably connected to the cam nose portion of the swing cam 9 via the pin 16.
  • the control shaft 17 is rotatably supported by the same bearing member above the drive shaft 6, and is slidably fitted into the support hole of the rocker arm 11 on the outer periphery of the control shaft 17.
  • a control cam 18 serving as a moving fulcrum is fixed.
  • the control shaft 17 is arranged in the longitudinal direction of the engine in parallel with the drive shaft 6 and is rotationally controlled by the drive mechanism 19.
  • the control cam 18 has a cylindrical shape, and the position of the axis P2 is deviated from the axis P1 of the control shaft 17 by a predetermined amount.
  • the drive mechanism 19 is provided inside the casing 19 a and the rotational driving force of the electric motor 20 is transmitted to the control shaft 17 provided inside the casing 19 a.
  • a ball screw transmission means 21 a ball screw transmission means 21.
  • the electric motor 20 is constituted by a proportional DC motor and is driven by a control signal from a controller 22 which is a control mechanism for detecting the engine operating state.
  • the ball screw transmission means 21 includes a ball screw shaft 23 disposed substantially coaxially with the drive shaft 20 a of the electric motor 20, a ball nut 24 which is a moving member screwed onto the outer periphery of the ball screw shaft 23, and a control shaft 17.
  • a linkage arm 25 connected to one end of the linkage member 25 along the diameter direction, and a link member 26 that links the linkage arm 25 and the ball nut 24.
  • the ball screw shaft 23 is continuously formed with a ball circulation groove 23a having a predetermined width on the entire outer peripheral surface excluding both end portions, and is connected to one end portion via a motor drive shaft and rotated by the electric motor 20. It is designed to be driven.
  • the ball nut 24 is formed in a substantially cylindrical shape, and a guide groove 24a that holds a plurality of balls in a freely rolling manner in cooperation with the ball circulation groove 23a is formed continuously in a spiral shape on the inner peripheral surface.
  • a moving force in the axial direction is applied through each ball while converting the rotational motion of the ball screw shaft 23 into the linear motion of the ball nut 24.
  • the ball nut 24 is urged toward the electric motor 20 (minimum lift side) by the spring force of the coil spring 30 as urging means. Therefore, when the engine is stopped, the ball nut 24 is moved to the minimum lift side along the axial direction of the ball screw shaft 23 by the spring force of the coil spring 30.
  • the controller 22 is incorporated in an engine control unit (ECU) and detects a current engine speed N and a crank angle sensor 010 that detects a crank angle, an accelerator opening sensor, a vehicle speed sensor, and a gear position sensor.
  • the present engine operation state and vehicle operation state are detected from various information signals from the brake depression sensor, the water temperature sensor 011 and the like.
  • a detection signal from the drive shaft angle sensor 28 that detects the rotation angle of the drive shaft 6 and a detection signal from the potentiometer 29 that detects the rotation position of the control shaft 17 are input, and relative to the crank angle of the drive shaft 6. The rotation angle, the valve lift amount and the operation angle of each exhaust valve 5, 5 are detected.
  • the controller 22 includes a microcomputer as a main component.
  • the microcomputer includes an arithmetic unit that executes arithmetic processing according to a control program, and a ROM area unit that stores a control program, constants used for arithmetic, and the like.
  • a RAM area is provided as a work area for temporarily storing data necessary for the program execution process.
  • an I / OLSI or the like is provided that takes in sensor signals and supplies drive signals to drive actuators such as the exhaust VEL1, the exhaust VTC2, and the intake VTC3.
  • the microcomputer performs various arithmetic processes related to the control executed by the exhaust VEL1, the exhaust VTC2, the intake VTC3, and the like according to the control program.
  • the calculation is for executing a predetermined control function. In the example, processing executed by calculation is assumed as a function.
  • each swing cam 9 is connected to the cam nose portion side via the link rod 13. The whole is forcibly pulled up and rotated clockwise as shown in FIG. 3A.
  • the rotating cam 7 rotates and pushes up the one end portion 11a of the rocker arm 11 via the link arm 12
  • the lift amount is transmitted to the swing cam 9 and the valve lifter 16 via the link rod 13, thereby
  • the valve lift amount of the exhaust valve 5 becomes the minimum lift (L1) as shown in the valve lift curve of FIG. 5 and the lower diagram of FIG. 3A, and the operating angle D1 (the valve opening period at the crank angle) becomes small.
  • the operating angle indicates from the valve opening timing of the exhaust valve 5 to the valve closing timing.
  • the lift amount of 5 is a medium lift (L2) or a large lift (L3), and the operating angle is also increased as D2 and D3.
  • the electric motor 20 is further rotated in the other direction by the control signal from the controller 22, and the ball nut 24 is moved to the maximum right as shown in FIG. 4B.
  • the control shaft 17 further rotates the control cam 18 in the clockwise direction in FIG. 3A to further rotate the shaft center P2 downward. Therefore, as shown in FIG. 3B, the entire rocker arm 11 moves further toward the drive shaft 6, and the other end portion 11 b presses the cam nose portion of the swing cam 9 downward via the link rod 13.
  • the entire swing cam 9 is further rotated counterclockwise by a predetermined amount.
  • the rotating cam 7 rotates and pushes up the one end portion 11a of the rocker arm 11 via the link arm 12
  • the lift amount is transmitted to the swing cam 9 and the valve lifter 8 via the link rod 13.
  • the valve lift amount increases continuously from L2, L3 to L4 as shown in FIG. As a result, the exhaust efficiency in the high rotation range can be increased and the output can be improved.
  • the lift amount of the exhaust valve 5 is continuously changed from the middle lift L2, the large lift L3 to the maximum lift L4 according to the operating state of the engine. It continuously changes from the minimum lift D1 to the maximum lift D4.
  • the exhaust valve opening timings EVO1 to EVO4 and the exhaust valve closing timings EVC1 to EVC4 shown in FIG. 5 are the valve timings when the fixed timing sprocket 31A is used, or when the exhaust VTC2 is the default position of the most advanced angle. Is shown.
  • the ball nut 24 is automatically urged toward the electric motor 20 side by the spring force of the coil spring 30, so that the minimum operating angle D1 and the minimum lift L1 position (default) Position).
  • the intake VTC 3 is of a so-called vane type, and is rotated by a crankshaft 07 of the engine through a timing chain (not shown) as shown in FIGS. 6A, 6B and 7, and this rotational drive
  • a hydraulic circuit that rotates forward and backward by hydraulic pressure.
  • the timing sprocket 31B includes a housing 34 in which the vane member 32 is rotatably accommodated, a disc-shaped front cover 35 that closes the front end opening of the housing 34, and a substantially disc-shaped rear cover that closes the rear end opening of the housing 34.
  • 36, and the housing 34, the front cover 35, and the rear cover 36 are integrally fastened and fixed together from the axial direction of the drive shaft 6 by four small-diameter bolts 37.
  • the housing 34 has a cylindrical shape in which both front and rear ends are formed, and shoes 34a, which are four partition walls, project inwardly at approximately 90 ° in the circumferential direction of the inner peripheral surface.
  • Each of the shoes 34a has a substantially trapezoidal cross section, and four bolt insertion holes 34b through which the shaft portions of the respective bolts 37 are inserted are formed at substantially the center position in the axial direction.
  • a U-shaped seal member 38 and a leaf spring (not shown) that presses the seal member 38 inwardly are fitted and held in a holding groove that is cut out along the inner side.
  • the front cover 35 is formed in the shape of a disk plate, and a relatively large diameter support hole 35a is formed in the center, and the outer periphery is not shown at a position corresponding to each bolt insertion hole 34b of each shoe 34a. These four bolt holes are drilled.
  • the rear cover 36 is integrally provided with a gear portion 36a meshing with the timing chain on the rear end side, and a large-diameter bearing hole 36b is formed in the center in the axial direction.
  • the vane member 32 includes an annular vane rotor 32a having a bolt insertion hole in the center, and four vanes 32b integrally provided at a substantially 90 ° position in the circumferential direction of the outer peripheral surface of the vane rotor 32a.
  • a small-diameter cylindrical portion on the front end side is rotatably supported by the support hole 35a of the front cover 35, while a small-diameter cylindrical portion on the rear end side is rotatably supported by the bearing hole 36b of the rear cover 36.
  • the vane member 32 is fixed to the front end portion of the drive shaft 6 from the axial direction by a fixing bolt 57 inserted through the bolt insertion hole of the vane rotor 32a from the axial direction.
  • Each of the vanes 32b is formed in a relatively long and narrow rectangular shape, and the other one is formed in a trapezoidal shape having a large width.
  • the three vanes 32b are substantially the same in width and length.
  • the width of one vane 32b is set to be larger than three, and the weight balance of the entire vane member 32 is achieved.
  • Each vane 32b is disposed between the shoes 34a and has a U-shaped seal member 40 and a seal member that are in sliding contact with the inner peripheral surface of the housing 34 in an elongated holding groove formed in the axial direction of each outer surface.
  • a leaf spring that presses 40 toward the inner peripheral surface of the housing 34 is fitted and held.
  • two substantially circular concave grooves 32c are formed on one side surface of each vane 32b opposite to the rotation direction of the drive shaft 6 respectively. Further, four advance-side hydraulic chambers 41 and retard-side hydraulic chambers 42 are separated from both sides of each vane 32b and both sides of each shoe 34a, respectively.
  • the hydraulic circuit includes a first hydraulic passage 43 that supplies and discharges hydraulic oil pressure to and from each advance angle hydraulic chamber 41, and hydraulic oil pressure to each retard angle hydraulic chamber 42.
  • the two hydraulic passages 43 and 44 are provided with a supply passage 45 and a drain passage 46 via an electromagnetic switching valve 47 for switching the passage.
  • the supply passage 45 is provided with a one-way oil pump 49 for pumping oil in the oil pan 48, while the downstream end of the drain passage 46 communicates with the oil pan 48.
  • the first and second hydraulic passages 43 and 44 are formed over the inside of the cylindrical passage constituting portion 39, and one end portion of this passage constituting portion 39 is inserted from the small diameter cylindrical portion of the vane rotor 32a into the internal support hole 32d. On the other hand, the other end is connected to the electromagnetic switching valve 47.
  • three annular seal members 27 are provided between the outer peripheral surface of one end of the passage constituting portion 39 and the inner peripheral surface of the support hole 14d so as to separate and seal one end side of each of the hydraulic passages 43 and 44. It is fixed.
  • the first hydraulic passage 43 is formed in an oil chamber 43a formed at the end of the support hole 32d on the drive shaft 6 side, and is substantially radially formed inside the vane rotor 32a, and the oil chamber 43a and each advance side hydraulic chamber 41 And four branch paths 43b communicating with each other.
  • the second hydraulic passage 44 is stopped within one end portion of the passage constituting portion 39, and is formed into an annular chamber 44a formed on the outer peripheral surface of the one end portion and a substantially L-shaped bend inside the vane rotor 32, An annular chamber 44a and a second oil passage 44b communicating with each retarded-side hydraulic chamber 42 are provided.
  • the electromagnetic switching valve 47 is a four-port three-position type, and an internal valve element is configured to relatively switch and control the hydraulic passages 43 and 44, the supply passage 45 and the drain passage 46, and a controller. Switching operation is performed by a control signal from 22.
  • the supply passage 45 communicates with the first hydraulic passage 43 communicating with the advance side hydraulic chamber 41 and the drain passage 46 is retarded with respect to the retard side hydraulic chamber 42 when the control current does not act.
  • the second hydraulic passage 44 communicates with the second hydraulic passage 44.
  • the controller 22 is common to the exhaust VEL1, detects the engine operating state, and determines the relative relationship between the timing sprocket 31B and the drive shaft 6 based on signals from the crank angle sensor 10 and the drive shaft angle sensor 28 (intake side). The rotational position is detected.
  • a locking mechanism is provided between the vane member 32 and the housing 34 as a restraining means for restraining the rotation of the vane member 32 relative to the housing 34 and releasing the restraint.
  • This locking mechanism is provided between one vane 32b having a large width and the rear cover 36, and includes a sliding hole 50 formed along the axial direction of the drive shaft 6 inside the vane 32b, and a sliding hole. 50 is provided in a lid-shaped cylindrical lock pin 51 slidably provided in the interior of 50 and an engagement hole constituting portion 52 having a cup-shaped cross section fixed in a fixing hole provided in the rear cover 36.
  • the hydraulic pressure in the advance side hydraulic chamber 41 or the hydraulic pressure of the oil pump 49 is directly supplied to the engagement hole 52a through an oil hole (not shown).
  • the lock pin 51 is located at the position where the vane member 32 is rotated to the most advanced angle side, and the tip 51a is engaged with the engagement hole 52a by the spring force of the spring member 54, so that the timing sprocket 31B (36) and the drive shaft are engaged. Lock relative rotation with 6. Further, the lock pin 51 moves backward by the hydraulic pressure supplied from the advance side hydraulic chamber 41 into the engagement hole 52a or the hydraulic pressure of the oil pump 49, and the engagement with the engagement hole 52a is released. ing.
  • a pair of coil springs 55 which are biasing members that urge the vane member 32 to advance, are provided between one side surface of each vane 32b and the opposing surface of each shoe 34a facing the one side surface. 56 is arranged.
  • the coil springs 55 and 56 are arranged side by side with an inter-axis distance so that they do not contact each other even during maximum compression deformation, and each of the coil springs 55 and 56 is a thin plate-like retainer (not shown) that fits into the groove 32c of the vane 32b. Are connected through.
  • the vane member 32 is rotationally biased to the most advanced angle side by the spring force of each coil spring 55, 56, and one shoe 34a of one wide vane 32b is opposed to one end surface. Simultaneously with contact with one side surface, the tip 51a of the lock pin 51 of the lock mechanism is engaged in the engagement hole 52a, and the vane member 32 is stably held at the most advanced position.
  • the intake VTC 3 is at the default position where the intake VTC 3 is mechanically stabilized at the most advanced position.
  • the default position is a position that is automatically and mechanically stabilized when not operating, that is, when no hydraulic pressure is applied.
  • the intake valve closing timing (IVC) in this case is set to be slightly retarded with respect to the bottom dead center near the intake bottom dead center.
  • the valve timing at the time of start is determined by the exhaust VEL1 on the exhaust side, the exhaust minimum operating angle D1, the exhaust valve closing timing (EVC1), and the exhaust valve opening timing (EVO1).
  • these are the exhaust valve timings controlled at start-up, and the above-mentioned mechanically stable default valve timings.
  • the operating angle D between the exhaust valve closing timing (EVC) and the exhaust valve opening timing (EVO) is adjusted by the action of the exhaust VEL1, as shown in FIG.
  • the intake side is at the most advanced angle position by the intake VTC3, that is, the intake valve opening timing (IVO1) and the intake valve closing timing (IVC1), which are the intake valve timing controlled at the start. And the above-mentioned mechanically stable default valve timing.
  • the operating angle between the opening timing (IVO) of the intake valve and the closing timing (IVC) of the intake valve is always constant, and the opening timing (IVO) of the intake valve and the intake valve are controlled by the action of the intake VTC3.
  • the phase of the closing timing (IVC) is changed by the same amount.
  • valve timing of the intake and exhaust valves is mechanically stabilized in advance by the exhaust VEL1 and the intake VTC3. That is, the startability effect by these valve timings can be obtained from the initial stage of the start combustion. Operations and effects for improving such startability will be described later.
  • the electromagnetic switching valve 47 causes the supply passage 45 and the first hydraulic passage 43 to communicate with each other and the drain passage 46 and the second hydraulic passage 44 communicate with each other according to the control signal output from the controller 22. Then, the cranking advances, and the hydraulic pressure pumped from the oil pump 49 is supplied to the advance side hydraulic chamber 41 through the first hydraulic passage 43 as the hydraulic pressure is increased. The hydraulic pressure is released from the drain passage 46 into the oil pan 48 without being supplied with the hydraulic pressure, and the low pressure state is maintained.
  • the vane position control by the electromagnetic switching valve 47 can be performed. That is, as the hydraulic pressure in the advance side hydraulic chamber 41 rises, the hydraulic pressure in the engagement hole 52a of the lock mechanism also increases, the lock pin 51 moves backward, and the distal end portion 51a comes out of the engagement hole 52a to the housing 34. Since the relative rotation of the vane member 32 is allowed, the vane position can be controlled.
  • the electromagnetic switching valve 47 is operated by a control signal from the controller 22 to connect the supply passage 45 and the second hydraulic passage 44, while connecting the drain passage 46 and the first hydraulic passage 43. Accordingly, the hydraulic pressure in the advance side hydraulic chamber 41 is returned to the oil pan 48 from the drain passage 46 through the first hydraulic passage 43 and the pressure in the advance side hydraulic chamber 41 becomes low, while the retard side hydraulic chamber is reduced. The hydraulic pressure is supplied into 42 to become a high pressure.
  • the vane member 32 rotates counterclockwise in the figure against the spring force of each of the coil springs 55 and 56 due to the high pressure in the slow hydraulic chamber 42 and relatively rotates toward the position shown in FIG. 6B. Then, the relative rotational phase of the drive shaft 6 with respect to the timing sprocket 31B is converted to the retard side. Further, by setting the position of the electromagnetic switching valve 47 to the neutral position during the conversion, it can be held at an arbitrary relative rotational phase. Furthermore, the relative rotational phase can be continuously changed from the most advanced angle (FIG. 6A) to the most retarded angle (FIG. 6B) according to the engine operating state after starting.
  • the exhaust VTC 2 when used together, basically, it is of the vane type like the intake VTC 3 used in the present embodiment.
  • a timing sprocket 31A disposed at an end of the drive shaft 6 on the exhaust side and transmitting a rotational driving force from the crankshaft 07 via a timing chain (not shown), and the timing sprocket 31A
  • a vane member that is rotatably accommodated therein and a hydraulic circuit that rotates the vane member forward and backward by hydraulic pressure are provided.
  • the coil spring for energizing the vane is also energized in the advance direction.
  • the hydraulic circuit and the electromagnetic switching valve are basically the same as those of the intake VTC 3, and the internal valve body is configured to relatively switch and control each hydraulic passage, supply passage, and drain passage, Switching operation is performed by a control signal from the same controller 22.
  • it since it is the same most advanced angle default, it has the same arrangement as the three positions of the electromagnetic switching valve in FIG.
  • FIGS. 8A to 8D are explanatory diagrams showing the relationship between the valve timing and the PV diagram (in-cylinder pressure / thin pressure diagram), where the vertical axis P indicates the in-cylinder pressure and the horizontal axis V indicates the cylinder volume.
  • the operating state at this time is a valve timing and a PV diagram in a state where the throttle valve (throttle) is substantially fully opened.
  • FIG. 8A shows a valve timing and PV diagram of a normal Atkinson cycle in a general medium load state, but is not shown in Patent Document 1.
  • FIG. 8A shows a valve timing which is a basis for explaining the present embodiment, and the present embodiment and a reference example compared with the present embodiment will be described based on FIG. 8A.
  • the closing timing (IVC) indicates the intake valve timing of a general Atkinson cycle that is delayed by a relatively large angle until 90 ° before the intake bottom dead center (BDC).
  • the opening timing (EVO) of the exhaust valve is set to an advance side from the exhaust bottom dead center, and the closing timing (EVC) of the exhaust valve is set to a general exhaust valve timing near the exhaust top dead center. Is set.
  • the effective compression ratio can be lowered by delaying the closing timing (IVC) of the intake valve in particular, thereby improving the anti-knock performance.
  • the expansion work can be increased, so that the thermal efficiency is higher and the fuel consumption reduction effect can be improved. That is, fuel efficiency can be improved by the effect of the low effective compression ratio / high expansion ratio by the Atkinson cycle.
  • the Atkinson cycle has a further fuel economy improvement mechanism. That is, if the intake valve closing timing (IVC) is retarded, the intake charging efficiency is lowered, so that the throttle (throttle valve) opening degree is relatively large when a predetermined torque is output, and the intake pipe negative pressure is accordingly increased. It can be reduced to approach atmospheric pressure levels. As a result, it is possible to reduce pump loss (pumping loss) generated in the intake stroke, and this can further improve the fuel consumption reduction effect.
  • IVC intake valve closing timing
  • the throttle valve opening can be operated almost fully open even in such a middle load region, and as shown in the PV diagram in the lower part of FIG. 8A, it reaches from the intake top dead center TDC to the intake bottom dead center BDC.
  • the in-cylinder pressure (P) is substantially at the atmospheric pressure level.
  • the area surrounded by the P curve from the exhaust bottom dead center BDC to the exhaust top dead center TDC in the exhaust stroke and the P curve from the intake top dead center TDC to the intake bottom dead center BDC in the intake stroke means pump loss. However, since this pump loss can be sufficiently reduced, the fuel consumption reduction effect can also be improved.
  • the medium load region corresponds to, for example, a state where the vehicle speed is maintained at a substantially constant speed of 100 km / h to 120 km / h.
  • the PV diagram in FIG. 8A is drawn so that the P curve in the exhaust stroke and the P curve in the intake stroke are on substantially the same atmospheric pressure line for the sake of clarity.
  • the pump loss during this period is drawn to be zero, but in reality there is some pump loss (area surrounded by both curves), but for the sake of clarity, this figure is shown.
  • the low compression ratio here means that the effective compression ratio is low. That is, when the IVC is largely retarded beyond 90 ° after the intake bottom dead center, substantial compression is started from a high piston position corresponding to the IVC, so that the substantial effective compression ratio is lowered. In that case, since the knocking resistance is improved, it can be set to a high mechanical compression ratio (high expansion ratio), the thermal efficiency is improved, and the fuel consumption is also improved.
  • the low load region corresponds to, for example, a state in which the vehicle speed is kept at a substantially constant speed of 30 km / h to 40 km / h, or a state in which the engine speed is kept at a substantially constant speed at 1000 rpm.
  • FIG. 8C (Reference Example 1), the operating angle of the intake valve and the operating angle of the exhaust valve are set to the same operating angle as that of a general Atkinson cycle at a medium load as shown in FIG. 8A. It has been expanded to. In this case, the opening timing (EVO) and closing timing (EVC) of the exhaust valve are the same as those in FIG. 8A.
  • the intake VTC 3 is operated to set the closing timing (IVC) of the intake valve to 90 after the intake bottom dead center (BDC).
  • a reference example in which the retard angle control is further performed than ° is shown. That is, by further retarding the intake valve closing timing, the charging efficiency is further reduced, thereby attempting to realize a low load (low torque) with the throttle valve substantially fully open.
  • the intake valve opening timing (IVO) is also delayed by the intake VTC 3 to a predetermined phase after the intake top dead center.
  • a state of a minus overlap period in which both the intake valve and the exhaust valve are closed is entered.
  • the cylinder becomes negative pressure at the beginning of the intake stroke when the piston starts to fall, and another pump loss occurs in this portion, and the fuel consumption reduction effect is reduced accordingly. It will be.
  • FIG. 8D shows the exhaust valve retarded on the assumption that the exhaust VTC 2 is operated in order to eliminate the minus overlap shown in Reference Example 1 described above. Also in this case, the operating angle of the intake valve and the operating angle of the exhaust valve are set to the same operating angle as shown in FIG. 8A, and this is expanded to the low load side. In this case, the opening timing (IVO) and closing timing (IVC) of the intake valve are the same as those in FIG. 8C, and the exhaust VTC2 is operated so that the opening timing (EVO) of the exhaust valve is near the exhaust bottom dead center (BDC). A reference example with retarded angle control is shown.
  • the operating angle of the exhaust valve is set to the operating angle D4 shown in FIG. 5 using the exhaust VEL1 in a state where the operating angle of the intake valve is set to a standard operating angle. It is trying to expand to.
  • the intake VTC 3 is operated as in FIGS. 8C and 8D, and the intake valve closing timing is set to the closing timing (IVC 4) that is controlled to be further retarded from 90 ° after the intake bottom dead center (BDC). ing. Further, the intake valve opening timing is retarded by the intake VTC3 until the opening timing (IVO4) of a predetermined phase after the intake top dead center.
  • the exhaust valve is controlled by the exhaust VEL1 so that the operating angle is expanded to the operating angle D4 as described above, the exhaust valve is opened until the open timing (EVO4) before the exhaust bottom dead center. Further, the closing timing is further delayed until the closing timing (EVC4) after exhaust top dead center to generate a positive overlap with the intake valve.
  • the opening timing of the exhaust valve is advanced to the opening timing (EVO4) before the exhaust bottom dead center, so that the piston descends as the expansion stroke proceeds and the exhaust pressure is reduced before the cylinder pressure reaches negative pressure. The valve will open. Therefore, it is possible to suppress the pump loss at the end of the expansion stroke by suppressing the exhaust port pressure at the atmospheric pressure level from entering the cylinder and the cylinder pressure becoming negative.
  • the initial pump loss of the intake stroke can be suppressed, and if a positive overlap with the intake valve is generated.
  • the pump loss at the initial stage of the intake stroke is further reduced. That is, as shown in the PV diagram of FIG. 8B, since the in-cylinder pressure is suppressed to be negative both in the initial stage of the intake stroke and in the final stage of the expansion stroke, a series of pump losses can be reduced. It is.
  • the intake / exhaust timing is controlled as described above by combining the intake VTC3 and the exhaust VEL1, so that the operating angle of the intake valve is excessively enlarged as in Patent Document 1. Even if not, the intake valve closing timing (IVC) can be sufficiently retarded, so that the drive friction loss of the intake valve can be reduced.
  • IVC intake valve closing timing
  • the operating angle on the exhaust side is expanded to D4, which is slightly larger than the standard operating angle, which is sufficiently small compared to the excessive intake operating angle of Patent Document 1, and therefore the intake angle is increased. This is suppressed in the sense of valve friction in the total exhaust, and fuel efficiency is also improved in this respect.
  • the intake valve opening timing (IVO) is retarded from the intake top dead center by retarding the intake valve closing timing (IVC).
  • the exhaust valve closing timing (EVC) is determined by the exhaust VEL1.
  • the intake valve opening timing (IVO) is retarded from the intake top dead center by retarding the intake valve closing timing (IVC).
  • the exhaust valve closing timing (EVC) is determined by the exhaust VEL1.
  • Is further retarded from the exhaust top dead center so when the piston descends in the early stage of the intake stroke, the introduction of new air from the intake port is delayed, and there is a high temperature inside the cylinder from the exhaust port side.
  • EGR gas can be preferentially taken in. Due to the in-cylinder heating effect by the internal EGR, the combustion stability in the low compression ratio combustion is improved by greatly retarding the closing timing (IVC) of the intake valve. Furthermore, it is possible to further improve the fuel consumption reduction effect in the Atkinson cycle by a synergistic effect with the above-described functions and effects.
  • the Atkinson cycle is performed by sufficiently retarding the closing timing (IVC) of the intake valve without excessively increasing the operating angle of the intake valve in a low load range. Therefore, the drive friction loss of the intake valve is reduced and the combustion is improved, so that the fuel consumption reduction effect can be improved.
  • IVC closing timing
  • FIG. 9A shows the valve timing at the start. That is, the intake VTC 3 is in the default state and is controlled to the most advanced position. In this state, the intake valve opening timing (IVO1) is advanced slightly ahead of the intake top dead center, and the intake valve closing timing (IVC1) is near the intake bottom dead center, more preferably slightly behind the intake bottom dead center. It is delayed. On the other hand, the exhaust VEL1 is also in the default state, and the operating angle is controlled to the minimum operating angle D1 shown in FIG. In this state, the exhaust valve opening timing (EVO1) is near the exhaust bottom dead center, and the exhaust valve closing timing (EVC1) is near the exhaust top dead center. At this time, when the exhaust VTC2 is used together, it is set to the default position of the most advanced angle (mechanically stable position).
  • the closing timing (IVC1) of the intake valve is set to a position that is as close as possible to the intake bottom dead center within the variable range of the intake VTC3, thereby increasing the charging efficiency and increasing the starting torque. .
  • the effective compression ratio increases and the in-cylinder gas temperature and the in-cylinder pressure at the compression top dead center increase, starting combustion can be improved.
  • the intake valve opening timing (IVO1) is advanced to a predetermined position before the intake top dead center, but the exhaust valve closing timing (EVC1) is the exhaust top dead center, so that the valve overlap is It is suppressed from becoming excessive, and it is suppressed to a moderate valve overlap.
  • EGR1 exhaust valve closing timing
  • this moderate valve overlap period allows unburned HC in the cylinder to be returned to the intake system in the exhaust stroke, and then taken into the cylinder again in the next cycle to be recombusted. HC discharged from the fuel can be reduced.
  • the exhaust valve opening timing (EVO1) is set near the exhaust bottom dead center, the in-cylinder combustion period is lengthened and the warm-up of the internal combustion engine is promoted, and in-cylinder combustion is performed. It is possible to reduce unburned emissions such as HC discharged from the engine by being promoted. In this way, good startability and emission reduction effect can be obtained. Since the operating angle of the exhaust valve is the minimum D1, the drive friction is also minimized, the speed of rotation at the time of start-up is increased, and a better startability can be obtained.
  • valve timing advantageous for starting performance and emission reduction is the default position, that is, the position where both variable valves are mechanically stable as described above. That is, when the engine is stopped before starting, the valve timing is preferentially close to the valve timing which is advantageous for starting performance and emission reduction, so that the effects of starting performance and emission reduction can be obtained from the initial stage of starting combustion. .
  • FIG. 9B is a valve timing in a low rotation / low load region (denoted as low speed / low load in the drawing), and shows the same valve timing as FIG. 8B. That is, the intake VTC 3 is operated and the intake valve closing timing is set to the closing timing (IVC 4) that is controlled further to the retard side than 90 ° after the intake bottom dead center (BDC). Further, the intake valve opening timing is retarded by the intake VTC3 until the opening timing (IVO4) of a predetermined phase after the intake top dead center.
  • the exhaust valve is controlled by the exhaust VEL1 so that its operating angle is expanded to the operating angle D4. For this reason, the opening timing of the exhaust valve is advanced to the opening timing (EVO4) before the exhaust bottom dead center, and the closing timing is further delayed to the closing timing (EVC4) after the exhaust top dead center to Generates a positive overlap with the valve.
  • the exhaust valve opens so that the piston descends as the expansion stroke proceeds and the in-cylinder pressure reaches negative pressure. Therefore, it is possible to suppress the pump loss at the end of the expansion stroke by suppressing the exhaust port pressure at the atmospheric pressure level from entering the cylinder and the cylinder pressure becoming negative. Further, by delaying the closing timing of the exhaust valve to the closing timing (EVC4), a positive overlap with the intake valve can be generated, so that the pump loss at the initial stage of the intake stroke is reduced. Other actions and effects other than this are as described in the explanation of FIG. 8B.
  • FIG. 9C shows the valve timing in the low rotation high load region (denoted as low speed high load in the drawing).
  • the exhaust valve timing can be realized without using the exhaust side VTC2, and the intake side uses only the intake VTC3 to control the intake valve.
  • the exhaust VTC2 is also used so that the opening / closing timing of the exhaust valve can be changed while maintaining the operating angle of the exhaust VEL1.
  • the exhaust VTC2 is configured as described above, and has the same function as the intake VTC3 in terms of the most advanced angle default.
  • the intake VTC 3 is controlled to the most advanced angle position similar to that at the start shown in FIG. 9A, and the intake valve opening timing (IVO1) and closing timing (IVC1) are controlled. Is done.
  • the exhaust VEL1 converts the operating angle to the operating angle D2 in FIG. 5 and controls the exhaust VTC2 to maintain the operating angle D2, and the opening timing of the exhaust valve is around EVO1 shown in FIG. Further, the exhaust valve closing timing is retarded to a position exceeding the exhaust top dead center near the EVC 3 shown in FIG. As a result, the intake valve and the exhaust valve form a large positive valve overlap.
  • the closing timing (IVC1) of the intake valve is the position where the intake bottom dead center is approached to the maximum within the variable range of the intake VTC3. By doing so, the filling efficiency can be increased and the torque can be increased. Further, since the exhaust valve opening timing (EVO1) is set near the exhaust bottom dead center, the in-cylinder combustion period is lengthened and combustion in the cylinder is promoted, so that unburned HC or the like discharged from the engine Emissions are further reduced. Further, since the intake valve closing timing (IVC1) is close to the intake bottom dead center, the fresh air charging efficiency is improved.
  • the exhaust gas opening efficiency near EVO1
  • the in-cylinder residual gas scavenging effect due to the large valve overlap of the intake and exhaust valves makes it possible to further improve the charging efficiency of fresh air.
  • a large positive pressure is generated by the exhaust gas exhausted at the exhaust port near the exhaust valve outlet.
  • a large negative pressure is generated in the vicinity of the exhaust port.
  • the exhaust port that has been negative pressure becomes positive pressure again.
  • the opening timing of the exhaust valves including other cylinders is delayed, the timing at which positive pressure waves from other cylinders are pushed in is delayed, so the exhaust port pressure during the next valve overlap period is Negative pressure can be set.
  • this exhaust port negative pressure draws the combustion gas in the combustion chamber during the overlap period to the exhaust port side, and produces a scavenging effect by sucking in fresh air accordingly from the intake port side. Furthermore, since the valve overlap is large as described above, more fresh air can be sucked in and the charging efficiency is improved. Since this new air has a cooling effect, it is also advantageous in knocking resistance.
  • the internal combustion engine that uses the Atkinson cycle is set to have a high geometric compression ratio as described above, so that knocking is likely to occur in a high load range, but this can be effectively suppressed. .
  • the intake valve closing timing (IVC1) is advanced to the vicinity of the intake bottom dead center to improve the charging efficiency, and the exhaust valve opening timing is set to the vicinity of EVO1 (exhaust bottom dead center). It is possible to increase the high load torque by improving the charging efficiency and knocking resistance based on the scavenging effect by retarding to the vicinity of the point) and increasing the valve overlap.
  • the in-cylinder pressure is high and no negative pressure is generated even near the exhaust (expansion) bottom dead center. Therefore, even if the exhaust valve opening timing is delayed to near the exhaust bottom dead center, the end of the expansion stroke described above The occurrence of pump loss is suppressed, and good fuel efficiency and improved torque due to improved expansion work can be obtained.
  • FIG. 9D shows the valve timing in a high rotation high load region (denoted as high speed and high load in the drawing). Although this can be realized without using the exhaust VTC 2 together, it is necessary to use the exhaust VTC 2 together when the valve timing at the low speed and high rotation shown in FIG. 9C is compatible.
  • the intake VTC 3 is controlled in the retarding direction as compared with the low rotation / high load region, and is controlled by the intake valve opening timing (IVO2) and closing timing (IVC2).
  • the opening timing (IVO2) of the intake valve is in the vicinity of the intake top dead center, more preferably a position closer to the intake top dead center on the more advanced side than the intake top dead center.
  • the closing timing (IVC2) of the intake valve is controlled to a position on the near side from the intake bottom dead center 90 °.
  • the exhaust VEL1 converts the operating angle to the operating angle D3 in FIG. 5 so that the exhaust valve opening timing (EVO3) is advanced from the vicinity of the exhaust bottom dead center, and the exhaust valve closing timing (EVC3) is It is retarded to a position that exceeds the exhaust top dead center.
  • EVO3 exhaust valve opening timing
  • EMC3 exhaust valve closing timing
  • the intake valve and the exhaust valve form a large positive valve overlap, but are set smaller than the valve overlap in the low rotation and high load region shown in FIG. 9C. This is because the intake valve opening timing (IVO2) is relatively retarded.
  • the intake valve closing timing (IVC2) is delayed by that amount to increase the charging efficiency in the high rotation range, The torque (output) is improved.
  • the exhaust VEL1 is expanded to the operating angle D3, and the exhaust VTC2 is returned to the most advanced position (default position) again.
  • the exhaust valve is advanced to the opening timing (EVO3), and the operating angle is further expanded to the operating angle D3, thereby suppressing an increase in extrusion loss due to high rotation and improving the output.
  • the timing at which the exhaust port becomes negative pressure is delayed as the engine speed increases (when viewed from the crank angle)
  • the valve overlap center is retarded after top dead center to achieve the same scavenging effect as FIG. 9C. Trying to get. In this way, the torque (output) in the high rotation and high load region can be increased.
  • step S10 the operation state of the internal combustion engine is detected in step S10.
  • This detection of the operating state is to detect information for specifying the operating region of the internal combustion engine in the present embodiment, and to obtain control amounts of the exhaust VEL1, the exhaust VTC2, and the intake VTC3.
  • the key switch state, rotation speed, load, temperature, etc. are basically detected. However, it is naturally considered that not only such information but also other information is detected.
  • step S10 When the state of the internal combustion engine is detected in step S10, the process proceeds to step S11 to determine whether or not the engine is in the starting state. In this case, the state of the key switch or the presence / absence of rotation of the internal combustion engine is used.
  • step S11 If it is determined that the engine is in the starting state (YES) in step S11, the process proceeds to step S13 and the intake VTC 3 is controlled.
  • the intake valve is controlled so as to be mechanically stable at the opening timing (IVO1) and the closing timing (IVC1) of FIG. 9A.
  • the setting of the opening timing and closing timing of the intake valve by the intake VTC 3 is completed in step S13, the process proceeds to step 14.
  • step S13 When the setting of the opening timing and the closing timing of the intake valve by the intake VTC 3 is completed in step S13, the exhaust VEL1 is controlled in step S14.
  • the exhaust valve is controlled so as to be mechanically stable at the opening timing (EVO1) and closing timing (EVC1) of FIG. 9A.
  • step S12 determines the operating range of the internal combustion engine.
  • step S12 it is determined whether or not it is a low rotation and low load region.
  • the operation region can be specified by a rotation speed-load map mapped by the rotation speed and the load. If it is determined in this step S12 that the region is in the low rotation / low load region, the flow proceeds to steps S13 and 14, and the flow proceeds to step S15 in which it is determined that the region is not in the low rotation / low load region.
  • step S12 If it is determined in step S12 that the rotation speed is low and the load is low (YES), the process proceeds to step S13, and the intake VTC 3 is controlled. In this case, the intake valve opening timing (IVO4) and closing timing (IVC4) in FIG. 9B are controlled. When the setting of the opening timing and closing timing of the intake valve by the intake VTC 3 is completed in step S13, the process proceeds to step 14.
  • step S13 When the setting of the opening timing and the closing timing of the intake valve by the intake VTC 3 is completed in step S13, the exhaust VEL1 is controlled in step S14.
  • the operating angle of the exhaust valve is changed to the operating angle D4, and the exhaust valve opening timing (EVO4) and closing timing (EVC4) in FIG. 9B are controlled.
  • the exhaust VTC2 is maintained at the default position (the most advanced angle).
  • step S15 determines the operating region of the internal combustion engine.
  • step S15 it is determined whether or not the low rotation and high load region. In this case as well, the operation region can be specified by the rotation speed-load map. If it is determined in this step S15 that the region is in the low rotation and high load region, the process proceeds to steps S117, 18, and 19, and the process proceeds to step S16 in which it is determined that it is not in the low rotation and high load region.
  • step S15 If it is determined in step S15 that the region is a low rotation high load region (YES), the process proceeds to step S17, and the intake VTC 3 is controlled. In this case, the intake valve opening timing (IVO1) and closing timing (IVC1) in FIG. 9C are controlled. When the setting of the opening timing and closing timing of the intake valve by the intake VTC 3 is completed in step S17, the process proceeds to step 18.
  • step S17 When the setting of the opening timing and closing timing of the intake valve by the intake VTC 3 is completed in step S17, the exhaust VEL1 is controlled in step S18. In this case, the operating angle of the exhaust valve is changed to the operating angle D2. Thereafter, the process proceeds to step S19, and the exhaust VTC2 is controlled while maintaining the operating angle D2, and the exhaust valve opening timing (near EVO1) and the closing timing (near EVC3) in FIG. 9C are controlled. When these settings are completed, the control flow is ended after exiting to the end.
  • step S15 when it is determined in step S15 that it is not in the low rotation high load region, the process proceeds to step S16, and the operation region of the internal combustion engine is determined as the high rotation high load region. If it is determined in step S16 that the region is a high rotation / high load region, the process proceeds to steps S17, 18, and 19.
  • step S16 If it is determined in step S16 that the region is a high rotation / high load region, the process proceeds to step S17, and the intake VTC 3 is controlled. In this case, the intake valve opening timing (IVO2) and closing timing (IVC2) in FIG. 9D are controlled. When the setting of the opening timing and closing timing of the intake valve by the intake VTC 3 is completed in step S17, the process proceeds to step 18.
  • step S17 When the setting of the opening timing and closing timing of the intake valve by the intake VTC 3 is completed in step S17, the exhaust VEL1 is controlled in step S18. In this case, the operating angle of the exhaust valve is changed to the operating angle D3. Thereafter, the process proceeds to step S19, and the exhaust VTC2 is controlled to the default position while maintaining the operation angle D3, and the exhaust valve opening timing (EVO3) and closing timing (EVC3) in FIG. 9D are controlled.
  • EVO3 and closing timing EVC3
  • the intake / exhaust timing control as shown in FIGS. 9A to 9D can be executed.
  • IVC is controlled to, for example, IVC3 by the intake VTC3
  • EVO is controlled to, for example, EVO2 in FIG. 5 by the exhaust VEL1.
  • This IVC3 is suitable for an Atkinson cycle with a medium load slightly below 90 ° after bottom dead center, and a charging efficiency sufficient to generate a medium torque (medium load) can be obtained with the throttle valve almost fully open. It is timing.
  • this EVO2 is a timing suitable for an intermediate load Atkinson cycle slightly before the bottom dead center, and the timing at which in-cylinder negative pressure is generated at the end of the expansion stroke is delayed by an amount corresponding to the in-cylinder pressure being higher than the low load. Accordingly, the timing is delayed from EVO4 at the time of low load.
  • the intake valve timing mechanism delays the intake valve closing timing (IVC) around 90 ° after the intake bottom dead center or beyond 90 °.
  • the opening timing (IVO) of the intake valve is controlled to a position delayed beyond the exhaust top dead center, and (2) the exhaust valve operating angle is expanded by the exhaust operating angle variable mechanism to The valve opening timing (EVO) is advanced from the intake bottom dead center, and the exhaust valve closing timing (EVC) is controlled to a position delayed beyond the exhaust top dead center.
  • Atkinson cycle can be performed by sufficiently retarding the closing timing (IVC) of the intake valve without greatly increasing the operating angle of the intake valve, the drive friction loss of the intake valve is reduced.
  • IVC closing timing
  • variable valve mechanism an oil pressure variable phase mechanism (VTC) is used on the intake side, and an electric continuously variable lift mechanism (VEL) and a hydraulic variable phase mechanism (VTC) are used on the exhaust side.
  • VTC oil pressure variable phase mechanism
  • VEL electric continuously variable lift mechanism
  • VTC hydraulic variable phase mechanism
  • the converted energy may be electric power or hydraulic pressure.
  • a hydraulic stepwise lift and a variable mechanism that changes the operating angle may be used. Further, the operating angle may be changed without changing the lift.
  • an electric variable phase mechanism may be used instead of the hydraulic VTC.
  • the intake VTC has been described as an example of the most advanced angle default, it may be a system that defaults to an intermediate advanced angle position although it is not the most advanced angle.
  • valve timing that is, the intake / exhaust valve opening / closing timing is shown with respect to the timing at which the lift starts and the timing at which it ends, but it may also be the timing excluding the so-called ramp (buffer) period. That is, the timing when the lift is started and the lift with a slight ramp height is set as the opening timing, and the timing when the lift is lowered and the lift with a slight ramp height is set as the close timing. This substantially corresponds to the substantial start time or end time of the gas flow, so that various effects can be obtained.
  • Variable valve control apparatus for an internal combustion engine having a microcomputer for controlling the operation of an intake variable valve operating mechanism for controlling the opening timing and closing timing of the intake valve and an exhaust operating angle variable mechanism for changing and controlling the operating angle of the exhaust valve
  • the microcomputer sets (1) the intake valve closing timing by the intake valve timing mechanism to a crank angle of about 90 ° after intake bottom dead center or after intake bottom dead center.
  • the microcomputer executes a function of controlling the closing timing of the intake valve to an advance side to the vicinity of the intake bottom dead center by the intake valve timing mechanism when the internal combustion engine is cold-started.
  • the exhaust operating angle variable mechanism reduces the operating angle of the exhaust valve to control the opening timing of the exhaust valve to near exhaust bottom dead center and to control the closing timing of the exhaust valve to near exhaust top dead center. It is characterized by performing.
  • the microcomputer controls the opening timing of the intake valve from the intake top dead center to the advance side by the intake valve timing mechanism in the low rotation high load region of the internal combustion engine, and sets the closing timing of the intake valve.
  • the microcomputer controls the opening timing of the intake valve to be close to the intake top dead center by the intake valve timing mechanism in the high rotation and high load region of the internal combustion engine, and controls the intake valve close timing.
  • the control function is executed 90 ° before the bottom dead center, and the exhaust valve operating timing is controlled to the advance side from the exhaust bottom dead center by the exhaust operating angle variable mechanism and the exhaust valve closing timing is exhausted to the top dead center. It is characterized by executing a function of controlling from the point to the retard side.
  • the microcomputer has a function of controlling the closing timing of the exhaust valve so as to generate a positive valve overlap in the vicinity of the opening timing of the intake valve by the variable exhaust operating angle mechanism when the internal combustion engine is in a low load region. It is characterized by performing.
  • the present invention may be configured as follows. (1) An intake valve timing mechanism that changes the opening timing and closing timing of the intake valve while maintaining the operating angle of the intake valve provided in the internal combustion engine at a predetermined angle, and the operation of the exhaust valve provided in the internal combustion engine In a variable valve system of an internal combustion engine having an exhaust operating angle variable mechanism that changes an angle, When the internal combustion engine is in a low load region, The intake valve timing mechanism controls the closing timing of the intake valve to a crank angle around 90 ° after intake bottom dead center, or to a retarded position exceeding the crank angle after intake bottom dead center 90 °, and the opening timing of the intake valve.
  • the exhaust valve operating mechanism advances the exhaust valve opening timing from the exhaust bottom dead center and controls the exhaust valve closing timing to a position delayed beyond the exhaust top dead center.
  • the exhaust operating angle variable mechanism reduces the operating angle of the exhaust valve to control the opening timing of the exhaust valve to near exhaust bottom dead center and to control the closing timing of the exhaust valve to near exhaust top dead center. It may be.
  • the intake valve timing mechanism is configured such that when the conversion energy does not act, the closing timing of the intake valve is advanced and mechanically stabilized near the intake bottom dead center,
  • the variable exhaust operating angle mechanism mechanically stabilizes near exhaust bottom dead center by delaying the opening timing of the exhaust valve by reducing the operating angle of the exhaust valve when conversion energy does not act
  • the exhaust valve closing timing may be advanced to mechanically stabilize the exhaust top dead center.
  • the intake valve timing mechanism controls the opening timing of the intake valve from the intake top dead center to the advance side, and the closing timing of the intake valve is controlled to the advance side to near the intake bottom dead center,
  • the opening timing of the exhaust valve may be set near the exhaust bottom dead center and the closing timing of the exhaust valve may be controlled to be retarded from the exhaust top dead center by the variable exhaust operation angle mechanism.
  • variable valve system for an internal combustion engine In the high rotation high load region of the internal combustion engine, The intake valve timing mechanism controls the opening timing of the intake valve to be close to the intake top dead center, and controls the closing timing of the intake valve to 90 ° before the intake bottom dead center; The exhaust valve operating mechanism may control the opening timing of the exhaust valve from the exhaust bottom dead center to the advance side and the closing timing of the exhaust valve from the exhaust top dead center to the retard side.
  • the exhaust valve operating mechanism may control the closing timing of the exhaust valve so as to generate a positive valve overlap in the vicinity of the opening timing of the intake valve.
  • the exhaust operating angle variable mechanism may be a variable lift mechanism that makes the lift amount of the exhaust valve variable.
  • the intake valve timing mechanism may be driven by hydraulic pressure used in the internal combustion engine.
  • the intake valve timing mechanism may be driven by electric power supplied from an external power source.
  • the exhaust valve operating angle is expanded by the exhaust operating angle variable mechanism to advance the opening timing of the exhaust valve from the exhaust bottom dead center, and the closing timing of the exhaust valve is retarded beyond the exhaust top dead center.
  • the function to control to the specified position is executed.
  • the variable valve control apparatus for an internal combustion engine according to (10) At the time of cold start of the internal combustion engine, the microcomputer
  • the intake valve timing mechanism performs a function of controlling the closing timing of the intake valve to the advance side to the vicinity of the intake bottom dead center
  • the exhaust operating angle variable mechanism reduces the operating angle of the exhaust valve to control the opening timing of the exhaust valve to near exhaust bottom dead center and control the closing timing of the exhaust valve to near exhaust top dead center May be executed.
  • the variable valve control apparatus for an internal combustion engine In the low rotation high load region of the internal combustion engine, the microcomputer is The intake valve timing mechanism performs a function of controlling the opening timing of the intake valve from the intake top dead center to the advance angle side, and controlling the closing timing of the intake valve to the advance angle side to near the intake bottom dead center, A function of controlling the opening timing of the exhaust valve to be near the exhaust bottom dead center and controlling the closing timing of the exhaust valve to the retard side from the exhaust top dead center may be executed by the exhaust operating angle variable mechanism.
  • the exhaust operating angle variable mechanism controls the opening timing of the exhaust valve from the exhaust bottom dead center to the advance side, and also controls the closing timing of the exhaust valve from the exhaust top dead center to the retard side. May be.
  • a function of controlling the closing timing of the exhaust valve so as to generate a positive valve overlap in the vicinity of the opening timing of the intake valve may be executed by the variable exhaust operation angle mechanism.
  • this invention is not limited to an above-described Example, Various modifications are included.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.

Abstract

Provided is a novel variable valve device for an internal combustion engine in which an intake valve closing time period (IVC) can be sufficiently delayed to perform an Atkinson cycle (low compression ratio/high expansion ratio) even if the operating angle of the intake valve is greatly increased. During a predetermined low-load state: (1) the intake valve closing time period (IVC) is controlled by an intake valve timing mechanism to a delayed position either near or beyond a crank angle of 90° past the intake bottom dead center, and the intake valve opening time period (IVO) is controlled to a position delayed beyond the exhaust top dead center; and (2) the operating angle of the exhaust valve is increased by an exhaust operating angle varying mechanism, the exhaust valve opening time period (EVO) is advanced past the intake bottom dead center, and the exhaust valve closing time period (EVC) is delayed beyond the exhaust top dead center. The intake valve closing time period (IVC) can thereby be sufficiently delayed to perform an Atkinson cycle even if the operating angle of the intake valve is greatly increased; therefore, drive friction loss in the intake valve can be reduced to improve the effect of reducing fuel consumption.

Description

内燃機関の可変動弁システム及び可変動弁制御装置Variable valve system and variable valve controller for internal combustion engine
 本発明は内燃機関の可変動弁システムに係り、特にアトキンソンサイクルを行う内燃機関の可変動弁システム及び可変動弁制御装置に関するものである。 The present invention relates to a variable valve system for an internal combustion engine, and more particularly to a variable valve system and a variable valve controller for an internal combustion engine that performs an Atkinson cycle.
 一般的な内燃機関では、膨張行程の後半において、排気弁が開弁する前の筒内の圧力は比較的高く、排気弁の開弁により筒内圧は、排気ポート内の圧力、例えば大気圧レベルにまで低下する。ところが、アトキンソンサイクルとして膨張比を高くしていくと、膨張行程の後半において筒内の圧力が大気圧以下となり、その後に排気弁が開弁すると排気ポートの圧力によって筒内の圧力が逆に上昇するようになる場合がでてくる。このように膨張比をある程度高くすると、膨張行程の後半において筒内の圧力が大気圧以下になることによるポンピング損失が発生する。 In a general internal combustion engine, in the second half of the expansion stroke, the pressure in the cylinder before the exhaust valve opens is relatively high, and the cylinder pressure becomes the pressure in the exhaust port, for example, the atmospheric pressure level by opening the exhaust valve. Drop to. However, when the expansion ratio is increased as the Atkinson cycle, the pressure in the cylinder becomes lower than the atmospheric pressure in the latter half of the expansion stroke, and when the exhaust valve is opened thereafter, the pressure in the cylinder rises conversely due to the pressure of the exhaust port. There are times when it comes to. If the expansion ratio is increased to some extent in this way, a pumping loss occurs due to the pressure in the cylinder being equal to or lower than the atmospheric pressure in the latter half of the expansion stroke.
 そこで、このようなポンピング損失の発生を阻止するために、通常の吸気弁に加えて膨張行程の後半にのみ開弁して過給された空気を筒内に送り込む空気弁を備えた内燃機関が提案されている。この内燃機関では、空気弁から供給された空気によって膨張行程後半の筒内の圧力が高められ、これによって筒内の圧力が大気圧以下になるのが阻止されてポンピング損失の発生を抑制している。 Therefore, in order to prevent the occurrence of such a pumping loss, an internal combustion engine provided with an air valve that opens only in the latter half of the expansion stroke and sends supercharged air into the cylinder in addition to a normal intake valve. Proposed. In this internal combustion engine, the pressure in the cylinder in the latter half of the expansion stroke is increased by the air supplied from the air valve, thereby preventing the pressure in the cylinder from becoming below atmospheric pressure and suppressing the occurrence of pumping loss. Yes.
 ところで、膨張比が高くされると排気ガス温度が低下するが、このときに空気弁から膨張行程後半に筒内に新たな空気が供給されると排気ガス温度が更に低下する。その結果、排気通路内に配置された触媒の温度が低下するために触媒が不活性状態となって排気浄化作用が損なわれるという問題がある。更に、通常の吸気弁に加えてこのような空気弁を配置すると構造が複雑になるという問題もある。 By the way, when the expansion ratio is increased, the exhaust gas temperature decreases. At this time, if new air is supplied from the air valve into the cylinder in the latter half of the expansion stroke, the exhaust gas temperature further decreases. As a result, the temperature of the catalyst disposed in the exhaust passage is lowered, so that the catalyst becomes inactive and the exhaust purification action is impaired. Furthermore, when such an air valve is arranged in addition to a normal intake valve, there is a problem that the structure becomes complicated.
 このような問題に対処するために、例えば、特開2008-157128号公報(特許文献1)では、機械圧縮比を変更可能な可変圧縮比機構と、排気弁の開弁時期を制御可能な可変バルブタイミング機構とを備えた内燃機関を提案している。そして、機関低負荷運転時には最大の膨張比が得られるように機械圧縮比が最大にされるが、このとき膨張行程の後半において、筒内の圧力が大気圧以下にならないように排気弁の開弁時期が早められて、ポンピング損失を抑制するようにしている。 In order to deal with such a problem, for example, in Japanese Patent Application Laid-Open No. 2008-157128 (Patent Document 1), a variable compression ratio mechanism capable of changing the mechanical compression ratio and a variable capable of controlling the valve opening timing of the exhaust valve are disclosed. An internal combustion engine having a valve timing mechanism is proposed. The mechanical compression ratio is maximized so that the maximum expansion ratio can be obtained during engine low load operation. At this time, the exhaust valve is opened so that the pressure in the cylinder does not fall below atmospheric pressure in the latter half of the expansion stroke. The valve timing is advanced so as to suppress the pumping loss.
特開2008-157128号公報JP 2008-157128 A
 ところで、上述した特許文献1において、図13では吸気弁の閉時期(IVC)を吸気下死点後90°クランク角を越えて大きく遅角し、低圧縮比/高膨張比化によるアトキンソンサイクルによる燃費低減効果を高める例が示されている。 By the way, in Patent Document 1 described above, in FIG. 13, the intake valve closing timing (IVC) is greatly delayed beyond the 90 ° crank angle after the intake bottom dead center, and by the Atkinson cycle by the low compression ratio / high expansion ratio. An example of increasing the fuel consumption reduction effect is shown.
 しかしながら、図13からわかるように吸気弁の開時期(IVO)は上死点より少し手前のタイミングである。そのため、吸気弁の作動角度(開期間)は大きいものとなっており、吸気弁の駆動フリクション損失が増加して燃費低減効果に目減りが出てしまうおそれがあった。ここで、作動角度が大きいと、吸気弁のリフト作動により発生するフリクショントルクが発生する時間が長くなってしまい、吸気弁の駆動フリクション損失が増大するおそれがある。 However, as can be seen from FIG. 13, the opening timing (IVO) of the intake valve is slightly before the top dead center. Therefore, the operating angle (opening period) of the intake valve is large, and the drive friction loss of the intake valve increases, which may reduce the fuel consumption reduction effect. Here, if the operating angle is large, the time for generating the friction torque generated by the lift operation of the intake valve is lengthened, which may increase the drive friction loss of the intake valve.
 本発明の目的は、吸気弁の作動角を大きく拡大しなくても、吸気弁の閉時期(IVC)を充分遅角してアトキンソンサイクル(低圧縮比/高膨張比化)を行うことができる新規な内燃機関の可変動弁システム及び可変動弁制御装置を提供することにある。 An object of the present invention is to perform an Atkinson cycle (low compression ratio / high expansion ratio) by sufficiently retarding the closing timing (IVC) of the intake valve without greatly increasing the operating angle of the intake valve. It is an object of the present invention to provide a variable valve system and a variable valve controller for a new internal combustion engine.
 本発明は、吸気弁の作動角度を所定角度に維持したまま吸気弁の開時期(IVO)及び吸気弁の閉時期(IVC)を変更、制御する吸気バルブタイミング機構と、排気弁の作動角度を変更、制御する排気作動角可変機構とを有し、所定の低負荷の状態では、(1)吸気バルブタイミング機構によって吸気弁の閉時期(IVC)を吸気下死点後90°付近、又は吸気下死点後90°を越えた遅角位置に制御すると共に吸気弁の開時期(IVO)を吸気上死点を越えて遅角した位置に制御し、(2)排気作動角可変機構により排気弁の作動角度を拡大して、排気弁の開時期(EVO)を排気下死点より進角すると共に、排気弁の閉時期(EVC)を排気上死点を越えて遅角した位置に制御する、ことを特徴とするものである。 The present invention relates to an intake valve timing mechanism for changing and controlling the intake valve opening timing (IVO) and the intake valve closing timing (IVC) while maintaining the intake valve operating angle at a predetermined angle, and the exhaust valve operating angle. In the state of a predetermined low load, (1) the intake valve closing timing (IVC) is set to about 90 ° after the intake bottom dead center or the intake air Control is made to a retarded position exceeding 90 ° after the bottom dead center and the opening timing (IVO) of the intake valve is controlled to be retarded beyond the intake top dead center. (2) Exhaust by variable exhaust operating angle mechanism Enlarge the valve operating angle to advance the exhaust valve opening timing (EVO) from the exhaust bottom dead center, and control the exhaust valve closing timing (EVC) to a position delayed beyond the exhaust top dead center It is characterized by that.
 本発明によれば、吸気弁の作動角度を大きく拡大しなくても、吸気弁の閉時期(IVC)を充分遅角してアトキンソンサイクルを行うことができるので、吸気弁の駆動フリクション損失が低減されて燃費低減効果を向上することが可能となる。 According to the present invention, it is possible to perform the Atkinson cycle by sufficiently delaying the closing timing (IVC) of the intake valve without greatly increasing the operation angle of the intake valve, so that the drive friction loss of the intake valve is reduced. As a result, the fuel consumption reduction effect can be improved.
 また、上述した効果の他に以下の副次的な効果も併せ奏することができる。すなわち、吸気弁の開時期(IVO)を吸気上死点より遅角し、排気弁の閉時期(EVC)を排気上死点より遅角したことにより、吸気行程の初期に排気ポ-ト側から筒内に高温の内部EGRガスを取り込むことができ、この筒内加熱効果により、吸気弁の開時期(IVC)を遅角したことによる低圧縮比燃焼での燃焼安定性が改善されることが期待できる。 In addition to the effects described above, the following secondary effects can also be achieved. That is, the intake valve opening timing (IVO) is retarded from the intake top dead center, and the exhaust valve closing timing (EVC) is retarded from the exhaust top dead center. The high-temperature internal EGR gas can be taken into the cylinder from the inside, and this in-cylinder heating effect improves combustion stability at low compression ratio combustion by retarding the opening timing (IVC) of the intake valve Can be expected.
 更に、排気弁の開時期(EVO)を進角するので、吸気弁の開時期(IVC)を遅角したことによる膨張行程の末期でのポンプ損失(ポンピング損失)が低減されることが期待できる。 Further, since the opening timing (EVO) of the exhaust valve is advanced, it is expected that the pump loss (pumping loss) at the end of the expansion stroke due to the retarding of the opening timing (IVC) of the intake valve is reduced. .
本発明が適用される内燃機関の制御システムの構成図である。It is a block diagram of the control system of the internal combustion engine to which the present invention is applied. 図1に示す可変動弁システムの構成図である。It is a block diagram of the variable valve system shown in FIG. 可変動弁装置であるリフト制御機構による最小リフト制御時の作動説明図である。It is operation | movement explanatory drawing at the time of the minimum lift control by the lift control mechanism which is a variable valve apparatus. 可変動弁装置であるリフト制御機構による最大リフト制御時の作動説明図である。It is operation | movement explanatory drawing at the time of the maximum lift control by the lift control mechanism which is a variable valve apparatus. リフト制御機構の最小リフト制御の状態における駆動機構を示す構成図である。It is a block diagram which shows the drive mechanism in the state of the minimum lift control of a lift control mechanism. リフト制御機構の最大リフト制御の状態における駆動機構を示す構成図である。It is a block diagram which shows the drive mechanism in the state of the maximum lift control of a lift control mechanism. リフト制御機構のリフト特性を示す特性図である。It is a characteristic view which shows the lift characteristic of a lift control mechanism. 可変動弁装置であるバルブタイミング制御機構の最進角位相の状態を示す構成図である。It is a block diagram which shows the state of the most advanced angle phase of the valve timing control mechanism which is a variable valve apparatus. 可変動弁装置であるバルブタイミング制御機構の最遅角位相の状態を示す構成図である。It is a block diagram which shows the state of the most retarded angle phase of the valve timing control mechanism which is a variable valve apparatus. バルブタイミング制御機構の縦断面を示す断面図である。It is sectional drawing which shows the longitudinal cross-section of a valve timing control mechanism. 中負荷状態のアトキンソンサイクルを行うバルブタイミングを説明する説明図である。It is explanatory drawing explaining the valve timing which performs the Atkinson cycle of a middle load state. 本実施例になる可変動弁システムの低負荷状態のアトキンソンサイクルを行うバルブタイミングを説明する説明図である。It is explanatory drawing explaining the valve timing which performs the Atkinson cycle of the low load state of the variable valve system which becomes a present Example. 本実施例と比較するための低負荷状態のアトキンソンサイクルを行う第1のバルブタイミングを説明する説明図である。It is explanatory drawing explaining the 1st valve timing which performs the Atkinson cycle of the low load state for comparing with a present Example. 本実施例と比較するための低負荷状態のアトキンソンサイクルを行う第2のバルブタイミングを説明する説明図である。It is explanatory drawing explaining the 2nd valve timing which performs the Atkinson cycle of the low load state for comparing with a present Example. 本実施例を用いた可変動弁システムの始動時のバルブタイミングを説明する説明図である。It is explanatory drawing explaining the valve timing at the time of starting of the variable valve system using a present Example. 本実施例を用いた可変動弁システムの低回転低負荷状態のバルブタイミングを説明する説明図である。It is explanatory drawing explaining the valve timing of the low rotation low load state of the variable valve system using a present Example. 本実施例を用いた可変動弁システムの低回転高負荷状態のバルブタイミングを説明する説明図である。It is explanatory drawing explaining the valve timing of the low rotation high load state of the variable valve system using a present Example. 本実施例を用いた可変動弁システムの高回転高負荷状態のバルブタイミングを説明する説明図である。It is explanatory drawing explaining the valve timing of the high rotation high load state of the variable valve system using a present Example. 本実施例を用いた可変動弁システムの制御フローを説明する制御フローチャート図である。It is a control flowchart figure explaining the control flow of the variable valve system using a present Example.
 以下、本発明の実施形態について図面を用いて詳細に説明するが、本発明は以下の実施形態に限定されることなく、本発明の技術的な概念の中で種々の変形例や応用例をもその範囲に含むものである。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. However, the present invention is not limited to the following embodiments, and various modifications and application examples are included in the technical concept of the present invention. Is also included in the range.
 本発明の具体的な実施例を説明する前に、本発明が適用される内燃機関の制御システムの構成、可変動弁システムの構成、可変動弁装置であるリフト制御機構及びバルブタイミング制御機構の構成を簡単に説明する。 Before describing a specific embodiment of the present invention, the configuration of the control system of the internal combustion engine to which the present invention is applied, the configuration of the variable valve system, the lift control mechanism and the valve timing control mechanism which are variable valve operating devices. The configuration will be briefly described.
 図1において、シリンダブロック01とシリンダヘッド02との間に、ピストン03を介して燃焼室04が形成されていると共に、シリンダヘッド02のほぼ中央位置に点火プラグ05が設けられている。ピストン03は、ピストンピンに一端部が連結されたコネクチングロッド06を介してクランクシャフト07に連結されており、このクランクシャフト07は、冷機時の通常の始動やアイドリングストップ後の自動的な始動がピニオンギア機構09を介してスタータモータ08によって行われるようになっている。尚、クランクシャフト07は、後述するクランク角センサ010によってクランク角及び回転数が検出されるようになっている。 1, a combustion chamber 04 is formed between a cylinder block 01 and a cylinder head 02 via a piston 03, and a spark plug 05 is provided at a substantially central position of the cylinder head 02. The piston 03 is connected to the crankshaft 07 via a connecting rod 06 whose one end is connected to a piston pin. The crankshaft 07 can be automatically started after cooling or after idling is stopped. This is performed by a starter motor 08 through a pinion gear mechanism 09. The crankshaft 07 is detected by a crank angle sensor 010 described later.
 シリンダブロック01には、ウォータジャケット内の水温を検出する水温センサ011が取り付けられていると共に、シリンダヘッド02には、燃焼室04内に燃料を噴射する燃料噴射弁012が設けられている。更に、シリンダヘッド02の内部に形成された吸気ポート013や排気ポート014を開閉する1気筒当たりそれぞれ2つの吸気バルブ4及び排気バルブ5がそれぞれ摺動自在に設けられていると共に、吸気バルブ4側と排気バルブ5側には可変動弁装置が設けられている。吸気バルブ側にはバルブタイミング制御機構(VTC)3が設けられ、排気バルブ側にはリフト制御機構(VEL)1が設けられている。尚、場合によっては排気バルブ側にバルブタイミング制御機構(VTC)2が設けられる。制御装置22には図示したようなセンサ信号が入力され、また制御要素の駆動信号が出力されている。 The cylinder block 01 is provided with a water temperature sensor 011 for detecting the water temperature in the water jacket, and the cylinder head 02 is provided with a fuel injection valve 012 for injecting fuel into the combustion chamber 04. Further, two intake valves 4 and five exhaust valves 5 are slidably provided for each cylinder that opens and closes the intake port 013 and the exhaust port 014 formed inside the cylinder head 02, and are also provided on the intake valve 4 side. A variable valve operating device is provided on the exhaust valve 5 side. A valve timing control mechanism (VTC) 3 is provided on the intake valve side, and a lift control mechanism (VEL) 1 is provided on the exhaust valve side. In some cases, a valve timing control mechanism (VTC) 2 is provided on the exhaust valve side. A sensor signal as shown in the figure is input to the control device 22 and a drive signal for the control element is output.
 図1にあるスタータモータ08は、バッテリを動力源とするモ-タ本体と、フライホイ-ルの外周にはめこまれたリングギヤに噛み合い動力を伝達するピニオンギア機構09などから成る一般的なものである。始動時、或いは再始動時のスタータモータ08への通電時のみ、ピニオンギア機構09のピニオンギアが前進し、内燃機関のリングギヤに噛み合ってスタータモ-タ08の回転を周知のリングギヤに伝えクランキングが行なわれる。尚、内燃機関が始動に成功してスタータモータ08への通電を停止すると、ピニオンギアは押し戻され、リングギヤとの噛み合いは離脱されるようになっている。 The starter motor 08 shown in FIG. 1 is generally composed of a motor body using a battery as a power source, and a pinion gear mechanism 09 that meshes with a ring gear fitted on the outer periphery of the flywheel to transmit power. is there. Only when the starter motor 08 is energized at the time of starting or restarting, the pinion gear of the pinion gear mechanism 09 moves forward, meshes with the ring gear of the internal combustion engine, transmits the rotation of the starter motor 08 to a known ring gear, and cranking is performed. Done. When the internal combustion engine is successfully started and the energization to the starter motor 08 is stopped, the pinion gear is pushed back and the meshing with the ring gear is released.
 ここで、本実施例は後述するように排気バルブ5を所定の特定開弁時期に制御し、また、吸気バルブ4を所定の特定閉弁時期に制御することを対象としているので、スタータの方式は限定されず、ピニオンギアとリングギヤが常時噛み合っているスタータや、ハイブリッド車用モ-タ等を用いてベルト駆動でクランクプ-リを回転させるものであっても差し支えない。 Here, as described later, the present embodiment is intended to control the exhaust valve 5 to a predetermined specific valve opening timing and to control the intake valve 4 to a predetermined specific valve closing timing. There is no limitation, and the crank pulley may be rotated by belt drive using a starter in which the pinion gear and the ring gear are always meshed, a motor for a hybrid vehicle, or the like.
 可変動弁装置は、図2乃至図7に示すように、内燃機関の排気バルブ5のバルブリフト及び作動角(開期間)を制御するリフト制御機構である排気VEL1と、排気バルブ5の開閉時期(バルブタイミング)を制御するバルブタイミング制御機構である排気VTC2と、吸気バルブ4の開閉時期を制御する吸気VTC3とを備えている。また、排気VEL1と排気VTC2及び吸気VTC3は、コントローラ22によって機関運転状態に応じてそれぞれの作動が制御されるようになっている。 As shown in FIGS. 2 to 7, the variable valve operating apparatus includes an exhaust VEL1 that is a lift control mechanism for controlling the valve lift and operating angle (opening period) of the exhaust valve 5 of the internal combustion engine, and the opening / closing timing of the exhaust valve 5. An exhaust VTC 2 that is a valve timing control mechanism that controls (valve timing) and an intake VTC 3 that controls the opening and closing timing of the intake valve 4 are provided. Further, the operations of the exhaust VEL1, the exhaust VTC2, and the intake VTC3 are controlled by the controller 22 in accordance with the engine operating state.
 排気VEL1は、本出願人が先に出願した、例えば特開2003-172112号公報(吸気バルブ側に適用)に記載されたものと同様の構成であるで、詳細はこの公報を参照されたい。また、吸気VTC3も本出願人が先に出願した、例えば特開2012-127219号公報に記載されたものと同様の構成であるで、詳細はこの公報を参照されたい。 The exhaust VEL 1 has the same configuration as that described in, for example, Japanese Patent Application Laid-Open No. 2003-172112 (applied to the intake valve side) previously filed by the present applicant. For details, refer to this publication. Further, the intake VTC 3 has the same configuration as that described in, for example, Japanese Patent Application Laid-Open No. 2012-127219, which was previously filed by the present applicant. Refer to this publication for details.
 排気VEL1について図2及び図3A、図3Bに基づいて簡単に説明すると、シリンダヘッド02の上部に有する軸受27に回転自在に支持された中空状の駆動軸6と、駆動軸6の外周面に圧入等により固設された回転カム7と、駆動軸6の外周面に揺動自在に支持されて、排気バルブ5の上端部に配設されたバルブリフター8の上面に摺接して排気バルブ5を開作動させる2つの揺動カム9と、回転カム7と揺動カム9との間に介装されて、回転カム7の回転力を揺動運動に変換して揺動カム9に揺動力として伝達する伝達機構とを備えている。 Exhaust gas VEL1 will be briefly described with reference to FIGS. 2, 3A, and 3B. A hollow drive shaft 6 rotatably supported by a bearing 27 provided on the upper portion of the cylinder head 02, and an outer peripheral surface of the drive shaft 6 are provided. The rotary cam 7 fixed by press fitting or the like and the outer peripheral surface of the drive shaft 6 are swingably supported, and are in sliding contact with the upper surface of the valve lifter 8 disposed at the upper end of the exhaust valve 5. Are interposed between the two swing cams 9 for opening the cam, and the rotary cam 7 and the swing cam 9. The rotational force of the rotary cam 7 is converted into a swing motion and the swing cam 9 has a swing force. As a transmission mechanism.
 駆動軸6(排気側)は、一端部に設けられたタイミングスプロケット31Aを介してクランクシャフト07からタイミングチェーンによって回転力が伝達されており、この回転方向は図2で時計方向(矢印方向)に設定されている。尚、駆動軸6とタイミングスプロケット31Aとの位相は変化しないシステムとしても良い。その場合、排気VTC2は装着されているものの使用されず位相変換は行われない。したがって、排気VTC2は省略し、固定のタイミングスプロケット31Aとしても良い。 The drive shaft 6 (exhaust side) receives a rotational force from the crankshaft 07 through a timing sprocket 31A provided at one end by a timing chain. This rotational direction is clockwise (arrow direction) in FIG. Is set. A system in which the phase between the drive shaft 6 and the timing sprocket 31A does not change may be used. In that case, although the exhaust VTC 2 is mounted, it is not used and phase conversion is not performed. Therefore, the exhaust VTC2 may be omitted, and the fixed timing sprocket 31A may be used.
 排気側の回転カム7はほぼリング状を呈し、内部軸方向に形成された駆動軸挿通孔を介して駆動軸6に貫通固定されていると共に、カム本体の軸心Yが駆動軸6の軸心Xから径方向へ所定量だけオフセットしている。 The rotary cam 7 on the exhaust side has a substantially ring shape, and is fixed to the drive shaft 6 through a drive shaft insertion hole formed in the internal axis direction. The shaft center Y of the cam body is the axis of the drive shaft 6. The center X is offset by a predetermined amount in the radial direction.
 揺動カム9は円筒状のカムシャフト10の両端部に一体的に設けられていると共に、カムシャフト10が内周面を介して駆動軸6に回転自在に支持されている。また、下面にベースサークル面やランプ面及びリフト面からなるカム面9aが形成されており、ベースサークル面とランプ面及びリフト面が、揺動カム9の揺動位置に応じて各バルブリフター8の上面の所定位置に当接するようになっている。 The swing cam 9 is integrally provided at both ends of the cylindrical camshaft 10, and the camshaft 10 is rotatably supported on the drive shaft 6 via the inner peripheral surface. Further, a cam surface 9 a made up of a base circle surface, a ramp surface, and a lift surface is formed on the lower surface, and the base circle surface, the ramp surface, and the lift surface are arranged according to the swing position of the swing cam 9. It comes in contact with a predetermined position on the upper surface.
 伝達機構は、駆動軸6の上方に配置されたロッカアーム11と、ロッカアーム11の一端部11aと回転カム7とを連係するリンクアーム12と、ロッカアーム11の他端部11bと揺動カム9とを連係するリンクロッド13とを備えている。ロッカアーム11は、中央に有する筒状の基部が支持孔を介して後述する制御カムに回転自在に支持されていると共に、一端部11aがピン14によってリンクアーム12に回転自在に連結されている一方、他端部11bがリンクロッド13の一端部13aにピン15を介して回転自在に連結されている。 The transmission mechanism includes a rocker arm 11 disposed above the drive shaft 6, a link arm 12 that links the one end 11 a of the rocker arm 11 and the rotating cam 7, the other end 11 b of the rocker arm 11, and the swing cam 9. The link rod 13 to be linked is provided. The rocker arm 11 has a cylindrical base portion at the center thereof rotatably supported by a control cam, which will be described later, via a support hole, and one end portion 11 a is rotatably connected to the link arm 12 by a pin 14. The other end portion 11 b is rotatably connected to one end portion 13 a of the link rod 13 via a pin 15.
 リンクアーム12は、円環状の基端部12aの中央位置に有する嵌合孔に回転カム7のカム本体が回転自在に嵌合している一方、基端部12aから突出した突出端12bがピン14によってロッカアーム一端部11aに連結されている。リンクロッド13は、他端部13bがピン16を介して揺動カム9のカムノーズ部に回転自在に連結されている。また、駆動軸6の上方位置に同じ軸受部材に制御軸17が回転自在に支持されていると共に、制御軸17の外周にロッカアーム11の支持孔に摺動自在に嵌入されて、ロッカアーム11の揺動支点となる制御カム18が固定されている。制御軸17は、駆動軸6と並行に機関前後方向に配設されていると共に、駆動機構19によって回転制御されている。一方、制御カム18は、円筒状を呈し、軸心P2位置が制御軸17の軸心P1から所定分だけ偏倚している。 In the link arm 12, the cam body of the rotary cam 7 is rotatably fitted in a fitting hole at the center position of the annular base end 12a, while the protruding end 12b protruding from the base end 12a is a pin. 14 is connected to one end 11a of the rocker arm. The other end portion 13 b of the link rod 13 is rotatably connected to the cam nose portion of the swing cam 9 via the pin 16. Further, the control shaft 17 is rotatably supported by the same bearing member above the drive shaft 6, and is slidably fitted into the support hole of the rocker arm 11 on the outer periphery of the control shaft 17. A control cam 18 serving as a moving fulcrum is fixed. The control shaft 17 is arranged in the longitudinal direction of the engine in parallel with the drive shaft 6 and is rotationally controlled by the drive mechanism 19. On the other hand, the control cam 18 has a cylindrical shape, and the position of the axis P2 is deviated from the axis P1 of the control shaft 17 by a predetermined amount.
 駆動機構19は、図4A、図4Bに示すように、ケーシング19aの一端部に固定された電動モータ20と、ケーシング19aの内部に設けられて電動モータ20の回転駆動力を制御軸17に伝達するボール螺子伝達手段21とから構成されている。電動モ-タ20は、比例型のDCモータによって構成され、機関運転状態を検出する制御機構であるコントローラ22からの制御信号によって駆動するようになっている。 As shown in FIGS. 4A and 4B, the drive mechanism 19 is provided inside the casing 19 a and the rotational driving force of the electric motor 20 is transmitted to the control shaft 17 provided inside the casing 19 a. And a ball screw transmission means 21. The electric motor 20 is constituted by a proportional DC motor and is driven by a control signal from a controller 22 which is a control mechanism for detecting the engine operating state.
 ボール螺子伝達手段21は、電動モータ20の駆動シャフト20aとほぼ同軸上に配置されたボール螺子軸23と、ボール螺子軸23の外周に螺合する移動部材であるボールナット24と、制御軸17の一端部に直径方向に沿って連結された連係アーム25と、連係アーム25とボールナット24とを連係するリンク部材26とから主として構成されている。ボール螺子軸23は、両端部を除く外周面全体に所定幅のボール循環溝23aが螺旋状に連続して形成されていると共に、一端部にモータ駆動軸を介して連結され電動モータ20によって回転駆動されるようになっている。 The ball screw transmission means 21 includes a ball screw shaft 23 disposed substantially coaxially with the drive shaft 20 a of the electric motor 20, a ball nut 24 which is a moving member screwed onto the outer periphery of the ball screw shaft 23, and a control shaft 17. Are mainly composed of a linkage arm 25 connected to one end of the linkage member 25 along the diameter direction, and a link member 26 that links the linkage arm 25 and the ball nut 24. The ball screw shaft 23 is continuously formed with a ball circulation groove 23a having a predetermined width on the entire outer peripheral surface excluding both end portions, and is connected to one end portion via a motor drive shaft and rotated by the electric motor 20. It is designed to be driven.
 ボールナット24は、ほぼ円筒状に形成され、内周面にボール循環溝23aと共同して複数のボールを転動自在に保持するガイド溝24aが螺旋状に連続して形成されていると共に、各ボールを介してボール螺子軸23の回転運動をボールナット24の直線運動に変換しつつ軸方向の移動力が付与されるようになっている。また、このボールナット24は、付勢手段であるコイルスプリング30のばね力によって電動モータ20側(最小リフト側)に付勢されている。したがって、機関停止時には、かかるボールナット24が、コイルスプリング30のばね力によってボール螺子軸23の軸方向に沿って最小リフト側に移動するようになっている。 The ball nut 24 is formed in a substantially cylindrical shape, and a guide groove 24a that holds a plurality of balls in a freely rolling manner in cooperation with the ball circulation groove 23a is formed continuously in a spiral shape on the inner peripheral surface. A moving force in the axial direction is applied through each ball while converting the rotational motion of the ball screw shaft 23 into the linear motion of the ball nut 24. Further, the ball nut 24 is urged toward the electric motor 20 (minimum lift side) by the spring force of the coil spring 30 as urging means. Therefore, when the engine is stopped, the ball nut 24 is moved to the minimum lift side along the axial direction of the ball screw shaft 23 by the spring force of the coil spring 30.
 コントローラ22は、機関コントロールユニット(ECU)の内部に組み込まれており、現在の機関回転数Nやクランク角を検出するクランク角センサ010からの検出信号やアクセル開度センサ、車速センサ、ギア位置センサ、ブレーキ踏込みセンサ、水温センサ011などから各種情報信号から現在の機関運転状態や自動車の運転状態を検出している。また、駆動軸6の回転角度を検出する駆動軸角度センサ28からの検出信号や、制御軸17の回転位置を検出するポテンショメータ29からの検出信号を入力して、駆動軸6のクランク角に対する相対回転角度や各排気バルブ5、5のバルブリフト量や作動角を検出するようになっている。 The controller 22 is incorporated in an engine control unit (ECU) and detects a current engine speed N and a crank angle sensor 010 that detects a crank angle, an accelerator opening sensor, a vehicle speed sensor, and a gear position sensor. In addition, the present engine operation state and vehicle operation state are detected from various information signals from the brake depression sensor, the water temperature sensor 011 and the like. In addition, a detection signal from the drive shaft angle sensor 28 that detects the rotation angle of the drive shaft 6 and a detection signal from the potentiometer 29 that detects the rotation position of the control shaft 17 are input, and relative to the crank angle of the drive shaft 6. The rotation angle, the valve lift amount and the operation angle of each exhaust valve 5, 5 are detected.
 コントローラ22は、マイクロコンピュータを主たる構成要素とするものであり、このマイクロコンピュータは、制御プログラムにしたがって演算処理を実行する演算部と、制御プログラムや演算に使用する定数等を記憶したROM領域部と、プログラムの実行過程で必要なデータを一時的に記憶するワークエリアとしてのRAM領域部を備えている。更にセンサ信号を取り込むと共に排気VEL1、排気VTC2、吸気VTC3等の駆動アクチュエータに駆動信号を供給するI/OLSI等を備えている。マイクロコンピュータは制御プログラムによって、排気VEL1、排気VTC2、吸気VTC3等で実行される制御に関する種々の演算処理を行っているが、その演算は所定の制御機能を実行するためのものであり、本実施例では演算によって実行される処理を機能として捉えるものとする。 The controller 22 includes a microcomputer as a main component. The microcomputer includes an arithmetic unit that executes arithmetic processing according to a control program, and a ROM area unit that stores a control program, constants used for arithmetic, and the like. A RAM area is provided as a work area for temporarily storing data necessary for the program execution process. Further, an I / OLSI or the like is provided that takes in sensor signals and supplies drive signals to drive actuators such as the exhaust VEL1, the exhaust VTC2, and the intake VTC3. The microcomputer performs various arithmetic processes related to the control executed by the exhaust VEL1, the exhaust VTC2, the intake VTC3, and the like according to the control program. The calculation is for executing a predetermined control function. In the example, processing executed by calculation is assumed as a function.
 排気VEL1の基本作動を説明すると、所定の運転領域で、コントローラ22からの制御電流によって一方向へ回転駆動した電動モータ20の回転トルクによってボール螺子軸23が一方向へ回転すると、ボールナット24が、図4Aに示すように、コイルスプリング30のばね力にアシストされながら最大一方向(電動モータ20に接近する方向)へ直線状に移動し、これによって制御軸17がリンク部材26と連係アーム25を介して一方向へ回転する。 Explaining the basic operation of the exhaust VEL1, when the ball screw shaft 23 is rotated in one direction by the rotational torque of the electric motor 20 driven to rotate in one direction by the control current from the controller 22 in a predetermined operating region, the ball nut 24 is As shown in FIG. 4A, while being assisted by the spring force of the coil spring 30, it moves linearly in a maximum direction (direction approaching the electric motor 20), whereby the control shaft 17 is linked to the link member 26 and the linkage arm 25. Rotate in one direction via
 したがって、制御カム18は、図3Aに示すように、軸心が制御軸17の軸心の回りを同一半径で回転して、肉厚部が駆動軸6から上方向に離間移動する。これにより、ロッカアーム11の他端部11bとリンクロッド13の枢支点は、駆動軸6に対して上方向へ移動し、このため、各揺動カム9は、リンクロッド13を介してカムノーズ部側が強制的に引き上げられて全体が図3Aに示す時計方向へ回動する。 Therefore, as shown in FIG. 3A, in the control cam 18, the shaft center rotates around the shaft center of the control shaft 17 with the same radius, and the thick portion moves away from the drive shaft 6 upward. As a result, the other end portion 11b of the rocker arm 11 and the pivot point of the link rod 13 move upward with respect to the drive shaft 6. Therefore, each swing cam 9 is connected to the cam nose portion side via the link rod 13. The whole is forcibly pulled up and rotated clockwise as shown in FIG. 3A.
 よって、回転カム7が回転してリンクアーム12を介してロッカアーム11の一端部11aを押し上げると、そのリフト量がリンクロッド13を介して揺動カム9及びバルブリフター16に伝達され、これによって、排気バルブ5は、そのバルブリフト量が図5のバルブリフト曲線や図3A下図で示すように最小リフト(L1)になり、その作動角D1(クランク角での開弁期間)が小さくなる。作動角は、排気バルブ5のリフトの開弁時期から閉弁時期までを示している。 Therefore, when the rotating cam 7 rotates and pushes up the one end portion 11a of the rocker arm 11 via the link arm 12, the lift amount is transmitted to the swing cam 9 and the valve lifter 16 via the link rod 13, thereby The valve lift amount of the exhaust valve 5 becomes the minimum lift (L1) as shown in the valve lift curve of FIG. 5 and the lower diagram of FIG. 3A, and the operating angle D1 (the valve opening period at the crank angle) becomes small. The operating angle indicates from the valve opening timing of the exhaust valve 5 to the valve closing timing.
 更に、異なる運転状態では、コントローラ22からの制御信号によって電動モータ20が他方向へ回転して、この回転トルクがボール螺子軸23に伝達されて回転すると、この回転に伴ってボールナット24がコイルスプリング30のばね力に抗して反対方向、つまり、図4A中、右方向へ所定量だけ直線移動する。これにより、制御軸17が、図3A中、時計方向へ所定量だけ回転駆動する。このため、制御カム18は、軸心が制御軸17の軸心P1から所定量だけ下方の回転角度位置に保持され、肉厚部が下方へ移動する。このため、ロッカアーム11は、全体が図3Aの位置から反時計方向へ移動して、これによって各揺動カム9がリンクロッド13を介してカムノーズ部側が強制的に押し下げられて、全体が反時計方向へ僅かに回動する。 Further, in different operating states, when the electric motor 20 is rotated in the other direction by the control signal from the controller 22 and this rotational torque is transmitted to the ball screw shaft 23 and rotated, the ball nut 24 is coiled along with this rotation. It moves linearly by a predetermined amount in the opposite direction against the spring force of the spring 30, that is, in the right direction in FIG. 4A. As a result, the control shaft 17 is rotationally driven by a predetermined amount in the clockwise direction in FIG. 3A. For this reason, the shaft center of the control cam 18 is held at a rotational angle position that is lower than the shaft center P1 of the control shaft 17 by a predetermined amount, and the thick portion moves downward. For this reason, the entire rocker arm 11 moves counterclockwise from the position shown in FIG. 3A, whereby each swing cam 9 is forcibly pushed down on the cam nose portion side via the link rod 13, and the entire rocker arm 11 is counterclockwise. Turn slightly in the direction.
 したがって、回転カム7が回転してリンクアーム12を介してロッカアーム11の一端部11aを押し上げると、そのリフト量がリンクロッド13を介して各揺動カム9及びバルブリフター8に伝達され、排気バルブ5のリフト量が図5に示すように、中リフト(L2)あるいは大リフト(L3)になり、作動角もD2、D3のように大きくなる。 Therefore, when the rotary cam 7 rotates and pushes up the one end portion 11a of the rocker arm 11 via the link arm 12, the lift amount is transmitted to each swing cam 9 and the valve lifter 8 via the link rod 13, and the exhaust valve As shown in FIG. 5, the lift amount of 5 is a medium lift (L2) or a large lift (L3), and the operating angle is also increased as D2 and D3.
 また、例えば高回転高負荷領域に移行した場合などは、コントローラ22からの制御信号によって電動モータ20がさらに他方向に回転してボールナット24を、図4Bに示すように、最大右方向へ移動させる。これにより、制御軸17は、制御カム18をさらに図3A中、時計方向へ回転させて、軸心P2をさらに下方向へ回動させる。このため、ロッカアーム11は、図3Bに示すように、全体がさらに駆動軸6方向寄りに移動して他端部11bが揺動カム9のカムノーズ部を、リンクロッド13を介して下方へ押圧して該揺動カム9全体を所定量だけさらに反時計方向へ回動させる。 Further, for example, when shifting to the high rotation / high load region, the electric motor 20 is further rotated in the other direction by the control signal from the controller 22, and the ball nut 24 is moved to the maximum right as shown in FIG. 4B. Let As a result, the control shaft 17 further rotates the control cam 18 in the clockwise direction in FIG. 3A to further rotate the shaft center P2 downward. Therefore, as shown in FIG. 3B, the entire rocker arm 11 moves further toward the drive shaft 6, and the other end portion 11 b presses the cam nose portion of the swing cam 9 downward via the link rod 13. Thus, the entire swing cam 9 is further rotated counterclockwise by a predetermined amount.
 よって、回転カム7が回転してリンクアーム12を介してロッカアーム11の一端部11aを押し上げると、そのリフト量がリンクロッド13を介して揺動カム9及びバルブリフター8に伝達されるが、そのバルブリフト量は図5に示すようにL2、L3からL4に連続的に大きくなる。その結果、高回転域での排気効率を高め、もって出力を向上させることができる。 Therefore, when the rotating cam 7 rotates and pushes up the one end portion 11a of the rocker arm 11 via the link arm 12, the lift amount is transmitted to the swing cam 9 and the valve lifter 8 via the link rod 13. The valve lift amount increases continuously from L2, L3 to L4 as shown in FIG. As a result, the exhaust efficiency in the high rotation range can be increased and the output can be improved.
 すなわち、排気バルブ5のリフト量は、機関の運転状態に応じて中リフトL2、大リフトL3から最大リフトL4まで連続的に変化するようになっており、したがって、各排気バルブ5の作動角も最小リフトD1から最大リフトのD4まで連続的に変化する。ここで、図5に示す排気弁開時期EVO1~EVO4、排気弁閉時期EVC1~EVC4は、固定のタイミングスプロケット31Aとした場合、あるいは排気VTC2が最進角のデフォルト位置であった場合のバルブタイミングを示している。 That is, the lift amount of the exhaust valve 5 is continuously changed from the middle lift L2, the large lift L3 to the maximum lift L4 according to the operating state of the engine. It continuously changes from the minimum lift D1 to the maximum lift D4. Here, the exhaust valve opening timings EVO1 to EVO4 and the exhaust valve closing timings EVC1 to EVC4 shown in FIG. 5 are the valve timings when the fixed timing sprocket 31A is used, or when the exhaust VTC2 is the default position of the most advanced angle. Is shown.
 また、機関の停止時には前述したように、ボールナット24がコイルスプリング30のばね力によって電動モータ20側へ付勢されて自動的に移動することから、最小作動角D1及び最小リフトL1位置(デフォルト位置)に保持される。 Further, as described above, when the engine is stopped, the ball nut 24 is automatically urged toward the electric motor 20 side by the spring force of the coil spring 30, so that the minimum operating angle D1 and the minimum lift L1 position (default) Position).
 すなわち、電動モ-タ20に変換電力(変換エネルギ)が作用しない場合は、最小リフトL1(最小作動角D1)付近に機械的に安定するようになっており、この最小リフト(最小作動角)が機械的安定位置(デフォルト)となっている。この排気バルブの開弁時期(EVO1)も前述の機械的安定位置(デフォルト)であるため、同開弁時期に変換される場合に、機械的に安定するエネルギも活用して、変換応答性を高めることもできる。 That is, when converted electric power (converted energy) does not act on the electric motor 20, it is mechanically stable near the minimum lift L1 (minimum operating angle D1), and this minimum lift (minimum operating angle). Is the mechanical stable position (default). Since the opening timing (EVO1) of the exhaust valve is also the above-mentioned mechanical stable position (default), when converted to the opening timing, the mechanically stable energy is also utilized to improve the conversion response. It can also be increased.
 吸気VTC3は、いわゆるベーンタイプのものであって、図6A、図6B及び図7に示すように、機関のクランクシャフト07によって図外のタイミングチェ-ンを介して回転駆動されて、この回転駆動力を駆動軸6(吸気側回転カム軸)に伝達するタイミングスプロケット31Bと、駆動軸6の端部に固定されてタイミングスプロケット31B内に回転自在に収容されたベーン部材32と、ベーン部材32を油圧によって正逆回転させる油圧回路とを備えている。 The intake VTC 3 is of a so-called vane type, and is rotated by a crankshaft 07 of the engine through a timing chain (not shown) as shown in FIGS. 6A, 6B and 7, and this rotational drive A timing sprocket 31B for transmitting force to the drive shaft 6 (intake-side rotating camshaft), a vane member 32 fixed to the end of the drive shaft 6 and rotatably accommodated in the timing sprocket 31B, and the vane member 32 And a hydraulic circuit that rotates forward and backward by hydraulic pressure.
 タイミングスプロケット31Bは、ベーン部材32を回転自在に収容したハウジング34と、ハウジング34の前端開口を閉塞する円板状のフロントカバー35と、ハウジング34の後端開口を閉塞するほぼ円板状のリアカバー36とから構成され、これらハウジング34及びフロントカバー35、リアカバー36は、4本の小径ボルト37によって駆動軸6の軸方向から一体的に共締め固定されている。ハウジング34は、前後両端が開口形成された円筒状を呈し、内周面の周方向の約90°位置に4つの隔壁であるシュー34aが内方に向かって突設されている。 The timing sprocket 31B includes a housing 34 in which the vane member 32 is rotatably accommodated, a disc-shaped front cover 35 that closes the front end opening of the housing 34, and a substantially disc-shaped rear cover that closes the rear end opening of the housing 34. 36, and the housing 34, the front cover 35, and the rear cover 36 are integrally fastened and fixed together from the axial direction of the drive shaft 6 by four small-diameter bolts 37. The housing 34 has a cylindrical shape in which both front and rear ends are formed, and shoes 34a, which are four partition walls, project inwardly at approximately 90 ° in the circumferential direction of the inner peripheral surface.
 この各シュー34aは、横断面ほぼ台形状を呈し、ほぼ中央位置に各ボルト37の軸部が挿通する4つのボルト挿通孔34bが軸方向へ貫通形成されていると共に、各内端面に軸方向に沿って切欠形成された保持溝内に、コ字形のシール部材38と該シール部材38を内方へ押圧する図外の板ばねが嵌合保持されている。 Each of the shoes 34a has a substantially trapezoidal cross section, and four bolt insertion holes 34b through which the shaft portions of the respective bolts 37 are inserted are formed at substantially the center position in the axial direction. A U-shaped seal member 38 and a leaf spring (not shown) that presses the seal member 38 inwardly are fitted and held in a holding groove that is cut out along the inner side.
 フロントカバー35は、円盤プレート状に形成されて、中央に比較的大径な支持孔35aが穿設されていると共に、外周部に各シュー34aの各ボルト挿通孔34bに対応する位置に図外の4つのボルト孔が穿設されている。リアカバー36は、後端側にタイミングチェーンが噛合する歯車部36aが一体に設けられていると共に、ほぼ中央に大径な軸受孔36bが軸方向に貫通形成されている。 The front cover 35 is formed in the shape of a disk plate, and a relatively large diameter support hole 35a is formed in the center, and the outer periphery is not shown at a position corresponding to each bolt insertion hole 34b of each shoe 34a. These four bolt holes are drilled. The rear cover 36 is integrally provided with a gear portion 36a meshing with the timing chain on the rear end side, and a large-diameter bearing hole 36b is formed in the center in the axial direction.
 ベーン部材32は、中央にボルト挿通孔を有する円環状のベーンロータ32aと、ベーンロータ32aの外周面の周方向のほぼ90°位置に一体に設けられた4つのベーン32bとを備えている。ベーンロータ32aは、前端側の小径筒部がフロントカバー35の支持孔35aに回転自在に支持されている一方、後端側の小径な円筒部がリアカバー36の軸受孔36bに回転自在に支持されている。また、ベーン部材32は、ベーンロータ32aのボルト挿通孔に軸方向から挿通した固定ボルト57によって駆動軸6の前端部に軸方向から固定されている。 The vane member 32 includes an annular vane rotor 32a having a bolt insertion hole in the center, and four vanes 32b integrally provided at a substantially 90 ° position in the circumferential direction of the outer peripheral surface of the vane rotor 32a. In the vane rotor 32a, a small-diameter cylindrical portion on the front end side is rotatably supported by the support hole 35a of the front cover 35, while a small-diameter cylindrical portion on the rear end side is rotatably supported by the bearing hole 36b of the rear cover 36. Yes. The vane member 32 is fixed to the front end portion of the drive shaft 6 from the axial direction by a fixing bolt 57 inserted through the bolt insertion hole of the vane rotor 32a from the axial direction.
 各ベーン32bは、その内の3つが比較的細長い長方体形状に形成され、他の1つの幅長さが大きな台形状に形成されて、3つのベーン32bはそれぞれの幅長さがほぼ同一に設定されているのに対して1つのベーン32bはその幅長さが3つのものよりも大きく設定されて、ベーン部材32全体の重量バランスが取られている。また、各ベーン32bは、各シュー34a間に配置されていると共に、各外面の軸方向に形成された細長い保持溝内にハウジング34の内周面に摺接するコ字形のシール部材40及びシール部材40をハウジング34の内周面方向に押圧する板ばねが夫々嵌着保持されている。また、各ベーン32bの駆動軸6の回転方向と反対側のそれぞれの一側面には、ほぼ円形状の2つの凹溝32cがそれぞれ形成されている。また、この各ベーン32bの両側と各シュー34aの両側面との間に、それぞれ4つの進角側油圧室41と遅角側油圧室42がそれぞれ隔成されている。 Each of the vanes 32b is formed in a relatively long and narrow rectangular shape, and the other one is formed in a trapezoidal shape having a large width. The three vanes 32b are substantially the same in width and length. In contrast, the width of one vane 32b is set to be larger than three, and the weight balance of the entire vane member 32 is achieved. Each vane 32b is disposed between the shoes 34a and has a U-shaped seal member 40 and a seal member that are in sliding contact with the inner peripheral surface of the housing 34 in an elongated holding groove formed in the axial direction of each outer surface. A leaf spring that presses 40 toward the inner peripheral surface of the housing 34 is fitted and held. Further, two substantially circular concave grooves 32c are formed on one side surface of each vane 32b opposite to the rotation direction of the drive shaft 6 respectively. Further, four advance-side hydraulic chambers 41 and retard-side hydraulic chambers 42 are separated from both sides of each vane 32b and both sides of each shoe 34a, respectively.
 油圧回路は、図7に示すように、各進角側油圧室41に対して作動油の油圧を給排する第1油圧通路43と、各遅角側油圧室42に対して作動油の油圧を給排する第2油圧通路44との2系統の油圧通路を有し、この両油圧通路43、44には、供給通路45とドレン通路46とが夫々通路切り換え用の電磁切換弁47を介して接続されている。供給通路45には、オイルパン48内の油を圧送する一方向のオイルポンプ49が設けられている一方、ドレン通路46の下流端がオイルパン48に連通している。 As shown in FIG. 7, the hydraulic circuit includes a first hydraulic passage 43 that supplies and discharges hydraulic oil pressure to and from each advance angle hydraulic chamber 41, and hydraulic oil pressure to each retard angle hydraulic chamber 42. The two hydraulic passages 43 and 44 are provided with a supply passage 45 and a drain passage 46 via an electromagnetic switching valve 47 for switching the passage. Connected. The supply passage 45 is provided with a one-way oil pump 49 for pumping oil in the oil pan 48, while the downstream end of the drain passage 46 communicates with the oil pan 48.
 第1、第2油圧通路43、44は、円柱状の通路構成部39の内部にわたって形成され、この通路構成部39は、一端部がベーンロータ32aの小径筒部から内部の支持穴32d内に挿通配置されている一方、他端部が電磁切換弁47に接続されている。また、通路構成部39の一端部の外周面と支持穴14dの内周面との間には、各油圧通路43、44の一端側間を隔成シールする3つの環状シール部材27が嵌着固定されている。 The first and second hydraulic passages 43 and 44 are formed over the inside of the cylindrical passage constituting portion 39, and one end portion of this passage constituting portion 39 is inserted from the small diameter cylindrical portion of the vane rotor 32a into the internal support hole 32d. On the other hand, the other end is connected to the electromagnetic switching valve 47. In addition, three annular seal members 27 are provided between the outer peripheral surface of one end of the passage constituting portion 39 and the inner peripheral surface of the support hole 14d so as to separate and seal one end side of each of the hydraulic passages 43 and 44. It is fixed.
 第1油圧通路43は、支持穴32dの駆動軸6側の端部に形成された油室43aと、ベーンロータ32aの内部にほぼ放射状に形成されて油室43aと各進角側油圧室41とを連通する4本の分岐路43bとを備えている。一方、第2油圧通路44は、通路構成部39の一端部内で止められ、一端部の外周面に形成された環状室44aと、ベーンロータ32の内部にほぼL字形状に折曲形成されて、環状室44aと各遅角側油圧室42と連通する第2油路44bとを備えている。 The first hydraulic passage 43 is formed in an oil chamber 43a formed at the end of the support hole 32d on the drive shaft 6 side, and is substantially radially formed inside the vane rotor 32a, and the oil chamber 43a and each advance side hydraulic chamber 41 And four branch paths 43b communicating with each other. On the other hand, the second hydraulic passage 44 is stopped within one end portion of the passage constituting portion 39, and is formed into an annular chamber 44a formed on the outer peripheral surface of the one end portion and a substantially L-shaped bend inside the vane rotor 32, An annular chamber 44a and a second oil passage 44b communicating with each retarded-side hydraulic chamber 42 are provided.
 電磁切換弁47は、4ポート3位置型であって、内部の弁体が各油圧通路43、44と供給通路45及びドレン通路46とを相対的に切り替え制御するようになっていると共に、コントローラ22からの制御信号によって切り替え作動されるようになっている。この吸気VTC3の電磁切換弁47は、制御電流が作用しない場合に、供給通路45が進角側油圧室41に連通する第1油圧通路43と連通し、ドレン通路46が遅角側油圧室42と連通する第2油圧通路44に連通するようになっている。 The electromagnetic switching valve 47 is a four-port three-position type, and an internal valve element is configured to relatively switch and control the hydraulic passages 43 and 44, the supply passage 45 and the drain passage 46, and a controller. Switching operation is performed by a control signal from 22. In the electromagnetic switching valve 47 of the intake VTC 3, the supply passage 45 communicates with the first hydraulic passage 43 communicating with the advance side hydraulic chamber 41 and the drain passage 46 is retarded with respect to the retard side hydraulic chamber 42 when the control current does not act. The second hydraulic passage 44 communicates with the second hydraulic passage 44.
 また、電磁切換弁47内のコイルスプリングによって機械的にかかるポジションとなるように形成されている。コントローラ22は、排気VEL1と共通のものであって、機関運転状態を検出すると共に、クランク角センサ10及び駆動軸角度センサ28(吸気側)からの信号によってタイミングスプロケット31Bと駆動軸6との相対回転位置を検出している。 Further, the position is mechanically applied by a coil spring in the electromagnetic switching valve 47. The controller 22 is common to the exhaust VEL1, detects the engine operating state, and determines the relative relationship between the timing sprocket 31B and the drive shaft 6 based on signals from the crank angle sensor 10 and the drive shaft angle sensor 28 (intake side). The rotational position is detected.
 また、ベーン部材32とハウジング34との間には、このハウジング34に対してベーン部材32の回転を拘束及び拘束を解除する拘束手段であるロック機構が設けられている。このロック機構は、幅長さの大きな1つのベーン32bとリアカバー36との間に設けられ、ベーン32bの内部の駆動軸6の軸方向に沿って形成された摺動用穴50と、摺動用穴50の内部に摺動自在に設けられた有蓋円筒状のロックピン51と、リアカバー36に有する固定孔内に固定された横断面カップ状の係合穴構成部52に設けられて、ロックピン51のテーパ状先端部51aが係脱する係合穴52aと、摺動用穴50の底面側に固定されたスプリングリテーナ53に保持されて、ロックピン51を係合穴52a方向へ付勢するばね部材54とから構成されている。係合穴52aには、図外の油孔を介して進角側油圧室41内の油圧あるいはオイルポンプ49の油圧が直接供給されるようになっている。 Also, a locking mechanism is provided between the vane member 32 and the housing 34 as a restraining means for restraining the rotation of the vane member 32 relative to the housing 34 and releasing the restraint. This locking mechanism is provided between one vane 32b having a large width and the rear cover 36, and includes a sliding hole 50 formed along the axial direction of the drive shaft 6 inside the vane 32b, and a sliding hole. 50 is provided in a lid-shaped cylindrical lock pin 51 slidably provided in the interior of 50 and an engagement hole constituting portion 52 having a cup-shaped cross section fixed in a fixing hole provided in the rear cover 36. A spring member that is held by an engagement hole 52a that engages and disengages the tapered tip portion 51a and a spring retainer 53 that is fixed to the bottom surface side of the sliding hole 50 and biases the lock pin 51 toward the engagement hole 52a. 54. The hydraulic pressure in the advance side hydraulic chamber 41 or the hydraulic pressure of the oil pump 49 is directly supplied to the engagement hole 52a through an oil hole (not shown).
 そして、ロックピン51は、ベーン部材32が最進角側に回転した位置で、先端部51aがばね部材54のばね力によって係合穴52aに係合してタイミングスプロケット31B(36)と駆動軸6との相対回転をロックする。また、進角側油圧室41から係合穴52a内に供給された油圧あるいはオイルポンプ49の油圧によって、ロックピン51が後退移動して係合穴52aとの係合が解除されるようになっている。また、各ベーン32bの一側面とこの一側面に対向する各シュー34aの対向面との間には、ベーン部材32を進角側へ回転付勢する付勢部材である一対のコイルスプリング55、56が配置されている。各コイルスプリング55、56は、最大圧縮変形時にも互いが接触しない軸間距離をもって並設されていると共に、各一端部がベーン32bの凹溝32cに嵌合する図外の薄板状のリテーナを介して連結されている。 The lock pin 51 is located at the position where the vane member 32 is rotated to the most advanced angle side, and the tip 51a is engaged with the engagement hole 52a by the spring force of the spring member 54, so that the timing sprocket 31B (36) and the drive shaft are engaged. Lock relative rotation with 6. Further, the lock pin 51 moves backward by the hydraulic pressure supplied from the advance side hydraulic chamber 41 into the engagement hole 52a or the hydraulic pressure of the oil pump 49, and the engagement with the engagement hole 52a is released. ing. In addition, a pair of coil springs 55, which are biasing members that urge the vane member 32 to advance, are provided between one side surface of each vane 32b and the opposing surface of each shoe 34a facing the one side surface. 56 is arranged. The coil springs 55 and 56 are arranged side by side with an inter-axis distance so that they do not contact each other even during maximum compression deformation, and each of the coil springs 55 and 56 is a thin plate-like retainer (not shown) that fits into the groove 32c of the vane 32b. Are connected through.
 以下、吸気VTC3の基本的な動作を説明すると、まず、機関停止時には、コントローラ22から電磁切換弁47に対する制御電流の出力が停止されて、弁体がコイルスプリング55、56のばね力によって機械的に図6Aに示すデフォルト位置になり、供給通路45と進角側の第1油圧通路43とが連通されると共に、ドレン通路46と遅角側の第2油圧通路44が連通される。また、かかる機関が停止された状態ではオイルポンプ49の油圧が作用せず供給油圧も0になる。 Hereinafter, the basic operation of the intake VTC 3 will be described. First, when the engine is stopped, output of the control current from the controller 22 to the electromagnetic switching valve 47 is stopped, and the valve body is mechanically driven by the spring force of the coil springs 55 and 56. 6A, the supply passage 45 and the first hydraulic passage 43 on the advance side communicate with each other, and the drain passage 46 and the second hydraulic passage 44 on the retard side communicate with each other. Further, when the engine is stopped, the oil pressure of the oil pump 49 does not act and the supply oil pressure becomes zero.
 したがって、ベーン部材32は、図6Aに示すように、各コイルスプリング55、56のばね力によって最進角側に回転付勢されて1つの幅広ベーン32bの一端面が対向する1つのシュー34aの一側面に当接すると同時に、ロック機構のロックピン51の先端部51aが係合穴52a内に係入して、ベーン部材32をかかる最進角位置に安定に保持する。すなわち、最進角位置に吸気VTC3が機械的に安定するデフォルト位置になっている。ここで、デフォルト位置とは、非作動時、つまり、油圧が作用しない場合に機械的に自動的に安定する位置のことである。 Therefore, as shown in FIG. 6A, the vane member 32 is rotationally biased to the most advanced angle side by the spring force of each coil spring 55, 56, and one shoe 34a of one wide vane 32b is opposed to one end surface. Simultaneously with contact with one side surface, the tip 51a of the lock pin 51 of the lock mechanism is engaged in the engagement hole 52a, and the vane member 32 is stably held at the most advanced position. In other words, the intake VTC 3 is at the default position where the intake VTC 3 is mechanically stabilized at the most advanced position. Here, the default position is a position that is automatically and mechanically stabilized when not operating, that is, when no hydraulic pressure is applied.
 したがって、電磁切換弁47に対する制御電流の出力が遮断されて吸気VTC3に油圧が作用しない場合は、最進角位置付近が機械的安定位置(デフォルト)となっている。本実施例では後述するように、この場合の吸気弁閉時期(IVC)は、吸気下死点近くで下死点に対してやや遅角側の位置になるように設定されている。 Therefore, when the output of the control current to the electromagnetic switching valve 47 is shut off and no hydraulic pressure acts on the intake VTC 3, the vicinity of the most advanced angle position is the mechanical stable position (default). In this embodiment, as will be described later, the intake valve closing timing (IVC) in this case is set to be slightly retarded with respect to the bottom dead center near the intake bottom dead center.
 ここで、後述する図9Aに示すように、始動時のバルブタイミングは、排気側は排気VEL1により、排気最小作動角度D1、排気弁の閉時期(EVC1)、排気弁の開時期(EVO1)であるが、これらは始動時に制御される排気バルブタイミングであり、且つ上述の機械的に安定するデフォルトバルブタイミングとなっている。ここで、排気弁の閉時期(EVC)と排気弁の開時期(EVO)の間の作動角度Dは図5に示すように、排気VEL1の働きによって調整されるものである。 Here, as shown in FIG. 9A to be described later, the valve timing at the time of start is determined by the exhaust VEL1 on the exhaust side, the exhaust minimum operating angle D1, the exhaust valve closing timing (EVC1), and the exhaust valve opening timing (EVO1). However, these are the exhaust valve timings controlled at start-up, and the above-mentioned mechanically stable default valve timings. Here, the operating angle D between the exhaust valve closing timing (EVC) and the exhaust valve opening timing (EVO) is adjusted by the action of the exhaust VEL1, as shown in FIG.
 また、吸気側は吸気VTC3により最進角の位置、すなわち、吸気弁の開時期(IVO1)、吸気弁の閉時期(IVC1)になっており、これらが始動時に制御される吸気バルブタイミングであり、且つ上述の機械的に安定するデフォルトバルブタイミングとなっている。ここで、吸気弁の開時期(IVO)と吸気弁の閉時期(IVC)との間の作動角度は常に一定であり、吸気VTC3の働きにより、吸気弁の開時期(IVO)と吸気弁の閉時期(IVC)の位相が同じ量だけ変更されるものである。 Further, the intake side is at the most advanced angle position by the intake VTC3, that is, the intake valve opening timing (IVO1) and the intake valve closing timing (IVC1), which are the intake valve timing controlled at the start. And the above-mentioned mechanically stable default valve timing. Here, the operating angle between the opening timing (IVO) of the intake valve and the closing timing (IVC) of the intake valve is always constant, and the opening timing (IVO) of the intake valve and the intake valve are controlled by the action of the intake VTC3. The phase of the closing timing (IVC) is changed by the same amount.
 このように、始動前のエンジン停止時には、排気VEL1、吸気VTC3によって吸排気弁のバルブタイミングは機械的に予め安定している。つまり、始動燃焼の初期からこれらのバルブタイミングによる始動性効果を得ることができるのである。このような始動性を向上するための動作、作用については後述する。 Thus, when the engine is stopped before starting, the valve timing of the intake and exhaust valves is mechanically stabilized in advance by the exhaust VEL1 and the intake VTC3. That is, the startability effect by these valve timings can be obtained from the initial stage of the start combustion. Operations and effects for improving such startability will be described later.
 次に、機関始動時、つまりイグニッションスイッチをオン操作して、駆動モータ09などによりクランクシャフトをクランキング回転させると、電磁切換弁47にコントローラ22から制御信号が出力されるようになる。しかしながら、このクランク開始直後の時点では、まだオイルポンプ49の吐出油圧が十分に上昇していないことから、ベーン部材32は、ロック機構と各コイルスプリング55、56のばね力とによって最進角側に保持されている。 Next, when the engine is started, that is, when the ignition switch is turned on and the crankshaft is cranked by the drive motor 09 or the like, a control signal is output from the controller 22 to the electromagnetic switching valve 47. However, at the time immediately after the start of the crank, the discharge hydraulic pressure of the oil pump 49 has not yet sufficiently increased, so that the vane member 32 is moved to the most advanced angle side by the lock mechanism and the spring force of the coil springs 55 and 56. Is held in.
 このとき、コントローラ22から出力された制御信号によって電磁切換弁47が供給通路45と第1油圧通路43を連通させると共に、ドレン通路46と第2油圧通路44とを連通させている。そして、クランキングが進み、オイルポンプ49から圧送された油圧の油圧上昇とともに第1油圧通路43を通って進角側油圧室41に供給される一方、遅角側油圧室42には、機関停止時と同じく油圧が供給されずにドレン通路46から油圧がオイルパン48内に開放されて低圧状態を維持している。 At this time, the electromagnetic switching valve 47 causes the supply passage 45 and the first hydraulic passage 43 to communicate with each other and the drain passage 46 and the second hydraulic passage 44 communicate with each other according to the control signal output from the controller 22. Then, the cranking advances, and the hydraulic pressure pumped from the oil pump 49 is supplied to the advance side hydraulic chamber 41 through the first hydraulic passage 43 as the hydraulic pressure is increased. The hydraulic pressure is released from the drain passage 46 into the oil pan 48 without being supplied with the hydraulic pressure, and the low pressure state is maintained.
 ここで、クランキング回転が上昇し油圧がさらに上昇した後は、電磁切換弁47によるベーン位置制御ができるようになる。すなわち、進角側油圧室41の油圧の上昇に伴ってロック機構の係合穴52a内の油圧も高まってロックピン51が後退移動し、先端部51aが係合穴52aから抜け出してハウジング34に対するベーン部材32の相対回転を許容するため、ベーン位置制御が可能になる。 Here, after the cranking rotation is increased and the hydraulic pressure is further increased, the vane position control by the electromagnetic switching valve 47 can be performed. That is, as the hydraulic pressure in the advance side hydraulic chamber 41 rises, the hydraulic pressure in the engagement hole 52a of the lock mechanism also increases, the lock pin 51 moves backward, and the distal end portion 51a comes out of the engagement hole 52a to the housing 34. Since the relative rotation of the vane member 32 is allowed, the vane position can be controlled.
 例えば、コントローラ22からの制御信号によって電磁切換弁47が作動して、供給通路45と第2油圧通路44を連通させる一方、ドレン通路46と第1油圧通路43を連通させる。したがって、進角側油圧室41内の油圧が第1油圧通路43を通ってドレン通路46からオイルパン48内に戻され、進角側油圧室41内が低圧になる一方、遅角側油圧室42内に油圧が供給されて高圧となる。 For example, the electromagnetic switching valve 47 is operated by a control signal from the controller 22 to connect the supply passage 45 and the second hydraulic passage 44, while connecting the drain passage 46 and the first hydraulic passage 43. Accordingly, the hydraulic pressure in the advance side hydraulic chamber 41 is returned to the oil pan 48 from the drain passage 46 through the first hydraulic passage 43 and the pressure in the advance side hydraulic chamber 41 becomes low, while the retard side hydraulic chamber is reduced. The hydraulic pressure is supplied into 42 to become a high pressure.
 よって、ベーン部材32は、かかる遅側油圧室42内の高圧化によって各コイルスプリング55、56のばね力に抗して図中反時計方向へ回転して図6Bに示す位置に向かって相対回転して、タイミングスプロケット31Bに対する駆動軸6の相対回転位相を遅角側に変換する。また、変換の途中で電磁切換弁47のポジションを中立位置にすることで、任意の相対回転位相に保持できる。更に、始動後の機関運転状態に応じて相対回転位相を最進角(図6A)から最遅角(図6B)まで連続的に変化させることができる。 Therefore, the vane member 32 rotates counterclockwise in the figure against the spring force of each of the coil springs 55 and 56 due to the high pressure in the slow hydraulic chamber 42 and relatively rotates toward the position shown in FIG. 6B. Then, the relative rotational phase of the drive shaft 6 with respect to the timing sprocket 31B is converted to the retard side. Further, by setting the position of the electromagnetic switching valve 47 to the neutral position during the conversion, it can be held at an arbitrary relative rotational phase. Furthermore, the relative rotational phase can be continuously changed from the most advanced angle (FIG. 6A) to the most retarded angle (FIG. 6B) according to the engine operating state after starting.
 また、排気VTC2を併用する場合は、基本には本実施例で使用される吸気VTC3と同様にベーンタイプのものである。簡単に説明すると、排気側の駆動軸6の端部に配置されて、クランクシャフト07から図外のタイミングチェ-ンを介して回転駆動力が伝達されるタイミングスプロケット31Aと、該タイミングスプロケット31Aの内部に回転自在に収容されたベーン部材と、ベーン部材を油圧によって正逆回転させる油圧回路とを備えている。 Further, when the exhaust VTC 2 is used together, basically, it is of the vane type like the intake VTC 3 used in the present embodiment. Briefly, a timing sprocket 31A disposed at an end of the drive shaft 6 on the exhaust side and transmitting a rotational driving force from the crankshaft 07 via a timing chain (not shown), and the timing sprocket 31A A vane member that is rotatably accommodated therein and a hydraulic circuit that rotates the vane member forward and backward by hydraulic pressure are provided.
 また、前述の吸気VTC3と同様に最進角デフォルトであって、ベ―ンを付勢するコイルスプリングは、同様に進角方向に付勢するようになっている。なお、油圧回路、電磁切換弁は基本的に吸気VTC3のものと同様であり、内部の弁体が各油圧通路と供給通路及びドレン通路とを相対的に切り替え制御するようになっていると共に、同じコントローラ22からの制御信号によって切り替え作動されるようになっている。また、同じ最進角デフォルトであるため、前述の図7における電磁切換弁の3位置と同様の配置となっている。 Further, as with the above-described intake VTC 3, it is the most advanced angle default, and the coil spring for energizing the vane is also energized in the advance direction. The hydraulic circuit and the electromagnetic switching valve are basically the same as those of the intake VTC 3, and the internal valve body is configured to relatively switch and control each hydraulic passage, supply passage, and drain passage, Switching operation is performed by a control signal from the same controller 22. Moreover, since it is the same most advanced angle default, it has the same arrangement as the three positions of the electromagnetic switching valve in FIG.
 このような動作を行う排気VEL1及び吸気VTC3、場合によっては排気VTC2を併用して、本実施例では以下に示すようなアトキンソンサイクルを行うようにしている。以下、図8A乃至図8Dを用いてその詳細な説明を行う。図8A乃至図8DはバルブタイミングとPV線図(筒内圧指圧線図)の関係を示す説明図であり、縦軸のPは筒内圧を示し、横軸のVは気筒容積を示している。尚、この時の運転状態は、いずれも絞り弁(スロットル)を略全開にした状態でのバルブタイミングとPV線図である。 In this embodiment, the following Atkinson cycle is performed by using the exhaust VEL1 and the intake VTC3 that perform such an operation, and in some cases, the exhaust VTC2. Hereinafter, the detailed description will be given with reference to FIGS. 8A to 8D. 8A to 8D are explanatory diagrams showing the relationship between the valve timing and the PV diagram (in-cylinder pressure / thin pressure diagram), where the vertical axis P indicates the in-cylinder pressure and the horizontal axis V indicates the cylinder volume. The operating state at this time is a valve timing and a PV diagram in a state where the throttle valve (throttle) is substantially fully opened.
 まず、図8Aに基づいてアトキンソンサイクルの簡単な説明とその課題について説明する。図8Aは、一般的な中負荷状態の通常のアトキンソンサイクルのバルブタイミングとPV線図を示しているが、特許文献1に示すものではない。尚、図8Aは本実施例を説明するための基礎となるバルブタイミングを示しているもので、この図8Aを基に本実施例及び本実施例と比較した参考例を説明する。 First, a brief description of the Atkinson cycle and its problems will be described based on FIG. 8A. FIG. 8A shows a valve timing and PV diagram of a normal Atkinson cycle in a general medium load state, but is not shown in Patent Document 1. FIG. 8A shows a valve timing which is a basis for explaining the present embodiment, and the present embodiment and a reference example compared with the present embodiment will be described based on FIG. 8A.
 図8Aに示しているように吸気VTC3によって、吸気弁の開弁時期(IVO)は吸気上死点(=排気上死点)付近に設定され、また、予め設定された作動角によって吸気弁の閉時期(IVC)は、吸気下死点(BDC)後90°手前まで比較的大きく遅角した一般的なアトキンソンサイクルの吸気バルブタイミングを示している。一方、排気弁の開弁時期(EVO)は排気下死点より進角側に設定され、また、排気弁の閉時期(EVC)は、排気上死点付近である一般的な排気バルブタイミングに設定されている。 As shown in FIG. 8A, the intake valve opening timing (IVO) is set in the vicinity of the intake top dead center (= exhaust top dead center) by the intake VTC3, and the intake valve is controlled by a preset operating angle. The closing timing (IVC) indicates the intake valve timing of a general Atkinson cycle that is delayed by a relatively large angle until 90 ° before the intake bottom dead center (BDC). On the other hand, the opening timing (EVO) of the exhaust valve is set to an advance side from the exhaust bottom dead center, and the closing timing (EVC) of the exhaust valve is set to a general exhaust valve timing near the exhaust top dead center. Is set.
 このように吸排気弁のバルブタイミングを設定することで、特に吸気弁の閉時期(IVC)をより遅角することによって、有効圧縮比を低くでき、これにより耐ノッキング性能が向上できるので、その分だけ幾何学的(機械)圧縮比(=膨張比)、すなわち、下死点における筒内容積を上死点における筒内容積で割った値を大きく設定できる。 By setting the valve timing of the intake and exhaust valves in this way, the effective compression ratio can be lowered by delaying the closing timing (IVC) of the intake valve in particular, thereby improving the anti-knock performance. The geometric (mechanical) compression ratio (= expansion ratio), that is, a value obtained by dividing the in-cylinder volume at the bottom dead center by the in-cylinder volume at the top dead center can be set larger.
 この膨張比(=幾何学的圧縮比)が高い程膨張仕事を大きくできるので熱効率が高く、燃費低減効果を向上することが可能となる。すなわち、アトキンソンサイクルによる、かかる低有効圧縮比/高膨張比の効果により燃費が向上できるようになる。 As the expansion ratio (= geometric compression ratio) is higher, the expansion work can be increased, so that the thermal efficiency is higher and the fuel consumption reduction effect can be improved. That is, fuel efficiency can be improved by the effect of the low effective compression ratio / high expansion ratio by the Atkinson cycle.
 アトキンソンサイクルには更なる燃費向上メカニズムがある。すなわち、吸気弁の閉時期(IVC)を遅角すると、吸気充填効率が低くなるので所定トルクを出す場合における、スロットル(絞り弁)開度が相対的に大きくなり、その分吸気管負圧が減少して大気圧レベルに近づけることができる。これにより、吸入行程で生じるポンプ損失(ポンピング損失)を低減することが可能となり、これによってもさらに燃費低減効果を向上することができる。 The Atkinson cycle has a further fuel economy improvement mechanism. That is, if the intake valve closing timing (IVC) is retarded, the intake charging efficiency is lowered, so that the throttle (throttle valve) opening degree is relatively large when a predetermined torque is output, and the intake pipe negative pressure is accordingly increased. It can be reduced to approach atmospheric pressure levels. As a result, it is possible to reduce pump loss (pumping loss) generated in the intake stroke, and this can further improve the fuel consumption reduction effect.
 このアトキンソンサイクルによれば、かかる中負荷領域においても絞り弁開度をほぼ全開付近で運転でき、図8A下図のPV線図に示すように、吸気上死点TDCから吸気下死点BDCに至る吸入行程において、筒内圧(P)は略大気圧レベルとなる。また、排気行程における排気下死点BDCから排気上死点TDC至る間のP曲線と、吸気行程における吸気上死点TDCから吸気下死点BDCにおけるP曲線とで囲まれる面積はポンプ損失を意味するが、このポンプ損失も充分低下できるので、これによっても燃費低減効果を向上することができるのである。 According to this Atkinson cycle, the throttle valve opening can be operated almost fully open even in such a middle load region, and as shown in the PV diagram in the lower part of FIG. 8A, it reaches from the intake top dead center TDC to the intake bottom dead center BDC. In the intake stroke, the in-cylinder pressure (P) is substantially at the atmospheric pressure level. Further, the area surrounded by the P curve from the exhaust bottom dead center BDC to the exhaust top dead center TDC in the exhaust stroke and the P curve from the intake top dead center TDC to the intake bottom dead center BDC in the intake stroke means pump loss. However, since this pump loss can be sufficiently reduced, the fuel consumption reduction effect can also be improved.
 ここで、中負荷領域とは、例えば車速を100km/h~120km/hでほぼ一定速度に保つような状態などが該当する。 Here, the medium load region corresponds to, for example, a state where the vehicle speed is maintained at a substantially constant speed of 100 km / h to 120 km / h.
 尚、図8AのPV線図は、分かりやすくするために排気行程でのP曲線と吸気行程でのP曲線はほぼ同じ大気圧線上に乗るよう描いている。つまり、この間のポンプ損失がゼロになるよう描いているが、実際は若干のポンプ損失(両曲線に囲まれる面積)が存在するのだが、分かりやすくするためにこのような図にしている。 The PV diagram in FIG. 8A is drawn so that the P curve in the exhaust stroke and the P curve in the intake stroke are on substantially the same atmospheric pressure line for the sake of clarity. In other words, the pump loss during this period is drawn to be zero, but in reality there is some pump loss (area surrounded by both curves), but for the sake of clarity, this figure is shown.
 このようにアトキンソンサイクルによると、低圧縮比/高膨張比化による熱効率向上やポンプ損失の低減により大きな燃費低減効果が得られるので、更にこのアトキンソンサイクルの拡大が今後の方向として注目されている。 As described above, according to the Atkinson cycle, a large fuel consumption reduction effect can be obtained by improving the thermal efficiency and reducing the pump loss due to the low compression ratio / high expansion ratio. Therefore, the expansion of the Atkinson cycle is attracting attention as a future direction.
 ここでいう低圧縮比とは、有効圧縮比が低いことを言う。すなわち、IVCが吸気下死点後90°を越えて大きく遅角すると、このIVCに対応する高いピストン位置から実質的な圧縮が開始されるので、実質的な有効圧縮比は低下するのである。その場合、耐ノッキング性が向上するので、高機械圧縮比(高膨張比)に設定でき、熱効率が向上して、燃費も向上するのである。 The low compression ratio here means that the effective compression ratio is low. That is, when the IVC is largely retarded beyond 90 ° after the intake bottom dead center, substantial compression is started from a high piston position corresponding to the IVC, so that the substantial effective compression ratio is lowered. In that case, since the knocking resistance is improved, it can be set to a high mechanical compression ratio (high expansion ratio), the thermal efficiency is improved, and the fuel consumption is also improved.
 ただ、このようなアトキンソンサイクルであっても、負荷を低減して低負荷領域に移行させる場合、トルクを下げるために絞り弁(スロットル)の開度を絞らざるを得ず、これによりポンプ損失が増加してしまう状況が発生する。そこで、吸気弁の閉時期(IVC)をさらに遅角すると、絞り弁の開度を全開近くに維持したまま充填効率(トルク)を下げられるので、低負荷領域でのポンプ損失を低減して燃費の低減を図ることができる、と考えられる。また、有効圧縮比が更に下がるので、その分だけさらに耐ノッキング性が向上し、さらに高膨張比(高機械圧縮比)に設定でき、熱効率をさらに高めることができる、と考えられる。 However, even in such an Atkinson cycle, when the load is reduced and shifted to a low load region, the opening of the throttle valve (throttle) has to be reduced to reduce the torque, which reduces pump loss. An increasing situation occurs. Therefore, if the closing timing (IVC) of the intake valve is further retarded, the charging efficiency (torque) can be lowered while maintaining the opening of the throttle valve close to full open, so that the pump loss in the low load region is reduced and the fuel consumption is reduced. It is thought that reduction of this can be aimed at. Further, since the effective compression ratio is further lowered, it is considered that the knocking resistance is further improved, and the high expansion ratio (high mechanical compression ratio) can be further set, so that the thermal efficiency can be further increased.
 ここで、低負荷領域とは、例えば車速を30km/h~40km/hでほぼ一定速度に保つような状態、もしくはエンジン回転数を1000rpmでほぼ一定回転数に保つ状態などが該当する。 Here, the low load region corresponds to, for example, a state in which the vehicle speed is kept at a substantially constant speed of 30 km / h to 40 km / h, or a state in which the engine speed is kept at a substantially constant speed at 1000 rpm.
 このように、吸気弁の閉時期(IVC)をさらに遅角すると、ポンプ損失の低減や熱効率の向上により、燃費を更に向上できる、或いは、燃費の良いアトキンソンサイクルの使用範囲を低負荷側に拡大することができるようになる、と考えられる。このような、観点から、低負荷側まで充分に燃費を向上するために、吸気弁の閉時期(IVC)を更に遅角させるアトキンソンサイクルの低負荷側への拡大が模索されている。 In this way, if the intake valve closing timing (IVC) is further retarded, fuel efficiency can be further improved by reducing pump loss and improving thermal efficiency, or the use range of the Atkinson cycle with good fuel efficiency can be expanded to the low load side. It will be possible to do that. From such a viewpoint, in order to sufficiently improve the fuel efficiency up to the low load side, the expansion of the Atkinson cycle to the low load side for further retarding the closing timing (IVC) of the intake valve is being sought.
 その一例として、前述の特許文献1にあるような可変動弁装置が提案されているが、前述のように吸気弁の作動角度が著しく大きいことによる駆動フリクション損失の増加や、さらには前述のような始動性不良の問題がある。このため、吸気弁の作動角度を過大でない標準的な作動角度に設定する必要性があり、その前提で検討した結果を図8B乃至図8Dに示している。 As an example, a variable valve device as described in the above-mentioned Patent Document 1 has been proposed. However, as described above, an increase in driving friction loss due to a significantly large operating angle of the intake valve, and further, as described above. There is a problem of poor startability. For this reason, there is a need to set the operation angle of the intake valve to a standard operation angle that is not excessive, and the results of investigation on the premise are shown in FIGS. 8B to 8D.
 図8C(参考例1)は吸気弁の作動角度及び排気弁の作動角度を図8Aに示すような中負荷での一般的なアトキンソンサイクルと同程度の作動角度に設定し、これを低負荷側まで拡大したものである。この場合、排気弁の開時期(EVO)と閉時期(EVC)は図8Aと同じであり、吸気VTC3を作動させて吸気弁の閉時期(IVC)を、吸気下死点(BDC)後90°より更に遅角制御した参考例を示している。すなわち、吸気弁閉時期を一層遅角化することで、充填効率を一層低下させ、それにより、絞り弁をほぼ全開とした状態で、低負荷(低トルク)を実現しようとしたものである。 In FIG. 8C (Reference Example 1), the operating angle of the intake valve and the operating angle of the exhaust valve are set to the same operating angle as that of a general Atkinson cycle at a medium load as shown in FIG. 8A. It has been expanded to. In this case, the opening timing (EVO) and closing timing (EVC) of the exhaust valve are the same as those in FIG. 8A. The intake VTC 3 is operated to set the closing timing (IVC) of the intake valve to 90 after the intake bottom dead center (BDC). A reference example in which the retard angle control is further performed than ° is shown. That is, by further retarding the intake valve closing timing, the charging efficiency is further reduced, thereby attempting to realize a low load (low torque) with the throttle valve substantially fully open.
 この参考例1の場合だと、吸気VTC3によって吸気弁の開時期(IVO)も吸気上死点後の所定位相まで遅角してしまうことになる。その結果、吸気上死点付近から吸気弁の開時期(IVO)の間は、吸気弁と排気弁の双方が閉じているマイナスオーバーラップ期間の状態となる。このため、PV線図にもあるようにピストンが下がり始める吸気行程の初期において筒内が負圧になり、この部分で別のポンプ損失が発生してその分だけ燃費低減効果が目減りしてしまうことになる。 In the case of the reference example 1, the intake valve opening timing (IVO) is also delayed by the intake VTC 3 to a predetermined phase after the intake top dead center. As a result, from the vicinity of the intake top dead center to the opening timing (IVO) of the intake valve, a state of a minus overlap period in which both the intake valve and the exhaust valve are closed is entered. For this reason, as shown in the PV diagram, the cylinder becomes negative pressure at the beginning of the intake stroke when the piston starts to fall, and another pump loss occurs in this portion, and the fuel consumption reduction effect is reduced accordingly. It will be.
 図8D(参考例2)は前述の参考例1に示すマイナスオーバーラップを無くすために、排気VTC2を作動させたと想定して排気弁を遅角したものである。この場合も吸気弁の作動角度及び排気弁の作動角度を図8Aに示すものと同じ作動角度に設定し、これを低負荷側まで拡大したものある。この場合、吸気弁の開時期(IVO)と閉時期(IVC)は図8Cと同じであり、排気VTC2を作動させて排気弁の開時期(EVO)を、排気下死点(BDC)付近に遅角制御した参考例を示している。 FIG. 8D (Reference Example 2) shows the exhaust valve retarded on the assumption that the exhaust VTC 2 is operated in order to eliminate the minus overlap shown in Reference Example 1 described above. Also in this case, the operating angle of the intake valve and the operating angle of the exhaust valve are set to the same operating angle as shown in FIG. 8A, and this is expanded to the low load side. In this case, the opening timing (IVO) and closing timing (IVC) of the intake valve are the same as those in FIG. 8C, and the exhaust VTC2 is operated so that the opening timing (EVO) of the exhaust valve is near the exhaust bottom dead center (BDC). A reference example with retarded angle control is shown.
 この参考例2の場合だと、僅かに正オーバーラップが生成されることになり、前述の吸気行程の初期のポンプ損失は低減される。しかしながら、PV線図にもあるように、今度は膨張行程末期に、また別のポンプ損失が発生してしまう現象が生じる。これは、低圧縮比/高膨張比の状態で、負荷(トルク)を下げたため、膨張行程末期に筒内圧が大気圧より低くなったために生じたものである。 In the case of this reference example 2, a slight positive overlap is generated, and the pump loss at the initial stage of the intake stroke is reduced. However, as shown in the PV diagram, a phenomenon occurs in which another pump loss occurs at the end of the expansion stroke. This is because the in-cylinder pressure became lower than the atmospheric pressure at the end of the expansion stroke because the load (torque) was lowered in the state of the low compression ratio / high expansion ratio.
 このように、吸気弁の作動角度を標準的な作動角度に設定して駆動フリクション損失を抑制しつつアトキンソンサイクルを低負荷側に拡大しようとすると、吸気行程初期あるいは膨張行程末期において別のポンプ損失が大きくなるという課題が新たに発生する。 In this way, if the Atkinson cycle is expanded to the low load side while setting the operating angle of the intake valve to the standard operating angle and suppressing the drive friction loss, another pump loss will occur at the beginning of the intake stroke or at the end of the expansion stroke. A new problem arises in that
 そこで、本実施例では図8Bに示すように、吸気弁の作動角度を標準的な作動角度に設定した状態で、さらに排気VEL1を利用して排気弁の作動角度を図5に示す作動角度D4まで拡大するようにしている。 Therefore, in this embodiment, as shown in FIG. 8B, the operating angle of the exhaust valve is set to the operating angle D4 shown in FIG. 5 using the exhaust VEL1 in a state where the operating angle of the intake valve is set to a standard operating angle. It is trying to expand to.
 図8Bにおいて、図8C、図8Dと同様に吸気VTC3を作動させて吸気弁閉時期を、吸気下死点(BDC)後90°より更に遅角側に制御した閉時期(IVC4)に設定している。また、吸気VTC3によって吸気弁の開時期も吸気上死点後の所定位相の開時期(IVO4)まで遅角されている。 In FIG. 8B, the intake VTC 3 is operated as in FIGS. 8C and 8D, and the intake valve closing timing is set to the closing timing (IVC 4) that is controlled to be further retarded from 90 ° after the intake bottom dead center (BDC). ing. Further, the intake valve opening timing is retarded by the intake VTC3 until the opening timing (IVO4) of a predetermined phase after the intake top dead center.
 一方、排気弁は前述のように排気VEL1によってその作動角度が作動角度D4まで拡大されるように制御されているため、排気弁の開時期が排気下死点より前の開時期(EVO4)まで進角し、更にその閉時期が排気上死点より後の閉時期(EVC4)まで遅角して、吸気弁と正のオーバーラップを生成するようになる。このように排気弁の開時期を排気下死点より前の開時期(EVO4)まで進角させることにより、膨張行程の進行に合わせてピストンが下降して筒内圧が負圧に至る前に排気弁が開くようになる。このため、大気圧レベルの排気ポ-ト圧が筒内に進入し、筒内圧が負圧になるのを抑制して膨張行程の末期のポンプ損失を抑制できるようになる。 On the other hand, since the exhaust valve is controlled by the exhaust VEL1 so that the operating angle is expanded to the operating angle D4 as described above, the exhaust valve is opened until the open timing (EVO4) before the exhaust bottom dead center. Further, the closing timing is further delayed until the closing timing (EVC4) after exhaust top dead center to generate a positive overlap with the intake valve. As described above, the opening timing of the exhaust valve is advanced to the opening timing (EVO4) before the exhaust bottom dead center, so that the piston descends as the expansion stroke proceeds and the exhaust pressure is reduced before the cylinder pressure reaches negative pressure. The valve will open. Therefore, it is possible to suppress the pump loss at the end of the expansion stroke by suppressing the exhaust port pressure at the atmospheric pressure level from entering the cylinder and the cylinder pressure becoming negative.
 更に、排気弁の閉時期を排気上死点より後の閉時期(EVC4)まで遅角させることにより吸気行程の初期のポンプ損失を抑制でき、さらに吸気弁と正のオーバーラップを生成させれば、吸気行程の初期のポンプ損失が一層低減されるようになる。すなわち、図8BのPV線図にあるように、吸気行程初期においても膨張行程末期においても筒内圧力が負圧になることが抑制されるので、一連のポンプ損失を低減することが可能となるのである。 Furthermore, by delaying the closing timing of the exhaust valve until the closing timing (EVC4) after the exhaust top dead center, the initial pump loss of the intake stroke can be suppressed, and if a positive overlap with the intake valve is generated. The pump loss at the initial stage of the intake stroke is further reduced. That is, as shown in the PV diagram of FIG. 8B, since the in-cylinder pressure is suppressed to be negative both in the initial stage of the intake stroke and in the final stage of the expansion stroke, a series of pump losses can be reduced. It is.
 このように、本実施例によれば、吸気VTC3と排気VEL1を組み合わせて吸排気タイミングを上述のように制御するようにしたので、特許文献1のように吸気弁の作動角度を過度に大きく拡大しなくても、吸気弁閉時期(IVC)を充分遅角できるので吸気弁の駆動フリクション損失を低減することができるものである。 Thus, according to the present embodiment, the intake / exhaust timing is controlled as described above by combining the intake VTC3 and the exhaust VEL1, so that the operating angle of the intake valve is excessively enlarged as in Patent Document 1. Even if not, the intake valve closing timing (IVC) can be sufficiently retarded, so that the drive friction loss of the intake valve can be reduced.
 ここで、排気側の作動角はD4まで拡大される訳だが、これは標準作動角に対してやや大きくなる程度であり、特許文献1の過度の吸気作動角と較べたら充分に小さく、従って吸排気トータルでの動弁フリクションという意味では抑制され、その面からも燃費が向上するのである。 Here, the operating angle on the exhaust side is expanded to D4, which is slightly larger than the standard operating angle, which is sufficiently small compared to the excessive intake operating angle of Patent Document 1, and therefore the intake angle is increased. This is suppressed in the sense of valve friction in the total exhaust, and fuel efficiency is also improved in this respect.
 また、吸気弁の閉時期(IVC)を遅角したことによって吸気弁の開時期(IVO)が吸気上死点より遅角されるが、これに合わせて排気VEL1によって排気弁の閉時期(EVC)が排気上死点より更に遅角されるので、吸気行程の初期のポンプ損失を抑制でき、さらに正のオーバーラップが生成されて吸気行程の初期のポンプ損失が一層低減されるようになる。 The intake valve opening timing (IVO) is retarded from the intake top dead center by retarding the intake valve closing timing (IVC). In accordance with this, the exhaust valve closing timing (EVC) is determined by the exhaust VEL1. ) Is further retarded from the exhaust top dead center, the pump loss at the initial stage of the intake stroke can be suppressed, and a positive overlap is generated to further reduce the pump loss at the initial stage of the intake stroke.
 また、吸気弁の閉時期(IVC)を遅角したことによって吸気弁の開時期(IVO)が吸気上死点より遅角されるが、これに合わせて排気VEL1によって排気弁の閉時期(EVC)が排気上死点より更に遅角されるので、吸気行程の初期にピストンが下降する際に、吸気ポ-トからの新気導入が遅れ、排気ポ-ト側から筒内に高温の内部EGRガスを優先的に取り込むことができる。この内部EGRによる筒内加熱効果により、吸気弁の閉時期(IVC)を大きく遅角したことによる低圧縮比燃焼での燃焼安定性が改善される。更に、上述してきた作用、効果との相乗効果によってアトキンソンサイクルにおける燃費低減効果を一層向上することが可能となるものである。 The intake valve opening timing (IVO) is retarded from the intake top dead center by retarding the intake valve closing timing (IVC). In accordance with this, the exhaust valve closing timing (EVC) is determined by the exhaust VEL1. ) Is further retarded from the exhaust top dead center, so when the piston descends in the early stage of the intake stroke, the introduction of new air from the intake port is delayed, and there is a high temperature inside the cylinder from the exhaust port side. EGR gas can be preferentially taken in. Due to the in-cylinder heating effect by the internal EGR, the combustion stability in the low compression ratio combustion is improved by greatly retarding the closing timing (IVC) of the intake valve. Furthermore, it is possible to further improve the fuel consumption reduction effect in the Atkinson cycle by a synergistic effect with the above-described functions and effects.
 このように、本実施例によれば、低負荷域において、吸気弁の作動角を過度に大きく拡大しなくても、吸気弁の閉時期(IVC)を充分遅角してアトキンソンサイクルを行うことができるので、吸気弁の駆動フリクション損失が低減されて、また燃焼が改善されて、燃費低減効果を向上することが可能となる。 As described above, according to this embodiment, the Atkinson cycle is performed by sufficiently retarding the closing timing (IVC) of the intake valve without excessively increasing the operating angle of the intake valve in a low load range. Therefore, the drive friction loss of the intake valve is reduced and the combustion is improved, so that the fuel consumption reduction effect can be improved.
 次に、上述した実施例の可変動弁装置において運転領域が変わった場合のバルブタイミングの制御方法を図9A乃至図9Dに基づき説明する。 Next, a control method of the valve timing when the operation region is changed in the variable valve operating apparatus of the above-described embodiment will be described based on FIGS. 9A to 9D.
 図9Aには始動時のバルブタイミングを示している。すなわち、吸気VTC3はデフォルト状態であり最進角位置に制御されている。この状態で吸気弁の開時期(IVO1)は吸気上死点より少し前側に進角され、吸気弁の閉時期(IVC1)は吸気下死点付近、更に望ましくは吸気下死点より少し後側に遅角されている。一方、排気VEL1もデフォルト状態であり、作動角度は図5に示す最小作動角D1に制御されている。この状態で、排気弁の開時期(EVO1)は排気下死点付近であり、排気弁の閉時期(EVC1)は排気上死点付近である。この時、排気VTC2が併用される場合は、最進角のデフォルト位置(機械的に安定位置)に設定される。 FIG. 9A shows the valve timing at the start. That is, the intake VTC 3 is in the default state and is controlled to the most advanced position. In this state, the intake valve opening timing (IVO1) is advanced slightly ahead of the intake top dead center, and the intake valve closing timing (IVC1) is near the intake bottom dead center, more preferably slightly behind the intake bottom dead center. It is delayed. On the other hand, the exhaust VEL1 is also in the default state, and the operating angle is controlled to the minimum operating angle D1 shown in FIG. In this state, the exhaust valve opening timing (EVO1) is near the exhaust bottom dead center, and the exhaust valve closing timing (EVC1) is near the exhaust top dead center. At this time, when the exhaust VTC2 is used together, it is set to the default position of the most advanced angle (mechanically stable position).
 そして、吸気弁の閉時期(IVC1)は、吸気VTC3の可変範囲の中で、吸気下死点に最大限近づいた位置とすることで、充填効率を高めて始動トルクを大きくできるようにしている。また、有効圧縮比が高くなって圧縮上死点での筒内ガス温度や筒内圧力が高くなるので、始動燃焼を改善できるようになる。 The closing timing (IVC1) of the intake valve is set to a position that is as close as possible to the intake bottom dead center within the variable range of the intake VTC3, thereby increasing the charging efficiency and increasing the starting torque. . In addition, since the effective compression ratio increases and the in-cylinder gas temperature and the in-cylinder pressure at the compression top dead center increase, starting combustion can be improved.
 更に、吸気弁の開時期(IVO1)は吸気上死点前の所定位置まで進角されているが、排気弁の閉時期(EVC1)が排気上死点となっているので、バルブオーバーラップが過大になるのが抑制され、適度なバルブオーバーラップに抑えられている。その結果、新気の充填効率が充分確保され、また、高温の内部EGRガスによる吸気加熱効果も得られ燃焼が改善され、もって充分な始動トルクが得られて良好な始動性が得られるようになる。 Further, the intake valve opening timing (IVO1) is advanced to a predetermined position before the intake top dead center, but the exhaust valve closing timing (EVC1) is the exhaust top dead center, so that the valve overlap is It is suppressed from becoming excessive, and it is suppressed to a moderate valve overlap. As a result, sufficient charging efficiency of fresh air is ensured, intake air heating effect by high-temperature internal EGR gas is also obtained, combustion is improved, and sufficient starting torque is obtained and good startability is obtained. Become.
 また、この適度なバルブオーバーラップ期間により、筒内の未燃HCが排気行程で吸気系に戻されて、次のサイクルで再度筒内に吸入され再燃焼することが可能となり、これにより内燃機関から排出されるHCを低減することができる。 In addition, this moderate valve overlap period allows unburned HC in the cylinder to be returned to the intake system in the exhaust stroke, and then taken into the cylinder again in the next cycle to be recombusted. HC discharged from the fuel can be reduced.
 また、排気弁の開時期(EVO1)が排気下死点付近に設定されているので、筒内燃焼期間が長くなり、内燃機関の暖機が促進されることに加え、筒内での燃焼が促進されて、機関から排出されるHC等の未燃エミッションも低減することができる。このようにして、良好な始動性とエミッション低減効果が得られるようになる。排気弁の作動角は最小のD1となっているので、駆動フリクションも最小なっており、始動時の回転上昇も迅速化され、一層良好な始動性を得ることができる。 In addition, since the exhaust valve opening timing (EVO1) is set near the exhaust bottom dead center, the in-cylinder combustion period is lengthened and the warm-up of the internal combustion engine is promoted, and in-cylinder combustion is performed. It is possible to reduce unburned emissions such as HC discharged from the engine by being promoted. In this way, good startability and emission reduction effect can be obtained. Since the operating angle of the exhaust valve is the minimum D1, the drive friction is also minimized, the speed of rotation at the time of start-up is increased, and a better startability can be obtained.
 尚、ここで、重要なのは、この始動性とエミッショ低減に有利なバルブタイミングが、上述したようにデフォルト位置、すなわち両可変動弁が機械的に安定する位置であるという点である。すなわち、始動の前のエンジン停止状態において、予めこの始動性とエミッション低減に有利なバルブタイミング付近となっているため、始動燃焼の初期からこれらの始動性とエミッション低減の効果が得られるものである。 Here, it is important that the valve timing advantageous for starting performance and emission reduction is the default position, that is, the position where both variable valves are mechanically stable as described above. That is, when the engine is stopped before starting, the valve timing is preferentially close to the valve timing which is advantageous for starting performance and emission reduction, so that the effects of starting performance and emission reduction can be obtained from the initial stage of starting combustion. .
 図9Bは低回転低負荷領域(図面では低速低負荷と表記)のバルブタイミングであり、図8Bと同じバルブタイミングを示している。すなわち、吸気VTC3を作動させて吸気弁閉時期を、吸気下死点(BDC)後90°より更に遅角側に制御した閉時期(IVC4)に設定している。また、吸気VTC3によって吸気弁の開時期も吸気上死点後の所定位相の開時期(IVO4)まで遅角されている。一方、排気弁は排気VEL1によってその作動角度が作動角度D4まで拡大されるように制御される。このため、排気弁の開時期が排気下死点より前の開時期(EVO4)まで進角し、更にその閉時期が排気上死点より後の閉時期(EVC4)まで遅角して、吸気弁と正のオーバーラップを生成するようになる。 FIG. 9B is a valve timing in a low rotation / low load region (denoted as low speed / low load in the drawing), and shows the same valve timing as FIG. 8B. That is, the intake VTC 3 is operated and the intake valve closing timing is set to the closing timing (IVC 4) that is controlled further to the retard side than 90 ° after the intake bottom dead center (BDC). Further, the intake valve opening timing is retarded by the intake VTC3 until the opening timing (IVO4) of a predetermined phase after the intake top dead center. On the other hand, the exhaust valve is controlled by the exhaust VEL1 so that its operating angle is expanded to the operating angle D4. For this reason, the opening timing of the exhaust valve is advanced to the opening timing (EVO4) before the exhaust bottom dead center, and the closing timing is further delayed to the closing timing (EVC4) after the exhaust top dead center to Generates a positive overlap with the valve.
 このように排気弁の開時期を開時期(EVO4)まで進角させることにより、膨張行程の進行に合わせてピストンが下降して筒内圧が負圧に至る前に排気弁が開くようになる。このため、大気圧レベルの排気ポ-ト圧が筒内に進入し、筒内圧が負圧になるのを抑制して膨張行程の末期のポンプ損失を抑制できるようになる。更に、排気弁の閉時期を閉時期(EVC4)まで遅角させることにより、吸気弁と正のオーバーラップを生成することができるので、吸気行程の初期のポンプ損失が低減されるようになる。これ以外の更なる作用、効果は図8Bの説明に記載されている通りである。 Thus, by advancing the opening timing of the exhaust valve to the opening timing (EVO4), the exhaust valve opens so that the piston descends as the expansion stroke proceeds and the in-cylinder pressure reaches negative pressure. Therefore, it is possible to suppress the pump loss at the end of the expansion stroke by suppressing the exhaust port pressure at the atmospheric pressure level from entering the cylinder and the cylinder pressure becoming negative. Further, by delaying the closing timing of the exhaust valve to the closing timing (EVC4), a positive overlap with the intake valve can be generated, so that the pump loss at the initial stage of the intake stroke is reduced. Other actions and effects other than this are as described in the explanation of FIG. 8B.
 図9Cには低回転高負荷領域(図面では低速高負荷と表記)のバルブタイミングを示している。ここで、図9A及び図9Bでは排気側VTC2を使用しなくても該排気バルブタイミングを実現でき、また吸気側は吸気VTC3だけを使用して吸気弁を制御している。しかしながら、図9Cでは排気VTC2も併せ使用して、排気VEL1による作動角度を維持したまま排気弁の開閉時期を変更できるようにしている。この排気VTC2は上述した通りの構成であり、最進角デフォルトという意味でも吸気VTC3と同じ機能である。 FIG. 9C shows the valve timing in the low rotation high load region (denoted as low speed high load in the drawing). 9A and 9B, the exhaust valve timing can be realized without using the exhaust side VTC2, and the intake side uses only the intake VTC3 to control the intake valve. However, in FIG. 9C, the exhaust VTC2 is also used so that the opening / closing timing of the exhaust valve can be changed while maintaining the operating angle of the exhaust VEL1. The exhaust VTC2 is configured as described above, and has the same function as the intake VTC3 in terms of the most advanced angle default.
 図9Cに示すように、低回転高負荷になると、吸気VTC3は図9Aにある始動時と同様の最進角位置に制御され、吸気弁の開時期(IVO1)と閉時期(IVC1)に制御される。一方、排気VEL1は作動角度を図5の作動角度D2に変換すると共に、排気VTC2を制御することで作動角度D2を維持したまま、排気弁の開時期を図5に示すEVO1付近(排気下死点付近)まで遅角し、更に、排気弁の閉時期を図5に示すEVC3付近の排気上死点を越える位置まで遅角される。これによって、吸気弁と排気弁は大きな正のバルブオーバーラップを形成している そして、吸気弁の閉時期(IVC1)は吸気VTC3の可変範囲の中で吸気下死点に最大限近づいた位置とすることで、充填効率を高めてトルクを大きくできるようにしている。また、排気弁の開時期(EVO1)が排気下死点付近に設定されているので、筒内燃焼期間が長くなり筒内での燃焼が促進されて、機関から排出されるHCなどの未燃エミッションも一層低減するのである。また、吸気弁の閉時期(IVC1)が吸気下死点に近いため新気充填効率があがる。 As shown in FIG. 9C, when the engine speed is low and the load is high, the intake VTC 3 is controlled to the most advanced angle position similar to that at the start shown in FIG. 9A, and the intake valve opening timing (IVO1) and closing timing (IVC1) are controlled. Is done. On the other hand, the exhaust VEL1 converts the operating angle to the operating angle D2 in FIG. 5 and controls the exhaust VTC2 to maintain the operating angle D2, and the opening timing of the exhaust valve is around EVO1 shown in FIG. Further, the exhaust valve closing timing is retarded to a position exceeding the exhaust top dead center near the EVC 3 shown in FIG. As a result, the intake valve and the exhaust valve form a large positive valve overlap. And the closing timing (IVC1) of the intake valve is the position where the intake bottom dead center is approached to the maximum within the variable range of the intake VTC3. By doing so, the filling efficiency can be increased and the torque can be increased. Further, since the exhaust valve opening timing (EVO1) is set near the exhaust bottom dead center, the in-cylinder combustion period is lengthened and combustion in the cylinder is promoted, so that unburned HC or the like discharged from the engine Emissions are further reduced. Further, since the intake valve closing timing (IVC1) is close to the intake bottom dead center, the fresh air charging efficiency is improved.
 更に、排気弁の開時期(EVO1付近)が排気下死点付近であることと、吸排気弁の大きなバルブオーバーラップによる筒内残留ガス掃気効果により新気の充填効率を一層向上できるようになる。このメカニズムを説明すると、排気弁が開かれた直後には、排気弁出口付近の排気ポ-トには排出される排気ガスによる大きな正圧が発生する。そして、この正圧の圧力波がテールパイプ方向に移動していくにつれ、排気ポ-ト付近には大きな負圧が生じる。その後、他の気筒からの正圧の圧力波が、他気筒との排気ポ-ト集合部から押し寄せてくると、負圧だった排気ポ-トは再び正圧となる。しかるに、他気筒も含めた排気弁の開弁時期を遅くすると、他の気筒からの正圧の圧力波が押し寄せてくるタイミングが遅れるので、次のバルブオーバーラップ期間での排気ポ-ト圧は負圧とすることができる。 Furthermore, the exhaust gas opening efficiency (near EVO1) is near the exhaust bottom dead center, and the in-cylinder residual gas scavenging effect due to the large valve overlap of the intake and exhaust valves makes it possible to further improve the charging efficiency of fresh air. . Explaining this mechanism, immediately after the exhaust valve is opened, a large positive pressure is generated by the exhaust gas exhausted at the exhaust port near the exhaust valve outlet. As this positive pressure wave moves toward the tail pipe, a large negative pressure is generated in the vicinity of the exhaust port. Thereafter, when the positive pressure wave from the other cylinders approaches from the exhaust port gathering portion with the other cylinders, the exhaust port that has been negative pressure becomes positive pressure again. However, if the opening timing of the exhaust valves including other cylinders is delayed, the timing at which positive pressure waves from other cylinders are pushed in is delayed, so the exhaust port pressure during the next valve overlap period is Negative pressure can be set.
 その結果、この排気ポ-ト負圧により、オーバーラップ期間における燃焼室内の燃焼ガスを排気ポ-ト側に吸い出し、吸気ポ-ト側からその分新気を吸い込む掃気効果を奏するようになる。更に、上述のように大きなバルブオーバーラップとなっているので、一層多くの新気を吸い込むことができて充填効率が向上する。この新気は冷却効果があるので耐ノッキング性にも有利となる。特に、アトキンソンサイクルを使用する内燃機関は、上述のように幾何学的圧縮比が高く設定されるので、高負荷域ではノッキングが発生しやすくなるが、これを有効に抑制することが可能となる。 As a result, this exhaust port negative pressure draws the combustion gas in the combustion chamber during the overlap period to the exhaust port side, and produces a scavenging effect by sucking in fresh air accordingly from the intake port side. Furthermore, since the valve overlap is large as described above, more fresh air can be sucked in and the charging efficiency is improved. Since this new air has a cooling effect, it is also advantageous in knocking resistance. In particular, the internal combustion engine that uses the Atkinson cycle is set to have a high geometric compression ratio as described above, so that knocking is likely to occur in a high load range, but this can be effectively suppressed. .
 このように、低回転高負荷領域では吸気弁の閉時期(IVC1)を吸気下死点付近まで進角することによって充填効率を向上し、また、排気弁の開時期をEVO1付近(排気下死点付近)まで遅角する共にバルブオーバーラップを大きくしたことによる掃気効果に基づく充填効率の向上と耐ノッキング性の向上により、高負荷トルクを高めることが可能になるものである。 As described above, in the low rotation and high load region, the intake valve closing timing (IVC1) is advanced to the vicinity of the intake bottom dead center to improve the charging efficiency, and the exhaust valve opening timing is set to the vicinity of EVO1 (exhaust bottom dead center). It is possible to increase the high load torque by improving the charging efficiency and knocking resistance based on the scavenging effect by retarding to the vicinity of the point) and increasing the valve overlap.
 尚、かかる高負荷領域においては、筒内圧が高く、排気(膨張)下死点付近でも負圧にはならないので、排気弁開時期を排気下死点付近まで遅らせても、前述の膨張行程末期のポンプ損失発生は抑制され、良好な燃費と、膨張仕事向上によるトルク向上も得られるのである。 In this high load region, the in-cylinder pressure is high and no negative pressure is generated even near the exhaust (expansion) bottom dead center. Therefore, even if the exhaust valve opening timing is delayed to near the exhaust bottom dead center, the end of the expansion stroke described above The occurrence of pump loss is suppressed, and good fuel efficiency and improved torque due to improved expansion work can be obtained.
 図9Dには高回転高負荷領域(図面では高速高負荷と表記)のバルブタイミングを示している。これ自体は、排気VTC2を併用しなくても実現できるが、図9Cで示す低速高回転でのバルブタイミングを両立させる場合には、排気VTC2を併用する必要がある。 FIG. 9D shows the valve timing in a high rotation high load region (denoted as high speed and high load in the drawing). Although this can be realized without using the exhaust VTC 2 together, it is necessary to use the exhaust VTC 2 together when the valve timing at the low speed and high rotation shown in FIG. 9C is compatible.
 図9Dにおいて、高回転高負荷領域になると、吸気VTC3は低回転高負荷領域に比べて遅角方向に制御され、吸気弁の開時期(IVO2)と閉時期(IVC2)に制御される。吸気弁の開時期(IVO2)は吸気上死点付近、より望ましくは吸気上死点より少し進角側の吸気上死点に近い位置である。また、吸気弁の閉時期(IVC2)は吸気下死点90°より手前側の位置に制御されている。 In FIG. 9D, when the high rotation / high load region is reached, the intake VTC 3 is controlled in the retarding direction as compared with the low rotation / high load region, and is controlled by the intake valve opening timing (IVO2) and closing timing (IVC2). The opening timing (IVO2) of the intake valve is in the vicinity of the intake top dead center, more preferably a position closer to the intake top dead center on the more advanced side than the intake top dead center. The closing timing (IVC2) of the intake valve is controlled to a position on the near side from the intake bottom dead center 90 °.
 一方、排気VEL1は作動角度を図5の作動角度D3に変換することで、排気弁の開時期(EVO3)を排気下死点付近より進角し、更に、排気弁の閉時期(EVC3)は排気上死点を越える位置まで遅角される。これによって、吸気弁と排気弁は大きな正のバルブオーバーラップを形成するが、図9Cに示す低回転高負荷領域のバルブオーバーラップより小さく設定されている。これは吸気弁の開時期(IVO2)を相対的に遅角したことによるものである。 On the other hand, the exhaust VEL1 converts the operating angle to the operating angle D3 in FIG. 5 so that the exhaust valve opening timing (EVO3) is advanced from the vicinity of the exhaust bottom dead center, and the exhaust valve closing timing (EVC3) is It is retarded to a position that exceeds the exhaust top dead center. As a result, the intake valve and the exhaust valve form a large positive valve overlap, but are set smaller than the valve overlap in the low rotation and high load region shown in FIG. 9C. This is because the intake valve opening timing (IVO2) is relatively retarded.
 これによれば、内燃機関の回転上昇に伴って吸気の輸送遅れ(クランク角でみた場合)が生じるので、その分だけ吸気弁閉時期(IVC2)を遅らせて高回転域の充填効率を高め、トルク(出力)を向上するようにしている。 According to this, since the intake transport delay (when viewed from the crank angle) occurs with the increase in the rotation of the internal combustion engine, the intake valve closing timing (IVC2) is delayed by that amount to increase the charging efficiency in the high rotation range, The torque (output) is improved.
 また、排気VEL1で作動角度D3に拡大すると共に、排気VTC2を再び最進角位置(デフォルト位置)に戻すようにしている。すなわち、排気弁の開時期(EVO3)に進角し、更に作動角度を作動角度D3に拡大することで、高回転化に伴う押し出し損失の増加を抑制して出力を向上するようにしている。更に、排気ポ-トが負圧になるタイミングは、高回転化に伴い遅れるので(クランク角でみた場合)、バルブオーバーラップ中心を上死点後に遅角して図9Cと同様の掃気効果を得るようにしている。このようにして、高回転高負荷領域のトルク(出力)を高めることができるのである。 Also, the exhaust VEL1 is expanded to the operating angle D3, and the exhaust VTC2 is returned to the most advanced position (default position) again. In other words, the exhaust valve is advanced to the opening timing (EVO3), and the operating angle is further expanded to the operating angle D3, thereby suppressing an increase in extrusion loss due to high rotation and improving the output. Further, since the timing at which the exhaust port becomes negative pressure is delayed as the engine speed increases (when viewed from the crank angle), the valve overlap center is retarded after top dead center to achieve the same scavenging effect as FIG. 9C. Trying to get. In this way, the torque (output) in the high rotation and high load region can be increased.
 次に、図9A乃至図9Dに示す吸排気弁のバルブタイミングに制御するために、排気VEL1、排気VTC2、及び吸気VTC3を制御する制御フローについて図10を用いて説明する。この制御フローはコントローラ22のマイクロコンピュータによって、制御機能として実行されるものである 図10において、ステップS10では内燃機関の動作状態を検出している。この動作状態の検出は、本実施例では内燃機関の運転領域を特定するための情報を検出するものであり、更には排気VEL1、排気VTC2、及び吸気VTC3の制御量を求めるためである。例えば、キースイッチの状態、回転数、負荷、温度等を基本的に検出している。しかしながら、これらの情報だけでなく、これ以外の情報を検出することも当然考慮されるものである。 Next, a control flow for controlling the exhaust VEL1, the exhaust VTC2, and the intake VTC3 in order to control the valve timing of the intake and exhaust valves shown in FIGS. 9A to 9D will be described with reference to FIG. This control flow is executed as a control function by the microcomputer of the controller 22. In FIG. 10, the operation state of the internal combustion engine is detected in step S10. This detection of the operating state is to detect information for specifying the operating region of the internal combustion engine in the present embodiment, and to obtain control amounts of the exhaust VEL1, the exhaust VTC2, and the intake VTC3. For example, the key switch state, rotation speed, load, temperature, etc. are basically detected. However, it is naturally considered that not only such information but also other information is detected.
 ステップS10で内燃機関の状態が検出されると、ステップS11に進んで始動状態かどうかが判断される。この場合は、キースイッチの状態や内燃機関の回転の有無等が用いられる。 When the state of the internal combustion engine is detected in step S10, the process proceeds to step S11 to determine whether or not the engine is in the starting state. In this case, the state of the key switch or the presence / absence of rotation of the internal combustion engine is used.
 このステップS11で始動状態と判断(YES)されるとステップS13に進み、吸気VTC3を制御する。この場合は、吸気VTC3が元々デフォルト状態で、且つ制御目標も同じデフォルト位置なので、図9Aの吸気弁の開時期(IVO1)と閉時期(IVC1)に機械的に安定するように制御される。ステップS13で吸気VTC3による吸気弁の開時期と閉時期の設定が終了するとステップ14に進む。 If it is determined that the engine is in the starting state (YES) in step S11, the process proceeds to step S13 and the intake VTC 3 is controlled. In this case, since the intake VTC 3 is originally in the default state and the control target is also the same default position, the intake valve is controlled so as to be mechanically stable at the opening timing (IVO1) and the closing timing (IVC1) of FIG. 9A. When the setting of the opening timing and closing timing of the intake valve by the intake VTC 3 is completed in step S13, the process proceeds to step 14.
 ステップS13で吸気VTC3による吸気弁の開時期と閉時期の設定が終了すると、ステップS14では排気VEL1を制御する。この場合も、排気VEL1が元々デフォルト状態で、且つ制御目標がデフォルト位置なので、図9Aの排気弁の開時期(EVO1)と閉時期(EVC1)に機械的に安定するように制御される。これらの設置が終了すると、その後にエンドに抜けてこの制御フローを終了する。これによって内燃機関の始動が開始されるものである。 When the setting of the opening timing and the closing timing of the intake valve by the intake VTC 3 is completed in step S13, the exhaust VEL1 is controlled in step S14. In this case as well, since the exhaust VEL1 is originally in the default state and the control target is the default position, the exhaust valve is controlled so as to be mechanically stable at the opening timing (EVO1) and closing timing (EVC1) of FIG. 9A. When these installations are completed, the control flow is terminated after exiting to the end. Thus, the start of the internal combustion engine is started.
 次に、ステップS11で始動状態でないと判断されると、ステップS12に進んで内燃機関の運転領域を判断する。ステップS12では低回転低負荷領域かどうかが判断される。この場合は、例えば回転数と負荷によってマッピングされた回転数-負荷マップによって運転領域を特定することができる。このステップS12で低回転低負荷領域と判断されるとステップS13、14に進み、低回転低負荷領域にないと判断されるステップS15に進む。 Next, if it is determined in step S11 that the engine is not in the starting state, the process proceeds to step S12 to determine the operating range of the internal combustion engine. In step S12, it is determined whether or not it is a low rotation and low load region. In this case, for example, the operation region can be specified by a rotation speed-load map mapped by the rotation speed and the load. If it is determined in this step S12 that the region is in the low rotation / low load region, the flow proceeds to steps S13 and 14, and the flow proceeds to step S15 in which it is determined that the region is not in the low rotation / low load region.
 ステップS12で低回転低負荷領域と判断(YES)されるとステップS13に進み、吸気VTC3を制御する。この場合は、図9Bの吸気弁の開時期(IVO4)と閉時期(IVC4)に制御される。ステップS13で吸気VTC3による吸気弁の開時期と閉時期の設定が終了するとステップ14に進む。 If it is determined in step S12 that the rotation speed is low and the load is low (YES), the process proceeds to step S13, and the intake VTC 3 is controlled. In this case, the intake valve opening timing (IVO4) and closing timing (IVC4) in FIG. 9B are controlled. When the setting of the opening timing and closing timing of the intake valve by the intake VTC 3 is completed in step S13, the process proceeds to step 14.
 ステップS13で吸気VTC3による吸気弁の開時期と閉時期の設定が終了すると、ステップS14では排気VEL1を制御する。この場合は、排気弁の作動角度が作動角度D4に変更されて図9Bの排気弁の開時期(EVO4)と閉時期(EVC4)に制御される。なお、ここで、排気VTC2はデフォルト位置(最進角)に維持されたままである。これらの設置が終了すると、その後にエンドに抜けてこの制御フローを終了する。 When the setting of the opening timing and the closing timing of the intake valve by the intake VTC 3 is completed in step S13, the exhaust VEL1 is controlled in step S14. In this case, the operating angle of the exhaust valve is changed to the operating angle D4, and the exhaust valve opening timing (EVO4) and closing timing (EVC4) in FIG. 9B are controlled. Here, the exhaust VTC2 is maintained at the default position (the most advanced angle). When these installations are completed, the control flow is terminated after exiting to the end.
 次に、ステップS12で低回転低負荷領域にないと判断されると、ステップS15に進んで内燃機関の運転領域を判断する。ステップS15では低回転高負荷領域かどうかが判断される。この場合も回転数-負荷マップによって運転領域を特定することができる。このステップS15で低回転高負荷領域と判断されるとステップS117、18、19に進み、低回転高負荷領域にないと判断されるステップS16に進む。 Next, when it is determined in step S12 that the engine is not in the low rotation and low load region, the process proceeds to step S15 to determine the operating region of the internal combustion engine. In step S15, it is determined whether or not the low rotation and high load region. In this case as well, the operation region can be specified by the rotation speed-load map. If it is determined in this step S15 that the region is in the low rotation and high load region, the process proceeds to steps S117, 18, and 19, and the process proceeds to step S16 in which it is determined that it is not in the low rotation and high load region.
 ステップS15で低回転高負荷領域と判断(YES)されるとステップS17に進み、吸気VTC3を制御する。この場合は、図9Cの吸気弁の開時期(IVO1)と閉時期(IVC1)に制御される。ステップS17で吸気VTC3による吸気弁の開時期と閉時期の設定が終了するとステップ18に進む。 If it is determined in step S15 that the region is a low rotation high load region (YES), the process proceeds to step S17, and the intake VTC 3 is controlled. In this case, the intake valve opening timing (IVO1) and closing timing (IVC1) in FIG. 9C are controlled. When the setting of the opening timing and closing timing of the intake valve by the intake VTC 3 is completed in step S17, the process proceeds to step 18.
 ステップS17で吸気VTC3による吸気弁の開時期と閉時期の設定が終了すると、ステップS18では排気VEL1を制御する。この場合は、排気弁の作動角度を作動角度D2に変更する。更にこの後にステップS19に進んで、作動角度D2を維持しながら排気VTC2を制御して図9Cの排気弁の開時期(EVO1付近)と閉時期(EVC3付近)に制御される。これらの設定が終了すると、その後にエンドに抜けてこの制御フローを終了する。 When the setting of the opening timing and closing timing of the intake valve by the intake VTC 3 is completed in step S17, the exhaust VEL1 is controlled in step S18. In this case, the operating angle of the exhaust valve is changed to the operating angle D2. Thereafter, the process proceeds to step S19, and the exhaust VTC2 is controlled while maintaining the operating angle D2, and the exhaust valve opening timing (near EVO1) and the closing timing (near EVC3) in FIG. 9C are controlled. When these settings are completed, the control flow is ended after exiting to the end.
 次に、ステップS15で低回転高負荷領域にないと判断されると、ステップS16に進んで内燃機関の運転領域を高回転高負荷領域と判断する。このステップS16で高回転高負荷領域と判断されるとステップS17、18、19に進む。 Next, when it is determined in step S15 that it is not in the low rotation high load region, the process proceeds to step S16, and the operation region of the internal combustion engine is determined as the high rotation high load region. If it is determined in step S16 that the region is a high rotation / high load region, the process proceeds to steps S17, 18, and 19.
 ステップS16で高回転高負荷領域と判断されるとステップS17に進み、吸気VTC3を制御する。この場合は、図9Dの吸気弁の開時期(IVO2)と閉時期(IVC2)に制御される。ステップS17で吸気VTC3による吸気弁の開時期と閉時期の設定が終了するとステップ18に進む。 If it is determined in step S16 that the region is a high rotation / high load region, the process proceeds to step S17, and the intake VTC 3 is controlled. In this case, the intake valve opening timing (IVO2) and closing timing (IVC2) in FIG. 9D are controlled. When the setting of the opening timing and closing timing of the intake valve by the intake VTC 3 is completed in step S17, the process proceeds to step 18.
 ステップS17で吸気VTC3による吸気弁の開時期と閉時期の設定が終了すると、ステップS18では排気VEL1を制御する。この場合は、排気弁の作動角度を作動角度D3に変更する。更にこの後にステップS19に進んで、作動角度D3を維持しながら排気VTC2をデフォルト位置に制御して図9Dの排気弁の開時期(EVO3)と閉時期(EVC3)に制御される。これらの設定が終了すると、その後にエンドに抜けてこの制御フローを終了する。 When the setting of the opening timing and closing timing of the intake valve by the intake VTC 3 is completed in step S17, the exhaust VEL1 is controlled in step S18. In this case, the operating angle of the exhaust valve is changed to the operating angle D3. Thereafter, the process proceeds to step S19, and the exhaust VTC2 is controlled to the default position while maintaining the operation angle D3, and the exhaust valve opening timing (EVO3) and closing timing (EVC3) in FIG. 9D are controlled. When these settings are completed, the control flow is ended after exiting to the end.
 このような制御フローによって図9A乃至図9Dに示すような吸排気タイミングの制御を実行できるようになる。 By such a control flow, the intake / exhaust timing control as shown in FIGS. 9A to 9D can be executed.
 尚、以上説明してきたフローチャートでは、低回転中負荷と判断された場合については示されていないが、この場合の制御フローを追加しても良い。その場合には、吸気VTC3によりIVCは例えばIVC3に制御され、排気VEL1によりEVOは例えば図5におけるEVO2に制御される。 In addition, in the flowchart demonstrated above, although it is not shown about the case where it is judged that it is a load during low rotation, you may add the control flow in this case. In this case, IVC is controlled to, for example, IVC3 by the intake VTC3, and EVO is controlled to, for example, EVO2 in FIG. 5 by the exhaust VEL1.
 このIVC3は下死点後90°より少し手前の中負荷のアトキンソンサイクルに適したタイミングであり、絞り弁をほぼ全開にした状態で、中トルク(中負荷)を発生できるだけの充填効率が得られるタイミングとなっている。 This IVC3 is suitable for an Atkinson cycle with a medium load slightly below 90 ° after bottom dead center, and a charging efficiency sufficient to generate a medium torque (medium load) can be obtained with the throttle valve almost fully open. It is timing.
 また、このEVO2は下死点より少し手前の中負荷のアトキンソンサイクルに適したタイミングであり、筒内圧が低負荷より高い分だけ膨張行程末期に筒内負圧が生じるタイミングが遅角するので、その分だけ低負荷時のEVO4よりは遅角したタイミングとなっている。 Also, this EVO2 is a timing suitable for an intermediate load Atkinson cycle slightly before the bottom dead center, and the timing at which in-cylinder negative pressure is generated at the end of the expansion stroke is delayed by an amount corresponding to the in-cylinder pressure being higher than the low load. Accordingly, the timing is delayed from EVO4 at the time of low load.
 以上述べた通り、本発明は所定の低負荷の状態では(1)吸気バルブタイミング機構によって吸気弁の閉時期(IVC)を吸気下死点後クランク角90°付近、又は90°を越えた遅角位置に制御すると共に吸気弁の開時期(IVO)を排気上死点を越えて遅角した位置に制御し、(2)排気作動角可変機構により排気弁の作動角を拡大して、排気弁の開時期(EVO)を吸気下死点より進角すると共に、排気弁の閉時期(EVC)を排気上死点を越えて遅角した位置に制御するものである。 As described above, according to the present invention, in a predetermined low load state, (1) the intake valve timing mechanism delays the intake valve closing timing (IVC) around 90 ° after the intake bottom dead center or beyond 90 °. In addition to controlling the angular position, the opening timing (IVO) of the intake valve is controlled to a position delayed beyond the exhaust top dead center, and (2) the exhaust valve operating angle is expanded by the exhaust operating angle variable mechanism to The valve opening timing (EVO) is advanced from the intake bottom dead center, and the exhaust valve closing timing (EVC) is controlled to a position delayed beyond the exhaust top dead center.
 これによれば、吸気弁の作動角を大きく拡大しなくても、吸気弁の閉時期(IVC)を充分遅角してアトキンソンサイクルを行うことができるので、吸気弁の駆動フリクション損失が低減されて燃費低減効果を向上することが可能となるものである。 According to this, since the Atkinson cycle can be performed by sufficiently retarding the closing timing (IVC) of the intake valve without greatly increasing the operating angle of the intake valve, the drive friction loss of the intake valve is reduced. Thus, the fuel consumption reduction effect can be improved.
 尚、以上に説明した実施例では可変動弁機構として、吸気側に油圧可変位相機構(VTC)と、排気側に電動連続可変リフト機構(VEL)と油圧可変位相機構(VTC)を用いる例を示したが、これに限る訳ではなく、本発明の主旨から逸脱しない範囲であれば、構成は特に限定される訳ではない。また、変換エネルギとしては、電力でも良いし油圧でも構わないものである。例えば、排気側に電動連続可変リフト機構(VEL)に代えて、油圧式の段階的リフトと作動角を変える可変機構であっても構わないものである。また、リフトは変えずに作動角を変更するものであっても構わない。更に、油圧式VTCではなく、電動式の可変位相機構であっても構わないものである。 In the embodiment described above, as the variable valve mechanism, an oil pressure variable phase mechanism (VTC) is used on the intake side, and an electric continuously variable lift mechanism (VEL) and a hydraulic variable phase mechanism (VTC) are used on the exhaust side. Although shown, it is not necessarily limited to this, and the configuration is not particularly limited as long as it does not depart from the gist of the present invention. Further, the converted energy may be electric power or hydraulic pressure. For example, instead of the electric continuously variable lift mechanism (VEL) on the exhaust side, a hydraulic stepwise lift and a variable mechanism that changes the operating angle may be used. Further, the operating angle may be changed without changing the lift. Furthermore, instead of the hydraulic VTC, an electric variable phase mechanism may be used.
 また、吸気VTCは最進角デフォルトの実施例を示したが、最進角ではないが中間の進角側位置をデフォルトとする方式であっても構わないものである。 In addition, although the intake VTC has been described as an example of the most advanced angle default, it may be a system that defaults to an intermediate advanced angle position although it is not the most advanced angle.
 尚、本実施例においては、バルブタイミングすなわち吸排気弁の開閉時期は、まさしくリフトが開始するタイミングと終了したタイミングについて示したが、所謂ランプ(緩衝)期間を除いたタイミングとしても良い。すなわち、リフトが開始され僅かなランプ高さのリフトとなったタイミングを開時期、リフトが低下し僅かなランプ高さのリフトとなったタイミングを閉時期としても良い。こうすると、気体の流れの実質的な開始時期あるいは終了時期と略対応するので、より大きな諸効果を得ることができる。 In the present embodiment, the valve timing, that is, the intake / exhaust valve opening / closing timing is shown with respect to the timing at which the lift starts and the timing at which it ends, but it may also be the timing excluding the so-called ramp (buffer) period. That is, the timing when the lift is started and the lift with a slight ramp height is set as the opening timing, and the timing when the lift is lowered and the lift with a slight ramp height is set as the close timing. This substantially corresponds to the substantial start time or end time of the gas flow, so that various effects can be obtained.
 以上説明した実施形態から把握される請求項以外の発明の技術的思想について以下に説明する。 The technical ideas of the invention other than the claims ascertained from the embodiment described above will be described below.
 吸気弁の開時期および閉時期を制御する吸気可変動弁制御機構と排気弁の作動角度を変更制御する排気作動角可変機構の動作を制御するマイクロコンピュータを備えた内燃機関の可変動弁制御装置において、 前記マイクロコンピュータは前記内燃機関が低負荷領域の状態では、(1)前記吸気バルブタイミング機構によって前記吸気弁の閉時期を吸気下死点後クランク角90°付近、又は吸気下死点後クランク90°を越えた遅角位置に制御すると共に前記吸気弁の開時期を吸気上死点を越えて遅角した位置に制御する機能を実行し、(2)前記排気作動角可変機構により前記排気弁の作動角度を拡大して前記排気弁の開時期を排気下死点より進角すると共に、前記排気弁の閉時期を排気上死点を越えて遅角した位置に制御する機能を実行するものであって、 前記マイクロコンピュータは前記内燃機関の冷機始動時には、 前記吸気バルブタイミング機構により、前記吸気弁の閉時期を吸気下死点付近まで進角側に制御する機能を実行し、 前記排気作動角可変機構により、前記排気弁の作動角度を縮小して前記排気弁の開時期を排気下死点付近に制御すると共に前記排気弁の閉時期を排気上死点付近に制御する機能を実行することを特徴とする。 Variable valve control apparatus for an internal combustion engine having a microcomputer for controlling the operation of an intake variable valve operating mechanism for controlling the opening timing and closing timing of the intake valve and an exhaust operating angle variable mechanism for changing and controlling the operating angle of the exhaust valve When the internal combustion engine is in a low load region, the microcomputer sets (1) the intake valve closing timing by the intake valve timing mechanism to a crank angle of about 90 ° after intake bottom dead center or after intake bottom dead center. A function of controlling to a retarded position exceeding the crank 90 ° and controlling the opening timing of the intake valve to a position retarded beyond the intake top dead center; and (2) the exhaust operating angle variable mechanism Performs functions to expand the exhaust valve operating angle and advance the opening timing of the exhaust valve from the exhaust bottom dead center, and to control the closing timing of the exhaust valve to a position retarded beyond the exhaust top dead center The microcomputer executes a function of controlling the closing timing of the intake valve to an advance side to the vicinity of the intake bottom dead center by the intake valve timing mechanism when the internal combustion engine is cold-started. The exhaust operating angle variable mechanism reduces the operating angle of the exhaust valve to control the opening timing of the exhaust valve to near exhaust bottom dead center and to control the closing timing of the exhaust valve to near exhaust top dead center. It is characterized by performing.
 また、前記マイクロコンピュータは前記内燃機関の低回転高負荷領域では、 前記吸気バルブタイミング機構によって、前記吸気弁の開時期を吸気上死点より進角側に制御する共に前記吸気弁の閉時期を吸気下死点付近まで進角側に制御する機能を実行し、 前記排気作動角可変機構によって前記排気弁の開時期を排気下死点付近とすると共に前記排気弁の閉時期を排気上死点より遅角側に制御する機能を実行することを特徴とする。 Further, the microcomputer controls the opening timing of the intake valve from the intake top dead center to the advance side by the intake valve timing mechanism in the low rotation high load region of the internal combustion engine, and sets the closing timing of the intake valve. Executes a function to control the advance side to the vicinity of the intake bottom dead center, and makes the exhaust valve open timing close to the exhaust bottom dead center and the exhaust valve close timing to the exhaust top dead center by the exhaust operating angle variable mechanism. It is characterized by executing a function for controlling to a more retarded angle side.
 また、前記マイクロコンピュータは前記内燃機関の高回転高負荷領域では、 前記吸気バルブタイミング機構によって前記吸気弁の開時期が吸気上死点付近となるように制御する共に前記吸気弁の閉時期を吸気下死点90°前に制御する機能を実行し、 前記排気作動角可変機構によって前記排気弁の開時期を排気下死点より進角側に制御すると共に前記排気弁の閉時期を排気上死点より遅角側に制御する機能を実行することを特徴とする。 The microcomputer controls the opening timing of the intake valve to be close to the intake top dead center by the intake valve timing mechanism in the high rotation and high load region of the internal combustion engine, and controls the intake valve close timing. The control function is executed 90 ° before the bottom dead center, and the exhaust valve operating timing is controlled to the advance side from the exhaust bottom dead center by the exhaust operating angle variable mechanism and the exhaust valve closing timing is exhausted to the top dead center. It is characterized by executing a function of controlling from the point to the retard side.
 更に、前記マイクロコンピュータは前記内燃機関が低負荷領域では、 前記排気作動角可変機構によって前記排気弁の閉時期を前記吸気弁の開時期付近で正のバルブオーバーラップを生成するように制御する機能を実行することを特徴とする。 Further, the microcomputer has a function of controlling the closing timing of the exhaust valve so as to generate a positive valve overlap in the vicinity of the opening timing of the intake valve by the variable exhaust operating angle mechanism when the internal combustion engine is in a low load region. It is characterized by performing.
 本発明は下記のように構成しても良い。
(1) 内燃機関に設けられた吸気弁の作動角度を所定角度に維持したまま前記吸気弁の開時期及び閉時期を変更する吸気バルブタイミング機構と、前記内燃機関に設けられた排気弁の作動角度を変更する排気作動角可変機構とを有する内燃機関の可変動弁システムにおいて、
 前記内燃機関が低負荷領域の状態では、
 前記吸気バルブタイミング機構によって前記吸気弁の閉時期を吸気下死点後クランク角90°付近、又は吸気下死点後クランク90°を越えた遅角位置に制御すると共に前記吸気弁の開時期を吸気上死点を越えて遅角した位置に制御し、
 前記排気作動角可変機構により前記排気弁の開時期を排気下死点より進角すると共に、前記排気弁の閉時期を排気上死点を越えて遅角した位置に制御する。
 (2)(1)に記載の内燃機関の可変動弁システムにおいて、
 冷機始動時には、
 前記吸気バルブタイミング機構により、前記吸気弁の閉時期を吸気下死点付近まで進角側に制御すると共に、
 前記排気作動角可変機構により、前記排気弁の作動角度を縮小して前記排気弁の開時期を排気下死点付近に制御すると共に前記排気弁の閉時期を排気上死点付近に制御するようにしてもよい。
 (3)(2)に記載の内燃機関の可変動弁システムにおいて、
 前記吸気バルブタイミング機構は、変換エネルギが作用しなかった場合に前記吸気弁の閉時期が進角して前記吸気下死点付近に機械的に安定するように構成され、
 前記排気作動角可変機構は、変換エネルギが作用しなかった場合に前記排気弁の作動角度が縮小して、前記排気弁の開時期を遅角して排気下死点付近に機械的に安定すると共に、前記排気弁の閉時期を進角して排気上死点付近に機械的に安定するように構成してもよい。
 (4)(1)に記載の内燃機関の可変動弁システムにおいて、
 前記内燃機関の低回転高負荷領域では、
 前記吸気バルブタイミング機構によって、前記吸気弁の開時期を吸気上死点より進角側に制御する共に前記吸気弁の閉時期を吸気下死点付近まで進角側に制御し、
 前記排気作動角可変機構によって前記排気弁の開時期を排気下死点付近とすると共に前記排気弁の閉時期を排気上死点より遅角側に制御するようにしてもよい。
 (5)(4)に記載の内燃機関の可変動弁システムにおいて、
 前記内燃機関の高回転高負荷領域では、
 前記吸気バルブタイミング機構によって前記吸気弁の開時期が吸気上死点付近となるように制御する共に前記吸気弁の閉時期を吸気下死点90°前に制御し、
 前記排気作動角可変機構によって前記排気弁の開時期を排気下死点より進角側に制御すると共に前記排気弁の閉時期を排気上死点より遅角側に制御するようにしてもよい。
 (6)(1)に記載の内燃機関の可変動弁システムにおいて、
 前記内燃機関が低負荷領域では、前記排気作動角可変機構によって前記排気弁の閉時期を前記吸気弁の開時期付近で正のバルブオーバーラップを生成するように制御するようにしてもよい。
 (7)(1)に記載の内燃機関の可変動弁システムにおいて、
 前記排気作動角可変機構は、排気弁のリフト量を可変とする可変リフト機構としてもよい。
 (8)(1)に記載の内燃機関の可変動弁システムにおいて、
 前記吸気バルブタイミング機構は、内燃機関に用いられる油圧によって駆動されるようにしてもよい。
 (9)(1)に記載の内燃機関の可変動弁システムにおいて、
 前記吸気バルブタイミング機構は、外部電源から供給される電力によって駆動されるようにしてもよい。
 (10)吸気弁の開時期および閉時期を制御する吸気可変動弁制御機構と排気弁の作動角度を変更制御する排気作動角可変機構の動作を制御するマイクロコンピュータを備えた内燃機関の可変動弁制御装置において、
 前記マイクロコンピュータは前記内燃機関が低負荷領域の状態では、
 前記吸気バルブタイミング機構によって前記吸気弁の閉時期を吸気下死点後クランク角90°付近、又は吸気下死点後クランク90°を越えた遅角位置に制御すると共に前記吸気弁の開時期を吸気上死点を越えて遅角した位置に制御する機能を実行し、
 前記排気作動角可変機構により前記排気弁の作動角度を拡大して前記排気弁の開時期を排気下死点より進角すると共に、前記排気弁の閉時期を排気上死点を越えて遅角した位置に制御する機能を実行する。
 (11)(10)に記載の内燃機関の可変動弁制御装置であって、
 前記マイクロコンピュータは前記内燃機関の冷機始動時には、
 前記吸気バルブタイミング機構により、前記吸気弁の閉時期を吸気下死点付近まで進角側に制御する機能を実行し、
 前記排気作動角可変機構により、前記排気弁の作動角度を縮小して前記排気弁の開時期を排気下死点付近に制御すると共に前記排気弁の閉時期を排気上死点付近に制御する機能を実行するようにしてもよい。
 (12)(10)に記載の内燃機関の可変動弁制御装置であって、
 前記マイクロコンピュータは前記内燃機関の低回転高負荷領域では、
 前記吸気バルブタイミング機構によって、前記吸気弁の開時期を吸気上死点より進角側に制御する共に前記吸気弁の閉時期を吸気下死点付近まで進角側に制御する機能を実行し、
 前記排気作動角可変機構によって前記排気弁の開時期を排気下死点付近とすると共に前記排気弁の閉時期を排気上死点より遅角側に制御する機能を実行するようにしてもよい。
 (13)(12)に記載の内燃機関の可変動弁制御装置であって、
 前記マイクロコンピュータは前記内燃機関の高回転高負荷領域では、
 前記吸気バルブタイミング機構によって前記吸気弁の開時期が吸気上死点付近となるように制御する共に前記吸気弁の閉時期を吸気下死点90°前に制御する機能を実行し、
 前記排気作動角可変機構によって前記排気弁の開時期を排気下死点より進角側に制御すると共に前記排気弁の閉時期を排気上死点より遅角側に制御する機能を実行するようにしてもよい。
 (14)(10)に記載の内燃機関の可変動弁制御装置であって、
 前記マイクロコンピュータは前記内燃機関が低負荷領域では、
 前記排気作動角可変機構によって前記排気弁の閉時期を前記吸気弁の開時期付近で正のバルブオーバーラップを生成するように制御する機能を実行するようにしてもよい。
 尚、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
The present invention may be configured as follows.
(1) An intake valve timing mechanism that changes the opening timing and closing timing of the intake valve while maintaining the operating angle of the intake valve provided in the internal combustion engine at a predetermined angle, and the operation of the exhaust valve provided in the internal combustion engine In a variable valve system of an internal combustion engine having an exhaust operating angle variable mechanism that changes an angle,
When the internal combustion engine is in a low load region,
The intake valve timing mechanism controls the closing timing of the intake valve to a crank angle around 90 ° after intake bottom dead center, or to a retarded position exceeding the crank angle after intake bottom dead center 90 °, and the opening timing of the intake valve. Control to a position delayed beyond the intake top dead center,
The exhaust valve operating mechanism advances the exhaust valve opening timing from the exhaust bottom dead center and controls the exhaust valve closing timing to a position delayed beyond the exhaust top dead center.
(2) In the variable valve system for an internal combustion engine according to (1),
When starting the cold machine,
With the intake valve timing mechanism, the closing timing of the intake valve is controlled to the advance side to the vicinity of the intake bottom dead center,
The exhaust operating angle variable mechanism reduces the operating angle of the exhaust valve to control the opening timing of the exhaust valve to near exhaust bottom dead center and to control the closing timing of the exhaust valve to near exhaust top dead center. It may be.
(3) In the variable valve system for an internal combustion engine according to (2),
The intake valve timing mechanism is configured such that when the conversion energy does not act, the closing timing of the intake valve is advanced and mechanically stabilized near the intake bottom dead center,
The variable exhaust operating angle mechanism mechanically stabilizes near exhaust bottom dead center by delaying the opening timing of the exhaust valve by reducing the operating angle of the exhaust valve when conversion energy does not act In addition, the exhaust valve closing timing may be advanced to mechanically stabilize the exhaust top dead center.
(4) In the variable valve system for an internal combustion engine according to (1),
In the low rotation high load region of the internal combustion engine,
The intake valve timing mechanism controls the opening timing of the intake valve from the intake top dead center to the advance side, and the closing timing of the intake valve is controlled to the advance side to near the intake bottom dead center,
The opening timing of the exhaust valve may be set near the exhaust bottom dead center and the closing timing of the exhaust valve may be controlled to be retarded from the exhaust top dead center by the variable exhaust operation angle mechanism.
(5) In the variable valve system for an internal combustion engine according to (4),
In the high rotation high load region of the internal combustion engine,
The intake valve timing mechanism controls the opening timing of the intake valve to be close to the intake top dead center, and controls the closing timing of the intake valve to 90 ° before the intake bottom dead center;
The exhaust valve operating mechanism may control the opening timing of the exhaust valve from the exhaust bottom dead center to the advance side and the closing timing of the exhaust valve from the exhaust top dead center to the retard side.
(6) In the variable valve system for an internal combustion engine according to (1),
When the internal combustion engine is in a low load region, the exhaust valve operating mechanism may control the closing timing of the exhaust valve so as to generate a positive valve overlap in the vicinity of the opening timing of the intake valve.
(7) In the variable valve system for an internal combustion engine according to (1),
The exhaust operating angle variable mechanism may be a variable lift mechanism that makes the lift amount of the exhaust valve variable.
(8) In the variable valve system for the internal combustion engine according to (1),
The intake valve timing mechanism may be driven by hydraulic pressure used in the internal combustion engine.
(9) In the variable valve system for an internal combustion engine according to (1),
The intake valve timing mechanism may be driven by electric power supplied from an external power source.
(10) Variable operation of an internal combustion engine provided with a microcomputer for controlling the operation of an intake variable valve operating control mechanism for controlling the opening timing and closing timing of the intake valve and an exhaust operating angle variable mechanism for changing and controlling the operating angle of the exhaust valve In the valve control device,
When the internal combustion engine is in a low load region, the microcomputer
The intake valve timing mechanism controls the closing timing of the intake valve to a crank angle around 90 ° after intake bottom dead center, or to a retarded position exceeding the crank angle after intake bottom dead center 90 °, and the opening timing of the intake valve. Execute the function to control the position retarded beyond the intake top dead center,
The exhaust valve operating angle is expanded by the exhaust operating angle variable mechanism to advance the opening timing of the exhaust valve from the exhaust bottom dead center, and the closing timing of the exhaust valve is retarded beyond the exhaust top dead center. The function to control to the specified position is executed.
(11) The variable valve control apparatus for an internal combustion engine according to (10),
At the time of cold start of the internal combustion engine, the microcomputer
The intake valve timing mechanism performs a function of controlling the closing timing of the intake valve to the advance side to the vicinity of the intake bottom dead center,
The exhaust operating angle variable mechanism reduces the operating angle of the exhaust valve to control the opening timing of the exhaust valve to near exhaust bottom dead center and control the closing timing of the exhaust valve to near exhaust top dead center May be executed.
(12) The variable valve control apparatus for an internal combustion engine according to (10),
In the low rotation high load region of the internal combustion engine, the microcomputer is
The intake valve timing mechanism performs a function of controlling the opening timing of the intake valve from the intake top dead center to the advance angle side, and controlling the closing timing of the intake valve to the advance angle side to near the intake bottom dead center,
A function of controlling the opening timing of the exhaust valve to be near the exhaust bottom dead center and controlling the closing timing of the exhaust valve to the retard side from the exhaust top dead center may be executed by the exhaust operating angle variable mechanism.
(13) The variable valve control apparatus for an internal combustion engine according to (12),
In the high-rotation and high-load region of the internal combustion engine, the microcomputer is
Performing the function of controlling the opening timing of the intake valve to be close to the intake top dead center by the intake valve timing mechanism and controlling the closing timing of the intake valve to 90 ° before the intake bottom dead center;
The exhaust operating angle variable mechanism controls the opening timing of the exhaust valve from the exhaust bottom dead center to the advance side, and also controls the closing timing of the exhaust valve from the exhaust top dead center to the retard side. May be.
(14) The variable valve control apparatus for an internal combustion engine according to (10),
In the microcomputer, the internal combustion engine is in a low load region.
A function of controlling the closing timing of the exhaust valve so as to generate a positive valve overlap in the vicinity of the opening timing of the intake valve may be executed by the variable exhaust operation angle mechanism.
In addition, this invention is not limited to an above-described Example, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
 以上、本発明の幾つかの実施形態のみを説明したが、本発明の新規の教示や利点から実質的に外れることなく例示の実施形態に、多様な変更または改良を加えることが可能であることが当業者には容易に理解できるであろう。従って、その様な変更または改良を加えた形態も本発明の技術的範囲に含むことを意図する。上記実施形態を任意に組み合わせても良い。 Although only a few embodiments of the present invention have been described above, various modifications or improvements can be made to the illustrated embodiments without substantially departing from the novel teachings and advantages of the present invention. Will be easily understood by those skilled in the art. Therefore, it is intended that the embodiment added with such changes or improvements is also included in the technical scope of the present invention. You may combine the said embodiment arbitrarily.
 本願は、2014年12月18日付出願の日本国特許出願第2014-255789号に基づく優先権を主張する。2014年12月18日付出願の日本国特許出願第2014-255789号の明細書、特許請求の範囲、図面、及び要約書を含む全開示内容は、参照により本願に全体として組み込まれる。 This application claims priority based on Japanese Patent Application No. 2014-255789 filed on Dec. 18, 2014. The entire disclosure including the specification, claims, drawings, and abstract of Japanese Patent Application No. 2014-255789 filed on December 18, 2014 is incorporated herein by reference in its entirety.
 08…スタータ、012…燃料噴射弁、1…リフト制御機構(排気VEL)、2…バルブタイミング制御機構(排気VTC)、3…バルブタイミング制御機構(吸気VTC)、4…吸気バルブ、5…排気バルブ、IVO…吸気バルブ開弁時期、IVC…吸気バルブ閉弁時期、EVO…排気バルブ開弁時期、EVC…排気バルブ閉弁時期。 08 ... Starter, 012 ... Fuel injection valve, 1 ... Lift control mechanism (exhaust VEL), 2 ... Valve timing control mechanism (exhaust VTC), 3 ... Valve timing control mechanism (intake VTC), 4 ... Intake valve, 5 ... Exhaust valve Valve, IVO: intake valve opening timing, IVC: intake valve closing timing, EVO: exhaust valve opening timing, EVC: exhaust valve closing timing.

Claims (14)

  1.  内燃機関の可変動弁システムであって、
     内燃機関に設けられた吸気弁の作動角度を所定角度に維持したまま前記吸気弁の開時期及び閉時期を変更する吸気バルブタイミング機構と、
     前記内燃機関に設けられた排気弁の作動角度を変更する排気作動角可変機構とを備え
     前記内燃機関が低負荷領域の状態では、
    (1)前記吸気バルブタイミング機構によって前記吸気弁の閉時期を吸気下死点後クランク角90°付近、又は吸気下死点後クランク90°を越えた遅角位置に制御すると共に前記吸気弁の開時期を吸気上死点を越えて遅角した位置に制御し、
    (2)前記排気作動角可変機構により前記排気弁の開時期を排気下死点より進角すると共に、前記排気弁の閉時期を排気上死点を越えて遅角した位置に制御することを特徴とする内燃機関の可変動弁システム。
    A variable valve system for an internal combustion engine,
    An intake valve timing mechanism for changing an opening timing and a closing timing of the intake valve while maintaining an operating angle of the intake valve provided in the internal combustion engine at a predetermined angle;
    An exhaust operating angle variable mechanism that changes an operating angle of an exhaust valve provided in the internal combustion engine, and when the internal combustion engine is in a low load region,
    (1) The intake valve timing mechanism controls the closing timing of the intake valve to a crank angle around 90 ° after the intake bottom dead center or a retarded position exceeding the crank 90 ° after the intake bottom dead center. The opening timing is controlled to a position delayed beyond the intake top dead center,
    (2) The exhaust valve operating mechanism advances the exhaust valve opening timing from the exhaust bottom dead center and controls the exhaust valve closing timing to a position delayed beyond the exhaust top dead center. A variable valve system for an internal combustion engine.
  2.  請求項1に記載の内燃機関の可変動弁システムにおいて、
     冷機始動時には、
     前記吸気バルブタイミング機構により、前記吸気弁の閉時期を吸気下死点付近まで進角側に制御すると共に、
     前記排気作動角可変機構により、前記排気弁の作動角度を縮小して前記排気弁の開時期を排気下死点付近に制御すると共に前記排気弁の閉時期を排気上死点付近に制御することを特徴とする内燃機関の可変動弁システム。
    The variable valve system for an internal combustion engine according to claim 1,
    When starting the cold machine,
    With the intake valve timing mechanism, the closing timing of the intake valve is controlled to the advance side to the vicinity of the intake bottom dead center,
    The exhaust valve operating angle is reduced by the exhaust valve operating angle variable mechanism so that the exhaust valve opening timing is controlled near the exhaust bottom dead center and the exhaust valve closing timing is controlled near the exhaust top dead center. A variable valve system for an internal combustion engine.
  3.  請求項2に記載の内燃機関の可変動弁システムにおいて、
     前記吸気バルブタイミング機構は、変換エネルギが作用しなかった場合に前記吸気弁の閉時期が進角して前記吸気下死点付近に機械的に安定するように構成され、
     前記排気作動角可変機構は、変換エネルギが作用しなかった場合に前記排気弁の作動角度が縮小して、前記排気弁の開時期を遅角して排気下死点付近に機械的に安定すると共に、前記排気弁の閉時期を進角して排気上死点付近に機械的に安定するように構成されている
    ことを特徴とする内燃機関の可変動弁システム
    The variable valve system for an internal combustion engine according to claim 2,
    The intake valve timing mechanism is configured such that when the conversion energy does not act, the closing timing of the intake valve is advanced and mechanically stabilized near the intake bottom dead center,
    The variable exhaust operating angle mechanism mechanically stabilizes near exhaust bottom dead center by delaying the opening timing of the exhaust valve by reducing the operating angle of the exhaust valve when conversion energy does not act And a variable valve operating system for an internal combustion engine, wherein the valve closing timing of the exhaust valve is advanced to be mechanically stabilized near the exhaust top dead center
  4.  請求項1に記載の内燃機関の可変動弁システムにおいて、
     前記内燃機関の低回転高負荷領域では、
     前記吸気バルブタイミング機構によって、前記吸気弁の開時期を吸気上死点より進角側に制御する共に前記吸気弁の閉時期を吸気下死点付近まで進角側に制御し、
     前記排気作動角可変機構によって前記排気弁の開時期を排気下死点付近とすると共に前記排気弁の閉時期を排気上死点より遅角側に制御する
    ことを特徴とする内燃機関の可変動弁システム。
    The variable valve system for an internal combustion engine according to claim 1,
    In the low rotation high load region of the internal combustion engine,
    The intake valve timing mechanism controls the opening timing of the intake valve from the intake top dead center to the advance side, and the closing timing of the intake valve is controlled to the advance side to near the intake bottom dead center,
    The variable operation of the internal combustion engine is characterized in that the exhaust valve operating time is set so that the exhaust valve opening timing is near exhaust bottom dead center and the exhaust valve closing timing is controlled to the retard side from the exhaust top dead center. Valve system.
  5.  請求項4に記載の内燃機関の可変動弁システムにおいて、
     前記内燃機関の高回転高負荷領域では、
     前記吸気バルブタイミング機構によって前記吸気弁の開時期が吸気上死点付近となるように制御する共に前記吸気弁の閉時期を吸気下死点90°前に制御し、
     前記排気作動角可変機構によって前記排気弁の開時期を排気下死点より進角側に制御すると共に前記排気弁の閉時期を排気上死点より遅角側に制御する
    ことを特徴とする内燃機関の可変動弁システム。
    The variable valve system for an internal combustion engine according to claim 4,
    In the high rotation high load region of the internal combustion engine,
    The intake valve timing mechanism controls the opening timing of the intake valve to be close to the intake top dead center, and controls the closing timing of the intake valve to 90 ° before the intake bottom dead center;
    An internal combustion engine characterized by controlling the opening timing of the exhaust valve from the exhaust bottom dead center to the advance side by the exhaust operating angle variable mechanism and controlling the closing timing of the exhaust valve from the exhaust top dead center to the retard side. Engine variable valve system.
  6.  請求項1に記載の内燃機関の可変動弁システムにおいて、
     前記内燃機関が低負荷領域では、前記排気作動角可変機構によって前記排気弁の閉時期を前記吸気弁の開時期付近で正のバルブオーバーラップを生成するように制御する
    ことを特徴とする内燃機関の可変動弁システム。
    The variable valve system for an internal combustion engine according to claim 1,
    When the internal combustion engine is in a low load region, the exhaust valve operating angle mechanism controls the closing timing of the exhaust valve so as to generate a positive valve overlap in the vicinity of the opening timing of the intake valve. Variable valve system.
  7.  請求項1に記載の内燃機関の可変動弁システムにおいて、
     前記排気作動角可変機構は、排気弁のリフト量を可変とする可変リフト機構であることを特徴とする内燃機関の可変動弁システム。
    The variable valve system for an internal combustion engine according to claim 1,
    The variable valve operating system for an internal combustion engine, wherein the exhaust operating angle variable mechanism is a variable lift mechanism that varies a lift amount of the exhaust valve.
  8.  請求項1に記載の内燃機関の可変動弁システムにおいて、
     前記吸気バルブタイミング機構は、内燃機関に用いられる油圧によって駆動されることを特徴とする内燃機関の可変動弁システム。
    The variable valve system for an internal combustion engine according to claim 1,
    The variable valve system for an internal combustion engine, wherein the intake valve timing mechanism is driven by hydraulic pressure used in the internal combustion engine.
  9.  請求項1に記載の内燃機関の可変動弁システムにおいて、
     前記吸気バルブタイミング機構は、外部電源から供給される電力によって駆動されることを特徴とする内燃機関の可変動弁システム。
    The variable valve system for an internal combustion engine according to claim 1,
    The variable valve system for an internal combustion engine, wherein the intake valve timing mechanism is driven by electric power supplied from an external power source.
  10.  内燃機関の可変動弁制御装置であって、
     吸気弁の開時期および閉時期を制御する吸気可変動弁制御機構と排気弁の作動角度を変更制御する排気作動角可変機構の動作を制御するマイクロコンピュータを備え、
     前記マイクロコンピュータは前記内燃機関が低負荷領域の状態では、
    (1)前記吸気バルブタイミング機構によって前記吸気弁の閉時期を吸気下死点後クランク角90°付近、又は吸気下死点後クランク90°を越えた遅角位置に制御すると共に前記吸気弁の開時期を吸気上死点を越えて遅角した位置に制御する機能を実行し、
    (2)前記排気作動角可変機構により前記排気弁の作動角度を拡大して前記排気弁の開時期を排気下死点より進角すると共に、前記排気弁の閉時期を排気上死点を越えて遅角した位置に制御する機能を実行する
    ことを特徴とする内燃機関の可変動弁制御装置。
    A variable valve controller for an internal combustion engine,
    A microcomputer for controlling the operation of an intake variable valve operating control mechanism for controlling the opening timing and closing timing of the intake valve and an exhaust operating angle variable mechanism for changing and controlling the operating angle of the exhaust valve;
    When the internal combustion engine is in a low load region, the microcomputer
    (1) The intake valve timing mechanism controls the closing timing of the intake valve to a crank angle around 90 ° after the intake bottom dead center or a retarded position exceeding the crank 90 ° after the intake bottom dead center. Executes a function to control the opening timing to a position retarded beyond the intake top dead center,
    (2) The exhaust valve operating angle is expanded by the exhaust operating angle variable mechanism to advance the exhaust valve opening timing from the exhaust bottom dead center, and the exhaust valve closing timing exceeds the exhaust top dead center. A variable valve control apparatus for an internal combustion engine that executes a function of controlling to a retarded position.
  11.  請求項10に記載の内燃機関の可変動弁制御装置であって、
     前記マイクロコンピュータは前記内燃機関の冷機始動時には、
     前記吸気バルブタイミング機構により、前記吸気弁の閉時期を吸気下死点付近まで進角側に制御する機能を実行し、
     前記排気作動角可変機構により、前記排気弁の作動角度を縮小して前記排気弁の開時期を排気下死点付近に制御すると共に前記排気弁の閉時期を排気上死点付近に制御する機能を実行することを特徴とする内燃機関の可変動弁制御装置。
    The variable valve control apparatus for an internal combustion engine according to claim 10,
    At the time of cold start of the internal combustion engine, the microcomputer
    The intake valve timing mechanism performs a function of controlling the closing timing of the intake valve to the advance side to the vicinity of the intake bottom dead center,
    The exhaust operating angle variable mechanism reduces the operating angle of the exhaust valve to control the opening timing of the exhaust valve to near exhaust bottom dead center and control the closing timing of the exhaust valve to near exhaust top dead center A variable valve control apparatus for an internal combustion engine, characterized in that
  12.  請求項10に記載の内燃機関の可変動弁制御装置であって、
     前記マイクロコンピュータは前記内燃機関の低回転高負荷領域では、
     前記吸気バルブタイミング機構によって、前記吸気弁の開時期を吸気上死点より進角側に制御する共に前記吸気弁の閉時期を吸気下死点付近まで進角側に制御する機能を実行し、
     前記排気作動角可変機構によって前記排気弁の開時期を排気下死点付近とすると共に前記排気弁の閉時期を排気上死点より遅角側に制御する機能を実行することを特徴とする内燃機関の可変動弁制御装置。
    The variable valve control apparatus for an internal combustion engine according to claim 10,
    In the low rotation high load region of the internal combustion engine, the microcomputer is
    The intake valve timing mechanism performs a function of controlling the opening timing of the intake valve from the intake top dead center to the advance angle side, and controlling the closing timing of the intake valve to the advance angle side to near the intake bottom dead center,
    An internal combustion engine that performs a function of controlling the opening timing of the exhaust valve to be near the exhaust bottom dead center and controlling the closing timing of the exhaust valve to the retard side from the exhaust top dead center by the variable exhaust operating angle mechanism. Variable valve controller for engine.
  13.  請求項12に記載の内燃機関の可変動弁制御装置であって、
     前記マイクロコンピュータは前記内燃機関の高回転高負荷領域では、
     前記吸気バルブタイミング機構によって前記吸気弁の開時期が吸気上死点付近となるように制御する共に前記吸気弁の閉時期を吸気下死点90°前に制御する機能を実行し、
     前記排気作動角可変機構によって前記排気弁の開時期を排気下死点より進角側に制御すると共に前記排気弁の閉時期を排気上死点より遅角側に制御する機能を実行することを特徴とする内燃機関の可変動弁制御装置。
    The variable valve control apparatus for an internal combustion engine according to claim 12,
    In the high-rotation and high-load region of the internal combustion engine, the microcomputer is
    Performing the function of controlling the opening timing of the intake valve to be close to the intake top dead center by the intake valve timing mechanism and controlling the closing timing of the intake valve to 90 ° before the intake bottom dead center;
    Performing the function of controlling the opening timing of the exhaust valve from the exhaust bottom dead center to the advance side by the exhaust operating angle variable mechanism and controlling the closing timing of the exhaust valve from the exhaust top dead center to the retard side. A variable valve control apparatus for an internal combustion engine characterized by the above.
  14.  請求項10に記載の内燃機関の可変動弁制御装置であって、
     前記マイクロコンピュータは前記内燃機関が低負荷領域では、
     前記排気作動角可変機構によって前記排気弁の閉時期を前記吸気弁の開時期付近で正のバルブオーバーラップを生成するように制御する機能を実行することを特徴とする内燃機関の可変動弁制御装置。
    The variable valve control apparatus for an internal combustion engine according to claim 10,
    In the microcomputer, the internal combustion engine is in a low load region.
    A variable valve operating control for an internal combustion engine, wherein a function for controlling the closing timing of the exhaust valve to generate a positive valve overlap in the vicinity of the opening timing of the intake valve is executed by the exhaust operating angle variable mechanism. apparatus.
PCT/JP2015/085063 2014-12-18 2015-12-15 Variable valve system and variable valve control device for internal combustion engine WO2016098768A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-255789 2014-12-18
JP2014255789A JP6348833B2 (en) 2014-12-18 2014-12-18 Variable valve system and variable valve controller for internal combustion engine

Publications (1)

Publication Number Publication Date
WO2016098768A1 true WO2016098768A1 (en) 2016-06-23

Family

ID=56126657

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/085063 WO2016098768A1 (en) 2014-12-18 2015-12-15 Variable valve system and variable valve control device for internal combustion engine

Country Status (2)

Country Link
JP (1) JP6348833B2 (en)
WO (1) WO2016098768A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110998078A (en) * 2017-08-14 2020-04-10 日立汽车系统株式会社 Variable operation system for internal combustion engine and control device therefor
CN113294260A (en) * 2021-06-30 2021-08-24 王尚礼 Method for improving work doing efficiency of internal combustion engine

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018197520A (en) * 2017-05-23 2018-12-13 アイシン精機株式会社 Control device for internal combustion engine
JP2023167850A (en) 2022-05-13 2023-11-24 トヨタ自動車株式会社 Vehicle control device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03138443A (en) * 1989-10-23 1991-06-12 Mazda Motor Corp Controller for multicylinder engine
JP2006029245A (en) * 2004-07-20 2006-02-02 Hitachi Ltd Variable valve system of internal combustion engine
JP2007040150A (en) * 2005-08-02 2007-02-15 Toyota Motor Corp Control device for internal combustion engine
JP2011220349A (en) * 2011-08-11 2011-11-04 Hitachi Automotive Systems Ltd Variable valve system and variable valve device of internal combustion engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03138443A (en) * 1989-10-23 1991-06-12 Mazda Motor Corp Controller for multicylinder engine
JP2006029245A (en) * 2004-07-20 2006-02-02 Hitachi Ltd Variable valve system of internal combustion engine
JP2007040150A (en) * 2005-08-02 2007-02-15 Toyota Motor Corp Control device for internal combustion engine
JP2011220349A (en) * 2011-08-11 2011-11-04 Hitachi Automotive Systems Ltd Variable valve system and variable valve device of internal combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110998078A (en) * 2017-08-14 2020-04-10 日立汽车系统株式会社 Variable operation system for internal combustion engine and control device therefor
CN113294260A (en) * 2021-06-30 2021-08-24 王尚礼 Method for improving work doing efficiency of internal combustion engine

Also Published As

Publication number Publication date
JP6348833B2 (en) 2018-06-27
JP2016114042A (en) 2016-06-23

Similar Documents

Publication Publication Date Title
US7703424B2 (en) Variable valve actuation system of internal combustion engine
JP4907416B2 (en) Variable valve operating device for internal combustion engine
US6840201B2 (en) Variable valve timing control apparatus and method for an internal combustion engine
JP4749988B2 (en) Start control device for internal combustion engine
JP5302173B2 (en) Variable valve operating device for internal combustion engine
US8843294B2 (en) Apparatus for and method of controlling variable valve timing mechanism
JP6250484B2 (en) Automatic stop / restart control system for internal combustion engine and variable valve operating device
JP2008303773A (en) Variable valve system of internal combustion engine
JP2008215327A (en) Variable valve gear and control device for internal combustion engine
US8695544B2 (en) High expansion ratio internal combustion engine
JP5654940B2 (en) Variable valve operating controller and internal combustion engine variable valve operating device
US20180106199A1 (en) Compression ratio adjustment apparatus for internal combustion engine
JP2011085078A (en) Internal combustion engine control device and internal combustion engine control system
US20090159027A1 (en) Variable valve actuating apparatus for internal combustion engine, and controller for variable valve actuating apparatus
JP2010059791A (en) Control device of variable valve mechanism and variable valve control system
JP2012036864A (en) Variably operated valve apparatus for internal combustion engine, start system for internal combustion engine, and start control apparatus for internal combustion engine
JP2009030584A (en) Control apparatus for internal combustion engine
WO2016098768A1 (en) Variable valve system and variable valve control device for internal combustion engine
WO2017110401A1 (en) Piston stroke adjustment device for internal combustion engine
EP2982848B1 (en) Controller of variable valve mechanism
US20190285005A1 (en) Variable system of internal combustion engine and method for controlling the same
JP2009293567A (en) Valve control device for internal combustion engine
KR101558352B1 (en) Engine having continuous varialbe valve timing device
WO2018159298A1 (en) Variable valve system for internal combustion engine and variable valve mechanism control device
JP2009097374A (en) Engine starting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15869973

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15869973

Country of ref document: EP

Kind code of ref document: A1