WO2016098693A1 - Electric power steering device and control device for vehicle-mounted device - Google Patents

Electric power steering device and control device for vehicle-mounted device Download PDF

Info

Publication number
WO2016098693A1
WO2016098693A1 PCT/JP2015/084770 JP2015084770W WO2016098693A1 WO 2016098693 A1 WO2016098693 A1 WO 2016098693A1 JP 2015084770 W JP2015084770 W JP 2015084770W WO 2016098693 A1 WO2016098693 A1 WO 2016098693A1
Authority
WO
WIPO (PCT)
Prior art keywords
command value
control command
control
signal
electric power
Prior art date
Application number
PCT/JP2015/084770
Other languages
French (fr)
Japanese (ja)
Inventor
裕幸 太田
杉山 吉隆
督己 加島
正樹 板橋
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2016098693A1 publication Critical patent/WO2016098693A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/06Arrangements for speed regulation of a single motor wherein the motor speed is measured and compared with a given physical value so as to adjust the motor speed

Definitions

  • the present invention relates to a vehicle-mounted device provided with an electric motor.
  • Patent Document 1 the technology described in Patent Document 1 is known as an electric power steering device that is one of the on-vehicle equipment.
  • This publication limits the DC bus current by limiting the AC rotating machine voltage that has a linear relationship with the rotational speed of the AC rotating machine.
  • the limitation on the voltage of the AC rotating machine described in Patent Document 1 is that the voltage applied to the AC rotating machine is such that the current command value obtained from the torque command for the AC rotating machine matches the current value supplied to the AC rotating machine. This is done after calculating the command value.
  • the DC bus current detection value is controlled so as to match the DC bus current command, but the torque command for the AC rotary machine is not adjusted, so the current command obtained from the torque command for the AC rotary machine is changed to the AC rotary machine.
  • the current supplied to As a result torque according to the torque command is not generated, and the accuracy of torque control is reduced.
  • the amplitude of the three-phase AC voltage command applied to the AC rotating machine is limited, there is a possibility that the rectangular wave is distorted from an ideal sine wave, which causes torque ripple.
  • An object of the present invention is to prevent a reduction in the accuracy of torque control that occurs when an electric power steering device and a control device for on-vehicle equipment are controlled so that the DC bus current is below a desired limit value. It is to enable accurate torque control.
  • An object of the present invention is to provide an electric power steering apparatus and a vehicle capable of preventing a reduction in accuracy of torque control that occurs when the DC bus current is controlled to be equal to or less than a desired limit value, and capable of highly accurate torque control. It is to provide a control device for on-board equipment.
  • the present invention drives and controls a three-phase brushless motor incorporated in a vehicle-mounted device and supplies power from a battery to drive and control the three-phase brushless motor based on the driving state of the vehicle.
  • a control command value is calculated, and a three-phase brushless motor is driven and controlled based on the control command value by a control device including an inverter.
  • the control device has a control command value limit value for limiting the battery current supplied from the battery to the control device, and corrects the control command value so that the battery current does not exceed the control command value limit value.
  • control device has a circuit for feedback correcting the control command value based on the battery current, and when the battery current is corrected so as not to exceed the control command value limit value, the corrected control command value is converted into the battery current. Based on the feedback correction, the control command value corrected for feedback is output to the inverter.
  • FIG. 1 is a schematic diagram illustrating an electric power steering device according to a first embodiment.
  • 1 is a system diagram illustrating a motor drive system according to a first embodiment.
  • 2 is a control command value limit value calculation map according to the first embodiment.
  • FIG. 3 is a control block diagram illustrating a motor control unit according to the first embodiment.
  • FIG. 3 is a control block diagram illustrating a configuration of a torque command unit according to the first embodiment. It is an operation
  • FIG. FIG. 6 is a control block diagram illustrating a configuration of a torque command unit according to a second embodiment.
  • FIG. 6 is a control block diagram illustrating a configuration of a torque command unit according to a third embodiment.
  • FIG. 1 is a schematic diagram illustrating the configuration of the electric power steering apparatus according to the first embodiment.
  • the electric power steering apparatus includes a steering wheel 201, a steering shaft (steering shaft) 202, a pinion shaft 203, a rack shaft 204, and a steering mechanism using a rack and pinion mechanism.
  • this steering mechanism when the driver rotates the steering wheel 201 left and right, the steering torque is transmitted to the pinion shaft 203 via the steering shaft 202, and the rotational motion of the pinion shaft 203 is converted into the linear motion of the rack shaft 204.
  • the steered wheels connected to both ends of the rack shaft 204 are steered.
  • the pinion shaft 203 is provided with a steering torque sensor 206 that detects the steering torque of the steering wheel 201, and generates a torque command ⁇ * to the motor 1 that assists the steering torque based on the detected steering torque and vehicle speed information. And the motor 1 is driven.
  • the speed reduction mechanism 205 transmits the torque generated by the motor 1 to the steered wheels to assist the driver's steering.
  • the motor control unit 10 includes an inverter circuit 2, a battery 3, a battery voltage sensor 4, a position sensor 5, a current sensor 6, a battery current detection circuit 7, a control command value limiting unit 8, and a torque command unit 9 (FIG. 2). reference).
  • a torque command generator 30 (to be described later) outputs a torque command ⁇ * to the motor 1 that assists the steering torque based on the steering torque and vehicle speed information detected by the steering torque sensor 206.
  • FIG. 2 is a system diagram illustrating the motor drive system according to the first embodiment.
  • the motor drive system includes a motor 1, an inverter circuit 2 that drives the motor 1, a battery 3 that supplies power to the inverter circuit 2, and a battery voltage sensor that detects a voltage of the battery 3 that is a supply voltage to the inverter circuit 2. 4, a position sensor 5 that detects the rotor position of the motor 1, a current sensor 6 that detects a three-phase AC current flowing through the motor 1, and a battery current (DC bus current) that is a supply current to the inverter circuit 2.
  • DC bus current DC bus current
  • a command unit 9 and a motor control unit 10 that performs control for generating torque that matches the torque command are included.
  • the motor 1 is a three-phase brushless motor, for example, a permanent magnet synchronous motor.
  • the inverter circuit 2 is configured by a switching element such as an FET, and is connected to the motor 1 and the battery 3.
  • the control command value limiting unit 8 sets a control command value limiting value IDC * that limits the battery current supplied to the inverter circuit 2 to a preset value.
  • the torque command unit 9 includes an operation state signal receiving unit that receives a battery voltage VDC, a battery current IDCfb, an environmental temperature signal of the motor 1 and the inverter circuit 2, a command signal from a controller such as a vehicle integrated control device (not shown), and the like. Have.
  • the torque command unit 9 outputs a torque command to the motor control unit 10 so that the control command value limit value IDC * from the control command value limit unit 8 matches the battery current detection value IDCfb detected by the battery current detection circuit 7. To do.
  • the motor control unit 10 controls the torque generated by the motor 1 by driving the inverter circuit 2 based on the torque command ⁇ ** of the torque command unit 9.
  • the control command value limiter 8 obtains a control command value limit value IDC * based on the battery voltage detection value VDC detected by the battery voltage sensor 4.
  • FIG. 3 is a control command value limit value calculation map of the first embodiment. As the battery voltage detection value VDC is lower, the battery current that is the DC bus current is limited to suppress an excessive decrease in the battery voltage that is the DC voltage.
  • FIG. 4 is a control block diagram showing the motor control unit of the first embodiment.
  • the motor control unit 10 includes a vector controller 20, a dq / three-phase converter 21, a PWM 22, a three-phase / dq coordinate converter 23, a phase calculator 24, and a speed calculator 25.
  • a well-known vector control is performed as a method for linearizing the torque of the permanent magnet synchronous motor.
  • the vector controller 20 outputs voltage commands Vd * and Vq * on the dq axis so that the motor 1 generates a torque corresponding to the current command Iq * contributing to the torque of the motor 1.
  • the dq / three-phase converter 21 outputs three-phase AC voltage commands Vu *, Vv *, Vw * based on the voltage commands Vd *, Vq * on the dq axis and the rotor phase ⁇ d.
  • the PWM 22 performs pulse width modulation (PWM: Pulse Width Modulation) using the three-phase AC voltage commands Vu *, Vv *, and Vw * as signals for turning on / off the switching elements of the inverter circuit 2, and the pulse width modulated signal. Is output.
  • PWM Pulse Width Modulation
  • the three-phase / dq coordinate converter 23 is a current Iqc (q-axis current component) contributing to torque and a current Idc (d-axis) contributing to magnetic flux. Current component).
  • the phase calculator 24 calculates the rotor phase ⁇ d from the rotor position detected by the position sensor 5, and outputs it to the dq / three-phase converter 21, the three-phase / dq coordinate converter 23, and the speed calculator 25. .
  • the speed calculator 25 calculates the rotational speed ⁇ rm of the motor 1 from the rotor phase ⁇ d and outputs it to the vector controller 20.
  • the vector controller 20 generates a current command Iq * contributing to torque and a current command Id * contributing to magnetic flux based on the torque command ⁇ * of the torque command unit 9.
  • the current command Id * is normally set to zero if it is a non-salient permanent magnet synchronous motor. In salient-pole permanent magnet synchronous motors, field weakening control and efficiency maximization control, a non-zero command is given as the current command Id *.
  • the current Iqc (q-axis current component) that contributes to the torque and the magnetic flux are determined based on the three-phase AC Iuc, Ivc, Iwc that are the AC current detection values of the motor 1 and the rotor phase ⁇ d.
  • the current Idc (d-axis current component) that contributes is separated. Then, current control is performed so that the detected current values coincide with the current command Iq * contributing to the torque and the current command Id * contributing to the magnetic flux.
  • the voltage commands Vd * and Vq * on the dq axis that is the rotation coordinate axis are calculated, and the dq / three-phase converter 21 calculates the three based on the voltage commands Vd * and Vq * and the rotor phase ⁇ d. Convert to phase AC voltage command Vu *, Vv *, Vw *.
  • the voltage commands Vd * and Vq * on the dq axis may be calculated by combining the result of current control and the result of non-interference control that compensates for the interference term on the dq axis.
  • Three-phase AC voltage commands Vu *, Vv *, and Vw * are obtained by performing pulse width modulation using PWM22 as a signal for turning on / off the switching element of the inverter circuit 2 and driving the switching element of the inverter circuit 2.
  • Voltages corresponding to the phase AC voltage commands Vu *, Vv *, and Vw * are applied to the motor 1. Then, by sequentially switching energization to each phase of the motor 1, current can be supplied to each phase and the motor 1 can be driven.
  • a method may be employed in which the DC bus current is detected without detecting the three-phase AC current, and the phase current is reproduced and calculated inside the controller.
  • There is a known technique for reproducing and calculating a three-phase alternating current (phase current) from the direct current bus current and it is omitted because it is not a main part of the present invention.
  • FIG. 5 is a control block diagram illustrating the configuration of the torque command unit according to the first embodiment.
  • the torque command unit 9 includes a torque command generator 30, a deviation calculator 31, an integrator 32, a limit processor 33, and an adder 34.
  • the torque command generator 30 which is a control command value calculation unit generates a torque command ⁇ * to the motor 1.
  • the deviation calculator 31 calculates the deviation between the control command value limit value IDC * output from the control command value limiter 8 and the battery current detection value IDCfb output from the battery current detection circuit 7.
  • the integrator 32 integrates the deviation output from the deviation calculator 31 and outputs a torque command correction amount ⁇ *.
  • the limit processor 33 limits the torque command correction amount ⁇ * output from the integrator 32.
  • the adder 34 adds the torque command to the motor 1 output from the torque command generator 30 and the torque command correction amount ⁇ * limited by the limit processor 33, and calculates the corrected torque command ⁇ **. Output.
  • FIG. 6 is a schematic operation diagram of the torque command unit according to the first embodiment.
  • a torque command ⁇ * from the torque command generator 30 to the motor 1 is generated.
  • the motor control unit 10 controls the torque generated by the motor 1.
  • the DC voltage and the rotational speed ⁇ rm of the motor 1 are constant for easy understanding.
  • the battery current detection value IDCfb flows as the battery current before correction in FIG. 4 based on the torque command ⁇ *.
  • the torque command unit 9 calculates a deviation (IDC * ⁇ IDCfb) in the IDC * and IDCfb deviation calculator 31 so that the battery current detection value IDCfb matches the control command value limit value IDC *.
  • the deviation in this case is a negative value because the battery current detection value IDCfb exceeds the control command value limit value IDC *.
  • the deviation obtained by the deviation calculator 31 is multiplied by an integral gain K to perform an integral calculation (or proportional calculation + integral calculation), and a torque command correction amount ⁇ * is created and output to the limit processor 33.
  • the limit processor 33 limits the torque command correction amount ⁇ * from zero or less to a value obtained by multiplying the torque command ⁇ * by ⁇ 1. Therefore, the maximum value of the torque command correction amount ⁇ * is zero, and the minimum value is a negative value obtained by multiplying the torque command ⁇ * by ⁇ 1. If the torque command correction amount ⁇ * is less than or equal to the value obtained by multiplying the torque command ⁇ * by ⁇ 1, the torque command correction amount ⁇ * is limited to a value obtained by multiplying the torque command ⁇ * by ⁇ 1. Is limited to zero. When the torque command correction amount ⁇ * is between the minimum value and the maximum value, there is no limitation. Further, the limit processor 33 has a minimum value that varies according to the torque command ⁇ *.
  • the maximum value of the torque command correction amount ⁇ * is zero, and the minimum value that becomes a positive value obtained by multiplying the torque command ⁇ * by ⁇ 1 is zero.
  • the operation is the same as when the torque command ⁇ * is a positive value, but the sign of the maximum value and the minimum value that are limited is different.
  • the torque command correction amount ⁇ * that has passed through the limit processor 33 is added to the torque command ⁇ * to calculate a new torque command ⁇ **.
  • the corrected new torque command ⁇ ** does not become larger than the torque command ⁇ *. This is because when the torque command ⁇ * is positive, the torque command correction amount ⁇ * is limited to zero or a negative value obtained by multiplying the torque command ⁇ * by ⁇ 1 by the limit processor 33. Similarly, when the torque command ⁇ * is negative, the torque command correction amount ⁇ * is limited to zero or a positive value obtained by multiplying the torque command ⁇ * by ⁇ 1. ⁇ ** does not become smaller than the torque command ⁇ *.
  • the torque generated by the motor 1 is controlled based on the corrected new torque command ⁇ **, the battery current becomes smaller than when the control is performed based on the torque command ⁇ * before correction. Then, by constructing such a feedback loop, the torque command ⁇ * can be corrected online, so that the battery command detected value IDCfb becomes the torque command ⁇ * that matches the control command value limit value IDC *. The generated torque of the motor 1 can be controlled.
  • VDC ⁇ IDCfb ⁇ * ⁇ ⁇ rm + R * ⁇ (Idc 2 + Iqc 2 ) + Ploss
  • the first term on the right side represents the mechanical output of the motor 1.
  • the second term represents the copper loss of the motor 1.
  • R * is the phase resistance setting value of the motor 1.
  • the third term represents loss including iron loss of the motor 1 and the like.
  • the expression (1) can be expressed as the following expression (2).
  • the control target in the battery current feedback control system in which the operation amount is the torque command ⁇ *, the control target can be expressed as ⁇ rm / VDC.
  • VDC ⁇ IDCfb ⁇ * ⁇ ⁇ rm Therefore, the input can be expressed as a transfer function of the torque command ⁇ * and the output as the battery current detection value IDCfb.
  • the copper loss and iron loss of the motor 1 are ignored, but the same can be considered in the same manner by considering copper loss or losses such as copper loss and iron loss. In this case, the responsiveness of the feedback control system and the control stability with respect to the control response frequency are further improved.
  • the battery current that is the DC bus current is limited without waste, it is possible to provide an electric power steering apparatus that can make maximum use of the power supplied by the battery 3.
  • control command value limit value IDC * based on the voltage VDC supplied by the battery 3
  • appropriate power control can be performed according to the state of the battery, preventing early deterioration of the battery 3, Failure or breakage of components connected between the battery 3 and the inverter circuit 2 or heat generation due to path resistance can be suppressed.
  • the integral gain K is affected by the battery voltage detection value VDC, the motor rotation speed ⁇ rm, and Ploss.
  • copper loss is represented by R ⁇ I 2 .
  • I Motor phase current value (either command current or actual current may be used)
  • R Resistance of motor circuit (winding, etc.).
  • Iron loss includes hysteresis loss and eddy current loss.
  • Ph hysteresis loss, f: frequency, Bm: maximum magnetic flux density, kh: proportional constant).
  • Pe eddy current loss
  • t iron plate thickness
  • f frequency
  • Bm maximum magnetic flux density
  • resistivity of magnetic material
  • ke proportional constant
  • Example 1 Electric power is supplied from the steering mechanism that steers the steered wheels according to the steering operation of the steering wheel 201, the motor 1 (three-phase brushless motor) that applies steering force to the steering mechanism, and the battery 3.
  • a motor control unit 10 (control device) that controls the drive of the motor 1, and a torque command ⁇ * and a torque that are provided in the motor control unit 10 and are control command values for controlling the drive of the motor 1 based on the driving state of the vehicle
  • a torque command unit 9 (control command value calculation unit) that calculates the command ⁇ **, an inverter circuit 2 that is provided in the motor control unit 10 and controls the drive of the motor 1 based on the torque command ⁇ **, and the motor control unit 10
  • the torque command unit 9 (control command) having a deviation calculator 31, an integrator 32, a limit processor 33, and an adder 34 for correcting the torque command ⁇ * so that the battery current IDCfb does not exceed the control command value limit value IDC *.
  • a battery current detection circuit 7 provided in the motor control unit 10 for detecting or estimating the battery current
  • the torque command generator 30 in the torque command unit 9 calculates the torque command ⁇ * based on the steering torque.
  • the torque command ⁇ is not limited to the steering torque but is considered in consideration of the vehicle speed, the steering speed, and the like. * May be calculated.
  • the torque commands ⁇ * and ⁇ ** may be current commands that contribute to torque, or torque command values for calculating current commands that contribute to torque.
  • the torque command unit 9 corrects the torque command ⁇ * so that the battery current IDCfb approaches the control command value limit value IDC *.
  • An electric power steering device Since the torque command unit 9 corrects the torque command ⁇ * so as to be as high as possible, the deterioration of the steering feeling can be suppressed within the range of the control command value limit value IDC *.
  • the control command value limiting unit 8 includes a driving state signal receiving unit to which a driving state signal that is a signal indicating the driving state of the vehicle is input.
  • An electric power steering apparatus comprising: a control command value limit value IDC * variably adjusted based on an operation state signal.
  • the control command value limiting unit 8 is configured to control the control command value limit value IDC based on the voltage of the battery 3 that supplies power to the motor control unit 10.
  • the torque command unit 9 is an input to which a battery voltage detection value VDC that is a signal indicating a voltage value input to the inverter circuit 2 is input.
  • the torque command unit 9 is a motor loss signal receiving unit to which a motor loss signal that is a signal related to copper loss or iron loss of the motor 1 is input. And a torque command ⁇ * is corrected based on Ploss which is a motor loss signal. Therefore, the responsiveness of the battery current feedback control system and the control stability with respect to the control response frequency can be further improved.
  • FIG. 7 is a control block diagram illustrating the configuration of the torque command unit according to the second embodiment.
  • the integral gain K is determined as [Equation (3)] so as to be the control response frequency Fc of the battery current feedback control system. Furthermore, when the copper loss is taken into consideration with respect to the integral gain K, the control stability with respect to the control response frequency is further improved.
  • the copper loss is obtained from the phase resistance set value R * and the dq axis current detection value (may be a dq axis current command) as shown in [Expression (1)].
  • an environmental temperature detection unit 35 that detects or estimates the environmental temperature around the motor 1 and outputs an environmental temperature signal.
  • the integrator 32 includes an environmental temperature signal receiving unit that receives an environmental temperature signal. The integrator 32 corrects the phase resistance set value R * based on the received environmental temperature signal. Thereby, the stability of control with respect to the control response frequency can be maintained even when the environmental temperature changes.
  • the motor control unit 10 includes a temperature signal receiving unit that receives an environmental temperature signal that is a signal related to the environmental temperature around the motor 1, and the torque command unit 9 is based on the environmental temperature signal to generate a torque command ⁇ *
  • An electric power steering device characterized by correcting the above. Since the parameters for calculating copper loss and iron loss change depending on the environmental temperature, the control of the response and control response frequency of the battery current feedback control system can be achieved by correcting the torque command ⁇ * with further consideration of the environmental temperature. Can be further improved.
  • FIG. 8 is a control block diagram illustrating the configuration of the torque command unit according to the third embodiment.
  • Example 1 the example which applied this invention to the electric power steering apparatus was shown.
  • Example 3 is adopted for other on-vehicle equipment.
  • the torque command ⁇ * and the torque command correction amount ⁇ * are added to create a corrected new torque command ⁇ **.
  • the torque command correction amount ⁇ * is directly used as the torque command ⁇ ** without adding the torque command ⁇ * shown in FIG.
  • the restriction processor 33 shown in FIG. 5 is deleted.
  • the same effect as that of the first embodiment can be obtained by changing the configuration of the torque command unit 9 as shown in FIG.
  • the generated torque of the motor 1 can be controlled without the value IDCfb overshooting the control command value limit value IDC *.
  • Example 3 A control device for a vehicle-mounted device that drives and controls a three-phase brushless motor incorporated in a vehicle-mounted device, and that drives the three-phase brushless motor based on the driving state of the vehicle.
  • a control command value calculation unit for calculating a control command value for controlling, an inverter circuit for driving and controlling the three-phase brushless motor based on the control command value, and a battery that is a current supplied from the battery to the control device
  • a torque command unit that has a control command value limit value that limits current and corrects the control command value so that the battery current does not exceed the control command value limit value; and a battery current that detects or estimates the battery current A detection circuit; and a circuit for feedback-correcting the control command value based on the battery current, wherein the control command value is the torque A current feedback circuit that, when corrected by the command unit, feedback-corrects the control command value corrected by the torque command unit and outputs the feedback-corrected control command value to the inverter circuit;
  • a control device for on-vehicle equipment.
  • the torque command unit sets the control command value limit value within a range in which the battery current does not exceed the control command value limit value.
  • a control device for a vehicle-mounted device wherein the control command value is corrected so as to approach the vehicle. Since the torque command unit corrects the control command value to be as high as possible, it is possible to suppress the deterioration of the steering feeling within the range of the control command value limit value.
  • the control command value limiter receives an operating state signal to which an operating state signal that is a signal indicating the operating state of the vehicle is input.
  • a control command value or a control command limit value is corrected based on the driving state signal.
  • control command value limiting unit is configured to control the control command value limit value based on a voltage of a battery that supplies power to the control device.
  • the torque command unit is an input to which an input voltage signal that is a signal indicating a voltage value input to the inverter circuit is input.
  • the torque command unit includes a motor loss signal receiving unit to which a motor loss signal that is a signal related to copper loss or iron loss of the three-phase brushless motor is input, and corrects the control command value based on the motor loss signal.
  • a control device for a vehicle-mounted device Therefore, the responsiveness of the battery current feedback control system and the control stability with respect to the control response frequency can be further improved.
  • the present invention is not limited to the above-described embodiments, and includes various modifications.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
  • (14-8) a steering mechanism for turning the steered wheels according to the steering operation of the steering wheel; A three-phase brushless motor that applies steering force to the steering mechanism; A control device which is supplied with electric power from a battery and drives and controls the three-phase brushless motor; A calculation unit that is provided in the control device and calculates a control command value for driving and controlling the three-phase brushless motor based on a driving state of the vehicle, and is a current supplied from the battery to the control device.
  • a control command value calculation unit that calculates the control command value so that the battery current does not exceed a control command value limit value for limiting the battery current;
  • An inverter circuit provided in the control device for driving and controlling the three-phase brushless motor based on the control command value;
  • a battery current detection circuit provided in the control device for detecting or estimating the battery current;
  • a current feedback circuit provided in the control device, which feedback-corrects the control command value based on the battery current and outputs the control command value feedback-corrected to the inverter circuit;
  • An electric power steering apparatus comprising: When feedback correction is performed on a voltage command on the dq axis or a three-phase AC voltage command that is output based on a control command value that has not been corrected by the control command value calculation unit, the difference between the control command value and the torque generated by the motor is large. Therefore, the feedback control may diverge.
  • the said subject can be suppressed by carrying out the feedback correction
  • the control command value calculation unit calculates the control command value so that a battery current approaches the limit value. Electric power steering device. Since the control command value calculation unit corrects the control command value so as to be as high as possible, it is possible to suppress the deterioration of the steering feeling within the limit value range. (16-10) In the electric power steering apparatus according to (14-8), the control command value calculation unit includes a driving state signal receiving unit to which a driving state signal that is a signal indicating a driving state of the vehicle is input. An electric power steering apparatus comprising: correcting the control command value or the control command limit value based on the driving state signal.
  • the control command value calculation unit variably adjusts the limit value based on a voltage of a battery that supplies power to the control device. An electric power steering device. When the battery voltage is lowered, the battery can be protected by setting the limit value lower.
  • the control command value calculation unit is an input to which an input voltage signal that is a signal indicating a voltage value input to the inverter circuit is input.
  • An electric power steering apparatus characterized by correcting a value. The response of the battery current feedback control system can be set to a desired value.
  • the control command value calculation unit receives a motor loss signal that is a signal relating to copper loss or iron loss of the three-phase brushless motor.
  • the control device includes a temperature signal receiving unit that receives an environmental temperature signal that is a signal related to an environmental temperature around the three-phase brushless motor.
  • the electric power steering apparatus wherein the control command value calculation unit corrects the control command value based on the environmental temperature signal. Since the parameters for calculating copper loss and iron loss change depending on the environmental temperature, the control command value is corrected with further consideration of the environmental temperature, so that the control of the responsiveness and control response frequency of the battery current feedback control system can be achieved. Stability can be further improved.
  • the difference between the control command value and the generated torque of the motor is reduced by feedback correcting the control command value that has been corrected so that the battery current does not exceed the control command value limit value. And control divergence can be suppressed.
  • Motor controller 20 Motor controller 21 dq / three-phase coordinate converter 22 PWM23 Three-phase / dq coordinate converter 24, phase calculator 25, speed calculator 30, torque command generator 31, deviation calculator 32, integrator 33, limit processor 34, adder 35, environmental temperature detector 201, steering wheel 202, steering shaft 203, pinion shaft 204, rack Shaft 205 Deceleration mechanism 206 Steering torque sensor

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Control Of Ac Motors In General (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Power Steering Mechanism (AREA)

Abstract

The purpose of the present invention is to prevent decreases in the precision of torque control that occur when DC bus current is controlled so as to be equal to or less than a desired limit value in an electric power steering device and in a control device for a vehicle-mounted device, and to thereby enable high-precision torque control. When performing drive control of a three-phase brushless motor into which a vehicle-mounted device is incorporated and supplying power from a battery in the electric power steering device of the present invention, a control command value for performing drive control of the three-phase brushless motor on the basis of the operation state of a vehicle is calculated and drive control of the three-phase brushless motor is performed on the basis of the control command value by a control device comprising an inverter. On this occasion, the control device has a limit value for limiting the battery current supplied to the control device from the battery, and said control device corrects the control command value so that the battery current does not surpass the limit value. In addition, a control circuit comprises a correction circuit for performing feedback correction of the control command value on the basis of the battery current. When the battery current is corrected so as not to surpass the limit value, the control circuit performs feedback correction of the corrected control command value on the basis of the battery current and outputs the current command value that has been subjected to feedback correction to the inverter.

Description

電動パワーステアリング装置及び車両搭載機器の制御装置Electric power steering device and control device for on-vehicle equipment
 本発明は、電動モータを備えた車両搭載機器に関する。 The present invention relates to a vehicle-mounted device provided with an electric motor.
 従来、車両搭載機器の一つである電動パワーステアリング装置として、特許文献1に記載の技術が知られている。この公報には、交流回転機の回転速度に関して線形な関係を持つ交流回転機電圧を制限することにより、直流母線電流を制限している。 Conventionally, the technology described in Patent Document 1 is known as an electric power steering device that is one of the on-vehicle equipment. This publication limits the DC bus current by limiting the AC rotating machine voltage that has a linear relationship with the rotational speed of the AC rotating machine.
特開2013-162561号公報JP 2013-162561 A
 しかしながら、特許文献1記載の交流回転機電圧の制限は、交流回転機に対するトルク指令から求められた電流指令値が交流回転機に供給される電流値に一致するように交流回転機に印加する電圧指令値を演算した後に行われる。この場合、直流母線電流検出値が直流母線電流指令に一致するように制御されるが、交流回転機に対するトルク指令を調整しないので、交流回転機に対するトルク指令から求められた電流指令に交流回転機へ供給される電流が一致しないおそれがある。その結果、トルク指令通りのトルクが発生しないため、トルク制御の精度が低下してしまう。また、交流回転機へ印加する三相交流電圧指令の振幅を制限するため、理想的な正弦波から歪んだ矩形波になるおそれがあり、トルクリプルの発生要因となる。 However, the limitation on the voltage of the AC rotating machine described in Patent Document 1 is that the voltage applied to the AC rotating machine is such that the current command value obtained from the torque command for the AC rotating machine matches the current value supplied to the AC rotating machine. This is done after calculating the command value. In this case, the DC bus current detection value is controlled so as to match the DC bus current command, but the torque command for the AC rotary machine is not adjusted, so the current command obtained from the torque command for the AC rotary machine is changed to the AC rotary machine. There is a risk that the current supplied to As a result, torque according to the torque command is not generated, and the accuracy of torque control is reduced. In addition, since the amplitude of the three-phase AC voltage command applied to the AC rotating machine is limited, there is a possibility that the rectangular wave is distorted from an ideal sine wave, which causes torque ripple.
 本発明の目的は、電動パワーステアリング装置及び車両搭載機器の制御装置において、直流母線電流が所望の制限値以下になるように制御させたときに発生するトルク制御の精度の低下を防止し、高精度なトルク制御を可能にすることである。 An object of the present invention is to prevent a reduction in the accuracy of torque control that occurs when an electric power steering device and a control device for on-vehicle equipment are controlled so that the DC bus current is below a desired limit value. It is to enable accurate torque control.
 本発明の目的は、直流母線電流が所望の制限値以下になるように制御させたときに発生するトルク制御の精度の低下を防止し、高精度なトルク制御が可能な電動パワーステアリング装置及び車両搭載機器の制御装置を提供することである。 An object of the present invention is to provide an electric power steering apparatus and a vehicle capable of preventing a reduction in accuracy of torque control that occurs when the DC bus current is controlled to be equal to or less than a desired limit value, and capable of highly accurate torque control. It is to provide a control device for on-board equipment.
 上記目的を達成するため、本発明では、車両搭載機器に組み込まれる3相ブラシレスモータを駆動制御すると共にバッテリから電力を供給するにあたり、車両の運転状態に基づき3相ブラシレスモータを駆動制御するための制御指令値を演算し、インバータを含む制御装置により制御指令値に基づき3相ブラシレスモータを駆動制御する。このとき、制御装置は、バッテリから制御装置に供給されるバッテリ電流を制限する制御指令値制限値を有し、バッテリ電流が制御指令値制限値を超えないように制御指令値を補正する。更に、制御装置は、バッテリ電流に基づき制御指令値をフィードバック補正する回路を有し、バッテリ電流が制御指令値制限値を超えないように補正されたとき、補正された制御指令値をバッテリ電流に基づきフィードバック補正すると共にフィードバック補正された制御指令値をインバータに出力することとした。 In order to achieve the above object, the present invention drives and controls a three-phase brushless motor incorporated in a vehicle-mounted device and supplies power from a battery to drive and control the three-phase brushless motor based on the driving state of the vehicle. A control command value is calculated, and a three-phase brushless motor is driven and controlled based on the control command value by a control device including an inverter. At this time, the control device has a control command value limit value for limiting the battery current supplied from the battery to the control device, and corrects the control command value so that the battery current does not exceed the control command value limit value. Furthermore, the control device has a circuit for feedback correcting the control command value based on the battery current, and when the battery current is corrected so as not to exceed the control command value limit value, the corrected control command value is converted into the battery current. Based on the feedback correction, the control command value corrected for feedback is output to the inverter.
実施例1の電動パワーステアリング装置を表す概略図である。1 is a schematic diagram illustrating an electric power steering device according to a first embodiment. 実施例1のモータ駆動システムを表すシステム図である。1 is a system diagram illustrating a motor drive system according to a first embodiment. 実施例1の制御指令値制限値算出マップである。2 is a control command value limit value calculation map according to the first embodiment. 実施例1のモータ制御部を表す制御ブロック図である。FIG. 3 is a control block diagram illustrating a motor control unit according to the first embodiment. 実施例1のトルク指令部の構成を表す制御ブロック図である。FIG. 3 is a control block diagram illustrating a configuration of a torque command unit according to the first embodiment. 実施例1のトルク指令部の動作概要図である。It is an operation | movement schematic diagram of the torque instruction part of Example 1. FIG. 実施例2のトルク指令部の構成を表す制御ブロック図である。FIG. 6 is a control block diagram illustrating a configuration of a torque command unit according to a second embodiment. 実施例3のトルク指令部の構成を表す制御ブロック図である。FIG. 6 is a control block diagram illustrating a configuration of a torque command unit according to a third embodiment.
〔実施例1〕
  図1は、実施例1の電動パワーステアリング装置の構成を表す概略図である。電動パワーステアリング装置は、ステアリングホイール201、ステアリングシャフト(操舵軸)202、ピニオン軸203、ラック軸204と、ラック&ピニオン機構による操舵機構と、を有する。この操舵機構は、運転者がステアリングホイール201を左右に回転させると、ステアリングシャフト202を介して、ピニオン軸203に操舵トルクが伝達され、ピニオン軸203の回転運動がラック軸204の直線運動に変換されて、ラック軸204の両端に連結された操舵輪の操舵を行う。ピニオン軸203には、ステアリングホイール201の操舵トルクを検出する操舵トルクセンサ206が備えられ、検出した操舵トルクや車速情報などに基づいて、操舵トルクを補助するモータ1へのトルク指令τ*を発生させ、モータ1を駆動させる。減速機構205は、モータ1が発生するトルクを操舵輪に伝達して、運転者の操舵を補助する。モータ制御部10は、インバータ回路2、バッテリ3、バッテリ電圧センサ4、位置センサ5、電流センサ6、バッテリ電流検出回路7、制御指令値制限部8、トルク指令部9から構成される(図2参照)。電動パワーステアリング装置では、後述するトルク指令発生器30において、操舵トルクセンサ206において検出した操舵トルクや車速情報などに基づいて、操舵トルクを補助するモータ1へのトルク指令τ*を出力する。
[Example 1]
FIG. 1 is a schematic diagram illustrating the configuration of the electric power steering apparatus according to the first embodiment. The electric power steering apparatus includes a steering wheel 201, a steering shaft (steering shaft) 202, a pinion shaft 203, a rack shaft 204, and a steering mechanism using a rack and pinion mechanism. In this steering mechanism, when the driver rotates the steering wheel 201 left and right, the steering torque is transmitted to the pinion shaft 203 via the steering shaft 202, and the rotational motion of the pinion shaft 203 is converted into the linear motion of the rack shaft 204. Thus, the steered wheels connected to both ends of the rack shaft 204 are steered. The pinion shaft 203 is provided with a steering torque sensor 206 that detects the steering torque of the steering wheel 201, and generates a torque command τ * to the motor 1 that assists the steering torque based on the detected steering torque and vehicle speed information. And the motor 1 is driven. The speed reduction mechanism 205 transmits the torque generated by the motor 1 to the steered wheels to assist the driver's steering. The motor control unit 10 includes an inverter circuit 2, a battery 3, a battery voltage sensor 4, a position sensor 5, a current sensor 6, a battery current detection circuit 7, a control command value limiting unit 8, and a torque command unit 9 (FIG. 2). reference). In the electric power steering apparatus, a torque command generator 30 (to be described later) outputs a torque command τ * to the motor 1 that assists the steering torque based on the steering torque and vehicle speed information detected by the steering torque sensor 206.
 図2は、実施例1のモータ駆動システムを表すシステム図である。モータ駆動システムは、モータ1と、モータ1を駆動するインバータ回路2と、インバータ回路2に電力を供給するバッテリ3と、インバータ回路2への供給電圧であるバッテリ3の電圧を検出するバッテリ電圧センサ4と、モータ1の回転子位置を検出する位置センサ5と、モータ1に流れる三相交流電流を検出する電流センサ6と、インバータ回路2への供給電流であるバッテリ電流(直流母線電流)を検出するバッテリ電流検出回路7と、バッテリ電流を制限させる指令を発生する制御指令値制限部8と、制御指令値制限値IDC*にバッテリ電流検出値IDCfbが一致するようにトルク指令を発生するトルク指令部9と、トルク指令に一致したトルクを発生するための制御を行うモータ制御部10と、を有する。 FIG. 2 is a system diagram illustrating the motor drive system according to the first embodiment. The motor drive system includes a motor 1, an inverter circuit 2 that drives the motor 1, a battery 3 that supplies power to the inverter circuit 2, and a battery voltage sensor that detects a voltage of the battery 3 that is a supply voltage to the inverter circuit 2. 4, a position sensor 5 that detects the rotor position of the motor 1, a current sensor 6 that detects a three-phase AC current flowing through the motor 1, and a battery current (DC bus current) that is a supply current to the inverter circuit 2. A battery current detection circuit 7 to detect, a control command value limiter 8 that generates a command to limit the battery current, and a torque that generates a torque command so that the battery current detection value IDCfb matches the control command value limit value IDC * A command unit 9 and a motor control unit 10 that performs control for generating torque that matches the torque command are included.
 モータ1は、3相ブラシレスモータであり、例えば、永久磁石同期電動機である。インバータ回路2は、FETといったスイッチング素子で構成され、モータ1とバッテリ3とに接続されている。制御指令値制限部8は、バッテリ電圧センサ4で検出されたバッテリ電圧に基づいて、インバータ回路2に供給するバッテリ電流を予め設定された値に制限する制御指令値制限値IDC*をトルク指令部9に出力する。トルク指令部9は、バッテリ電圧VDCや、バッテリ電流IDCfbや、モータ1やインバータ回路2の環境温度信号、図外の車両統合制御装置といったコントローラからの指令信号等を受信する運転状態信号受信部を有する。トルク指令部9は、制御指令値制限部8からの制御指令値制限値IDC*とバッテリ電流検出回路7で検出されたバッテリ電流検出値IDCfbが一致するようにトルク指令をモータ制御部10に出力する。 モータ制御部10は、トルク指令部9のトルク指令τ**に基づき、インバータ回路2を駆動してモータ1の発生トルクを制御する。 制御指令値制限部8は、バッテリ電圧センサ4で検出したバッテリ電圧検出値VDCに基づいて、制御指令値制限値IDC*を求める。図3は実施例1の制御指令値制限値算出マップである。バッテリ電圧検出値VDCが低い程、直流母線電流であるバッテリ電流を制限することで、直流電圧であるバッテリ電圧の過剰な低下を抑制する。 The motor 1 is a three-phase brushless motor, for example, a permanent magnet synchronous motor. The inverter circuit 2 is configured by a switching element such as an FET, and is connected to the motor 1 and the battery 3. Based on the battery voltage detected by the battery voltage sensor 4, the control command value limiting unit 8 sets a control command value limiting value IDC * that limits the battery current supplied to the inverter circuit 2 to a preset value. Output to 9. The torque command unit 9 includes an operation state signal receiving unit that receives a battery voltage VDC, a battery current IDCfb, an environmental temperature signal of the motor 1 and the inverter circuit 2, a command signal from a controller such as a vehicle integrated control device (not shown), and the like. Have. The torque command unit 9 outputs a torque command to the motor control unit 10 so that the control command value limit value IDC * from the control command value limit unit 8 matches the battery current detection value IDCfb detected by the battery current detection circuit 7. To do. The motor control unit 10 controls the torque generated by the motor 1 by driving the inverter circuit 2 based on the torque command τ ** of the torque command unit 9. The control command value limiter 8 obtains a control command value limit value IDC * based on the battery voltage detection value VDC detected by the battery voltage sensor 4. FIG. 3 is a control command value limit value calculation map of the first embodiment. As the battery voltage detection value VDC is lower, the battery current that is the DC bus current is limited to suppress an excessive decrease in the battery voltage that is the DC voltage.
 図4は実施例1のモータ制御部を表す制御ブロック図である。モータ制御部10は、ベクトル制御器20と、dq/三相座変換器21と、PWM22と、三相/dq座標変換器23と、位相演算器24と、速度演算器25と、を有する。これにより、永久磁石同期電動機のトルクを線形化する手法として周知のベクトル制御を行う。 ベクトル制御器20は、モータ1のトルクに寄与する電流指令Iq*に相当するトルクをモータ1が発生するようにdq軸上の電圧指令Vd*、Vq*を出力する。 dq/三相座変換器21は、dq軸上の電圧指令Vd*、Vq*と回転子位相θdに基づいて、三相交流電圧指令Vu*、Vv*、Vw*を出力する。 PWM22は、三相交流電圧指令Vu*、Vv*、Vw*をインバータ回路2のスイッチング素子をオン/オフさせる信号とするパルス幅変調(PWM:Pulse Width Modulation)を行い、パルス幅変調された信号を出力する。 三相/dq座標変換器23は、三相交流電流Iuc、Ivc、Iwcと回転子位相θdに基づいて、トルクに寄与する電流Iqc(q軸電流成分)と磁束に寄与する電流Idc(d軸電流成分)を出力する。 位相演算器24は、位置センサ5により検出された回転子位置から回転子位相θdを演算し、dq/三相座変換器21、三相/dq座標変換器23、速度演算器25に出力する。 速度演算器25は、回転子位相θdからモータ1の回転数ωrmを演算し、ベクトル制御器20に出力する。 FIG. 4 is a control block diagram showing the motor control unit of the first embodiment. The motor control unit 10 includes a vector controller 20, a dq / three-phase converter 21, a PWM 22, a three-phase / dq coordinate converter 23, a phase calculator 24, and a speed calculator 25. Thereby, a well-known vector control is performed as a method for linearizing the torque of the permanent magnet synchronous motor. The vector controller 20 outputs voltage commands Vd * and Vq * on the dq axis so that the motor 1 generates a torque corresponding to the current command Iq * contributing to the torque of the motor 1. The dq / three-phase converter 21 outputs three-phase AC voltage commands Vu *, Vv *, Vw * based on the voltage commands Vd *, Vq * on the dq axis and the rotor phase θd. The PWM 22 performs pulse width modulation (PWM: Pulse Width Modulation) using the three-phase AC voltage commands Vu *, Vv *, and Vw * as signals for turning on / off the switching elements of the inverter circuit 2, and the pulse width modulated signal. Is output. Based on the three-phase AC currents Iuc, Ivc, Iwc and the rotor phase θd, the three-phase / dq coordinate converter 23 is a current Iqc (q-axis current component) contributing to torque and a current Idc (d-axis) contributing to magnetic flux. Current component). The phase calculator 24 calculates the rotor phase θd from the rotor position detected by the position sensor 5, and outputs it to the dq / three-phase converter 21, the three-phase / dq coordinate converter 23, and the speed calculator 25. . The speed calculator 25 calculates the rotational speed ωrm of the motor 1 from the rotor phase θd and outputs it to the vector controller 20.
 次に、モータ制御部10の基本動作について説明する。ベクトル制御器20は、トルク指令部9のトルク指令τ*に基づき、トルクに寄与する電流指令Iq*と磁束に寄与する電流指令Id*を発生する。ただし、電流指令Id*は、非突極型の永久磁石同期電動機であれば、通常ゼロに設定される。突極構造の永久磁石同期電動機や、弱め界磁制御や効率最大化制御においては、電流指令Id*としてゼロ以外の指令を与える。 Next, the basic operation of the motor control unit 10 will be described. The vector controller 20 generates a current command Iq * contributing to torque and a current command Id * contributing to magnetic flux based on the torque command τ * of the torque command unit 9. However, the current command Id * is normally set to zero if it is a non-salient permanent magnet synchronous motor. In salient-pole permanent magnet synchronous motors, field weakening control and efficiency maximization control, a non-zero command is given as the current command Id *.
 三相/dq座標変換器23においてモータ1の交流電流検出値である三相交流Iuc、Ivc、Iwcと回転子位相θdに基づいて、トルクに寄与する電流Iqc(q軸電流成分)と磁束に寄与する電流Idc(d軸電流成分)に分離する。そして、トルクに寄与する電流指令Iq*と磁束に寄与する電流指令Id*にそれぞれの電流検出値が一致するように電流制御を行う。電流制御の結果、回転座標軸であるdq軸上の電圧指令Vd*、Vq*が演算され、dq/三相座変換器21において電圧指令Vd*、Vq*と回転子位相θdに基づいて、三相交流電圧指令Vu*、Vv*、Vw*に変換する。なお、dq軸上の電圧指令Vd*、Vq*は、電流制御の結果とdq軸の干渉項を補償する非干渉制御の結果を組合せて演算してもよい。 In the three-phase / dq coordinate converter 23, the current Iqc (q-axis current component) that contributes to the torque and the magnetic flux are determined based on the three-phase AC Iuc, Ivc, Iwc that are the AC current detection values of the motor 1 and the rotor phase θd. The current Idc (d-axis current component) that contributes is separated. Then, current control is performed so that the detected current values coincide with the current command Iq * contributing to the torque and the current command Id * contributing to the magnetic flux. As a result of the current control, the voltage commands Vd * and Vq * on the dq axis that is the rotation coordinate axis are calculated, and the dq / three-phase converter 21 calculates the three based on the voltage commands Vd * and Vq * and the rotor phase θd. Convert to phase AC voltage command Vu *, Vv *, Vw *. The voltage commands Vd * and Vq * on the dq axis may be calculated by combining the result of current control and the result of non-interference control that compensates for the interference term on the dq axis.
 三相交流電圧指令Vu*、Vv*、Vw*は、PWM22においてインバータ回路2のスイッチング素子をオン/オフさせる信号とするパルス幅変調を行い、インバータ回路2のスイッチング素子を駆動させることで、三相交流電圧指令Vu*、Vv*、Vw*に相当する電圧がモータ1に印加される。そして、モータ1の各相への通電を順次切り替えることで、各相に電流を供給して、モータ1を駆動させることができる。なお、三相交流電流の検出を行わずに直流母線電流を検出して、制御器内部にて相電流を再現演算する手法が採られる場合もある。直流母線電流から三相交流電流(相電流)を再現演算する手法については公知の技術があり、また本発明の主要な部分ではないので省略する。 Three-phase AC voltage commands Vu *, Vv *, and Vw * are obtained by performing pulse width modulation using PWM22 as a signal for turning on / off the switching element of the inverter circuit 2 and driving the switching element of the inverter circuit 2. Voltages corresponding to the phase AC voltage commands Vu *, Vv *, and Vw * are applied to the motor 1. Then, by sequentially switching energization to each phase of the motor 1, current can be supplied to each phase and the motor 1 can be driven. In some cases, a method may be employed in which the DC bus current is detected without detecting the three-phase AC current, and the phase current is reproduced and calculated inside the controller. There is a known technique for reproducing and calculating a three-phase alternating current (phase current) from the direct current bus current, and it is omitted because it is not a main part of the present invention.
 図5は、実施例1のトルク指令部の構成を表す制御ブロック図である。トルク指令部9は、トルク指令発生器30と、偏差演算器31と、積分器32と、制限処理器33と、加算器34から構成されている。 制御指令値演算部であるトルク指令発生器30は、モータ1へのトルク指令τ*を発生する。 偏差演算器31は、制御指令値制限部8が出力する制御指令値制限値IDC*とバッテリ電流検出回路7が出力するバッテリ電流検出値IDCfbとの偏差を演算する。 積分器32は、偏差演算器31が出力する偏差を積分演算して、トルク指令修正量Δτ*を出力する。 制限処理器33は、積分器32が出力するトルク指令修正量Δτ*を制限する。 加算器34は、トルク指令発生器30が出力するモータ1へのトルク指令と制限処理器33によって制限されたトルク指令修正量Δτ*を加算し、補正されたトルク指令τ**を演算して出力する。 FIG. 5 is a control block diagram illustrating the configuration of the torque command unit according to the first embodiment. The torque command unit 9 includes a torque command generator 30, a deviation calculator 31, an integrator 32, a limit processor 33, and an adder 34. The torque command generator 30 which is a control command value calculation unit generates a torque command τ * to the motor 1. The deviation calculator 31 calculates the deviation between the control command value limit value IDC * output from the control command value limiter 8 and the battery current detection value IDCfb output from the battery current detection circuit 7. The integrator 32 integrates the deviation output from the deviation calculator 31 and outputs a torque command correction amount Δτ *. The limit processor 33 limits the torque command correction amount Δτ * output from the integrator 32. The adder 34 adds the torque command to the motor 1 output from the torque command generator 30 and the torque command correction amount Δτ * limited by the limit processor 33, and calculates the corrected torque command τ **. Output.
 次に、本発明の特徴部分であるトルク指令部9の動作について説明する。図6は実施例1のトルク指令部の動作概要図である。トルク指令発生器30からモータ1へのトルク指令τ*が発生する。このトルク指令τ*に基づいて、モータ制御部10がモータ1の発生トルクを制御する。ただし、ここでは、容易に理解しやすくするために直流電圧やモータ1の回転数ωrmは、一定とする。 トルク指令τ*に基づいて、バッテリ電流検出値IDCfbが図4の補正前のバッテリ電流として流れたとする。このとき、トルク指令部9において、制御指令値制限値IDC*にバッテリ電流検出値IDCfbが一致するようにIDC*とIDCfbの偏差演算器31において偏差(IDC*-IDCfb)を演算する。この場合の偏差は、バッテリ電流検出値IDCfbが制御指令値制限値IDC*を超えているため、負の値となる。偏差演算器31において得られた偏差は、積分ゲインKを乗じて積分演算(あるいは比例演算+積分演算でも良い)を行い、トルク指令修正量Δτ*を作成し、制限処理器33に出力する。 Next, the operation of the torque command unit 9 which is a characteristic part of the present invention will be described. FIG. 6 is a schematic operation diagram of the torque command unit according to the first embodiment. A torque command τ * from the torque command generator 30 to the motor 1 is generated. Based on this torque command τ *, the motor control unit 10 controls the torque generated by the motor 1. However, here, the DC voltage and the rotational speed ωrm of the motor 1 are constant for easy understanding. Suppose that the battery current detection value IDCfb flows as the battery current before correction in FIG. 4 based on the torque command τ *. At this time, the torque command unit 9 calculates a deviation (IDC * −IDCfb) in the IDC * and IDCfb deviation calculator 31 so that the battery current detection value IDCfb matches the control command value limit value IDC *. The deviation in this case is a negative value because the battery current detection value IDCfb exceeds the control command value limit value IDC *. The deviation obtained by the deviation calculator 31 is multiplied by an integral gain K to perform an integral calculation (or proportional calculation + integral calculation), and a torque command correction amount Δτ * is created and output to the limit processor 33.
 制限処理器33では、トルク指令修正量Δτ*を零以下からトルク指令τ*に-1を乗じた値以上となるように制限する。そのため、トルク指令修正量Δτ*の最大値は零であり、最小値はトルク指令τ*に-1を乗じた負の値になる。トルク指令修正量Δτ*がトルク指令τ*に-1を乗じた値以下の場合には、トルク指令τ*に-1を乗じた値に制限され、トルク指令修正量Δτ*が零以上の正の値の場合には、零に制限される。トルク指令修正量Δτ*が最小値と最大値の間の場合には、制限されない。また、最小値がトルク指令τ*に応じて、可変する制限処理器33となっている。なお、トルク指令が負の値の場合には、トルク指令修正量Δτ*の最大値はトルク指令τ*に-1を乗じた正の値になる最小値は零となる。動作としては、トルク指令τ*が正の値のときと同じであるが、制限される最大値と最小値の符号が異なる。 The limit processor 33 limits the torque command correction amount Δτ * from zero or less to a value obtained by multiplying the torque command τ * by −1. Therefore, the maximum value of the torque command correction amount Δτ * is zero, and the minimum value is a negative value obtained by multiplying the torque command τ * by −1. If the torque command correction amount Δτ * is less than or equal to the value obtained by multiplying the torque command τ * by −1, the torque command correction amount Δτ * is limited to a value obtained by multiplying the torque command τ * by −1. Is limited to zero. When the torque command correction amount Δτ * is between the minimum value and the maximum value, there is no limitation. Further, the limit processor 33 has a minimum value that varies according to the torque command τ *. When the torque command is a negative value, the maximum value of the torque command correction amount Δτ * is zero, and the minimum value that becomes a positive value obtained by multiplying the torque command τ * by −1 is zero. The operation is the same as when the torque command τ * is a positive value, but the sign of the maximum value and the minimum value that are limited is different.
 加算器34において、制限処理器33を通過したトルク指令修正量Δτ*をトルク指令τ*に加算し、新しいトルク指令τ**を演算する。補正された新しいトルク指令τ**は、トルク指令τ*以上に大きくなることはない。これは、トルク指令τ*が正の場合、トルク指令修正量Δτ*は、制限処理器33によって零もしくは、トルク指令τ*に-1を乗じた負の値に制限されるからである。なお、トルク指令τ*が負の場合も同様に、トルク指令修正量Δτ*は、零もしくは、トルク指令τ*に-1を乗じた正の値に制限されるため、補正された新しいトルク指令τ**は、トルク指令τ*以上に小さくなることはない。 In the adder 34, the torque command correction amount Δτ * that has passed through the limit processor 33 is added to the torque command τ * to calculate a new torque command τ **. The corrected new torque command τ ** does not become larger than the torque command τ *. This is because when the torque command τ * is positive, the torque command correction amount Δτ * is limited to zero or a negative value obtained by multiplying the torque command τ * by −1 by the limit processor 33. Similarly, when the torque command τ * is negative, the torque command correction amount Δτ * is limited to zero or a positive value obtained by multiplying the torque command τ * by −1. τ ** does not become smaller than the torque command τ *.
 以上により、補正された新しいトルク指令τ**に基づいて、モータ1の発生トルクを制御すると、補正前のトルク指令τ*に基づいて制御されたときよりもバッテリ電流が小さくなる。そして、このようなフィードバック・ループを組むことで、オンライン的にトルク指令τ*の補正を行うことができるので、バッテリ電流検出値IDCfbが制御指令値制限値IDC*に一致したトルク指令τ*に基づくモータ1の発生トルクを制御することが可能となる。 As described above, when the torque generated by the motor 1 is controlled based on the corrected new torque command τ **, the battery current becomes smaller than when the control is performed based on the torque command τ * before correction. Then, by constructing such a feedback loop, the torque command τ * can be corrected online, so that the battery command detected value IDCfb becomes the torque command τ * that matches the control command value limit value IDC *. The generated torque of the motor 1 can be controlled.
 次に、本発明の特徴部分であるトルク指令部9の積分器32の積分ゲインKの求め方の一例を説明する。インバータ回路2のバッテリ電圧VDCとバッテリ電流検出値IDCfbの関係は、電力に関して以下の式(1)の関係が成立する。〔式(1)〕VDC×IDCfb=τ*×ωrm+R*×(Idc2+Iqc2)+Ploss ここで、右辺の第1項は、モータ1の機械出力を表す。第2項は、モータ1の銅損を表す。尚、R*はモータ1の相抵抗設定値である。第3項は、Ploss:モータ1の鉄損などを含む損失を表す。 Next, an example of how to obtain the integral gain K of the integrator 32 of the torque command unit 9 which is a characteristic part of the present invention will be described. Regarding the relationship between the battery voltage VDC of the inverter circuit 2 and the battery current detection value IDCfb, the relationship of the following expression (1) is established with respect to power. [Expression (1)] VDC × IDCfb = τ * × ωrm + R * × (Idc 2 + Iqc 2 ) + Ploss Here, the first term on the right side represents the mechanical output of the motor 1. The second term represents the copper loss of the motor 1. R * is the phase resistance setting value of the motor 1. The third term represents loss including iron loss of the motor 1 and the like.
 例えば、モータ1の銅損や鉄損などの損失を無視できるような場合、式(1)は、下記の式(2)のように表すことができる。式(2)より、操作量をトルク指令τ*としたバッテリ電流フィードバック制御系において、制御対象をωrm/VDCと表すことができる。〔式(2)〕VDC×IDCfb=τ*×ωrm よって、入力がトルク指令τ*、出力がバッテリ電流検出値IDCfbの伝達関数として表現することができる。 For example, when losses such as copper loss and iron loss of the motor 1 can be ignored, the expression (1) can be expressed as the following expression (2). From the equation (2), in the battery current feedback control system in which the operation amount is the torque command τ *, the control target can be expressed as ωrm / VDC. [Expression (2)] VDC × IDCfb = τ * × ωrm Therefore, the input can be expressed as a transfer function of the torque command τ * and the output as the battery current detection value IDCfb.
 ここで、トルク指令部9の積分ゲインKを式(3)のように設定する。〔式(3)〕K=(VDC/ωrm)×2π×FC ただし、FCはバッテリ電流フィードバック制御系の制御応答周波数[Hz]である。 Here, the integral gain K of the torque command section 9 is set as shown in equation (3). [Expression (3)] K = (VDC / ωrm) × 2π × FC where FC is a control response frequency [Hz] of the battery current feedback control system.
 制御指令値制限値IDC*からバッテリ電流検出値IDCfbまでのバッテリ電流制御応答を式(4)のように一次遅れ系で定義することができ、理論的な制御系を構築することが可能である。〔式(4)〕IDCfb/τ*=1/(1+1/(2π×FC)×s)ここで、s:ラプラス演算子である。 The battery current control response from the control command value limit value IDC * to the battery current detection value IDCfb can be defined by a first-order lag system as shown in Equation (4), and a theoretical control system can be constructed. . [Expression (4)] IDCfb / τ * = 1 / (1 + 1 / (2π × FC) × s) where s is a Laplace operator.
 以上の実施例1では、モータ1の銅損や鉄損を無視して考えたが、同様に銅損もしくは銅損と鉄損などの損失を考慮しても同様に考えることはでき、この場合には、フィードバック制御系の応答性や制御応答周波数に対する制御の安定性がさらに向上する。 また、実施例1では、直流母線電流であるバッテリ電流を無駄なく制限するため、バッテリ3が供給する電力を最大限利用することができる電動パワーステアリング装置を提供することができる。また、バッテリ3が供給する電圧VDCに基づいて、制御指令値制限値IDC*を可変させることでバッテリの状態に応じて適切な電力制御をすることができ、バッテリ3の早期劣化を防止や、バッテリ3からインバータ回路2の間に接続されている部品の故障や破損、または経路抵抗による発熱を抑制することができる。 In the first embodiment, the copper loss and iron loss of the motor 1 are ignored, but the same can be considered in the same manner by considering copper loss or losses such as copper loss and iron loss. In this case, the responsiveness of the feedback control system and the control stability with respect to the control response frequency are further improved. In the first embodiment, since the battery current that is the DC bus current is limited without waste, it is possible to provide an electric power steering apparatus that can make maximum use of the power supplied by the battery 3. Further, by varying the control command value limit value IDC * based on the voltage VDC supplied by the battery 3, appropriate power control can be performed according to the state of the battery, preventing early deterioration of the battery 3, Failure or breakage of components connected between the battery 3 and the inverter circuit 2 or heat generation due to path resistance can be suppressed.
 また、式(1)に示すように、バッテリ電圧検出値VDCや、モータ回転数ωrmや、Plossによって積分ゲインKは影響を受ける。Plossは、銅損はR×I2で表される。(I:モータの相電流値(指令電流または実電流のどちらでもよい。)R:モータ回路(巻線等)の抵抗。)。また、鉄損にはヒステリシス損と渦電流損があり、ヒステリシス損はPh=kh*f*Bm1.6で表される。(Ph:ヒステリシス損、f:周波数、Bm:最大磁束密度、kh:比例定数)。渦電流損はPe=ke*(t*f/Bm)2/ρで表される。(Pe:渦電流損、t:鉄板の厚さ、f:周波数、Bm:最大磁束密度、ρ:磁性体の抵抗率、ke:比例定数)。よって、これらバッテリ電圧信号やモータ回転数信号、銅損や鉄損に関する信号であるモータ損失信号を生成し、積分器32に電圧信号受信部、回転数信号受信部及びモータ損失信号受信部を設けることで、フィードバック制御系の応答性や制御応答周波数に対する制御の安定性が更に向上する。 Further, as shown in Expression (1), the integral gain K is affected by the battery voltage detection value VDC, the motor rotation speed ωrm, and Ploss. In Ploss, copper loss is represented by R × I 2 . (I: Motor phase current value (either command current or actual current may be used) R: Resistance of motor circuit (winding, etc.).) Iron loss includes hysteresis loss and eddy current loss. Hysteresis loss is expressed as Ph = kh * f * Bm 1.6 . (Ph: hysteresis loss, f: frequency, Bm: maximum magnetic flux density, kh: proportional constant). The eddy current loss is expressed by Pe = ke * (t * f / Bm) 2 / ρ. (Pe: eddy current loss, t: iron plate thickness, f: frequency, Bm: maximum magnetic flux density, ρ: resistivity of magnetic material, ke: proportional constant). Therefore, the battery voltage signal, the motor rotation number signal, the motor loss signal that is a signal related to copper loss and iron loss are generated, and the integrator 32 is provided with a voltage signal reception unit, a rotation number signal reception unit and a motor loss signal reception unit. As a result, the responsiveness of the feedback control system and the control stability with respect to the control response frequency are further improved.
 以上説明したように、実施例1では下記の作用効果が得られる。 (1-1)ステアリングホイール201の操舵操作に応じて転舵輪を転舵させる操舵機構と、 操舵機構に対し操舵力を付与するモータ1(3相ブラシレスモータ)と、 バッテリ3から電力を供給され、モータ1を駆動制御するモータ制御部10(制御装置)と、 モータ制御部10に設けられ、車両の運転状態に基づきモータ1を駆動制御するための制御指令値であるトルク指令τ*及びトルク指令τ**を演算するトルク指令部9(制御指令値演算部)と、 モータ制御部10に設けられ、トルク指令τ**に基づきモータ1を駆動制御するインバータ回路2と、 モータ制御部10に設けられ、バッテリ3からモータ制御部10に供給される電流であるバッテリ電流IDCfbを制限する制御指令値制限値IDC*(制限値:制御指令値制限部8に相当)を有し、バッテリ電流IDCfbが制御指令値制限値IDC*を超えないようにトルク指令τ*を補正する偏差演算器31、積分器32、制限処理器33及び加算器34を有するトルク指令部9(制御指令値制限部)と、 モータ制御部10に設けられ、バッテリ電流を検出または推定するバッテリ電流検出回路7と、 モータ制御部10に設けられ、バッテリ電流に基づき制御指令値をフィードバック補正する回路であって、トルク指令τ*がトルク指令部9によって補正されたとき、トルク指令部9によって補正されたトルク指令τ**をフィードバック補正すると共にフィードバック補正されたトルク指令τ**をインバータ回路2に出力する電流フィードバック回路と、 を有することを特徴とする電動パワーステアリング装置。 トルク指令部9によって補正されていないトルク指令τ*に基づいて出力されるdq軸上の電圧指令や三相交流電圧指令などをフィードバック補正する場合、トルク指令τ*とモータの発生トルクの差が大きくなるため、フィードバック制御が発散する虞がある。 一方、実施例1では、既にトルク指令部9によって補正されたトルク指令τ**をフィードバック補正することにより、上記課題を抑制することができる。尚、実施例1では、トルク指令部9内のトルク指令発生器30において、操舵トルクに基づくトルク指令τ*を演算したが、操舵トルクに限らず車速や操舵速度等を考慮してトルク指令τ*を演算してもよい。また、トルク指令τ*やτ**はトルクに寄与する電流指令であってもよいし、トルクに寄与する電流指令を演算するためのトルク指令値であってもよい。 As described above, in Example 1, the following effects can be obtained. (1-1) Electric power is supplied from the steering mechanism that steers the steered wheels according to the steering operation of the steering wheel 201, the motor 1 (three-phase brushless motor) that applies steering force to the steering mechanism, and the battery 3. A motor control unit 10 (control device) that controls the drive of the motor 1, and a torque command τ * and a torque that are provided in the motor control unit 10 and are control command values for controlling the drive of the motor 1 based on the driving state of the vehicle A torque command unit 9 (control command value calculation unit) that calculates the command τ **, an inverter circuit 2 that is provided in the motor control unit 10 and controls the drive of the motor 1 based on the torque command τ **, and the motor control unit 10 Provided with a control command value limit value IDC * (limit value: equivalent to the control command value limit unit 8) that limits the battery current IDCfb that is a current supplied from the battery 3 to the motor control unit 10 The torque command unit 9 (control command) having a deviation calculator 31, an integrator 32, a limit processor 33, and an adder 34 for correcting the torque command τ * so that the battery current IDCfb does not exceed the control command value limit value IDC *. Value limiting unit), a battery current detection circuit 7 provided in the motor control unit 10 for detecting or estimating the battery current, and a circuit provided in the motor control unit 10 for feedback correction of the control command value based on the battery current. When the torque command τ * is corrected by the torque command unit 9, the torque command τ ** corrected by the torque command unit 9 is feedback-corrected and the feedback-corrected torque command τ ** is output to the inverter circuit 2. And an electric power steering device characterized by having a current feedback circuit. When feedback correction is performed on a voltage command on the dq axis or a three-phase AC voltage command that is output based on the torque command τ * that has not been corrected by the torque command unit 9, the difference between the torque command τ * and the torque generated by the motor is Since it becomes large, feedback control may diverge. On the other hand, in the first embodiment, the above-described problem can be suppressed by performing feedback correction of the torque command τ ** already corrected by the torque command unit 9. In the first embodiment, the torque command generator 30 in the torque command unit 9 calculates the torque command τ * based on the steering torque. However, the torque command τ is not limited to the steering torque but is considered in consideration of the vehicle speed, the steering speed, and the like. * May be calculated. The torque commands τ * and τ ** may be current commands that contribute to torque, or torque command values for calculating current commands that contribute to torque.
 (2-2)上記(1-1)に記載の電動パワーステアリング装置において、 トルク指令部9は、バッテリ電流IDCfbが制御指令値制限値IDC*に近づくようにトルク指令τ*を補正することを特徴とする電動パワーステアリング装置。 トルク指令部9では、トルク指令τ*が、できるだけ高い指令値となるように補正するため、制御指令値制限値IDC*の範囲内で操舵フィーリングの悪化を抑制することができる。 (2-2) In the electric power steering device described in (1-1) above, the torque command unit 9 corrects the torque command τ * so that the battery current IDCfb approaches the control command value limit value IDC *. An electric power steering device. Since the torque command unit 9 corrects the torque command τ * so as to be as high as possible, the deterioration of the steering feeling can be suppressed within the range of the control command value limit value IDC *.
 (3-3)上記(1-1)に記載の電動パワーステアリング装置において、 制御指令値制限部8は、車両の運転状態を示す信号である運転状態信号が入力される運転状態信号受信部を備え、運転状態信号に基づき、制御指令値制限値IDC*を可変に調整することを特徴とする電動パワーステアリング装置。 運転状態に応じて制御指令値制限値IDC*を可変制御することにより、操舵力付与の適用範囲(操舵トルクの大きさ、時間の長さ)を広げ、操舵フィーリングの向上を図ることができる。尚、実施例1ではバッテリ電圧検出値VDCに基づいて可変としたが、他の信号、例えばモータ1やインバータ回路2の温度、車両統合制御装置からの指令信号等に基づいて可変としてもよい。 (3-3) In the electric power steering apparatus described in (1-1) above, the control command value limiting unit 8 includes a driving state signal receiving unit to which a driving state signal that is a signal indicating the driving state of the vehicle is input. An electric power steering apparatus comprising: a control command value limit value IDC * variably adjusted based on an operation state signal. By variably controlling the control command value limit value IDC * according to the driving state, it is possible to widen the application range of steering force application (size of steering torque, length of time) and improve steering feeling. . In the first embodiment, it is variable based on the battery voltage detection value VDC, but may be variable based on other signals, for example, the temperature of the motor 1 or the inverter circuit 2, a command signal from the vehicle integrated control device, or the like.
 (4-4)上記(3-3)に記載の電動パワーステアリング装置において、 制御指令値制限部8は、モータ制御部10に電力を供給するバッテリ3の電圧に基づき、制御指令値制限値IDC*を可変に調整することを特徴とする電動パワーステアリング装置。 よって、バッテリ電圧が低下しているときは、制御指令値制限値IDC*をより低く設定することにより、バッテリの保護を図ることができる。
 (5-5)上記(1-1)に記載の電動パワーステアリング装置において、 トルク指令部9は、インバータ回路2に入力される電圧値を示す信号であるバッテリ電圧検出値VDCが入力される入力電圧信号受信部と、モータ1の回転数ωrmを示す信号である回転数信号が入力される回転数信号受信部を備えると共に、入力電圧信号および回転数信号に基づき、トルク指令τ*を補正することを特徴とする電動パワーステアリング装置。 よって、バッテリ電流フィードバック制御系の応答を所望の値に設定することができる。
(4-4) In the electric power steering device described in (3-3) above, the control command value limiting unit 8 is configured to control the control command value limit value IDC based on the voltage of the battery 3 that supplies power to the motor control unit 10. An electric power steering device characterized by variably adjusting *. Therefore, when the battery voltage is lowered, the battery can be protected by setting the control command value limit value IDC * lower.
(5-5) In the electric power steering apparatus described in (1-1) above, the torque command unit 9 is an input to which a battery voltage detection value VDC that is a signal indicating a voltage value input to the inverter circuit 2 is input. A voltage signal receiving unit and a rotation number signal receiving unit to which a rotation number signal indicating the rotation number ωrm of the motor 1 is input, and a torque command τ * is corrected based on the input voltage signal and the rotation number signal. An electric power steering device. Therefore, the response of the battery current feedback control system can be set to a desired value.
 (6-6)上記(5-5)に記載の電動パワーステアリング装置において、 トルク指令部9は、モータ1の銅損または鉄損に関する信号であるモータ損失信号が入力されるモータ損失信号受信部を備えると共に、モータ損失信号であるPlossに基づき、トルク指令τ*を補正することを特徴とする電動パワーステアリング装置。 よって、バッテリ電流フィードバック制御系の応答性や制御応答周波数に対する制御の安定性を更に向上できる。 (6-6) In the electric power steering apparatus described in (5-5) above, the torque command unit 9 is a motor loss signal receiving unit to which a motor loss signal that is a signal related to copper loss or iron loss of the motor 1 is input. And a torque command τ * is corrected based on Ploss which is a motor loss signal. Therefore, the responsiveness of the battery current feedback control system and the control stability with respect to the control response frequency can be further improved.
 〔実施例2〕 次に、実施例2について説明する。基本的な構成は実施例1と同様であるため、異なる点についてのみ説明する。図7は実施例2のトルク指令部の構成を表す制御ブロック図である。実施例1では、バッテリ電流フィードバック制御系の制御応答周波数Fcとなるように積分ゲインKを〔式(3)〕のように求めた。さらに、積分ゲインKに対して銅損を考慮すると、制御応答周波数に対する制御の安定性がさらに向上する。銅損は、〔式(1)〕に示すように、相抵抗設定値R*とdq軸電流検出値(dq軸電流指令であってもよい)から求められる。相抵抗設定値R*は、モータ制御部の環境温度が上がったり、下がったりと変化すると、実際のモータ1の相抵抗も変化する。そこで、モータ1周辺の環境温度を検出又は推定演算し、環境温度信号を出力する環境温度検出部35を備えた。積分器32は、環境温度信号を受信する環境温度信号受信部を有する。そして、積分器32において、相抵抗設定値R*の値を受信した環境温度信号に基づいて補正するものである。これにより、環境温度が変化した場合においても制御応答周波数に対する制御の安定性を保つことができる。 [Example 2] Next, Example 2 will be described. Since the basic configuration is the same as that of the first embodiment, only different points will be described. FIG. 7 is a control block diagram illustrating the configuration of the torque command unit according to the second embodiment. In the first embodiment, the integral gain K is determined as [Equation (3)] so as to be the control response frequency Fc of the battery current feedback control system. Furthermore, when the copper loss is taken into consideration with respect to the integral gain K, the control stability with respect to the control response frequency is further improved. The copper loss is obtained from the phase resistance set value R * and the dq axis current detection value (may be a dq axis current command) as shown in [Expression (1)]. When the environmental temperature of the motor control unit changes as the phase resistance setting value R * increases or decreases, the actual phase resistance of the motor 1 also changes. Therefore, an environmental temperature detection unit 35 that detects or estimates the environmental temperature around the motor 1 and outputs an environmental temperature signal is provided. The integrator 32 includes an environmental temperature signal receiving unit that receives an environmental temperature signal. The integrator 32 corrects the phase resistance set value R * based on the received environmental temperature signal. Thereby, the stability of control with respect to the control response frequency can be maintained even when the environmental temperature changes.
 以下、実施例2から把握しうる技術思想を記載する。 (7-7)モータ制御部10は、モータ1周辺の環境温度に関する信号である環境温度信号を受信する温度信号受信部を備え、 トルク指令部9は、環境温度信号に基づき、トルク指令τ*を補正することを特徴とする電動パワーステアリング装置。 環境温度によって銅損、鉄損を算出するためのパラメータが変化するため、環境温度を更に考慮してトルク指令τ*を補正することにより、バッテリ電流フィードバック制御系の応答性や制御応答周波数に対する制御の安定性を更に向上できる。 Hereinafter, technical ideas that can be grasped from Example 2 will be described. (7-7) The motor control unit 10 includes a temperature signal receiving unit that receives an environmental temperature signal that is a signal related to the environmental temperature around the motor 1, and the torque command unit 9 is based on the environmental temperature signal to generate a torque command τ * An electric power steering device characterized by correcting the above. Since the parameters for calculating copper loss and iron loss change depending on the environmental temperature, the control of the response and control response frequency of the battery current feedback control system can be achieved by correcting the torque command τ * with further consideration of the environmental temperature. Can be further improved.
〔実施例3〕
 次に、実施例3について説明する。図8は実施例3のトルク指令部の構成を表す制御ブロック図である。実施例1では、電動パワーステアリング装置に本発明を適用した例を示した。これに対し、実施例3は、他の車両搭載機器に採用したものである。実施例1では、図5に示すように、トルク指令τ*とトルク指令修正量Δτ*を加算して、補正された新しいトルク指令τ**を作成した。これに対し、実施例3では、図5に示すトルク指令τ*を加算せずにトルク指令修正量Δτ*を直接トルク指令τ**とした。また、図5に示す制限処理器33を削除した。例えば、電動ポンプや電動コンプレッサといった車両搭載機器が制御を行う際、図8のように、トルク指令部9の構成を変更することで、実施例1と同様な効果が得られると共に、バッテリ電流検出値IDCfbが制御指令値制限値IDC*に対してオーバーシュートせずにモータ1の発生トルクを制御することができる。
Example 3
Next, Example 3 will be described. FIG. 8 is a control block diagram illustrating the configuration of the torque command unit according to the third embodiment. In Example 1, the example which applied this invention to the electric power steering apparatus was shown. On the other hand, Example 3 is adopted for other on-vehicle equipment. In the first embodiment, as shown in FIG. 5, the torque command τ * and the torque command correction amount Δτ * are added to create a corrected new torque command τ **. On the other hand, in Example 3, the torque command correction amount Δτ * is directly used as the torque command τ ** without adding the torque command τ * shown in FIG. Further, the restriction processor 33 shown in FIG. 5 is deleted. For example, when a vehicle-mounted device such as an electric pump or an electric compressor performs control, the same effect as that of the first embodiment can be obtained by changing the configuration of the torque command unit 9 as shown in FIG. The generated torque of the motor 1 can be controlled without the value IDCfb overshooting the control command value limit value IDC *.
 以下、実施例3から把握しうる技術思想を列挙する。
 (8-15)車両搭載機器に組み込まれる3相ブラシレスモータを駆動制御すると共にバッテリから電力を供給される車両搭載機器の制御装置であって、 車両の運転状態に基づき前記3相ブラシレスモータを駆動制御するための制御指令値を演算する制御指令値演算部と、 前記制御指令値に基づき前記3相ブラシレスモータを駆動制御するインバータ回路と、 前記バッテリから前記制御装置に供給される電流であるバッテリ電流を制限する制御指令値制限値を有し、前記バッテリ電流が前記制御指令値制限値を超えないように前記制御指令値を補正するトルク指令部と、 前記バッテリ電流を検出または推定するバッテリ電流検出回路と、 前記バッテリ電流に基づき前記制御指令値をフィードバック補正する回路であって、前記制御指令値が前記トルク指令部によって補正されたとき、前記トルク指令部によって補正された前記制御指令値をフィードバック補正すると共にフィードバック補正された前記制御指令値を前記インバータ回路に出力する電流フィードバック回路と、 を有することを特徴とする車両搭載機器の制御装置。
 トルク指令部によって補正されていない制御指令値に基づいて出力されるdq軸上の電圧指令や三相交流電圧指令などをフィードバック補正する場合、制御指令値との発生トルクの差が大きくなるため、フィードバック制御が発散する虞がある。一方、本願発明では、既にトルク指令部によって補正された制御指令値をフィードバック補正することにより、上記課題を抑制することができる。
The technical ideas that can be grasped from Example 3 are listed below.
(8-15) A control device for a vehicle-mounted device that drives and controls a three-phase brushless motor incorporated in a vehicle-mounted device, and that drives the three-phase brushless motor based on the driving state of the vehicle. A control command value calculation unit for calculating a control command value for controlling, an inverter circuit for driving and controlling the three-phase brushless motor based on the control command value, and a battery that is a current supplied from the battery to the control device A torque command unit that has a control command value limit value that limits current and corrects the control command value so that the battery current does not exceed the control command value limit value; and a battery current that detects or estimates the battery current A detection circuit; and a circuit for feedback-correcting the control command value based on the battery current, wherein the control command value is the torque A current feedback circuit that, when corrected by the command unit, feedback-corrects the control command value corrected by the torque command unit and outputs the feedback-corrected control command value to the inverter circuit; A control device for on-vehicle equipment.
When feedback correcting a voltage command on the dq axis or a three-phase AC voltage command that is output based on a control command value that is not corrected by the torque command unit, a difference in generated torque from the control command value increases. There is a possibility that feedback control may diverge. On the other hand, in this invention, the said subject can be suppressed by carrying out feedback correction of the control command value already corrected by the torque command part.
 (9-16)上記(6-15)に記載の車両搭載機器の制御装置において、 前記トルク指令部は、前記バッテリ電流が前記制御指令値制限値を超えない範囲で前記制御指令値制限値に近づくように前記制御指令値を補正することを特徴とする車両搭載機器の制御装置。
 トルク指令部は、制御指令値ができるだけ高い指令値となるように補正するため、制御指令値制限値の範囲内で操舵フィーリングの悪化を抑制することができる。
 (10-17)上記(8-15)に記載の車両搭載機器の制御装置において、 前記制御指令値制限部は、車両の運転状態を示す信号である運転状態信号が入力される運転状態信号受信部を備え、前記運転状態信号に基づき、前記制御指令値または制御指令制限値を補正することを特徴とする車両搭載機器の制御装置。
 運転状態に応じて制御指令値または制御指令制限値を補正することにより、操舵力付与の適用範囲(操舵トルクの大きさ、時間の長さ)を広げ、操舵フィーリングの向上を図ることができる。
(9-16) In the control device for on-vehicle equipment described in (6-15) above, the torque command unit sets the control command value limit value within a range in which the battery current does not exceed the control command value limit value. A control device for a vehicle-mounted device, wherein the control command value is corrected so as to approach the vehicle.
Since the torque command unit corrects the control command value to be as high as possible, it is possible to suppress the deterioration of the steering feeling within the range of the control command value limit value.
(10-17) In the control device for on-vehicle equipment described in (8-15) above, the control command value limiter receives an operating state signal to which an operating state signal that is a signal indicating the operating state of the vehicle is input. And a control command value or a control command limit value is corrected based on the driving state signal.
By correcting the control command value or the control command limit value according to the driving state, it is possible to widen the application range of the steering force application (the magnitude of the steering torque, the length of time) and improve the steering feeling. .
 (11-18)上記(10-17)に記載の車両搭載機器の制御装置において、 前記制御指令値制限部は、前記制御装置に電力を供給するバッテリの電圧に基づき、前記制御指令値制限値を可変に調整することを特徴とする車両搭載機器の制御装置。
 バッテリ電圧が低下しているときは、制限値をより低く設定することにより、バッテリの保護を図ることができる。
(11-18) In the vehicle mounted device control device according to (10-17), the control command value limiting unit is configured to control the control command value limit value based on a voltage of a battery that supplies power to the control device. A device for controlling a vehicle-mounted device, wherein the vehicle is variably adjusted.
When the battery voltage is lowered, the battery can be protected by setting the limit value lower.
 (12-19)上記(8-15)に記載の車両搭載機器の制御装置において、 前記トルク指令部は、前記インバータ回路に入力される電圧値を示す信号である入力電圧信号が入力される入力電圧信号受信部と、前記3相ブラシレスモータの回転数を示す信号である回転数信号が入力される回転数信号受信部を備えると共に、前記入力電圧信号および前記回転数信号に基づき、前記制御指令値を補正することを特徴とする車両搭載機器の制御装置。
 よって、バッテリ電流フィードバック制御系の応答を所望の値に設定することができる。
 (13-20)上記(12-19)に記載の車両搭載機器の制御装置において、
 前記トルク指令部は、前記3相ブラシレスモータの銅損または鉄損に関する信号であるモータ損失信号が入力されるモータ損失信号受信部を備えると共に、前記モータ損失信号に基づき、前記制御指令値を補正することを特徴とする車両搭載機器の制御装置。
 よって、バッテリ電流フィードバック制御系の応答性や制御応答周波数に対する制御の安定性を更に向上できる。
(12-19) In the vehicle mounted device control apparatus according to (8-15), the torque command unit is an input to which an input voltage signal that is a signal indicating a voltage value input to the inverter circuit is input. A voltage signal receiving unit; and a rotation number signal receiving unit to which a rotation number signal that is a signal indicating the rotation number of the three-phase brushless motor is input, and the control command is based on the input voltage signal and the rotation number signal. A control apparatus for a vehicle-mounted device, wherein the value is corrected.
Therefore, the response of the battery current feedback control system can be set to a desired value.
(13-20) In the vehicle mounted device control apparatus according to (12-19) above,
The torque command unit includes a motor loss signal receiving unit to which a motor loss signal that is a signal related to copper loss or iron loss of the three-phase brushless motor is input, and corrects the control command value based on the motor loss signal. A control device for a vehicle-mounted device.
Therefore, the responsiveness of the battery current feedback control system and the control stability with respect to the control response frequency can be further improved.
 (他の実施例) なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。さらに、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 (Other Embodiments) The present invention is not limited to the above-described embodiments, and includes various modifications. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Furthermore, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
 以下、上記実施例から把握しうる技術思想について列挙する。
 (14-8)ステアリングホイールの操舵操作に応じて転舵輪を転舵させる操舵機構と、
 前記操舵機構に対し操舵力を付与する3相ブラシレスモータと、
 バッテリから電力を供給され、前記3相ブラシレスモータを駆動制御する制御装置と、
 前記制御装置に設けられ、車両の運転状態に基づき前記3相ブラシレスモータを駆動制御するための制御指令値を演算する演算部であって、かつ前記バッテリから前記制御装置に供給される電流であるバッテリ電流が前記バッテリ電流を制限するための制御指令値制限値を超えないように前記制御指令値を演算する制御指令値演算部と、
 前記制御装置に設けられ、前記制御指令値に基づき前記3相ブラシレスモータを駆動制御するインバータ回路と、
 前記制御装置に設けられ、前記バッテリ電流を検出または推定するバッテリ電流検出回路と、
 前記制御装置に設けられ、前記バッテリ電流に基づき前記制御指令値をフィードバック補正すると共にフィードバック補正された前記制御指令値を前記インバータ回路に出力する電流フィードバック回路と、
 を有することを特徴とする電動パワーステアリング装置。
 制御指令値演算部によって補正されていない制御指令値に基づいて出力されるdq軸上の電圧指令や三相交流電圧指令などをフィードバック補正する場合、制御指令値とモータの発生トルクの差が大きくなるため、フィードバック制御が発散する虞がある。一方、本願発明では、制御指令値演算部によって補正された制御指令値をフィードバック補正することにより、上記課題を抑制することができる。
The technical ideas that can be grasped from the above embodiments are listed below.
(14-8) a steering mechanism for turning the steered wheels according to the steering operation of the steering wheel;
A three-phase brushless motor that applies steering force to the steering mechanism;
A control device which is supplied with electric power from a battery and drives and controls the three-phase brushless motor;
A calculation unit that is provided in the control device and calculates a control command value for driving and controlling the three-phase brushless motor based on a driving state of the vehicle, and is a current supplied from the battery to the control device. A control command value calculation unit that calculates the control command value so that the battery current does not exceed a control command value limit value for limiting the battery current;
An inverter circuit provided in the control device for driving and controlling the three-phase brushless motor based on the control command value;
A battery current detection circuit provided in the control device for detecting or estimating the battery current;
A current feedback circuit provided in the control device, which feedback-corrects the control command value based on the battery current and outputs the control command value feedback-corrected to the inverter circuit;
An electric power steering apparatus comprising:
When feedback correction is performed on a voltage command on the dq axis or a three-phase AC voltage command that is output based on a control command value that has not been corrected by the control command value calculation unit, the difference between the control command value and the torque generated by the motor is large. Therefore, the feedback control may diverge. On the other hand, in this invention, the said subject can be suppressed by carrying out the feedback correction | amendment of the control command value corrected by the control command value calculating part.
 (15-9)上記(14-8)に記載の電動パワーステアリング装置において、 前記制御指令値演算部は、バッテリ電流が前記制限値に近づくように前記制御指令値を演算することを特徴とする電動パワーステアリング装置。 制御指令値演算部は、制御指令値が、できるだけ高い指令値となるように補正するため、制限値の範囲内で操舵フィーリングの悪化を抑制することができる。
 (16-10)上記(14-8)に記載の電動パワーステアリング装置において、 前記制御指令値演算部は、車両の運転状態を示す信号である運転状態信号が入力される運転状態信号受信部を備え、前記運転状態信号に基づき、前記制御指令値または制御指令制限値を補正することを特徴とする電動パワーステアリング装置。
 運転状態に応じて制御指令値を補正することにより、操舵力付与の適用範囲(操舵トルクの大きさ、時間の長さ)を広げ、操舵フィーリングの向上を図ることができる。
 (17-11)上記(16-10)に記載の電動パワーステアリング装置において、 前記制御指令値演算部は、前記制御装置に電力を供給するバッテリの電圧に基づき、前記制限値を可変に調整することを特徴とする電動パワーステアリング装置。
 バッテリ電圧が低下しているときは、制限値をより低く設定することにより、バッテリの保護を図ることができる。
(15-9) In the electric power steering device according to (14-8), the control command value calculation unit calculates the control command value so that a battery current approaches the limit value. Electric power steering device. Since the control command value calculation unit corrects the control command value so as to be as high as possible, it is possible to suppress the deterioration of the steering feeling within the limit value range.
(16-10) In the electric power steering apparatus according to (14-8), the control command value calculation unit includes a driving state signal receiving unit to which a driving state signal that is a signal indicating a driving state of the vehicle is input. An electric power steering apparatus comprising: correcting the control command value or the control command limit value based on the driving state signal.
By correcting the control command value according to the driving state, it is possible to widen the application range of the steering force application (the magnitude of the steering torque, the length of time) and improve the steering feeling.
(17-11) In the electric power steering device according to (16-10), the control command value calculation unit variably adjusts the limit value based on a voltage of a battery that supplies power to the control device. An electric power steering device.
When the battery voltage is lowered, the battery can be protected by setting the limit value lower.
 (18-12)上記(14-8)に記載の電動パワーステアリング装置において、 前記制御指令値演算部は、前記インバータ回路に入力される電圧値を示す信号である入力電圧信号が入力される入力電圧信号受信部と、前記3相ブラシレスモータの回転数を示す信号である回転数信号が入力される回転数信号受信部を備えると共に、前記入力電圧信号および前記回転数信号に基づき、前記制御指令値を補正することを特徴とする電動パワーステアリング装置。
 バッテリ電流フィードバック制御系の応答を所望の値に設定することができる。
 (19-13)上記(18-12)に記載の電動パワーステアリング装置において、 前記制御指令値演算部は、前記3相ブラシレスモータの銅損または鉄損に関する信号であるモータ損失信号が入力されるモータ損失信号受信部を備えると共に、前記モータ損失信号に基づき、前記制御指令値を補正することを特徴とする電動パワーステアリング装置。
 よって、バッテリ電流フィードバック制御系の応答性や制御応答周波数に対する制御の安定性を更に向上できる。
 (20-14)上記(19-13)に記載の電動パワーステアリング装置において、 前記制御装置は、前記3相ブラシレスモータ周辺の環境温度に関する信号である環境温度信号を受信する温度信号受信部を備え、 前記制御指令値演算部は、前記環境温度信号に基づき、前記制御指令値を補正することを特徴とする電動パワーステアリング装置。
 環境温度によって銅損、鉄損を算出するためのパラメータが変化するため、環境温度を更に考慮して制御指令値を補正することにより、バッテリ電流フィードバック制御系の応答性や制御応答周波数に対する制御の安定性を更に向上できる。
(18-12) In the electric power steering device according to (14-8), the control command value calculation unit is an input to which an input voltage signal that is a signal indicating a voltage value input to the inverter circuit is input. A voltage signal receiving unit; and a rotation number signal receiving unit to which a rotation number signal that is a signal indicating the rotation number of the three-phase brushless motor is input, and the control command is based on the input voltage signal and the rotation number signal. An electric power steering apparatus characterized by correcting a value.
The response of the battery current feedback control system can be set to a desired value.
(19-13) In the electric power steering device according to (18-12), the control command value calculation unit receives a motor loss signal that is a signal relating to copper loss or iron loss of the three-phase brushless motor. An electric power steering apparatus comprising a motor loss signal receiving unit and correcting the control command value based on the motor loss signal.
Therefore, the responsiveness of the battery current feedback control system and the control stability with respect to the control response frequency can be further improved.
(20-14) In the electric power steering device according to (19-13), the control device includes a temperature signal receiving unit that receives an environmental temperature signal that is a signal related to an environmental temperature around the three-phase brushless motor. The electric power steering apparatus, wherein the control command value calculation unit corrects the control command value based on the environmental temperature signal.
Since the parameters for calculating copper loss and iron loss change depending on the environmental temperature, the control command value is corrected with further consideration of the environmental temperature, so that the control of the responsiveness and control response frequency of the battery current feedback control system can be achieved. Stability can be further improved.
 上記各実施形態によれば、既にバッテリ電流が制御指令値制限値を超えないように補正された制御指令値をフィードバック補正することにより、制御指令値とモータの発生トルクとの差を小さくすることができ、制御の発散を抑制できる。 According to each of the above embodiments, the difference between the control command value and the generated torque of the motor is reduced by feedback correcting the control command value that has been corrected so that the battery current does not exceed the control command value limit value. And control divergence can be suppressed.

 以上、本発明の幾つかの実施形態のみを説明したが、本発明の新規の教示や利点から実質的に外れることなく例示の実施形態に、多様な変更または改良を加えることが可能であることが当業者には容易に理解できるであろう。従って、その様な変更または改良を加えた形態も本発明の技術的範囲に含むことを意図する。
 以上、いくつかの例に基づいて本発明の実施形態について説明してきたが、上記した発明の実施形態は、本発明の理解を容易にするためのものであり、本発明を限定するものではない。本発明は、その趣旨を逸脱することなく、変更、改良され得るとともに、本発明には、その均等物が含まれることはもちろんである。また、上述した課題の少なくとも一部を解決できる範囲、または、効果の少なくとも一部を奏する範囲において、特許請求の範囲および明細書に記載された各構成要素の任意の組み合わせ、または、省略が可能である。

Although only a few embodiments of the present invention have been described above, various modifications or improvements can be made to the illustrated embodiments without substantially departing from the novel teachings and advantages of the present invention. Will be easily understood by those skilled in the art. Therefore, it is intended that the embodiment added with such changes or improvements is also included in the technical scope of the present invention.
The embodiments of the present invention have been described above based on some examples. However, the above-described embodiments of the present invention are for facilitating understanding of the present invention and do not limit the present invention. . The present invention can be changed and improved without departing from the gist thereof, and the present invention naturally includes equivalents thereof. In addition, any combination or omission of each constituent element described in the claims and the specification is possible within a range where at least a part of the above-described problems can be solved or a range where at least a part of the effect is achieved. It is.
 本願は、2014年12月17日付の日本国特許出願2014-255454号に基づく優先権を主張する。2014年12月17日付の日本国特許出願2014-255454号の明細書、特許請求の範囲、図面及び要約書を含む全ての開示内容は、参照により全体として本願に組み込まれる。
 特開2013-162561号公報(特許文献1)の明細書、特許請求の範囲、図面及び要約書を含む全ての開示は、参照により全体として本願に組み込まれる。
The present application claims priority based on Japanese Patent Application No. 2014-255454 dated December 17, 2014. The entire disclosure including the specification, claims, drawings and abstract of Japanese Patent Application No. 2014-255454 dated December 17, 2014 is incorporated herein by reference in its entirety.
The entire disclosure including the specification, claims, drawings, and abstract of JP2013-162561A is incorporated herein by reference in its entirety.
1  モータ2  インバータ回路3  バッテリ4  バッテリ電圧センサ5  位置センサ6  電流センサ7  バッテリ電流検出回路8  制御指令値制限部9  トルク指令部10  モータ制御部20  ベクトル制御器21  dq/三相座標変換器22  PWM23  三相/dq座標変換器24  位相演算器25  速度演算器30  トルク指令発生器31  偏差演算器32  積分器33  制限処理器34  加算器35  環境温度検出部201  ステアリングホイール202  ステアリングシャフト203  ピニオン軸204  ラック軸205  減速機構206  操舵トルクセンサ 1 Motor 2 Inverter circuit 3 Battery 4 Battery voltage sensor 5 Position sensor 6 Current sensor 7 Battery current detection circuit 8 Control command value limiter 9 Torque command unit 10 Motor controller 20 Vector controller 21 dq / three-phase coordinate converter 22 PWM23 Three-phase / dq coordinate converter 24, phase calculator 25, speed calculator 30, torque command generator 31, deviation calculator 32, integrator 33, limit processor 34, adder 35, environmental temperature detector 201, steering wheel 202, steering shaft 203, pinion shaft 204, rack Shaft 205 Deceleration mechanism 206 Steering torque sensor

Claims (20)

  1.  電動パワーステアリング装置であって、
     ステアリングホイールの操舵操作に応じて転舵輪を転舵させる操舵機構と、
     前記操舵機構に対し操舵力を付与する3相ブラシレスモータと、
     バッテリから電力を供給され、前記3相ブラシレスモータを駆動制御する制御装置と、
     前記制御装置に設けられ、車両の運転状態に基づき前記3相ブラシレスモータを駆動制御するための制御指令値を演算する制御指令値演算部と、
     前記制御装置に設けられ、前記制御指令値に基づき前記3相ブラシレスモータを駆動制御するインバータと、
     前記制御装置に設けられ、前記バッテリから前記制御装置に供給される電流であるバッテリ電流を制限する制限値を有し、前記バッテリ電流が前記制限値を超えないように前記制御指令値を補正する制御指令値制限部と、
     前記制御装置に設けられ、前記バッテリ電流を検出または推定するバッテリ電流検出回路と、
     前記制御装置に設けられ、前記バッテリ電流に基づき前記制御指令値をフィードバック補正する補正回路であって、前記制御指令値が前記制御指令値制限部によって補正されたとき、前記制御指令値制限部によって補正された前記制御指令値を前記バッテリ電流に基づきフィードバック補正すると共にフィードバック補正された前記制御指令値を前記インバータに出力する電流フィードバック補正回路と、
     を有する電動パワーステアリング装置。
    An electric power steering device,
    A steering mechanism for turning the steered wheels according to the steering operation of the steering wheel;
    A three-phase brushless motor that applies steering force to the steering mechanism;
    A control device which is supplied with electric power from a battery and drives and controls the three-phase brushless motor;
    A control command value calculation unit that is provided in the control device and calculates a control command value for driving and controlling the three-phase brushless motor based on a driving state of the vehicle;
    An inverter that is provided in the control device and that drives and controls the three-phase brushless motor based on the control command value;
    The control device has a limit value that limits a battery current that is a current supplied from the battery to the control device, and corrects the control command value so that the battery current does not exceed the limit value. A control command value limiter;
    A battery current detection circuit provided in the control device for detecting or estimating the battery current;
    A correction circuit provided in the control device and feedback-correcting the control command value based on the battery current, and when the control command value is corrected by the control command value limiting unit, the control command value limiting unit A current feedback correction circuit for feedback-correcting the corrected control command value based on the battery current and outputting the control command value corrected for feedback to the inverter;
    An electric power steering apparatus.
  2.  請求項1に記載の電動パワーステアリング装置において、 前記制御指令値制限部は、前記バッテリ電流が前記制限値に近づくように前記制御指令値を補正する電動パワーステアリング装置。 2. The electric power steering apparatus according to claim 1, wherein the control command value limiter corrects the control command value so that the battery current approaches the limit value.
  3.  請求項1に記載の電動パワーステアリング装置において、 前記制御指令値制限部は、車両の運転状態を示す信号である運転状態信号が入力される運転状態信号受信部を備え、前記運転状態信号に基づき、前記制限値を可変に調整する電動パワーステアリング装置。 2. The electric power steering apparatus according to claim 1, wherein the control command value limiting unit includes a driving state signal receiving unit to which a driving state signal that is a signal indicating a driving state of the vehicle is input, based on the driving state signal. An electric power steering device that variably adjusts the limit value.
  4.  請求項3に記載の電動パワーステアリング装置において、 前記制御指令値制限部は、前記制御装置に電力を供給するバッテリの電圧に基づき、前記制限値を可変に調整する電動パワーステアリング装置。 4. The electric power steering apparatus according to claim 3, wherein the control command value limiter variably adjusts the limit value based on a voltage of a battery that supplies power to the control apparatus.
  5.  請求項1に記載の電動パワーステアリング装置において、 前記制御指令値制限部は、前記インバータ回路に入力される電圧値を示す信号である入力電圧信号が入力される入力電圧信号受信部と、前記3相ブラシレスモータの回転数を示す信号である回転数信号が入力される回転数信号受信部を備えると共に、前記入力電圧信号および前記回転数信号に基づき、前記制御指令値を補正する電動パワーステアリング装置。 2. The electric power steering apparatus according to claim 1, wherein the control command value limiting unit includes an input voltage signal receiving unit to which an input voltage signal that is a signal indicating a voltage value input to the inverter circuit is input, and the 3 An electric power steering apparatus including a rotation speed signal receiving unit to which a rotation speed signal that is a signal indicating the rotation speed of the phase brushless motor is input, and correcting the control command value based on the input voltage signal and the rotation speed signal .
  6.  請求項5に記載の電動パワーステアリング装置において、 前記制御指令値制限部は、前記3相ブラシレスモータの銅損または鉄損に関する信号であるモータ損失信号が入力されるモータ損失信号受信部を備えると共に、前記モータ損失信号に基づき、前記制御指令値を補正する電動パワーステアリング装置。 6. The electric power steering apparatus according to claim 5, wherein the control command value limiting unit includes a motor loss signal receiving unit to which a motor loss signal that is a signal related to copper loss or iron loss of the three-phase brushless motor is input. An electric power steering apparatus that corrects the control command value based on the motor loss signal.
  7.  請求項6に記載の電動パワーステアリング装置において、 前記制御装置は、前記3相ブラシレスモータ周辺の環境温度に関する信号である環境温度信号を受信する温度信号受信部を備え、
     前記制御指令値制限部は、前記環境温度信号に基づき、前記制御指令値を補正する電動パワーステアリング装置。
    The electric power steering device according to claim 6, wherein the control device includes a temperature signal receiving unit that receives an environmental temperature signal that is a signal related to an environmental temperature around the three-phase brushless motor,
    The control command value limiter corrects the control command value based on the environmental temperature signal.
  8.  電動パワーステアリング装置であって、
     ステアリングホイールの操舵操作に応じて転舵輪を転舵させる操舵機構と、
     前記操舵機構に対し操舵力を付与する3相ブラシレスモータと、
     バッテリから電力を供給され、前記3相ブラシレスモータを駆動制御する制御装置と、
     前記制御装置に設けられ、車両の運転状態に基づき前記3相ブラシレスモータを駆動制御するための制御指令値を演算する演算部であって、かつ前記制御指令値が前記バッテリから前記制御装置に供給される電流であるバッテリ電流が前記バッテリ電流を制限するための制限値を超えないように前記制御指令値を演算する制御指令値演算部と、
     前記制御装置に設けられ、前記制御指令値に基づき前記3相ブラシレスモータを駆動制御するインバータと、
     前記制御装置に設けられ、前記バッテリ電流を検出または推定するバッテリ電流検出回路と、
     前記制御装置に設けられ、前記バッテリ電流に基づき前記制御指令値をフィードバック補正すると共にフィードバック補正された前記制御指令値を前記インバータに出力する電流フィードバック補正回路と、
     を有する電動パワーステアリング装置。
    An electric power steering device,
    A steering mechanism for turning the steered wheels according to the steering operation of the steering wheel;
    A three-phase brushless motor that applies steering force to the steering mechanism;
    A control device which is supplied with electric power from a battery and drives and controls the three-phase brushless motor;
    An arithmetic unit provided in the control device for calculating a control command value for driving and controlling the three-phase brushless motor based on a driving state of the vehicle, and the control command value is supplied from the battery to the control device. A control command value calculation unit that calculates the control command value so that a battery current that is a current that does not exceed a limit value for limiting the battery current;
    An inverter that is provided in the control device and that drives and controls the three-phase brushless motor based on the control command value;
    A battery current detection circuit provided in the control device for detecting or estimating the battery current;
    A current feedback correction circuit provided in the control device, which feedback-corrects the control command value based on the battery current and outputs the control command value feedback-corrected to the inverter;
    An electric power steering apparatus.
  9.  請求項8に記載の電動パワーステアリング装置において、 前記制御指令値演算部は、前記バッテリ電流が前記制限値に近づくように前記制御指令値を演算する電動パワーステアリング装置。 9. The electric power steering apparatus according to claim 8, wherein the control command value calculation unit calculates the control command value so that the battery current approaches the limit value.
  10.  請求項8に記載の電動パワーステアリング装置において、 前記制御指令値演算部は、車両の運転状態を示す信号である運転状態信号が入力される運転状態信号受信部を備え、前記運転状態信号に基づき、前記制限値を可変に調整する電動パワーステアリング装置。 9. The electric power steering apparatus according to claim 8, wherein the control command value calculation unit includes a driving state signal receiving unit to which a driving state signal that is a signal indicating a driving state of the vehicle is input, and based on the driving state signal. An electric power steering device that variably adjusts the limit value.
  11.  請求項10に記載の電動パワーステアリング装置において、前記制御指令値演算部は、前記制御装置に電力を供給するバッテリの電圧に基づき、前記制限値を可変に調整する電動パワーステアリング装置。 11. The electric power steering device according to claim 10, wherein the control command value calculation unit variably adjusts the limit value based on a voltage of a battery that supplies power to the control device.
  12.  請求項8に記載の電動パワーステアリング装置において、 前記制御指令値演算部は、前記インバータ回路に入力される電圧値を示す信号である入力電圧信号が入力される入力電圧信号受信部と、前記3相ブラシレスモータの回転数を示す信号である回転数信号が入力される回転数信号受信部を備えると共に、前記入力電圧信号および前記回転数信号に基づき、前記制御指令値を補正する電動パワーステアリング装置。 The electric power steering apparatus according to claim 8, wherein the control command value calculation unit includes an input voltage signal receiving unit to which an input voltage signal that is a signal indicating a voltage value input to the inverter circuit is input, and the 3 An electric power steering apparatus including a rotation speed signal receiving unit to which a rotation speed signal that is a signal indicating the rotation speed of the phase brushless motor is input, and correcting the control command value based on the input voltage signal and the rotation speed signal .
  13.  請求項12に記載の電動パワーステアリング装置において、前記制御指令値演算部は、前記3相ブラシレスモータの銅損または鉄損に関する信号であるモータ損失信号が入力されるモータ損失信号受信部を備えると共に、前記モータ損失信号に基づき、前記制御指令値を補正する電動パワーステアリング装置。 13. The electric power steering apparatus according to claim 12, wherein the control command value calculation unit includes a motor loss signal receiving unit to which a motor loss signal that is a signal related to copper loss or iron loss of the three-phase brushless motor is input. An electric power steering apparatus that corrects the control command value based on the motor loss signal.
  14.  請求項13に記載の電動パワーステアリング装置において、前記制御装置は、前記3相ブラシレスモータ周辺の環境温度に関する信号である環境温度信号を受信する温度信号受信部を備え、
     前記制御指令値演算部は、前記環境温度信号に基づき、前記制御指令値を補正する電動パワーステアリング装置。
    The electric power steering apparatus according to claim 13, wherein the control device includes a temperature signal receiving unit that receives an environmental temperature signal that is a signal related to an environmental temperature around the three-phase brushless motor,
    The control command value calculation unit is an electric power steering device that corrects the control command value based on the environmental temperature signal.
  15.  車両搭載機器に組み込まれる3相ブラシレスモータを駆動制御すると共にバッテリから電力を供給される車両搭載機器の制御装置であって、
     車両の運転状態に基づき前記3相ブラシレスモータを駆動制御するための制御指令値を演算する制御指令値演算部と、
     前記制御指令値に基づき前記3相ブラシレスモータを駆動制御するインバータと、
     前記バッテリから前記制御装置に供給される電流であるバッテリ電流を制限する制限値を有し、前記バッテリ電流が前記制限値を超えないように前記制御指令値を補正する制御指令値制限部と、
     前記バッテリ電流を検出または推定するバッテリ電流検出回路と、
     前記バッテリ電流に基づき前記制御指令値をフィードバック補正する補正回路であって、前記制御指令値が前記制御指令値演算部によって補正されたとき、前記制御指令値演算部によって補正された前記制御指令値を前記バッテリ電流に基づきフィードバック補正すると共にフィードバック補正された前記制御指令値を前記インバータに出力する電流フィードバック補正回路と、
     を有する車両搭載機器の制御装置。
    A control device for a vehicle-mounted device that controls driving of a three-phase brushless motor incorporated in the vehicle-mounted device and is supplied with power from a battery,
    A control command value calculation unit that calculates a control command value for driving and controlling the three-phase brushless motor based on a driving state of the vehicle;
    An inverter that drives and controls the three-phase brushless motor based on the control command value;
    A control command value limiting unit that has a limit value that limits a battery current that is a current supplied from the battery to the control device, and that corrects the control command value so that the battery current does not exceed the limit value;
    A battery current detection circuit for detecting or estimating the battery current;
    A correction circuit that feedback-corrects the control command value based on the battery current, and the control command value corrected by the control command value calculation unit when the control command value is corrected by the control command value calculation unit A current feedback correction circuit for performing feedback correction on the basis of the battery current and outputting the control command value corrected for feedback to the inverter;
    A control apparatus for a vehicle-mounted device having:
  16.  請求項15に記載の車両搭載機器の制御装置において、 前記制御指令値制限部は、前記バッテリ電流が前記制限値に近づくように前記制御指令値を補正する車両搭載機器の制御装置。 16. The control apparatus for a vehicle-mounted device according to claim 15, wherein the control command value limiter corrects the control command value so that the battery current approaches the limit value.
  17.  請求項15に記載の車両搭載機器の制御装置において、 前記制御指令値制限部は、車両の運転状態を示す信号である運転状態信号が入力される運転状態信号受信部を備え、前記運転状態信号に基づき、前記制限値を可変に調整する車両搭載機器の制御装置。 16. The control apparatus for a vehicle-mounted device according to claim 15, wherein the control command value limiting unit includes a driving state signal receiving unit to which a driving state signal that is a signal indicating a driving state of the vehicle is input, and the driving state signal And a control device for on-vehicle equipment that variably adjusts the limit value.
  18.  請求項17に記載の車両搭載機器の制御装置において、 前記制御指令値制限部は、前記制御装置に電力を供給するバッテリの電圧に基づき、前記制限値を可変に調整する車両搭載機器の制御装置。 The control device for a vehicle-mounted device according to claim 17, wherein the control command value limiter variably adjusts the limit value based on a voltage of a battery that supplies power to the control device. .
  19.  請求項15に記載の車両搭載機器の制御装置において、 前記制御指令値制限部は、前記インバータ回路に入力される電圧値を示す信号である入力電圧信号が入力される入力電圧信号受信部と、前記3相ブラシレスモータの回転数を示す信号である回転数信号が入力される回転数信号受信部を備えると共に、前記入力電圧信号および前記回転数信号に基づき、前記制御指令値を補正する車両搭載機器の制御装置。 The control apparatus for a vehicle-mounted device according to claim 15, wherein the control command value limiting unit is an input voltage signal receiving unit to which an input voltage signal that is a signal indicating a voltage value input to the inverter circuit is input; On-vehicle mounting that includes a rotation speed signal receiving unit to which a rotation speed signal that is a signal indicating the rotation speed of the three-phase brushless motor is input, and that corrects the control command value based on the input voltage signal and the rotation speed signal. Equipment control device.
  20.  請求項19に記載の車両搭載機器の制御装置において、 前記制御指令値制限部は、前記3相ブラシレスモータの銅損または鉄損に関する信号であるモータ損失信号が入力されるモータ損失信号受信部を備えると共に、前記モータ損失信号に基づき、前記制御指令値を補正する車両搭載機器の制御装置。 20. The control apparatus for a vehicle-mounted device according to claim 19, wherein the control command value limiting unit includes a motor loss signal receiving unit to which a motor loss signal that is a signal related to copper loss or iron loss of the three-phase brushless motor is input. And a controller for a vehicle-mounted device that corrects the control command value based on the motor loss signal.
PCT/JP2015/084770 2014-12-17 2015-12-11 Electric power steering device and control device for vehicle-mounted device WO2016098693A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014255454A JP2016113111A (en) 2014-12-17 2014-12-17 Electric power steering device and control device for on-vehicle equipment
JP2014-255454 2014-12-17

Publications (1)

Publication Number Publication Date
WO2016098693A1 true WO2016098693A1 (en) 2016-06-23

Family

ID=56126583

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/084770 WO2016098693A1 (en) 2014-12-17 2015-12-11 Electric power steering device and control device for vehicle-mounted device

Country Status (2)

Country Link
JP (1) JP2016113111A (en)
WO (1) WO2016098693A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114094899A (en) * 2021-11-18 2022-02-25 苏州臻迪智能科技有限公司 Motor control method, device and system
CN116620051A (en) * 2023-07-07 2023-08-22 凡己科技(苏州)有限公司 Energy distribution method of electric forklift, motor control method and electric forklift

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6809093B2 (en) 2016-09-29 2021-01-06 株式会社デンソー Motor control device and electric power steering device using it
JP7183740B2 (en) * 2018-11-29 2022-12-06 富士電機株式会社 Inverter device
CN113261199B (en) * 2018-12-28 2024-03-19 日立安斯泰莫株式会社 Motor control device
JP2023032492A (en) * 2021-08-27 2023-03-09 日立Astemo株式会社 Driving device for synchronous motor, and driving method for synchronous motor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009208497A (en) * 2008-02-29 2009-09-17 Nsk Ltd Control device of electric power steering system
JP2010064544A (en) * 2008-09-09 2010-03-25 Honda Motor Co Ltd Electric power steering device
JP2012135209A (en) * 2012-03-21 2012-07-12 Mitsubishi Electric Corp Motor control device
WO2013108356A1 (en) * 2012-01-16 2013-07-25 三菱電機株式会社 Motor controller

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009208497A (en) * 2008-02-29 2009-09-17 Nsk Ltd Control device of electric power steering system
JP2010064544A (en) * 2008-09-09 2010-03-25 Honda Motor Co Ltd Electric power steering device
WO2013108356A1 (en) * 2012-01-16 2013-07-25 三菱電機株式会社 Motor controller
JP2012135209A (en) * 2012-03-21 2012-07-12 Mitsubishi Electric Corp Motor control device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114094899A (en) * 2021-11-18 2022-02-25 苏州臻迪智能科技有限公司 Motor control method, device and system
CN116620051A (en) * 2023-07-07 2023-08-22 凡己科技(苏州)有限公司 Energy distribution method of electric forklift, motor control method and electric forklift
CN116620051B (en) * 2023-07-07 2024-02-02 凡己科技(苏州)有限公司 Energy distribution method of electric forklift, motor control method and electric forklift

Also Published As

Publication number Publication date
JP2016113111A (en) 2016-06-23

Similar Documents

Publication Publication Date Title
WO2016098693A1 (en) Electric power steering device and control device for vehicle-mounted device
US10300940B2 (en) Electric power steering apparatus
JP5130716B2 (en) Motor control device and electric power steering device
JP5168448B2 (en) Motor control device and electric power steering device
JP5190156B2 (en) AC rotating machine control device
JP6445937B2 (en) Electric power steering device
US9407177B2 (en) Rotating electric machine control device and electric power steering apparatus
WO2010001579A1 (en) Motor control device and vehicle-steering device comprising same
JP5408469B2 (en) Motor control device
JP6776066B2 (en) Inverter controller and motor drive system
JP2016172459A (en) Steering device
EP2290804A1 (en) Motor control device
JP5495020B2 (en) Motor control device and vehicle steering device
JP2010200430A (en) Drive controller for motors
JP4402600B2 (en) Synchronous motor drive system and synchronous motor drive method
JP2010029027A (en) Motor control device
JP5595436B2 (en) Motor control device
JP2010252492A (en) Motor system
JP2019050684A (en) Controller of power steering device
JP2014139039A (en) Electric power steering device
JP5743133B2 (en) Electric power steering device
JP2012235556A (en) Motor controller
JP2019017218A (en) Control arrangement and control method of inverter for driving synchronous motor
JP5751442B2 (en) Motor control device and vehicle steering device
JP2009081915A (en) Motor controller

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15869898

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15869898

Country of ref document: EP

Kind code of ref document: A1