WO2016098553A1 - Lithium ion secondary cell - Google Patents

Lithium ion secondary cell Download PDF

Info

Publication number
WO2016098553A1
WO2016098553A1 PCT/JP2015/083208 JP2015083208W WO2016098553A1 WO 2016098553 A1 WO2016098553 A1 WO 2016098553A1 JP 2015083208 W JP2015083208 W JP 2015083208W WO 2016098553 A1 WO2016098553 A1 WO 2016098553A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
mass
aluminum oxide
ion secondary
lithium
Prior art date
Application number
PCT/JP2015/083208
Other languages
French (fr)
Japanese (ja)
Inventor
洋生 西山
英介 羽場
馨 今野
武井 康一
紘揮 三國
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=56126450&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2016098553(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to KR1020177016243A priority Critical patent/KR101983924B1/en
Priority to JP2016564757A priority patent/JP6418250B2/en
Publication of WO2016098553A1 publication Critical patent/WO2016098553A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a lithium ion secondary battery.
  • Lithium ion secondary batteries are high energy density secondary batteries, and are used as power sources for portable devices such as notebook computers and mobile phones, taking advantage of their characteristics.
  • Cylindrical lithium ion secondary batteries employ a wound structure of a positive electrode, a negative electrode, and a separator.
  • a positive electrode material and a negative electrode material are respectively applied to two strip-shaped metal foils, a separator is sandwiched therebetween, and these laminated bodies are wound in a spiral shape to form a wound group.
  • the wound group is housed in a cylindrical battery can serving as a battery container, and after injecting an electrolytic solution, the cylindrical lithium ion secondary battery is formed.
  • a 18650 type lithium ion secondary battery is widely used as a consumer lithium ion secondary battery.
  • the outer diameter of the 18650 type lithium ion secondary battery is 18 mm in diameter and is small with a height of about 65 mm.
  • the positive electrode active material of the 18650 type lithium ion secondary battery lithium cobaltate, which is characterized by high capacity and long life, is mainly used, and the battery capacity is approximately 1.0 Ah to 2.0 Ah (3.7 Wh 7.4 Wh).
  • Patent Document 1 discloses a cylindrical lithium ion secondary battery having an electrode winding group in which a positive electrode, a negative electrode, and a separator are wound around a cylindrical battery container.
  • This battery has a discharge capacity of 30 Ah or more, a positive electrode active material mixture containing layered lithium-nickel-manganese-cobalt composite oxide is used for the positive electrode, and a negative electrode active material containing amorphous carbon is used for the negative electrode. A material mixture is used.
  • lithium ion secondary batteries have attracted attention as high-output power sources used in electric vehicles, hybrid electric vehicles, and the like. In such applications in the automobile field, higher output, higher capacity, and longer life at high temperatures are required.
  • the lithium ion secondary battery described in Patent Document 1 is excellent in increasing the output and capacity, but in the above applications, it is necessary to further improve the life at high temperatures (hereinafter referred to as cycle characteristics). is there.
  • the present invention has been made in view of the above problems, and is to provide a lithium ion secondary battery having excellent cycle characteristics.
  • a lithium ion secondary battery including a positive electrode, a negative electrode, a separator, and an electrolytic solution is configured as follows.
  • the positive electrode has a current collector and a positive electrode mixture formed on the current collector.
  • the positive electrode mixture is a layered lithium / nickel / manganese / cobalt composite oxide and part or all of the surface is carbon. Contains coated aluminum oxide.
  • the content of aluminum oxide in which part or all of the surface is coated with carbon is 0.01% by mass or more and 5% by mass or less with respect to the total amount of the positive electrode mixture.
  • the BET specific surface area of the aluminum oxide is 1 m 2 / g to 30 m 2 / g.
  • the weight loss rate between 25 ° C. and 350 ° C. measured by using a differential thermal-thermogravimetric analyzer (TG-DTA) of aluminum oxide partially or entirely coated with carbon is less than 5%. .
  • the aluminum oxide is imogolite.
  • the positive electrode mixture includes a conductive material, and the conductive material is acetylene black.
  • a lithium ion secondary battery having excellent cycle characteristics can be provided.
  • the lithium ion secondary battery has a positive electrode, a negative electrode, a separator, and an electrolytic solution in a battery container.
  • a separator is coated between the positive electrode and the negative electrode.
  • a charger When charging a lithium ion secondary battery, a charger is connected between the positive electrode and the negative electrode. At the time of charging, lithium ions inserted into the positive electrode active material are desorbed and released into the electrolytic solution. The lithium ions released into the electrolytic solution move in the electrolytic solution, pass through a separator made of a microporous film, and reach the negative electrode. The lithium ions that have reached the negative electrode are inserted into the negative electrode active material constituting the negative electrode.
  • charging and discharging can be performed by inserting and desorbing lithium ions between the positive electrode active material and the negative electrode active material.
  • a configuration example of an actual lithium ion secondary battery will be described later (see, for example, FIG. 1).
  • Positive electrode In this embodiment, it has the following positive electrode applicable to a long-life lithium ion secondary battery.
  • the positive electrode (positive electrode plate) of this embodiment consists of a current collector and a positive electrode mixture formed thereon.
  • the positive electrode mixture is a layer including at least a positive electrode active material provided on the current collector.
  • the positive electrode mixture includes a layered lithium-nickel-manganese-cobalt composite oxide.
  • the positive electrode mixture contains an aluminum oxide (hereinafter also referred to as carbon-coated aluminum oxide) in which at least part of the surface is coated with carbon.
  • this positive electrode mixture may be formed (applied) on both surfaces of the current collector, for example.
  • positive electrode active material examples include layered lithium / nickel / manganese / cobalt composite oxide (hereinafter referred to as NMC), lithium-containing composite metal oxide other than NMC, olivine type lithium oxide, chalcogen compound, manganese dioxide, and the like. You may go out.
  • the lithium-containing composite metal oxide is a metal oxide containing lithium and a transition metal or a metal oxide in which a part of the transition metal in the metal oxide is substituted with a different element.
  • examples of the different element include Na, Mg, Sc, Y, Mn, Fe, Co, Ni, Cu, Zn, Al, Cr, Pb, Sb, and B.
  • Mn, Al, Co, Ni, Mg and the like are preferable.
  • One kind or two or more kinds of different elements may be used.
  • lithium-containing composite metal oxides other than NMC examples include LixCoO 2 , LixNiO 2 , LixCoyNi 1 -yO 2 , LixCoyM 1 -yOz, LixNi 1 -yMyOz, LiMPO 4 , Li 2 MPO 4 F (in the above formulas) , M represents at least one element selected from the group consisting of Na, Mg, Sc, Y, Mn, Fe, Co, Ni, Cu, Zn, Al, Cr, Pb, Sb, V, and B.
  • x 0 to 1.2
  • y 0 to 0.9
  • z 2.0 to 2.3).
  • x value which shows the molar ratio of lithium increases / decreases by charging / discharging.
  • the olivine type lithium oxide include LiFePO 4 and the like.
  • the chalcogen compound include titanium disulfide and molybdenum disulfide.
  • a positive electrode active material can be used individually by 1 type, or can use 2 or more types together.
  • the positive electrode active material in addition to NMC, spinel type lithium manganese oxide (LMO) or olivine type lithium iron phosphate (LFP) may be used in combination with NMC, from the viewpoint of high safety.
  • LMO lithium manganese oxide
  • LFP olivine type lithium iron phosphate
  • the mass ratio (mixing ratio) of NMC / LMO is preferably 95/5 or more and 30/70 or less.
  • the mass ratio (NMC / LMO) of the positive electrode active material is in the range of 95/5 to 30/70, the safety of the battery tends to be improved. On the other hand, if it is less than 30/70, the safety of the battery is improved, but the battery capacity and the energy density of the battery are lowered, and the life characteristics at high temperature tend to be lowered due to the influence of Mn elution from LMO.
  • (1 + ⁇ ) is a composition ratio of Li (lithium)
  • x is a composition ratio of Mn (manganese)
  • y is a composition ratio of Ni (nickel)
  • (1-xyz) Indicates the composition ratio of Co (cobalt).
  • z represents the composition ratio of the element M.
  • the composition ratio of O (oxygen) is 2.
  • the elements M are Ti (titanium), Zr (zirconium), Nb (niobium), Mo (molybdenum), W (tungsten), Al (aluminum), Si (silicon), Ga (gallium), Ge (germanium), and Sn. It is at least one element selected from the group consisting of (tin).
  • compositional formula (Formula 2) Li (1 + ⁇ ) Mn (2- ⁇ ) M ′ ⁇ O 4 (Chemical formula 2)
  • (1 + ⁇ ) represents the composition ratio of Li
  • (2- ⁇ ) represents the composition ratio of Mn
  • represents the composition ratio of the element M ′.
  • the composition ratio of O (oxygen) is 4.
  • the element M ′ is at least one element selected from the group consisting of Mg (magnesium), Ca (calcium), Sr (strontium), Al, Ga, Zn (zinc), and Cu (copper).
  • Mg or Al As the element M ′ in the composition formula (Formula 2).
  • Mg or Al the battery life can be extended.
  • the safety of the battery can be improved.
  • the stability of the positive electrode during charging can be improved and heat generation can be suppressed even when the capacity is increased.
  • a battery with excellent safety can be provided.
  • the content of NMC is preferably 65% by mass or more, more preferably 70% by mass or more, and more preferably 80% by mass or more with respect to the total amount of the positive electrode mixture, from the viewpoint of increasing the capacity of the battery. More preferably.
  • the positive electrode mixture contains a positive electrode active material and a binder, and is formed on the current collector.
  • a positive electrode active material such as a positive electrode active material, a conductive material, a binder, and a thickener used as necessary are mixed in a dry form to form a sheet, and this is pressure-bonded to a current collector (dry method).
  • other materials such as a positive electrode active material, a conductive material, a binder, and a thickener used as necessary are dissolved or dispersed in a dispersion solvent to form a slurry, which is applied to a current collector and dried. (Wet method).
  • the particles of the positive electrode active material those in the form of a lump, polyhedron, sphere, ellipsoid, plate, needle, column, etc. are used. Among them, it is preferable that the primary particles are aggregated to form secondary particles, and the shape of the secondary particles is spherical or elliptical.
  • the active material in the electrode expands and contracts as it is charged / discharged, so that the active material is easily damaged or the conductive path is broken due to the stress.
  • particles in which primary particles are aggregated to form secondary particles rather than using single particles of only primary particles, because the stress of expansion and contraction can be relieved and the above deterioration can be prevented.
  • spherical or oval spherical particles rather than plate-like particles having axial orientation, since the orientation in the electrode is reduced, so that the expansion and contraction of the electrode during charge / discharge is reduced.
  • other materials such as a conductive material are easily mixed uniformly when forming the electrode.
  • the range of the median diameter d50 of the NMC particles applied to the positive electrode active material is as follows.
  • the lower limit of the range is 0.1 ⁇ m or more, preferably 0.5 ⁇ m or more, more preferably 1 ⁇ m or more, further preferably 3 ⁇ m or more, and the upper limit is 20 ⁇ m or less, preferably 18 ⁇ m or less, more preferably 16 ⁇ m or less, and even more preferably. Is 15 ⁇ m or less. If it is less than the above lower limit, the tap density (fillability) may be lowered, and a desired tap density may not be obtained.
  • the tap density may be improved by mixing two or more kinds of positive electrode active materials having different median diameters d50.
  • the median diameter d50 can be obtained from the particle size distribution obtained by the laser diffraction / scattering method.
  • the range of the average particle diameter of the primary particles when the primary particles are aggregated to form secondary particles is as follows.
  • the lower limit of the range is 0.01 ⁇ m or more, preferably 0.05 ⁇ m or more, more preferably 0.08 ⁇ m or more, particularly preferably 0.1 ⁇ m or more
  • the upper limit is 3 ⁇ m or less, preferably 2 ⁇ m or less, more preferably 1 ⁇ m.
  • it is particularly preferably 0.6 ⁇ m or less.
  • the range of the BET specific surface area of the positive electrode active material particles such as NMC is as follows.
  • the lower limit of the range is 0.1 m 2 / g or more, preferably 0.3 m 2 / g or more, more preferably 0.4 m 2 / g or more, and the upper limit is 4.0 m 2 / g or less, preferably 2 .5m 2 / g, more preferably not more than 1.5 m 2 / g. If it is less than the said minimum, there exists a possibility that battery performance may fall. When the above upper limit is exceeded, the tap density is difficult to increase, and the miscibility with other materials such as a binder and a conductive material may be reduced.
  • the BET specific surface area is a specific surface area (area per unit g) determined by the BET method.
  • the carbon-coated aluminum oxide has a structure in which part or all of the surface of the particulate aluminum oxide is coated with carbon. Examples of the aluminum oxide include activated alumina and aluminum silicate.
  • aluminum silicate examples include allophane, kaolin, zeolite, saponite, and imogolite. From the viewpoint of improving cycle characteristics, imogolite which is an aluminum silicate whose specific surface area can be easily adjusted is preferable.
  • Aluminum silicate is an oxide salt of Si and Al. Since Si and Al have different valences, there are many OH groups in the oxide salt of Si and Al, which has ion exchange ability.
  • the imogolite in the present embodiment is an aluminum silicate having an element molar ratio Si / Al of 0.1 or more and less than 4.0.
  • the element molar ratio Si / Al is preferably 0.1 or more and less than 4.0.
  • the element molar ratio Si / Al of imogolite is more preferably 0.2 or more and 3.0 or less, and further preferably 0.4 or more and 2.5 or less.
  • Imogolite preferably has a peak around 3 ppm in the 27 Al-NMR spectrum.
  • the 27 Al-NMR measuring apparatus for example, AV400WB manufactured by Bruker BioSpin can be used. Specific measurement conditions are as follows.
  • Resonance frequency 104MHz
  • Measuring method MAS (single pulse)
  • MAS rotation speed 10 kHz
  • Measurement area 52 kHz
  • Number of data points 4096 resolution (measurement area / number of data points): 12.7 Hz
  • Pulse width 3.0 ⁇ sec
  • Delay time 2 seconds
  • Chemical shift value standard 3.94 ppm of ⁇ -alumina window function: exponential function
  • Line Broadening coefficient 10 Hz
  • Geigerflex RAD-2X (trade name) manufactured by Rigaku Corporation can be used as the X-ray diffraction apparatus.
  • the tubular substance having a length of 50 nm or more does not exist in imogolite when observed with a transmission electron microscope (TEM) at a magnification of 100,000. Observation of the particles with a transmission electron microscope (TEM) is performed at an acceleration voltage of 100 kV.
  • TEM transmission electron microscope
  • the aluminum oxide may be synthesized, or a commercially available product may be purchased and used.
  • a step of mixing a solution containing silicate ions and a solution containing aluminum ions to obtain a reaction product, and heat-treating the reaction product in an aqueous medium in the presence of an acid And may have other steps as necessary.
  • a washing step for performing desalting and solid separation is preferred.
  • An oxide can be produced efficiently.
  • examples of the coexisting ions include sodium ions, chloride ions, perchlorate ions, nitrate ions, sulfate ions, and the like. This can be considered as follows, for example.
  • An aluminum oxide having a regular structure is formed by heat-treating the aluminum oxide from which the coexisting ions inhibiting the formation of the regular structure are removed in the presence of an acid. It can be considered that when imogolite has a regular structure, the affinity for metal ions or halide ions is improved, and metal ions or halide ions can be adsorbed efficiently.
  • the aluminum oxide according to this embodiment at least a part or all of the surface of the aluminum oxide is coated with carbon.
  • the carbon to be coated is coated on at least a part or all of the surface of the aluminum oxide.
  • the method for coating the surface of the aluminum oxide with carbon is not particularly limited.
  • the solvent is heated and the like.
  • examples include wet coating to be removed, dry coating in which carbon particles and an organic compound are mixed with each other, and the mixture is kneaded while applying a shearing force, and vapor phase coating such as a CVD method. From the viewpoints of cost and manufacturing process reduction, dry type and vapor phase layer coating without using a solvent are more preferable.
  • organic compound (carbon precursor) that remains carbonaceous by the heat treatment is generated by pyrolyzing, for example, ethylene heavy end pitch, crude oil pitch, coal tar pitch, asphalt cracking pitch, polyvinyl chloride, etc.
  • Synthetic pitch produced by polymerizing pitch, naphthalene, etc. in the presence of a super strong acid can be used.
  • thermoplastic material polyvinyl chloride, polyvinyl alcohol, polyvinyl acetate, polyvinyl butyral, or the like can be used, and as a thermosetting material, a phenol resin, a furan resin, or the like can be used.
  • the firing conditions of the inorganic particles coated with the organic compound may be appropriately determined in consideration of the carbonization rate of the organic compound, and there is no particular limitation, but in the range of 800 to 1300 ° C. in an inert atmosphere. Preferably there is. If the temperature is lower than 800 ° C, the organic matter is not sufficiently baked, and the initial irreversible capacity is increased due to the excessive increase in the specific surface area. When heated above 1300 ° C, the specific surface area is excessively decreased. This is because there are disadvantages.
  • the inert atmosphere include nitrogen, argon, helium and the like.
  • the aluminum oxide whose surface is coated with carbon may be referred to as an aluminum oxide whose surface is partially or entirely coated with carbon. Moreover, it may only be called a carbon covering aluminum oxide.
  • the BET specific surface area of the aluminum oxide whose surface is partly or entirely covered with carbon is preferably 30 m 2 / g or less, and more preferably 25 m 2 / g or less.
  • the lower limit of the BET specific surface area is not particularly limited, but is preferably 1 m 2 / g or more, more preferably 3 m 2 / g or more, from the viewpoint of the ability to adsorb metal ions or halide ions. More preferably, it is 5 m 2 / g or more.
  • the BET specific surface area of the carbon-coated aluminum oxide is measured from the nitrogen adsorption capacity according to JIS Z 8830 (2001).
  • a nitrogen adsorption measuring apparatus AUTOSORB-1, QUANTACHROME or the like can be used.
  • AUTOSORB-1, QUANTACHROME nitrogen adsorption measuring apparatus
  • the measurement cell charged with 0.05 g of the measurement sample is depressurized to 10 Pa or less with a vacuum pump, heated at 110 ° C., held for 3 hours or more, and kept at a normal temperature while maintaining the depressurized state. Cool naturally to (25 ° C).
  • the evaluation temperature is 77K
  • the evaluation pressure range is measured as a relative pressure (equilibrium pressure with respect to saturated vapor pressure) of less than 1.
  • Carbon coated aluminum oxide from the viewpoint of improving the adsorption capacity of the metal ion or halide ion, it is preferably, 0.12 cm 3 / g or more total pore volume is 0.1 cm 3 / g or more Is more preferably 0.15 cm 3 / g or more. Further, the upper limit value of the total pore volume is not particularly limited. From the viewpoint of suppressing the moisture adsorption amount in the air per unit mass, the total pore volume is preferably 1.5 cm 2 / g or less, more preferably 1.2 cm 2 / g or less. More preferably, it is 0 cm 2 / g or less.
  • the total pore volume of carbon-coated aluminum oxide is based on the BET specific surface area, and the gas adsorption amount closest to relative pressure 1 is converted to liquid among the data obtained when the relative pressure is 0.95 or more and less than 1. And ask.
  • the carbon content of the aluminum oxide whose surface is partly or entirely coated with carbon is, for example, the differential thermal-thermogravimetric analyzer (TG-DTA) TG-DTA-6200 (SII Nanotechnology Inc.) (Manufactured by the company) can be measured at a rate of mass reduction by holding at 850 ° C. for 20 minutes at a heating rate of 10 ° C./min under a flow of dry air.
  • the carbon content is a value obtained by the following formula (1) with respect to the mass (W1) at 350 ° C. and the mass (W2) at 850 ° C. measured by TG-DTA.
  • Carbon content (mass%) ⁇ (W1-W2) / W1 ⁇ ⁇ 100 (1)
  • the carbon content is preferably 0.5% by mass or more and less than 30% by mass, more preferably 1% by mass or more and less than 25% by mass, and more preferably 2% by mass or more and 20% by mass with respect to the mass of the aluminum oxide. More preferably less than mass%. Within the above range, the input / output characteristics are excellent.
  • the moisture content of the aluminum oxide whose surface is partially or entirely coated with carbon is, for example, a differential thermal-thermogravimetric analyzer (TG-DTA) TG-DTA-6200 (SII Nanotechnology Inc.)
  • TG-DTA differential thermal-thermogravimetric analyzer
  • the mass at 25 ° C. measured by TG-DTA of aluminum oxide in which part or all of the surface is coated with carbon can be measured under the same conditions as the measurement of the carbon content.
  • W0 and the mass (W1) measured at 350 ° C. measured by TG-DTA, and the value obtained by the following equation (2).
  • Water content (mass%) ⁇ (W0 ⁇ W1) / W0 ⁇ ⁇ 100 (2)
  • the water content depends on the influence of side reactions such as the degradation of the positive electrode active material and the decomposition reaction of the electrolyte due to the reaction of hydrogen fluoride (HF) generated by the influence of residual water and the like with the electrode or the electrolyte. There is a concern to reduce.
  • the water content is preferably less than 5%, more preferably less than 4%, and even more preferably less than 3% from the viewpoint of further improving battery capacity and cycle characteristics. Moreover, it is preferable that a lower limit is 0.01% or more from a practical viewpoint.
  • the content of the aluminum oxide whose surface is partly or entirely covered with carbon is 0.01% by mass or more and 5% by mass or less with respect to the total amount of the positive electrode mixture from the viewpoint of conductivity and high capacity. It is preferable that it is 0.1 to 4.5% by mass, more preferably 0.15 to 4% by mass. When the application is within the above range, cycle characteristics and input / output characteristics can be further improved.
  • the conductive material for the positive electrode include metal materials such as copper and nickel; graphite such as natural graphite and artificial graphite (graphite); carbon black such as acetylene black; and carbonaceous materials such as amorphous carbon such as needle coke. Is mentioned. Of these, one type may be used alone, or two or more types may be used in combination.
  • the conductive material for the positive electrode preferably contains acetylene black.
  • the acetylene black is preferably particles having an average particle size of 20 nm or more and 100 nm or less, and is not particularly limited as long as it is in this particle size range.
  • examples of the particles include granular, flake-like, spherical, columnar, and irregular shapes.
  • the “granular” is not an irregular shape but a shape having almost equal dimensions (JIS Z2500: 2000).
  • the flake shape (strip shape) is a plate-like shape (JIS Z2500: 2000) and is also called a scaly shape because it is thin like a scale.
  • the aspect ratio (particle diameter a / average thickness t) is 2 to 100 in the form of a piece.
  • the particle diameter a here is defined as the square root of the area S when the flaky particles are viewed in plan, and this is the particle diameter of the present application.
  • the “spherical shape” is a shape substantially close to a sphere (see JIS Z2500: 2000). Further, the shape does not necessarily need to be spherical, and the ratio of the major axis (DL) to the minor axis (DS) of the particle (DL) / (DS) (sometimes referred to as spherical coefficient or sphericity) is 1. In the range of 0.0 to 1.2, the particle diameter refers to the long diameter (DL).
  • Examples of the columnar shape include a substantially cylindrical column and a substantially polygonal column, and the particle size refers to the height of the column.
  • the average particle diameter of acetylene black contained in the conductive material exceeds 100 nm, the number of contact points with the positive electrode active material is reduced, the conductive network between the active materials is hindered, and the input / output characteristics of the battery tend to deteriorate.
  • the average particle size is less than 20 nm, the dispersibility in the positive electrode mixture is deteriorated, and the battery performance is significantly deteriorated due to an adverse effect such as segregation of acetylene black.
  • the average particle diameter of acetylene black is preferably 20 nm or more and 100 nm or less, more preferably 30 nm or more and 80 nm or less, and particularly preferably 40 nm or more and 60 nm or less.
  • the average particle diameter of the conductive material is an arithmetic average particle diameter obtained by measuring all the diameters of the particle images in the image taken with a scanning electron microscope taken at 200,000 times.
  • the content of the conductive material is preferably 0.2% by mass or more, more preferably 0.5% by mass or more, and still more preferably 1% by mass or more, based on the total amount of the positive electrode mixture.
  • the upper limit of the content of the conductive material Is preferably 30% by mass or less, more preferably 20% by mass or less, and still more preferably 10% by mass or less. Within the above range, the battery capacity and input / output characteristics are excellent.
  • the content of acetylene black contained in the conductive material is preferably 0.1% by mass or more and 15% by mass or less, and preferably 1% by mass or more with respect to the total amount of the positive electrode mixture, from the viewpoint of conductivity and high capacity. 10 mass% or less is more preferable, and 2 mass% or more and 5 mass% or less are further more preferable. Within the above range, the battery capacity and input / output characteristics are excellent.
  • the binder for positive electrode is not particularly limited, and when the positive electrode mixture is formed by a coating method, a material having good solubility and dispersibility in the dispersion solvent is selected.
  • resin polymers such as polyethylene, polypropylene, polyethylene terephthalate, polymethyl methacrylate, polyimide, aromatic polyamide, cellulose, and nitrocellulose; SBR (styrene-butadiene rubber), NBR (acrylonitrile-butadiene rubber), fluorine Rubbery polymers such as rubber, isoprene rubber, butadiene rubber, ethylene-propylene rubber; styrene / butadiene / styrene block copolymer or its hydrogenated product, EPDM (ethylene / propylene / diene terpolymer), styrene / Thermoplastic elastomeric polymers such as ethylene / butadiene / ethylene copolymers, styrene / isoprene / styrene block copolymers or hydrogenated products thereof; syndiotactic-1,2-polybutadiene, polyacetic acid Soft resinous polymers
  • a fluorine-based polymer such as polyvinylidene fluoride (PVDF) or a polytetrafluoroethylene / vinylidene fluoride copolymer.
  • the content of the binder with respect to the total amount of the positive electrode mixture is preferably 0.1% by mass or more, more preferably 1% by mass or more, and still more preferably 3% by mass or more.
  • the upper limit is preferably 50% by mass or less, more preferably 40% by mass or less, still more preferably 30% by mass or less, and particularly preferably 10% by mass or less. By setting it as the said range, battery performance, such as cycling characteristics, can be made more favorable.
  • the layer formed on the current collector using the above wet method or dry method is preferably consolidated by a hand press or a roller press in order to improve the packing density of the positive electrode active material.
  • the material of the current collector for the positive electrode is not particularly limited, and specific examples include metal materials such as aluminum, stainless steel, nickel plating, titanium, and tantalum; and carbonaceous materials such as carbon cloth and carbon paper. Of these, metal materials, particularly aluminum, are preferred.
  • the shape of the current collector is not particularly limited, and materials processed into various shapes can be used.
  • the metal material include a metal foil, a metal cylinder, a metal coil, a metal plate, a metal thin film, an expanded metal, a punch metal, and a foam metal
  • the carbonaceous material includes a carbon plate, a carbon thin film, A carbon cylinder etc. are mentioned.
  • the thickness of the thin film is arbitrary, but the range is as follows.
  • the lower limit of the range is 1 ⁇ m or more, preferably 3 ⁇ m or more, more preferably 5 ⁇ m or more, and the upper limit is 1 mm or less, preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less. If it is less than the said minimum, intensity
  • the positive electrode mixture used in the present invention has a density of 2.4 g / cm 3 or more and 3.3 g / cm 3 or less and a single-side coating amount on the current collector of 70 g / m 2 or more and 250 g / m 2 or less. Is preferred.
  • the single-side coating amount of the positive electrode mixture to the positive electrode current collector is more preferably 80 g / m 2 or more and 230 g / m 2 or less, and 100 g / m 2 or more and 180 g / m 2 or less. More preferably. 2.
  • Negative electrode In this embodiment, the negative electrode shown below is applicable to a long-life, high-input / output lithium ion secondary battery.
  • the negative electrode (negative electrode plate) of the present embodiment includes a current collector and a negative electrode mixture formed on both surfaces thereof.
  • the negative electrode mixture contains a negative electrode active material that can electrochemically occlude and release lithium ions.
  • the negative electrode active material examples include carbonaceous materials, metal oxides such as tin oxide and silicon oxide, metal composite oxides, lithium alloys such as lithium alone and lithium aluminum alloys, metals that can form alloys with lithium such as Sn and Si, and the like Is mentioned. These may be used alone or in combination of two or more. Among these, a carbonaceous material or a lithium composite oxide is preferable from the viewpoint of safety.
  • the metal composite oxide is not particularly limited as long as it can occlude and release lithium, but Ti (titanium), Li (lithium), or those containing both Ti and Li have high current density charge / discharge. It is preferable from the viewpoint of characteristics.
  • Carbonaceous materials include amorphous carbon, natural graphite, composite carbonaceous materials in which a film formed by dry CVD (Chemical Vapor Deposition) method or wet spray method is formed on natural graphite, resins such as epoxy and phenol Carbonaceous materials such as artificial graphite and amorphous carbon material obtained by firing using raw materials or pitch materials obtained from petroleum or coal as raw materials can be used.
  • CVD Chemical Vapor Deposition
  • wet spray method wet spray method
  • lithium metal that can occlude and release lithium by forming a compound with lithium, or a group 4 element such as silicon, germanium, and tin that can occlude and release lithium by forming a compound with lithium and inserting it in a crystal gap.
  • Oxides or nitrides may be used.
  • carbonaceous materials are highly conductive, and are excellent in terms of low temperature characteristics and cycle stability.
  • a carbonaceous material having high conductivity such as graphite, amorphous, activated carbon or the like may be mixed and used.
  • the negative electrode mixture is formed on the current collector. Although there is no restriction
  • the negative electrode active material is used in the form of powder (granular).
  • a second carbonaceous material having a different property from the first carbonaceous material used as the negative electrode active material may be added as a conductive material.
  • the above properties indicate one or more characteristics of X-ray diffraction parameters, median diameter, aspect ratio, BET specific surface area, orientation ratio, Raman R value, tap density, true density, pore distribution, circularity, and ash content. .
  • the second carbonaceous material a highly conductive carbonaceous material such as graphite, amorphous, activated carbon or the like can be used.
  • graphite such as natural graphite and artificial graphite, carbon black such as acetylene black, and amorphous carbon such as needle coke can be used. These may be used alone or in combination of two or more.
  • the range of the content of the conductive material relative to the mass of the negative electrode mixture is as follows.
  • the lower limit of the range is 1% by mass or more, preferably 2% by mass or more, more preferably 3% by mass or more, and the upper limit is 45% by mass or less, preferably 40% by mass or less. If it is less than the above lower limit, it is difficult to obtain the effect of improving conductivity, and if it exceeds the above upper limit, the initial irreversible capacity may be increased.
  • the material of the current collector for the negative electrode is not particularly limited, and specific examples include metal materials such as copper, nickel, stainless steel, and nickel-plated steel. Among these, copper is preferable from the viewpoint of ease of processing and cost.
  • the shape of the current collector is not particularly limited, and materials processed into various shapes can be used. Specific examples include metal foil, metal cylinder, metal coil, metal plate, metal thin film, expanded metal, punch metal, and foam metal. Among these, a metal thin film is preferable, and a copper foil is more preferable.
  • the copper foil includes a rolled copper foil formed by a rolling method and an electrolytic copper foil formed by an electrolytic method, both of which are suitable for use as a current collector.
  • the thickness of the current collector is not limited, but if the thickness is less than 25 ⁇ m, its strength can be increased by using a strong copper alloy (phosphor bronze, titanium copper, Corson alloy, Cu—Cr—Zr alloy, etc.) rather than pure copper. Can be improved.
  • the binder for the negative electrode active material is not particularly limited as long as it is a material that is stable with respect to the non-aqueous electrolyte and the dispersion solvent used when forming the electrode.
  • resin-based polymers such as polyethylene, polypropylene, polyethylene terephthalate, polymethyl methacrylate, aromatic polyamide, cellulose, nitrocellulose; SBR (styrene-butadiene rubber), isoprene rubber, butadiene rubber, fluorine rubber, NBR ( Rubber-like polymers such as acrylonitrile-butadiene rubber) and ethylene-propylene rubber; styrene / butadiene / styrene block copolymers or hydrogenated products thereof; EPDM (ethylene / propylene / diene terpolymer), styrene / ethylene / Thermoplastic elastomeric polymers such as butadiene / styrene copolymer, st
  • any solvent can be used as long as it can dissolve or disperse the negative electrode active material, the binder, and the conductive material and the thickener used as necessary.
  • an aqueous solvent or an organic solvent may be used.
  • aqueous solvent examples include water, a mixed solvent of alcohol and water
  • organic solvent examples include N-methylpyrrolidone (NMP), dimethylformamide, dimethylacetamide, methyl ethyl ketone, cyclohexanone, methyl acetate, Methyl acrylate, diethyltriamine, N, N-dimethylaminopropylamine, tetrahydrofuran (THF), toluene, acetone, diethyl ether, dimethylacetamide, hexamethylphosphalamide, dimethyl sulfoxide, benzene, xylene, quinoline, pyridine
  • NMP N-methylpyrrolidone
  • dimethylformamide dimethylacetamide
  • methyl ethyl ketone examples of the organic solvent
  • cyclohexanone examples include methyl acetate, Methyl acrylate, diethyltriamine, N, N-dimethylaminoprop
  • a thickener when an aqueous solvent is used, it is preferable to use a thickener.
  • a dispersing agent or the like is added to the thickener, and a slurry such as SBR is made into a slurry.
  • the said dispersion solvent may be used individually by 1 type, or may be used in combination of 2 or more type.
  • the content of the binder is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, and further preferably 0.6% by mass or more with respect to the total amount of the negative electrode mixture.
  • the upper limit of the binder content is 20% by mass or less, preferably 15% by mass or less, more preferably 10% by mass or less, and still more preferably 8% by mass or less.
  • the proportion of the binder that does not contribute to the battery capacity increases, which may lead to a decrease in battery capacity. Moreover, if it is less than the said minimum, the fall of the intensity
  • the range of the binder content relative to the mass of the negative electrode mixture when a rubbery polymer typified by SBR is used as the main component as the binder is as follows.
  • the lower limit of the range is 0.1% by mass or more, preferably 0.5% by mass or more, more preferably 0.6% by mass or more, and the upper limit is 5% by mass or less, preferably 3% by mass or less, more preferably. Is 2% by mass or less.
  • the range of the content of the binder with respect to the mass of the negative electrode mixture when a fluorine-based polymer typified by polyvinylidene fluoride is used as the main component as the binder is as follows.
  • the lower limit of the range is 1% by mass or more, preferably 2% by mass or more, more preferably 3% by mass or more, and the upper limit is 15% by mass or less, preferably 10% by mass or less, more preferably 8% by mass or less. is there.
  • Thickener is used to adjust the viscosity of the slurry.
  • the thickener is not particularly limited, and specific examples include carboxymethyl cellulose, methyl cellulose, hydroxymethyl cellulose, ethyl cellulose, polyvinyl alcohol, oxidized starch, phosphorylated starch, casein, and salts thereof. These may be used alone or in combination of two or more.
  • the range of the content of the thickener relative to the mass of the negative electrode mixture when the thickener is used is as follows.
  • the lower limit of the range is 0.1% by mass or more, preferably 0.5% by mass or more, more preferably 0.6% by mass or more, and the upper limit is 5% by mass or less, preferably 3% by mass or less, more preferably. Is 2% by mass or less.
  • Electrolytic Solution The electrolytic solution of the present embodiment is composed of a lithium salt (electrolyte) and a non-aqueous solvent that dissolves the lithium salt. You may add an additive as needed.
  • the lithium salt is not particularly limited as long as it is a lithium salt that can be used as an electrolyte of a non-aqueous electrolyte solution for a lithium ion secondary battery.
  • the following inorganic lithium salt, fluorine-containing organic lithium salt, or oxalate borate Examples include salts.
  • inorganic lithium salt LiPF 6, LiBF 4, LiAsF 6, LiSbF inorganic fluoride salts and the like 6, LiClO 4, Libro 4, LiIO and perhalogenate such as 4, an inorganic chloride salts such as LiAlCl 4, etc. Is mentioned.
  • fluorine-containing organic lithium salt examples include perfluoroalkane sulfonates such as LiCF 3 SO 3 ; LiN (CF 3 SO 2 ) 2 , LiN (CF 3 CF 2 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C Perfluoroalkanesulfonylimide salt such as 4 F 9 SO 9 ); perfluoroalkanesulfonylmethide salt such as LiC (CF 3 SO 2 ) 3 ; Li [PF 5 (CF 2 CF 2 CF 3 )], Li [PF 4 (CF 2 CF 2 CF 3 ) 2 ], Li [PF 3 (CF 2 CF 2 CF 3 ) 3 ], Li [PF 5 (CF 2 CF 2 CF 2 CF 3 )], Li [PF 4 (CF 2 CF 2 CF 2 CF 3 )], Li [PF 4 (CF 2 CF 2 CF 2 CF 3 ), Li [PF 3 (CF 2 CF 2 CF 3 )], Li [PF 4 (
  • oxalatoborate salt examples include lithium bis (oxalato) borate and lithium difluorooxalatoborate.
  • lithium salts may be used alone or in combination of two or more.
  • lithium hexafluorophosphate LiPF 6
  • LiPF 6 lithium hexafluorophosphate
  • the concentration of the electrolyte in the non-aqueous electrolyte solution is as follows.
  • the lower limit of the concentration is 0.5 mol / L or more, preferably 0.6 mol / L or more, more preferably 0.7 mol / L or more.
  • the upper limit of the concentration is 2 mol / L or less, preferably 1.8 mol / L or less, more preferably 1.7 mol / L or less. If the concentration is too low, the electric conductivity of the electrolytic solution may be insufficient. On the other hand, if the concentration is too high, the viscosity increases and the electrical conductivity may decrease. Such a decrease in electrical conductivity may reduce the performance of the lithium ion secondary battery.
  • the non-aqueous solvent is not particularly limited as long as it is a non-aqueous solvent that can be used as an electrolyte solvent for a lithium ion secondary battery.
  • a non-aqueous solvent that can be used as an electrolyte solvent for a lithium ion secondary battery.
  • the following cyclic carbonate, chain carbonate, chain ester, cyclic ether, and chain And ethers for example, the following cyclic carbonate, chain carbonate, chain ester, cyclic ether, and chain And ethers.
  • an alkylene group constituting the cyclic carbonate preferably has 2 to 6 carbon atoms, and more preferably 2 to 4 carbon atoms.
  • Specific examples include ethylene carbonate, propylene carbonate, butylene carbonate, and the like. Of these, ethylene carbonate and propylene carbonate are preferable.
  • a cyclic carbonate having a double bond in the molecule or a cyclic carbonate containing a halogen atom, such as vinylene carbonate or fluoroethylene carbonate can also be used.
  • a carbon material as a negative electrode active material, it is preferable to contain vinylene carbonate from the viewpoint of cycle characteristics.
  • the chain carbonate is preferably a dialkyl carbonate, and the two alkyl groups each preferably have 1 to 5 carbon atoms, more preferably 1 to 4 carbon atoms.
  • symmetrical chain carbonates such as dimethyl carbonate, diethyl carbonate, and di-n-propyl carbonate; asymmetric chain carbonates such as methyl ethyl carbonate, methyl-n-propyl carbonate, and ethyl-n-propyl carbonate Is mentioned.
  • dimethyl carbonate, diethyl carbonate, and methyl ethyl carbonate are preferable.
  • chain esters examples include methyl acetate, ethyl acetate, propyl acetate, and methyl propionate. Among them, it is preferable to use methyl acetate from the viewpoint of improving the low temperature characteristics.
  • cyclic ether examples include tetrahydrofuran, 2-methyltetrahydrofuran, tetrahydropyran and the like. Of these, tetrahydrofuran is preferably used from the viewpoint of improving input / output characteristics.
  • chain ethers examples include dimethoxyethane and dimethoxymethane.
  • a mixed solvent in which two or more compounds are used in combination.
  • a high dielectric constant solvent of cyclic carbonates in combination with a low viscosity solvent such as chain carbonates or chain esters.
  • a high dielectric constant solvent of cyclic carbonates in combination with a low viscosity solvent such as chain carbonates or chain esters.
  • One of the preferable combinations is a combination mainly composed of cyclic carbonates and chain carbonates.
  • the total of the cyclic carbonates and the chain carbonates in the non-aqueous solvent is 80% by volume or more, preferably 85% by volume or more, more preferably 90% by volume or more, and the cyclic carbonates and the chain carbonates.
  • the cyclic carbonates have a capacity in the following range with respect to the total of the above.
  • the lower limit of the capacity of the cyclic carbonates is 5% by volume or more, preferably 10% by volume or more, more preferably 15% by volume or more, and the upper limit is 50% by volume or less, preferably 35% by volume or less, more preferably 30%.
  • the capacity is less than%.
  • cyclic carbonates and chain carbonates include ethylene carbonate and dimethyl carbonate, ethylene carbonate and diethyl carbonate, ethylene carbonate and methyl ethyl carbonate, ethylene carbonate and dimethyl carbonate and diethyl carbonate, ethylene carbonate and dimethyl carbonate And methyl ethyl carbonate, ethylene carbonate, diethyl carbonate and methyl ethyl carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate and methyl ethyl carbonate.
  • those containing asymmetric chain carbonates as chain carbonates are more preferable.
  • Specific examples include a combination of ethylene carbonate, dimethyl carbonate and methyl ethyl carbonate, ethylene carbonate, diethyl carbonate and methyl ethyl carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate and methyl ethyl carbonate.
  • Such a combination of ethylene carbonate, symmetric chain carbonates, and asymmetric chain carbonates can improve cycle characteristics and input / output characteristics.
  • those in which the asymmetric chain carbonate is methyl ethyl carbonate are preferable, and those in which the alkyl group constituting the dialkyl carbonate has 1 to 2 carbon atoms are preferable.
  • the additive is not particularly limited as long as it is an additive for a non-aqueous electrolyte solution of a lithium ion secondary battery.
  • nitrogen, sulfur or a heterocyclic compound containing nitrogen and sulfur, a cyclic carboxylic acid ester, fluorine examples thereof include cyclic carbonates and other compounds having an unsaturated bond in the molecule.
  • separator is not particularly limited as long as it has ion permeability while electronically insulating the positive electrode and the negative electrode, and has resistance to oxidation on the positive electrode side and reducibility on the negative electrode side.
  • a material (material) of the separator satisfying such characteristics a resin, an inorganic material, glass fiber, or the like is used.
  • olefin polymer fluorine polymer, cellulose polymer, polyimide, nylon or the like is used.
  • resin olefin polymer, fluorine polymer, cellulose polymer, polyimide, nylon or the like is used.
  • materials that are stable with respect to non-aqueous electrolytes and have excellent liquid retention properties For example, porous sheets or nonwoven fabrics made from polyolefins such as polyethylene and polypropylene may be used. preferable.
  • oxides such as alumina and silicon dioxide, nitrides such as aluminum nitride and silicon nitride, and sulfates such as barium sulfate and calcium sulfate are used.
  • thin film-shaped base materials such as a nonwoven fabric, a woven fabric, and a microporous film, can be used as a separator.
  • the thin film-shaped substrate those having a pore diameter of 0.01 to 1 ⁇ m and a thickness of 5 to 50 ⁇ m are preferably used.
  • a separator in which a composite porous layer is formed using the above-described inorganic material in a fiber shape or a particle shape by using a binder such as a resin can be used as a separator.
  • this composite porous layer may be formed on the surface of the positive electrode or the negative electrode to form a separator.
  • a composite porous layer in which alumina particles having a 90% particle size of less than 1 ⁇ m are bound using a fluororesin as a binder may be formed on the surface of the positive electrode. 5.
  • a cleavage valve may be provided. By opening the cleavage valve, it is possible to suppress an increase in pressure inside the battery and to improve safety.
  • releases inert gas for example, carbon dioxide etc.
  • the cleavage valve can be opened quickly due to the generation of inert gas, and safety can be improved.
  • the material used for the above components include lithium carbonate and polyalkylene carbonate resin.
  • the laminate type lithium ion secondary battery can be manufactured, for example, as follows. First, the positive electrode and the negative electrode are cut into squares, and tabs are welded to the respective electrodes to produce positive and negative electrode terminals. A laminated body in which the positive electrode, the insulating layer, and the negative electrode are laminated in this order is prepared, and in that state, accommodated in an aluminum laminate pack, and the positive and negative electrode terminals are taken out of the aluminum laminate pack and sealed. Next, the nonaqueous electrolyte is poured into the aluminum laminate pack, and the opening of the aluminum laminate pack is sealed. Thereby, a lithium ion secondary battery is obtained.
  • the lithium ion secondary battery 1 of the present embodiment has a bottomed cylindrical battery container 6 made of steel plated with nickel.
  • the battery case 6 accommodates an electrode group 5 in which a strip-like positive electrode plate 2 and a negative electrode plate 3 are wound in a spiral shape with a separator 4 interposed therebetween.
  • the positive electrode plate 2 and the negative electrode plate 3 are wound in a spiral shape in cross section via a separator 4 made of a polyethylene porous sheet.
  • the separator 4 has a width of 58 mm and a thickness of 30 ⁇ m.
  • a ribbon-like positive electrode tab terminal made of aluminum and having one end fixed to the positive electrode plate 2 is led out on the upper end surface of the electrode group 5.
  • the other end portion of the positive electrode tab terminal is joined by ultrasonic welding to the lower surface of a disk-shaped battery lid that is covered on the upper side of the electrode group 5 and serves as a positive electrode external terminal.
  • a ribbon-like negative electrode tab terminal made of copper with one end fixed to the negative electrode plate 3 is led out on the lower end surface of the electrode group 5.
  • the other end of the negative electrode tab terminal is joined to the inner bottom of the battery container 6 by resistance welding. Therefore, the positive electrode tab terminal and the negative electrode tab terminal are led out to the opposite sides of the both end faces of the electrode group 5, respectively.
  • omitted illustration is given to the outer peripheral surface whole periphery of the electrode group 5.
  • the battery lid is caulked and fixed to the upper part of the battery container 6 via an insulating resin gasket. For this reason, the inside of the lithium ion secondary battery 1 is sealed. In addition, a non-aqueous electrolyte (not shown) is injected into the battery container 6.
  • the capacity ratio between the negative electrode and the positive electrode is preferably 1.03 to 1.8, more preferably 1.05 to 1.4 from the viewpoint of safety and energy density.
  • the negative electrode capacity means [negative electrode discharge capacity]
  • the positive electrode capacity means [positive charge capacity of positive electrode minus negative electrode or positive electrode, whichever is greater].
  • the “negative electrode discharge capacity” is defined to be calculated by the charge / discharge device when the lithium ions inserted into the negative electrode active material are desorbed.
  • the “initial charge capacity of the positive electrode” is defined as that calculated by the charge / discharge device when lithium ions are desorbed from the positive electrode active material.
  • the capacity ratio between the negative electrode and the positive electrode can be calculated from, for example, “discharge capacity of lithium ion secondary battery / discharge capacity of negative electrode”.
  • the discharge capacity of the lithium ion secondary battery is, for example, 4.2 V, 0.1 C to 0.5 C, 0.1 C after constant current and constant voltage (CCCV) charging with an end time of 2 to 5 hours. It can be measured under the conditions when a constant current (CC) discharge is performed up to 2.7 V at ⁇ 0.5 C.
  • the discharge capacity of the negative electrode was prepared by cutting a negative electrode having a measured discharge capacity of the lithium ion secondary battery into a predetermined area, using lithium metal as a counter electrode, and preparing a single electrode cell through a separator impregnated with an electrolyte.
  • C means “current value (A) / battery discharge capacity (Ah)”.
  • centrifugal separation was performed for 5 minutes at a rotational speed of 3,000 min- 1 using TOMY Corporation's SUPREMA 23 and standard rotor NA-16 as a centrifugal separator. After centrifugation, the supernatant solution was discharged, the gel precipitate was redispersed in pure water, and returned to the volume before centrifugation. Such desalting treatment by centrifugation was performed four times.
  • the desalting process of adding pure water to the precipitate after discharging the supernatant and returning to the volume before centrifugation was performed four times.
  • the gel-like precipitate obtained after the fourth desalting of the desalting treatment was dried at 60 ° C. for 16 hours to recover 30 g of a particle lump.
  • the particle mass was pulverized with a jet mill to obtain aluminum oxide.
  • ⁇ Process of carbon coating> The above particles and polyvinyl alcohol powder (Wako Pure Chemical Industries, Ltd.) are mixed at a mass ratio of 100: 70 and baked at 850 ° C. for 1 hour in a nitrogen atmosphere, so that part or all of the surface is covered with carbon.
  • Aluminum oxide was prepared.
  • the BET specific surface area of the aluminum oxide of Production Example 1 was measured based on the nitrogen adsorption ability.
  • As the evaluation device AUTASORB-1 (trade name) manufactured by QUANTACHROME was used. When performing these measurements, after pre-treatment of the sample described later, the evaluation temperature is 77K, and the evaluation pressure range is less than 1 in relative pressure (equilibrium pressure with respect to the saturated vapor pressure).
  • the measurement cell charged with 0.05 g of aluminum oxide was automatically deaerated and heated with a vacuum pump.
  • the detailed conditions of this treatment were set such that the pressure was reduced to 10 Pa or less, heated at 110 ° C., held for 3 hours or more, and then naturally cooled to room temperature (25 ° C.) while maintaining the reduced pressure.
  • the BET specific surface area of the aluminum oxide of Production Example 1 was 8 m 2 / g. ⁇ Carbon coverage and water content>
  • the carbon content of the above aluminum oxide was measured using a differential thermal-thermogravimetric analyzer (TG-DTA) at a heating rate of 10 ° C./min at a temperature of 850 ° C. for 20 minutes under a dry air flow. Measured by mass reduction rate.
  • the moisture content of the above-described aluminum oxide was measured using a differential thermal-thermogravimetric analyzer (TG-DTA) TG-DTA-6200 (manufactured by SII Nanotechnology Co., Ltd.) under dry air flow.
  • centrifugal separation was performed for 5 minutes at a rotational speed of 3,000 min- 1 using TOMY Corporation's SUPREMA 23 and standard rotor NA-16 as a centrifugal separator. After centrifugation, the supernatant solution was discharged, the gel precipitate was redispersed in pure water, and returned to the volume before centrifugation. Such desalting treatment by centrifugation was performed three times.
  • the desalting process of adding pure water to the precipitate after discharging the supernatant and returning to the volume before centrifugation was performed three times.
  • the gel-like precipitate obtained after the third desalting of the desalting treatment was dried at 60 ° C. for 16 hours to obtain 30 g of powder.
  • ⁇ Process of carbon coating> The above particles and polyvinyl alcohol powder (Wako Pure Chemical Industries, Ltd.) are mixed at a mass ratio of 100: 70 and baked at 850 ° C. for 1 hour in a nitrogen atmosphere, so that part or all of the surface is covered with carbon.
  • Aluminum oxide was prepared.
  • the BET specific surface area of the aluminum oxide of Production Example 2 was 13 m 2 / g. ⁇ Carbon coverage and water content>
  • the carbon content of the above aluminum oxide was measured using a differential thermal-thermogravimetric analyzer (TG-DTA) TG-DTA-6200 type (manufactured by SII Nanotechnology Co., Ltd.) under the flow of dry air.
  • the mass decrease rate was measured at a temperature increase rate of 850 ° C./min and held at 850 ° C. for 20 minutes.
  • the moisture content of the above aluminum oxide is maintained at 350 ° C.
  • the salt in the solution was aggregated by adjusting the pH, and this aggregate was precipitated by the same vacuum filtration as described above, and then the supernatant was discharged to perform desalting.
  • the precipitate obtained after the desalting treatment was dried at 110 ° C. for 16 hours to collect the particle mass.
  • the particle mass was pulverized with a jet mill to obtain aluminum oxide.
  • ⁇ Process of carbon coating> Carbon coating was performed in the same process as described in Production Example 1 above.
  • the carbon content of the above aluminum oxide was measured using a differential thermal-thermogravimetric analyzer (TG-DTA) TG-DTA-6200 type (manufactured by SII Nanotechnology Co., Ltd.) under the flow of dry air.
  • the mass decrease rate was measured at a temperature increase rate of 850 ° C./min and held at 850 ° C. for 20 minutes.
  • the moisture content of the above aluminum oxide is maintained at 350 ° C. for 20 minutes at a heating rate of 10 ° C./min under a flow of dry air using a differential thermal-thermogravimetric analyzer (TG-DTA). It was measured by mass reduction rate at.
  • the positive electrode plate was produced as follows.
  • Coated aluminum oxide and polyvinylidene fluoride (PVDF) as a binder were sequentially added and mixed to obtain a mixture of positive electrode materials.
  • NMP N-methyl-2-pyrrolidone
  • SBR styrene-butadiene rubber
  • carboxymethylcellulose trade name: CMC # 2200, manufactured by Daicel Finechem Co., Ltd.
  • Example 2 A predetermined amount of this slurry was applied to both surfaces of a rolled copper foil having a thickness of 10 ⁇ m, which is a negative electrode current collector, substantially uniformly and uniformly.
  • the negative electrode mixture density was 1.65 g / cm 3
  • the single-sided coating amount of the negative electrode mixture was 73 g / m 2 .
  • Example 2 The ratio of the layered lithium-nickel-manganese-cobalt composite oxide, which is the positive electrode active material described in Example 1, is 89.5% by mass, acetylene black is 4.5% by mass as a conductive material, A positive electrode and a battery were produced in the same process as in Example 1 except that the aluminum oxide produced in Production Example 1 was 0.5% by mass.
  • Table 1 shows the physical properties of the aluminum oxide and the battery composition. (Example 3) 88% by mass of the layered lithium / nickel / manganese / cobalt composite oxide, which is the positive electrode active material described in Example 1, 4.5% by mass of acetylene black as a conductive material, A positive electrode and a battery were produced in the same process as in Example 1 except that the aluminum oxide produced in Production Example 1 was 2.0% by mass. Table 1 shows the physical properties of the aluminum oxide and the battery composition.
  • Example 4 88% by mass of the layered lithium / nickel / manganese / cobalt composite oxide, which is the positive electrode active material described in Example 1, 4.5% by mass of acetylene black as a conductive material, A positive electrode and a battery were produced in the same process as in Example 1 except that the aluminum oxide produced in Production Example 2 was 2.0 mass%. Table 1 shows the physical properties of the aluminum oxide and the battery composition.
  • Example 5 88% by mass of the layered lithium / nickel / manganese / cobalt composite oxide, which is the positive electrode active material described in Example 1, 4.5% by mass of acetylene black as a conductive material, A positive electrode and a battery were produced in the same process as in Example 1 except that the aluminum oxide produced in Production Example 3 was 2.0% by mass. Table 1 shows the physical properties of the aluminum oxide and the battery composition.
  • Example 6 86% by mass of the layered lithium / nickel / manganese / cobalt composite oxide, which is the positive electrode active material described in Example 1, 4.5% by mass of acetylene black as a conductive material, A positive electrode and a battery were produced in the same process as in Example 1 except that the aluminum oxide produced in Production Example 1 was 4.0% by mass. Table 1 shows the physical properties of the aluminum oxide and the battery composition.
  • Example 1 The proportion of layered lithium-nickel-manganese-cobalt composite oxide, which is the positive electrode active material described in Example 1, is 90% by mass, and acetylene black is 4.5% by mass as a conductive material, A positive electrode and a battery were produced in the same process as in Example 1 except that no aluminum oxide was used. Table 1 shows the physical properties of the aluminum oxide and the battery composition.
  • Laminate Type Battery 13.5 cm 2 square cut positive electrode made of polyethylene porous sheet separator (trade name: Hypore, manufactured by Asahi Kasei Co., Ltd., 30 ⁇ m thick, “Hypore” is a registered trademark ) And further laminated with negative electrodes cut into 14.3 cm 2 squares to produce a laminate.
  • Cycle characteristics were evaluated by cycle tests with repeated charge and discharge.
  • a laminated lithium battery produced in an environment of 50 ° C. was subjected to constant current charging at a current value of 1 C up to an upper limit voltage of 4.2 V, and then constant voltage charging at 4.2 V.
  • the charge termination condition was a current value of 0.01C.
  • the discharge was performed at a constant current of 1 C up to 3.0 V in a 50 ° C. environment. This charge / discharge was repeated 1000 times (1000 cycles), and the cycle characteristics were calculated by the following formula.
  • Table 1 shows the results of the batteries to which the carbon-coated aluminum oxides produced by the production methods 1 to 3 were applied.
  • Cycle characteristics (discharge capacity at 1000th cycle at current value 1C / discharge capacity at 3rd cycle at current value 1C) ⁇ 100

Abstract

A lithium ion secondary cell having excellent cycle characteristics is provided. Provided is a lithium ion secondary cell equipped with a positive electrode, a negative electrode, a separator, and an electrolytic solution. The positive electrode has a collector and a positive electrode mixture formed on the collector, and the positive electrode mixture includes a laminated lithium/nickel/manganese/cobalt composite oxide and an aluminum oxide having carbon coated on the surface thereof.

Description

リチウムイオン二次電池Lithium ion secondary battery
 本発明は、リチウムイオン二次電池に関するものである。 The present invention relates to a lithium ion secondary battery.
 リチウムイオン二次電池は、高エネルギー密度の二次電池であり、その特性を活かして、ノートパソコンや携帯電話等のポータブル機器の電源に使用されている。リチウムイオン二次電池の形状には種々のものがあるが、円筒形リチウムイオン二次電池は、正極、負極及びセパレータの捲回式構造を採用している。例えば、2枚の帯状の金属箔に正極材料及び負極材料をそれぞれ塗着し、その間にセパレータを挟み込み、これらの積層体を渦巻状に捲回することで捲回群を形成する。この捲回群を、電池容器となる円筒形の電池缶内に収納し、電解液を注液後、封口することで、円筒形リチウムイオン二次電池が形成される。 Lithium ion secondary batteries are high energy density secondary batteries, and are used as power sources for portable devices such as notebook computers and mobile phones, taking advantage of their characteristics. There are various types of lithium ion secondary batteries. Cylindrical lithium ion secondary batteries employ a wound structure of a positive electrode, a negative electrode, and a separator. For example, a positive electrode material and a negative electrode material are respectively applied to two strip-shaped metal foils, a separator is sandwiched therebetween, and these laminated bodies are wound in a spiral shape to form a wound group. The wound group is housed in a cylindrical battery can serving as a battery container, and after injecting an electrolytic solution, the cylindrical lithium ion secondary battery is formed.
 円筒形リチウムイオン二次電池としては、18650型リチウムイオン二次電池が、民生用リチウムイオン二次電池として広く普及している。18650型リチウムイオン二次電池の外径寸法は、直径18mmで、高さ65mm程度の小型である。18650型リチウムイオン二次電池の正極活物質には、高容量、長寿命を特徴とするコバルト酸リチウムが主として用いられており、電池容量は、おおむね1.0Ah~2.0Ah(3.7Wh~7.4Wh)程度である。 As the cylindrical lithium ion secondary battery, a 18650 type lithium ion secondary battery is widely used as a consumer lithium ion secondary battery. The outer diameter of the 18650 type lithium ion secondary battery is 18 mm in diameter and is small with a height of about 65 mm. As the positive electrode active material of the 18650 type lithium ion secondary battery, lithium cobaltate, which is characterized by high capacity and long life, is mainly used, and the battery capacity is approximately 1.0 Ah to 2.0 Ah (3.7 Wh 7.4 Wh).
 近年、リチウムイオン二次電池は、ポータブル機器用等の民生用途にとどまらず、太陽光や風力発電といった自然エネルギー向け大規模蓄電システム用途への展開が期待されている。大規模蓄電システムにおいては、システムあたりの電力量が数MWhのオーダーで必要となる。例えば、下記特許文献1には、円筒形電池容器に正極、負極及びセパレータを捲回した電極捲回群を有する円筒形リチウムイオン二次電池が開示されている。この電池は、放電容量30Ah以上であり、正極には、層状型リチウム・ニッケル・マンガン・コバルト複合酸化物を含む正極活物質合剤が用いられ、負極には、非晶質炭素を含む負極活物質合剤が用いられている。 In recent years, lithium-ion secondary batteries are expected to be used not only for consumer applications such as portable devices, but also for large-scale power storage systems for natural energy such as solar power and wind power generation. In a large-scale power storage system, the amount of power per system is required on the order of several MWh. For example, Patent Document 1 below discloses a cylindrical lithium ion secondary battery having an electrode winding group in which a positive electrode, a negative electrode, and a separator are wound around a cylindrical battery container. This battery has a discharge capacity of 30 Ah or more, a positive electrode active material mixture containing layered lithium-nickel-manganese-cobalt composite oxide is used for the positive electrode, and a negative electrode active material containing amorphous carbon is used for the negative electrode. A material mixture is used.
国際公開第2013/128677号International Publication No. 2013/128677
 リチウムイオン二次電池は、近年、電気自動車、ハイブリッド型電気自動車等に用いられる高出力用電源としても注目されている。このような自動車分野への適用において、高出力化、高容量化及び高温での長寿命化が要求されている。 In recent years, lithium ion secondary batteries have attracted attention as high-output power sources used in electric vehicles, hybrid electric vehicles, and the like. In such applications in the automobile field, higher output, higher capacity, and longer life at high temperatures are required.
 上記特許文献1に記載のリチウムイオン二次電池は、高出力化及び高容量化には優れるが、上記用途においては高温での長寿命化(以下、サイクル特性という)の更なる向上が必要である。 The lithium ion secondary battery described in Patent Document 1 is excellent in increasing the output and capacity, but in the above applications, it is necessary to further improve the life at high temperatures (hereinafter referred to as cycle characteristics). is there.
 本発明は、上記課題に鑑みてなされたものであり、サイクル特性に優れるリチウムイオン二次電池を提供することである。 The present invention has been made in view of the above problems, and is to provide a lithium ion secondary battery having excellent cycle characteristics.
 正極、負極、セパレータ、及び電解液、を備えるリチウムイオン二次電池を次のように構成する。正極が、集電体と集電体に形成された正極合剤とを有し、正極合剤が、層状型リチウム・ニッケル・マンガン・コバルト複合酸化物及び、表面の一部又は全部が炭素で被覆されたアルミニウム酸化物を含む。 A lithium ion secondary battery including a positive electrode, a negative electrode, a separator, and an electrolytic solution is configured as follows. The positive electrode has a current collector and a positive electrode mixture formed on the current collector. The positive electrode mixture is a layered lithium / nickel / manganese / cobalt composite oxide and part or all of the surface is carbon. Contains coated aluminum oxide.
 表面の一部又は全部が炭素で被覆されたアルミニウム酸化物の含有量が、正極合剤の全量に対して、0.01質量%以上5質量%以下である。 The content of aluminum oxide in which part or all of the surface is coated with carbon is 0.01% by mass or more and 5% by mass or less with respect to the total amount of the positive electrode mixture.
 アルミニウム酸化物のBET比表面積は、1m/g~30m/gである。 The BET specific surface area of the aluminum oxide is 1 m 2 / g to 30 m 2 / g.
 表面の一部又は全部が炭素で被覆されたアルミニウム酸化物の示差熱-熱重量分析装置(TG-DTA)を用いて測定された25℃~350℃間の重量減少率が5%未満である。 The weight loss rate between 25 ° C. and 350 ° C. measured by using a differential thermal-thermogravimetric analyzer (TG-DTA) of aluminum oxide partially or entirely coated with carbon is less than 5%. .
 アルミニウム酸化物はイモゴライトである。 The aluminum oxide is imogolite.
 正極合剤は導電材を含み、導電材はアセチレンブラックである。 The positive electrode mixture includes a conductive material, and the conductive material is acetylene black.
 本発明によれば、サイクル特性に優れるリチウムイオン二次電池を提供できる。 According to the present invention, a lithium ion secondary battery having excellent cycle characteristics can be provided.
本実施の形態のリチウムイオン二次電池の断面図である。It is sectional drawing of the lithium ion secondary battery of this Embodiment.
 以下の実施の形態において、A~Bとして範囲を示す場合には、特に明示した場合を除き、A以上B以下を示すものとする。 In the following embodiment, when ranges are indicated as A to B, A to B are indicated unless otherwise specified.
 (実施の形態)
 まず、リチウムイオン二次電池の概要について簡単に説明する。リチウムイオン二次電池は、電池容器内に、正極、負極、セパレータ及び電解液を有している。正極と負極との間にはセパレータが被覆されている。
(Embodiment)
First, the outline of the lithium ion secondary battery will be briefly described. The lithium ion secondary battery has a positive electrode, a negative electrode, a separator, and an electrolytic solution in a battery container. A separator is coated between the positive electrode and the negative electrode.
 リチウムイオン二次電池を充電する際には、正極と負極との間に充電器を接続する。充電時においては、正極活物質内に挿入されているリチウムイオンが脱離し、電解液中に放出される。電解液中に放出されたリチウムイオンは、電解液中を移動し、微多孔質膜からなるセパレータを通過して、負極に到達する。この負極に到達したリチウムイオンは、負極を構成する負極活物質内に挿入される。 When charging a lithium ion secondary battery, a charger is connected between the positive electrode and the negative electrode. At the time of charging, lithium ions inserted into the positive electrode active material are desorbed and released into the electrolytic solution. The lithium ions released into the electrolytic solution move in the electrolytic solution, pass through a separator made of a microporous film, and reach the negative electrode. The lithium ions that have reached the negative electrode are inserted into the negative electrode active material constituting the negative electrode.
 放電する際には、正極と負極の間に外部負荷を接続する。放電時においては、負極活物質内に挿入されていたリチウムイオンが脱離して電解液中に放出される。このとき、負極から電子が放出される。そして、電解液中に放出されたリチウムイオンは、電解液中を移動し、微多孔質膜からなるセパレータを通過して、正極に到達する。この正極に到達したリチウムイオンは、正極を構成する正極活物質内に挿入される。このとき、正極活物質にリチウムイオンが挿入することにより、正極に電子が流れ込む。このようにして、負極から正極に電子が移動することにより放電が行われる。 When discharging, connect an external load between the positive and negative electrodes. At the time of discharging, the lithium ions inserted into the negative electrode active material are desorbed and released into the electrolytic solution. At this time, electrons are emitted from the negative electrode. Then, the lithium ions released into the electrolytic solution move in the electrolytic solution, pass through a separator made of a microporous film, and reach the positive electrode. The lithium ions reaching the positive electrode are inserted into the positive electrode active material constituting the positive electrode. At this time, when lithium ions are inserted into the positive electrode active material, electrons flow into the positive electrode. In this way, discharge is performed by the movement of electrons from the negative electrode to the positive electrode.
 このように、リチウムイオンを正極活物質と負極活物質との間で挿入・脱離することにより、充放電することができる。なお、実際のリチウムイオン二次電池の構成例については、後述する(例えば、図1参照)。 Thus, charging and discharging can be performed by inserting and desorbing lithium ions between the positive electrode active material and the negative electrode active material. A configuration example of an actual lithium ion secondary battery will be described later (see, for example, FIG. 1).
 次いで、リチウムイオン二次電池の正極、負極、電解液、セパレータ及びその他の構成部材に関し順次説明する。
1.正極
 本実施形態においては、長寿命のリチウムイオン二次電池に適用可能な以下に示す正極を有する。本実施形態の正極(正極板)は、集電体及びその上部に形成された正極合剤よりなる。正極合剤は、集電体の上部に設けられた少なくとも正極活物質を含む層であり、本実施形態においては、層状型リチウム・ニッケル・マンガン・コバルト複合酸化物を含む。また、この正極合剤は、正極活物質に加え、少なくとも表面の一部に炭素を被覆したアルミニウム酸化物(以下、炭素被覆アルミニウム酸化物とも称する)を含む。また、この正極合剤は、例えば、集電体の両面に形成(塗布)されていてもよい。
(正極活物質)
 正極活物質としては、層状型リチウム・ニッケル・マンガン・コバルト複合酸化物(以下NMC)に加え、前記NMC以外のリチウム含有複合金属酸化物、オリビン型リチウム酸化物、カルコゲン化合物、二酸化マンガン等を含んでいてもよい。リチウム含有複合金属酸化物は、リチウムと遷移金属とを含む金属酸化物または該金属酸化物中の遷移金属の一部が異種元素によって置換された金属酸化物である。ここで、異種元素としては、たとえば、Na、Mg、Sc、Y、Mn、Fe、Co、Ni、Cu、Zn、Al、Cr、Pb、Sb、Bなどが挙げられ、Mn、Al、Co、Ni、Mgなどが好ましい。異種元素は1種でもよくまたは2種以上でもよい。前記NMC以外のリチウム含有複合金属酸化物としては、例えば、LixCoO、LixNiO、LixCoyNi-yO、LixCoyM-yOz、LixNi-yMyOz、LiMPO、LiMPOF(前記各式中、MはNa、Mg、Sc、Y、Mn、Fe、Co、Ni、Cu、Zn、Al、Cr、Pb、Sb、V及びBよりなる群から選ばれる少なくとも1種の元素を示す。x=0~1.2、y=0~0.9、z=2.0~2.3である。)等が挙げられる。ここで、リチウムのモル比を示すx値は、充放電により増減する。また、オリビン型リチウム酸化物としては、例えば、LiFePO等が挙げられる。カルコゲン化合物としては、例えば、二硫化チタン、二硫化モリブデン等が挙げられる。正極活物質は1種を単独で使用できまたは2種以上を併用できる。
Next, the positive electrode, the negative electrode, the electrolyte, the separator, and other components of the lithium ion secondary battery will be sequentially described.
1. Positive electrode In this embodiment, it has the following positive electrode applicable to a long-life lithium ion secondary battery. The positive electrode (positive electrode plate) of this embodiment consists of a current collector and a positive electrode mixture formed thereon. The positive electrode mixture is a layer including at least a positive electrode active material provided on the current collector. In the present embodiment, the positive electrode mixture includes a layered lithium-nickel-manganese-cobalt composite oxide. In addition to the positive electrode active material, the positive electrode mixture contains an aluminum oxide (hereinafter also referred to as carbon-coated aluminum oxide) in which at least part of the surface is coated with carbon. Moreover, this positive electrode mixture may be formed (applied) on both surfaces of the current collector, for example.
(Positive electrode active material)
Examples of the positive electrode active material include layered lithium / nickel / manganese / cobalt composite oxide (hereinafter referred to as NMC), lithium-containing composite metal oxide other than NMC, olivine type lithium oxide, chalcogen compound, manganese dioxide, and the like. You may go out. The lithium-containing composite metal oxide is a metal oxide containing lithium and a transition metal or a metal oxide in which a part of the transition metal in the metal oxide is substituted with a different element. Here, examples of the different element include Na, Mg, Sc, Y, Mn, Fe, Co, Ni, Cu, Zn, Al, Cr, Pb, Sb, and B. Mn, Al, Co, Ni, Mg and the like are preferable. One kind or two or more kinds of different elements may be used. Examples of lithium-containing composite metal oxides other than NMC include LixCoO 2 , LixNiO 2 , LixCoyNi 1 -yO 2 , LixCoyM 1 -yOz, LixNi 1 -yMyOz, LiMPO 4 , Li 2 MPO 4 F (in the above formulas) , M represents at least one element selected from the group consisting of Na, Mg, Sc, Y, Mn, Fe, Co, Ni, Cu, Zn, Al, Cr, Pb, Sb, V, and B. x = 0 to 1.2, y = 0 to 0.9, z = 2.0 to 2.3). Here, x value which shows the molar ratio of lithium increases / decreases by charging / discharging. Examples of the olivine type lithium oxide include LiFePO 4 and the like. Examples of the chalcogen compound include titanium disulfide and molybdenum disulfide. A positive electrode active material can be used individually by 1 type, or can use 2 or more types together.
 正極活物質としては、高安全化の観点から、NMCに加え熱安定性の高いスピネル型リチウム・マンガン酸化物(LMO)又はオリビン型リン酸鉄リチウム(LFP)を併用して用いてもよい。NMCとLMOを正極活物質に用いる場合、その質量比(混合比)であるNMC/LMOを95/5以上30/70以下とすることが好ましい。 As the positive electrode active material, in addition to NMC, spinel type lithium manganese oxide (LMO) or olivine type lithium iron phosphate (LFP) may be used in combination with NMC, from the viewpoint of high safety. When NMC and LMO are used as the positive electrode active material, the mass ratio (mixing ratio) of NMC / LMO is preferably 95/5 or more and 30/70 or less.
 正極活物質の質量比(NMC/LMO)が95/5~30/70の範囲では電池の安全性が向上する傾向がある。また、30/70未満では電池の安全性が向上するが、電池容量及び電池のエネルギー密度が低下し、また、LMOからのMn溶出の影響により高温での寿命特性が低下する傾向がある。 When the mass ratio (NMC / LMO) of the positive electrode active material is in the range of 95/5 to 30/70, the safety of the battery tends to be improved. On the other hand, if it is less than 30/70, the safety of the battery is improved, but the battery capacity and the energy density of the battery are lowered, and the life characteristics at high temperature tend to be lowered due to the influence of Mn elution from LMO.
 NMCとしては、以下の組成式(化1)で表されるものを用いることが好ましい。 As NMC, it is preferable to use one represented by the following composition formula (Formula 1).
 Li(1+δ)MnNiCo(1-x-y-z) (化1)
 上記組成式(化1)において、(1+δ)はLi(リチウム)の組成比、xはMn(マンガン)の組成比、yはNi(ニッケル)の組成比、(1-x-y-z)はCo(コバルト)の組成比を示す。zは、元素Mの組成比を示す。O(酸素)の組成比は2である。
Li (1 + δ) Mn x Ni y Co (1-xyz) M z O 2
In the above composition formula (Formula 1), (1 + δ) is a composition ratio of Li (lithium), x is a composition ratio of Mn (manganese), y is a composition ratio of Ni (nickel), and (1-xyz) Indicates the composition ratio of Co (cobalt). z represents the composition ratio of the element M. The composition ratio of O (oxygen) is 2.
 元素Mは、Ti(チタン)、Zr(ジルコニウム)、Nb(ニオブ)、Mo(モリブデン)、W(タングステン)、Al(アルミニウム)、Si(シリコン)、Ga(ガリウム)、Ge(ゲルマニウム)及びSn(錫)よりなる群から選択される少なくとも1種の元素である。 The elements M are Ti (titanium), Zr (zirconium), Nb (niobium), Mo (molybdenum), W (tungsten), Al (aluminum), Si (silicon), Ga (gallium), Ge (germanium), and Sn. It is at least one element selected from the group consisting of (tin).
 -0.15<δ<0.15、0.1<x≦0.5、0.6<x+y+z<1.0、0≦z≦0.1である。 -0.15 <δ <0.15, 0.1 <x ≦ 0.5, 0.6 <x + y + z <1.0, 0 ≦ z ≦ 0.1.
 また、LMOとして、以下の組成式(化2)で表されるものを用いることが好ましい。Li(1+η)Mn(2-λ)M’λ (化2)
 上記組成式(化2)において、(1+η)はLiの組成比、(2-λ)はMnの組成比、λは元素M’の組成比を示す。O(酸素)の組成比は4である。
Moreover, it is preferable to use what is represented by the following compositional formula (Formula 2) as LMO. Li (1 + η) Mn (2-λ) M ′ λ O 4 (Chemical formula 2)
In the above composition formula (Formula 2), (1 + η) represents the composition ratio of Li, (2-λ) represents the composition ratio of Mn, and λ represents the composition ratio of the element M ′. The composition ratio of O (oxygen) is 4.
 元素M’は、Mg(マグネシウム)、Ca(カルシウム)、Sr(ストロンチウム)、Al、Ga、Zn(亜鉛)、及びCu(銅)よりなる群から選択される少なくとも1種の元素である。 The element M ′ is at least one element selected from the group consisting of Mg (magnesium), Ca (calcium), Sr (strontium), Al, Ga, Zn (zinc), and Cu (copper).
 0≦η≦0.2、0≦λ≦0.1である。 0 ≦ η ≦ 0.2 and 0 ≦ λ ≦ 0.1.
 上記組成式(化2)における元素M’としては、MgまたはAlを用いることが好ましい。MgやAlを用いることにより、電池の長寿命化を図ることができる。また、電池の安全性の向上を図ることができる。 It is preferable to use Mg or Al as the element M ′ in the composition formula (Formula 2). By using Mg or Al, the battery life can be extended. In addition, the safety of the battery can be improved.
 正極活物質としてLMOを含む場合、充電状態において化合物中のMnが安定であるため、充電反応による発熱を抑制できる。これにより、電池の安全性を向上させることができる。すなわち、正極における発熱を抑制でき、電池の安全性を高めることができる。 When LMO is included as the positive electrode active material, Mn in the compound is stable in the charged state, and thus heat generation due to the charging reaction can be suppressed. Thereby, the safety | security of a battery can be improved. That is, heat generation at the positive electrode can be suppressed, and the safety of the battery can be improved.
 このように、正極活物質として、NMCとLMOとの混合物を用いることで、高容量化しても、充電時の正極の安定性を高め、発熱を抑制することができる。その結果、安全性に優れた電池を提供することができる。 Thus, by using a mixture of NMC and LMO as the positive electrode active material, the stability of the positive electrode during charging can be improved and heat generation can be suppressed even when the capacity is increased. As a result, a battery with excellent safety can be provided.
 NMCの含有量は、電池の高容量化の観点から、正極合剤の全量に対して65質量%以上であることが好ましく、70質量%以上であることがより好ましく、80質量%以上であることが更に好ましい。 The content of NMC is preferably 65% by mass or more, more preferably 70% by mass or more, and more preferably 80% by mass or more with respect to the total amount of the positive electrode mixture, from the viewpoint of increasing the capacity of the battery. More preferably.
 以下に、正極合剤及び集電体について詳細に説明する。正極合剤は、正極活物質や結着材等を含有し、集電体上に形成される。その形成方法に制限はないが例えば次のように形成される。正極活物質、導電材、結着材、及び必要に応じて用いられる増粘材などの他の材料を乾式で混合してシート状にし、これを集電体に圧着する(乾式法)。また、正極活物質、導電材、結着材、及び必要に応じて用いられる増粘材などの他の材料を分散溶媒に溶解または分散させてスラリーとし、これを集電体に塗布し、乾燥する(湿式法)。 Hereinafter, the positive electrode mixture and the current collector will be described in detail. The positive electrode mixture contains a positive electrode active material and a binder, and is formed on the current collector. Although there is no restriction | limiting in the formation method, it forms as follows, for example. Other materials such as a positive electrode active material, a conductive material, a binder, and a thickener used as necessary are mixed in a dry form to form a sheet, and this is pressure-bonded to a current collector (dry method). In addition, other materials such as a positive electrode active material, a conductive material, a binder, and a thickener used as necessary are dissolved or dispersed in a dispersion solvent to form a slurry, which is applied to a current collector and dried. (Wet method).
 正極活物質の粒子としては、塊状、多面体状、球状、楕円球状、板状、針状、柱状等のものが用いられる。中でも、一次粒子が凝集して、二次粒子を形成して成り、その二次粒子の形状が球状ないし楕円球状であるものが好ましい。 As the particles of the positive electrode active material, those in the form of a lump, polyhedron, sphere, ellipsoid, plate, needle, column, etc. are used. Among them, it is preferable that the primary particles are aggregated to form secondary particles, and the shape of the secondary particles is spherical or elliptical.
 電池のような電気化学素子においては、その充放電に伴い、電極中の活物質が膨張収縮をするため、そのストレスによる活物質の破壊や導電パスの切断等の劣化が生じやすい。そのため一次粒子のみの単一粒子を用いるよりも、一次粒子が凝集して、二次粒子を形成したものを用いる方が、膨張収縮のストレスを緩和し、上記劣化を防ぐことができるため好ましい。また、板状等の軸配向性の粒子よりも球状ないし楕円球状の粒子を用いる方が、電極内における配向が少なくなるため、充放電時の電極の膨張収縮が小さくなり好ましい。また、電極の形成時において、導電材等の他の材料とも均一に混合されやすいため好ましい。 In an electrochemical element such as a battery, the active material in the electrode expands and contracts as it is charged / discharged, so that the active material is easily damaged or the conductive path is broken due to the stress. For this reason, it is preferable to use particles in which primary particles are aggregated to form secondary particles, rather than using single particles of only primary particles, because the stress of expansion and contraction can be relieved and the above deterioration can be prevented. In addition, it is preferable to use spherical or oval spherical particles rather than plate-like particles having axial orientation, since the orientation in the electrode is reduced, so that the expansion and contraction of the electrode during charge / discharge is reduced. Further, it is preferable because other materials such as a conductive material are easily mixed uniformly when forming the electrode.
 正極活物質に適用するNMC粒子のメジアン径d50(一次粒子が凝集して二次粒子を形成している場合には二次粒子のメジアン径d50)について、その範囲は次のとおりである。範囲の下限は、0.1μm以上、好ましくは0.5μm以上、より好ましくは1μm以上、さらに好ましくは3μm以上であり、上限は、20μm以下、好ましくは18μm以下、より好ましくは16μm以下、さらに好ましくは15μm以下である。上記下限未満では、タップ密度(充填性)が低下し、所望のタップ密度が得られなくなる恐れがあり、上記上限を超えると粒子内のリチウムイオンの拡散に時間がかかるため、電池性能の低下を招く恐れがある。また、上記上限を超えると、電極の形成時において、結着材や導電材等の他の材料との混合性が低下する恐れがある。よって、この混合物をスラリー化し塗布する際に、均一に塗布できず、スジを引く等の問題を生ずる場合がある。ここで、正極活物質として、異なるメジアン径d50をもつものを2種類以上混合することで、タップ密度(充填性)を向上させてもよい。なお、メジアン径d50は、レーザー回折・散乱法により求めた粒度分布から求めることができる。 The range of the median diameter d50 of the NMC particles applied to the positive electrode active material (the median diameter d50 of the secondary particles when the primary particles are aggregated to form secondary particles) is as follows. The lower limit of the range is 0.1 μm or more, preferably 0.5 μm or more, more preferably 1 μm or more, further preferably 3 μm or more, and the upper limit is 20 μm or less, preferably 18 μm or less, more preferably 16 μm or less, and even more preferably. Is 15 μm or less. If it is less than the above lower limit, the tap density (fillability) may be lowered, and a desired tap density may not be obtained. If the upper limit is exceeded, it takes time to diffuse lithium ions in the particles, so that the battery performance is lowered. There is a risk of inviting. Moreover, when the said upper limit is exceeded, there exists a possibility that a mixing property with other materials, such as a binder and a electrically conductive material, may fall at the time of formation of an electrode. Therefore, when this mixture is slurried and applied, it may not be applied uniformly, which may cause problems such as streaking. Here, the tap density (fillability) may be improved by mixing two or more kinds of positive electrode active materials having different median diameters d50. The median diameter d50 can be obtained from the particle size distribution obtained by the laser diffraction / scattering method.
 一次粒子が凝集して二次粒子を形成している場合における一次粒子の平均粒径について、その範囲は次のとおりである。範囲の下限は、0.01μm以上、好ましくは0.05μm以上、さらに好ましくは0.08μm以上、特に好ましくは0.1μm以上であり、上限は、3μm以下、好ましくは2μm以下、さらに好ましくは1μm以下、特に好ましくは0.6μm以下である。上記上限を超えると球状の二次粒子が形成し難くなり、タップ密度(充填性)の低下や、比表面積の低下により、出力特性等の電池性能が低下する恐れがある。また、上記下限未満では、結晶性の低下により、充放電の可逆性が劣化する等の問題を生ずる恐れがある。 The range of the average particle diameter of the primary particles when the primary particles are aggregated to form secondary particles is as follows. The lower limit of the range is 0.01 μm or more, preferably 0.05 μm or more, more preferably 0.08 μm or more, particularly preferably 0.1 μm or more, and the upper limit is 3 μm or less, preferably 2 μm or less, more preferably 1 μm. Hereinafter, it is particularly preferably 0.6 μm or less. When the above upper limit is exceeded, it becomes difficult to form spherical secondary particles, and battery performance such as output characteristics may be reduced due to a decrease in tap density (fillability) and a decrease in specific surface area. Moreover, if it is less than the said minimum, there exists a possibility of producing problems, such as the reversibility of charging / discharging degrading by crystallinity fall.
 NMC等の正極活物質の粒子のBET比表面積について、その範囲は次のとおりである。範囲の下限は、0.1m/g以上、好ましくは0.3m/g以上、さらに好ましくは0.4m/g以上であり、上限は、4.0m/g以下、好ましくは2.5m/g以下、さらに好ましくは1.5m/g以下である。上記下限未満では、電池性能が低下する恐れがある。上記上限を超えるとタップ密度が上がりにくくなり、結着材や導電材等の他の材料との混合性が低下する恐れがある。よって、この混合物をスラリー化し塗布する際の塗布性が劣化する恐れがある。BET比表面積は、BET法により求められた比表面積(単位gあたりの面積)である。
(炭素被覆アルミニウム酸化物)
 炭素被覆アルミニウム酸化物は、粒子状のアルミニウム酸化物の表面の一部又は全部が炭素で被覆された構造を有する。アルミニウム酸化物としては、例えば、活性アルミナ及びアルミニウムケイ酸塩が挙げられる。
The range of the BET specific surface area of the positive electrode active material particles such as NMC is as follows. The lower limit of the range is 0.1 m 2 / g or more, preferably 0.3 m 2 / g or more, more preferably 0.4 m 2 / g or more, and the upper limit is 4.0 m 2 / g or less, preferably 2 .5m 2 / g, more preferably not more than 1.5 m 2 / g. If it is less than the said minimum, there exists a possibility that battery performance may fall. When the above upper limit is exceeded, the tap density is difficult to increase, and the miscibility with other materials such as a binder and a conductive material may be reduced. Therefore, there is a possibility that applicability at the time of slurrying and applying this mixture is deteriorated. The BET specific surface area is a specific surface area (area per unit g) determined by the BET method.
(Carbon coated aluminum oxide)
The carbon-coated aluminum oxide has a structure in which part or all of the surface of the particulate aluminum oxide is coated with carbon. Examples of the aluminum oxide include activated alumina and aluminum silicate.
 前記アルミニウムケイ酸塩としては、例えば、アロフェン、カオリン、ゼオライト、サポナイト及びイモゴライトが挙げられる。サイクル特性向上の観点からは、比表面積が容易に調整可能であるアルミニウムケイ酸塩であるイモゴライトが好ましい。アルミニウムケイ酸塩は、SiとAlの酸化物塩である。SiとAlは価数が異なるため、SiとAlとの酸化物塩にはOH基が多く存在し、これがイオン交換能を有している。 Examples of the aluminum silicate include allophane, kaolin, zeolite, saponite, and imogolite. From the viewpoint of improving cycle characteristics, imogolite which is an aluminum silicate whose specific surface area can be easily adjusted is preferable. Aluminum silicate is an oxide salt of Si and Al. Since Si and Al have different valences, there are many OH groups in the oxide salt of Si and Al, which has ion exchange ability.
 本実施形態におけるイモゴライトとは、元素モル比Si/Alが0.1以上4.0未満のアルミニウムケイ酸塩である。このようなイモゴライトは、例えば、nSiO・Al・mHO[n=0.5~2.0、m=0以上]で示される組成を有するものが挙げられる。 The imogolite in the present embodiment is an aluminum silicate having an element molar ratio Si / Al of 0.1 or more and less than 4.0. Such imogolite, for example, nSiO 2 · Al 2 O 3 · mH 2 O [n = 0.5 ~ 2.0, m = 0 or] include those having a composition represented by.
 また、イモゴライトとしては、元素モル比Si/Alが0.1以上4.0未満であることが好ましい。イモゴライトの元素モル比Si/Alは、0.2以上3.0以下であることがより好ましく、0.4以上2.5以下であることが更に好ましい。この範囲の元素モル比Si/Alとすることにより、上記傾向が更に高まる。 Also, as imogolite, the element molar ratio Si / Al is preferably 0.1 or more and less than 4.0. The element molar ratio Si / Al of imogolite is more preferably 0.2 or more and 3.0 or less, and further preferably 0.4 or more and 2.5 or less. By setting the element molar ratio Si / Al within this range, the above tendency is further increased.
 イモゴライトは、27Al-NMRスペクトルにおいて3ppm近辺にピークを有することが好ましい。27Al-NMR測定装置としては、例えば、ブルカー・バイオスピン製AV400WB型を用いることができる。具体的な測定条件は以下の通りである。 Imogolite preferably has a peak around 3 ppm in the 27 Al-NMR spectrum. As the 27 Al-NMR measuring apparatus, for example, AV400WB manufactured by Bruker BioSpin can be used. Specific measurement conditions are as follows.
 共鳴周波数:104MHz
 測定方法:MAS(シングルパルス)
 MAS回転数:10kHz
 測定領域:52kHz
 データポイント数:4096
 resolution(測定領域/データポイント数):12.7Hz
 パルス幅:3.0μsec
 遅延時間:2秒
 化学シフト値基準:α-アルミナを3.94ppm
 window関数:指数関数
 Line Broadening係数:10Hz
 また、イモゴライトは、X線源としてCuKα線を用いた粉末X線回折スペクトルにおいて2θ=26.9°及び40.3°近辺にピークを有することが好ましい。また例えば、X線回折装置としてリガク社製:Geigerflex RAD-2X(商品名)を用いることができる。
Resonance frequency: 104MHz
Measuring method: MAS (single pulse)
MAS rotation speed: 10 kHz
Measurement area: 52 kHz
Number of data points: 4096
resolution (measurement area / number of data points): 12.7 Hz
Pulse width: 3.0 μsec
Delay time: 2 seconds Chemical shift value standard: 3.94 ppm of α-alumina
window function: exponential function Line Broadening coefficient: 10 Hz
In addition, imogolite preferably has peaks in the vicinity of 2θ = 26.9 ° and 40.3 ° in a powder X-ray diffraction spectrum using CuKα ray as an X-ray source. In addition, for example, Geigerflex RAD-2X (trade name) manufactured by Rigaku Corporation can be used as the X-ray diffraction apparatus.
 また、イモゴライトには、保存特性の観点から、透過型電子顕微鏡(TEM)において100,000倍で観察したときに、長さ50nm以上の管状物が存在していないことが好ましい。粒子の透過型電子顕微鏡(TEM)の観察は、100kVの加速電圧で行う。 In addition, from the viewpoint of storage characteristics, it is preferable that the tubular substance having a length of 50 nm or more does not exist in imogolite when observed with a transmission electron microscope (TEM) at a magnification of 100,000. Observation of the particles with a transmission electron microscope (TEM) is performed at an acceleration voltage of 100 kV.
 前記アルミニウム酸化物は、合成してもよく、市販品を購入して用いてもよい。 The aluminum oxide may be synthesized, or a commercially available product may be purchased and used.
 アルミニウム酸化物を合成する場合、ケイ酸イオンを含む溶液及びアルミニウムイオンを含む溶液を混合して反応生成物を得る工程と、前記反応生成物を、水性媒体中、酸の存在下で加熱処理する工程と、を有し、必要に応じてその他の工程を有することができる。得られるアルミニウムケイ酸塩の収率及び構造体形成等の観点から、少なくとも加熱処理する工程の後、好ましくは、加熱処理工程の前及び後で、脱塩及び固体分離を行う洗浄工程を有することが好ましい。 When synthesizing aluminum oxide, a step of mixing a solution containing silicate ions and a solution containing aluminum ions to obtain a reaction product, and heat-treating the reaction product in an aqueous medium in the presence of an acid And may have other steps as necessary. From the viewpoint of the yield of the obtained aluminum silicate and structure formation, etc., at least after the heat treatment step, preferably before and after the heat treatment step, a washing step for performing desalting and solid separation Is preferred.
 反応生成物であるアルミニウムケイ酸塩を含む溶液から共存イオンを脱塩処理した後に、酸の存在下で加熱処理することで、金属イオンもしくはハロゲン化物イオン(例えばフッ化物イオン)吸着能に優れるアルミニウム酸化物を効率良く製造することができる。ここで共存イオンとは、例えば、ナトリウムイオン、塩化物イオン、過塩素酸イオン、硝酸イオン、硫酸イオン等が挙げられる。これは、例えば、以下のように考えることができる。規則的な構造の形成を阻害する共存イオンが除去されたアルミニウム酸化物を、酸の存在下で加熱処理することで、規則的な構造を有するアルミニウム酸化物が形成される。イモゴライトが規則的な構造を有することで、金属イオンもしくはハロゲン化物イオンに対する親和性が向上し、効率よく金属イオンもしくはハロゲン化物イオンを吸着できると考えることができる。 Aluminum that excels in the ability to adsorb metal ions or halide ions (for example, fluoride ions) by desalting the coexisting ions from the solution containing the reaction product aluminum silicate and then heat-treating in the presence of an acid. An oxide can be produced efficiently. Here, examples of the coexisting ions include sodium ions, chloride ions, perchlorate ions, nitrate ions, sulfate ions, and the like. This can be considered as follows, for example. An aluminum oxide having a regular structure is formed by heat-treating the aluminum oxide from which the coexisting ions inhibiting the formation of the regular structure are removed in the presence of an acid. It can be considered that when imogolite has a regular structure, the affinity for metal ions or halide ions is improved, and metal ions or halide ions can be adsorbed efficiently.
 また、本実施形態に係るアルミニウム酸化物は、アルミニウム酸化物の表面の少なくとも一部又は全部が、炭素で被覆されている。被覆される炭素は、アルミニウム酸化物の表面の少なくとも一部又は全部に被覆される。 Further, in the aluminum oxide according to this embodiment, at least a part or all of the surface of the aluminum oxide is coated with carbon. The carbon to be coated is coated on at least a part or all of the surface of the aluminum oxide.
 アルミニウム酸化物の表面に炭素を被覆する方法としては、特に制限はないが、例えば、有機化合物を溶媒に溶解又は分散させた混合溶液に核となる無機粒子を添加した後、溶媒を加熱等で除去する湿式被覆や、炭素粒子と有機化合物を固体同士で混合し、その混合物を、せん断力を加えながら混練して被覆させる乾式被覆や、CVD法などの気相被覆等が挙げられる。コスト及び製造プロセス低減の観点から、溶媒を使用しない乾式や気相層被覆がより好ましい。 The method for coating the surface of the aluminum oxide with carbon is not particularly limited. For example, after adding inorganic particles serving as a nucleus to a mixed solution in which an organic compound is dissolved or dispersed in a solvent, the solvent is heated and the like. Examples include wet coating to be removed, dry coating in which carbon particles and an organic compound are mixed with each other, and the mixture is kneaded while applying a shearing force, and vapor phase coating such as a CVD method. From the viewpoints of cost and manufacturing process reduction, dry type and vapor phase layer coating without using a solvent are more preferable.
 上記熱処理により炭素質を残す有機化合物(炭素前駆体)としては特に制限はないが、例えば、エチレンヘビーエンドピッチ、原油ピッチ、コールタールピッチ、アスファルト分解ピッチ、ポリ塩化ビニル等を熱分解して生成するピッチ、ナフタレン等を超強酸存在下で重合させて作製される合成ピッチ等が使用できる。また、熱可塑性の材料として、ポリ塩化ビニル、ポリビニルアルコール、ポリ酢酸ビニル、ポリビニルブチラール等や、熱硬化性の材料として、フェノール樹脂や、フラン樹脂等を用いることができる。 There are no particular restrictions on the organic compound (carbon precursor) that remains carbonaceous by the heat treatment, but it is generated by pyrolyzing, for example, ethylene heavy end pitch, crude oil pitch, coal tar pitch, asphalt cracking pitch, polyvinyl chloride, etc. Synthetic pitch produced by polymerizing pitch, naphthalene, etc. in the presence of a super strong acid can be used. In addition, as a thermoplastic material, polyvinyl chloride, polyvinyl alcohol, polyvinyl acetate, polyvinyl butyral, or the like can be used, and as a thermosetting material, a phenol resin, a furan resin, or the like can be used.
 また、有機化合物に被覆された無機粒子の焼成条件は、該有機化合物の炭素化率を考慮して適宜決定すればよく、特に制限はないが、不活性雰囲気下で800~1300℃の範囲であることが好ましい。800℃未満では有機物の焼成が不十分であり、比表面積が増加しすぎることによる初回の不可逆容量が増大の課題があり、1300℃を超えて加熱すると比表面積が過剰に低下することによる抵抗上昇のデメリットがあるからである。また、不活性雰囲気としては、例えば、窒素、アルゴン、ヘリウム等雰囲気が挙げられる。 In addition, the firing conditions of the inorganic particles coated with the organic compound may be appropriately determined in consideration of the carbonization rate of the organic compound, and there is no particular limitation, but in the range of 800 to 1300 ° C. in an inert atmosphere. Preferably there is. If the temperature is lower than 800 ° C, the organic matter is not sufficiently baked, and the initial irreversible capacity is increased due to the excessive increase in the specific surface area. When heated above 1300 ° C, the specific surface area is excessively decreased. This is because there are disadvantages. Examples of the inert atmosphere include nitrogen, argon, helium and the like.
 前記の方法で表面に炭素を被覆したアルミニウム酸化物は、以下、表面の一部または全部が炭素で被覆されたアルミニウム酸化物という場合もある。また、単に炭素被覆アルミニウム酸化物という場合もある。 Hereinafter, the aluminum oxide whose surface is coated with carbon may be referred to as an aluminum oxide whose surface is partially or entirely coated with carbon. Moreover, it may only be called a carbon covering aluminum oxide.
 表面の一部または全部が炭素で被覆されたアルミニウム酸化物のBET比表面積は、サイクル特性の観点から、30m/g以下であることが好ましく、25m/g以下であることがより好ましい。また、BET比表面積の下限値は特に制限が無いが、金属イオンもしくはハロゲン化物イオン吸着能の観点から、1m/g以上であることが好ましく、3m/g以上であることがより好ましく、5m/g以上であることが更に好ましい。 From the viewpoint of cycle characteristics, the BET specific surface area of the aluminum oxide whose surface is partly or entirely covered with carbon is preferably 30 m 2 / g or less, and more preferably 25 m 2 / g or less. Further, the lower limit of the BET specific surface area is not particularly limited, but is preferably 1 m 2 / g or more, more preferably 3 m 2 / g or more, from the viewpoint of the ability to adsorb metal ions or halide ions. More preferably, it is 5 m 2 / g or more.
 炭素被覆アルミニウム酸化物のBET比表面積は、JIS Z 8830(2001年)に準じて窒素吸着能から測定する。評価装置としては、窒素吸着測定装置(AUTOSORB-1、QUANTACHROME社)等を用いることができる。BET比表面積の測定を行う際には、試料表面及び構造中に吸着している水分がガス吸着能に影響を及ぼすと考えられることから、まず、加熱による水分除去の前処理を行う。 The BET specific surface area of the carbon-coated aluminum oxide is measured from the nitrogen adsorption capacity according to JIS Z 8830 (2001). As an evaluation apparatus, a nitrogen adsorption measuring apparatus (AUTOSORB-1, QUANTACHROME) or the like can be used. When measuring the BET specific surface area, it is considered that the moisture adsorbed on the sample surface and the structure affects the gas adsorption capacity. Therefore, pretreatment for removing moisture by heating is first performed.
 前記前処理では、0.05gの測定試料を投入した測定用セルを、真空ポンプで10Pa以下に減圧した後、110℃で加熱し、3時間以上保持した後、減圧した状態を保ったまま常温(25℃)まで自然冷却する。この前処理を行った後、評価温度を77Kとし、評価圧力範囲を相対圧(飽和蒸気圧に対する平衡圧力)にて1未満として測定する。 In the pretreatment, the measurement cell charged with 0.05 g of the measurement sample is depressurized to 10 Pa or less with a vacuum pump, heated at 110 ° C., held for 3 hours or more, and kept at a normal temperature while maintaining the depressurized state. Cool naturally to (25 ° C). After performing this pretreatment, the evaluation temperature is 77K, and the evaluation pressure range is measured as a relative pressure (equilibrium pressure with respect to saturated vapor pressure) of less than 1.
 炭素被覆アルミニウム酸化物は、金属イオン又はハロゲン化物イオンの吸着能が向上する観点から、全細孔容積が0.1cm/g以上であることが好ましく、0.12cm/g以上であることがより好ましく、0.15cm/g以上であることが更に好ましい。また、全細孔容積の上限値は特に制限が無い。単位質量当たりの空気中の水分吸着量を抑える観点からは、全細孔容積は1.5cm/g以下であることが好ましく、1.2cm/g以下であることがより好ましく、1.0cm/g以下であることが更に好ましい。 Carbon coated aluminum oxide, from the viewpoint of improving the adsorption capacity of the metal ion or halide ion, it is preferably, 0.12 cm 3 / g or more total pore volume is 0.1 cm 3 / g or more Is more preferably 0.15 cm 3 / g or more. Further, the upper limit value of the total pore volume is not particularly limited. From the viewpoint of suppressing the moisture adsorption amount in the air per unit mass, the total pore volume is preferably 1.5 cm 2 / g or less, more preferably 1.2 cm 2 / g or less. More preferably, it is 0 cm 2 / g or less.
 炭素被覆アルミニウム酸化物の全細孔容積は、BET比表面積に基づき、相対圧が0.95以上1未満の範囲で得られたデータの中、相対圧1に最も近いガス吸着量を液体に換算して求める。 The total pore volume of carbon-coated aluminum oxide is based on the BET specific surface area, and the gas adsorption amount closest to relative pressure 1 is converted to liquid among the data obtained when the relative pressure is 0.95 or more and less than 1. And ask.
 また、表面の一部または全部が炭素で被覆されたアルミニウム酸化物の炭素含有量は、例えば、示差熱-熱重量分析装置(TG-DTA)TG-DTA-6200型(エスアイアイ・ナノテクノロジー株式会社製)を用いて、乾燥空気流通下、10℃/分の昇温速度で、850℃20分保持での質量減少率にて測定できる。炭素含有量はTG-DTAで測定された350℃での質量(W1)と850℃での質量(W2)に対し、下式(1)にて求められた値とする。
炭素含有量(質量%)={(W1-W2)/W1}×100 ・・・(1)
 炭素含有量は、導電性の観点から、アルミニウム酸化物の質量に対して、0.5質量%以上30質量%未満が好ましく、1質量%以上25質量%未満がより好ましく、2質量%以上20質量%未満がさらに好ましい。上記範囲内であると、入出力特性に優れたものとなる。
The carbon content of the aluminum oxide whose surface is partly or entirely coated with carbon is, for example, the differential thermal-thermogravimetric analyzer (TG-DTA) TG-DTA-6200 (SII Nanotechnology Inc.) (Manufactured by the company) can be measured at a rate of mass reduction by holding at 850 ° C. for 20 minutes at a heating rate of 10 ° C./min under a flow of dry air. The carbon content is a value obtained by the following formula (1) with respect to the mass (W1) at 350 ° C. and the mass (W2) at 850 ° C. measured by TG-DTA.
Carbon content (mass%) = {(W1-W2) / W1} × 100 (1)
From the viewpoint of conductivity, the carbon content is preferably 0.5% by mass or more and less than 30% by mass, more preferably 1% by mass or more and less than 25% by mass, and more preferably 2% by mass or more and 20% by mass with respect to the mass of the aluminum oxide. More preferably less than mass%. Within the above range, the input / output characteristics are excellent.
 また、表面の一部または全部が炭素で被覆されたアルミニウム酸化物の水分含有量は、例えば、示差熱-熱重量分析装置(TG-DTA)TG-DTA-6200型(エスアイアイ・ナノテクノロジー株式会社製)を用いて、上記炭素含有量の測定と同様の条件で測定でき、表面の一部または全部が炭素で被覆されたアルミニウム酸化物のTG-DTAで測定された25℃での質量(W0)とTG-DTAで測定された350℃での質量(W1)から下式(2)にて求められた値とする。
水分含有量(質量%)={(W0-W1)/W0}×100 ・・・(2)
 水分含有量は、残存した水分等の影響によって発生したフッ化水素(HF)が電極又は電解液と反応し、正極活物質の劣化、電解質の分解反応等の副反応の影響により、サイクル特性を低下させる懸念がある。
The moisture content of the aluminum oxide whose surface is partially or entirely coated with carbon is, for example, a differential thermal-thermogravimetric analyzer (TG-DTA) TG-DTA-6200 (SII Nanotechnology Inc.) The mass at 25 ° C. measured by TG-DTA of aluminum oxide in which part or all of the surface is coated with carbon can be measured under the same conditions as the measurement of the carbon content. (W0) and the mass (W1) measured at 350 ° C. measured by TG-DTA, and the value obtained by the following equation (2).
Water content (mass%) = {(W0−W1) / W0} × 100 (2)
The water content depends on the influence of side reactions such as the degradation of the positive electrode active material and the decomposition reaction of the electrolyte due to the reaction of hydrogen fluoride (HF) generated by the influence of residual water and the like with the electrode or the electrolyte. There is a concern to reduce.
 水分含有量は、電池容量及びサイクル特性をより向上できる観点から、5%未満であることが好ましく、4%未満であることがより好ましく、3%未満であることが更に好ましい。また、下限値は、実用的な観点から0.01%以上であることが好ましい。 The water content is preferably less than 5%, more preferably less than 4%, and even more preferably less than 3% from the viewpoint of further improving battery capacity and cycle characteristics. Moreover, it is preferable that a lower limit is 0.01% or more from a practical viewpoint.
 表面の一部または全部が炭素で被覆されたアルミニウム酸化物の含有量は、導電性と高容量化の観点から、正極合剤の全量に対して、0.01質量%以上5質量%以下であることが好ましく、0.1質量%以上4.5質量%以下がより好ましく、0.15質量%以上4質量%以下が更に好ましい。上記範囲内での適用であると、サイクル特性及び入出力特性を更に優れたものとすることができる。
(正極用導電材)
 正極用の導電材としては、例えば、銅、ニッケル等の金属材料;天然黒鉛、人造黒鉛等の黒鉛(グラファイト);アセチレンブラック等のカーボンブラック;ニードルコークス等の無定形炭素等の炭素質材料等が挙げられる。なお、これらのうち、1種を単独で用いてもよく、2種以上のものを組み合わせて用いてもよい。
The content of the aluminum oxide whose surface is partly or entirely covered with carbon is 0.01% by mass or more and 5% by mass or less with respect to the total amount of the positive electrode mixture from the viewpoint of conductivity and high capacity. It is preferable that it is 0.1 to 4.5% by mass, more preferably 0.15 to 4% by mass. When the application is within the above range, cycle characteristics and input / output characteristics can be further improved.
(Conductive material for positive electrode)
Examples of the conductive material for the positive electrode include metal materials such as copper and nickel; graphite such as natural graphite and artificial graphite (graphite); carbon black such as acetylene black; and carbonaceous materials such as amorphous carbon such as needle coke. Is mentioned. Of these, one type may be used alone, or two or more types may be used in combination.
 正極用の導電材としては、アセチレンブラックを含むことが好ましい。前記アセチレンブラックは、平均粒径が20nm以上100nm以下の粒子が好ましく、この粒径範囲であれば特に制限はない。ここで粒子とは、例えば、粒状、フレーク状、球状、柱状、不規則形状などが挙げられる。前記「粒状」とは、不規則形状のものではなくほぼ等しい寸法をもつ形状である(JIS Z2500:2000)。前記フレーク状(片状)とは、板のような形状であり(JIS Z2500:2000)、鱗のように薄い板状であることから鱗片状とも言われ、本発明においては、SEM観察の結果から解析を行い、アスペクト比(粒子径a/平均厚さt)が2~100の範囲を片状とする。ここでいう粒子径aは、片状の粒子を平面視したときの面積Sの平方根として定義するものとし、これを本願の粒径とする。前記「球状」とは、ほぼ球に近い形状である(JIS Z2500:2000参照)。また、形状は必ずしも真球状である必要はなく、粒子の長径(DL)と短径(DS)との比(DL)/(DS)(球状係数あるいは真球度と言うことがある)が1.0~1.2の範囲にあるものとし、粒径とは長径(DL)を指すものとする。前記柱状とは、略円柱、略多角柱等が挙げられ、粒径とは柱の高さを指すものとする。 The conductive material for the positive electrode preferably contains acetylene black. The acetylene black is preferably particles having an average particle size of 20 nm or more and 100 nm or less, and is not particularly limited as long as it is in this particle size range. Here, examples of the particles include granular, flake-like, spherical, columnar, and irregular shapes. The “granular” is not an irregular shape but a shape having almost equal dimensions (JIS Z2500: 2000). The flake shape (strip shape) is a plate-like shape (JIS Z2500: 2000) and is also called a scaly shape because it is thin like a scale. In the present invention, as a result of SEM observation The aspect ratio (particle diameter a / average thickness t) is 2 to 100 in the form of a piece. The particle diameter a here is defined as the square root of the area S when the flaky particles are viewed in plan, and this is the particle diameter of the present application. The “spherical shape” is a shape substantially close to a sphere (see JIS Z2500: 2000). Further, the shape does not necessarily need to be spherical, and the ratio of the major axis (DL) to the minor axis (DS) of the particle (DL) / (DS) (sometimes referred to as spherical coefficient or sphericity) is 1. In the range of 0.0 to 1.2, the particle diameter refers to the long diameter (DL). Examples of the columnar shape include a substantially cylindrical column and a substantially polygonal column, and the particle size refers to the height of the column.
 導電材に含まれるアセチレンブラックは平均粒径が100nmを超えると、正極活物質との接触点が少なくなって活物質間の導電網が阻害され、電池の入出力特性が低下する傾向がある。また、平均粒径が20nm未満になると、正極合剤中での分散性が悪くなり、アセチレンブラックの偏析等の悪影響によって電池性能の低下が顕著になる。このように、アセチレンブラックの平均粒径は、20nm以上100nm以下が好ましいが、30nm以上80nm以下であることより好ましく、40nm以上60nm以下であることが特に好ましい。 When the average particle diameter of acetylene black contained in the conductive material exceeds 100 nm, the number of contact points with the positive electrode active material is reduced, the conductive network between the active materials is hindered, and the input / output characteristics of the battery tend to deteriorate. On the other hand, when the average particle size is less than 20 nm, the dispersibility in the positive electrode mixture is deteriorated, and the battery performance is significantly deteriorated due to an adverse effect such as segregation of acetylene black. Thus, the average particle diameter of acetylene black is preferably 20 nm or more and 100 nm or less, more preferably 30 nm or more and 80 nm or less, and particularly preferably 40 nm or more and 60 nm or less.
 なお、導電材の平均粒径は、20万倍で撮影した走査型電子顕微鏡により撮影し、画像内粒子像の全ての径を測定した算術平均粒子径である。 Note that the average particle diameter of the conductive material is an arithmetic average particle diameter obtained by measuring all the diameters of the particle images in the image taken with a scanning electron microscope taken at 200,000 times.
 導電材の含有量は、正極合剤の全量に対して、0.2質量%以上が好ましく、0.5質量%以上がより好ましく、1質量%以上が更に好ましい、導電材の含有量の上限は、30質量%以下が好ましく、20質量%以下がより好ましく、10質量%以下が更に好ましい。上記範囲内であると、電池容量及び入出力特性に優れたものとなる。 The content of the conductive material is preferably 0.2% by mass or more, more preferably 0.5% by mass or more, and still more preferably 1% by mass or more, based on the total amount of the positive electrode mixture. The upper limit of the content of the conductive material Is preferably 30% by mass or less, more preferably 20% by mass or less, and still more preferably 10% by mass or less. Within the above range, the battery capacity and input / output characteristics are excellent.
 さらに、前記導電材に含まれるアセチレンブラックの含有量は、導電性と高容量化の観点から、正極合剤全量に対して、0.1質量%以上15質量%以下が好ましく、1質量%以上10質量%以下がより好ましく、2質量%以上5質量%以下がさらに好ましい。上記範囲内であると、電池容量及び入出力特性に優れたものとなる。
(正極用結着材)
 正極用の結着材としては、特に限定されず、塗布法により正極合剤を形成する場合には、分散溶媒に対する溶解性や分散性が良好な材料が選択される。具体例としては、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリメチルメタクリレート、ポリイミド、芳香族ポリアミド、セルロース、ニトロセルロース等の樹脂系高分子;SBR(スチレン-ブタジエンゴム)、NBR(アクリロニトリル-ブタジエンゴム)、フッ素ゴム、イソプレンゴム、ブタジエンゴム、エチレン-プロピレンゴム等のゴム状高分子;スチレン・ブタジエン・スチレンブロック共重合体またはその水素添加物、EPDM(エチレン・プロピレン・ジエン三元共重合体)、スチレン・エチレン・ブタジエン・エチレン共重合体、スチレン・イソプレン・スチレンブロック共重合体またはその水素添加物等の熱可塑性エラストマー状高分子;シンジオタクチック-1,2-ポリブタジエン、ポリ酢酸ビニル、エチレン・酢酸ビニル共重合体、プロピレン・α-オレフィン共重合体等の軟質樹脂状高分子;ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン、フッ素化ポリフッ化ビニリデン、ポリテトラフルオロエチレン・エチレン共重合体、ポリテトラフルオロエチレン・フッ化ビニリデン共重合体等のフッ素系高分子;アルカリ金属イオン(特にリチウムイオン)のイオン伝導性を有する高分子組成物等が挙げられる。なお、これらのうち、1種を単独で用いてもよく、2種以上のものを組み合わせて用いてもよい。正極の安定性の観点から、ポリフッ化ビニリデン(PVDF)やポリテトラフルオロエチレン・フッ化ビニリデン共重合体等のフッ素系高分子を用いることが好ましい。
Furthermore, the content of acetylene black contained in the conductive material is preferably 0.1% by mass or more and 15% by mass or less, and preferably 1% by mass or more with respect to the total amount of the positive electrode mixture, from the viewpoint of conductivity and high capacity. 10 mass% or less is more preferable, and 2 mass% or more and 5 mass% or less are further more preferable. Within the above range, the battery capacity and input / output characteristics are excellent.
(Binder for positive electrode)
The binder for the positive electrode is not particularly limited, and when the positive electrode mixture is formed by a coating method, a material having good solubility and dispersibility in the dispersion solvent is selected. Specific examples include resin polymers such as polyethylene, polypropylene, polyethylene terephthalate, polymethyl methacrylate, polyimide, aromatic polyamide, cellulose, and nitrocellulose; SBR (styrene-butadiene rubber), NBR (acrylonitrile-butadiene rubber), fluorine Rubbery polymers such as rubber, isoprene rubber, butadiene rubber, ethylene-propylene rubber; styrene / butadiene / styrene block copolymer or its hydrogenated product, EPDM (ethylene / propylene / diene terpolymer), styrene / Thermoplastic elastomeric polymers such as ethylene / butadiene / ethylene copolymers, styrene / isoprene / styrene block copolymers or hydrogenated products thereof; syndiotactic-1,2-polybutadiene, polyacetic acid Soft resinous polymers such as Nyl, ethylene / vinyl acetate copolymer, propylene / α-olefin copolymer; polyvinylidene fluoride (PVDF), polytetrafluoroethylene, fluorinated polyvinylidene fluoride, polytetrafluoroethylene / ethylene Fluoropolymers such as copolymers and polytetrafluoroethylene / vinylidene fluoride copolymers; polymer compositions having ion conductivity of alkali metal ions (particularly lithium ions), and the like. Of these, one type may be used alone, or two or more types may be used in combination. From the viewpoint of the stability of the positive electrode, it is preferable to use a fluorine-based polymer such as polyvinylidene fluoride (PVDF) or a polytetrafluoroethylene / vinylidene fluoride copolymer.
 正極合剤の全量に対する結着材の含有量は、0.1質量%以上が好ましく、1質量%以上がより好ましく、3質量%以上が更に好ましい。上限は、50質量%以下が好ましく、40質量%以下がより好ましく、30質量%以下が更に好ましく、10質量%以下が特に好ましい。上記範囲とすることで、サイクル特性等の電池性能をより良好なものとすることができる。 The content of the binder with respect to the total amount of the positive electrode mixture is preferably 0.1% by mass or more, more preferably 1% by mass or more, and still more preferably 3% by mass or more. The upper limit is preferably 50% by mass or less, more preferably 40% by mass or less, still more preferably 30% by mass or less, and particularly preferably 10% by mass or less. By setting it as the said range, battery performance, such as cycling characteristics, can be made more favorable.
 上記湿式法や乾式法を用いて集電体上に形成された層は、正極活物質の充填密度を向上させるため、ハンドプレスやローラープレス等により圧密化することが好ましい。 The layer formed on the current collector using the above wet method or dry method is preferably consolidated by a hand press or a roller press in order to improve the packing density of the positive electrode active material.
 正極用の集電体の材質としては特に制限はなく、具体例としては、アルミニウム、ステンレス鋼、ニッケルメッキ、チタン、タンタル等の金属材料; カーボンクロス、カーボンペーパー等の炭素質材料が挙げられる。中でも金属材料、特にアルミニウムが好ましい。 The material of the current collector for the positive electrode is not particularly limited, and specific examples include metal materials such as aluminum, stainless steel, nickel plating, titanium, and tantalum; and carbonaceous materials such as carbon cloth and carbon paper. Of these, metal materials, particularly aluminum, are preferred.
 集電体の形状としては特に制限はなく、種々の形状に加工された材料を用いることができる。具体例としては、金属材料については、金属箔、金属円柱、金属コイル、金属板、金属薄膜、エキスパンドメタル、パンチメタル、発泡メタル等が挙げられ、炭素質材料については、炭素板、炭素薄膜、炭素円柱等が挙げられる。中でも、金属薄膜を用いることが好ましい。なお、薄膜は適宜メッシュ状に形成してもよい。薄膜の厚さは任意であるが、その範囲は次のとおりである。範囲の下限は、1μm以上、好ましくは3μm以上、より好ましくは5μm以上であり、上限は、1mm以下、好ましくは100μm以下、より好ましくは50μm以下である。上記下限未満では、集電体として必要な強度が不足する場合がある。また、上記上限を超えると可撓性が低下し、加工性が劣化する恐れがある。 The shape of the current collector is not particularly limited, and materials processed into various shapes can be used. Specific examples of the metal material include a metal foil, a metal cylinder, a metal coil, a metal plate, a metal thin film, an expanded metal, a punch metal, and a foam metal, and the carbonaceous material includes a carbon plate, a carbon thin film, A carbon cylinder etc. are mentioned. Among these, it is preferable to use a metal thin film. In addition, you may form a thin film suitably in mesh shape. The thickness of the thin film is arbitrary, but the range is as follows. The lower limit of the range is 1 μm or more, preferably 3 μm or more, more preferably 5 μm or more, and the upper limit is 1 mm or less, preferably 100 μm or less, more preferably 50 μm or less. If it is less than the said minimum, intensity | strength required as a collector may be insufficient. Moreover, when the said upper limit is exceeded, flexibility will fall and workability may deteriorate.
 本発明で使用する正極合剤は、密度が2.4g/cm以上3.3g/cm以下で、集電体への片面塗布量が70g/m以上250g/m以下であることが好ましい。 The positive electrode mixture used in the present invention has a density of 2.4 g / cm 3 or more and 3.3 g / cm 3 or less and a single-side coating amount on the current collector of 70 g / m 2 or more and 250 g / m 2 or less. Is preferred.
 密度が上記範囲内である場合、入出力特性をより向上することができる。このような観点から、正極合剤の正極集電体への片面塗布量は、80g/m以上230g/m以下であることがより好ましく、100g/m以上180g/m以下であることがさらに好ましい。
2.負極
 本実施の形態においては、長寿命で高入出力のリチウムイオン二次電池に適用可能な以下に示す負極を有する。本実施の形態の負極(負極板)は、集電体及びその両面に形成された負極合剤よりなる。負極合剤は、電気化学的にリチウムイオンを吸蔵・放出可能な負極活物質を含有する。
When the density is within the above range, the input / output characteristics can be further improved. From such a viewpoint, the single-side coating amount of the positive electrode mixture to the positive electrode current collector is more preferably 80 g / m 2 or more and 230 g / m 2 or less, and 100 g / m 2 or more and 180 g / m 2 or less. More preferably.
2. Negative electrode In this embodiment, the negative electrode shown below is applicable to a long-life, high-input / output lithium ion secondary battery. The negative electrode (negative electrode plate) of the present embodiment includes a current collector and a negative electrode mixture formed on both surfaces thereof. The negative electrode mixture contains a negative electrode active material that can electrochemically occlude and release lithium ions.
 負極活物質としては、炭素質材料、酸化錫や酸化ケイ素等の金属酸化物、金属複合酸化物、リチウム単体やリチウムアルミニウム合金等のリチウム合金、SnやSi等のリチウムと合金形成可能な金属等が挙げられる。これらは、1種を単独で用いてもよく、2種以上のものを組み合わせて用いてもよい。中でも、炭素質材料またはリチウム複合酸化物が安全性の観点から好ましい。 Examples of the negative electrode active material include carbonaceous materials, metal oxides such as tin oxide and silicon oxide, metal composite oxides, lithium alloys such as lithium alone and lithium aluminum alloys, metals that can form alloys with lithium such as Sn and Si, and the like Is mentioned. These may be used alone or in combination of two or more. Among these, a carbonaceous material or a lithium composite oxide is preferable from the viewpoint of safety.
 金属複合酸化物としては、リチウムを吸蔵、放出可能なものであれば特に制限はないが、Ti(チタン)、Li(リチウム)またはTi及びLiの双方を含有するものが、高電流密度充放電特性の観点で好ましい。 The metal composite oxide is not particularly limited as long as it can occlude and release lithium, but Ti (titanium), Li (lithium), or those containing both Ti and Li have high current density charge / discharge. It is preferable from the viewpoint of characteristics.
 炭素質材料としては、非晶質炭素、天然黒鉛、天然黒鉛に乾式のCVD(Chemical Vapor Deposition)法や湿式のスプレイ法で形成される被膜を形成した複合炭素質材料、エポキシやフェノール等の樹脂原料もしくは石油や石炭から得られるピッチ系材料を原料として焼成して得られる人造黒鉛、非晶質炭素材料などの炭素質材料を用いることができる。 Carbonaceous materials include amorphous carbon, natural graphite, composite carbonaceous materials in which a film formed by dry CVD (Chemical Vapor Deposition) method or wet spray method is formed on natural graphite, resins such as epoxy and phenol Carbonaceous materials such as artificial graphite and amorphous carbon material obtained by firing using raw materials or pitch materials obtained from petroleum or coal as raw materials can be used.
 また、リチウムと化合物を形成することでリチウムを吸蔵放出できるリチウム金属や、リチウムと化合物を形成し、結晶間隙に挿入されることでリチウムを吸蔵放出できる珪素、ゲルマニウム、錫など第四族元素の酸化物もしくは窒化物を用いてもよい。 In addition, lithium metal that can occlude and release lithium by forming a compound with lithium, or a group 4 element such as silicon, germanium, and tin that can occlude and release lithium by forming a compound with lithium and inserting it in a crystal gap. Oxides or nitrides may be used.
 特に、炭素質材料は、導電性が高く、低温特性、サイクル安定性の面から優れた材料である。さらに、負極活物質として、黒鉛質、非晶質、活性炭などの導電性の高い炭素質材料を混合して用いてもよい。 In particular, carbonaceous materials are highly conductive, and are excellent in terms of low temperature characteristics and cycle stability. Further, as the negative electrode active material, a carbonaceous material having high conductivity such as graphite, amorphous, activated carbon or the like may be mixed and used.
 負極合剤は、集電体上に形成される。その形成方法に制限はないが正極合剤と同様に乾式法や湿式法を用いて形成される。上記負極活物質は粉状(粒状)で用いられる。 The negative electrode mixture is formed on the current collector. Although there is no restriction | limiting in the formation method, it forms using a dry method and a wet method similarly to a positive mix. The negative electrode active material is used in the form of powder (granular).
 また、負極活物質として用いる第1炭素質材料に、これとは異なる性質の第2炭素質材料を導電材として添加してもよい。上記性質とは、X線回折パラメータ、メジアン径、アスペクト比、BET比表面積、配向比、ラマンR値、タップ密度、真密度、細孔分布、円形度、灰分量の一つ以上の特性を示す。 Further, a second carbonaceous material having a different property from the first carbonaceous material used as the negative electrode active material may be added as a conductive material. The above properties indicate one or more characteristics of X-ray diffraction parameters, median diameter, aspect ratio, BET specific surface area, orientation ratio, Raman R value, tap density, true density, pore distribution, circularity, and ash content. .
 第2炭素質材料(導電材)としては、黒鉛質、非晶質、活性炭などの導電性の高い炭素質材料を用いることができる。具体的には、天然黒鉛、人造黒鉛等の黒鉛(グラファイト)、アセチレンブラック等のカーボンブラック、ニードルコークス等の無定形炭素等を用いることができる。これらは、1種を単独で用いてもよく、2種以上のものを組み合わせて用いてもよい。このように、第2炭素質材料(導電材)を添加することにより、電極の抵抗を低減するなどの効果を奏する。 As the second carbonaceous material (conductive material), a highly conductive carbonaceous material such as graphite, amorphous, activated carbon or the like can be used. Specifically, graphite (graphite) such as natural graphite and artificial graphite, carbon black such as acetylene black, and amorphous carbon such as needle coke can be used. These may be used alone or in combination of two or more. Thus, by adding the second carbonaceous material (conductive material), there are effects such as reducing the resistance of the electrode.
 第2炭素質材料(導電材)の含有量(添加量、割合、量)について、負極合剤の質量に対する導電材の含有量の範囲は次のとおりである。範囲の下限は、1質量%以上、好ましくは2質量%以上、より好ましくは3質量%以上であり、上限は、45質量%以下、好ましくは40質量%以下である。上記下限未満では、導電性の向上効果が得にくく、また、上記上限を超えると、初期不可逆容量の増大を招く恐れがある。 Regarding the content (addition amount, ratio, amount) of the second carbonaceous material (conductive material), the range of the content of the conductive material relative to the mass of the negative electrode mixture is as follows. The lower limit of the range is 1% by mass or more, preferably 2% by mass or more, more preferably 3% by mass or more, and the upper limit is 45% by mass or less, preferably 40% by mass or less. If it is less than the above lower limit, it is difficult to obtain the effect of improving conductivity, and if it exceeds the above upper limit, the initial irreversible capacity may be increased.
 負極用の集電体の材質としては特に制限はなく、具体例としては、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼等の金属材料が挙げられる。中でも、加工のし易さとコストの観点から銅が好ましい。 The material of the current collector for the negative electrode is not particularly limited, and specific examples include metal materials such as copper, nickel, stainless steel, and nickel-plated steel. Among these, copper is preferable from the viewpoint of ease of processing and cost.
 集電体の形状としては特に制限はなく、種々の形状に加工された材料を用いることができる。具体例としては、金属箔、金属円柱、金属コイル、金属板、金属薄膜、エキスパンドメタル、パンチメタル、発泡メタル等が挙げられる。中でも、金属薄膜が好ましく、銅箔がより好ましい。銅箔には、圧延法により形成された圧延銅箔と、電解法により形成された電解銅箔とがあり、どちらも集電体として用いて好適である。集電体の厚さに制限はないが、厚さが25μm未満の場合、純銅よりも強銅合金(リン青銅、チタン銅、コルソン合金、Cu-Cr-Zr合金等)を用いることでその強度を向上させることができる。 The shape of the current collector is not particularly limited, and materials processed into various shapes can be used. Specific examples include metal foil, metal cylinder, metal coil, metal plate, metal thin film, expanded metal, punch metal, and foam metal. Among these, a metal thin film is preferable, and a copper foil is more preferable. The copper foil includes a rolled copper foil formed by a rolling method and an electrolytic copper foil formed by an electrolytic method, both of which are suitable for use as a current collector. The thickness of the current collector is not limited, but if the thickness is less than 25 μm, its strength can be increased by using a strong copper alloy (phosphor bronze, titanium copper, Corson alloy, Cu—Cr—Zr alloy, etc.) rather than pure copper. Can be improved.
 負極活物質の結着材としては、非水系電解液や電極の形成時に用いる分散溶媒に対して安定な材料であれば、特に制限はない。具体的には、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリメチルメタクリレート、芳香族ポリアミド、セルロース、ニトロセルロース等の樹脂系高分子;SBR(スチレン-ブタジエンゴム)、イソプレンゴム、ブタジエンゴム、フッ素ゴム、NBR(アクリロニトリル- ブタジエンゴム)、エチレン-プロピレンゴム等のゴム状高分子;スチレン・ブタジエン・スチレンブロック共重合体またはその水素添加物;EPDM(エチレン・プロピレン・ジエン三元共重合体)、スチレン・エチレン・ブタジエン・スチレン共重合体、スチレン・イソプレン・スチレンブロック共重合体またはその水素添加物等の熱可塑性エラストマー状高分子; シンジオタクチック-1,2-ポリブタジエン、ポリ酢酸ビニル、エチレン・酢酸ビニル共重合体、プロピレン・α-オレフィン共重合体等の軟質樹脂状高分子;ポリフッ化ビニリデン、ポリテトラフルオロエチレン、フッ素化ポリフッ化ビニリデン、ポリテトラフルオロエチレン・エチレン共重合体等のフッ素系高分子;アルカリ金属イオン(特にリチウムイオン)のイオン伝導性を有する高分子組成物等が挙げられる。これらは、1種を単独で用いても、2種以上を組み合わせて用いてもよい。 The binder for the negative electrode active material is not particularly limited as long as it is a material that is stable with respect to the non-aqueous electrolyte and the dispersion solvent used when forming the electrode. Specifically, resin-based polymers such as polyethylene, polypropylene, polyethylene terephthalate, polymethyl methacrylate, aromatic polyamide, cellulose, nitrocellulose; SBR (styrene-butadiene rubber), isoprene rubber, butadiene rubber, fluorine rubber, NBR ( Rubber-like polymers such as acrylonitrile-butadiene rubber) and ethylene-propylene rubber; styrene / butadiene / styrene block copolymers or hydrogenated products thereof; EPDM (ethylene / propylene / diene terpolymer), styrene / ethylene / Thermoplastic elastomeric polymers such as butadiene / styrene copolymer, styrene / isoprene / styrene block copolymer or hydrogenated products thereof; syndiotactic-1,2-polybutadiene, polyvinyl acetate, ethylene Soft resinous polymers such as ethylene / vinyl acetate copolymer, propylene / α-olefin copolymer; polyvinylidene fluoride, polytetrafluoroethylene, fluorinated polyvinylidene fluoride, polytetrafluoroethylene / ethylene copolymer, etc. Fluoropolymers; polymer compositions having ionic conductivity of alkali metal ions (especially lithium ions). These may be used alone or in combination of two or more.
 スラリーを形成するための分散溶媒としては、負極活物質、結着材、及び必要に応じて用いられる導電材や増粘材などを溶解または分散することが可能な溶媒であれば、その種類に制限はなく、水系溶媒と有機系溶媒のどちらを用いてもよい。水系溶媒の例としては、水、アルコールと水との混合溶媒等が挙げられ、有機系溶媒の例としては、N-メチルピロリドン(NMP)、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、シクロヘキサノン、酢酸メチル、アクリル酸メチル、ジエチルトリアミン、N,N-ジメチルアミノプロピルアミン、テトラヒドロフラン(THF)、トルエン、アセトン、ジエチルエーテル、ジメチルアセトアミド、ヘキサメチルホスファルアミド、ジメチルスルフォキシド、ベンゼン、キシレン、キノリン、ピリジン、メチルナフタレン、ヘキサン等が挙げられる。特に水系溶媒を用いる場合、増粘材を用いることが好ましい。この増粘材に併せて分散材等を加え、SBR等のラテックスを用いてスラリー化する。なお、上記分散溶媒は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。 As the dispersion solvent for forming the slurry, any solvent can be used as long as it can dissolve or disperse the negative electrode active material, the binder, and the conductive material and the thickener used as necessary. There is no restriction, and either an aqueous solvent or an organic solvent may be used. Examples of the aqueous solvent include water, a mixed solvent of alcohol and water, and examples of the organic solvent include N-methylpyrrolidone (NMP), dimethylformamide, dimethylacetamide, methyl ethyl ketone, cyclohexanone, methyl acetate, Methyl acrylate, diethyltriamine, N, N-dimethylaminopropylamine, tetrahydrofuran (THF), toluene, acetone, diethyl ether, dimethylacetamide, hexamethylphosphalamide, dimethyl sulfoxide, benzene, xylene, quinoline, pyridine, Examples include methylnaphthalene and hexane. In particular, when an aqueous solvent is used, it is preferable to use a thickener. A dispersing agent or the like is added to the thickener, and a slurry such as SBR is made into a slurry. In addition, the said dispersion solvent may be used individually by 1 type, or may be used in combination of 2 or more type.
 結着材の含有量は、負極合剤の総量に対して、好ましくは0.1質量%以上、より好ましくは0.5質量%以上、さらに好ましくは0.6質量%以上である。結着材の含有量の上限は、20質量%以下、好ましくは15質量%以下、より好ましくは10質量%以下、さらに好ましくは8質量%以下である。 The content of the binder is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, and further preferably 0.6% by mass or more with respect to the total amount of the negative electrode mixture. The upper limit of the binder content is 20% by mass or less, preferably 15% by mass or less, more preferably 10% by mass or less, and still more preferably 8% by mass or less.
 上記上限を超えると、電池容量に寄与しない結着材の割合が増加し、電池容量の低下を招く可能性がある。また、上記下限未満では、負極合剤の強度の低下を招く可能性がある。 If the upper limit is exceeded, the proportion of the binder that does not contribute to the battery capacity increases, which may lead to a decrease in battery capacity. Moreover, if it is less than the said minimum, the fall of the intensity | strength of a negative mix may be caused.
 特に、結着材として、SBRに代表されるゴム状高分子を主要成分として用いる場合の負極合剤の質量に対する結着材の含有量の範囲は次のとおりである。範囲の下限は、0.1質量%以上、好ましくは0.5質量%以上、より好ましくは0.6質量%以上であり、上限は、5質量%以下、好ましくは3質量%以下、より好ましくは2質量%以下である。 In particular, the range of the binder content relative to the mass of the negative electrode mixture when a rubbery polymer typified by SBR is used as the main component as the binder is as follows. The lower limit of the range is 0.1% by mass or more, preferably 0.5% by mass or more, more preferably 0.6% by mass or more, and the upper limit is 5% by mass or less, preferably 3% by mass or less, more preferably. Is 2% by mass or less.
 また、結着材として、ポリフッ化ビニリデンに代表されるフッ素系高分子を主要成分として用いる場合の負極合剤の質量に対する結着材の含有量の範囲は次のとおりである。範囲の下限は、1質量%以上、好ましくは2質量%以上、より好ましくは3質量%以上であり、上限は、15質量%以下、好ましくは10質量%以下、より好ましくは8質量%以下である。 Further, the range of the content of the binder with respect to the mass of the negative electrode mixture when a fluorine-based polymer typified by polyvinylidene fluoride is used as the main component as the binder is as follows. The lower limit of the range is 1% by mass or more, preferably 2% by mass or more, more preferably 3% by mass or more, and the upper limit is 15% by mass or less, preferably 10% by mass or less, more preferably 8% by mass or less. is there.
 増粘材は、スラリーの粘度を調製するために使用される。増粘材としては、特に制限はないが、具体的には、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ、カゼイン及びこれらの塩等が挙げられる。これらは、1種を単独で用いても、2種以上を組み合わせて用いてもよい。 Thickener is used to adjust the viscosity of the slurry. The thickener is not particularly limited, and specific examples include carboxymethyl cellulose, methyl cellulose, hydroxymethyl cellulose, ethyl cellulose, polyvinyl alcohol, oxidized starch, phosphorylated starch, casein, and salts thereof. These may be used alone or in combination of two or more.
 増粘材を用いる場合の負極合剤の質量に対する増粘材の含有量の範囲は次のとおりである。範囲の下限は、0.1質量%以上、好ましくは0.5質量%以上、より好ましくは0.6質量%以上であり、上限は、5質量%以下、好ましくは3質量%以下、より好ましくは2質量%以下である。 The range of the content of the thickener relative to the mass of the negative electrode mixture when the thickener is used is as follows. The lower limit of the range is 0.1% by mass or more, preferably 0.5% by mass or more, more preferably 0.6% by mass or more, and the upper limit is 5% by mass or less, preferably 3% by mass or less, more preferably. Is 2% by mass or less.
 上記下限未満では、スラリーの塗布性が低下する恐れがある。また、上記上限を超えると、負極合剤に占める負極活物質の割合が低下し、電池容量の低下や負極活物質間の抵抗の上昇の恐れがある。
3.電解液
 本実施の形態の電解液は、リチウム塩(電解質)と、これを溶解する非水系溶媒から構成される。必要に応じて、添加材を加えてもよい。
If it is less than the said minimum, there exists a possibility that the applicability | paintability of a slurry may fall. Moreover, when the said upper limit is exceeded, the ratio of the negative electrode active material which occupies for a negative electrode mixture will fall, and there exists a possibility of the fall of battery capacity or the raise of resistance between negative electrode active materials.
3. Electrolytic Solution The electrolytic solution of the present embodiment is composed of a lithium salt (electrolyte) and a non-aqueous solvent that dissolves the lithium salt. You may add an additive as needed.
 リチウム塩としては、リチウムイオン二次電池用の非水系電解液の電解質として使用可能なリチウム塩であれば特に制限はないが、例えば以下に示す無機リチウム塩、含フッ素有機リチウム塩やオキサラトボレート塩等が挙げられる。 The lithium salt is not particularly limited as long as it is a lithium salt that can be used as an electrolyte of a non-aqueous electrolyte solution for a lithium ion secondary battery. For example, the following inorganic lithium salt, fluorine-containing organic lithium salt, or oxalate borate Examples include salts.
 無機リチウム塩としては、LiPF、LiBF、LiAsF、LiSbF等の無機フッ化物塩や、LiClO、LiBrO、LiIO等の過ハロゲン酸塩や、LiAlCl等の無機塩化物塩等が挙げられる。 Examples of the inorganic lithium salt, LiPF 6, LiBF 4, LiAsF 6, LiSbF inorganic fluoride salts and the like 6, LiClO 4, Libro 4, LiIO and perhalogenate such as 4, an inorganic chloride salts such as LiAlCl 4, etc. Is mentioned.
 含フッ素有機リチウム塩としては、LiCFSO等のパーフルオロアルカンスルホン酸塩;LiN(CFSO、LiN(CFCFSO、LiN(CFSO)(CSO)等のパーフルオロアルカンスルホニルイミド塩;LiC(CFSO等のパーフルオロアルカンスルホニルメチド塩;Li[PF(CFCFCF)]、Li[PF(CFCFCF]、Li[PF(CFCFCF]、Li[PF(CFCFCFCF)]、Li[PF(CFCFCFCF]、Li[PF(CFCFCFCF]等のフルオロアルキルフッ化リン酸塩等が挙げられる。 Examples of the fluorine-containing organic lithium salt include perfluoroalkane sulfonates such as LiCF 3 SO 3 ; LiN (CF 3 SO 2 ) 2 , LiN (CF 3 CF 2 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C Perfluoroalkanesulfonylimide salt such as 4 F 9 SO 9 ); perfluoroalkanesulfonylmethide salt such as LiC (CF 3 SO 2 ) 3 ; Li [PF 5 (CF 2 CF 2 CF 3 )], Li [PF 4 (CF 2 CF 2 CF 3 ) 2 ], Li [PF 3 (CF 2 CF 2 CF 3 ) 3 ], Li [PF 5 (CF 2 CF 2 CF 2 CF 3 )], Li [PF 4 (CF 2 CF 2 CF 2 CF 3) 2 ], Li [PF 3 (CF 2 CF 2 CF 2 CF 3) 3] fluoroalkyl hexafluorophosphate salts such like.
 オキサラトボレート塩としては、リチウムビス(オキサラト)ボレート、リチウムジフルオロオキサラトボレート等が挙げられる。 Examples of the oxalatoborate salt include lithium bis (oxalato) borate and lithium difluorooxalatoborate.
 これらのリチウム塩は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。中でも、溶媒に対する溶解性、二次電池とした場合の充放電特性、入出力特性、サイクル特性等を総合的に判断すると、ヘキサフルオロリン酸リチウム(LiPF)が好ましい。 These lithium salts may be used alone or in combination of two or more. Among them, lithium hexafluorophosphate (LiPF 6 ) is preferable when comprehensively judging the solubility in a solvent, charge / discharge characteristics in the case of a secondary battery, input / output characteristics, cycle characteristics, and the like.
 非水系電解液中の電解質の濃度に特に制限はないが、電解質の濃度範囲は次のとおりである。濃度の下限は、0.5mol/L以上、好ましくは0.6mol/L以上、より好ましくは0.7mol/L以上である。また、濃度の上限は、2mol/L以下、好ましくは1.8mol/L以下、より好ましくは1.7mol/L以下である。濃度が低すぎると、電解液の電気伝導率が不充分となる恐れがある。また、濃度が高すぎると、粘度が上昇するため電気伝導度が低下する恐れがある。このような電気伝導度の低下により、リチウムイオン二次電池の性能が低下する恐れがある。 There is no particular limitation on the concentration of the electrolyte in the non-aqueous electrolyte solution, but the concentration range of the electrolyte is as follows. The lower limit of the concentration is 0.5 mol / L or more, preferably 0.6 mol / L or more, more preferably 0.7 mol / L or more. Further, the upper limit of the concentration is 2 mol / L or less, preferably 1.8 mol / L or less, more preferably 1.7 mol / L or less. If the concentration is too low, the electric conductivity of the electrolytic solution may be insufficient. On the other hand, if the concentration is too high, the viscosity increases and the electrical conductivity may decrease. Such a decrease in electrical conductivity may reduce the performance of the lithium ion secondary battery.
 非水系溶媒としては、リチウムイオン二次電池用の電解質の溶媒として使用可能な非水系溶媒であれば特に制限はないが、例えば次の環状カーボネート、鎖状カーボネート、鎖状エステル、環状エーテル及び鎖状エーテル等が挙げられる。 The non-aqueous solvent is not particularly limited as long as it is a non-aqueous solvent that can be used as an electrolyte solvent for a lithium ion secondary battery. For example, the following cyclic carbonate, chain carbonate, chain ester, cyclic ether, and chain And ethers.
 環状カーボネートとしては、環状カーボネートを構成するアルキレン基の炭素数が2~6のものが好ましく、2~4のものがより好ましい。具体的には、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート等が挙げられる。中でも、エチレンカーボネート、プロピレンカーボネートが好ましい。 As the cyclic carbonate, an alkylene group constituting the cyclic carbonate preferably has 2 to 6 carbon atoms, and more preferably 2 to 4 carbon atoms. Specific examples include ethylene carbonate, propylene carbonate, butylene carbonate, and the like. Of these, ethylene carbonate and propylene carbonate are preferable.
 また、ビニレンカーボネート又はフルオロエチレンカーボネートのような、分子内に二重結合を有する環状カーボネート又はハロゲン原子を含む環状カーボネートを用いることもできる。負極活物質として炭素材料を用いる場合は、サイクル特性の観点から、ビニレンカーボネートを含むことが好ましい。 Further, a cyclic carbonate having a double bond in the molecule or a cyclic carbonate containing a halogen atom, such as vinylene carbonate or fluoroethylene carbonate, can also be used. When using a carbon material as a negative electrode active material, it is preferable to contain vinylene carbonate from the viewpoint of cycle characteristics.
 鎖状カーボネートとしては、ジアルキルカーボネートが好ましく、2つのアルキル基の炭素数が、それぞれ1~5のものが好ましく、1~4のものがより好ましい。具体的には、ジメチルカーボネート、ジエチルカーボネート、ジ-n-プロピルカーボネート等の対称鎖状カーボネート類;メチルエチルカーボネート、メチル-n-プロピルカーボネート、エチル-n-プロピルカーボネート等の非対称鎖状カーボネート類等が挙げられる。中でも、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネートが好ましい。 The chain carbonate is preferably a dialkyl carbonate, and the two alkyl groups each preferably have 1 to 5 carbon atoms, more preferably 1 to 4 carbon atoms. Specifically, symmetrical chain carbonates such as dimethyl carbonate, diethyl carbonate, and di-n-propyl carbonate; asymmetric chain carbonates such as methyl ethyl carbonate, methyl-n-propyl carbonate, and ethyl-n-propyl carbonate Is mentioned. Of these, dimethyl carbonate, diethyl carbonate, and methyl ethyl carbonate are preferable.
 鎖状エステルとしては、酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸メチル等が挙げられる。中でも、低温特性改善の観点から酢酸メチルを用いることが好ましい。 Examples of chain esters include methyl acetate, ethyl acetate, propyl acetate, and methyl propionate. Among them, it is preferable to use methyl acetate from the viewpoint of improving the low temperature characteristics.
 環状エーテルとしては、テトラヒドロフラン、2-メチルテトラヒドロフラン、テトラヒドロピラン等が挙げられる。中でも、入出力特性改善の観点からテトラヒドロフランを用いることが好ましい。 Examples of the cyclic ether include tetrahydrofuran, 2-methyltetrahydrofuran, tetrahydropyran and the like. Of these, tetrahydrofuran is preferably used from the viewpoint of improving input / output characteristics.
 鎖状エーテルとしては、ジメトキシエタン、ジメトキシメタン等が挙げられる。 Examples of chain ethers include dimethoxyethane and dimethoxymethane.
 これらは単独で用いても、2種類以上を併用してもよいが、2種以上の化合物を併用した混合溶媒を用いることが好ましい。例えば、環状カーボネート類の高誘電率溶媒と、鎖状カーボネート類や鎖状エステル類等の低粘度溶媒とを併用するのが好ましい。好ましい組み合わせの一つは、環状カーボネート類と鎖状カーボネート類とを主体とする組み合わせである。中でも、非水系溶媒に占める環状カーボネート類と鎖状カーボネート類との合計が、80容量%以上、好ましくは85容量%以上、より好ましくは90容量%以上であり、かつ環状カーボネート類と鎖状カーボネート類との合計に対する環状カーボネート類の容量が次の範囲であるものが好ましい。環状カーボネート類の容量の下限は、5容量%以上、好ましくは10容量%以上、より好ましくは15容量%以上であり、上限は、50容量%以下、好ましくは35容量%以下、より好ましくは30容量%以下である。このような非水系溶媒の組み合わせを用いることで、電池のサイクル特性及び保存特性が向上する。 These may be used alone or in combination of two or more, but it is preferable to use a mixed solvent in which two or more compounds are used in combination. For example, it is preferable to use a high dielectric constant solvent of cyclic carbonates in combination with a low viscosity solvent such as chain carbonates or chain esters. One of the preferable combinations is a combination mainly composed of cyclic carbonates and chain carbonates. Among them, the total of the cyclic carbonates and the chain carbonates in the non-aqueous solvent is 80% by volume or more, preferably 85% by volume or more, more preferably 90% by volume or more, and the cyclic carbonates and the chain carbonates. It is preferable that the cyclic carbonates have a capacity in the following range with respect to the total of the above. The lower limit of the capacity of the cyclic carbonates is 5% by volume or more, preferably 10% by volume or more, more preferably 15% by volume or more, and the upper limit is 50% by volume or less, preferably 35% by volume or less, more preferably 30%. The capacity is less than%. By using such a combination of non-aqueous solvents, the cycle characteristics and storage characteristics of the battery are improved.
 環状カーボネート類と鎖状カーボネート類の好ましい組み合わせの具体例としては、エチレンカーボネートとジメチルカーボネート、エチレンカーボネートとジエチルカーボネート、エチレンカーボネートとメチルエチルカーボネート、エチレンカーボネートとジメチルカーボネートとジエチルカーボネート、エチレンカーボネートとジメチルカーボネートとメチルエチルカーボネート、エチレンカーボネートとジエチルカーボネートとメチルエチルカーボネート、エチレンカーボネートとジメチルカーボネートとジエチルカーボネートとメチルエチルカーボネート等が挙げられる。 Specific examples of preferred combinations of cyclic carbonates and chain carbonates include ethylene carbonate and dimethyl carbonate, ethylene carbonate and diethyl carbonate, ethylene carbonate and methyl ethyl carbonate, ethylene carbonate and dimethyl carbonate and diethyl carbonate, ethylene carbonate and dimethyl carbonate And methyl ethyl carbonate, ethylene carbonate, diethyl carbonate and methyl ethyl carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate and methyl ethyl carbonate.
 これらの組み合わせの中で、鎖状カーボネート類として非対称鎖状カーボネート類を含有するものがさらに好ましい。具体例としては、エチレンカーボネートとジメチルカーボネートとメチルエチルカーボネート、エチレンカーボネートとジエチルカーボネートとメチルエチルカーボネート、エチレンカーボネートとジメチルカーボネートとジエチルカーボネートとメチルエチルカーボネートの組み合わせが挙げられる。このような、エチレンカーボネートと対称鎖状カーボネート類と非対称鎖状カーボネート類との組み合わせにより、サイクル特性及び入出力特性を向上させることができる。中でも、非対称鎖状カーボネート類がメチルエチルカーボネートであるものが好ましく、また、ジアルキルカーボネートを構成するアルキル基の炭素数が1~2であるものが好ましい。 Among these combinations, those containing asymmetric chain carbonates as chain carbonates are more preferable. Specific examples include a combination of ethylene carbonate, dimethyl carbonate and methyl ethyl carbonate, ethylene carbonate, diethyl carbonate and methyl ethyl carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate and methyl ethyl carbonate. Such a combination of ethylene carbonate, symmetric chain carbonates, and asymmetric chain carbonates can improve cycle characteristics and input / output characteristics. Among these, those in which the asymmetric chain carbonate is methyl ethyl carbonate are preferable, and those in which the alkyl group constituting the dialkyl carbonate has 1 to 2 carbon atoms are preferable.
 添加材としては、リチウムイオン二次電池の非水系電解液用の添加材であれば特に制限はないが、例えば、窒素、硫黄または窒素及び硫黄を含有する複素環化合物、環状カルボン酸エステル、フッ素含有環状カーボネート、その他の分子内に不飽和結合を有する化合物が挙げられる。 The additive is not particularly limited as long as it is an additive for a non-aqueous electrolyte solution of a lithium ion secondary battery. For example, nitrogen, sulfur or a heterocyclic compound containing nitrogen and sulfur, a cyclic carboxylic acid ester, fluorine Examples thereof include cyclic carbonates and other compounds having an unsaturated bond in the molecule.
 また、上記添加材以外に、求められる機能に応じて過充電防止材、負極皮膜形成材、正極保護材、高入出力材等の他の添加材を用いてもよい。
4.セパレータ
 セパレータは、正極及び負極間を電子的には絶縁しつつもイオン透過性を有し、かつ、正極側における酸化性及び負極側における還元性に対する耐性を備えるものであれば特に制限はない。このような特性を満たすセパレータの材料(材質)としては、樹脂、無機物、ガラス繊維等が用いられる。
In addition to the above additives, other additives such as an overcharge prevention material, a negative electrode film forming material, a positive electrode protective material, and a high input / output material may be used depending on the required function.
4). Separator The separator is not particularly limited as long as it has ion permeability while electronically insulating the positive electrode and the negative electrode, and has resistance to oxidation on the positive electrode side and reducibility on the negative electrode side. As a material (material) of the separator satisfying such characteristics, a resin, an inorganic material, glass fiber, or the like is used.
 樹脂としては、オレフィン系ポリマー、フッ素系ポリマー、セルロース系ポリマー、ポリイミド、ナイロン等が用いられる。具体的には、非水系電解液に対して安定で、保液性の優れた材料の中から選ぶのが好ましく、ポリエチレン、ポリプロピレン等のポリオレフィンを原料とする多孔性シートまたは不織布等を用いることが好ましい。 As the resin, olefin polymer, fluorine polymer, cellulose polymer, polyimide, nylon or the like is used. Specifically, it is preferable to select from materials that are stable with respect to non-aqueous electrolytes and have excellent liquid retention properties. For example, porous sheets or nonwoven fabrics made from polyolefins such as polyethylene and polypropylene may be used. preferable.
 無機物としては、アルミナや二酸化珪素等の酸化物類、窒化アルミニウムや窒化珪素等の窒化物類、硫酸バリウムや硫酸カルシウム等の硫酸塩類が用いられる。例えば、繊維形状または粒子形状の上記無機物を、不織布、織布、微多孔性フィルム等の薄膜形状の基材に付着させたものをセパレータとして用いることができる。薄膜形状の基材としては、孔径が0.01~1μm、厚さが5~50μmのものが好適に用いられる。また、例えば、繊維形状または粒子形状の上記無機物を、樹脂等の結着材を用いて複合多孔層としたものをセパレータとして用いることができる。さらに、この複合多孔層を、正極または負極の表面に形成し、セパレータとしてもよい。例えば、90%粒径が1μm未満のアルミナ粒子を、フッ素樹脂を結着材として結着させた複合多孔層を、正極の表面に形成してもよい。
5.その他の構成部材
 リチウムイオン二次電池のその他の構成部材として、開裂弁を設けてもよい。開裂弁が開放することで、電池内部の圧力上昇を抑制でき、安全性を向上させることができる。
As the inorganic material, oxides such as alumina and silicon dioxide, nitrides such as aluminum nitride and silicon nitride, and sulfates such as barium sulfate and calcium sulfate are used. For example, what made the said inorganic substance of fiber shape or particle shape adhere to thin film-shaped base materials, such as a nonwoven fabric, a woven fabric, and a microporous film, can be used as a separator. As the thin film-shaped substrate, those having a pore diameter of 0.01 to 1 μm and a thickness of 5 to 50 μm are preferably used. In addition, for example, a separator in which a composite porous layer is formed using the above-described inorganic material in a fiber shape or a particle shape by using a binder such as a resin can be used as a separator. Furthermore, this composite porous layer may be formed on the surface of the positive electrode or the negative electrode to form a separator. For example, a composite porous layer in which alumina particles having a 90% particle size of less than 1 μm are bound using a fluororesin as a binder may be formed on the surface of the positive electrode.
5. Other constituent members As other constituent members of the lithium ion secondary battery, a cleavage valve may be provided. By opening the cleavage valve, it is possible to suppress an increase in pressure inside the battery and to improve safety.
 また、温度上昇に伴い不活性ガス(例えば、二酸化炭素など)を放出する構成部を設けてもよい。このような構成部を設けることで、電池内部の温度が上昇した場合に、不活性ガスの発生により速やかに開裂弁を開けることができ、安全性を向上させることができる。上記構成部に用いられる材料としては、炭酸リチウムやポリアルキレンカーボネート樹脂等が挙げられる。
(リチウムイオン二次電池)
 まず、本発明をラミネート電池に適用した実施の形態について説明する。
Moreover, you may provide the structure part which discharge | releases inert gas (for example, carbon dioxide etc.) with a temperature rise. By providing such a component, when the temperature inside the battery rises, the cleavage valve can be opened quickly due to the generation of inert gas, and safety can be improved. Examples of the material used for the above components include lithium carbonate and polyalkylene carbonate resin.
(Lithium ion secondary battery)
First, an embodiment in which the present invention is applied to a laminated battery will be described.
 ラミネート型のリチウムイオン二次電池は、例えば、次のようにして作製できる。まず、正極と負極を角形に切断し、それぞれの電極にタブを溶接し正負極端子を作製する。正極、絶縁層、負極をこの順番に積層した積層体を作製し、その状態でアルミニウム製のラミネートパック内に収容し、正負極端子をアルミラミネートパックの外に出し密封する。次いで、非水電解質をアルミラミネートパック内に注液し、アルミラミネートパックの開口部を密封する。これにより、リチウムイオン二次電池が得られる。 The laminate type lithium ion secondary battery can be manufactured, for example, as follows. First, the positive electrode and the negative electrode are cut into squares, and tabs are welded to the respective electrodes to produce positive and negative electrode terminals. A laminated body in which the positive electrode, the insulating layer, and the negative electrode are laminated in this order is prepared, and in that state, accommodated in an aluminum laminate pack, and the positive and negative electrode terminals are taken out of the aluminum laminate pack and sealed. Next, the nonaqueous electrolyte is poured into the aluminum laminate pack, and the opening of the aluminum laminate pack is sealed. Thereby, a lithium ion secondary battery is obtained.
 次に、図面を参照して、本発明を18650タイプの円柱状リチウムイオン二次電池に適用した実施の形態について説明する。 Next, an embodiment in which the present invention is applied to a 18650 type cylindrical lithium ion secondary battery will be described with reference to the drawings.
 図1に示すように、本実施形態のリチウムイオン二次電池1は、ニッケルメッキが施されたスチール製で有底円筒状の電池容器6を有している。電池容器6には、帯状の正極板2及び負極板3がセパレータ4を介して断面渦巻状に捲回された電極群5が収容されている。電極群5は、正極板2及び負極板3がポリエチレン製多孔質シートのセパレータ4を介して断面渦巻状に捲回されている。セパレータ4は、例えば、幅が58mm、厚さが30μmに設定される。電極群5の上端面には、一端部を正極板2に固定されたアルミニウム製でリボン状の正極タブ端子が導出されている。正極タブ端子の他端部は、電極群5の上側に被覆され正極外部端子となる円盤状の電池蓋の下面に超音波溶接で接合されている。一方、電極群5の下端面には、一端部を負極板3に固定された銅製でリボン状の負極タブ端子が導出されている。負極タブ端子の他端部は、電池容器6の内底部に抵抗溶接で接合されている。従って、正極タブ端子及び負極タブ端子は、それぞれ電極群5の両端面の互いに反対側に導出されている。なお、電極群5の外周面全周には、図示を省略した絶縁被覆が施されている。電池蓋は、絶縁性の樹脂製ガスケットを介して電池容器6の上部にカシメ固定されている。このため、リチウムイオン二次電池1の内部は密封されている。また、電池容器6内には、図示しない非水電解液が注液されている。 As shown in FIG. 1, the lithium ion secondary battery 1 of the present embodiment has a bottomed cylindrical battery container 6 made of steel plated with nickel. The battery case 6 accommodates an electrode group 5 in which a strip-like positive electrode plate 2 and a negative electrode plate 3 are wound in a spiral shape with a separator 4 interposed therebetween. In the electrode group 5, the positive electrode plate 2 and the negative electrode plate 3 are wound in a spiral shape in cross section via a separator 4 made of a polyethylene porous sheet. For example, the separator 4 has a width of 58 mm and a thickness of 30 μm. A ribbon-like positive electrode tab terminal made of aluminum and having one end fixed to the positive electrode plate 2 is led out on the upper end surface of the electrode group 5. The other end portion of the positive electrode tab terminal is joined by ultrasonic welding to the lower surface of a disk-shaped battery lid that is covered on the upper side of the electrode group 5 and serves as a positive electrode external terminal. On the other hand, a ribbon-like negative electrode tab terminal made of copper with one end fixed to the negative electrode plate 3 is led out on the lower end surface of the electrode group 5. The other end of the negative electrode tab terminal is joined to the inner bottom of the battery container 6 by resistance welding. Therefore, the positive electrode tab terminal and the negative electrode tab terminal are led out to the opposite sides of the both end faces of the electrode group 5, respectively. In addition, the insulation coating which abbreviate | omitted illustration is given to the outer peripheral surface whole periphery of the electrode group 5. FIG. The battery lid is caulked and fixed to the upper part of the battery container 6 via an insulating resin gasket. For this reason, the inside of the lithium ion secondary battery 1 is sealed. In addition, a non-aqueous electrolyte (not shown) is injected into the battery container 6.
 本発明において、負極と正極の容量比(負極容量/正極容量)は、安全性とエネルギー密度の観点から1.03~1.8が好ましく、1.05~1.4がより好ましい。 In the present invention, the capacity ratio between the negative electrode and the positive electrode (negative electrode capacity / positive electrode capacity) is preferably 1.03 to 1.8, more preferably 1.05 to 1.4 from the viewpoint of safety and energy density.
 ここで、負極容量とは、[負極の放電容量]を示し、正極容量とは、[正極の初回充電容量-負極又は正極のどちらか大きい方の不可逆容量]を示す。ここで、[負極の放電容量]とは、負極活物質に挿入されているリチウムイオンが脱離されるときに充放電装置で算出されるものと定義する。また、[正極の初回充電容量]とは、正極活物質からリチウムイオンが脱離されるときに充放電装置で算出されるものと定義する。 Here, the negative electrode capacity means [negative electrode discharge capacity], and the positive electrode capacity means [positive charge capacity of positive electrode minus negative electrode or positive electrode, whichever is greater]. Here, the “negative electrode discharge capacity” is defined to be calculated by the charge / discharge device when the lithium ions inserted into the negative electrode active material are desorbed. Further, the “initial charge capacity of the positive electrode” is defined as that calculated by the charge / discharge device when lithium ions are desorbed from the positive electrode active material.
 負極と正極の容量比は、例えば、「リチウムイオン二次電池の放電容量/負極の放電容量」からも算出することができる。前記リチウムイオン二次電池の放電容量は、例えば、4.2V、0.1C~0.5C、終止時間を2~5時間とする定電流定電圧(CCCV)充電を行った後、0.1C~0.5Cで2.7Vまで定電流(CC)放電したときの条件で測定できる。前記負極の放電容量は、前記リチウムイオン二次電池の放電容量を測定した負極を所定の面積に切断し、対極としてリチウム金属を用い、電解液を含浸させたセパレータを介して単極セルを作製し、0V、0.1C~0.5C、終止電流0.01Cで定電流定電圧(CCCV)充電を行った後、0.1C~0.5C、で1.5Vまで定電流(CC)放電したときの条件で所定面積当たりの放電容量を測定し、これを前記リチウムイオン二次電池の負極として用いた総面積に換算することで算出できる。この単極セルにおいて、負極活物質にリチウムイオンが挿入される方向を充電、負極活物質に挿入されているリチウムイオンが脱離する方向を放電、と定義する。 The capacity ratio between the negative electrode and the positive electrode can be calculated from, for example, “discharge capacity of lithium ion secondary battery / discharge capacity of negative electrode”. The discharge capacity of the lithium ion secondary battery is, for example, 4.2 V, 0.1 C to 0.5 C, 0.1 C after constant current and constant voltage (CCCV) charging with an end time of 2 to 5 hours. It can be measured under the conditions when a constant current (CC) discharge is performed up to 2.7 V at ˜0.5 C. The discharge capacity of the negative electrode was prepared by cutting a negative electrode having a measured discharge capacity of the lithium ion secondary battery into a predetermined area, using lithium metal as a counter electrode, and preparing a single electrode cell through a separator impregnated with an electrolyte. After charging with constant current and constant voltage (CCCV) at 0V, 0.1C to 0.5C and end current of 0.01C, discharge at constant current (CC) to 1.5V with 0.1C to 0.5C It can be calculated by measuring the discharge capacity per predetermined area under the conditions obtained and converting this to the total area used as the negative electrode of the lithium ion secondary battery. In this single electrode cell, the direction in which lithium ions are inserted into the negative electrode active material is defined as charging, and the direction in which lithium ions inserted into the negative electrode active material are desorbed is defined as discharging.
 尚、Cとは“電流値(A)/電池の放電容量(Ah)”を意味する。 C means “current value (A) / battery discharge capacity (Ah)”.
 以下、実施例に基づき本実施の形態をさらに詳細に説明する。なお、本発明は、以下の実施例によって限定されるものではない。
[製造例1]<炭素被覆アルミニウム酸化物の製造工程>
 濃度:700mmol/Lの塩化アルミニウム水溶液(500mL)に、濃度:350mmol/Lのオルトケイ酸ナトリウム水溶液(500mL)を加え、30分間攪拌した。この溶液に、濃度:1mol/Lの水酸化ナトリウム水溶液を330mL加え、pH=6.1に調整した。
Hereinafter, the present embodiment will be described in more detail based on examples. The present invention is not limited to the following examples.
[Production Example 1] <Production process of carbon-coated aluminum oxide>
A concentration: 350 mmol / L sodium orthosilicate aqueous solution (500 mL) was added to a 700 mmol / L aluminum chloride aqueous solution (500 mL), and the mixture was stirred for 30 minutes. To this solution, 330 mL of an aqueous sodium hydroxide solution having a concentration of 1 mol / L was added to adjust the pH to 6.1.
 pH調整した溶液を30分間攪拌後、遠心分離装置としてTOMY社製:Suprema23及びスタンダードロータNA-16を用い、回転速度:3,000min―1で、5分間の遠心分離を行った。遠心分離後、上澄み溶液を排出し、ゲル状沈殿物を純水に再分散させ、遠心分離前の容積に戻した。このような遠心分離による脱塩処理を4回行った。 After the pH-adjusted solution was stirred for 30 minutes, centrifugal separation was performed for 5 minutes at a rotational speed of 3,000 min- 1 using TOMY Corporation's SUPREMA 23 and standard rotor NA-16 as a centrifugal separator. After centrifugation, the supernatant solution was discharged, the gel precipitate was redispersed in pure water, and returned to the volume before centrifugation. Such desalting treatment by centrifugation was performed four times.
 脱塩処理4回目の上澄み排出後に得たゲル状沈殿物に、濃度:1mol/Lの塩酸を135mL加えてpH=3.5に調整し、30分間攪拌した。次に、この溶液を乾燥器に入れ、98℃で48時間(2日間)加熱した。加熱後溶液(塩濃度47g/L)に、濃度:1mol/Lの水酸化ナトリウム水溶液を188mL添加し、pH=9.1に調整した。pH調整を行うことにより溶液中の塩を凝集させ、上記同様の遠心分離によってこの凝集体を沈殿させ、次いで上澄み液を排出した。上澄み液を排出した後の沈殿物に純水を添加して遠心分離前の容積に戻すという脱塩処理を4回行った。脱塩処理4回目の上澄み排出後に得たゲル状沈殿物を、60℃で16時間乾燥して30gの粒子塊を回収した。その粒子塊をジェットミルで粉砕することでアルミニウム酸化物を得た。
<炭素被覆の工程>
 上記の粒子とポリビニルアルコール粉末(和光純薬工業株式会社)とを100:70の質量比で混合し、窒素雰囲気下、850℃で1時間焼成して表面の一部または全部が炭素で被覆されたアルミニウム酸化物を作製した。
<BET比表面積>
 製造例1のアルミニウム酸化物のBET比表面積を、窒素吸着能に基づいて測定した。評価装置には、QUANTACHROME社製:AUTOSORB-1(商品名)を用いた。これらの測定を行う際には、後述する試料の前処理を行った後、評価温度を77Kとし、評価圧力範囲を相対圧(飽和蒸気圧に対する平衡圧力)にて1未満としている。
135 mL of hydrochloric acid having a concentration of 1 mol / L was added to the gel-like precipitate obtained after the supernatant was discharged for the fourth time in the desalting treatment, and the mixture was adjusted to pH = 3.5 and stirred for 30 minutes. The solution was then placed in a dryer and heated at 98 ° C. for 48 hours (2 days). To the solution after heating (salt concentration 47 g / L), 188 mL of a 1 mol / L sodium hydroxide aqueous solution was added to adjust the pH to 9.1. By adjusting the pH, the salt in the solution was aggregated, the aggregate was precipitated by the same centrifugation as described above, and then the supernatant was discharged. The desalting process of adding pure water to the precipitate after discharging the supernatant and returning to the volume before centrifugation was performed four times. The gel-like precipitate obtained after the fourth desalting of the desalting treatment was dried at 60 ° C. for 16 hours to recover 30 g of a particle lump. The particle mass was pulverized with a jet mill to obtain aluminum oxide.
<Process of carbon coating>
The above particles and polyvinyl alcohol powder (Wako Pure Chemical Industries, Ltd.) are mixed at a mass ratio of 100: 70 and baked at 850 ° C. for 1 hour in a nitrogen atmosphere, so that part or all of the surface is covered with carbon. Aluminum oxide was prepared.
<BET specific surface area>
The BET specific surface area of the aluminum oxide of Production Example 1 was measured based on the nitrogen adsorption ability. As the evaluation device, AUTASORB-1 (trade name) manufactured by QUANTACHROME was used. When performing these measurements, after pre-treatment of the sample described later, the evaluation temperature is 77K, and the evaluation pressure range is less than 1 in relative pressure (equilibrium pressure with respect to the saturated vapor pressure).
 前処理として、0.05gのアルミニウム酸化物を投入した測定用セルに、真空ポンプで脱気及び加熱を自動制御で行った。この処理の詳細条件は、10Pa以下に減圧した後、110℃で加熱し、3時間以上保持した後、減圧した状態を保ったまま常温(25℃)まで自然冷却するという設定とした。 As a pretreatment, the measurement cell charged with 0.05 g of aluminum oxide was automatically deaerated and heated with a vacuum pump. The detailed conditions of this treatment were set such that the pressure was reduced to 10 Pa or less, heated at 110 ° C., held for 3 hours or more, and then naturally cooled to room temperature (25 ° C.) while maintaining the reduced pressure.
 評価の結果、製造例1のアルミニウム酸化物のBET比表面積は8m/gであった。
<炭素被覆量及び含有水分量>
 また、上記のアルミニウム酸化物の炭素含有量を示差熱-熱重量分析装置(TG-DTA)を用いて、乾燥空気流通下、10℃/分の昇温速度で、850℃20分保持での質量減少率にて測定した。同様にまた、上記のアルミニウム酸化物の水分含有量を示差熱-熱重量分析装置(TG-DTA)TG-DTA-6200型(エスアイアイ・ナノテクノロジー株式会社製)を用いて、乾燥空気流通下、10℃/分の昇温速度で、350℃20分保持での質量減少率にて測定した。評価の結果、製造例1のアルミニウム酸化物の炭素被覆量及び含有水分量はそれぞれ14.7質量%、2.1質量%であった。
[製造例2]<炭素被覆アルミニウム酸化物の製造工程>
 濃度:700mmol/Lの塩化アルミニウム水溶液(500mL)に、濃度:350mmol/Lのオルトケイ酸ナトリウム水溶液(500mL)を加え、30分間攪拌した。この溶液に、濃度:1mol/Lの水酸化ナトリウム水溶液を330mL加え、pH=6.1に調整した。
As a result of the evaluation, the BET specific surface area of the aluminum oxide of Production Example 1 was 8 m 2 / g.
<Carbon coverage and water content>
In addition, the carbon content of the above aluminum oxide was measured using a differential thermal-thermogravimetric analyzer (TG-DTA) at a heating rate of 10 ° C./min at a temperature of 850 ° C. for 20 minutes under a dry air flow. Measured by mass reduction rate. Similarly, the moisture content of the above-described aluminum oxide was measured using a differential thermal-thermogravimetric analyzer (TG-DTA) TG-DTA-6200 (manufactured by SII Nanotechnology Co., Ltd.) under dry air flow. The mass reduction rate was measured at a heating rate of 10 ° C./min at 350 ° C. for 20 minutes. As a result of the evaluation, the carbon coating amount and the water content of the aluminum oxide of Production Example 1 were 14.7% by mass and 2.1% by mass, respectively.
[Production Example 2] <Process for producing carbon-coated aluminum oxide>
A concentration: 350 mmol / L sodium orthosilicate aqueous solution (500 mL) was added to a 700 mmol / L aluminum chloride aqueous solution (500 mL), and the mixture was stirred for 30 minutes. To this solution, 330 mL of an aqueous sodium hydroxide solution having a concentration of 1 mol / L was added to adjust the pH to 6.1.
 pH調整した溶液を30分間攪拌後、遠心分離装置としてTOMY社製:Suprema23及びスタンダードロータNA-16を用い、回転速度:3,000min―1で、5分間の遠心分離を行った。遠心分離後、上澄み溶液を排出し、ゲル状沈殿物を純水に再分散させ、遠心分離前の容積に戻した。このような遠心分離による脱塩処理を3回行った。 After the pH-adjusted solution was stirred for 30 minutes, centrifugal separation was performed for 5 minutes at a rotational speed of 3,000 min- 1 using TOMY Corporation's SUPREMA 23 and standard rotor NA-16 as a centrifugal separator. After centrifugation, the supernatant solution was discharged, the gel precipitate was redispersed in pure water, and returned to the volume before centrifugation. Such desalting treatment by centrifugation was performed three times.
 脱塩処理3回目の上澄み排出後に得たゲル状沈殿物に、濃度:1mol/Lの塩酸を135mL加えてpH=3.5に調整し、30分間攪拌した。次に、この溶液を乾燥器に入れ、98℃で48時間(2日間)加熱した。加熱後溶液(アルミニウム酸化物濃度47g/L)に、濃度:1mol/Lの水酸化ナトリウム水溶液を188mL添加し、pH=9.1に調整した。pH調整を行うことにより溶液中のアルミニウム酸化物を凝集させ、上記同様の遠心分離によってこの凝集体を沈殿させ、次いで上澄み液を排出した。上澄み液を排出した後の沈殿物に純水を添加して遠心分離前の容積に戻すという脱塩処理を3回行った。脱塩処理3回目の上澄み排出後に得たゲル状沈殿物を、60℃で16時間乾燥して30gの粉末を得た。
<炭素被覆の工程>
 上記の粒子とポリビニルアルコール粉末(和光純薬工業株式会社)とを100:70の質量比で混合し、窒素雰囲気下、850℃で1時間焼成して表面の一部または全部が炭素で被覆されたアルミニウム酸化物を作製した。
<BET比表面積>
 上記製造例1に記載と同様の工程で測定した。評価の結果、製造例2のアルミニウム酸化物のBET比表面積は13m/gであった。
<炭素被覆量及び含有水分量>
 また、上記のアルミニウム酸化物の炭素含有量を示差熱-熱重量分析装置(TG-DTA)TG-DTA-6200型(エスアイアイ・ナノテクノロジー株式会社製)を用いて、乾燥空気流通下、10℃/分の昇温速度で、850℃20分保持での質量減少率にて測定した。同様にまた、上記のアルミニウム酸化物の水分含有量を示差熱-熱重量分析装置(TG-DTA)を用いて、乾燥空気流通下、10℃/分の昇温速度で、350℃20分保持での質量減少率にて測定した。評価の結果、製造例2のアルミニウム酸化物の炭素被覆量及び含有水分量はそれぞれ19.6質量%、2.7質量%であった。
[製造例3]<炭素被覆アルミニウム酸化物の製造工程>
 Al濃度:1mol/Lの硫酸アルミニウム水溶液(800mL)に、Si濃度:2mol/Lの水ガラス(珪酸ソーダ3号、NaO・nSiO・mHO)(200mL)を加え、30分間攪拌した。この溶液に、濃度:1mol/Lの水酸化ナトリウム水溶液を1900mL加え、pH=7に調整した。pH調整した溶液を30分間攪拌後、減圧ろ過により脱塩を行った。脱塩処理後の沈殿物に、濃度:1mol/Lの硫酸を90mL加えてpH=4に調整し、30分間攪拌した。次に、この溶液を乾燥器に入れ、98℃で48時間(2日間)加熱した。加熱後溶液に、濃度:1mol/Lの水酸化ナトリウム水溶液を330mL添加し、pH=9に調整した。pH調整を行うことにより溶液中の塩を凝集させ、上記同様の減圧ろ過によってこの凝集体を沈殿させ、次いで上澄み液を排出して脱塩を行った。脱塩処理後に得た沈殿物を、110℃で16時間乾燥して粒子塊を回収した。その粒子塊をジェットミルで粉砕することでアルミニウム酸化物を得た。
<炭素被覆の工程>
 上記製造例1に記載と同様の工程で炭素被覆を行った。
<BET比表面積>
 上記製造例1に記載と同様の工程で測定した。評価の結果、製造例3のアルミニウム酸化物のBET比表面積は30m/gであった。
<炭素被覆量及び含有水分量>
 また、上記のアルミニウム酸化物の炭素含有量を示差熱-熱重量分析装置(TG-DTA)TG-DTA-6200型(エスアイアイ・ナノテクノロジー株式会社製)を用いて、乾燥空気流通下、10℃/分の昇温速度で、850℃20分保持での質量減少率にて測定した。同様にまた、上記のアルミニウム酸化物の水分含有量を示差熱-熱重量分析装置(TG-DTA)を用いて、乾燥空気流通下、10℃/分の昇温速度で、350℃20分保持での質量減少率にて測定した。評価の結果、製造例3のアルミニウム酸化物の炭素被覆量及び含有水分量はそれぞれ24.7質量%、0.9質量%であった。
(実施例1)
 [正極の作製]
 正極板の作製を以下のように行った。正極活物質であるLi(Ni1/3Mn1/3Co1/3)O(平均粒径6μm)に、導電材としてアセチレンブラック(平均粒径50nm)と、製造例1で作製した炭素被覆アルミニウム酸化物と、結着材としてポリフッ化ビニリデン(PVDF)とを順次添加し、混合することにより正極材料の混合物を得た。
135 mL of hydrochloric acid having a concentration of 1 mol / L was added to the gel-like precipitate obtained after the supernatant was discharged for the third time in the desalting treatment, and the pH was adjusted to 3.5, followed by stirring for 30 minutes. The solution was then placed in a dryer and heated at 98 ° C. for 48 hours (2 days). To the solution after heating (aluminum oxide concentration 47 g / L), 188 mL of a 1 mol / L sodium hydroxide aqueous solution was added to adjust the pH to 9.1. By adjusting the pH, the aluminum oxide in the solution was aggregated, the aggregate was precipitated by the same centrifugation as described above, and then the supernatant was discharged. The desalting process of adding pure water to the precipitate after discharging the supernatant and returning to the volume before centrifugation was performed three times. The gel-like precipitate obtained after the third desalting of the desalting treatment was dried at 60 ° C. for 16 hours to obtain 30 g of powder.
<Process of carbon coating>
The above particles and polyvinyl alcohol powder (Wako Pure Chemical Industries, Ltd.) are mixed at a mass ratio of 100: 70 and baked at 850 ° C. for 1 hour in a nitrogen atmosphere, so that part or all of the surface is covered with carbon. Aluminum oxide was prepared.
<BET specific surface area>
The measurement was performed in the same process as described in Production Example 1 above. As a result of the evaluation, the BET specific surface area of the aluminum oxide of Production Example 2 was 13 m 2 / g.
<Carbon coverage and water content>
In addition, the carbon content of the above aluminum oxide was measured using a differential thermal-thermogravimetric analyzer (TG-DTA) TG-DTA-6200 type (manufactured by SII Nanotechnology Co., Ltd.) under the flow of dry air. The mass decrease rate was measured at a temperature increase rate of 850 ° C./min and held at 850 ° C. for 20 minutes. Similarly, the moisture content of the above aluminum oxide is maintained at 350 ° C. for 20 minutes at a heating rate of 10 ° C./min under a flow of dry air using a differential thermal-thermogravimetric analyzer (TG-DTA). It was measured by mass reduction rate at. As a result of the evaluation, the carbon coating amount and the water content of the aluminum oxide of Production Example 2 were 19.6% by mass and 2.7% by mass, respectively.
[Production Example 3] <Production process of carbon-coated aluminum oxide>
To an aluminum sulfate aqueous solution (800 mL) with an Al concentration of 1 mol / L, water glass (sodium silicate No. 3, Na 2 O.nSiO 2 .mH 2 O) (200 mL) with an Si concentration of 2 mol / L is added and stirred for 30 minutes. did. To this solution, 1900 mL of a 1 mol / L sodium hydroxide aqueous solution was added to adjust the pH to 7. The pH adjusted solution was stirred for 30 minutes and then desalted by filtration under reduced pressure. To the precipitate after the desalting treatment, 90 mL of sulfuric acid having a concentration of 1 mol / L was added to adjust to pH = 4, and the mixture was stirred for 30 minutes. The solution was then placed in a dryer and heated at 98 ° C. for 48 hours (2 days). After heating, 330 mL of a 1 mol / L sodium hydroxide aqueous solution was added to the solution to adjust the pH to 9. The salt in the solution was aggregated by adjusting the pH, and this aggregate was precipitated by the same vacuum filtration as described above, and then the supernatant was discharged to perform desalting. The precipitate obtained after the desalting treatment was dried at 110 ° C. for 16 hours to collect the particle mass. The particle mass was pulverized with a jet mill to obtain aluminum oxide.
<Process of carbon coating>
Carbon coating was performed in the same process as described in Production Example 1 above.
<BET specific surface area>
The measurement was performed in the same process as described in Production Example 1 above. As a result of the evaluation, the BET specific surface area of the aluminum oxide of Production Example 3 was 30 m 2 / g.
<Carbon coverage and water content>
In addition, the carbon content of the above aluminum oxide was measured using a differential thermal-thermogravimetric analyzer (TG-DTA) TG-DTA-6200 type (manufactured by SII Nanotechnology Co., Ltd.) under the flow of dry air. The mass decrease rate was measured at a temperature increase rate of 850 ° C./min and held at 850 ° C. for 20 minutes. Similarly, the moisture content of the above aluminum oxide is maintained at 350 ° C. for 20 minutes at a heating rate of 10 ° C./min under a flow of dry air using a differential thermal-thermogravimetric analyzer (TG-DTA). It was measured by mass reduction rate at. As a result of the evaluation, the carbon coating amount and the water content of the aluminum oxide of Production Example 3 were 24.7% by mass and 0.9% by mass, respectively.
(Example 1)
[Production of positive electrode]
The positive electrode plate was produced as follows. The positive electrode active material Li (Ni 1/3 Mn 1/3 Co 1/3 ) O 2 (average particle size 6 μm), acetylene black (average particle size 50 nm) as a conductive material, and carbon produced in Production Example 1 Coated aluminum oxide and polyvinylidene fluoride (PVDF) as a binder were sequentially added and mixed to obtain a mixture of positive electrode materials.
 正極活物質、アセチレンブラック(AB)及び炭素被覆アルミニウム酸化物の含有量は表1に示すように変更して作製した。尚、(正極活物質+アセチレンブラック+アルミニウム酸化物):結着材=94.5:5.5とした。 The positive electrode active material, acetylene black (AB) and carbon-coated aluminum oxide contents were prepared as shown in Table 1. Note that (positive electrode active material + acetylene black + aluminum oxide): binder = 94.5: 5.5.
 さらに上記混合物に対し、分散溶媒であるN-メチル-2-ピロリドン(NMP)を添加し、混練することによりスラリーを形成した。このスラリーを正極用の集電体である厚さ20μmのアルミニウム箔の両面に実質的に均等かつ均質に塗布した。その後、乾燥処理を施し、所定密度までプレスにより圧密化した。正極合剤密度は2.60g/cmとし、正極合剤の片面塗布量150g/mとした。 Further, N-methyl-2-pyrrolidone (NMP) as a dispersion solvent was added to the above mixture and kneaded to form a slurry. This slurry was applied substantially evenly and uniformly to both surfaces of a 20 μm thick aluminum foil as a positive electrode current collector. Then, the drying process was performed and it consolidated by the press to the predetermined density. The density of the positive electrode mixture was 2.60 g / cm 3, and the coating amount on one side of the positive electrode mixture was 150 g / m 2 .
 [負極の作製]
 負極板の作製を以下のように行った。負極活物質として平均粒径22μmの人造黒鉛を用いた。この負極活物質に結着材としてSBR(スチレン・ブタジエンゴム)、増粘材としてカルボキシメチルセルロース(商品名:CMC#2200、ダイセルファインケム株式会社製)を添加した。これらの質量比は、負極活物質:結着材:増粘材=98:1:1とした。これに分散溶媒である水を添加し、混練することによりスラリーを形成した。このスラリーを負極用の集電体である厚さ10μmの圧延銅箔の両面に実質的に均等かつ均質に所定量塗布した。負極合剤密度は1.65g/cmとし、負極合剤の片面塗布量73g/mとした。
(実施例2)
 実施例1に記載の正極活物質である層状型リチウム・ニッケル・マンガン・コバルト複合酸化物の割合を89.5質量%、導電材としてアセチレンブラックを4.5質量%、
製造例1で作製したアルミニウム酸化物を0.5質量%とし、他は実施例1と同様のプロセスで正極及び電池を作製した。アルミニウム酸化物の物性及び電池の組成を表1に示す。
(実施例3)
 実施例1に記載の正極活物質である層状型リチウム・ニッケル・マンガン・コバルト複合酸化物の割合を88質量%、導電材としてアセチレンブラックを4.5質量%、
製造例1で作製したアルミニウム酸化物を2.0質量%とし、他は実施例1と同様のプロセスで正極及び電池を作製した。アルミニウム酸化物の物性及び電池の組成を表1に示す。
(実施例4)
 実施例1に記載の正極活物質である層状型リチウム・ニッケル・マンガン・コバルト複合酸化物の割合を88質量%、導電材としてアセチレンブラックを4.5質量%、
製造例2で作製したアルミニウム酸化物を2.0質量%とし、他は実施例1と同様のプロセスで正極及び電池を作製した。アルミニウム酸化物の物性及び電池の組成を表1に示す。
(実施例5)
 実施例1に記載の正極活物質である層状型リチウム・ニッケル・マンガン・コバルト複合酸化物の割合を88質量%、導電材としてアセチレンブラックを4.5質量%、
製造例3で作製したアルミニウム酸化物を2.0質量%とし、他は実施例1と同様のプロセスで正極及び電池を作製した。アルミニウム酸化物の物性及び電池の組成を表1に示す。
(実施例6)
 実施例1に記載の正極活物質である層状型リチウム・ニッケル・マンガン・コバルト複合酸化物の割合を86質量%、導電材としてアセチレンブラックを4.5質量%、
製造例1で作製したアルミニウム酸化物を4.0質量%とし、他は実施例1と同様のプロセスで正極及び電池を作製した。アルミニウム酸化物の物性及び電池の組成を表1に示す。
(比較例1)
 実施例1に記載の正極活物質である層状型リチウム・ニッケル・マンガン・コバルト複合酸化物の割合を90質量%、導電材としてアセチレンブラックを4.5質量%とし、
アルミニウム酸化物を用いず、他は実施例1と同様のプロセスで正極及び電池を作製した。アルミニウム酸化物の物性及び電池の組成を表1に示す。
[Production of negative electrode]
The negative electrode plate was produced as follows. Artificial graphite having an average particle size of 22 μm was used as the negative electrode active material. To this negative electrode active material, SBR (styrene-butadiene rubber) was added as a binder, and carboxymethylcellulose (trade name: CMC # 2200, manufactured by Daicel Finechem Co., Ltd.) was added as a thickener. These mass ratios were negative electrode active material: binder: thickening material = 98: 1: 1. To this was added water as a dispersion solvent and kneaded to form a slurry. A predetermined amount of this slurry was applied to both surfaces of a rolled copper foil having a thickness of 10 μm, which is a negative electrode current collector, substantially uniformly and uniformly. The negative electrode mixture density was 1.65 g / cm 3, and the single-sided coating amount of the negative electrode mixture was 73 g / m 2 .
(Example 2)
The ratio of the layered lithium-nickel-manganese-cobalt composite oxide, which is the positive electrode active material described in Example 1, is 89.5% by mass, acetylene black is 4.5% by mass as a conductive material,
A positive electrode and a battery were produced in the same process as in Example 1 except that the aluminum oxide produced in Production Example 1 was 0.5% by mass. Table 1 shows the physical properties of the aluminum oxide and the battery composition.
(Example 3)
88% by mass of the layered lithium / nickel / manganese / cobalt composite oxide, which is the positive electrode active material described in Example 1, 4.5% by mass of acetylene black as a conductive material,
A positive electrode and a battery were produced in the same process as in Example 1 except that the aluminum oxide produced in Production Example 1 was 2.0% by mass. Table 1 shows the physical properties of the aluminum oxide and the battery composition.
Example 4
88% by mass of the layered lithium / nickel / manganese / cobalt composite oxide, which is the positive electrode active material described in Example 1, 4.5% by mass of acetylene black as a conductive material,
A positive electrode and a battery were produced in the same process as in Example 1 except that the aluminum oxide produced in Production Example 2 was 2.0 mass%. Table 1 shows the physical properties of the aluminum oxide and the battery composition.
(Example 5)
88% by mass of the layered lithium / nickel / manganese / cobalt composite oxide, which is the positive electrode active material described in Example 1, 4.5% by mass of acetylene black as a conductive material,
A positive electrode and a battery were produced in the same process as in Example 1 except that the aluminum oxide produced in Production Example 3 was 2.0% by mass. Table 1 shows the physical properties of the aluminum oxide and the battery composition.
(Example 6)
86% by mass of the layered lithium / nickel / manganese / cobalt composite oxide, which is the positive electrode active material described in Example 1, 4.5% by mass of acetylene black as a conductive material,
A positive electrode and a battery were produced in the same process as in Example 1 except that the aluminum oxide produced in Production Example 1 was 4.0% by mass. Table 1 shows the physical properties of the aluminum oxide and the battery composition.
(Comparative Example 1)
The proportion of layered lithium-nickel-manganese-cobalt composite oxide, which is the positive electrode active material described in Example 1, is 90% by mass, and acetylene black is 4.5% by mass as a conductive material,
A positive electrode and a battery were produced in the same process as in Example 1 except that no aluminum oxide was used. Table 1 shows the physical properties of the aluminum oxide and the battery composition.
 [電池の作製]ラミネート型電池の作製
 13.5cmの角形に切断した正極をポリエチレン製多孔質シートのセパレータ(商品名:ハイポア、旭化成株式会社製、厚さが30μm、「ハイポア」は登録商標)で挟み、さらに14.3cmの角形に切断した負極を重ね合わせて積層体を作製した。この積層体をアルミニウムのラミネート容器(商品名:アルミラミネートフィルム、大日本印刷株式会社製)に入れ、非水電解質(1MのLiPFを含むエチレンカーボネート/ジメチルカーボネート/ジエチルカーボネート=2.5/6/1.5混合溶液(体積比)に、混合溶液全量に対してビニレンカーボネートを1.0質量%添加したもの(宇部興産株式会社製)を1mL添加し、アルミニウムのラミネート容器を熱溶着させ、ラミネート型電池を作製した。
[サイクル特性の評価]
 サイクル特性は、以下のようにして算出した。
[Production of Battery] Production of Laminate Type Battery 13.5 cm 2 square cut positive electrode made of polyethylene porous sheet separator (trade name: Hypore, manufactured by Asahi Kasei Co., Ltd., 30 μm thick, “Hypore” is a registered trademark ) And further laminated with negative electrodes cut into 14.3 cm 2 squares to produce a laminate. This laminate is put into an aluminum laminate container (trade name: aluminum laminate film, manufactured by Dai Nippon Printing Co., Ltd.), and a non-aqueous electrolyte (ethylene carbonate / dimethyl carbonate / diethyl carbonate containing 1M LiPF 6 = 2.5 / 6). /1.5 mixed solution (volume ratio) added 1 mL of vinylene carbonate 1.0% by mass to the total amount of the mixed solution (manufactured by Ube Industries Co., Ltd.), thermally welded aluminum laminate container, A laminate type battery was produced.
[Evaluation of cycle characteristics]
The cycle characteristics were calculated as follows.
 サイクル特性は充放電を繰り返すサイクル試験にて評価した。充電は、50℃の環境下で作製したラミネート型のリチウム電池を、1Cの電流値で定電流充電を上限電圧4.2Vまで行い、続いて4.2Vで定電圧充電を行った。充電終止条件は、電流値0.01Cとした。放電は、50℃の環境下、1Cの電流値で定電流放電を3.0Vまで行った。この充放電を1000回繰り返し(1000サイクル)、以下の式によりサイクル特性を算出した。製造法1~3で作製した炭素被覆アルミニウム酸化物を適用した電池の結果を表1に示す。 Cycle characteristics were evaluated by cycle tests with repeated charge and discharge. For charging, a laminated lithium battery produced in an environment of 50 ° C. was subjected to constant current charging at a current value of 1 C up to an upper limit voltage of 4.2 V, and then constant voltage charging at 4.2 V. The charge termination condition was a current value of 0.01C. The discharge was performed at a constant current of 1 C up to 3.0 V in a 50 ° C. environment. This charge / discharge was repeated 1000 times (1000 cycles), and the cycle characteristics were calculated by the following formula. Table 1 shows the results of the batteries to which the carbon-coated aluminum oxides produced by the production methods 1 to 3 were applied.
 サイクル特性=(電流値1Cにおける1000サイクル目の放電容量/電流値1Cにおける3サイクル目の放電容量)×100 Cycle characteristics = (discharge capacity at 1000th cycle at current value 1C / discharge capacity at 3rd cycle at current value 1C) × 100
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例1~6に示す炭素被覆アルミニウム酸化物を添加した電池では、炭素被覆アルミニウム酸化物を正極合材に含まない比較例1の電池に対して、サイクル特性が向上することが確認できる。サイクル特性が向上する理由については定かではないが、以下のように推定している。アルミニウム酸化物は、表面に水酸基(-OH)が多く存在することからイオン交換能を有しており、電池の劣化の原因の一つである電解液中に含まれるフッ酸(HF)をアルミニウム酸化物が補足することで活物質劣化の抑制、及び電解質の分解反応を抑制し、サイクル特性が向上すると考えている。 It can be confirmed that in the batteries to which the carbon-coated aluminum oxides shown in Examples 1 to 6 are added, the cycle characteristics are improved as compared with the battery of Comparative Example 1 in which the carbon-coated aluminum oxide is not included in the positive electrode mixture. The reason why the cycle characteristics are improved is not clear, but is estimated as follows. Aluminum oxide has ion exchange capacity because of the presence of many hydroxyl groups (—OH) on the surface, and hydrofluoric acid (HF) contained in the electrolyte, which is one of the causes of battery deterioration, is converted to aluminum. It is believed that the supplementation by the oxide suppresses the deterioration of the active material and suppresses the decomposition reaction of the electrolyte, thereby improving the cycle characteristics.
 1 リチウムイオン二次電池
 2 正極 
 3 負極
 4 セパレータ
 5 電極群 
 6 電池容器
1 Lithium ion secondary battery 2 Positive electrode
3 Negative electrode 4 Separator 5 Electrode group
6 Battery container

Claims (6)

  1.  正極、負極、セパレータ、及び電解液、を備えるリチウムイオン二次電池であって、前記正極が、集電体と前記集電体に形成された正極合剤とを有し、前記正極合剤が、層状型リチウム・ニッケル・マンガン・コバルト複合酸化物及び、表面の一部又は全部が炭素で被覆されたアルミニウム酸化物を含むリチウムイオン二次電池。 A lithium ion secondary battery comprising a positive electrode, a negative electrode, a separator, and an electrolyte, wherein the positive electrode has a current collector and a positive electrode mixture formed on the current collector, and the positive electrode mixture is A lithium ion secondary battery comprising a layered lithium / nickel / manganese / cobalt composite oxide and an aluminum oxide having a part or all of its surface coated with carbon.
  2.  表面の一部又は全部が炭素で被覆されたアルミニウム酸化物の含有量が、前記正極合剤の全量に対して、0.01質量%以上5質量%以下である、請求項1に記載のリチウムイオン二次電池。 2. The lithium according to claim 1, wherein the content of the aluminum oxide whose surface is partially or entirely coated with carbon is 0.01% by mass or more and 5% by mass or less with respect to the total amount of the positive electrode mixture. Ion secondary battery.
  3.  前記アルミニウム酸化物のBET比表面積は、1m/g~30m/gである請求項1又は請求項2に記載のリチウムイオン二次電池。 The lithium ion secondary battery according to claim 1, wherein the aluminum oxide has a BET specific surface area of 1 m 2 / g to 30 m 2 / g.
  4.  前記表面の一部又は全部が炭素で被覆されたアルミニウム酸化物の示差熱-熱重量分析装置(TG-DTA)を用いて測定された25℃~350℃間の重量減少率が5%未満である、請求項1~請求項3のいずれか1項に記載のリチウムイオン二次電池 The weight loss rate between 25 ° C. and 350 ° C. measured using a differential thermal-thermogravimetric analyzer (TG-DTA) of aluminum oxide in which part or all of the surface is coated with carbon is less than 5%. The lithium ion secondary battery according to any one of claims 1 to 3, wherein
  5.  前記アルミニウム酸化物はイモゴライトである請求項1~請求項3のいずれか1項に記載のリチウムイオン二次電池。 The lithium ion secondary battery according to any one of claims 1 to 3, wherein the aluminum oxide is imogolite.
  6.  前記正極合剤は導電材を含み、前記導電材はアセチレンブラックである請求項1~請求項4のいずれか1項に記載のリチウムイオン二次電池。 The lithium ion secondary battery according to any one of claims 1 to 4, wherein the positive electrode mixture includes a conductive material, and the conductive material is acetylene black.
PCT/JP2015/083208 2014-12-17 2015-11-26 Lithium ion secondary cell WO2016098553A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020177016243A KR101983924B1 (en) 2014-12-17 2015-11-26 Lithium ion secondary cell
JP2016564757A JP6418250B2 (en) 2014-12-17 2015-11-26 Lithium ion secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-254730 2014-12-17
JP2014254730 2014-12-17

Publications (1)

Publication Number Publication Date
WO2016098553A1 true WO2016098553A1 (en) 2016-06-23

Family

ID=56126450

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/083208 WO2016098553A1 (en) 2014-12-17 2015-11-26 Lithium ion secondary cell

Country Status (3)

Country Link
JP (1) JP6418250B2 (en)
KR (1) KR101983924B1 (en)
WO (1) WO2016098553A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106340642A (en) * 2016-11-30 2017-01-18 烟台卓能电池材料股份有限公司 Long-circulation and high-capacity lithium battery positive electrode material and preparing method
WO2018179167A1 (en) * 2017-03-29 2018-10-04 日立化成株式会社 Material for lithium ion secondary batteries, positive electrode mixed material, positive electrode for lithium ion secondary batteries, and lithium ion secondary battery
JPWO2020066255A1 (en) * 2018-09-26 2021-08-30 パナソニックIpマネジメント株式会社 Positive electrode for secondary battery and secondary battery
WO2021184247A1 (en) * 2020-03-18 2021-09-23 宁德新能源科技有限公司 Positive electrode active material and electrochemical device containing same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005317266A (en) * 2004-04-27 2005-11-10 Sanyo Electric Co Ltd Method of manufacturing nonaqueous electrolyte battery
JP2013105677A (en) * 2011-11-15 2013-05-30 Hitachi Chemical Co Ltd Positive electrode for lithium ion secondary battery and lithium ion secondary battery using the same
JP2013127956A (en) * 2011-11-15 2013-06-27 Hitachi Chemical Co Ltd Binder for lithium-ion secondary battery
WO2014200063A1 (en) * 2013-06-12 2014-12-18 日立化成株式会社 Aluminum silicate complex, conductive material, conductive material for lithium ion secondary cell, composition for forming lithium ion secondary cell negative electrode, composition for forming lithium ion secondary cell positive electrode, negative electrode for lithium ion secondary cell, positive electrode for lithium ion secondary cell, and lithium ion secondary cell
JP2015170476A (en) * 2014-03-06 2015-09-28 トヨタ自動車株式会社 Method for manufacturing lithium ion secondary battery
JP2016004683A (en) * 2014-06-17 2016-01-12 日立化成株式会社 Lithium ion battery

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2782173B1 (en) * 2011-11-15 2018-11-07 Hitachi Chemical Company, Ltd. Use of material in a lithium-ion rechargeable battery material and lithium-ion rechargeable battery comprising the material
US20140370346A1 (en) 2012-02-29 2014-12-18 Shin-Kobe Electric Machinery Co., Ltd. Lithium Ion Battery
KR20140041312A (en) * 2012-09-27 2014-04-04 가부시키가이샤 히타치세이사쿠쇼 Positive electrode for lithium ion secondary battery, lithium ion secondary battery, and battery system
US11031600B2 (en) * 2014-12-17 2021-06-08 Lg Energy Solution, Ltd. Lithium ion secondary battery including aluminum silicate

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005317266A (en) * 2004-04-27 2005-11-10 Sanyo Electric Co Ltd Method of manufacturing nonaqueous electrolyte battery
JP2013105677A (en) * 2011-11-15 2013-05-30 Hitachi Chemical Co Ltd Positive electrode for lithium ion secondary battery and lithium ion secondary battery using the same
JP2013127956A (en) * 2011-11-15 2013-06-27 Hitachi Chemical Co Ltd Binder for lithium-ion secondary battery
WO2014200063A1 (en) * 2013-06-12 2014-12-18 日立化成株式会社 Aluminum silicate complex, conductive material, conductive material for lithium ion secondary cell, composition for forming lithium ion secondary cell negative electrode, composition for forming lithium ion secondary cell positive electrode, negative electrode for lithium ion secondary cell, positive electrode for lithium ion secondary cell, and lithium ion secondary cell
JP2015170476A (en) * 2014-03-06 2015-09-28 トヨタ自動車株式会社 Method for manufacturing lithium ion secondary battery
JP2016004683A (en) * 2014-06-17 2016-01-12 日立化成株式会社 Lithium ion battery

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106340642A (en) * 2016-11-30 2017-01-18 烟台卓能电池材料股份有限公司 Long-circulation and high-capacity lithium battery positive electrode material and preparing method
WO2018179167A1 (en) * 2017-03-29 2018-10-04 日立化成株式会社 Material for lithium ion secondary batteries, positive electrode mixed material, positive electrode for lithium ion secondary batteries, and lithium ion secondary battery
JPWO2018179167A1 (en) * 2017-03-29 2020-01-09 日立化成株式会社 Lithium ion secondary battery material, positive electrode mixture, positive electrode for lithium ion secondary battery and lithium ion secondary battery
JPWO2020066255A1 (en) * 2018-09-26 2021-08-30 パナソニックIpマネジメント株式会社 Positive electrode for secondary battery and secondary battery
JP7300680B2 (en) 2018-09-26 2023-06-30 パナソニックIpマネジメント株式会社 Positive electrode for secondary battery and secondary battery
WO2021184247A1 (en) * 2020-03-18 2021-09-23 宁德新能源科技有限公司 Positive electrode active material and electrochemical device containing same
CN115066768A (en) * 2020-03-18 2022-09-16 宁德新能源科技有限公司 Positive electrode active material and electrochemical device comprising same
CN115066768B (en) * 2020-03-18 2023-09-01 宁德新能源科技有限公司 Positive electrode active material and electrochemical device including the same

Also Published As

Publication number Publication date
KR101983924B1 (en) 2019-05-29
KR20170083609A (en) 2017-07-18
JP6418250B2 (en) 2018-11-07
JPWO2016098553A1 (en) 2017-09-28

Similar Documents

Publication Publication Date Title
JP6099881B2 (en) Negative electrode active material, method for producing the same, and lithium battery including the same
JP6766143B2 (en) Method for manufacturing negative electrode active material for lithium ion secondary battery, mixed negative electrode active material for lithium ion secondary battery, and negative electrode active material for lithium ion secondary battery
JP2010165580A (en) Manufacturing method of negative electrode active material for non-aqueous electrolyte secondary battery, negative electrode active material for non-aqueous electrolyte secondary battery, negative electrode, and non-aqueous electrolyte secondary battery
JP6418250B2 (en) Lithium ion secondary battery
JP2016115598A (en) Lithium ion secondary battery
JP6245382B2 (en) Lithium ion secondary battery
JP6897707B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP2016091927A (en) Lithium ion secondary battery
JP2017228434A (en) Lithium ion secondary battery
KR102439849B1 (en) Negative active material for rechargeable lithium battery, and rechargeable lithium battery including the same
JP2016004683A (en) Lithium ion battery
JP6895988B2 (en) Materials for lithium-ion secondary batteries, positive electrode mixture, positive electrodes for lithium-ion secondary batteries and lithium-ion secondary batteries
JP2022010459A (en) Lithium ion secondary battery
JP2017199488A (en) Lithium ion battery
JP2016115611A (en) Lithium ion battery
JP6883230B2 (en) Materials for lithium-ion secondary batteries, positive electrode mixture, positive electrodes for lithium-ion secondary batteries and lithium-ion secondary batteries
JP2017228435A (en) Lithium ion secondary battery
JP2017134914A (en) Positive electrode material for lithium ion secondary battery, positive electrode mixture for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2022138855A1 (en) Positive electrode for secondary battery, and secondary battery
JP2016115610A (en) Lithium ion battery
WO2015190480A1 (en) Lithium ion secondary cell
JP2016115597A (en) Lithium ion battery
JP2017188404A (en) Lithium ion secondary battery
JP2017027813A (en) Lithium ion secondary battery
JP2016139549A (en) Lithium ion battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15869761

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016564757

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177016243

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15869761

Country of ref document: EP

Kind code of ref document: A1