WO2016098247A1 - Analysis apparatus - Google Patents

Analysis apparatus Download PDF

Info

Publication number
WO2016098247A1
WO2016098247A1 PCT/JP2014/083707 JP2014083707W WO2016098247A1 WO 2016098247 A1 WO2016098247 A1 WO 2016098247A1 JP 2014083707 W JP2014083707 W JP 2014083707W WO 2016098247 A1 WO2016098247 A1 WO 2016098247A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
measurement
measurement target
analysis
region
Prior art date
Application number
PCT/JP2014/083707
Other languages
French (fr)
Japanese (ja)
Inventor
建悟 竹下
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to PCT/JP2014/083707 priority Critical patent/WO2016098247A1/en
Publication of WO2016098247A1 publication Critical patent/WO2016098247A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode

Definitions

  • the present invention relates to an analyzer, and more specifically, performs a predetermined analysis on each of a large number of measurement points in a two-dimensional region on a sample to acquire information about the sample near the measurement point, and the information thus collected
  • the present invention relates to an analyzer for examining the distribution of sample components and sample surface states in the two-dimensional region.
  • examples of the analyzer according to the present invention include an imaging mass spectrometer, a Fourier transform infrared spectrophotometry (FTIR) imaging apparatus, a Raman spectroscopic imaging apparatus, an electron beam microanalyzer, a scanning probe microscope, and the like.
  • Mass spectrometry imaging is a technique for examining the distribution of substances having a specific mass by performing mass analysis on each of a plurality of measurement points (microregions) in a two-dimensional region of a sample such as a biological tissue section. Applications for searching for drugs and biomarkers and for investigating the causes of various diseases and diseases are being promoted.
  • a mass spectrometer for performing mass spectrometry imaging is generally called an imaging mass spectrometer (see Non-Patent Document 1, etc.).
  • an imaging mass spectrometer since a microscopic observation is usually performed on an arbitrary two-dimensional region on a sample, an analysis target region is determined based on the microscopic observation image, and an imaging mass analysis of the region is executed. In this specification, it is referred to as an “imaging mass spectrometer”.
  • FIG. 6 is a schematic explanatory diagram of data obtained by the imaging mass spectrometer and imaging image display based on the data.
  • mass spectrum data in a predetermined mass-to-charge ratio m / z range is acquired at each of a large number of measurement points (micro regions) 102 set in a two-dimensional measurement target region 101 on the sample 100. Is done.
  • a time-of-flight mass analyzer (TOFMS) is usually used as a mass analyzer in order to realize high mass resolution. Therefore, the amount of data of mass spectrum data (or time-of-flight spectrum data) per measurement point is considerably larger than the amount of data of mass spectrum data obtained by, for example, a quadrupole mass spectrometer.
  • TOFMS time-of-flight mass analyzer
  • the amount of data of mass spectrum data (or time-of-flight spectrum data) per measurement point is considerably larger than the amount of data of mass spectrum data obtained by, for example, a quadrupole mass spectrometer.
  • it is necessary to narrow the interval between measurement points that is, increase the density
  • the total amount of data per sample is enormous.
  • JP 2013-40808 A International Publication No. 2014/175211
  • the rapid increase in the amount of data obtained by the imaging mass spectrometer is becoming a hindrance when the above data analysis processing is executed by a personal computer (or a higher performance workstation).
  • the volume of data obtained for one sample was several hundred MB to several GB, and at most several tens of GB.
  • the data capacity increases, and it is not uncommon for the data capacity to exceed 100 GB. For this reason, simply performing operations such as data copying and backup on a commonly used computer may cause trouble and difficulty in handling data files.
  • a heavy load is applied both in terms of hardware and software, and the calculation time may become abnormally long. In some cases, the processing is interrupted due to insufficient memory capacity during the processing.
  • Such a situation can occur not only in an imaging mass spectrometer but also in other analyzers that collect data by executing analysis at each of a large number of measurement points on a sample.
  • an analyzer for example, an FTIR imaging device that acquires an infrared absorption spectrum by Fourier transform infrared spectrophotometry at a number of measurement points on a sample, and a Raman scattering spectrum by Raman spectroscopy at a number of measurement points on a sample.
  • Spectroscopic Raman imaging apparatus electron beam microanalyzer for acquiring the spectrum showing the relationship between the energy and intensity of characteristic X-rays emitted from the sample at many measurement points on the sample, respectively, on the sample, on the sample
  • a scanning probe microscope that measures various physical properties such as surface potential and dielectric constant can be used.
  • the present invention has been made in view of the above problems, and as described above, in an analyzer that acquires spectra and signal values at each of a large number of measurement points on a sample, it is easy to handle a large volume of data obtained by measurement.
  • the main purpose is to reduce the analysis processing load on the computer and improve the efficiency of the analysis work.
  • the first aspect of the present invention which is made to solve the above-mentioned problem, is associated with the spatial position information of each measurement point by executing a predetermined analysis for each of the plurality of measurement points on the sample.
  • an analyzer that acquires analysis result information, a) an area setting unit for setting the measurement target area on the sample; b) a region dividing unit that divides the measurement target region set by the region setting unit into a plurality of small regions according to a predetermined condition; c)
  • the analysis result information respectively obtained for all measurement points in the measurement target region set by the region setting unit is associated with each of a plurality of small regions after being divided by the region dividing unit.
  • a file storage unit for storing a plurality of data files stored separately, d) When an imaging image showing the distribution of predetermined information in the measurement target region is created, necessary data is acquired from one data file stored in the file storage unit, and one based on the data is obtained.
  • An imaging image reproduction unit that repeats the process of creating an imaging image for one small region for a plurality of data files and combines the imaging images for the plurality of small regions to create a desired imaging image for the entire measurement target region; It is characterized by having.
  • the second aspect of the present invention which has been made to solve the above-mentioned problems, is associated with the spatial position information of each measurement point by executing a predetermined analysis for each of the plurality of measurement points on the sample.
  • an analyzer for acquiring spectral information indicating a relationship between a predetermined parameter and signal intensity a) an area setting unit for setting the measurement target area on the sample; b) Spectral information respectively obtained for all measurement points in the measurement target region is divided into data files corresponding to the parameter subranges obtained by dividing the range of the predetermined parameter values into a plurality of ranges, A file creation unit for storing the plurality of data files in a file storage unit; c) When creating an imaging image showing the distribution of predetermined information in the measurement target region, the necessary data is obtained from at least one data file stored in the file storage unit, and based on the data
  • An imaging image reproduction unit for creating a desired imaging image for the entire measurement target region It is characterized by having.
  • An exemplary embodiment of the analyzer according to the first and second aspects of the present invention is an imaging mass spectrometer.
  • the “analysis result information” in the analyzer according to the first aspect is mass spectrum data over a predetermined mass-to-charge ratio range.
  • the “predetermined parameter” is a mass-to-charge ratio
  • “spectrum information indicating the relationship between the predetermined parameter and signal intensity” is a mass over a predetermined mass-to-charge ratio range.
  • the “imaging image showing the distribution of predetermined information” is an imaging image showing the ion intensity distribution at a specific mass-to-charge ratio.
  • the “mass spectrum” may be a “time-of-flight spectrum” expressed by a flight time before conversion into a mass-to-charge ratio.
  • the mass spectrometer is a mass spectrometer capable of MS n analysis, such as an ion trap mass spectrometer, an ion trap time-of-flight mass spectrometer, a tandem quadrupole mass spectrometer, and a Q-TOF mass spectrometer.
  • the “mass spectrum” includes “MS n spectrum”.
  • the analyzer according to the first aspect of the present invention is not limited to the imaging mass spectrometer, and may be, for example, the above-described FTIR imaging apparatus, Raman spectroscopic imaging apparatus, electron beam microanalyzer, scanning probe microscope, or the like.
  • the analyzer which concerns on the 2nd aspect of this invention should just be what can obtain spectrum information in these analyzers.
  • the region setting unit sets a measurement target region on the sample according to, for example, an analyst's operation.
  • the region setting unit displays an optical microscopic observation image on the sample on the screen of the display unit, and the analyst designates an appropriate two-dimensional region on the display screen.
  • the designated area can be set as the measurement target area.
  • the region setting unit may automatically extract and set a specific region worthy of attention by image recognition processing under a predetermined condition for the microscopic observation image.
  • one data file is associated with each small area obtained by dividing the measurement target area set by the area setting unit as described above.
  • one data file is associated with each parameter small range obtained by dividing a range of predetermined parameter values such as a mass-to-charge ratio into a plurality of ranges.
  • the file storage unit stores a plurality of data files in which analysis result information is stored in association with the plurality of small areas.
  • an operation for creating a data file and saving it in the file storage unit one of two methods can be adopted. One of them is to acquire analysis result information by a predetermined analysis for all measurement points included in the measurement target area, and after that, the analysis result information is divided into a plurality of small areas in association with each other. This is a so-called batch processing method in which a data file is created and each of the data files is stored in a file storage unit.
  • the other one is a so-called sequential processing method in which each time analysis result information for one small area is obtained, a data file storing the analysis result information is created and stored in the file storage unit.
  • the analyzer according to the first aspect of the present invention is: A control unit that performs analysis control so as to execute a predetermined analysis on the measurement points included in each small region and acquire analysis result information for each of the small regions after being divided by the region dividing unit When, Under the control of the control unit, every time analysis result information for one small region is obtained, a file creation unit that creates one data file storing the analysis result information and saves it in the file storage unit; , It is good to set it as the structure further provided.
  • the former method requires a memory that temporarily stores analysis result information for all measurement points, whereas the latter method temporarily stores analysis result information for all measurement points in one small area. Since it is sufficient to prepare a memory for storage, the capacity of the temporary storage memory can be reduced.
  • the file creation unit performs an analysis result by a predetermined analysis with respect to all measurement points included in the measurement target region. After the information is acquired, the analysis result information is divided in correspondence with the plurality of parameter subranges, and the analysis result information included in the same parameter subrange at different measurement points is stored in the same data file.
  • a configuration may be adopted in which a file is created and the plurality of data files are stored in the file storage unit.
  • information necessary for creating an imaging image showing a distribution of predetermined information in the entire measurement target region is dispersed in a plurality of data files. Therefore, when creating such an imaging image, the imaging image reproduction unit obtains necessary data from a plurality of data files stored in the file storage unit, and creates a desired imaging image using the data. .
  • information necessary for creating a mass spectrometry imaging image at a specific mass-to-charge ratio is stored in one data file. What is necessary is just to acquire required data from a file and create an imaging image using the data.
  • any of the analyzers according to the first and second aspects of the present invention a large amount of data obtained by performing analysis on the measurement target region on the sample is divided into a plurality of pieces. Stored in a data file. Therefore, handling of the data file becomes easy. For example, even when it is desired to display a high resolution (high spatial resolution) imaging image in the analyzer according to the first aspect, a partial imaging image is created for each data file corresponding to a small area, and finally What is necessary is just to obtain the imaging image of the whole measurement object area
  • the number of divisions for dividing the measurement target region into small regions and the number of divisions for dividing a predetermined parameter value range into parameter small ranges may be values unique to the apparatus or may be set from the outside. However, the volume of data stored in one data file may be suppressed to a predetermined value or less.
  • the region dividing unit includes a plurality of the measurement target regions under a condition that the capacity of data stored in one data file is equal to or less than a predetermined value. It may be configured to be divided into small areas.
  • the first aspect and the second aspect according to the present invention can be used in combination. That is, the measurement target region is divided into a plurality of small regions according to a predetermined condition, and for each small region, the spectrum information obtained for each measurement point included in the small region is converted to a predetermined parameter value range. May be divided into small parameter ranges divided into a plurality. Thereby, the amount of data allocated to one data file can be further reduced.
  • the analyzer even if a large amount of data is obtained by performing analysis on the measurement target region on the sample, it can be divided into a plurality of data and stored in a plurality of data files. Data files can be handled easily. In addition, even if the capacity of one data file is small and it is desired to create an imaging image of the entire measurement target area, a process for reading out all the data to the temporary storage memory is not necessary, so a data analysis process is performed. The load on computer hardware and software can be reduced. As a result, it is possible to create and display high-resolution and high-resolution imaging images while using a computer with a relatively low speed and a small storage capacity that has been used by users. In addition, in the future, even if the resolution and resolution increase further and the amount of data obtained for one sample becomes even larger, it can be handled by increasing the number of data files. It is not necessary to update the hardware.
  • 1 is a schematic configuration diagram of an imaging mass spectrometer that is an embodiment of an analyzer according to the present invention.
  • 5 is a control / processing flowchart when performing measurement in the imaging mass spectrometer of the present embodiment.
  • FIG. 1 is a schematic configuration diagram of the imaging mass spectrometer of the present embodiment.
  • the imaging mass spectrometer performs mass analysis on each of a large number of two-dimensional measurement points on a sample, and a mass spectrum in a predetermined mass-to-charge ratio range for each measurement point (a “pixel” described later).
  • An imaging mass spectrometer 1 that acquires data
  • a control / processor 2 that controls the imaging mass analyzer 1 and executes various data processing on the data obtained by the imaging mass analyzer 1, and an imaging mass analyzer 1.
  • a large-capacity external storage device 4 such as a hard disk drive (HDD) or solid state drive (SSD) that stores the data acquired in 1, an operation unit 5 operated by an analyst, and a display unit that displays analysis results and the like 6.
  • HDD hard disk drive
  • SSD solid state drive
  • the imaging mass spectrometer 1 performs an optical observation of a sample placed on a movable sample stage 11 and mass analysis of a measurement point of the sample on the sample stage 11, that is, a micro region.
  • Matrix assisted laser desorption ionization (MALDI) -ion trap (IT) -mass analyzer 13 which is a time-of-flight mass spectrometer (TOFMS).
  • the mass spectrometric unit 13 irradiates a sample with laser light in an air atmosphere to ionize components in the sample.
  • the MALDI laser irradiation unit 131 collects ions generated from the sample and transports them to a vacuum atmosphere.
  • the control / processing unit 2 includes an analysis control unit 21, a measurement region setting unit 22, a region division unit 23, a division condition storage unit 24, a measurement condition storage unit 25, a data collection unit 31, a mass spectrum creation unit 32, and an optical image data storage.
  • Function blocks such as a temporary storage memory 33 in which an area 331 and a spectrum data storage area 332 are prepared, a data file creation unit 34, a low resolution file creation unit 35, a multivariate analysis processing unit 36, and an imaging image creation processing unit 37 are provided.
  • the entity of the control / processing unit 2 is a personal computer (or higher performance workstation) including a CPU, RAM, ROM, etc., and operates dedicated control / processing software installed on the computer on the computer. As a result, the functional blocks as described above are realized. Further, the external storage device 4 is provided with a data file storage area 42 and a low resolution data file storage area 41.
  • FIG. 2 is a control / processing flowchart at the time of measurement execution in the imaging mass spectrometer of the present embodiment
  • FIG. 3 is an explanatory diagram of an example of division of the measurement target region in the imaging mass spectrometer of the present embodiment.
  • a measurement object cut out from a living tissue is placed on a sample plate, and a sample 100 is prepared by applying an appropriate matrix to the surface.
  • the analyst sets the sample 100 on the sample stage 11 and performs a predetermined operation for optical observation using the operation unit 5.
  • the observation unit 12 captures an image on the sample 100
  • the control / processing unit 2 receiving the image data displays the image on the screen of the display unit 6 and also stores the image in the temporary storage memory 33. It is stored in the optical image data storage area 331.
  • the analyst designates an appropriate measurement target region on the sample 100 with the operation unit 5 with reference to the displayed image.
  • the analyst appropriately sets measurement conditions such as a mass-to-charge ratio range and spatial resolution (step S1). Of course, such measurement conditions may be defaults regardless of the analyst's settings.
  • Information indicating the set measurement conditions and the measurement target area is stored in the measurement condition storage unit 25.
  • the measurement region setting unit 22 determines whether or not the measurement target region needs to be divided based on the set measurement target region and the division condition stored in the division condition storage unit 24. Is determined (steps S2 and S3).
  • the division condition is a condition for limiting the maximum amount of data stored in one data file corresponding to one small area after division. For example, the maximum value of the number of measurement points included in one small area (For example, tens of thousands of pixels to hundreds of thousands of pixels) is a division condition. Since one measurement point corresponds to one pixel on the imaging image, in the following description, the unit of the number of measurement points is pixel.
  • This division condition may be determined as a value unique to the apparatus, or may be set by the analyst from the operation unit 5.
  • step S4 If the number of measurement points included in the set measurement target area is smaller than the maximum value of the number of measurement points defined by the division condition, it is not necessary to divide the measurement target area. In that case, it is determined No in step S3, step S4 is passed, and the process proceeds to step S5.
  • the area division unit 23 divides the measurement target area into a plurality of small areas based on the division condition (step S4). That is, the number of measurement points included in one small region may be set to be equal to or less than the maximum value of the number of measurement points determined by the division condition.
  • a maximum value of the number of measurement points may be determined in each of the biaxial directions, and mechanically divided by the position of the maximum value.
  • the size of the measurement target area is 2000 pixels in the x-axis direction and 800 pixels in the y-axis direction.
  • the division condition is that the maximum value of the number of measurement points included in one small area is 65536 pixels, and the maximum size of the small area is a rectangular shape of 256 ⁇ 256 pixels.
  • 32 small areas are set as shown in FIG. 3B.
  • consecutive numbers are assigned to the small areas, and the consecutive numbers are indicated by #n, where n is 1 to 32.
  • the small areas # 1 to # 7, # 9 to # 15, and # 17 to # 23 have a size of 256 ⁇ 256 pixels.
  • the small areas # 8, # 16, and # 24 have a size of 208 ⁇ 256 pixels.
  • the small areas # 25 to # 31 have a size of 256 ⁇ 32 pixels.
  • the small area # 32 has a size of 208 ⁇ 32 pixels.
  • FIG. 3C is an example of a display image in such a case.
  • the analysis control unit 21 starts the measurement in response to the instruction.
  • the analysis control unit 21 determines whether or not there is a division of the measurement target region (step S6). Then, when there is no division, the analysis control unit 21 operates the imaging mass analysis unit 1 and sequentially executes measurement for each measurement point in the measurement target region set on the sample 100 (step S7).
  • the sample stage 11 is moved by a drive mechanism (not shown) so that the measurement point that is the first measurement target comes to the irradiation position of the laser beam.
  • a pulsed laser beam is irradiated from the MALDI laser irradiation unit 131 to the measurement point, the components in the sample 100 existing near the irradiation site are ionized.
  • the generated ions are transferred into the vacuum atmosphere through the ion introduction part 132, converged by the ion guide 133, introduced into the ion trap 134, and temporarily held.
  • the ions held in the ion trap 134 are ejected all at a predetermined timing, introduced into the flight space in the flight tube 135, and fly through the flight space to reach the detector 136. While flying in the flight space, various ions are separated according to the mass-to-charge ratio, and reach the detector 136 in ascending order of the mass-to-charge ratio.
  • An analog detection signal from the detector 136 is converted into digital data by an analog-digital converter (not shown) and input to the data collection unit 31.
  • This data is time-of-flight spectrum data showing the relationship between ion flight time and ion intensity, and the mass spectrum creation unit 32 converts the time-of-flight into a mass-to-charge ratio, thereby converting the mass spectrum data from the time-of-flight spectrum data.
  • Ask. This mass spectrum data is stored in the spectrum data storage area 332 of the temporary storage memory 33.
  • step 1 Since the amount of ions obtained by a single laser beam irradiation is small and the variation in the amount of ions is large, a plurality of measurements are performed at the same measurement point, and the measurement is performed a plurality of times.
  • the time-of-flight spectrum data obtained in step 1 is integrated to obtain time-of-flight spectrum data for one measurement point, and a mass spectrum is obtained from this.
  • the sample stage 11 When the mass spectrum data for a certain measurement point is stored in the temporary storage memory 33 as described above, the sample stage 11 is moved so that the measurement point to be measured next comes to the laser beam irradiation position.
  • the measurement is terminated.
  • the data file creation unit 34 creates one data file in which the mass spectrum data for the entire measurement target area stored in the spectrum data storage area 332 of the temporary storage memory 33 is stored.
  • the data file is saved in the data file storage area 42 of the external storage device 4 (step S8).
  • the low-resolution file creation unit 35 may create a low-resolution data file, which will be described later.
  • step S6 If it is determined in step S6 that there is a division, the analysis control unit 21 sets the variable N to 1 (step S9), and each measurement included in the small region #N determined by the region division process in step S4. Mass analysis is performed on the point (step S10).
  • the procedure of mass spectrometry is as described above, and the only difference is that the measurement points to be measured are limited to one small region. For example, in the example of FIG. 3, since there are a maximum of 256 ⁇ 256 measurement points in one small region, mass spectrum data is obtained for each of the measurement points, and the data is stored in the spectrum of the temporary storage memory 33. It is stored in the data storage area 332.
  • the data file creation unit 34 stores the mass spectrum data for one small area stored in the spectrum data storage area 332 of the temporary storage memory 33. Is created, and this data file is stored in the data file storage area 42 of the external storage device 4 (step S11). After that, the analysis control unit 21 determines whether or not the variable N is the total number of small areas for the measurement target area, that is, the number of divisions (step S12). If the variable N has reached the total number of small areas, the process ends.
  • step S13 the process returns to step S10, and the measurement for the next unmeasured small area is executed. Therefore, by repeating steps S10 to S13, mass analysis is performed on measurement points included in all the small regions obtained by dividing the measurement target region, and the obtained mass spectrum data is obtained for each small region.
  • the data files are stored in the data file storage area 42 of the external storage device 4 as different data files.
  • one data file stored in the external storage device 4 includes a header area and a data area, and the header area is a data file corresponding to one measurement target area.
  • File division information such as information indicating information indicating which position in a measurement target region is a small region is stored.
  • the measurement target region designated by the analyst when the measurement target region designated by the analyst is wide and the amount of data obtained from the measurement target region increases, the measurement target region includes a plurality of small measurement target regions. It is automatically divided into areas, and an independent data file is created for each small area.
  • the measurement target region designated by the analyst when the measurement target region designated by the analyst is narrow and the amount of data obtained from the measurement target region is small, one data file for the entire measurement target region is created as in the prior art.
  • a process for displaying an imaging image for a measurement target area in a state where a plurality of data files for one measurement target area is stored in the external storage device 4 as described above will be described.
  • the imaging image creation processing unit 37 accesses the data file corresponding to one small area included in the measurement target area, which is stored in the data file storage area 42 of the external storage device 4, and the small file.
  • the resolution (spatial resolution) of the imaging image is high, this corresponds to a part of the measurement target region.
  • an imaging image for one small region is obtained, it is displayed on the screen of the display unit 6 in order, so that the imaging image is displayed. It is possible to reduce the waiting time when no display is performed.
  • the imaging mass spectrometer of the present embodiment when the measurement target area specified by the analyst is wide and the amount of data to be obtained is enormous, data for each small area obtained by dividing the measurement target area into a plurality of areas. Mass spectral data can be saved in separate files. As a result, handling of the data file becomes easy, and the load on the hardware and software when handling the data file is reduced.
  • the imaging mass spectrometer of the present embodiment also includes a low-resolution data file mainly used for multivariate analysis in addition to a normal data file capable of creating a high-definition image. It is prepared so that it can be saved in the low resolution data file storage area 41 of the external storage device 4.
  • step S8 when creating one data file in which mass spectrum data for the entire measurement target region is stored, the low resolution file creation unit 35 concurrently or after the creation of the data file is completed.
  • Reduce the amount of data Specifically, for example, the number of measurement points is reduced by appropriately thinning out the measurement points, data points in the mass-to-charge ratio direction at each measurement point are down-sampled, and the number of bits of signal intensity value data is reduced.
  • One or more methods can be used. More preferably, instead of simply thinning out the measurement points, the amount of data may be reduced by performing a binning process on data obtained at adjacent measurement points. Such processing corresponds to processing for creating a thumbnail image for a high-definition imaging image.
  • the data file whose data amount is greatly reduced is stored in the low resolution data file storage area 41 of the external storage device 4.
  • a data file is created that significantly reduces the amount of mass spectral data for the entire measurement target area.
  • the data is stored in the low resolution data file storage area 41 of the external storage device 4.
  • the multivariate analysis processing unit 36 When performing multivariate analysis processing for the purpose of searching for a characteristic mass-to-charge ratio in the measurement target region, the multivariate analysis processing unit 36 stores the low-resolution data file in the external storage device 4. Data is read from the area 41, and a predetermined multivariate analysis process using the data, for example, principal component analysis is performed. Although the resolution and resolution of the data used at this time are low, there is usually no problem in grasping the distribution tendency in the entire measurement target region by the multivariate analysis processing. Alternatively, the multivariate analysis may be performed using only the main region among the divided measurement target regions.
  • the mass-to-charge ratio is handled from the data file stored in the data file storage area 42 of the external storage device 4.
  • the data to be read may be read out and a high-definition imaging image may be created and displayed based on the data.
  • the size of the data file to be handled can be reduced, and the hardware load can be reduced.
  • FIG. 4 is an explanatory diagram of another example of division of the measurement target region.
  • a plurality of measurement points at positions separated by L measurement point intervals in the x-axis and y-axis directions in the measurement target region 101 are obtained as a group for the measurement points.
  • Mass spectrum data is stored in the same data file.
  • the measurement points from which the mass spectrum data stored in the same data file are not necessarily adjacent or close to each other on the sample.
  • the measurement target area is divided as shown in FIG. 4, when an imaging image having a specific mass-to-charge ratio is created using data read from one data file stored in the external storage device 4, the measurement target area is Rather than a part of the high-resolution image, a rough, that is, low-resolution image of the entire measurement target area is obtained.
  • the creation and connection of imaging images based on data from a plurality of data files are sequentially advanced, the resolution of the imaging image with respect to the entire measurement target region gradually increases. Therefore, by displaying such an imaging image on the screen of the display unit 6, when an analyst sees an imaging image with a low resolution and recognizes that the image is not a desired image, the processing is stopped even during the imaging image creation process. be able to.
  • the measurement target area is divided into a plurality of small areas, and the data files are respectively divided.
  • the data amount stored in one data file is within a predetermined amount.
  • data division in the mass-to-charge ratio direction may be performed instead of spatial division.
  • FIG. 5 is an explanatory diagram of an example of data division in an imaging mass spectrometer of another embodiment.
  • the mass spectrum data is divided into n pieces in the mass-to-charge ratio direction, and the mass spectrum data obtained for all measurement points in the measurement target region is divided into n pieces, and the same mass charge is obtained at different measurement points.
  • the data included in the ratio range in the same data file all the data is stored in n data files in total. In this case, for example, if it is desired to create an imaging image for the mass-to-charge ratio included in the mass-to-charge ratio range of M 3 , it is only necessary to read data from only the data file of # 3. There is no need to read data across.
  • this invention applies not only to an imaging mass spectrometer but to each of many measurement points set in the measurement object area
  • the present invention can be applied to various analyzers that acquire some spectrum information and signal values.
  • the FTIR imaging apparatus Fourier transform infrared spectrophotometry is performed on a large number of measurement points in a measurement target region on a sample, and infrared absorption spectra are respectively acquired.
  • Raman spectroscopic imaging apparatus Raman spectroscopic measurement is performed on a large number of measurement points in the measurement target region on the sample, and a Raman scattering spectrum is acquired.
  • the electron beam microanalyzer an electron beam is irradiated as an excitation beam to each of a large number of measurement points in a measurement target region on the sample, thereby showing the relationship between the energy and intensity of characteristic X-rays emitted from the sample. Acquire each spectrum.
  • an atomic force microscope such as a scanning probe microscope measures various physical properties such as surface potential and dielectric constant in addition to sample height information at a large number of measurement points in a measurement target region on the sample. Therefore, in these analyzers, similarly to the imaging mass spectrometer described above, if the measurement target area is divided into a plurality of small areas, and data files for storing data are divided into the small areas, the data files are handled. It becomes easy.

Abstract

When a measurement target region on a sample is set (S1), the need for division of the measurement target region is determined according to division conditions, such as the maximum data size of a file (S2-S3). If the measurement target region is large and needs to be divided, the measurement target region is divided into a plurality of small regions (S4) according to the division conditions. When measurement is started, in each small region, mass analysis is sequentially conducted at measurement points included in that small region (S10). Once measurement at one small region is completed, a data file in which that measurement data is stored is created and is saved in an external storage device (S11). By repeating this for all of the small regions, the same number of data files as the number of small regions are saved in the external storage device. When creating an imaging image, the required data in each data file is read out, an imaging image corresponding to the small region is created, and by joining a plurality of them together, an imaging image for the entire measurement target region is created. Accordingly, the size of the data files decreases, thus facilitating file handling and also reducing the load on hardware and so forth.

Description

分析装置Analysis equipment
 本発明は分析装置に関し、さらに詳しくは、試料上の2次元領域内の多数の測定点についてそれぞれ所定の分析を行って該測定点付近の試料に関する情報を取得し、そうして収集した情報に基づいて上記2次元領域における試料成分や試料表面状態などの分布を調べる分析装置に関する。具体的には本発明に係る分析装置としては、イメージング質量分析装置、フーリエ変換赤外分光光度測定(FTIR)イメージング装置、ラマン分光イメージング装置、電子線マイクロアナライザ、走査型プローブ顕微鏡、などが挙げられる。 The present invention relates to an analyzer, and more specifically, performs a predetermined analysis on each of a large number of measurement points in a two-dimensional region on a sample to acquire information about the sample near the measurement point, and the information thus collected The present invention relates to an analyzer for examining the distribution of sample components and sample surface states in the two-dimensional region. Specifically, examples of the analyzer according to the present invention include an imaging mass spectrometer, a Fourier transform infrared spectrophotometry (FTIR) imaging apparatus, a Raman spectroscopic imaging apparatus, an electron beam microanalyzer, a scanning probe microscope, and the like. .
 質量分析イメージングは、生体組織切片などの試料の2次元領域内の複数の測定点(微小領域)に対しそれぞれ質量分析を行うことにより、特定の質量を有する物質の分布を調べる手法であり、創薬やバイオマーカ探索、各種疾病・疾患の原因究明などへの応用が進められている。質量分析イメージングを実施するための質量分析装置は一般にイメージング質量分析装置と呼ばれている(非特許文献1など参照)。また、通常、試料上の任意の2次元領域について顕微観察を行い、その顕微観察画像に基づいて分析対象領域を定めて該領域のイメージング質量分析を実行することから顕微質量分析装置や質量顕微鏡などと呼ばれることもあるが、本明細書では「イメージング質量分析装置」と呼ぶこととする。 Mass spectrometry imaging is a technique for examining the distribution of substances having a specific mass by performing mass analysis on each of a plurality of measurement points (microregions) in a two-dimensional region of a sample such as a biological tissue section. Applications for searching for drugs and biomarkers and for investigating the causes of various diseases and diseases are being promoted. A mass spectrometer for performing mass spectrometry imaging is generally called an imaging mass spectrometer (see Non-Patent Document 1, etc.). In addition, since a microscopic observation is usually performed on an arbitrary two-dimensional region on a sample, an analysis target region is determined based on the microscopic observation image, and an imaging mass analysis of the region is executed. In this specification, it is referred to as an “imaging mass spectrometer”.
 図6は、イメージング質量分析装置により得られるデータとそれに基づくイメージング画像表示の概略説明図である。イメージング質量分析装置では、サンプル100上の2次元的な測定対象領域101内に設定された多数の測定点(微小領域)102それぞれにおいて、所定の質量電荷比m/z範囲のマススペクトルデータが取得される。
 こうして収集されたデータに基づいて、特定の質量を有する成分の2次元分布を観測したい場合には、分析者は、該成分由来のイオンの質量電荷比(図6の例ではm/z=M1)におけるイメージング画像の作成・表示を指示する。すると、各測定点102において得られたマススペクトルからm/z=M1におけるイオン強度値が抽出され、そのイオン強度値をカラースケールやグレイスケールで表した画素が各測定点102のx軸、y軸の二軸方向の位置に対応付けて配置されることで所望のイメージング画像が作成される。
FIG. 6 is a schematic explanatory diagram of data obtained by the imaging mass spectrometer and imaging image display based on the data. In the imaging mass spectrometer, mass spectrum data in a predetermined mass-to-charge ratio m / z range is acquired at each of a large number of measurement points (micro regions) 102 set in a two-dimensional measurement target region 101 on the sample 100. Is done.
When it is desired to observe a two-dimensional distribution of a component having a specific mass based on the data collected in this way, the analyst can determine the mass-to-charge ratio of ions derived from the component (m / z = M in the example of FIG. Instruct the creation and display of imaging images in 1 ). Then, the ion intensity value at m / z = M 1 is extracted from the mass spectrum obtained at each measurement point 102, and the pixel representing the ion intensity value in color scale or gray scale is the x-axis of each measurement point 102, A desired imaging image is created by being arranged in correspondence with the position in the biaxial direction of the y axis.
 こうしたイメージング質量分析装置では、高い質量分解能を実現するために、通常、質量分析器として飛行時間型質量分析器(TOFMS)が利用される。そのため、1測定点当たりのマススペクトルデータ(又は飛行時間スペクトルデータ)のデータ量は例えば四重極型質量分析装置などによるマススペクトルデータのデータ量に比べるとかなり多くなる。また、精緻なイメージング画像を得る(つまり空間分解能を上げる)ためには測定点の間隔を狭める(つまりは密度を高める)必要があり、そうすると一つの試料に対する測定点の数が多くなる。そのため、高質量分解能、高空間分解能の質量分析イメージングでは、一つの試料当たりのデータの総量は膨大になる。 In such an imaging mass spectrometer, a time-of-flight mass analyzer (TOFMS) is usually used as a mass analyzer in order to realize high mass resolution. Therefore, the amount of data of mass spectrum data (or time-of-flight spectrum data) per measurement point is considerably larger than the amount of data of mass spectrum data obtained by, for example, a quadrupole mass spectrometer. In addition, in order to obtain a precise imaging image (that is, increase the spatial resolution), it is necessary to narrow the interval between measurement points (that is, increase the density), which increases the number of measurement points for one sample. Therefore, in mass spectrometry imaging with high mass resolution and high spatial resolution, the total amount of data per sample is enormous.
 質量分析イメージングにおいては、通常、分析者は、有意な2次元分布を持つ特定の質量電荷比におけるイメージング画像を探す必要がある。しかしながら、上述したようにデータ総量は膨大であるため、特に試料に含まれる成分の情報が事前にわかっていない未知サンプルについては、有意なイメージング画像を探すには多大なる手間と時間が掛かる。そうした作業を効率化するために、多変量解析などを用いたデータマイニング技術が各所で研究・開発されている(特許文献1、2など参照)。こうした技術の進展により、例えば特徴的な分布を示すイメージング画像を自動的に抽出し、分析者に提示することが可能となっている。 In mass spectrometry imaging, the analyst usually needs to look for an imaging image at a specific mass to charge ratio with a significant two-dimensional distribution. However, as described above, since the total amount of data is enormous, it takes a lot of time and effort to search for a significant imaging image, especially for an unknown sample whose component information contained in the sample is not known in advance. In order to improve the efficiency of such work, data mining techniques using multivariate analysis and the like have been researched and developed in various places (see Patent Documents 1 and 2). With the development of such technology, for example, an imaging image showing a characteristic distribution can be automatically extracted and presented to an analyst.
特開2013-40808号公報JP 2013-40808 A 国際公開第2014/175211号International Publication No. 2014/175211
 ところが、イメージング質量分析装置で得られるデータ量の急速な増加は、上記のようなデータ解析処理をパーソナルコンピュータ(或いはより高性能のワークステーション)で実行する際にも支障となりつつある。即ち、従来のイメージング質量分析装置では、一つの試料に対して得られるデータの容量は数百MB~数GB、多くても数十GB程度であったが、最近の質量分析イメージングの高解像度化、高質量分解能化に伴い、そのデータ容量は増大し、データ容量が百GBを超えることも珍しくない。そのため、一般的に使用されるコンピュータにおいて単にデータのコピーやバックアップ等の操作を行うだけでも、データファイルの取り扱いに手間取ったり困難が発生したりする。また、上述したような解析処理を行おうとしても、ハードウエア的、ソフトウエア的ともに大きな負荷が掛かり、計算時間が異常に長くなることがある。また、場合によっては、処理途中でメモリ容量が不足して処理が中断してしまうような事態も生じている。 However, the rapid increase in the amount of data obtained by the imaging mass spectrometer is becoming a hindrance when the above data analysis processing is executed by a personal computer (or a higher performance workstation). In other words, with conventional imaging mass spectrometers, the volume of data obtained for one sample was several hundred MB to several GB, and at most several tens of GB. As the mass resolution increases, the data capacity increases, and it is not uncommon for the data capacity to exceed 100 GB. For this reason, simply performing operations such as data copying and backup on a commonly used computer may cause trouble and difficulty in handling data files. Further, even if the analysis processing as described above is performed, a heavy load is applied both in terms of hardware and software, and the calculation time may become abnormally long. In some cases, the processing is interrupted due to insufficient memory capacity during the processing.
 また、こうした事態は、イメージング質量分析装置のみならず、試料上の多数の測定点においてそれぞれ分析を実行してデータを収集するような他の分析装置でも起こり得る。そうした分析装置として例えば、試料上の多数の測定点においてフーリエ変換赤外分光光度測定法による赤外吸収スペクトルをそれぞれ取得するFTIRイメージング装置、試料上の多数の測定点においてラマン分光法によるラマン散乱スペクトルをそれぞれ取得するラマン分光イメージング装置、試料上の多数の測定点において電子線励起に対して試料から出る特性X線のエネルギと強度との関係を示すスペクトルをそれぞれ取得する電子線マイクロアナライザ、試料上の多数の測定点において試料の表面形状のほか、表面電位、誘電率などの種々の物性を測定する走査型プローブ顕微鏡、などを挙げることができる。 Such a situation can occur not only in an imaging mass spectrometer but also in other analyzers that collect data by executing analysis at each of a large number of measurement points on a sample. As such an analyzer, for example, an FTIR imaging device that acquires an infrared absorption spectrum by Fourier transform infrared spectrophotometry at a number of measurement points on a sample, and a Raman scattering spectrum by Raman spectroscopy at a number of measurement points on a sample. Spectroscopic Raman imaging apparatus, electron beam microanalyzer for acquiring the spectrum showing the relationship between the energy and intensity of characteristic X-rays emitted from the sample at many measurement points on the sample, respectively, on the sample, on the sample In addition to the surface shape of the sample, a scanning probe microscope that measures various physical properties such as surface potential and dielectric constant can be used.
 本発明は上記課題に鑑みて成されたものであり、上述したように試料上の多数の測定点それぞれにおいてスペクトルや信号値を取得する分析装置において、測定によって得られる大容量のデータを取り扱い易くすることでコンピュータでの解析処理の負荷を軽減し、解析作業の効率を向上させることをその主たる目的としている。 The present invention has been made in view of the above problems, and as described above, in an analyzer that acquires spectra and signal values at each of a large number of measurement points on a sample, it is easy to handle a large volume of data obtained by measurement. The main purpose is to reduce the analysis processing load on the computer and improve the efficiency of the analysis work.
 上記課題を解決するために成された本発明の第1の態様は、試料上の複数の測定点に対しそれぞれ所定の分析を実行することにより、各測定点の空間位置情報に関連付けられてなる分析結果情報を取得する分析装置において、
 a)試料上の測定対象領域を設定する領域設定部と、
 b)前記領域設定部により設定された測定対象領域を所定の条件に従って複数の小領域に分割する領域分割部と、
 c)前記領域設定部により設定された測定対象領域中の全ての測定点に対してそれぞれ得られた分析結果情報が、前記領域分割部により分割されたあとの複数の小領域にそれぞれに対応付けて分けられて格納された複数のデータファイルを保存するファイル記憶部と、
 d)前記測定対象領域における所定の情報の分布を示すイメージング画像を作成する際には、前記ファイル記憶部に記憶されている一つのデータファイルから必要なデータを取得し、該データに基づいて一つの小領域に対するイメージング画像を作成するという処理を複数のデータファイルについて繰り返し、複数の小領域に対するイメージング画像を結合することで前記測定対象領域全体に対する所望のイメージング画像を作成するイメージング画像再現部と、
 を備えることを特徴としている。
The first aspect of the present invention, which is made to solve the above-mentioned problem, is associated with the spatial position information of each measurement point by executing a predetermined analysis for each of the plurality of measurement points on the sample. In an analyzer that acquires analysis result information,
a) an area setting unit for setting the measurement target area on the sample;
b) a region dividing unit that divides the measurement target region set by the region setting unit into a plurality of small regions according to a predetermined condition;
c) The analysis result information respectively obtained for all measurement points in the measurement target region set by the region setting unit is associated with each of a plurality of small regions after being divided by the region dividing unit. A file storage unit for storing a plurality of data files stored separately,
d) When an imaging image showing the distribution of predetermined information in the measurement target region is created, necessary data is acquired from one data file stored in the file storage unit, and one based on the data is obtained. An imaging image reproduction unit that repeats the process of creating an imaging image for one small region for a plurality of data files and combines the imaging images for the plurality of small regions to create a desired imaging image for the entire measurement target region;
It is characterized by having.
 上記課題を解決するために成された本発明の第2の態様は、試料上の複数の測定点に対しそれぞれ所定の分析を実行することにより、各測定点の空間位置情報に関連付けられてなる、所定のパラメータと信号強度との関係を示すスペクトル情報を取得する分析装置において、
 a)試料上の測定対象領域を設定する領域設定部と、
 b)前記測定対象領域内の全ての測定点に対してそれぞれ得られたスペクトル情報を、前記所定のパラメータの値の範囲を複数に分割したパラメータ小範囲にそれぞれに対応付けたデータファイルに分け、その複数のデータファイルをファイル記憶部に格納するファイル作成部と、
 c)前記測定対象領域における所定の情報の分布を示すイメージング画像を作成する際には、前記ファイル記憶部に記憶されている少なくとも一つのデータファイルから必要なデータを取得し、それらデータに基づいて前記測定対象領域全体に対する所望のイメージング画像を作成するイメージング画像再現部と、
 を備えることを特徴としている。
The second aspect of the present invention, which has been made to solve the above-mentioned problems, is associated with the spatial position information of each measurement point by executing a predetermined analysis for each of the plurality of measurement points on the sample. In an analyzer for acquiring spectral information indicating a relationship between a predetermined parameter and signal intensity,
a) an area setting unit for setting the measurement target area on the sample;
b) Spectral information respectively obtained for all measurement points in the measurement target region is divided into data files corresponding to the parameter subranges obtained by dividing the range of the predetermined parameter values into a plurality of ranges, A file creation unit for storing the plurality of data files in a file storage unit;
c) When creating an imaging image showing the distribution of predetermined information in the measurement target region, the necessary data is obtained from at least one data file stored in the file storage unit, and based on the data An imaging image reproduction unit for creating a desired imaging image for the entire measurement target region;
It is characterized by having.
 本発明の第1及び第2の態様に係る分析装置の典型的な一実施態様はイメージング質量分析装置である。この場合、第1の態様の分析装置における上記「分析結果情報」とは所定の質量電荷比範囲に亘るマススペクトルデータである。また、第2の態様の分析装置における上記「所定のパラメータ」とは質量電荷比であり、「所定のパラメータと信号強度との関係を示すスペクトル情報」とは所定の質量電荷比範囲に亘るマススペクトルデータである。また、「所定の情報の分布を示すイメージング画像」とは特定の質量電荷比におけるイオン強度分布を示すイメージング画像である。 An exemplary embodiment of the analyzer according to the first and second aspects of the present invention is an imaging mass spectrometer. In this case, the “analysis result information” in the analyzer according to the first aspect is mass spectrum data over a predetermined mass-to-charge ratio range. In the analyzer according to the second aspect, the “predetermined parameter” is a mass-to-charge ratio, and “spectrum information indicating the relationship between the predetermined parameter and signal intensity” is a mass over a predetermined mass-to-charge ratio range. Spectral data. The “imaging image showing the distribution of predetermined information” is an imaging image showing the ion intensity distribution at a specific mass-to-charge ratio.
 ただし、飛行時間型の質量分析装置ではイオン検出器で得られる信号に基づいて飛行時間スペクトルが作成され、該飛行時間スペクトル上の各イオンの飛行時間が質量電荷比に換算されることでマススペクトルが作成されるから、「マススペクトル」は、質量電荷比に換算する前の飛行時間で表された「飛行時間スペクトル」でもよい。
 また、質量分析装置がイオントラップ型質量分析装置、イオントラップ飛行時間型質量分析装置、タンデム四重極型質量分析装置、Q-TOF型質量分析装置など、MSn分析が可能な質量分析装置である場合には、上記「マススペクトル」は「MSnスペクトル」も含むものとする。
However, in a time-of-flight mass spectrometer, a time-of-flight spectrum is created based on a signal obtained by an ion detector, and the time of flight of each ion on the time-of-flight spectrum is converted into a mass-to-charge ratio. Therefore, the “mass spectrum” may be a “time-of-flight spectrum” expressed by a flight time before conversion into a mass-to-charge ratio.
The mass spectrometer is a mass spectrometer capable of MS n analysis, such as an ion trap mass spectrometer, an ion trap time-of-flight mass spectrometer, a tandem quadrupole mass spectrometer, and a Q-TOF mass spectrometer. In some cases, the “mass spectrum” includes “MS n spectrum”.
 もちろん、本発明の第1態様に係る分析装置はイメージング質量分析装置に限るものではなく、例えば上述したFTIRイメージング装置、ラマン分光イメージング装置、電子線マイクロアナライザ、走査型プローブ顕微鏡、などでもよい。また、本発明の第2態様に係る分析装置は、それら分析装置の中でスペクトル情報が得られるものであればよい。 Of course, the analyzer according to the first aspect of the present invention is not limited to the imaging mass spectrometer, and may be, for example, the above-described FTIR imaging apparatus, Raman spectroscopic imaging apparatus, electron beam microanalyzer, scanning probe microscope, or the like. Moreover, the analyzer which concerns on the 2nd aspect of this invention should just be what can obtain spectrum information in these analyzers.
 本発明の第1及び第2の態様に係る分析装置において、領域設定部は例えば分析者の操作に応じて試料上の測定対象領域を設定する。例えばイメージング質量分析装置などでは、領域設定部は、試料上の光学的な顕微観察画像を表示部の画面上に表示し、その表示画面上で分析者が適宜の2次元領域を指定することにより、指定された領域を測定対象領域として設定するものとすることができる。もちろん、領域設定部は、顕微観察画像に対する所定の条件の下での画像認識処理によって、着目に値する特定の領域を自動的に抽出して設定するものでもよい。 In the analysis apparatus according to the first and second aspects of the present invention, the region setting unit sets a measurement target region on the sample according to, for example, an analyst's operation. For example, in an imaging mass spectrometer, the region setting unit displays an optical microscopic observation image on the sample on the screen of the display unit, and the analyst designates an appropriate two-dimensional region on the display screen. The designated area can be set as the measurement target area. Of course, the region setting unit may automatically extract and set a specific region worthy of attention by image recognition processing under a predetermined condition for the microscopic observation image.
 本発明の第1の態様に係る分析装置では、上記のように領域設定部により設定された測定対象領域を複数に分割した小領域毎に一つのデータファイルを対応付ける。一方、本発明の第2の態様に係る分析装置では、例えば質量電荷比等の所定のパラメータの値の範囲を複数に分割したパラメータ小範囲毎に一つのデータファイルを対応付ける。 In the analysis apparatus according to the first aspect of the present invention, one data file is associated with each small area obtained by dividing the measurement target area set by the area setting unit as described above. On the other hand, in the analyzer according to the second aspect of the present invention, one data file is associated with each parameter small range obtained by dividing a range of predetermined parameter values such as a mass-to-charge ratio into a plurality of ranges.
 本発明の第1の態様に係る分析装置においてファイル記憶部は、そうして複数の小領域にそれぞれに対応付けて分析結果情報が格納された複数のデータファイルを保存するものである。データファイルを作成しファイル記憶部に保存するための動作として、二つの方法のいずれかを採ることができる。
 その一つは、測定対象領域に含まれる全ての測定点に対する所定の分析による分析結果情報を取得し、それが取得されたあとに、その分析結果情報を複数の小領域に対応付けて分けてそれぞれデータファイルを作成し、その複数のデータファイルをファイル記憶部に保存するという、いわばバッチ処理の手法である。
In the analysis apparatus according to the first aspect of the present invention, the file storage unit stores a plurality of data files in which analysis result information is stored in association with the plurality of small areas. As an operation for creating a data file and saving it in the file storage unit, one of two methods can be adopted.
One of them is to acquire analysis result information by a predetermined analysis for all measurement points included in the measurement target area, and after that, the analysis result information is divided into a plurality of small areas in association with each other. This is a so-called batch processing method in which a data file is created and each of the data files is stored in a file storage unit.
 他の一つは、一つの小領域に対する分析結果情報が得られる毎にその分析結果情報が格納されたデータファイルを作成しファイル記憶部に保存するという、いわば逐次処理の手法である。
 後者の手法を採るためには、本発明の第1の態様に係る分析装置は、
 前記領域分割部により分割されたあとの複数の小領域について、小領域毎にその小領域に含まれる測定点に対する所定の分析を実行して分析結果情報を取得するように分析制御を行う制御部と、
 前記制御部の制御の下で、一つの小領域に対する分析結果情報が得られる毎に、該分析結果情報が格納された一つのデータファイルを作成して前記ファイル記憶部に保存するファイル作成部と、
 をさらに備える構成とするとよい。
The other one is a so-called sequential processing method in which each time analysis result information for one small area is obtained, a data file storing the analysis result information is created and stored in the file storage unit.
In order to adopt the latter method, the analyzer according to the first aspect of the present invention is:
A control unit that performs analysis control so as to execute a predetermined analysis on the measurement points included in each small region and acquire analysis result information for each of the small regions after being divided by the region dividing unit When,
Under the control of the control unit, every time analysis result information for one small region is obtained, a file creation unit that creates one data file storing the analysis result information and saves it in the file storage unit; ,
It is good to set it as the structure further provided.
 前者の方法では、全ての測定点に対する分析結果情報を一時的に記憶するメモリが必要であるのに対し、後者の方法では、一つの小領域中の全測定点に対する分析結果情報を一時的に記憶するメモリを用意すればよいので、一時記憶メモリの容量を減らすことができる。 The former method requires a memory that temporarily stores analysis result information for all measurement points, whereas the latter method temporarily stores analysis result information for all measurement points in one small area. Since it is sufficient to prepare a memory for storage, the capacity of the temporary storage memory can be reduced.
 また、本発明の第2の態様に係る分析装置では、上述したバッチ処理の手法を採るために、前記ファイル作成部が、前記測定対象領域に含まれる全ての測定点に対する所定の分析による分析結果情報が取得されたあとに、その分析結果情報を前記複数のパラメータ小範囲に対応付けて分け、異なる測定点における同じパラメータ小範囲に含まれる分析結果情報が同一のデータファイルに入るようにそれぞれデータファイルを作成し、その複数のデータファイルを前記ファイル記憶部に保存する構成とするとよい。 Moreover, in the analyzer according to the second aspect of the present invention, in order to adopt the above-described batch processing technique, the file creation unit performs an analysis result by a predetermined analysis with respect to all measurement points included in the measurement target region. After the information is acquired, the analysis result information is divided in correspondence with the plurality of parameter subranges, and the analysis result information included in the same parameter subrange at different measurement points is stored in the same data file. A configuration may be adopted in which a file is created and the plurality of data files are stored in the file storage unit.
 本発明の第1の態様に係る分析装置では、測定対象領域全体における所定の情報の分布を示すイメージング画像、例えば質量分析イメージング画像を作成するのに必要な情報は複数のデータファイルに分散しているから、そうしたイメージング画像を作成するに際し、イメージング画像再現部は、ファイル記憶部に記憶されている複数のデータファイルからそれぞれ必要なデータを取得し、それらデータを用いて所望のイメージング画像を作成する。一方、本発明の第2の態様に係る分析装置では、例えば特定の質量電荷比における質量分析イメージング画像を作成するのに必要な情報は一つのデータファイルに格納されているから、その一つのデータファイルから必要なデータを取得し、それらデータを用いてイメージング画像を作成すればよい。 In the analysis apparatus according to the first aspect of the present invention, information necessary for creating an imaging image showing a distribution of predetermined information in the entire measurement target region, for example, a mass spectrometry imaging image, is dispersed in a plurality of data files. Therefore, when creating such an imaging image, the imaging image reproduction unit obtains necessary data from a plurality of data files stored in the file storage unit, and creates a desired imaging image using the data. . On the other hand, in the analyzer according to the second aspect of the present invention, for example, information necessary for creating a mass spectrometry imaging image at a specific mass-to-charge ratio is stored in one data file. What is necessary is just to acquire required data from a file and create an imaging image using the data.
 以上のように本発明の第1及び第2の態様に係る分析装置のいずれにおいても、試料上の測定対象領域に対し分析を行うことで得られた大量のデータを複数に分割して複数のデータファイルに格納している。したがって、データファイルの取り扱いが容易になる。また、例えば第1の態様に係る分析装置において高解像度(高空間分解能)のイメージング画像を表示したい場合でも、小領域に対応した一つのデータファイル毎に部分的なイメージング画像を作成し、最後に複数の部分的なイメージング画像を繋ぎ合わせることで測定対象領域全体のイメージング画像を得ればよい。したがって、大量のデータを一時記憶メモリ上で扱う必要がなくなり、処理の途中でメモリ容量不足に陥ることを回避できる。 As described above, in any of the analyzers according to the first and second aspects of the present invention, a large amount of data obtained by performing analysis on the measurement target region on the sample is divided into a plurality of pieces. Stored in a data file. Therefore, handling of the data file becomes easy. For example, even when it is desired to display a high resolution (high spatial resolution) imaging image in the analyzer according to the first aspect, a partial imaging image is created for each data file corresponding to a small area, and finally What is necessary is just to obtain the imaging image of the whole measurement object area | region by connecting a some partial imaging image. Therefore, it is not necessary to handle a large amount of data on the temporary storage memory, and it is possible to avoid a memory capacity shortage during the processing.
 なお、測定対象領域を小領域に分割する分割数や所定のパラメータ値の範囲をパラメータ小範囲に分割する分割数は装置固有の値としてもよいし、外部から設定可能としてもよいが、いずれにしても一つのデータファイルに格納されるデータの容量は所定以下に抑えるようにするとよい。 Note that the number of divisions for dividing the measurement target region into small regions and the number of divisions for dividing a predetermined parameter value range into parameter small ranges may be values unique to the apparatus or may be set from the outside. However, the volume of data stored in one data file may be suppressed to a predetermined value or less.
 そのために、本発明に係る第1の態様の分析装置において、前記領域分割部は、一つのデータファイルに格納されるデータの容量が所定以下になるという条件の下に、前記測定対象領域を複数の小領域に分割する構成とするとよい。 For this purpose, in the analyzer according to the first aspect of the present invention, the region dividing unit includes a plurality of the measurement target regions under a condition that the capacity of data stored in one data file is equal to or less than a predetermined value. It may be configured to be divided into small areas.
 また、本発明に係る第1の態様と第2の態様とは併用することができる。即ち、測定対象領域を所定の条件に従って複数の小領域に分割するとともに、その小領域毎に、小領域に含まれる測定点に対してそれぞれ得られたスペクトル情報を、所定のパラメータの値の範囲を複数に分割したパラメータ小範囲に分けるようにしてもよい。これにより、一つのデータファイルに割り当てられるデータ量をさらに減らすことができる。 Further, the first aspect and the second aspect according to the present invention can be used in combination. That is, the measurement target region is divided into a plurality of small regions according to a predetermined condition, and for each small region, the spectrum information obtained for each measurement point included in the small region is converted to a predetermined parameter value range. May be divided into small parameter ranges divided into a plurality. Thereby, the amount of data allocated to one data file can be further reduced.
 本発明に係る分析装置によれば、試料上の測定対象領域に対し分析を行うことで得られたデータが大量であっても、これを複数に分割して複数のデータファイルに格納することでデータファイルを容易に取り扱えるようにすることができる。また、一つのデータファイルの容量が小さく、しかも測定対象領域全体のイメージング画像を作成したいような場合でも、全てのデータを一時記憶メモリに読み出すような処理は不要になるので、データ解析処理を行うコンピュータのハードウエアやソフトウエアの負荷を抑えることができる。それによって、ユーザが従来使用していた比較的低速、小記憶容量のコンピュータを利用しながら、高解像度や高分解能のイメージング画像の作成や表示が可能となる。また、将来的に、一層の高解像度化や高分解能化が進んで一つの試料に対して得られるデータ量がさらに膨大になった場合でも、データファイルの数を増やすことで対応できるので、コンピュータ等のハードウエアの更新を行わずに済む。 According to the analyzer according to the present invention, even if a large amount of data is obtained by performing analysis on the measurement target region on the sample, it can be divided into a plurality of data and stored in a plurality of data files. Data files can be handled easily. In addition, even if the capacity of one data file is small and it is desired to create an imaging image of the entire measurement target area, a process for reading out all the data to the temporary storage memory is not necessary, so a data analysis process is performed. The load on computer hardware and software can be reduced. As a result, it is possible to create and display high-resolution and high-resolution imaging images while using a computer with a relatively low speed and a small storage capacity that has been used by users. In addition, in the future, even if the resolution and resolution increase further and the amount of data obtained for one sample becomes even larger, it can be handled by increasing the number of data files. It is not necessary to update the hardware.
本発明に係る分析装置の一実施例であるイメージング質量分析装置の概略構成図。1 is a schematic configuration diagram of an imaging mass spectrometer that is an embodiment of an analyzer according to the present invention. 本実施例のイメージング質量分析装置における測定実行時の制御・処理フローチャート。5 is a control / processing flowchart when performing measurement in the imaging mass spectrometer of the present embodiment. 本実施例のイメージング質量分析装置における測定対象領域の分割の一例の説明図。Explanatory drawing of an example of the division | segmentation of the measurement object area | region in the imaging mass spectrometer of a present Example. 測定対象領域の分割の他の例の説明図。Explanatory drawing of the other example of the division | segmentation of a measuring object area | region. 他の実施例のイメージング質量分析装置におけるデータ分割の一例の説明図。Explanatory drawing of an example of the data division | segmentation in the imaging mass spectrometer of another Example. イメージング質量分析により得られるデータとそれに基づくイメージング画像表示の概略説明図。The schematic explanatory drawing of the data obtained by imaging mass spectrometry, and the imaging image display based on it.
 本発明に係る分析装置の一実施例であるイメージング質量分析装置を、添付図面を参照して説明する。
 図1は本実施例のイメージング質量分析装置の概略構成図である。
An imaging mass spectrometer which is an embodiment of an analyzer according to the present invention will be described with reference to the accompanying drawings.
FIG. 1 is a schematic configuration diagram of the imaging mass spectrometer of the present embodiment.
 本実施例のイメージング質量分析装置は、試料上の2次元的な多数の測定点に対してそれぞれ質量分析を実行し測定点(後述する「画素」)毎に所定の質量電荷比範囲のマススペクトルデータを取得するイメージング質量分析部1と、イメージング質量分析部1を制御するとともにイメージング質量分析部1で得られたデータに対し種々のデータ処理を実行する制御・処理部2と、イメージング質量分析部1で取得されたデータを保存するハードディスクドライブ(HDD)やソリッドステートドライブ(SSD)などの大容量の外部記憶装置4と、分析者が操作する操作部5と、分析結果等を表示する表示部6と、を備える。 The imaging mass spectrometer according to the present embodiment performs mass analysis on each of a large number of two-dimensional measurement points on a sample, and a mass spectrum in a predetermined mass-to-charge ratio range for each measurement point (a “pixel” described later). An imaging mass spectrometer 1 that acquires data, a control / processor 2 that controls the imaging mass analyzer 1 and executes various data processing on the data obtained by the imaging mass analyzer 1, and an imaging mass analyzer 1. A large-capacity external storage device 4 such as a hard disk drive (HDD) or solid state drive (SSD) that stores the data acquired in 1, an operation unit 5 operated by an analyst, and a display unit that displays analysis results and the like 6.
 イメージング質量分析部1は、可動式の試料台11上に載置されたサンプルを光学的に観察する観察部12と、該試料台11上のサンプルの測定点つまりは微小領域に対する質量分析を実行するマトリックス支援レーザ脱離イオン化(MALDI)-イオントラップ(IT)-飛行時間型質量分析装置(TOFMS)である質量分析部13と、を含む。 The imaging mass spectrometer 1 performs an optical observation of a sample placed on a movable sample stage 11 and mass analysis of a measurement point of the sample on the sample stage 11, that is, a micro region. Matrix assisted laser desorption ionization (MALDI) -ion trap (IT) -mass analyzer 13 which is a time-of-flight mass spectrometer (TOFMS).
 質量分析部13は、大気雰囲気中でサンプルにレーザ光を照射して該サンプル中の成分をイオン化するMALDI用レーザ照射部131、サンプルから発生したイオンを収集して真空雰囲気中に搬送するイオン導入部132、サンプル由来のイオンを収束しつつ案内するイオンガイド133、高周波電場によってイオンを一時的に捕捉するとともに必要に応じてプリカーサイオンの選択及び該プリカーサイオンの解離(衝突誘起解離)を行うイオントラップ134、イオントラップ134から射出されたイオンを質量電荷比に応じて分離する飛行空間を内部に形成するフライトチューブ135、及び、イオンを検出する検出器136、を含む。 The mass spectrometric unit 13 irradiates a sample with laser light in an air atmosphere to ionize components in the sample. The MALDI laser irradiation unit 131 collects ions generated from the sample and transports them to a vacuum atmosphere. Unit 132, ion guide 133 that guides ions derived from the sample while converging, ions that temporarily capture ions by a high-frequency electric field, and select precursor ions and perform dissociation (collision-induced dissociation) of the precursor ions as necessary It includes a trap 134, a flight tube 135 that internally forms a flight space that separates ions ejected from the ion trap 134 according to a mass-to-charge ratio, and a detector 136 that detects ions.
 制御・処理部2は、分析制御部21、測定領域設定部22、領域分割部23、分割条件記憶部24、測定条件記憶部25、データ収集部31、マススペクトル作成部32、光学画像データ記憶領域331やスペクトルデータ記憶領域332が用意された一時記憶メモリ33、データファイル作成部34、低解像ファイル作成部35、多変量解析処理部36、イメージング画像作成処理部37などの機能ブロックを備える。この制御・処理部2の実体はCPU、RAM、ROMなどを含むパーソナルコンピュータ(又はより高性能なワークステーション)であり、該コンピュータにインストールされた専用の制御・処理ソフトウエアを該コンピュータ上で動作させることにより、上記のような機能ブロックが具現化される。また、外部記憶装置4には、データファイル記憶領域42と低解像データファイル記憶領域41とが設けられている。 The control / processing unit 2 includes an analysis control unit 21, a measurement region setting unit 22, a region division unit 23, a division condition storage unit 24, a measurement condition storage unit 25, a data collection unit 31, a mass spectrum creation unit 32, and an optical image data storage. Function blocks such as a temporary storage memory 33 in which an area 331 and a spectrum data storage area 332 are prepared, a data file creation unit 34, a low resolution file creation unit 35, a multivariate analysis processing unit 36, and an imaging image creation processing unit 37 are provided. . The entity of the control / processing unit 2 is a personal computer (or higher performance workstation) including a CPU, RAM, ROM, etc., and operates dedicated control / processing software installed on the computer on the computer. As a result, the functional blocks as described above are realized. Further, the external storage device 4 is provided with a data file storage area 42 and a low resolution data file storage area 41.
 図2は本実施例のイメージング質量分析装置における測定実行時の制御・処理フローチャート、図3は本実施例のイメージング質量分析装置における測定対象領域の分割の一例の説明図である。これら図を参照しつつ、本実施例のイメージング質量分析装置において測定を実行する際の制御・処理の手順について説明する。 FIG. 2 is a control / processing flowchart at the time of measurement execution in the imaging mass spectrometer of the present embodiment, and FIG. 3 is an explanatory diagram of an example of division of the measurement target region in the imaging mass spectrometer of the present embodiment. With reference to these drawings, a description will be given of control / processing procedures when performing measurement in the imaging mass spectrometer of the present embodiment.
 例えば生体組織から切り出した測定対象物はサンプルプレート上に置かれ、その表面に適宜のマトリックスが塗布されることでサンプル100が調製される。分析者はこのサンプル100を試料台11上にセットし、操作部5にて光学観察のための所定の操作を行う。これに応じて観察部12は、サンプル100上の画像を撮影し、その画像データを受けた制御・処理部2は、その画像を表示部6の画面上に表示するとともに、一時記憶メモリ33の光学画像データ記憶領域331に格納する。分析者は、表示された画像を参照してサンプル100上の適宜の測定対象領域を操作部5により指定する。また分析者は例えば、質量電荷比範囲、空間分解能などの、測定条件も適宜に設定する(ステップS1)。もちろん、こうした測定条件は分析者の設定に依らずデフォルトでもよい。設定された測定条件や測定対象領域を示す情報は測定条件記憶部25に格納される。 For example, a measurement object cut out from a living tissue is placed on a sample plate, and a sample 100 is prepared by applying an appropriate matrix to the surface. The analyst sets the sample 100 on the sample stage 11 and performs a predetermined operation for optical observation using the operation unit 5. In response to this, the observation unit 12 captures an image on the sample 100, and the control / processing unit 2 receiving the image data displays the image on the screen of the display unit 6 and also stores the image in the temporary storage memory 33. It is stored in the optical image data storage area 331. The analyst designates an appropriate measurement target region on the sample 100 with the operation unit 5 with reference to the displayed image. In addition, the analyst appropriately sets measurement conditions such as a mass-to-charge ratio range and spatial resolution (step S1). Of course, such measurement conditions may be defaults regardless of the analyst's settings. Information indicating the set measurement conditions and the measurement target area is stored in the measurement condition storage unit 25.
 測定対象領域が確定すると、測定領域設定部22は設定された測定対象領域と分割条件記憶部24に格納されている分割条件とに基づいて、該測定対象領域を分割する必要があるか否かを判定する(ステップS2、S3)。分割条件は、分割後の一つの小領域に対応する一つのデータファイルに格納されるデータの最大量を制限するための条件であり、例えば一つの小領域に含まれる測定点の数の最大値(例えば数万pixel~数十万pixel)が分割条件とされる。なお、一つの測定点はイメージング画像上の一つの画素に対応するので、以下の説明では、測定点の数の単位をpixelとする。この分割条件は装置固有の値として決まっていてもよいし、分析者が操作部5から設定できるようにしてもよい。 When the measurement target region is determined, the measurement region setting unit 22 determines whether or not the measurement target region needs to be divided based on the set measurement target region and the division condition stored in the division condition storage unit 24. Is determined (steps S2 and S3). The division condition is a condition for limiting the maximum amount of data stored in one data file corresponding to one small area after division. For example, the maximum value of the number of measurement points included in one small area (For example, tens of thousands of pixels to hundreds of thousands of pixels) is a division condition. Since one measurement point corresponds to one pixel on the imaging image, in the following description, the unit of the number of measurement points is pixel. This division condition may be determined as a value unique to the apparatus, or may be set by the analyst from the operation unit 5.
 設定された測定対象領域に含まれる測定点の数が分割条件で定められている測定点の数の最大値よりも小さければ、該測定対象領域を分割する必要はない。その場合には、ステップS3でNoと判定され、ステップS4をパスしてステップS5へ進む。一方、設定された測定対象領域に含まれる測定点の数が分割条件で定められている測定点の数の最大値を超えているために領域分割の必要ありと判定されると、領域分割部23が分割条件に基づいて測定対象領域を複数の小領域に分割する(ステップS4)。
 即ち、一つの小領域に含まれる測定点の数が分割条件で定められている測定点の数の最大値以下になるようにすればよいが、具体的には例えば、x軸、y軸の二軸方向にそれぞれ測定点の数の最大値を定めておき、その最大値の位置で機械的に区分すればよい。
If the number of measurement points included in the set measurement target area is smaller than the maximum value of the number of measurement points defined by the division condition, it is not necessary to divide the measurement target area. In that case, it is determined No in step S3, step S4 is passed, and the process proceeds to step S5. On the other hand, if the number of measurement points included in the set measurement target area exceeds the maximum number of measurement points specified in the division condition, the area division unit 23 divides the measurement target area into a plurality of small areas based on the division condition (step S4).
That is, the number of measurement points included in one small region may be set to be equal to or less than the maximum value of the number of measurement points determined by the division condition. A maximum value of the number of measurement points may be determined in each of the biaxial directions, and mechanically divided by the position of the maximum value.
 図3(a)に示した例では、測定対象領域の大きさは、x軸方向に2000pixel、y軸方向に800pixelである。分割条件は、一つの小領域に含まれる測定点の数の最大値が65536pixelであり、小領域の最大サイズを256×256pixelの矩形状であるとする。こうした分割条件の下で図3(a)に示した測定対象領域を分割すると、図3(b)に示すように32個の小領域が設定される。ここでは、便宜上、小領域に連続番号を付しており、その連続番号を#n、ただしnは1~32、で示す。図3(b)に示すように、小領域#1~#7、#9~#15、#17~#23は256×256pixelの大きさである。小領域#8、#16、#24は208×256pixelの大きさである。小領域#25~#31は256×32pixelの大きさである。そして、小領域#32は208×32pixelの大きさである。 In the example shown in FIG. 3A, the size of the measurement target area is 2000 pixels in the x-axis direction and 800 pixels in the y-axis direction. The division condition is that the maximum value of the number of measurement points included in one small area is 65536 pixels, and the maximum size of the small area is a rectangular shape of 256 × 256 pixels. When the measurement target area shown in FIG. 3A is divided under such division conditions, 32 small areas are set as shown in FIG. 3B. Here, for convenience, consecutive numbers are assigned to the small areas, and the consecutive numbers are indicated by #n, where n is 1 to 32. As shown in FIG. 3B, the small areas # 1 to # 7, # 9 to # 15, and # 17 to # 23 have a size of 256 × 256 pixels. The small areas # 8, # 16, and # 24 have a size of 208 × 256 pixels. The small areas # 25 to # 31 have a size of 256 × 32 pixels. The small area # 32 has a size of 208 × 32 pixels.
 なお、以上のようにして測定対象領域が複数の小領域に分割されたあと、その分割の状況(又は分割がされていない状況)を分析者に提示するために、サンプルの光学画像に分割の境界線を重ねて表示した画像を表示部6の画面上に表示するようにしてもよい。図3(c)はそうした場合の表示画像の一例である。 In addition, after the measurement target area is divided into a plurality of small areas as described above, in order to present the situation of the division (or the situation where the area is not divided) to the analyst, An image displayed with overlapping boundary lines may be displayed on the screen of the display unit 6. FIG. 3C is an example of a display image in such a case.
 続いて、分析者が操作部5により測定の開始を指示すると(ステップS5)、その指示を受けて分析制御部21は測定を開始する。分析制御部21はまず、測定対象領域の分割があるか否かを判定する(ステップS6)。そして、分割なしの場合には、分析制御部21はイメージング質量分析部1を動作させ、サンプル100上に設定された測定対象領域内の各測定点に対する測定を順次実行する(ステップS7)。 Subsequently, when the analyst instructs the start of measurement through the operation unit 5 (step S5), the analysis control unit 21 starts the measurement in response to the instruction. First, the analysis control unit 21 determines whether or not there is a division of the measurement target region (step S6). Then, when there is no division, the analysis control unit 21 operates the imaging mass analysis unit 1 and sequentially executes measurement for each measurement point in the measurement target region set on the sample 100 (step S7).
 即ち、イメージング質量分析部1において、1番目の測定対象である測定点がレーザ光の照射位置に来るように図示しない駆動機構により試料台11は移動される。そして、MALDI用レーザ照射部131からその測定点に対しパルス状のレーザ光が照射されると、その照射部位付近に存在するサンプル100中の成分がイオン化される。発生したイオンはイオン導入部132を通して真空雰囲気中に搬送され、イオンガイド133により収束されてイオントラップ134に導入され一旦保持される。 That is, in the imaging mass spectrometer 1, the sample stage 11 is moved by a drive mechanism (not shown) so that the measurement point that is the first measurement target comes to the irradiation position of the laser beam. When a pulsed laser beam is irradiated from the MALDI laser irradiation unit 131 to the measurement point, the components in the sample 100 existing near the irradiation site are ionized. The generated ions are transferred into the vacuum atmosphere through the ion introduction part 132, converged by the ion guide 133, introduced into the ion trap 134, and temporarily held.
 イオントラップ134に保持されたイオンは所定のタイミングで一斉に射出され、フライトチューブ135内の飛行空間に導入され、該飛行空間を飛行して検出器136に到達する。飛行空間を飛行する間に各種イオンは質量電荷比に応じて分離され、質量電荷比が小さい順に検出器136に到達する。検出器136によるアナログ検出信号は図示しないアナログデジタル変換器によりデジタルデータに変換されてデータ収集部31に入力される。このデータは、イオンの飛行時間とイオン強度との関係を示す飛行時間スペクトルデータであり、マススペクトル作成部32は飛行時間を質量電荷比に換算することで、飛行時間スペクトルデータからマススペクトルデータを求める。このマススペクトルデータが一時記憶メモリ33のスペクトルデータ記憶領域332に格納される。 The ions held in the ion trap 134 are ejected all at a predetermined timing, introduced into the flight space in the flight tube 135, and fly through the flight space to reach the detector 136. While flying in the flight space, various ions are separated according to the mass-to-charge ratio, and reach the detector 136 in ascending order of the mass-to-charge ratio. An analog detection signal from the detector 136 is converted into digital data by an analog-digital converter (not shown) and input to the data collection unit 31. This data is time-of-flight spectrum data showing the relationship between ion flight time and ion intensity, and the mass spectrum creation unit 32 converts the time-of-flight into a mass-to-charge ratio, thereby converting the mass spectrum data from the time-of-flight spectrum data. Ask. This mass spectrum data is stored in the spectrum data storage area 332 of the temporary storage memory 33.
 なお、一般に、1回のレーザ光の照射によって得られるイオンの量は少ないため、また、そのイオン量のばらつきは大きいため、同じ測定点に対して複数回の測定を行い、それら複数回の測定においてそれぞれ得られた飛行時間スペクトルデータを積算することで一つの測定点に対する飛行時間スペクトルデータを取得し、これからマススペクトルを得るようにしている。 In general, since the amount of ions obtained by a single laser beam irradiation is small and the variation in the amount of ions is large, a plurality of measurements are performed at the same measurement point, and the measurement is performed a plurality of times. The time-of-flight spectrum data obtained in step 1 is integrated to obtain time-of-flight spectrum data for one measurement point, and a mass spectrum is obtained from this.
 上記のようにして或る一つの測定点に対するマススペクトルデータが一時記憶メモリ33に格納されると、次に測定すべき測定点がレーザ光照射位置に来るように試料台11が移動される。予め決められた順序で測定対象領域101内の全ての測定点に対する質量分析を実行して、それぞれマススペクトルデータが得られたならば、測定を終了する。測定が終了したならば、データファイル作成部34は、一時記憶メモリ33のスペクトルデータ記憶領域332に保存されている測定対象領域全体に対するマススペクトルデータが格納された一つのデータファイルを作成し、このデータファイルを外部記憶装置4のデータファイル記憶領域42に保存する(ステップS8)。なお、このとき又はその後の適宜の時点で、低解像ファイル作成部35にて低解像のデータファイルを作成するようにしてもよいが、これについては後述する。 When the mass spectrum data for a certain measurement point is stored in the temporary storage memory 33 as described above, the sample stage 11 is moved so that the measurement point to be measured next comes to the laser beam irradiation position. When mass analysis is performed on all measurement points in the measurement target region 101 in a predetermined order and mass spectrum data is obtained, the measurement is terminated. When the measurement is completed, the data file creation unit 34 creates one data file in which the mass spectrum data for the entire measurement target area stored in the spectrum data storage area 332 of the temporary storage memory 33 is stored. The data file is saved in the data file storage area 42 of the external storage device 4 (step S8). At this time or at an appropriate time thereafter, the low-resolution file creation unit 35 may create a low-resolution data file, which will be described later.
 ステップS6で分割ありと判定された場合には、分析制御部21は変数Nを1にセットし(ステップS9)、上記ステップS4の領域分割処理によって定められた小領域#Nに含まれる各測定点に対する質量分析を実行する(ステップS10)。質量分析の手順は上述したとおりであり、異なるのは、測定すべき測定点が一つの小領域内に限られる点のみである。例えば図3の例では一つの小領域には、最大256×256の測定点が存在するから、その測定点の一つ一つについてマススペクトルデータが得られ、該データは一時記憶メモリ33のスペクトルデータ記憶領域332に保存される。 If it is determined in step S6 that there is a division, the analysis control unit 21 sets the variable N to 1 (step S9), and each measurement included in the small region #N determined by the region division process in step S4. Mass analysis is performed on the point (step S10). The procedure of mass spectrometry is as described above, and the only difference is that the measurement points to be measured are limited to one small region. For example, in the example of FIG. 3, since there are a maximum of 256 × 256 measurement points in one small region, mass spectrum data is obtained for each of the measurement points, and the data is stored in the spectrum of the temporary storage memory 33. It is stored in the data storage area 332.
 一つの小領域に含まれる全ての測定点についての測定が終了したならば、データファイル作成部34は、一時記憶メモリ33のスペクトルデータ記憶領域332に保存されている一つの小領域に対するマススペクトルデータが格納された一つのデータファイルを作成し、このデータファイルを外部記憶装置4のデータファイル記憶領域42に保存する(ステップS11)。そのあと、分析制御部21は変数Nがその測定対象領域に対する小領域の総数、つまりは分割数であるか否かを判定する(ステップS12)。そして、変数Nが小領域の総数に達していれば処理を終了する。 When the measurement for all the measurement points included in one small area is completed, the data file creation unit 34 stores the mass spectrum data for one small area stored in the spectrum data storage area 332 of the temporary storage memory 33. Is created, and this data file is stored in the data file storage area 42 of the external storage device 4 (step S11). After that, the analysis control unit 21 determines whether or not the variable N is the total number of small areas for the measurement target area, that is, the number of divisions (step S12). If the variable N has reached the total number of small areas, the process ends.
 一方、変数Nが小領域の総数に達していなければ、変数Nをインクリメントして(ステップS13)ステップS10へと戻り、未測定である次の小領域に対する測定を実行する。したがって、ステップS10~S13の繰り返しによって、測定対象領域を分割して得られた全ての小領域に含まれる測定点に対する質量分析が実施され、その小領域毎に、得られたマススペクトルデータが、異なるデータファイルとして外部記憶装置4のデータファイル記憶領域42に保存される。 On the other hand, if the variable N has not reached the total number of small areas, the variable N is incremented (step S13), the process returns to step S10, and the measurement for the next unmeasured small area is executed. Therefore, by repeating steps S10 to S13, mass analysis is performed on measurement points included in all the small regions obtained by dividing the measurement target region, and the obtained mass spectrum data is obtained for each small region. The data files are stored in the data file storage area 42 of the external storage device 4 as different data files.
 図3に示した例の場合、小領域の総数は32であるから、変数Nが32になるまでステップS10~S13の処理が繰り返され、ステップS13で変数Nが32になったあとのステップS12の判定処理においてYesと判定されて全ての処理が終了することになる。したがって、外部記憶装置4のデータファイル記憶領域42には、それぞれ異なる小領域#1~#32に対応した32個のデータファイルが保存される。図1中に示すように、外部記憶装置4に保存される一つのデータファイルは、ヘッダ領域とデータ領域とを含み、ヘッダ領域には、一つの測定対象領域に対応したデータファイルであることを示す情報や、一つの測定対象領域の中のどの位置の小領域であるのかを示す情報といったファイル分割情報が格納される。 In the case of the example shown in FIG. 3, since the total number of small regions is 32, steps S10 to S13 are repeated until the variable N becomes 32, and step S12 after the variable N becomes 32 in step S13. In this determination process, it is determined Yes and all the processes are completed. Accordingly, 32 data files corresponding to different small areas # 1 to # 32 are stored in the data file storage area 42 of the external storage device 4. As shown in FIG. 1, one data file stored in the external storage device 4 includes a header area and a data area, and the header area is a data file corresponding to one measurement target area. File division information such as information indicating information indicating which position in a measurement target region is a small region is stored.
 以上のように、本実施例のイメージング質量分析装置では、分析者により指定された測定対象領域が広く、該測定対象領域から得られるデータ量が多くなる場合には、測定対象領域が複数の小領域に自動的に分割され、その小領域毎にそれぞれ独立したデータファイルが作成される。一方、分析者により指定された測定対象領域が狭く、該測定対象領域から得られるデータ量が少ない場合には、従来と同様に、測定対象領域全体に対する一つのデータファイルが作成される。 As described above, in the imaging mass spectrometer of the present embodiment, when the measurement target region designated by the analyst is wide and the amount of data obtained from the measurement target region increases, the measurement target region includes a plurality of small measurement target regions. It is automatically divided into areas, and an independent data file is created for each small area. On the other hand, when the measurement target region designated by the analyst is narrow and the amount of data obtained from the measurement target region is small, one data file for the entire measurement target region is created as in the prior art.
 上記のように外部記憶装置4に一つの測定対象領域に対する複数のデータファイルが保存されている状態において、該測定対象領域に対するイメージング画像を表示する際の処理について説明する。
 いま分析者が、操作部5により表示したい質量電荷比m/z=M1を指定してイメージング画像の表示を指示したものとする。この指示を受けてイメージング画像作成処理部37は、外部記憶装置4のデータファイル記憶領域42に保存されている、測定対象領域に含まれる一つの小領域に対応するデータファイルにアクセスし、その小領域に含まれる全ての測定点におけるm/z=M1に対する信号強度値を示すデータを読み出す。
A process for displaying an imaging image for a measurement target area in a state where a plurality of data files for one measurement target area is stored in the external storage device 4 as described above will be described.
Assume that the analyst instructs the display of the imaging image by designating the mass-to-charge ratio m / z = M 1 to be displayed by the operation unit 5. In response to this instruction, the imaging image creation processing unit 37 accesses the data file corresponding to one small area included in the measurement target area, which is stored in the data file storage area 42 of the external storage device 4, and the small file. Data indicating signal intensity values for m / z = M 1 at all measurement points included in the region is read.
 図3に示した例では、例えば小領域#1に対応する一つのデータファイルから、256×256 pixelの測定点のそれぞれについてm/z=M1における信号強度値が得られる。イメージング画像作成処理部37は、これら信号強度値に基づいて小領域#1に対応するm/z=M1のイメージング画像を作成する。このイメージング画像の解像度(空間分解能)は高いものの、これは測定対象領域の中の一部に対応するものである。 In the example shown in FIG. 3, for example, a signal intensity value at m / z = M 1 is obtained for each measurement point of 256 × 256 pixels from one data file corresponding to the small region # 1. The imaging image creation processing unit 37 creates an imaging image of m / z = M 1 corresponding to the small region # 1 based on these signal intensity values. Although the resolution (spatial resolution) of the imaging image is high, this corresponds to a part of the measurement target region.
 このような、外部記憶装置4に保存されている一つのデータファイルからのデータの読み出し及びそれに基づくイメージング画像の作成処理を繰り返すことで、32個の小領域に対するm/z=M1のイメージング画像が得られる。そして、それらイメージング画像を繋ぎ合わせることで、測定対象領域全体に対するイメージング画像を作成し、これを表示部6の画面上に表示する。もちろん、全てのイメージング画像を繋ぎ合わせたあとにそれを表示するのではなく、一つの小領域に対するイメージング画像が得られる毎にそれを順次表示部6の画面上に表示することで、イメージング画像が全く表示されない状態の待ち時間を短縮することができる。 By repeating the reading of data from one data file stored in the external storage device 4 and the creation of an imaging image based thereon, imaging images of m / z = M 1 for 32 small regions are repeated. Is obtained. Then, by connecting these imaging images, an imaging image for the entire measurement target region is created and displayed on the screen of the display unit 6. Of course, instead of displaying all of the imaging images after joining them, each time an imaging image for one small region is obtained, it is displayed on the screen of the display unit 6 in order, so that the imaging image is displayed. It is possible to reduce the waiting time when no display is performed.
 以上のようにして本実施例のイメージング質量分析装置では、分析者が指定した測定対象領域が広く、得られるデータ量が膨大になる場合に、測定対象領域を複数に分割した小領域毎のデータファイルに分けてマススペクトルデータを保存することができる。それによって、データファイルの扱いが容易になり、データファイルを扱う際のハードウエア、ソフトウエアの負荷も軽減される。 As described above, in the imaging mass spectrometer of the present embodiment, when the measurement target area specified by the analyst is wide and the amount of data to be obtained is enormous, data for each small area obtained by dividing the measurement target area into a plurality of areas. Mass spectral data can be saved in separate files. As a result, handling of the data file becomes easy, and the load on the hardware and software when handling the data file is reduced.
 上述したように、表示すべきイメージング画像の質量電荷比が分析者によって指定される場合には、イメージング画像を作成するために必要なデータを外部記憶装置4から読み出せばよいが、多変量解析などの処理によってイメージング画像を作成する質量電荷比を決定する場合には、複数のデータファイルからより多くのデータを読み出す必要があり、ハードウエアの負荷が大きくなる。そこで、これを避けるために、本実施例のイメージング質量分析装置では、高精細の画像を作成可能である通常のデータファイルのほかに、主として多変量解析に供される低解像のデータファイルも作成し、それを外部記憶装置4の低解像データファイル記憶領域41に保存することができるようにしている。 As described above, when the mass-to-charge ratio of the imaging image to be displayed is designated by the analyst, data necessary for creating the imaging image may be read from the external storage device 4, but multivariate analysis may be performed. When the mass-to-charge ratio for creating an imaging image is determined by such a process, it is necessary to read more data from a plurality of data files, which increases the hardware load. Therefore, in order to avoid this, the imaging mass spectrometer of the present embodiment also includes a low-resolution data file mainly used for multivariate analysis in addition to a normal data file capable of creating a high-definition image. It is prepared so that it can be saved in the low resolution data file storage area 41 of the external storage device 4.
 具体的には、例えばステップS8において、測定対象領域全体に対するマススペクトルデータが格納された一つのデータファイルを作成する際に、それと並行して又はその作成終了後に、低解像ファイル作成部35はデータ量の削減処理を行う。具体的には例えば、測定点を適宜間引くことで測定点の数を減らす、各測定点における質量電荷比方向のデータ点をダウンサンプリングする、信号強度値データのビット数を削減する、などの一つ又は複数の方法を用いることができる。より好ましくは、単に測定点を間引くのではなく、隣接する測定点で得られたデータに対しビニング処理を行ってデータ量を減らすとよい。こうした処理は、高精細なイメージング画像に対するサムネイル画像を作成する処理に相当する。 Specifically, for example, in step S8, when creating one data file in which mass spectrum data for the entire measurement target region is stored, the low resolution file creation unit 35 concurrently or after the creation of the data file is completed. Reduce the amount of data. Specifically, for example, the number of measurement points is reduced by appropriately thinning out the measurement points, data points in the mass-to-charge ratio direction at each measurement point are down-sampled, and the number of bits of signal intensity value data is reduced. One or more methods can be used. More preferably, instead of simply thinning out the measurement points, the amount of data may be reduced by performing a binning process on data obtained at adjacent measurement points. Such processing corresponds to processing for creating a thumbnail image for a high-definition imaging image.
 こうしてデータ量を大幅に削減したデータファイルを外部記憶装置4の低解像データファイル記憶領域41に保存しておく。また、測定対象領域が複数の小領域に分割され、その小領域毎にデータファイルを作成する場合でも同様に、測定対象領域全体に対するマススペクトルデータのデータ量を大幅に削減したデータファイルを作成し、外部記憶装置4の低解像データファイル記憶領域41に保存しておく。 Thus, the data file whose data amount is greatly reduced is stored in the low resolution data file storage area 41 of the external storage device 4. Similarly, even when the measurement target area is divided into multiple small areas and a data file is created for each of the small areas, a data file is created that significantly reduces the amount of mass spectral data for the entire measurement target area. The data is stored in the low resolution data file storage area 41 of the external storage device 4.
 そして、測定対象領域における特徴的な質量電荷比を探索するなどの目的のために多変量解析処理を実施する際に、多変量解析処理部36は、外部記憶装置4の低解像データファイル記憶領域41からデータを読み出し、そのデータを用いた所定の多変量解析処理、例えば主成分分析を実施する。このときに用いるデータの解像度や分解能は低いものの、多変量解析処理によって測定対象領域全体における分布の傾向を把握するには通常、問題はない。或いは、分割された測定対象領域のうち主要な領域のみを使用して多変量解析行ってもよい。そして、そうした多変量解析処理の結果、特徴的な分布を示す質量電荷比が特定できたならば、外部記憶装置4のデータファイル記憶領域42に保存されているデータファイルからその質量電荷比に対応するデータを読み出し、そのデータに基づいて高精細なイメージング画像を作成して表示すればよい。
 こうして多変量解析処理等を行う必要がある場合でも、取り扱うデータファイルのサイズを小さく抑え、ハードウエアの負荷を軽減することができる。
When performing multivariate analysis processing for the purpose of searching for a characteristic mass-to-charge ratio in the measurement target region, the multivariate analysis processing unit 36 stores the low-resolution data file in the external storage device 4. Data is read from the area 41, and a predetermined multivariate analysis process using the data, for example, principal component analysis is performed. Although the resolution and resolution of the data used at this time are low, there is usually no problem in grasping the distribution tendency in the entire measurement target region by the multivariate analysis processing. Alternatively, the multivariate analysis may be performed using only the main region among the divided measurement target regions. As a result of such multivariate analysis processing, if a mass-to-charge ratio indicating a characteristic distribution can be specified, the mass-to-charge ratio is handled from the data file stored in the data file storage area 42 of the external storage device 4. The data to be read may be read out and a high-definition imaging image may be created and displayed based on the data.
Thus, even when multivariate analysis processing or the like needs to be performed, the size of the data file to be handled can be reduced, and the hardware load can be reduced.
 なお、図2に示したフローチャートでは、一つの小領域に含まれる全ての測定点に対する質量分析が終了する毎に、その小領域に対応する一つのデータファイルが外部記憶装置4に保存されるようになっているが、全ての小領域(つまりは測定対象領域全体)に含まれる測定点に対する質量分析を終了したあとに、一時記憶メモリ33に格納されているデータを各小領域に対応するように分割してそれぞれデータファイルに格納し、外部記憶装置4に保存するようにしてもよい。いずれの手順でも、外部記憶装置4に格納されるデータファイルは同じである。ただし、後者の手順では、測定対象領域全体に対するマススペクトルデータを一時的に一時記憶メモリ33に格納する必要があるため、それに見合うように該メモリ33の記憶容量を増やしておく必要がある。もちろん、アクセス速度は遅くなるものの、外部記憶装置4内のメモリをスワップにより利用してもよい。 In the flowchart shown in FIG. 2, every time mass analysis for all measurement points included in one small region is completed, one data file corresponding to the small region is stored in the external storage device 4. However, after the mass analysis for the measurement points included in all the small regions (that is, the entire measurement target region) is completed, the data stored in the temporary storage memory 33 is made to correspond to each small region. The data may be divided into the data files and stored in the data file and stored in the external storage device 4. In any procedure, the data file stored in the external storage device 4 is the same. However, in the latter procedure, it is necessary to temporarily store the mass spectrum data for the entire measurement target region in the temporary storage memory 33. Therefore, it is necessary to increase the storage capacity of the memory 33 in order to meet this need. Of course, although the access speed is slow, the memory in the external storage device 4 may be used by swapping.
 また、上記実施例のイメージング質量分析装置では、測定対象領域を複数の小領域に分割する際に、空間的に隣接する測定点が同じ小領域に含まれるように分割していたが、分割の手法はこれに限らない。図4は測定対象領域の分割の他の例の説明図である。
 この例では、測定対象領域101の中でx軸、y軸方向ともに、L個の測定点間隔だけ離れた位置にある複数の測定点を一つのグループとして、それら測定点に対して得られたマススペクトルデータを同一のデータファイルに格納するようにしている。このように、同じデータファイルに格納されるマススペクトルデータが得られた測定点は必ずしもサンプル上で隣接又は近接していなくてもよい。
In the imaging mass spectrometer of the above embodiment, when the measurement target region is divided into a plurality of small regions, the spatially adjacent measurement points are divided so as to be included in the same small region. The method is not limited to this. FIG. 4 is an explanatory diagram of another example of division of the measurement target region.
In this example, a plurality of measurement points at positions separated by L measurement point intervals in the x-axis and y-axis directions in the measurement target region 101 are obtained as a group for the measurement points. Mass spectrum data is stored in the same data file. Thus, the measurement points from which the mass spectrum data stored in the same data file are not necessarily adjacent or close to each other on the sample.
 図4に示したように測定対象領域を分割すると、外部記憶装置4に保存されている一つのデータファイルから読み出したデータを用いて特定の質量電荷比のイメージング画像を作成したとき、測定対象領域の中の一部の高解像度の画像ではなく、測定対象領域全体の粗い、つまりは低解像度の画像が得られる。そして、複数のデータファイルからのデータに基づくイメージング画像の作成と繋ぎ合わせを逐次進めていくと、測定対象領域全体に対するイメージング画像の解像度が次第に上がっていく。したがって、こうしたイメージング画像を表示部6の画面上に表示することで、分析者は解像度が低いイメージング画像を見て所望の画像でないと認識したときには、イメージング画像作成処理の途中でもその処理を中止することができる。 When the measurement target area is divided as shown in FIG. 4, when an imaging image having a specific mass-to-charge ratio is created using data read from one data file stored in the external storage device 4, the measurement target area is Rather than a part of the high-resolution image, a rough, that is, low-resolution image of the entire measurement target area is obtained. When the creation and connection of imaging images based on data from a plurality of data files are sequentially advanced, the resolution of the imaging image with respect to the entire measurement target region gradually increases. Therefore, by displaying such an imaging image on the screen of the display unit 6, when an analyst sees an imaging image with a low resolution and recognizes that the image is not a desired image, the processing is stopped even during the imaging image creation process. be able to.
 また、上記実施例のイメージング質量分析装置では、測定対象領域を複数の小領域に分割してそれぞれデータファイルを分けるようにしたが、同様に一つのデータファイルに格納されるデータ量を所定量以内に抑えるために、空間的な分割ではなく、質量電荷比方向のデータの分割を行ってもよい。 In the imaging mass spectrometer of the above embodiment, the measurement target area is divided into a plurality of small areas, and the data files are respectively divided. Similarly, the data amount stored in one data file is within a predetermined amount. In order to suppress this, data division in the mass-to-charge ratio direction may be performed instead of spatial division.
 図5は他の実施例のイメージング質量分析装置におけるデータ分割の一例の説明図である。この例では、マススペクトルデータを質量電荷比方向にn個に分割し、測定対象領域内の全ての測定点に対して得られるマススペクトルデータをそれぞれn個に分け、異なる測定点において同じ質量電荷比範囲に含まれるデータを同じデータファイルに格納することで、全てのデータを全部でn個のデータファイルに格納するようにしている。
 この場合、例えばM3の質量電荷比範囲に含まれる質量電荷比に対するイメージング画像を作成したければ、#3のデータファイルのみからデータを読み出せばよく、上記実施例のように複数データファイルに跨ってデータを読み出す必要はない。
FIG. 5 is an explanatory diagram of an example of data division in an imaging mass spectrometer of another embodiment. In this example, the mass spectrum data is divided into n pieces in the mass-to-charge ratio direction, and the mass spectrum data obtained for all measurement points in the measurement target region is divided into n pieces, and the same mass charge is obtained at different measurement points. By storing the data included in the ratio range in the same data file, all the data is stored in n data files in total.
In this case, for example, if it is desired to create an imaging image for the mass-to-charge ratio included in the mass-to-charge ratio range of M 3 , it is only necessary to read data from only the data file of # 3. There is no need to read data across.
 ただし、このようなデータ分割の方法を採る場合、測定対象領域に対する全てのマススペクトルデータが一時記憶メモリ33に格納されてからデータを分割する必要がある。したがって、一時記憶メモリ33の記憶容量はそれに見合ったものを用意する必要がある。
 もちろん、図3や図4に示したような測定対象領域の分割、つまりは空間的な分割と、図5に示したような質量電荷比方向のデータの分割との両方を併用して、一つのデータファイルに格納されるデータ量を所定量以内に抑えるようにしてもよい。
However, when such a data division method is adopted, it is necessary to divide the data after all the mass spectrum data for the measurement target region is stored in the temporary storage memory 33. Accordingly, the storage capacity of the temporary storage memory 33 needs to be prepared in accordance with it.
Of course, both the division of the measurement target region as shown in FIG. 3 and FIG. 4, that is, the spatial division and the division of the data in the mass-to-charge ratio direction as shown in FIG. The amount of data stored in one data file may be suppressed within a predetermined amount.
 また、上記実施例は本発明をイメージング質量分析装置に適用した例であるが、本発明はイメージング質量分析装置だけでなく、試料上の測定対象領域内に設定された多数の測定点それぞれに対し何らかのスペクトル情報や信号値を取得する様々な分析装置に適用することができる。 Moreover, although the said Example is an example which applied this invention to the imaging mass spectrometer, this invention applies not only to an imaging mass spectrometer but to each of many measurement points set in the measurement object area | region on a sample. The present invention can be applied to various analyzers that acquire some spectrum information and signal values.
 例えば、FTIRイメージング装置では、試料上の測定対象領域内の多数の測定点に対しフーリエ変換赤外分光光度測定を実施し、赤外吸収スペクトルをそれぞれ取得する。また、ラマン分光イメージング装置では、試料上の測定対象領域内の多数の測定点に対しラマン分光測定を実施し、ラマン散乱スペクトルをそれぞれ取得する。また、電子線マイクロアナライザでは、試料上の測定対象領域内の多数の測定点にそれぞれ励起線として電子線を照射し、それによって試料から放出される特性X線のエネルギと強度との関係を示すスペクトルをそれぞれ取得する。さらにまた、走査型プローブ顕微鏡などの原子間力顕微鏡では、試料上の測定対象領域内の多数の測定点において試料の高さ情報のほか、表面電位、誘電率などの種々の物性を測定する。したがって、これら分析装置においても上述したイメージング質量分析装置と同様に、測定対象領域を複数の小領域に分割し、その小領域毎にデータを格納するデータファイルを分けるようにすると、データファイルが扱い易くなる。 For example, in the FTIR imaging apparatus, Fourier transform infrared spectrophotometry is performed on a large number of measurement points in a measurement target region on a sample, and infrared absorption spectra are respectively acquired. In the Raman spectroscopic imaging apparatus, Raman spectroscopic measurement is performed on a large number of measurement points in the measurement target region on the sample, and a Raman scattering spectrum is acquired. Further, in the electron beam microanalyzer, an electron beam is irradiated as an excitation beam to each of a large number of measurement points in a measurement target region on the sample, thereby showing the relationship between the energy and intensity of characteristic X-rays emitted from the sample. Acquire each spectrum. Furthermore, an atomic force microscope such as a scanning probe microscope measures various physical properties such as surface potential and dielectric constant in addition to sample height information at a large number of measurement points in a measurement target region on the sample. Therefore, in these analyzers, similarly to the imaging mass spectrometer described above, if the measurement target area is divided into a plurality of small areas, and data files for storing data are divided into the small areas, the data files are handled. It becomes easy.
 上記実施例や上述した各種の変形例はいずれも本発明の一例であり、本発明の趣旨の範囲で適宜に変更、修正、追加を行っても本願特許請求の範囲に包含されることは当然である。 The above-described embodiments and the above-described various modifications are examples of the present invention, and it should be understood that modifications, changes, and additions within the scope of the present invention are included in the scope of the claims of the present application. It is.
1…イメージング質量分析部
11…試料台
12…観察部
13…質量分析部
131…MALDI用レーザ照射部
132…イオン導入部
133…イオンガイド
134…イオントラップ
135…フライトチューブ
136…検出器
2…制御・処理部
21…分析制御部
22…測定領域設定部
23…領域分割部
24…分割条件記憶部
25…測定条件記憶部
31…データ収集部
32…マススペクトル作成部
33…一時記憶メモリ
331…光学画像データ記憶領域
332…スペクトルデータ記憶領域
34…データファイル作成部
35…低解像ファイル作成部
36…多変量解析処理部
37…イメージング画像作成処理部
4…外部記憶装置
41…低解像データファイル記憶領域
42…データファイル記憶領域
5…操作部
6…表示部
100…サンプル
101…測定対象領域
102…測定点
DESCRIPTION OF SYMBOLS 1 ... Imaging mass spectrometry part 11 ... Sample stage 12 ... Observation part 13 ... Mass analysis part 131 ... Laser irradiation part 132 for MALDI ... Ion introduction part 133 ... Ion guide 134 ... Ion trap 135 ... Flight tube 136 ... Detector 2 ... Control Processing unit 21 Analysis control unit 22 Measurement area setting unit 23 Area dividing unit 24 Division condition storage unit 25 Measurement condition storage unit 31 Data collection unit 32 Mass spectrum creation unit 33 Temporary storage memory 331 Optical Image data storage area 332 ... Spectral data storage area 34 ... Data file creation section 35 ... Low resolution file creation section 36 ... Multivariate analysis processing section 37 ... Imaging image creation processing section 4 ... External storage device 41 ... Low resolution data file Storage area 42 Data file storage area 5 Operation unit 6 Display unit 100 Sample 101 Measurement pair Area 102 ... measurement point

Claims (8)

  1.  試料上の複数の測定点に対しそれぞれ所定の分析を実行することにより、各測定点の空間位置情報に関連付けられてなる分析結果情報を取得する分析装置において、
     a)試料上の測定対象領域を設定する領域設定部と、
     b)前記領域設定部により設定された測定対象領域を 所定の条件に従って複数の小領域に分割する領域分割部と、
     c)前記領域設定部により設定された測定対象領域中の全ての測定点に対してそれぞれ得られた分析結果情報が、前記領域分割部により分割されたあとの複数の小領域にそれぞれに対応付けて分けられて格納された複数のデータファイルを保存するファイル記憶部と、
     d)前記測定対象領域における所定の情報の分布を示すイメージング画像を作成する際には、前記ファイル記憶部に記憶されている一つのデータファイルから必要なデータを取得し、該データに基づいて一つの小領域に対するイメージング画像を作成するという処理を複数のデータファイルについて繰り返し、複数の小領域に対するイメージング画像を結合することで前記測定対象領域全体に対する所望のイメージング画像を作成するイメージング画像再現部と、
     を備えることを特徴とする分析装置。
    In the analyzer for acquiring analysis result information associated with the spatial position information of each measurement point by executing predetermined analysis on each of the plurality of measurement points on the sample,
    a) an area setting unit for setting the measurement target area on the sample;
    b) a region dividing unit that divides the measurement target region set by the region setting unit into a plurality of small regions according to a predetermined condition;
    c) The analysis result information respectively obtained for all measurement points in the measurement target region set by the region setting unit is associated with each of a plurality of small regions after being divided by the region dividing unit. A file storage unit for storing a plurality of data files stored separately,
    d) When an imaging image showing the distribution of predetermined information in the measurement target region is created, necessary data is acquired from one data file stored in the file storage unit, and one based on the data is obtained. An imaging image reproduction unit that repeats the process of creating an imaging image for one small region for a plurality of data files and combines the imaging images for the plurality of small regions to create a desired imaging image for the entire measurement target region;
    An analysis apparatus comprising:
  2.  請求項1に記載の分析装置であって、
     前記領域分割部により分割されたあとの複数の小領域について、小領域毎にその小領域に含まれる測定点に対する所定の分析を実行して分析結果情報を取得するように分析制御を行う制御部と、
     前記制御部の制御の下で、一つの小領域に対する分析結果情報が得られる毎に、該分析結果情報が格納された一つのデータファイルを作成して前記ファイル記憶部に保存するファイル作成部と、
     をさらに備えることを特徴とする分析装置。
    The analyzer according to claim 1,
    A control unit that performs analysis control so as to execute a predetermined analysis on the measurement points included in each small region and acquire analysis result information for each of the small regions after being divided by the region dividing unit When,
    Under the control of the control unit, every time analysis result information for one small region is obtained, a file creation unit that creates one data file storing the analysis result information and saves it in the file storage unit; ,
    An analysis apparatus further comprising:
  3.  請求項1に記載の分析装置であって、
     前記測定対象領域に含まれる全ての測定点に対する所定の分析による分析結果情報が取得されたあとに、その分析結果情報を前記複数の小領域に対応付けて分けてそれぞれデータファイルを作成し、その複数のデータファイルを前記ファイル記憶部に保存するファイル作成部をさらに備えることを特徴とする分析装置。
    The analyzer according to claim 1,
    After the analysis result information by a predetermined analysis for all the measurement points included in the measurement target area is acquired, the analysis result information is associated with the plurality of small areas and each data file is created, An analysis apparatus further comprising a file creation unit for storing a plurality of data files in the file storage unit.
  4.  請求項1~3のいずれか1項に記載の分析装置であって、
     前記領域分割部は、一つのデータファイルに格納されるデータの容量が所定以下になるという条件の下に、前記測定対象領域を複数の小領域に分割することを特徴とする分析装置。
    The analyzer according to any one of claims 1 to 3,
    The area dividing unit divides the measurement target area into a plurality of small areas under a condition that the capacity of data stored in one data file is equal to or less than a predetermined value.
  5.  試料上の複数の測定点に対しそれぞれ所定の分析を実行することにより、各測定点の空間位置情報に関連付けられてなる、所定のパラメータと信号強度との関係を示すスペクトル情報を取得する分析装置において、
     a)試料上の測定対象領域を設定する領域設定部と、
     b)前記測定対象領域内の全ての測定点に対してそれぞれ得られたスペクトル情報を、前記所定のパラメータの値の範囲を複数に分割したパラメータ小範囲にそれぞれに対応付けたデータファイルに分け、その複数のデータファイルをファイル記憶部に格納するファイル作成部と、
     c)前記測定対象領域における所定の情報の分布を示すイメージング画像を作成する際には、前記ファイル記憶部に記憶されている少なくとも一つのデータファイルから必要なデータを取得し、それらデータに基づいて前記測定対象領域全体に対する所望のイメージング画像を作成するイメージング画像再現部と、
     を備えることを特徴とする分析装置。
    An analyzer for acquiring spectral information indicating a relationship between a predetermined parameter and a signal intensity, which is associated with spatial position information of each measurement point, by executing predetermined analysis on each of a plurality of measurement points on the sample. In
    a) an area setting unit for setting the measurement target area on the sample;
    b) Spectral information respectively obtained for all measurement points in the measurement target region is divided into data files corresponding to the parameter subranges obtained by dividing the range of the predetermined parameter values into a plurality of ranges, A file creation unit for storing the plurality of data files in a file storage unit;
    c) When creating an imaging image showing the distribution of predetermined information in the measurement target region, the necessary data is obtained from at least one data file stored in the file storage unit, and based on the data An imaging image reproduction unit for creating a desired imaging image for the entire measurement target region;
    An analysis apparatus comprising:
  6.  請求項5に記載の分析装置であって、
     前記ファイル作成部は、前記測定対象領域に含まれる全ての測定点に対する所定の分析による分析結果情報が取得されたあとに、その分析結果情報を前記複数のパラメータ小範囲に対応付けて分け、異なる測定点における同じパラメータ小範囲に含まれる分析結果情報が同一のデータファイルに入るようにそれぞれデータファイルを作成し、その複数のデータファイルを前記ファイル記憶部に保存することを特徴とする分析装置。
    The analyzer according to claim 5, wherein
    The file creation unit divides the analysis result information by associating the analysis result information with the plurality of small parameter ranges after obtaining the analysis result information by a predetermined analysis for all the measurement points included in the measurement target region. An analysis apparatus, wherein data files are created so that analysis result information included in the same parameter small range at a measurement point is included in the same data file, and the plurality of data files are stored in the file storage unit.
  7.  請求項5又は6に記載の分析装置であって、
     前記ファイル作成部は、一つのデータファイルに格納されるデータの容量が所定以下になるという条件の下に、前記所定のパラメータの値の範囲を複数のパラメータ小範囲に分割することを特徴とする分析装置。
    The analyzer according to claim 5 or 6, wherein
    The file creation unit divides the value range of the predetermined parameter into a plurality of parameter small ranges under a condition that a capacity of data stored in one data file is equal to or less than a predetermined value. Analysis equipment.
  8.  請求項1~7のいずれか1項に記載の分析装置であって、
     試料上の複数の測定点に対しそれぞれ質量分析を実行することにより、各測定点の空間位置情報に関連付けられてなるマススペクトルデータを取得するイメージング質量分析装置であり、
     前記イメージング画像再現部は、前記ファイル記憶部に記憶されている1又は複数のデータファイルからそれぞれ必要なデータを取得し、前記測定対象領域における特定の質量電荷比に対する質量分析イメージング画像を作成することを特徴とする分析装置。
    The analyzer according to any one of claims 1 to 7,
    An imaging mass spectrometer that acquires mass spectrum data associated with spatial position information of each measurement point by performing mass spectrometry on each of a plurality of measurement points on a sample,
    The imaging image reproduction unit acquires necessary data from one or more data files stored in the file storage unit, and creates a mass spectrometry imaging image for a specific mass-to-charge ratio in the measurement target region. An analysis device characterized by.
PCT/JP2014/083707 2014-12-19 2014-12-19 Analysis apparatus WO2016098247A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/083707 WO2016098247A1 (en) 2014-12-19 2014-12-19 Analysis apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/083707 WO2016098247A1 (en) 2014-12-19 2014-12-19 Analysis apparatus

Publications (1)

Publication Number Publication Date
WO2016098247A1 true WO2016098247A1 (en) 2016-06-23

Family

ID=56126165

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/083707 WO2016098247A1 (en) 2014-12-19 2014-12-19 Analysis apparatus

Country Status (1)

Country Link
WO (1) WO2016098247A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020094854A (en) * 2018-12-11 2020-06-18 株式会社島津製作所 Imaging analyzer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001519944A (en) * 1997-03-03 2001-10-23 バクス リサーチ ラボラトリーズ インコーポレイテッド Method and apparatus for acquiring and reconstructing a magnified image of a sample from a computer controlled microscope
JP2006519443A (en) * 2003-02-28 2006-08-24 アペリオ・テクノロジーズ・インコーポレイテッド System and method for viewing virtual slides

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001519944A (en) * 1997-03-03 2001-10-23 バクス リサーチ ラボラトリーズ インコーポレイテッド Method and apparatus for acquiring and reconstructing a magnified image of a sample from a computer controlled microscope
JP2006519443A (en) * 2003-02-28 2006-08-24 アペリオ・テクノロジーズ・インコーポレイテッド System and method for viewing virtual slides

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CLERENS,S. ET AL.: "CreateTarget and Analyze This!: new software assisting imaging mass spectrometry on Bruker Reflex IV and Ultraflex II instruments", RAPID COMMUNICATIONS IN MASS SPECTROMETRY, vol. 20, no. Issue 20, pages 3061 - 3066 *
ROBICHAUD,G. ET AL.: "MSiReader: An Open-Source Interface to View and Analyze High Resolving Power MS Imaging Files on Matlab Platform", JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY, vol. 24, no. Issue 5, 28 March 2013 (2013-03-28), pages 718 - 721, XP035354301, DOI: doi:10.1007/s13361-013-0607-z *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020094854A (en) * 2018-12-11 2020-06-18 株式会社島津製作所 Imaging analyzer
CN111307920A (en) * 2018-12-11 2020-06-19 株式会社岛津制作所 Imaging analysis device
JP7172537B2 (en) 2018-12-11 2022-11-16 株式会社島津製作所 Imaging analyzer
CN111307920B (en) * 2018-12-11 2023-04-07 株式会社岛津制作所 Imaging analysis device

Similar Documents

Publication Publication Date Title
JP6569805B2 (en) Imaging mass spectrometer
JP4973360B2 (en) Mass spectrometer
JP5950034B2 (en) Imaging mass spectrometry data processing method and imaging mass spectrometer
WO2018037491A1 (en) Imaging mass spectrometry device
JP6465121B2 (en) Analytical data processing method and apparatus
JP5206790B2 (en) Mass spectrometer
JP6597909B2 (en) Mass spectrometry data processor
JP2011191222A (en) Mass analysis data processing method and apparatus
JP5454409B2 (en) Mass spectrometer
JP7004073B2 (en) Imaging data processing equipment
WO2010100675A1 (en) Mass spectrometer
WO2016098247A1 (en) Analysis apparatus
US10147590B2 (en) Mass spectrometry data processing apparatus and mass spectrometry data processing method
US11848182B2 (en) Method and device for processing imaging-analysis data
JP7248126B2 (en) Imaging mass spectrometer
JP7001157B2 (en) Imaging mass spectrometry data processing equipment
JP7010373B2 (en) Spectral data processing equipment and analysis equipment
WO2023032181A1 (en) Mass spectrometry data analysis method, and imaging mass spectrometry device
WO2023058234A1 (en) Mass spectrometry data analysis method, and imaging mass spectrometry device
WO2021095210A1 (en) Imaging analysis device and imaging data interpretation method
JP2021196260A (en) Imaging mass spectroscope and imaging mass analysis method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14908457

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14908457

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP