WO2016098141A1 - Heat pump hot water supply device and control method therefor - Google Patents

Heat pump hot water supply device and control method therefor Download PDF

Info

Publication number
WO2016098141A1
WO2016098141A1 PCT/JP2014/006317 JP2014006317W WO2016098141A1 WO 2016098141 A1 WO2016098141 A1 WO 2016098141A1 JP 2014006317 W JP2014006317 W JP 2014006317W WO 2016098141 A1 WO2016098141 A1 WO 2016098141A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
hot water
storage device
heat pump
power storage
Prior art date
Application number
PCT/JP2014/006317
Other languages
French (fr)
Japanese (ja)
Inventor
知英 太田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2014/006317 priority Critical patent/WO2016098141A1/en
Publication of WO2016098141A1 publication Critical patent/WO2016098141A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters

Definitions

  • the present invention relates to a heat pump hot-water supply device that stores and uses electrical energy in a power storage device, and a control method therefor.
  • a heat pump water heater operated with AC power fed from a commercial power system, and DC power stored and stored in a storage battery by converting AC power fed from the commercial power system into DC power It is equipped with a power storage device that converts power into AC power and supplies power, and stores the AC power of the commercial power system in the power storage device in the midnight hours when the electricity rate is set lower than the daytime, and operates the heat pump water heater in the daytime.
  • a power storage device that converts power into AC power and supplies power, and stores the AC power of the commercial power system in the power storage device in the midnight hours when the electricity rate is set lower than the daytime, and operates the heat pump water heater in the daytime.
  • the operation cost is reduced by supplying electric power from the power storage device (for example, see Patent Document 2 and Patent Document 3).
  • JP 2001-178177 A Japanese Patent No. 5405963 JP 2013-44466 A
  • a conventional heat pump water heater configured by combining a power storage device converts AC power of a commercial power system fed to the heat pump water heater into DC power, stores it in the power storage device, and once again stores the stored DC power as AC power. Since power is supplied to the heat pump hot water supply device after conversion, power loss due to repeated conversion between AC and DC has been caused.
  • the conventional heat pump water heater operates by appropriately switching between the hot water storage operation and the heat insulation operation based on the hot water amount and the water temperature of the hot water storage tank that changes with fluctuations in the hot water supply, and is not necessarily suitable for the operation of the heat pump water heater. In some situations, power cannot be supplied from the power storage device to the hot water supply device.
  • the present invention has been made to solve the above problems, and a first object is to suppress power loss and improve power efficiency.
  • the second object is to obtain a method for controlling the power supply from the power storage device in accordance with the operation of the heat pump water heater.
  • the heat pump water heater according to the present invention is A heat pump type water heater composed of a compressor, two heat exchangers, a refrigerant circuit for circulating a refrigerant between the compressor and the two heat exchangers, and a water circuit connected to a load side heat exchanger;
  • An inverter that supplies AC power of an arbitrary frequency to the compressor; Rectifying means that rectifies AC power supplied from the external power source into DC power and supplies the DC power to the inverter;
  • a power storage device connected to a wiring connecting the rectifying means and the inverter via a switch, storing DC power output from the rectifying means, and supplying DC power to the inverter;
  • First control means for controlling the operation of the inverter and the power storage device, The first control unit controls connection and disconnection of the power storage device to the wiring and charge / discharge of the power storage device according to a time zone.
  • a heat pump water heater connects a power storage device via a switch in the middle of a wiring connecting a rectifier that converts AC power supplied from an external AC power source into DC power and an inverter that drives a compressor.
  • the first control means can control the connection of the power storage device to the wiring and the charge / discharge of the power storage device, and the loss of power can be reduced by reducing the conversion between AC and DC.
  • FIG. 3 is a flowchart showing a control method in a chargeable period according to the first embodiment.
  • FIG. 3 is a flowchart showing a control method in a discharge priority period according to the first embodiment.
  • 3 is a diagram illustrating a relationship between a state of a hot water supply device and a storage capacity of a power storage device when operated by the control method according to Embodiment 1.
  • FIG. FIG. 3 is a block diagram showing a configuration of a heat pump hot water supply apparatus having a control circuit for a power storage device configured by a separate circuit in the first embodiment. It is a figure which shows the relationship between the state of the hot water supply apparatus at the time of making it operate
  • FIG. 1 the structure of the heat pump hot-water supply apparatus concerning this Embodiment is shown.
  • a heat pump water heater 1 includes a rectifier 10, a hot water controller 11, a power storage device 12, an inverter 13, a compressor 14, a load side heat exchanger 15, a primary side heat exchanger 16, a power factor improving reactor 30, and a smoothing.
  • the circuit 31 is configured.
  • the AC power supplied from the external AC power source 2 via the wiring 4 is rectified to DC power by a rectifier 10 formed of a diode, an output waveform is formed by a power factor improving reactor 30, and smoothed by a smoothing circuit 31. After that, it is supplied to the inverter 13 via the wiring 32.
  • the rectifier 10, the power factor improving reactor 30, and the smoothing circuit 31 constitute a rectifying means.
  • the inverter 13 converts the smoothed DC power into AC power having an arbitrary frequency by using a built-in frequency control means, and supplies it to the compressor 14.
  • the refrigerant compressed by the compressor 14 is supplied to the primary side heat exchanger 16 and the load side heat exchanger 15 via the refrigerant circuit 17.
  • the water supplied through the water supply valve 7 is heated by the load side heat exchanger 15 and stored in the hot water storage tank 3.
  • a circulating water valve 6 is attached to the water circuit 5 connecting the load side heat exchanger 15 and the hot water storage tank 3.
  • the compressor 14, the refrigerant circuit 17 and the water circuit 5 constitute the water heater of the present invention.
  • the power storage device 12 is connected to a wiring 32 connecting the smoothing circuit 31 and the inverter 13.
  • the power storage device 12 includes a bus voltage detection circuit 21 that detects the voltage across the smoothing circuit 31, a DC switch 25, a storage battery 26, a storage battery voltage detection circuit 22 that detects the voltage across the storage battery 26, and a converter control circuit. 24 and a power storage controller 20 that controls the operation of these circuits.
  • the power storage control unit 20 is connected to the bus voltage detection circuit 21, the storage battery voltage detection circuit 22, and the converter control circuit 24 through a wiring 27.
  • the inverter 13 and the power storage control unit 20 are connected to the hot water supply control unit 11 via the wiring 19, and the operation of the inverter 13 and the power storage device 12 is controlled by the hot water supply control unit 11.
  • rectification means rectifier 10, power factor improving reactor 30, smoothing circuit 31
  • the power storage device 12 is connected to the wiring 32 connecting the inverter 13 that drives the power supply 14 via the DC switch 25, and the hot water supply control unit 11 connects and disconnects the power storage device 12 to the wiring 32 (ON / OFF) and stores the power.
  • the charging / discharging to the apparatus 12 can be controlled.
  • the AC power fed from the external AC power source 2 is converted into DC power by the rectifier 10, shaped into a waveform by the power factor improving reactor 30, converted to DC power with less pulsating current by the smoothing circuit 31, and supplied to the inverter 13. Is done.
  • the inverter 13 converts the supplied DC power into AC power and drives the compressor 14.
  • power storage control unit 20 switches on DC switch 25 in response to a control command from hot water supply control unit 11 and outputs a target voltage value command to converter control circuit 24.
  • the converter control circuit 24 drives the switching element 28 of the converter 23 to perform operations of storing energy in the reactor 29 and discharging energy from the reactor 29.
  • the power storage control unit 20 turns on the DC switch 25 and outputs a target voltage value command to the converter control circuit 24.
  • the converter control circuit 24 detects the bus voltage by the bus voltage detection circuit 21 by driving the switching element 28, and targets the voltage of the storage battery 26 in the energy storage operation in the reactor 29 and the energy release operation from the reactor 29.
  • the on / off state of the switching element 28 is controlled so as to coincide with the DC bus voltage value.
  • the storage battery 26 is connected to the wiring 32 via the DC switch 25, and DC power is supplied to the inverter 13.
  • a time period during which the power storage device 12 may be charged is determined as a chargeable period, and an arbitrary time period is set in advance. As a chargeable period, it is desirable to set a midnight time zone in which the power rate is set lower than the daytime.
  • the hot water supply control unit 11 determines whether or not the current period is a chargeable period (step S201), and if it is a chargeable period (Yes), the process proceeds to step S202, but is not a chargeable period. (No) ends this processing.
  • step S202 it is determined whether or not the heat pump hot-water supply apparatus 1 is not performing a hot water storage operation and a heat retaining operation and is stopped (step S202). If the operation is stopped (Yes), the process proceeds to step S203. When driving (No), the process returns to step S201.
  • step S203 which is shifted from step S202, the hot water supply control unit 11 instructs the power storage control unit 20 to start charging, and direct current power is stored in the storage battery 26.
  • the hot water supply control unit 11 determines whether or not the hot water storage operation or the heat insulation operation should be started (step S204). If the hot water storage operation or the heat insulation operation should be started (Yes), the process proceeds to step S205. When it transfers and does not start hot water storage operation or heat retention operation (No), it transfers to step S207.
  • step S205 which is shifted from step S204, the hot water supply control unit 11 instructs the power storage control unit 20 to end charging, and power storage in the storage battery 26 is stopped.
  • step S206 After the hot water storage operation or the heat retaining operation is started in step S206, which is shifted from step S205, the flow shifts to step S201.
  • step S207 it is determined whether or not the chargeable period ends. When the chargeable period ends (Yes), the process proceeds to step S208 and the chargeable period does not end (No). Proceeds to step S209.
  • step S209 which shifts from step S207, it is determined whether or not the storage capacity of the storage battery 26 has reached the full charge state. If the full charge state has been reached (Yes), the flow moves to step S208 and the full charge is performed. If it does not reach (No), the process proceeds to step S204.
  • step S208 which shifts from steps S207 and S209, the hot water supply control unit 11 instructs the power storage control unit 20 to end charging, and power storage to the storage battery 26 is stopped.
  • a time zone in which the power storage device 12 wants to discharge is determined as a discharge priority period, and an arbitrary time zone is set in advance.
  • the discharge priority period it is desirable to set a daytime period in which a high effect of power leveling can be expected and the power rate is set high.
  • the hot water supply control unit 11 determines whether or not the present is the discharge priority period (step S301), and if it is the discharge priority period (Yes), the process proceeds to step S302, but is not the discharge priority period ( No) ends this process.
  • step S302 it is determined whether or not it is possible to discharge with the amount of power stored in the storage battery 26 (S302). If there is a stored power amount that can be discharged (Yes), the process proceeds to step S303, but the stored power that can be discharged. When there is no electric energy (No), this process is terminated.
  • step S303 it is determined whether the hot water storage operation or the heat insulation operation should be started. If the hot water storage operation or the heat insulation operation should be started (Yes), the process proceeds to step S304, and the hot water storage operation or the heat insulation operation is started. If not started (No), the process returns to step S301.
  • step S304 which is shifted from step S303, the hot water supply control unit 11 instructs the power storage control unit 20 to start discharging, the power storage control unit 20 turns on the DC switch 25, and the converter control circuit 24 causes the switching element 28 of the converter 23 to be turned on. On / off control is performed, and feeding of DC power from the storage battery 26 to the inverter 13 is started. Subsequently, after hot water storage operation or heat insulation operation is started (step S305), the process proceeds to step S306.
  • step S306 it is determined whether the amount of power stored in the storage battery 26 can continue to be discharged. If there is a stored amount of power that can be discharged (Yes), the process proceeds to step S307, and the stored power amount that can be discharged. If there is no (No), the process proceeds to step S310.
  • step S307 to which the process proceeds from step S306, it is determined whether the hot water storage operation or the heat insulation operation during operation is stopped and terminated. When the operation is stopped (Yes), the process proceeds to step S308 and the operation is continued ( No) again proceeds to step S306.
  • step S308 which moves from step S307, the hot water storage operation or the heat insulation operation is stopped, and the process moves to step S309.
  • the hot water supply control unit 11 instructs the power storage control unit 20 to end the discharge, and the power storage control unit 20 switches off the DC switch 25 and stops the supply of DC power from the storage battery 26 via the discharger 23. (Step S309), the process returns to Step S301.
  • step S310 which is shifted from step S306, the hot water supply control unit 11 instructs the power storage control unit 20 to end the discharge, and the power storage control unit 20 switches off the DC switch 25 and stops supplying DC power from the storage battery 26. Then, this process ends.
  • FIG. 4 is a diagram showing the relationship between the operating state of the heat pump hot water supply device 1 when operated by the control method in the present embodiment and the transition 405 of the storage capacity in the operating state of the power storage device 12.
  • the upper stage of FIG. 4 shows the operating state of the hot water supply device, and the lower stage shows the operating state of the power storage device.
  • the horizontal axis represents the time zone of the day.
  • the heat retention operation period 402 is a period that does not correspond to either the chargeable period or the discharge priority period. In this period, the power storage device 12 is not charged, and the heat is maintained with the power supplied from the external AC power supply 2. Do the driving.
  • the power storage device 12 discharges the storage battery 26 and supplies DC power to perform the heat insulation operation.
  • the storage battery 26 is discharged by the power storage device 12 to supply DC power and the hot water storage operation is performed. In such a case, discharging of the storage battery 26 by the power storage device 12 is stopped, and the hot water storage operation is continued by switching to the power from the external AC power source 2.
  • the switch 25 is provided in the middle of the wiring 32 that connects the rectifier that converts AC power supplied from the external AC power source 2 to DC power and the inverter 13 that drives the compressor 14.
  • the hot water control unit 11 can control the connection of the power storage device 12 to the wiring 32 and the charge / discharge of the power storage device 12.
  • the structure of the heat pump hot-water supply apparatus 1 is not limited to the structure shown in FIG. FIG. 5 shows that the converter 23 of the power storage device 12 is realized by another circuit, and includes a charging switching element 40, a step-up chopper switching element 41, and a discharging switching element 42.
  • the converter control circuit 24 switches the charging switching element 40 on. On the other hand, when the charging is stopped, the converter control circuit 24 switches the charging switching element 40 off.
  • the converter control circuit 24 switches the discharge switching element 42 on.
  • the converter control circuit 24 switches the discharge switching element 42 to OFF.
  • Embodiment 2 FIG. In the present embodiment, the power storage capacity of the power storage device 12 of the heat pump hot water supply device 1 is increased, and the hot water storage operation and the heat insulation operation are made longer by feeding DC power from the storage battery 26 of the power storage device 12 during the daytime. I can do it.
  • the wiring for charging and discharging the storage battery 26 of the power storage device 12 disposed between the rectifier 10 and the inverter 13 of the heat pump water heater 1 shown in FIG. 1 and the signal wiring from the power storage control unit 20 are externally connected.
  • a terminal block is provided so that it can be pulled out, and each wiring is connected to the terminal of the terminal block. Then, the charge / discharge wiring of the storage battery prepared outside and the signal wiring 27 are connected to the terminal of the terminal block.
  • a storage battery prepared outside the heat pump hot water supply apparatus 1 is connected and controllable, so the power storage capacity of the power storage apparatus 12 is increased, and the power storage apparatus is operated during the daytime.
  • the operation period can be extended by supplying electric power by discharging from 12, and as a result, even when a larger hot water storage tank is provided, the operation cost can be reduced.
  • Embodiment 3 FIG.
  • DC power is supplied by discharging from the storage battery 26 of the power storage device 12. Control hot water storage operation to make hot water.
  • control in the discharge priority period in the power supply control unit 11 is given priority to hot water storage operation by supplying DC power by discharge from the storage battery 26 of the power storage device 12 every time the amount of hot water stored in the hot water storage tank 3 decreases.
  • the operation is changed to control in which the operation is performed with the electric power supplied from the external AC power supply 2 and the electric power from the power storage device 12 is not supplied.
  • FIG. 6 shows the relationship between the operating state of heat pump water heater 1 in the operation of the present embodiment and the transition of the storage capacity in the operating state of power storage device 12.
  • the heat insulation operation period 602 is a case in which neither the chargeable period nor the discharge priority period is applicable, and the power storage device 12 is not charged, and the heat insulation operation is performed with the electric power supplied from the external AC power supply 2. Do.
  • the heat insulation operation period 603 in the discharge priority period set in the daytime time zone is performed with the electric power supplied from the external AC power supply 2 without performing the power supply due to the discharge from the power storage device 12.
  • the storage battery 26 is discharged by the power storage device 12 to supply DC power. Perform hot water storage operation.
  • the storage battery 26 is discharged by the power storage device 12 and DC power is supplied to perform the hot water storage operation.
  • the discharging of the storage battery 26 is stopped, the electric power supplied from the external AC power supply 2 is switched to continue the hot water storage operation.
  • the hot water supply control unit 11 of the heat pump hot water supply device 1 preferentially performs the hot water storage operation by the power supply from the power storage device 12 during the discharge priority period, the amount of stored hot water can be stored by the amount of power stored in the power storage device 12. Since hot water can be replenished to the hot water storage tank, the capacity of the hot water storage tank 3 can be reduced.
  • the electrical storage apparatus 12 can contribute to restraining peak electric power by using the electric power charged in the time zone of midnight by the electrical storage apparatus 12 with respect to the hot water storage operation which consumes electric power more compared with the heat insulation operation.

Abstract

Provided is a heat pump hot water supply device that is combined with a power storage device, and that suppresses power losses and improves power efficiency. In the heat pump hot water supply device 1 according to the present invention, a power storage device 12 is connected, via a switch, to a wiring 32 which connects rectifying means (rectifier 10, power-factor improving reactor 30, smoothing circuit 31) and an inverter 13. A power supply control unit 11, depending on the period of time, disconnects the power storage device 12 from the wiring 32 and controls charge/discharge of the power storage device 12. By charging or discharging the power storage device 12 according to the hot water storing operation or heat retaining operation for each period of time in consideration of operation costs, power losses can be reduced.

Description

ヒートポンプ給湯装置およびその制御方法Heat pump water heater and control method thereof
この発明は、電気エネルギーを蓄電装置に蓄電して利用するヒートポンプ給湯装置、およびその制御方法に関するものである。 The present invention relates to a heat pump hot-water supply device that stores and uses electrical energy in a power storage device, and a control method therefor.
ヒートポンプを用いた空気調和機として、商用電源の交流を直流に変換する整流回路、直流を平滑する平滑回路、平滑された直流を任意の周波数の交流に変換し電動機に電力を供給する周波数制御手段を有するインバータ回路、および前記平滑回路に2次電源を供給する電圧制御手段を有する蓄電手段を備えたものが知られている(例えば、特許文献1参照)。 As an air conditioner using a heat pump, a rectifier circuit that converts alternating current of a commercial power source into direct current, a smoothing circuit that smoothes direct current, a frequency control means that converts the smoothed direct current into alternating current of any frequency and supplies electric power to the motor There is known an inverter circuit having a power storage means having a voltage control means for supplying a secondary power source to the smoothing circuit (see, for example, Patent Document 1).
また従来のヒートポンプ給湯装置として、商用電力系統から給電される交流電力で運転されるヒートポンプ給湯機、および商用電力系統から給電される交流電力を直流電力に変換して蓄電池に蓄電するとともに蓄えた直流電力を交流電力に変換し直して給電する蓄電装置を備え、電気料金が昼間より低く設定された深夜の時間帯に商用電力系統の交流電力を蓄電装置に蓄電し、昼間のヒートポンプ給湯機の運転の際に蓄電装置から電力を給電することで運転コストを低減するものが知られている(例えば、特許文献2および特許文献3参照)。 In addition, as a conventional heat pump hot water supply device, a heat pump water heater operated with AC power fed from a commercial power system, and DC power stored and stored in a storage battery by converting AC power fed from the commercial power system into DC power It is equipped with a power storage device that converts power into AC power and supplies power, and stores the AC power of the commercial power system in the power storage device in the midnight hours when the electricity rate is set lower than the daytime, and operates the heat pump water heater in the daytime. In this case, it is known that the operation cost is reduced by supplying electric power from the power storage device (for example, see Patent Document 2 and Patent Document 3).
特開2001-178177号公報JP 2001-178177 A 特許第5405963号Japanese Patent No. 5405963 特開2013-44466号公報JP 2013-44466 A
蓄電装置を組み合わせて構成された従来のヒートポンプ給湯装置は、ヒートポンプ給湯装置に給電される商用電力系統の交流電力を直流電力に変換して蓄電装置に蓄え、その蓄電した直流電力をもう一度交流電力に変換してヒートポンプ給湯装置に給電しているので、交流・直流間の変換を重ねることに伴う電力の損失を招いていた。 A conventional heat pump water heater configured by combining a power storage device converts AC power of a commercial power system fed to the heat pump water heater into DC power, stores it in the power storage device, and once again stores the stored DC power as AC power. Since power is supplied to the heat pump hot water supply device after conversion, power loss due to repeated conversion between AC and DC has been caused.
また、従来のヒートポンプ給湯装置は、給湯の変動にともなって変化する貯湯タンクの湯量と水温をもとに貯湯運転や保温運転を適宜切り替えて動作しており、必ずしもヒートポンプ給湯装置の動作に適切な状況で蓄電装置から給湯装置への電力の給電が行えていなかった。 In addition, the conventional heat pump water heater operates by appropriately switching between the hot water storage operation and the heat insulation operation based on the hot water amount and the water temperature of the hot water storage tank that changes with fluctuations in the hot water supply, and is not necessarily suitable for the operation of the heat pump water heater. In some situations, power cannot be supplied from the power storage device to the hot water supply device.
この発明は、上記の課題を解決するためになされたもので、第1の目的は電力の損失を抑えて電力効率の向上を得るものである。また、第2の目的はヒートポンプ給湯装置の動作に即して蓄電装置からの給電を制御する方法を得るものである。 The present invention has been made to solve the above problems, and a first object is to suppress power loss and improve power efficiency. The second object is to obtain a method for controlling the power supply from the power storage device in accordance with the operation of the heat pump water heater.
 この発明にかかるヒートポンプ給湯装置は、
 圧縮機、2つの熱交換器、前記圧縮機および2つの熱交換器の間で冷媒を循環させる冷媒回路、ならびに負荷側熱交換器接続された水回路で構成されたヒートポンプ式の給湯器と、
 前記圧縮機に任意の周波数の交流電力を供給するインバータと、
 前記外部電源から供給された交流電力を直流電力に整流して前記インバータに供給する整流手段と、
 前記整流手段と前記インバータとを結ぶ配線にスイッチを介して接続され、前記整流手段から出力された直流電力を蓄電すると共に、前記インバータに直流電力を供給する蓄電装置と、
 前記インバータおよび蓄電装置の動作を制御する第1の制御手段と、を備え、
 前記第1の制御手段は、時間帯に応じて前記蓄電装置の前記配線への接続および切断と前記蓄電装置における充放電を制御することを特徴とする。
The heat pump water heater according to the present invention is
A heat pump type water heater composed of a compressor, two heat exchangers, a refrigerant circuit for circulating a refrigerant between the compressor and the two heat exchangers, and a water circuit connected to a load side heat exchanger;
An inverter that supplies AC power of an arbitrary frequency to the compressor;
Rectifying means that rectifies AC power supplied from the external power source into DC power and supplies the DC power to the inverter;
A power storage device connected to a wiring connecting the rectifying means and the inverter via a switch, storing DC power output from the rectifying means, and supplying DC power to the inverter;
First control means for controlling the operation of the inverter and the power storage device,
The first control unit controls connection and disconnection of the power storage device to the wiring and charge / discharge of the power storage device according to a time zone.
 この発明にかかるヒートポンプ給湯装置は、外部交流電源から供給された交流電力を直流電力に変換する整流手段と、圧縮機を駆動するインバータとを結ぶ配線の途中に、スイッチを介して蓄電装置を接続し、第1の制御手段によって蓄電装置の配線への接続と蓄電装置への充放電を制御できるようにしており、交流・直流間の変換を減らすことによって電力の損失を削減することができる。 A heat pump water heater according to the present invention connects a power storage device via a switch in the middle of a wiring connecting a rectifier that converts AC power supplied from an external AC power source into DC power and an inverter that drives a compressor. However, the first control means can control the connection of the power storage device to the wiring and the charge / discharge of the power storage device, and the loss of power can be reduced by reducing the conversion between AC and DC.
この発明の実施の形態1におけるヒートポンプ給湯装置の構成を示すブロック図である。It is a block diagram which shows the structure of the heat pump hot-water supply apparatus in Embodiment 1 of this invention. 実施の形態1の充電可能期間における制御方法を示すフローチャート図である。FIG. 3 is a flowchart showing a control method in a chargeable period according to the first embodiment. 実施の形態1の放電優先期間における制御方法を示すフローチャート図である。FIG. 3 is a flowchart showing a control method in a discharge priority period according to the first embodiment. 実施の形態1における制御方法で動作させた場合の給湯装置の状態と蓄電装置の蓄電容量との関係を示す図である。3 is a diagram illustrating a relationship between a state of a hot water supply device and a storage capacity of a power storage device when operated by the control method according to Embodiment 1. FIG. 実施の形態1における別回路で構成した蓄電装置の制御回路を持つヒートポンプ給湯装置の構成を示すブロック図である。FIG. 3 is a block diagram showing a configuration of a heat pump hot water supply apparatus having a control circuit for a power storage device configured by a separate circuit in the first embodiment. この発明の実施の形態3における制御方法で動作させた場合の給湯装置の状態と蓄電装置の蓄電容量との関係を示す図である。It is a figure which shows the relationship between the state of the hot water supply apparatus at the time of making it operate | move with the control method in Embodiment 3 of this invention, and the electrical storage capacity of an electrical storage apparatus.
 以下、本発明の実施の形態にかかるヒートポンプ給湯装置およびその制御方法について、図面を参照して説明する。 Hereinafter, a heat pump hot water supply apparatus and a control method thereof according to an embodiment of the present invention will be described with reference to the drawings.
実施の形態1.
図1に、本実施の形態にかかるヒートポンプ給湯装置の構成を示す。図1において、ヒートポンプ給湯装置1は、整流器10、給湯制御部11、蓄電装置12、インバータ13、圧縮機14、負荷側熱交換器15、一次側熱交換器16、力率改善リアクトル30および平滑回路31で構成されている。
Embodiment 1 FIG.
In FIG. 1, the structure of the heat pump hot-water supply apparatus concerning this Embodiment is shown. In FIG. 1, a heat pump water heater 1 includes a rectifier 10, a hot water controller 11, a power storage device 12, an inverter 13, a compressor 14, a load side heat exchanger 15, a primary side heat exchanger 16, a power factor improving reactor 30, and a smoothing. The circuit 31 is configured.
 配線4を介して外部交流電源2から供給された交流電力は、ダイオードで構成された整流器10で直流電力に整流され、力率改善リアクトル30で出力波形が成型され、平滑回路31で平滑化された後、配線32を介してインバータ13に供給される。ここで、整流器10、力率改善リアクトル30および平滑回路31は、整流手段を構成している。 The AC power supplied from the external AC power source 2 via the wiring 4 is rectified to DC power by a rectifier 10 formed of a diode, an output waveform is formed by a power factor improving reactor 30, and smoothed by a smoothing circuit 31. After that, it is supplied to the inverter 13 via the wiring 32. Here, the rectifier 10, the power factor improving reactor 30, and the smoothing circuit 31 constitute a rectifying means.
 インバータ13は内蔵された周波数制御手段を用いて、平滑された直流電力を任意の周波数の交流電力に変換し、圧縮機14に供給する。圧縮機14で圧縮された冷媒は、冷媒回路17を介して一次側熱交換器16および負荷側熱交換器15に供給される。給水弁7を介して供給された水は負荷側熱交換器15で加熱され、貯湯タンク3に貯えられる。負荷側熱交換器15と貯湯タンク3を結ぶ水回路5には循環水弁6が取り付けられている。なお、圧縮機14、冷媒回路17および水回路5で本発明の給湯器を構成している。 The inverter 13 converts the smoothed DC power into AC power having an arbitrary frequency by using a built-in frequency control means, and supplies it to the compressor 14. The refrigerant compressed by the compressor 14 is supplied to the primary side heat exchanger 16 and the load side heat exchanger 15 via the refrigerant circuit 17. The water supplied through the water supply valve 7 is heated by the load side heat exchanger 15 and stored in the hot water storage tank 3. A circulating water valve 6 is attached to the water circuit 5 connecting the load side heat exchanger 15 and the hot water storage tank 3. The compressor 14, the refrigerant circuit 17 and the water circuit 5 constitute the water heater of the present invention.
 平滑回路31とインバータ13を結ぶ配線32には蓄電装置12が接続されている。蓄電装置12は、平滑回路31の両端の電圧を検出する母線電圧検出回路21と、直流スイッチ25と、蓄電池26と、蓄電池26の両端の電圧を検出する蓄電池電圧検出回路22と、コンバータ制御回路24で制御されるコンバータ23と、これら回路の動作を制御する蓄電制御部20とで構成されている。また蓄電制御部20は、配線27を介して母線電圧検出回路21、蓄電池電圧検出回路22およびコンバータ制御回路24と接続されている。 The power storage device 12 is connected to a wiring 32 connecting the smoothing circuit 31 and the inverter 13. The power storage device 12 includes a bus voltage detection circuit 21 that detects the voltage across the smoothing circuit 31, a DC switch 25, a storage battery 26, a storage battery voltage detection circuit 22 that detects the voltage across the storage battery 26, and a converter control circuit. 24 and a power storage controller 20 that controls the operation of these circuits. In addition, the power storage control unit 20 is connected to the bus voltage detection circuit 21, the storage battery voltage detection circuit 22, and the converter control circuit 24 through a wiring 27.
 さらにインバータ13および蓄電制御部20は、配線19を介して給湯制御部11と接続されており、給湯制御部11によってインバータ13および蓄電装置12の動作が制御される。 Furthermore, the inverter 13 and the power storage control unit 20 are connected to the hot water supply control unit 11 via the wiring 19, and the operation of the inverter 13 and the power storage device 12 is controlled by the hot water supply control unit 11.
 上述した本実施の形態にかかるヒートポンプ給湯装置1では、外部交流電源2から供給された交流電力を直流電力に変換する整流手段(整流器10、力率改善リアクトル30、平滑回路31)と、圧縮機14を駆動するインバータ13とを結ぶ配線32の途中に直流スイッチ25を介して蓄電装置12を接続しており、給湯制御部11によって蓄電装置12の配線32への接続および切断(オンオフ)と蓄電装置12への充放電を制御できるようにしている。 In the heat pump hot water supply apparatus 1 according to the above-described embodiment, rectification means (rectifier 10, power factor improving reactor 30, smoothing circuit 31) that converts AC power supplied from the external AC power source 2 into DC power, and a compressor The power storage device 12 is connected to the wiring 32 connecting the inverter 13 that drives the power supply 14 via the DC switch 25, and the hot water supply control unit 11 connects and disconnects the power storage device 12 to the wiring 32 (ON / OFF) and stores the power. The charging / discharging to the apparatus 12 can be controlled.
次に、上述のヒートポンプ給湯装置1の基本的な動作を説明する。外部交流電源2から給電される交流電力は整流器10で直流電力に変換され、力率改善リアクトル30によって波形成型された後、平滑回路31によって脈流の少ない直流電力に変換されてインバータ13に供給される。インバータ13は供給された直流電力を交流電力に変換して圧縮機14を駆動する。 Next, the basic operation of the heat pump hot water supply apparatus 1 will be described. The AC power fed from the external AC power source 2 is converted into DC power by the rectifier 10, shaped into a waveform by the power factor improving reactor 30, converted to DC power with less pulsating current by the smoothing circuit 31, and supplied to the inverter 13. Is done. The inverter 13 converts the supplied DC power into AC power and drives the compressor 14.
一方、蓄電制御部20は、給湯制御部11からの制御指令により直流スイッチ25をオンに切り替え、目標電圧値指令をコンバータ制御回路24に出力する。コンバータ制御回路24は、コンバータ23のスイッチング素子28を駆動することにより、リアクタ29へのエネルギーの蓄積およびリアクタ29からのエネルギー放出の各動作を行う。 On the other hand, power storage control unit 20 switches on DC switch 25 in response to a control command from hot water supply control unit 11 and outputs a target voltage value command to converter control circuit 24. The converter control circuit 24 drives the switching element 28 of the converter 23 to perform operations of storing energy in the reactor 29 and discharging energy from the reactor 29.
蓄電制御部20は、蓄電池電圧検出回路22によって蓄電池26の電圧を検出しながら、直流の母線電圧値を蓄電池26の充電に適した目標電圧に一致させるように、スイッチング素子28のオンオフを制御して蓄電池26に蓄電する。 While the storage battery voltage detection circuit 22 detects the voltage of the storage battery 26, the storage control unit 20 controls on / off of the switching element 28 so that the DC bus voltage value matches the target voltage suitable for charging the storage battery 26. To store in the storage battery 26.
続いて、蓄電装置12の蓄電池26からの放電動作について説明する。蓄電制御部20は、直流スイッチ25をオンにし、目標電圧値指令をコンバータ制御回路24に出力する。コンバータ制御回路24は、スイッチング素子28を駆動することにより、母線電圧検出回路21にて母線電圧を検出し、リアクタ29へのエネルギー蓄積およびリアクタ29からのエネルギー放出動作において、蓄電池26の電圧を目標の直流母線電圧値に一致させるよう、スイッチング素子28のオンオフを制御する。このとき蓄電池26が直流スイッチ25を介して配線32に接続され、インバータ13に直流電力が供給される。 Next, the discharging operation from the storage battery 26 of the power storage device 12 will be described. The power storage control unit 20 turns on the DC switch 25 and outputs a target voltage value command to the converter control circuit 24. The converter control circuit 24 detects the bus voltage by the bus voltage detection circuit 21 by driving the switching element 28, and targets the voltage of the storage battery 26 in the energy storage operation in the reactor 29 and the energy release operation from the reactor 29. The on / off state of the switching element 28 is controlled so as to coincide with the DC bus voltage value. At this time, the storage battery 26 is connected to the wiring 32 via the DC switch 25, and DC power is supplied to the inverter 13.
次に、図2のフローチャートを参照して、給湯制御部11での充電可能期間における動作について説明する。 Next, the operation in the hot water supply control unit 11 during the chargeable period will be described with reference to the flowchart of FIG.
動作に先立ち、蓄電装置12で充電を行わせてもよい時間帯を充電可能期間と定め、あらかじめ任意の時間帯を設定しておく。充電可能期間として、電力料金が昼間より低く設定されている深夜の時間帯を設定しておくのが望ましい。 Prior to the operation, a time period during which the power storage device 12 may be charged is determined as a chargeable period, and an arbitrary time period is set in advance. As a chargeable period, it is desirable to set a midnight time zone in which the power rate is set lower than the daytime.
最初に、給湯制御部11は、現在が充電可能期間であるか否かを判定し(ステップS201)、充電可能期間である場合(Yes)は、ステップS202へ移行するが、充電可能期間でない場合(No)は、本処理を終了する。 First, the hot water supply control unit 11 determines whether or not the current period is a chargeable period (step S201), and if it is a chargeable period (Yes), the process proceeds to step S202, but is not a chargeable period. (No) ends this processing.
次に、ヒートポンプ給湯装置1が貯湯運転と保温運転を行っておらず運転停止しているか否かについて判定し(ステップS202)、運転停止している場合(Yes)は、ステップS203へ移行するが、運転している場合(No)は、ステップS201へ戻る。 Next, it is determined whether or not the heat pump hot-water supply apparatus 1 is not performing a hot water storage operation and a heat retaining operation and is stopped (step S202). If the operation is stopped (Yes), the process proceeds to step S203. When driving (No), the process returns to step S201.
ステップS202から移行するステップS203では、給湯制御部11から蓄電制御部20に充電開始を指令して蓄電池26に直流電力を蓄電する。 In step S203, which is shifted from step S202, the hot water supply control unit 11 instructs the power storage control unit 20 to start charging, and direct current power is stored in the storage battery 26.
次に、給湯制御部11は、貯湯運転または保温運転を開始すべき状態であるか否かを判定して(ステップS204)、貯湯運転または保温運転を開始すべき場合(Yes)はステップS205へ移行し、貯湯運転または保温運転を開始しない場合(No)は、ステップS207へ移行する。 Next, the hot water supply control unit 11 determines whether or not the hot water storage operation or the heat insulation operation should be started (step S204). If the hot water storage operation or the heat insulation operation should be started (Yes), the process proceeds to step S205. When it transfers and does not start hot water storage operation or heat retention operation (No), it transfers to step S207.
ステップS204から移行するステップS205では、給湯制御部11から蓄電制御部20に充電終了を指令して蓄電池26への蓄電を停止する。 In step S205, which is shifted from step S204, the hot water supply control unit 11 instructs the power storage control unit 20 to end charging, and power storage in the storage battery 26 is stopped.
もしヒートポンプ給湯装置1の貯湯運転または保温運転を行っても電力に余裕がある場合は、電力の余裕度に見合った充電量で蓄電池26への蓄電を継続することも可能である。 If there is a margin in electric power even if the hot water storage operation or heat insulation operation of the heat pump hot water supply apparatus 1 is performed, it is possible to continue to store electricity in the storage battery 26 with a charge amount commensurate with the margin of electric power.
ステップS205から移行するステップS206において貯湯運転または保温運転を開始した後、ステップS201へ移行する。 After the hot water storage operation or the heat retaining operation is started in step S206, which is shifted from step S205, the flow shifts to step S201.
ステップS204から移行するステップS207では、充電可能期間が終了するか否かを判定して、充電可能期間が終了する場合(Yes)はステップS208へ移行し、充電可能期間が終了しない場合(No)は、ステップS209へ移行する。 In step S207 to which the process proceeds from step S204, it is determined whether or not the chargeable period ends. When the chargeable period ends (Yes), the process proceeds to step S208 and the chargeable period does not end (No). Proceeds to step S209.
ステップS207から移行するステップS209では、蓄電池26の蓄電容量がフル充電の状態に到達したか否かを判定して、フル充電の状態に到達した場合(Yes)はステップS208へ移行し、フル充電に到達しない場合(No)は、ステップS204へ移行する。 In step S209 which shifts from step S207, it is determined whether or not the storage capacity of the storage battery 26 has reached the full charge state. If the full charge state has been reached (Yes), the flow moves to step S208 and the full charge is performed. If it does not reach (No), the process proceeds to step S204.
ステップS207およびS209から移行するステップS208では、給湯制御部11から蓄電制御部20に充電終了を指令して蓄電池26への蓄電を停止する。 In step S208, which shifts from steps S207 and S209, the hot water supply control unit 11 instructs the power storage control unit 20 to end charging, and power storage to the storage battery 26 is stopped.
次に、図3のフローチャートを参照して、放電優先期間における給湯制御部11の動作について説明する。 Next, the operation of the hot water supply control unit 11 in the discharge priority period will be described with reference to the flowchart of FIG.
動作に先立ち、蓄電装置12から放電を行わせたい時間帯を放電優先期間と定め、あらかじめ任意の時間帯を設定しておく。放電優先期間として、電力平準化の高い効果が期待できて、しかも電力料金が高く設定されている昼間の時間帯を設定しておくのが望ましい。 Prior to the operation, a time zone in which the power storage device 12 wants to discharge is determined as a discharge priority period, and an arbitrary time zone is set in advance. As the discharge priority period, it is desirable to set a daytime period in which a high effect of power leveling can be expected and the power rate is set high.
最初に、給湯制御部11は、現在が放電優先期間であるかを判定して(ステップS301)、放電優先期間である場合(Yes)は、ステップS302へ移行するが、放電優先期間でない場合(No)は、本処理を終了する。 First, the hot water supply control unit 11 determines whether or not the present is the discharge priority period (step S301), and if it is the discharge priority period (Yes), the process proceeds to step S302, but is not the discharge priority period ( No) ends this process.
次に、蓄電池26の蓄電した電力量で放電することが可能か否かを判定して(S302)、放電できる蓄電電力量がある場合(Yes)は、ステップS303へ移行するが、放電できる蓄電電力量がない場合(No)は、本処理を終了する。 Next, it is determined whether or not it is possible to discharge with the amount of power stored in the storage battery 26 (S302). If there is a stored power amount that can be discharged (Yes), the process proceeds to step S303, but the stored power that can be discharged. When there is no electric energy (No), this process is terminated.
次に、貯湯運転または保温運転を開始すべき状態であるか判定して(ステップS303)、貯湯運転または保温運転を開始すべき場合(Yes)は、ステップS304へ移行し、貯湯運転または保温運転を開始しない場合(No)は、ステップS301へ戻る。 Next, it is determined whether the hot water storage operation or the heat insulation operation should be started (step S303). If the hot water storage operation or the heat insulation operation should be started (Yes), the process proceeds to step S304, and the hot water storage operation or the heat insulation operation is started. If not started (No), the process returns to step S301.
ステップS303から移行するステップS304では、給湯制御部11から蓄電制御部20に放電開始を指令し、蓄電制御部20が直流スイッチ25をオンにして、コンバータ制御回路24でコンバータ23のスイッチング素子28のオンオフを制御して、蓄電池26から直流電力をインバータ13に給電を開始する。続いて、貯湯運転または保温運転を開始した後(ステップS305)、ステップS306へ移行する。 In step S304, which is shifted from step S303, the hot water supply control unit 11 instructs the power storage control unit 20 to start discharging, the power storage control unit 20 turns on the DC switch 25, and the converter control circuit 24 causes the switching element 28 of the converter 23 to be turned on. On / off control is performed, and feeding of DC power from the storage battery 26 to the inverter 13 is started. Subsequently, after hot water storage operation or heat insulation operation is started (step S305), the process proceeds to step S306.
次に、蓄電池26の蓄電した電力量が放電を継続することが可能かを判定し(ステップS306)、放電できる蓄電電力量がある場合(Yes)は、ステップS307へし、放電できる蓄電電力量がない場合(No)は、ステップS310へ移行する。 Next, it is determined whether the amount of power stored in the storage battery 26 can continue to be discharged (step S306). If there is a stored amount of power that can be discharged (Yes), the process proceeds to step S307, and the stored power amount that can be discharged. If there is no (No), the process proceeds to step S310.
ステップS306から移行するステップS307では、運転中の貯湯運転または保温運転を停止して終了するかを判定して、運転停止する場合(Yes)は、ステップS308へ移行し、運転を継続する場合(No)は、再びステップS306へ移行する。 In step S307 to which the process proceeds from step S306, it is determined whether the hot water storage operation or the heat insulation operation during operation is stopped and terminated. When the operation is stopped (Yes), the process proceeds to step S308 and the operation is continued ( No) again proceeds to step S306.
ステップS307から移行するステップS308では、貯湯運転または保温運転を停止して、ステップS309へ移行する。 In step S308 which moves from step S307, the hot water storage operation or the heat insulation operation is stopped, and the process moves to step S309.
次に、給湯制御部11から蓄電制御部20に放電終了を指令して、蓄電制御部20が直流スイッチ25をオフに切り替えて、放電器23を介しての蓄電池26から直流電力の給電を停止した後(ステップS309)、ステップS301へ戻る。 Next, the hot water supply control unit 11 instructs the power storage control unit 20 to end the discharge, and the power storage control unit 20 switches off the DC switch 25 and stops the supply of DC power from the storage battery 26 via the discharger 23. (Step S309), the process returns to Step S301.
ステップS306から移行するステップS310では、給湯制御部11から蓄電制御部20に放電終了を指令して、蓄電制御部20が直流スイッチ25をオフに切り替えて、蓄電池26から直流電力の給電を停止して、本処理を終了する。 In step S310, which is shifted from step S306, the hot water supply control unit 11 instructs the power storage control unit 20 to end the discharge, and the power storage control unit 20 switches off the DC switch 25 and stops supplying DC power from the storage battery 26. Then, this process ends.
図4は、本実施の形態における制御方法で動作させた場合のヒートポンプ給湯装置1の動作状態と、蓄電装置12の動作状態での蓄電容量の推移405の関係を示す図である。図4の上段に給湯装置の動作状態を示し、下段に蓄電装置の動作状態を示す。なお、横軸は一日のうちの時間帯を示す。 FIG. 4 is a diagram showing the relationship between the operating state of the heat pump hot water supply device 1 when operated by the control method in the present embodiment and the transition 405 of the storage capacity in the operating state of the power storage device 12. The upper stage of FIG. 4 shows the operating state of the hot water supply device, and the lower stage shows the operating state of the power storage device. The horizontal axis represents the time zone of the day.
 図4において、深夜の時間帯に設定された充電可能期間のうち貯湯運転期間401では、蓄電装置12で蓄電池26へ充電する動作を停止している。一方、貯湯運転期間401以外の充電可能期間では、蓄電装置12で蓄電池26へ充電する動作をしている。 In FIG. 4, in the hot water storage operation period 401 among the chargeable periods set in the midnight time zone, the operation of charging the storage battery 26 by the power storage device 12 is stopped. On the other hand, in the chargeable period other than the hot water storage operation period 401, the storage battery 26 is charged by the power storage device 12.
一方、保温運転期間402は、充電可能期間と放電優先期間のいずれにも該当しない期間であり、この期間では蓄電装置12で充電の動作はさせず、外部交流電源2から供給された電力で保温運転を行う。 On the other hand, the heat retention operation period 402 is a period that does not correspond to either the chargeable period or the discharge priority period. In this period, the power storage device 12 is not charged, and the heat is maintained with the power supplied from the external AC power supply 2. Do the driving.
また、昼間の時間帯に設定された放電優先期間における保温運転期間403では、蓄電装置12で蓄電池26を放電して直流電力を給電して保温運転をしている。 Moreover, in the heat insulation operation period 403 in the discharge priority period set in the daytime time zone, the power storage device 12 discharges the storage battery 26 and supplies DC power to perform the heat insulation operation.
そして、ヒートポンプ給湯装置1の急な沸き増しによる貯湯運転期間404では、放電優先期間の間は蓄電装置12で蓄電池26を放電して直流電力を給電して貯湯運転するが、放電優先期間から抜けた場合は、蓄電装置12で蓄電池26を放電することを停止して、外部交流電源2からの電力に切り替えて貯湯運転を継続している。 Then, in the hot water storage operation period 404 due to sudden boiling of the heat pump hot water supply device 1, during the discharge priority period, the storage battery 26 is discharged by the power storage device 12 to supply DC power and the hot water storage operation is performed. In such a case, discharging of the storage battery 26 by the power storage device 12 is stopped, and the hot water storage operation is continued by switching to the power from the external AC power source 2.
以上説明したように、本実施の形態では、外部交流電源2から供給された交流電力を直流電力に変換する整流手段と、圧縮機14を駆動するインバータ13とを結ぶ配線32の途中にスイッチ25を介して蓄電装置12を接続し、給湯制御部11によって蓄電装置12の配線32への接続と蓄電装置12への充放電を制御できるようにしている。 As described above, in the present embodiment, the switch 25 is provided in the middle of the wiring 32 that connects the rectifier that converts AC power supplied from the external AC power source 2 to DC power and the inverter 13 that drives the compressor 14. The hot water control unit 11 can control the connection of the power storage device 12 to the wiring 32 and the charge / discharge of the power storage device 12.
結果として、運転コストを考慮した時間帯毎の貯湯運転や保温運転に即して蓄電装置12の充電や放電を行うことで、電力の損失を減らすことができ、また運転コストを減らすことができ、しかも電力平準化にも寄与できる。 As a result, by charging and discharging the power storage device 12 in accordance with hot water storage operation and heat insulation operation for each time zone in consideration of operation costs, it is possible to reduce power loss and reduce operation costs. Moreover, it can contribute to power leveling.
本実施の形態において、ヒートポンプ給湯装置1の構成は、図1に示した構成に限定されない。図5は、蓄電装置12のコンバータ23を別の回路で実現したものであり、充電用スイッチング素子40、昇圧チョッパ用スイッチング素子41および放電用スイッチング素子42で構成されている。 In this Embodiment, the structure of the heat pump hot-water supply apparatus 1 is not limited to the structure shown in FIG. FIG. 5 shows that the converter 23 of the power storage device 12 is realized by another circuit, and includes a charging switching element 40, a step-up chopper switching element 41, and a discharging switching element 42.
蓄電池26に充電する場合、コンバータ制御回路24は充電用スイッチング素子40をオンに切り替える。一方、充電をやめる場合、コンバータ制御回路24は充電用スイッチング素子40をオフに切り替える。 When charging the storage battery 26, the converter control circuit 24 switches the charging switching element 40 on. On the other hand, when the charging is stopped, the converter control circuit 24 switches the charging switching element 40 off.
また、蓄電池26から放電する場合、コンバータ制御回路24は放電用スイッチング素子42をオンに切り替える。放電をやめる場合、コンバータ制御回路24は放電用スイッチング素子42をオフに切り替える。 Moreover, when discharging from the storage battery 26, the converter control circuit 24 switches the discharge switching element 42 on. When the discharge is stopped, the converter control circuit 24 switches the discharge switching element 42 to OFF.
なお、蓄電装置12に太陽光発電や燃料電池などの直流発電システムを接続することで、商用電源の利用率をさらに下げたヒートポンプ給湯装置の運転が可能となることは言うまでもない。 Needless to say, by connecting a direct current power generation system such as solar power generation or a fuel cell to the power storage device 12, it is possible to operate a heat pump water heater with a further reduced utilization rate of commercial power.
 実施の形態2.
本実施の形態では、ヒートポンプ給湯装置1の蓄電装置12の蓄電容量を増やして昼間の時間帯に蓄電装置12の蓄電池26からの放電による直流電力の給電で貯湯運転や保温運転の動作をより長く行えるようにしている。
Embodiment 2. FIG.
In the present embodiment, the power storage capacity of the power storage device 12 of the heat pump hot water supply device 1 is increased, and the hot water storage operation and the heat insulation operation are made longer by feeding DC power from the storage battery 26 of the power storage device 12 during the daytime. I can do it.
 具体的には、図1に示したヒートポンプ給湯装置1の整流器10とインバータ13との間に配置する蓄電装置12の蓄電池26の充電および放電の配線と、蓄電制御部20からの信号配線を外部に引き出せるように端子台を設けて、その端子台の端子に各々の配線を接続する。そして、外部に用意した蓄電池の充放電の配線と信号配線27を前記端子台の端子につなぐ。 Specifically, the wiring for charging and discharging the storage battery 26 of the power storage device 12 disposed between the rectifier 10 and the inverter 13 of the heat pump water heater 1 shown in FIG. 1 and the signal wiring from the power storage control unit 20 are externally connected. A terminal block is provided so that it can be pulled out, and each wiring is connected to the terminal of the terminal block. Then, the charge / discharge wiring of the storage battery prepared outside and the signal wiring 27 are connected to the terminal of the terminal block.
上述したように本実施の形態では、ヒートポンプ給湯装置1の外部に用意した蓄電池を接続し、かつ制御も可能にしているので、蓄電装置12の蓄電容量を増やして、昼間の時間帯に蓄電装置12から放電による電力の給電で運転する期間を長くすることができ、結果として、より大きな貯湯タンクを備えた場合でも、運転コストを減らすことができる。 As described above, in the present embodiment, a storage battery prepared outside the heat pump hot water supply apparatus 1 is connected and controllable, so the power storage capacity of the power storage apparatus 12 is increased, and the power storage apparatus is operated during the daytime. Thus, the operation period can be extended by supplying electric power by discharging from 12, and as a result, even when a larger hot water storage tank is provided, the operation cost can be reduced.
実施の形態3.
本実施の形態では、ヒートポンプ給湯装置1の給湯制御部11が放電優先期間に貯湯タンク3に貯めた湯が利用されて減る度に、蓄電装置12の蓄電池26からの放電による直流電力の給電により貯湯運転して湯を作る制御を行う。
Embodiment 3 FIG.
In this embodiment, whenever hot water stored in the hot water storage tank 3 is used and reduced by the hot water supply control unit 11 of the heat pump hot water supply device 1 during the discharge priority period, DC power is supplied by discharging from the storage battery 26 of the power storage device 12. Control hot water storage operation to make hot water.
具体的には、給電制御部11での放電優先期間における制御を、貯湯タンク3の貯湯量が減る度に蓄電装置12の蓄電池26からの放電による直流電力の給電での貯湯運転を優先して行い、保温運転では外部交流電源2から供給される電力で運転して蓄電装置12からの電力を供給しない制御に変える。 Specifically, the control in the discharge priority period in the power supply control unit 11 is given priority to hot water storage operation by supplying DC power by discharge from the storage battery 26 of the power storage device 12 every time the amount of hot water stored in the hot water storage tank 3 decreases. In the heat insulation operation, the operation is changed to control in which the operation is performed with the electric power supplied from the external AC power supply 2 and the electric power from the power storage device 12 is not supplied.
図6に、本実施の形態における動作の場合のヒートポンプ給湯装置1の動作状態と蓄電装置12の動作状態での蓄電容量の推移の関係を示す。 FIG. 6 shows the relationship between the operating state of heat pump water heater 1 in the operation of the present embodiment and the transition of the storage capacity in the operating state of power storage device 12.
図6において、深夜の時間帯に設定された充電可能期間内における貯湯運転期間601では、蓄電装置12で蓄電池26へ充電する動作を停止している。そして、貯湯運転の期間601以外の充電可能期間では、蓄電装置12で蓄電池26へ充電する動作をしている。 In FIG. 6, in the hot water storage operation period 601 within the chargeable period set in the midnight time zone, the operation of charging the storage battery 26 by the power storage device 12 is stopped. In the chargeable period other than the hot water storage operation period 601, the storage battery 26 is charged by the power storage device 12.
一方、保温運転期間602では、充電可能期間と放電優先期間のいずれも該当しない期間の場合であり、蓄電装置12で充電の動作はさせず、外部交流電源2から供給される電力で保温運転を行う。 On the other hand, the heat insulation operation period 602 is a case in which neither the chargeable period nor the discharge priority period is applicable, and the power storage device 12 is not charged, and the heat insulation operation is performed with the electric power supplied from the external AC power supply 2. Do.
また、昼間の時間帯に設定された放電優先期間における保温運転期間603でも、蓄電装置12からの放電による電力の給電は行わずに、外部交流電源2から供給される電力で保温運転を行う。 Further, in the heat insulation operation period 603 in the discharge priority period set in the daytime time zone, the heat insulation operation is performed with the electric power supplied from the external AC power supply 2 without performing the power supply due to the discharge from the power storage device 12.
そして、湯の使用によって貯湯タンク3の湯量が減少することで放電優先期間にヒートポンプ給湯装置1の沸き増しによる貯湯運転期間604では、蓄電装置12で蓄電池26を放電して直流電力を給電して貯湯運転を行う。 In the hot water storage operation period 604 due to the increase in boiling of the heat pump water heater 1 during the discharge priority period due to the decrease in the amount of hot water in the hot water storage tank 3 due to the use of hot water, the storage battery 26 is discharged by the power storage device 12 to supply DC power. Perform hot water storage operation.
さらに、沸き増しによる貯湯運転期間605では、放電優先期間の間は蓄電装置12で蓄電池26を放電して直流電力を給電して貯湯運転をしているが、放電優先期間から抜けた場合は、蓄電池26を放電することを停止して、外部交流電源2から供給される電力に切り替えて貯湯運転を継続する。 Furthermore, in the hot water storage operation period 605 due to increased boiling, during the discharge priority period, the storage battery 26 is discharged by the power storage device 12 and DC power is supplied to perform the hot water storage operation. The discharging of the storage battery 26 is stopped, the electric power supplied from the external AC power supply 2 is switched to continue the hot water storage operation.
上述したように、ヒートポンプ給湯装置1の給湯制御部11が放電優先期間に蓄電装置12からの給電で貯湯運転を優先して行うので、蓄電装置12の蓄電量で貯湯運転できる分の貯湯量の湯を貯湯タンクに補充することができることから、貯湯タンク3の容量を小さくすることができる。 As described above, since the hot water supply control unit 11 of the heat pump hot water supply device 1 preferentially performs the hot water storage operation by the power supply from the power storage device 12 during the discharge priority period, the amount of stored hot water can be stored by the amount of power stored in the power storage device 12. Since hot water can be replenished to the hot water storage tank, the capacity of the hot water storage tank 3 can be reduced.
また、保温運転に比べて電力をより消費する貯湯運転に対して、蓄電装置12により深夜の時間帯に充電した電力を昼間の時間帯で使用することで、ピーク電力を抑えることに寄与できる。 Moreover, it can contribute to restraining peak electric power by using the electric power charged in the time zone of midnight by the electrical storage apparatus 12 with respect to the hot water storage operation which consumes electric power more compared with the heat insulation operation.
  1 ヒートポンプ給湯装置
  2 外部交流電源
  3 貯湯タンク
  4、18、32、33、34 配線
  5 水回路
  6 循環水弁
  7 給水弁
  10 整流器
  11 給湯制御部
  12 蓄電装置
  13 インバータ
  14 圧縮機
  15 負荷側熱交換器
  16 1次側熱交換器
  17 冷媒回路
  19、27 信号配線
  20 蓄電制御部
  21 母線電圧検出回路
  22 蓄電池電圧検出回路
  23 コンバータ
  24 コンバータ制御回路
  25 直流スイッチ
  26 蓄電池
  30 力率改善リアクトル
  31 平滑回路
DESCRIPTION OF SYMBOLS 1 Heat pump hot water supply apparatus 2 External AC power supply 3 Hot water storage tank 4, 18, 32, 33, 34 Wiring 5 Water circuit 6 Circulating water valve 7 Water supply valve 10 Rectifier 11 Hot water supply control part 12 Power storage device 13 Inverter 14 Compressor 15 Load side heat exchange Unit 16 Primary side heat exchanger 17 Refrigerant circuit 19, 27 Signal wiring 20 Storage control unit 21 Bus voltage detection circuit 22 Storage battery voltage detection circuit 23 Converter 24 Converter control circuit 25 DC switch 26 Storage battery 30 Power factor improving reactor 31 Smoothing circuit

Claims (6)

  1.  圧縮機、2つの熱交換器、前記圧縮機および2つの熱交換器の間で冷媒を循環させる冷媒回路、ならびに負荷側熱交換器接続された水回路で構成されたヒートポンプ式の給湯器と、
     前記圧縮機に任意の周波数の交流電力を供給するインバータと、
     前記外部電源から供給された交流電力を直流電力に整流して前記インバータに供給する整流手段と、
     前記整流手段と前記インバータとを結ぶ配線にスイッチを介して接続され、前記整流手段から出力された直流電力を蓄電すると共に、前記インバータに直流電力を供給する蓄電装置と、
     前記インバータおよび蓄電装置の動作を制御する第1の制御手段と、を備え、
     前記第1の制御手段は、時間帯に応じて前記蓄電装置の前記配線への接続および切断と前記蓄電装置における充放電を制御することを特徴とするヒートポンプ給湯装置。
    A heat pump type water heater composed of a compressor, two heat exchangers, a refrigerant circuit for circulating a refrigerant between the compressor and the two heat exchangers, and a water circuit connected to a load side heat exchanger;
    An inverter that supplies AC power of an arbitrary frequency to the compressor;
    Rectifying means that rectifies AC power supplied from the external power source into DC power and supplies the DC power to the inverter;
    A power storage device connected to a wiring connecting the rectifying means and the inverter via a switch, storing DC power output from the rectifying means, and supplying DC power to the inverter;
    First control means for controlling the operation of the inverter and the power storage device,
    The first control means controls connection / disconnection of the power storage device to / from the wiring and charge / discharge of the power storage device according to a time zone.
  2. 前記蓄電装置は、第1の蓄電池と、前記第1の制御手段の指示に従って、前記第1の蓄電池への充放電および前記スイッチの切断を制御する第2の制御手段とを備える、請求項1に記載のヒートポンプ給湯装置。 The power storage device includes: a first storage battery; and a second control unit that controls charging / discharging of the first storage battery and disconnection of the switch according to an instruction of the first control unit. The heat pump hot water supply apparatus described in 1.
  3. 前記蓄電装置は、外部の第2の蓄電池を接続することができる接続端子を備えている、請求項1または2に記載のヒートポンプ給湯装置。 The heat pump hot-water supply apparatus according to claim 1 or 2, wherein the power storage device includes a connection terminal to which an external second storage battery can be connected.
  4.  請求項1ないし3のいずれかに記載のヒートポンプ給湯装置の制御方法であって、予め前記蓄電装置で充電を行わせてもよい第1の時間帯を設定し、当該第1の時間帯では、貯湯運転および保温運転の期間を除いた期間で前記蓄電装置に充電することを特徴とするヒートポンプ給湯装置の制御方法。 It is a control method of the heat pump hot-water supply apparatus in any one of Claim 1 thru | or 3, Comprising: The 1st time slot | zone which may be charged with the said electrical storage apparatus beforehand is set, In the said 1st time slot | zone, A method of controlling a heat pump hot water supply apparatus, wherein the power storage device is charged in a period excluding a period of hot water storage operation and heat insulation operation.
  5.  請求項1ないし3のいずれかに記載のヒートポンプ給湯装置の制御方法であって、
     予め前記蓄電装置から放電された電力を優先して前記インバータに供給する第2の時間帯を設定し、当該第2の時間帯では、貯湯運転および保温運転の期間に前記蓄電装置から放電された電力を前記インバータに供給することを特徴とするヒートポンプ給湯装置の制御方法。
    It is a control method of the heat pump hot-water supply apparatus in any one of Claims 1 thru | or 3, Comprising:
    A second time zone in which power discharged from the power storage device is preferentially supplied to the inverter is set in advance, and the power storage device is discharged during the hot water storage operation and the heat insulation operation in the second time zone. A method for controlling a heat pump water heater, wherein power is supplied to the inverter.
  6. 請求項5に記載のヒートポンプ給湯装置の制御方法であって、前記給湯器から供給される湯を貯える貯湯タンクの貯湯量が減る度に、前記蓄電装置からの給電で貯湯運転を優先して行って湯を賄う、ヒートポンプ給湯装置の制御方法。 6. The method of controlling a heat pump hot water supply apparatus according to claim 5, wherein hot water storage operation is preferentially performed by power supply from the power storage device each time the amount of hot water stored in a hot water storage tank for storing hot water supplied from the water heater decreases. A method of controlling a heat pump hot water supply device that covers hot water.
PCT/JP2014/006317 2014-12-18 2014-12-18 Heat pump hot water supply device and control method therefor WO2016098141A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/006317 WO2016098141A1 (en) 2014-12-18 2014-12-18 Heat pump hot water supply device and control method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/006317 WO2016098141A1 (en) 2014-12-18 2014-12-18 Heat pump hot water supply device and control method therefor

Publications (1)

Publication Number Publication Date
WO2016098141A1 true WO2016098141A1 (en) 2016-06-23

Family

ID=56126068

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/006317 WO2016098141A1 (en) 2014-12-18 2014-12-18 Heat pump hot water supply device and control method therefor

Country Status (1)

Country Link
WO (1) WO2016098141A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110836413A (en) * 2019-12-02 2020-02-25 陕西科技大学 But electric power storage formula coal changes electric heating equipment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011150976A (en) * 2010-01-25 2011-08-04 Toyota Motor Corp Power storage device and power storage system
JP2012026649A (en) * 2010-07-23 2012-02-09 Sanyo Electric Co Ltd Heat pump type hot water supplier

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011150976A (en) * 2010-01-25 2011-08-04 Toyota Motor Corp Power storage device and power storage system
JP2012026649A (en) * 2010-07-23 2012-02-09 Sanyo Electric Co Ltd Heat pump type hot water supplier

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110836413A (en) * 2019-12-02 2020-02-25 陕西科技大学 But electric power storage formula coal changes electric heating equipment

Similar Documents

Publication Publication Date Title
US8049366B2 (en) DC power system for household appliances
JP2008054473A (en) Power conditioner having electric storage function
CN102624077A (en) Enclosure housing electronic components having hybrid HVAC/R system with power back-up
JP6026713B1 (en) Power management system
JP2014128164A (en) Power conditioner and photovoltaic power generation system
KR20150011301A (en) Power control device for ship
JP2012244882A (en) Connection box
JP2014166114A (en) Power generation system with hot water storage function
JP2009207234A (en) Linkage system of hybrid system
WO2018211263A1 (en) Heat and power generation and storage system
CN103683467A (en) Independent photovoltaic power supply system with self-starting function
JP6300785B2 (en) Inverter system
JP2017184607A (en) Power distribution system and power combination circuit
JP2011200101A (en) Energy storage system
WO2016098141A1 (en) Heat pump hot water supply device and control method therefor
JP2021087291A (en) Solar charging system
JP6078374B2 (en) Power supply device and charge control method
GB2577231A (en) Power supply apparatus and method
JP6568243B2 (en) Air conditioner
JP2015122898A (en) Solar cell system
JP5258324B2 (en) Hybrid grid interconnection system
JP2014128100A (en) Solar cell system
JP2016067137A (en) Power generator
WO2015170626A1 (en) Independent power supply system
JP2017060309A (en) Photovoltaic power generation system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14908351

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14908351

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP