WO2016095648A1 - 基于电源线边沿信号控制的彩灯装置 - Google Patents

基于电源线边沿信号控制的彩灯装置 Download PDF

Info

Publication number
WO2016095648A1
WO2016095648A1 PCT/CN2015/094957 CN2015094957W WO2016095648A1 WO 2016095648 A1 WO2016095648 A1 WO 2016095648A1 CN 2015094957 W CN2015094957 W CN 2015094957W WO 2016095648 A1 WO2016095648 A1 WO 2016095648A1
Authority
WO
WIPO (PCT)
Prior art keywords
power line
flip
edge
led
flop
Prior art date
Application number
PCT/CN2015/094957
Other languages
English (en)
French (fr)
Inventor
罗小华
Original Assignee
罗小华
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=52948912&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2016095648(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 罗小华 filed Critical 罗小华
Priority to EP15869157.6A priority Critical patent/EP3236714A4/en
Publication of WO2016095648A1 publication Critical patent/WO2016095648A1/zh
Priority to US15/613,158 priority patent/US10129959B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/20Controlling the colour of the light
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/40Details of LED load circuits
    • H05B45/44Details of LED load circuits with an active control inside an LED matrix
    • H05B45/46Details of LED load circuits with an active control inside an LED matrix having LEDs disposed in parallel lines
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/155Coordinated control of two or more light sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/175Controlling the light source by remote control
    • H05B47/185Controlling the light source by remote control via power line carrier transmission

Definitions

  • the invention relates to the technical field of LED control, and in particular to a lantern device controlled based on a signal of a power line edge.
  • LED Light Emitting Diode
  • LED lanterns are generally connected by strings of LEDs in series or in parallel. They are the main decorations for Christmas, Easter and other festivals. They are also decorative products for festive, entertainment and night lighting, and have a broad market.
  • the LED lights on the market have a constant light and a flashing light mode.
  • the constant light mode is simple to manufacture, but the decorative effect is monotonous.
  • the main implementation of the flashing light string includes: intermittently mounting the LED flash bulb in the normally lit light string, but the LED flashing light lighting mode is fixed, and the control signal cannot be received to achieve other changes; another LED light is received. Divided into several groups, each LED lantern is controlled by a separate controller. In order to achieve the effect of water flow, etc., it is necessary to make a structure of more than 3 channels. The more the number of roads, the better the effect.
  • the LED light string is divided into several groups of modes, generally a group of LEDs that need to emit light at the same time are connected in series, and then the LED strings of each group are connected in parallel. Increasing the number of LED lights will lead to structural complexity and increased wire usage, and increase production difficulty and cost.
  • the product is bulky, has many components, and has a high cost.
  • Cia Patent Application Publication No. CN1423515 discloses a variable color light strip for decoration, comprising a controller for providing a trigger voltage, and a plurality of color change switch circuits, each of which is composed of two bidirectional thyristors and a series rectifier diode. Then, it is connected in parallel with the third bidirectional thyristor. The control poles of the three triacs are connected to the controller. One end of the parallel circuit is connected to the power supply, and the other end is connected with a plurality of color changing bulbs.
  • This scheme can realize three-color change in a simple way through the thyristor circuit, but When more color mode control needs to be implemented, the circuit is more complicated.
  • the Chinese utility model patent application with the publication number CN203206544U discloses a two-line LED lamp cycle flashing two-line LED light string scheme, including a connecting wire and a plurality of LED lights, all of which are pressed one by one. After the arrangement, two wires are connected in parallel to form a string, and one wire connected in parallel is electrically connected to the first output of the control unit, and the other wire connected in parallel is electrically connected to the second output of the control unit.
  • the positive and negative polarities of the first output end and the second output end controlled by the control unit are intermittently interchanged.
  • the advantage of this scheme is that there are only two output lines in the control system, and the light string also uses two wires to realize two-way circulation, which can save a lot of wires. But the program can only achieve two color control.
  • the Chinese patent application with the publication number CN103528014A discloses an LED chip light string for controlling the illumination of the IC chip, including a transformer, a controller, a constant-light LED illumination branch and a controllable LED illumination branch, and the controllable LED is controlled by the IC module.
  • the LED lamp required to generate the change of the illumination mode in the illumination branch realizes the point control, and does not require a special LED lamp, so that the illumination effect of the controllable LED lamp string is richly changed.
  • the solution needs to include a separate constant-light LED lighting branch and a controllable LED lighting branch.
  • the IC chip of the controllable LED lighting branch requires an independent line connection.
  • the Chinese patent application with the publication number CN101598277 discloses an LED light string using only two wires.
  • the input end of the code controller is connected to the power source, the output end of the code controller is connected to two wires, and the plurality of LEDs are connected in parallel on the wire.
  • a same code recognition chip is disposed in the LED of the same LED string, and the code recognition chips set by the LEDs of the same road are different from each other.
  • the coding controller of the scheme is connected to the transmission circuit through the output end of the carrier circuit, and the code recognition chip comprises a pulse receiving circuit, and the signal output end of the pulse receiving circuit is connected to the decoding circuit.
  • the scheme does not have the same code identification chips set by the LEDs of the same road.
  • the code recognition chip needs to include a read-only memory to store the code, which increases the complexity of the code recognition chip, and on the other hand, the production process needs to be followed.
  • Different code assembly products such as different coding and identification chip assembly positions, can not achieve the desired design of the decorative effect, which leads to complex assembly of the final product.
  • the present invention provides a lantern device based on power line edge signal control.
  • a lantern device based on power line edge signal control comprising:
  • An edge signal generator for generating an edge signal and loading the edge signal on a power line output
  • each LED module comprising an LED lantern group and an LED driver for driving the LED lantern group according to an edge signal output from the power line.
  • each LED module in the lantern device of the present invention and the number and color of LEDs included in each LED module are set according to actual application conditions. When the number of LED modules is greater than or equal to 2, each LED module may be connected in parallel or in series.
  • the edge signal is generated by the edge signal generator and loaded onto the power line output.
  • the LED driver is powered.
  • the edge signal of the power line output can also be used as the control signal of the LED driver in the field of LED lanterns with a large number of LED lamps. It can achieve the effects of flicker, color jump, color gradually brightening, color gradually darkening and water light only through the power line and the ground line, which can greatly reduce the number of required connections.
  • the edge signal generator includes a controllable switch and a control circuit connected to the control end of the controllable switch.
  • the input end of the controllable switch is connected to a DC power supply, and the output terminal is connected to the power line.
  • an edge signal By controlling the on/off of the controllable switch through the output signal of the control circuit, an edge signal can be formed and loaded onto the power line.
  • the controllable switch When the controllable switch is turned on, the edge signal loaded on the power line is high.
  • the controllable switch is turned off, the edge signal loaded on the power line is low.
  • control circuit is implemented based on a microprocessor (MCU).
  • MCU microprocessor
  • the microprocessor can be a single chip microcomputer.
  • controllable switch can be realized by a field effect transistor.
  • controllable switch is implemented based on a P-channel field effect transistor.
  • the output of the controllable switch is also connected with a pull-down circuit.
  • the pull-down circuit By setting the pull-down circuit, the level of the edge signal loaded by the power line is quickly pulled down when the controllable switch is turned off.
  • said LED driver comprises:
  • the edge triggering operation unit is triggered by the power line edge signal to perform an operation, and outputs the operation result;
  • the charging unit is configured to provide a power supply level for the edge triggering operation unit according to the edge signal input by the power line, charge when the edge signal is high level, and discharge when the edge signal is low level;
  • an initializing unit configured to initialize the edge trigger computing unit according to the power supply level.
  • a voltage divider can be connected between the power line of the LED driver and the ground of the LED driver
  • the resistor is used for voltage division when the LED module is used in series.
  • the actual function of the edge triggering operation unit is to perform a counting operation, an arithmetic operation, a logic operation or a shift operation by an edge signal trigger, or a combination of counting operations, arithmetic operations, logic operations, shift operations, and the like. Operation.
  • the edge trigger operation unit operation result is used to generate an LED drive signal.
  • the edge triggering operation unit in the LED driver of each LED module can perform the same operation or perform different operations.
  • the edge triggering operation unit is triggered by the power line edge signal to perform an arithmetic logic operation, and outputs the operation result.
  • the edge triggering operation unit includes n flip-flops and a k-bit arithmetic logic unit, and outputs the operation result at the output end of the flip-flop.
  • the trigger is a D flip-flop.
  • the edge triggering operation unit comprises n parallel D flip-flops and a k-bit arithmetic logic unit, wherein the n and the k are equal values, and the operation result is outputted by the output of the D flip-flop. among them:
  • the trigger terminals of the respective D flip-flops are respectively connected to the output ends of the corresponding bits of the arithmetic logic unit;
  • each D flip-flop is connected to the initialization unit, and the clock signal input end is connected to the power line;
  • the input of the A group of the arithmetic logic unit is respectively connected to the output of the D flip-flop of the corresponding bit, and the input of the B group is connected to the mode control constant.
  • the arithmetic logic unit is a logic circuit that implements an arithmetic operation or a logic operation, and two sets of operands of the arithmetic logic unit are data input by the input of the group A and the input of the group B, respectively, and the output of the arithmetic logic unit is The result of arithmetic operation of the operands input to the input of the A group and the input of the B group.
  • the arithmetic logic unit in the present invention may be an adder circuit, a subtractor circuit, a logic operation circuit, a multiplier circuit or a divider circuit, or may be an adder circuit, a subtractor circuit, a logic operation circuit, a multiplier circuit, a divider. Any combination of circuits.
  • the mode control constant can be fixed or externally connected to the mode selection circuit.
  • the mode selection circuit sets the input of the B group.
  • the user selects the mode control constant by the mode selection circuit as needed to make the entire edge.
  • the triggering unit operates in a different way. For example, when the arithmetic logic unit is an adder, the mode control constant is 2 m (decimal representation, m is an integer greater than or equal to 0 and less than n).
  • the mode control constant is 2 0
  • the edge trigger operation unit counts in increment mode; when m is 1, the mode control constant is 2 1 , and the edge trigger operation unit uses 2 to count, the operation result (using binary Indicates that the lowest 1 bit remains unchanged; when m is 2, the mode control constant is 2 2 , and the edge-triggered operation unit counts by adding 4, and the operation result (in binary representation) the lowest 2 bits remain unchanged.
  • the mode control constant can also be set to 2 n -2 m (decimal representation, m is an integer greater than or equal to 0 and less than n).
  • the mode control constant is 2 n -1, the arithmetic logic unit actually adds -1 complement, and the edge-triggered operation unit counts in descending mode; when m is 1, the mode control constant is 2 n - 2, the arithmetic logic unit actually adds -2 complement, the edge trigger operation unit uses the subtraction 2 method to count, the operation result (in binary representation) the lowest 1 bit remains unchanged; when m is 2, the mode control constant is 2 n -4, the arithmetic logic unit actually adds -4 complement, and the edge-triggered operation unit counts by subtracting 4, and the operation result (in binary representation) the lowest 2 bits remain unchanged.
  • the output of the edge-triggered arithmetic unit in the present invention has a high and low bit.
  • the first D flip-flop refers to the D flip-flop corresponding to the lowest bit in the arithmetic unit according to the edge trigger.
  • the relatively low D flip-flop acts as the previous one
  • the relatively high D flip-flop acts as the latter.
  • the bits in the A group input and the B group input also have corresponding high and low bits.
  • the edge-triggered operation unit is an edge counting unit for counting the edge of the edge signal input by the power line and outputting the counting result.
  • the edge counting unit includes a plurality of flip-flops, and outputs a counting result at an output end of the flip-flop.
  • the trigger is a D flip-flop.
  • said edge counting unit comprises a plurality of D flip-flops connected in series, and the output of the D flip-flop outputs a counting result, wherein:
  • the clock signal input of the first D flip-flop is connected to the power line, and two adjacent D flip-flops
  • the clock signal input end of the latter D flip-flop is connected to the inverted output end of the previous D flip-flop
  • each D flip-flop is connected to the initialization unit, and the inverted output end of each D flip-flop is connected to the trigger end.
  • the first D flip-flop refers to a D flip-flop corresponding to the lowest bit in the edge counting unit.
  • the relatively low D flip-flop acts as the previous one
  • the relatively high D flip-flop acts as the latter.
  • the edge-triggered operation unit is an edge-triggered shift unit, and the edge triggers the shift unit, is triggered by a power line edge signal, and outputs a shift result.
  • the edge trigger shift unit includes at least two flip-flops to output a shift result at an output of the flip-flop.
  • the trigger is a D flip-flop.
  • said edge triggered shifting unit comprises at least two D flip-flops connected in series, the output of each D flip-flop outputting a shift result, wherein:
  • the trigger end of the first D flip-flop is connected to the output end of the last D flip-flop, and the trigger end of the next D flip-flop is connected to the output end of the previous D flip-flop;
  • the reset terminal or the set terminal of each D flip-flop is connected to the initialization unit, and the clock signal input terminal is connected to the power line.
  • the edge-triggered shifting unit can be set to an arbitrary number and set as needed.
  • the output of each D flip-flop is different at the initial time, and the shift is meaningful. Therefore, at least one reset end of the D flip-flop in the edge shift unit is connected to the initialization unit, at least There is a D flip-flop with the set terminal connected to the initialization unit.
  • the reset end of the D flip-flop is connected to the initializing unit, and the set terminal is connected to an inactive level (if the set terminal is active low, it is connected to a high level);
  • the set terminal of the D flip-flop is connected to the initialization unit, and the reset terminal is connected to an inactive level.
  • the power line signal is at a high level, the charging unit is charged, and when the level provided by the charging unit reaches a high level, the edge triggering shift unit and the initializing unit are successfully powered on.
  • the output of the edge-triggered arithmetic unit in the present invention has a high and low bit.
  • the first D flip-flop refers to the D flip-flop corresponding to the lowest bit in the arithmetic unit according to the edge trigger.
  • a relatively low D flip-flop is used as the previous one in the adjacent two D flip-flops, and a relatively high D trigger As the latter.
  • the bits in the A group input and the B group input also have corresponding high and low bits.
  • the D flip-flop is a basic circuit of the sequential circuit, and the output end includes a forward output end and a reverse output end, and the logical value of the reverse output end is equal to the inverse of the logic value of the forward output end; when the reset end is the active level, the positive direction is positive
  • the output terminal is logic 0.
  • the forward output terminal is logic 1.
  • the clock signal input terminal is a valid edge and both the reset terminal and the set terminal are inactive, the positive output logic value is equal to the trigger.
  • the logical value of the terminal otherwise the logical value of the output does not change.
  • the valid edge of the D flip-flop can be either a rising edge or a falling edge, depending on the demand.
  • said edge triggering arithmetic unit comprises at least two D flip-flops.
  • the edge triggering operation unit includes 2 to 200 D flip-flops, that is, the value of n is preferably 2 to 200.
  • the charging unit comprises a unidirectional conductive element, the anode voltage of which is higher when the anode voltage is higher than the cathode voltage, and is cut off when the cathode voltage is higher than the anode voltage.
  • the anode of the unidirectional conductive element is connected to a power line, the cathode is grounded through an energy storage element, and the charging unit provides a power supply level for the edge trigger operation unit and the initialization unit through the cathode of the unidirectional conductive element.
  • the unidirectional conductive element may be a single device or a circuit having a unidirectional conductive property composed of a plurality of devices.
  • the LED lantern group includes n LEDs, and the LED lantern group has a connection mode of one of A(n, n) arrangement numbers with respect to n output terminals of the LED driver.
  • the anodes of the n LEDs are commonly connected to the power supply end of the LED module, and the cathodes of the n different color LEDs are respectively connected to the n output ends of the LED driver.
  • the cathodes of the n LEDs in the LED lantern group are connected to the n output pins of the corresponding LED driver, and the operation result of the edge triggering operation unit in the LED driver triggered by the power line edge signal is 0 to (2) n -1), control each LED lantern group to control 2 n mode changes by loading the power line edge signal, and further, obtain the mode change of the edge signal interval time corresponding speed by controlling the length of the high level time after each edge signal .
  • a plurality of values K 0 , K 1 , ..., K u are selected , u is an integer greater than 0, and a corresponding sustain high time D 0 is set.
  • D 1 , ..., D u the set of color modes corresponding to the operation result is ⁇ L 0 , L 1 , ..., L u ⁇ , and repeatedly load several edge signals in a short time that cannot be resolved by the human eye.
  • the color mode jump corresponding to the LED driver corresponding to the LED driver operation result is K 0 , K 1 , ..., K u , and further, by setting the edge signal after the high level time D
  • the length of 0 , D 1 , ..., D u obtains the color mode change of the speed corresponding to the edge signal interval time.
  • the color mode changes from L 0 ⁇ L 1 ⁇ .. ⁇ L u to the LED lighting group, and the color mode changes from L 1 ⁇ L 2 ⁇ ... ⁇ L u ⁇ L 0 , and the color mode changes.
  • LED lamp group from L 2 ⁇ L 3 ⁇ ... ⁇ L u ⁇ L 0 ⁇ L 1 ,..., color mode change from L u ⁇ L 0 ⁇ L 1 ⁇ ... ⁇ L u-1
  • the LED color light group obtains a water flow effect on the visual effect. Further, by setting the edge signal and maintaining the high level time D 0 , D 1 , ..., D u length and length, the water flow effect corresponding to the speed of the edge signal interval time is obtained.
  • the LED driver further comprises an LED driving circuit, wherein an input end of the LED driving circuit is connected to an output end of the edge triggering operation unit, and an output end is connected to the corresponding LED to drive the corresponding LED.
  • the invention realizes that the power supply line supplies power and transmits a clock signal to the LED driver, and the clock signal is an edge signal of the power line input according to the present invention, and is also a power line edge signal according to the present invention.
  • the invention eliminates the necessity of the existence of a clock circuit in the LED driver and simplifies the circuit design.
  • the LED lantern device of the present invention controls the power cable to be turned on and off by controlling the closing and opening of the controllable switch, thereby outputting the edge signal and loading on the power line, and each LED lantern group and corresponding
  • the LED driver is directly connected to the power line loaded with the edge signal, can complete the driving of the LED lantern, realize different driving effects, has simple circuit structure and low cost, and can realize extremely rich decorative effect through MCU programming.
  • 1 is a color light device controlled by a power line edge signal according to the embodiment
  • FIG. 2 is a schematic diagram of an LED connection manner in the LED module of the embodiment, wherein (a), (b), and (c) respectively represent different connection modes;
  • FIG. 3 is a structural block diagram of an LED driver of the embodiment
  • FIG. 4 is a circuit schematic diagram of an edge triggering operation unit of the embodiment
  • FIG. 5 is a circuit schematic diagram of a charging unit of the embodiment.
  • FIG. 6 is a circuit schematic diagram of an initialization unit of the embodiment
  • Fig. 7 is a timing chart of the arithmetic operation device triggered by the power line edge signal of the embodiment.
  • the color light device based on the power line edge signal control of the embodiment includes:
  • An edge signal generator for generating an edge signal and loading the generated edge signal on a power line output
  • the edge signal generator of this embodiment comprises a controllable switch and a control circuit connected to the control end of the controllable switch.
  • the controllable switch comprises a P-channel FET CJ2301, and the source is connected as an input terminal to a DC power supply (+5V power supply).
  • the drain is connected to the power line at the output end, the gate is used as a control terminal, and is connected to the output end of the control circuit, and a pull-down circuit is also connected to the output end of the controllable switch.
  • the pull-down circuit is a pull-down resistor (resistance is 1 M ⁇ ), one end of the pull-down resistor is connected to the output end of the controllable switch, and the other end is grounded.
  • the control circuit is implemented based on the MCU (in this embodiment, the STC15F104E type single-chip microcomputer), and the control signal outputted by the single-chip microcomputer controls the closing and opening of the controllable switch (actually, on and off).
  • the edge signal loaded on the power line is high.
  • the controllable switch is turned off, the edge signal loaded on the power line is low.
  • each LED module comprising an LED lantern group and an LED driver for driving the LED lantern group according to an edge signal output from the power line.
  • each LED lantern group includes three LEDs of different colors, namely red light, green light and blue light.
  • the LED lantern device of this embodiment has nine LED modules divided into MODULE 0 , MODULE 1 , MODULE 2 , MODULE 3 , MODULE 4 , MODULE 5 , MODULE 6 , MODULE 7 , and MODULE 8 .
  • the LEDs in each LED module are connected as shown in Figure 2.
  • the three outputs of the LED drivers of the LED modules MODULE 0 , MODULE 3 and MODULE 6 are connected to red light from low to high respectively.
  • LEDs in the LED modules MODULE 1 , MODULE 4 and MODULE 7 The three outputs of the driver are connected to the blue LED, the red LED and the green LED from the low to the high respectively; as shown in (c), the three outputs of the LED drivers of the LED modules MODULE 2 , MODULE 5 and MODULE 8 The green LED, the blue LED and the red LED are respectively connected from the low to the high.
  • the LED driver of this embodiment includes:
  • the edge triggering operation unit is triggered by the power line edge signal to perform an operation, and outputs the operation result;
  • the charging unit is configured to provide a power supply level for the edge triggering operation unit according to the edge signal input by the power line, charge when the edge signal is high level, and discharge when the edge signal is low level;
  • An initialization unit configured to initialize an edge trigger operation unit according to the power supply level
  • an LED driving circuit configured to output a corresponding driving signal according to the operation result output by the edge triggering operation unit to drive the corresponding LED lantern group.
  • the LED driving circuit is three NMOS transistors, and the gates of the respective NMOS transistors are correspondingly connected to the output end of the edge trigger computing unit, the sources of the respective NMOS transistors are connected to the ground of the LED driver, and the drains of the respective NMOS transistors are connected to the LED driver.
  • the output. 4 is an edge-triggered operation unit of the embodiment, comprising three parallel D flip-flops and a 3-bit arithmetic logic unit, and outputting the operation results at the output ends of the respective D flip-flops.
  • the D flip-flop in this embodiment is a clock rising edge triggering D flip-flop with a low level reset, which is a first D flip-flop F1, a second D flip-flop F2 and a third D flip-flop F3, respectively, corresponding to the positive direction.
  • the output terminals are Q1, Q2 and Q3 respectively, and the corresponding operation results are Q1, Q2 and Q3 from low to high.
  • the trigger terminals of the respective D flip-flops are respectively connected to the output terminals of the corresponding bits of the arithmetic logic unit, that is, D1 is connected to C1, D2 is connected to C2, and D3 is connected to C3.
  • each D flip-flop is connected to the output terminal of the initialization unit, and the D flip-flop is initially set by the initialization unit.
  • the clock signal input terminals (including CK1, CK2, and CK3) are connected to the power line, and the edge signal input from the power line triggers an arithmetic operation.
  • the edge triggering operation unit is a three-bit adder, and the input terminals of the edge group of the edge triggering operation unit are A1, A2, and A3 from low to high, and the input terminals of the B group are B1 and B2 from low to high. B3, the output from low to high is C1, C2 and C3.
  • the input terminals of the A group of the arithmetic logic unit are respectively connected to the output terminals of the D flip-flops of the corresponding bits (ie, Q1 is connected to A1, Q2 is connected to A2, and Q3 is connected to A3).
  • Group B input external mode control constant.
  • the mode control constants can be set according to user requirements.
  • FIG. 5 is a specific circuit of the charging unit of the embodiment, including a diode D.
  • the anode of the diode D is connected to a power line, and the cathode is grounded through an energy storage element C.
  • the charging capacitor is a source drain. Shorted MOS tube equivalent capacitance, the equivalent capacitance is 0.2 ⁇ F).
  • the entire charging unit supplies a power supply level to the edge triggering arithmetic unit and the initializing unit through the cathode of the diode D.
  • FIG. 6 is a circuit schematic diagram of an initialization unit, including four MOS transistors, respectively, a p-channel MOS transistor T1, a p-channel MOS transistor T2, an n-channel MOS transistor T3, and an n-channel MOS transistor T4, and a first inversion.
  • the device V1 and the second inverter V2. The specific connection relationship is as follows:
  • the source and the drain of the MOS transistor T1 are both connected to the cathode of the diode D1 in the charging unit, the gate is connected to the drain of the MOS transistor T3, the gate of the MOS transistor T3 is connected to the source of the MOS transistor T1, and the source of the MOS transistor T3 is connected. Extremely grounded.
  • the gate and the source of the MOS transistor T2 are respectively connected to the gate and the source of the MOS transistor T1, and the drain is connected in series with a current limiting resistor R (the current limiting resistor has a size of 500 ⁇ in this embodiment), and the MOS transistor T4
  • the gate is connected, and the drain and the source of the MOS transistor T4 are connected to the source and ground of the MOS transistor T3, respectively.
  • the gate of the MOS transistor T4 is connected to the input end of the first inverter V1, the output end of the first inverter V1 is connected to the input end of the second inverter V2, and the output of the second inverter V2 is used as the output end of the initialization unit.
  • the reset signal is output to the edge trigger arithmetic unit.
  • the power supply level provided by the charging unit is low level. At this time, the initialization unit and the edge trigger computing unit are insufficiently powered, and the entire computing device cannot operate.
  • the energy storage component C in the charging unit is charged.
  • the power supply level is flipped from a low level to a high level, and the initialization unit and the edge trigger arithmetic unit are normally powered.
  • the MOS transistor T3 in the initializing unit is turned on to turn on the MOS transistor T2, and therefore, the charging unit can charge the MOS transistor T4 serving as a capacitor through the current limiting resistor R.
  • the voltage of the gate of the MOS transistor T4 gradually increases, and the initialization is completed when the charging reaches the reset signal outputted by the second inverter V2 from the low level to the high level.
  • the output end of the second inverter V2 is connected to the reset end of each D flip-flop in the edge trigger operation unit.
  • each D flip-flop is reset, that is, the edge trigger operation unit is cleared. .
  • FIG. 7 is a timing diagram of the operation result of the edge signal of the power line input, the initialization unit, and the mode control constant of the input of the three-bit adder B group being binary 001 in the embodiment, wherein the operation result uses the forward direction of three D flip-flops. The output signal of the output is indicated. After the power is turned on, the three D flip-flops are reset to logic 0 at time T, that is, the operation result is cleared.
  • the operation result is binary 001; at the rising edge of the power line E2, the operation result is binary 010; at the rising edge of the power line E3, the operation result is binary 011; at the rising edge of the power line E4, the operation result It is binary 100; on the rising edge of the power line E5, the operation result is binary 101; on the rising edge of the power line E6, the operation result is binary 110; on the rising edge of the power line E7, the operation result is binary 111; on the rising edge of the power line E8, The operation device overflows, and the operation result is binary 000.
  • the operation result of the edge trigger operation unit in the LED driver triggered by the power line edge signal is 0 to (2 3 -1).
  • the three D flip-flops are reset to logic 0 at time T, that is, the edge-triggered arithmetic unit outputs zero, and each LED in all LED modules is dark.
  • the lighting of the LED is as follows:
  • the operation result is binary 001
  • the red LEDs in the LED modules MODULE 0 , MODULE 3 and MODULE 6 are bright
  • the LED modules MODULE 1 and MODULE 4 are bright
  • the MODULE 7 blue LEDs are bright
  • LED The green LEDs in the modules MODULE 2 , MODULE 5 and MODULE 8 are bright;
  • the operation result is binary 010, the green LED of the LED module MODULE 0 , MODULE 3 and MODULE 6 is bright, the red LED of the MODULE 7 of the LED module MODULE 1 and MODULE 4 is bright, the LED module The blue LEDs in MODULE 2 , MODULE 5 and MODULE 8 are bright;
  • the operation result is binary 011
  • the red and green LEDs in the LED modules MODULE 0 , MODULE 3 and MODULE 6 are bright, and the red LEDs in the LED modules MODULE 1 , MODULE 4 and MODULE 7 Languang LED is bright, blue LED and green LED are bright in LED module MODULE 2 , MODULE 5 and MODULE 8 ;
  • the operation result is binary 100, the blue LEDs of the LED modules MODULE 0 , MODULE 3 and MODULE 6 are bright, the green LEDs of the LED modules MODULE 1 , MODULE 4 and MODULE 7 are bright, the LED module The red LEDs in MODULE 2 , MODULE 5 and MODULE 8 are bright;
  • the operation result is binary 101
  • the red LED and the blue LED of the LED modules MODULE 0 , MODULE 3 and MODULE 6 are bright
  • the green LEDs of the LED modules MODULE 1 , MODULE 4 and MODULE 7 Languang LED is bright
  • red LED and green LED are bright in LED modules MODULE 2 , MODULE 5 and MODULE 8 ;
  • the operation result is binary 110, the blue LED and the green LED of the LED modules MODULE 0 , MODULE 3 and MODULE 6 are bright, the LED modules MODULE 1 , MODULE 4 and MODULE 7 are green LEDs.
  • the red LED is bright, and the red LED and the blue LED of the LED module MODULE 2 , MODULE 5 and MODULE 8 are bright;
  • the operation result is binary 111, and the red LED, green LED and blue LED are all bright in all LED modules;
  • the computing device At the rising edge of the power line E8, the computing device overflows, and the operation result is binary 000.
  • the red LED, green LED, and blue LED of all LED modules are dark.
  • the edge signal is generated by the control circuit in the edge signal generator and loaded onto the power line to illuminate the LED of the corresponding color in the LED group to realize different Lantern effect.
  • each lantern group is controlled to realize red, green, blue, red, green, red, green, red, green, and full dark, that is, 7 kinds of colors and total darkness. Color mode.
  • the high level sustain time after each rising edge in Fig. 7 to be 1 second, a 7 color jump at intervals of 1 second can be obtained.
  • a seven-color jump of the corresponding speed can be obtained.
  • the corresponding high level maintenance time is set to 1 second.
  • the color mode set corresponding to the operation result is ⁇ red, green, blue ⁇ .
  • the output of the edge-triggered arithmetic unit is zero, the three LEDs of the module MODULE 0 are all in a dark state, as shown in Figure 7, the low-level time is 100 ns rising edge E1, and the LED driver operation result is 1 to maintain high power.
  • the flat time is 1 second; the low-level time is 100ns rising edge E2, the LED driver operation result is 2 high level time 1 second; the low level time is 100ns rising edge E 3 , the LED driver operation result is 3
  • the high-level time is 100ns
  • the low-level time is 100ns rising edge E 4
  • the LED driver operation result is 4 high-level time for 1 second.
  • the color light group MODULE 0 of the present embodiment obtains three color jumps of three colors of red, green, and blue color intervals of one second. . Further, by setting the edge signal, the high-level time length is obtained to obtain the three-color jump of the edge signal interval time corresponding speed.
  • the LED driver operation results are sequentially changed from 1 ⁇ 2 ⁇ 4, and the LED color group MODULE 0 , MODULE 3 , and MODULE 6 color modes change from red ⁇ green ⁇ blue, the lantern group MODULE 1 , MODULE 4 , MODULE 7 color mode changes from blue ⁇ red ⁇ green, LED lights group MODULE 2 , MODULE 5 , MODULE 8 color mode changes from green ⁇ blue ⁇ red, the entire string of light in the visual effects of red, blue, green Flowing effect. Further, the running water effect of the interval signal corresponding to the interval time of the edge signal is obtained by setting the edge signal after the high level time. In order to ensure that the initialization unit and the edge-triggered operation unit can supply power normally during the operation, the duration of the low level in the edge signal must be less than the discharge duration of the energy storage element C in the charging unit from the high level to the low level.
  • the charging capacitor does not reverse discharge the power line during discharge.
  • the voltage amplitude corresponding to the high level is 3.0 to 5 V, and the low level is less than 1.0 V.
  • the LED driver of the embodiment uses only one power line input edge signal, and performs operation on the edge signal, so that the control driving unit drives to complete the seven-color illumination, the seven-color combination jump, and the water flow effect of the LED, and does not need to use more than one.
  • the signal line of the root transmits the control signal.

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

本发明提供了基于电源线边沿信号控制的彩灯装置,包括若干LED彩灯组,还包括:边沿信号发生器,用于生成边沿信号并将所述的边沿信号加载在电源线上输出;LED驱动器,与所述的LED彩灯组一一对应,用于根据电源线输出的边沿信号驱动相应的LED彩灯组。本发明的LED彩灯装置通过控制可控开关的闭合和断开,控制电源线通断,进而输出边沿信号并加载在电源线上,将各个LED彩灯组及相应的LED驱动器直接与该加载有边沿信号的电源线连接,可以完成对LED彩灯的驱动,实现不同的彩灯效果,电路结构简单,且成本低廉,通过MCU编程可以实现极其丰富的装饰效果。

Description

基于电源线边沿信号控制的彩灯装置 技术领域
本发明涉及LED控制技术领域,具体涉及一种基于电源线边沿信号控制的彩灯装置。
背景技术
发光二极管(Light Emitting Diode,LED)具有发光效率高、方向性好、色彩稳定性好、可靠性高、寿命长,体积小以及环境安全性高等显著优点,尤其适合应用于LED彩灯照明。LED彩灯一般由多颗LED通过串联或并联的方式联结成串,是圣诞节、复活节等节日的主要装饰品,也是喜庆、娱乐、夜景照明的亮化装饰产品,具有广阔的市场。
目前市场上的LED彩灯有常亮与带闪烁灯模式。常亮模式生产制造简单,但装饰效果单调。带闪烁灯串的主要实现方式包括:在常亮灯串中间隔串装LED闪泡,但是这种LED闪泡亮灯模式固定,不能接收控制信号实现其他变化效果;另一种将LED彩灯分成若干组,各个LED彩灯由单独控制器控制,为了达到灯串流水等效果,就必须做成3路以上的结构,路数越多效果就越好。
将LED灯串分成若干组的模式,一般将需要同时发光的一组LED串联,然后再对各组LED串进行并联。增加LED彩灯的路数就会带来结构的复杂和电线用量的增加,而且增加生产难度和成本,产品体积庞大、部件繁多,造价较高。
公开号为CN1423515的中国发明专利申请公开一种用于装饰的变色彩灯带,包括提供触发电压的控制器、数个变色开关电路,每个变色开关由二个双向可控硅分别串联整流二极管后再与第三个双向可控硅并联而成,三个双向可控硅的控制极与控制器相连,并联电路的一端接电源,另一端连接若干个变色灯泡。该方案通过可控硅电路可以用简单的方式实现三色变化,但 当需要实现更多种颜色模式控制时,电路较为复杂。
公开号为CN203206544U的中国实用新型专利申请公开一种两组LED灯循环闪亮的双线式LED灯串方案,包括连接用电线及若干个LED灯,所有的LED灯按一正一反的极性排列后再用两根电线并联连接成灯串,并联连接的一根电线与控制单元的第一个输出端电连接,并联连接的另一根电线与控制单元的第二个输出端电连接,控制单元控制的第一输出端和第二输出端的正、负极性间歇互换。该方案的优点是控制系统部分输出线只有两根,灯串也用两根电线实现两路循环,可大量节约电线。但该方案的只能实现两种色彩的控制。
公开号为CN103528014A的中国专利申请公开一种IC芯片控制发光的LED圣诞灯串,包括变压器、控制器、常亮LED发光支路和可控LED发光支路,通过IC模块控制,对可控LED发光支路中要求产生发光模式变化的LED灯实现点控制,不需要特殊的LED灯,就使得可控LED灯串的发光效果产生丰富的变化。该方案需要包括分开的常亮LED发光支路和可控LED发光支路,可控LED发光支路的IC芯片需要独立的线路连接。
公开号为CN101598277的中国专利申请公开了一种只用两根电线的LED灯串,编码控制器的输入端连接电源,编码控制器的输出端连接两根电线,电线上并联连接多个LED,组成多路LED灯串。同一路LED灯串中LED内设置一个相同的编码识别芯片,不是同一路的LED所设置的编码识别芯片互不相同。该方案编码控制器通过载波电路的输出端连接发送电路,编码识别芯片包括脉冲接收电路,脉冲接收电路信号输出端连接解码电路。该方案不是同一路的LED所设置的编码识别芯片互不相同,这一方面导致编码识别芯片需要包括只读存储器存放编码,增加编码识别芯片的复杂性,另一方面也导致生产过程中需要按照不同编码组装产品,如不同编码识别芯片组装位置错误,就不能实现预期设计的装饰效果,这导致最终产品组装复杂。
发明内容
针对现有技术的不足,本发明提供了一种基于电源线边沿信号控制的彩灯装置。
一种基于电源线边沿信号控制的彩灯装置,包括:
边沿信号发生器,用于生成边沿信号并将所述的边沿信号加载在电源线上输出;
若干LED模组,每个LED模组包括一个LED彩灯组和用于根据电源线输出的边沿信号驱动该LED彩灯组的LED驱动器。
本发明的彩灯装置中LED模组的数量以及每个LED模组中包括的LED的数量及颜色根据实际应用情况设定。当LED模组的数量大于等于2时,各个LED模组可以并联方式连接,也可以串联方式连接。
通过边沿信号发生器生成边沿信号并加载至电源线上输出,一方面为LED驱动器供电,另外,电源线输出的边沿信号还可以作为LED驱动器的控制信号,在LED灯数量庞大的LED彩灯领域,能够只通过电源线和地线就获得闪烁、颜色跳变、颜色逐渐增亮、颜色逐渐变暗以及流水灯等效果,可大大减少所需连线的数量。
所述的边沿信号发生器包括可控开关和与可控开关的控制端连接的控制电路,所述可控开关的输入端接直流电源,输出端接所述的电源线。
通过控制电路的输出信号控制可控开关的通断,即可形成边沿信号,并加载至电源线上。当可控开关导通时,电源线上加载的边沿信号为高电平,当可控开关断开时,电源线上加载的边沿信号为低电平。
作为优选,所述的控制电路基于微处理器(MCU)实现。进一步,为降低成本,所述的微处理器可以为单片机。
为保证可控开关具有较高的响应速度,所述的可控开关可以采用场效应管实现。作为优选,所述的可控开关基于P沟道的场效应管实现。
作为优选,所述可控开关的输出端还连接有下拉电路。通过设置下拉电路,在可控开关断开时,迅速将电源线加载的边沿信号的电平拉低。
作为优选,所述LED驱动器包括:
边沿触发运算单元,由电源线边沿信号触发进行运算,并输出运算结果;
充电单元,用于根据电源线输入的边沿信号为边沿触发运算单元提供供电电平,当边沿信号为高电平时充电,当边沿信号为低电平时放电;
初始化单元,用于根据所述的供电电平对边沿触发运算单元进行初始化。
所述LED驱动器的电源线与所述LED驱动器的地之间还可以连接分压 电阻,用于LED模组串联应用时起到分压作用。
本发明中边沿触发运算单元的实际作用是由边沿信号触发进行计数运算、算术运算、逻辑运算或移位运算,或者完成由计数运算、算术运算、逻辑运算、移位运算等运算组合而成的运算。边沿触发运算单元运算结果用于生成LED驱动信号。
当LED模组的数量大于2时,各个LED模组的LED驱动器中的边沿触发运算单元可以执行相同方式运算,也可以执行不同方式运算。
作为优选,所述边沿触发运算单元,由电源线边沿信号触发进行算术逻辑运算,并输出运算结果。所述的边沿触发运算单元包括n个触发器和一个k位算术逻辑单元,以触发器的输出端输出运算结果。作为优选,所述的触发器为D触发器。
作为优选,所述的边沿触发运算单元包括n个并联的D触发器和一个k位算术逻辑单元,所述的n和所述的k为相等值,以D触发器的输出端输出运算结果,其中:
各个D触发器的触发端分别与算术逻辑单元相应位的输出端连接;
各个D触发器的复位端与初始化单元连接,时钟信号输入端与电源线连接;
算术逻辑单元的A组输入端分别与相应位的D触发器的输出端连接,B组输入端外接模式控制常量。
所述算术逻辑单元是实现算术运算或逻辑运算的逻辑电路,所述算术逻辑单元的两组操作数分别是A组输入端和B组输入端输入的数据,所述算术逻辑单元的输出端是对A组输入端和B组输入端输入的操作数进行算术逻辑运算的运算结果。
本发明中的算术逻辑单元可以为加法器电路、减法器电路、逻辑运算电路、乘法器电路或除法器电路,也可以为加法器电路、减法器电路、逻辑运算电路、乘法器电路、除法器电路的任意组合。实际应用时模式控制常量可以固定不变,也可以外接模式选择电路,由模式选择电路对B组输入端进行置数,用户根据需要通过模式选择电路对模式控制常量进行置数,以使整个边沿触发运算单元以不同的方式进行运算。例如,在算术逻辑单元为加法器时,模式控制常量为2m(十进制表示,m为大于等于0且小于n的整数)。 当m为0时模式控制常量为20,边沿触发运算单元采用递增方式进行计数;当m为1时模式控制常量为21,边沿触发运算单元采用加2方式进行计数,运算结果(采用二进制表示)最低1位保持不变;当m为2时模式控制常量为22,边沿触发运算单元采用加4方式进行计数,运算结果(采用二进制表示)最低2位保持不变。
另外,在算术逻辑单元为加法器时,模式控制常量还可以设为2n-2m(十进制表示,m为大于等于0且小于n的整数)。例如:当m为0时模式控制常量为2n-1,算术逻辑单元实际上加-1的补码,边沿触发运算单元采用递减方式进行计数;当m为1时模式控制常量为2n-2,算术逻辑单元实际上加-2的补码,边沿触发运算单元采用减2方式进行计数,运算结果(采用二进制表示)最低1位保持不变;当m为2时模式控制常量为2n-4,算术逻辑单元实际上加-4的补码,边沿触发运算单元采用减4方式进行计数,运算结果(采用二进制表示)最低2位保持不变。
可以看出,通过外接模式控制常量从而完成运算模式的多样化,进而输出更多种类的运算结果,在LED彩灯上控制更加灵活,在LED彩灯控制领域更加具有应用竞争力。
未作特殊说明,本发明中的边沿触发运算单元的输出具有高低位之分。第一个D触发器是指根据边沿触发运算单元中最低位对应的D触发器。相邻两个D触发器中以相对低位的D触发器作为前一个,相对高位的D触发器作为后一个。相应的,对于算术逻辑单元,A组输入端和B组输入端中的各位也具有相应的高低位。
作为边沿触发运算单元的另一种实现方案,所述的边沿触发运算单元为边沿计数单元,用于对电源线输入的边沿信号的边沿进行计数,并输出计数结果。
所述的边沿计数单元包括若干个触发器,以触发器的输出端输出计数结果。
作为优选,所述的触发器为D触发器。
作为优选,所述的边沿计数单元包括若干个串联的D触发器,以D触发器的输出端输出计数结果,其中:
第一个D触发器的时钟信号输入端与电源线连接,相邻两个D触发器 中,后一个D触发器的时钟信号输入端与前一个D触发器的反向输出端连接;
各个D触发器的复位端与初始化单元连接,各个D触发器反向输出端与触发端连接。
本发明中未作特殊说明,第一个D触发器是指根据边沿计数单元中最低位对应的D触发器。相邻两个D触发器中以相对低位的D触发器作为前一个,相对高位的D触发器作为后一个。
作为边沿触发运算单元的另一种实现方案,所述的边沿触发运算单元为边沿触发移位单元,所述的边沿触发移位单元,由电源线边沿信号触发进行移位,并输出移位结果。
所述的边沿触发移位单元,包括至少两个触发器,以触发器的输出端输出移位结果。作为优选,所述的触发器为D触发器。
作为优选,所述的边沿触发移位单元包括至少两个串联的D触发器,以各个D触发器的输出端输出移位结果,其中:
第一个D触发器的触发端与最后一个D触发器的输出端连接,相邻两个D触发器中,后一个D触发器的触发端与前一个D触发器的输出端连接;
各个D触发器的复位端或置位端与初始化单元连接,时钟信号输入端与电源线连接。
本发明中通过初始化,可以对边沿触发移位单元置任意数,根据需要设定。对于边沿移位单元而言,其中的各个D触发器在初始时刻输出不同,移位才有意义,因此,所述边沿移位单元中至少有一个D触发器的复位端与初始化单元连接,至少有一个D触发器的置位端与初始化单元连接。对于各个D触发器,置“零”时,该D触发器的复位端与初始化单元连接,置位端接无效电平(若置位端低电平有效,则接高电平);反之,置“1”时,该D触发器的置位端与初始化单元连接,复位端接无效电平。当电源线信号为高电平时,充电单元充电,当充电单元提供的电平达到高电平时,边沿触发移位单元和初始化单元上电成功。
未作特殊说明,本发明中的边沿触发运算单元的输出具有高低位之分。第一个D触发器是指根据边沿触发运算单元中最低位对应的D触发器。相邻两个D触发器中以相对低位的D触发器作为前一个,相对高位的D触发 器作为后一个。相应的,对于算术逻辑单元,A组输入端和B组输入端中的各位也具有相应的高低位。
所述D触发器为时序电路的基本电路,输出端包括正向输出端和反向输出端,反向输出端逻辑值等于正向输出端逻辑值取反;当复位端为有效电平时正向输出端为逻辑0,当置位端为有效电平时正向输出端为逻辑1,当时钟信号输入端为有效边沿且复位端和置位端都为无效电平时正向输出端逻辑值等于触发端逻辑值,否则输出端逻辑值不变。
D触发器有效边沿可以为上升沿,也可以为下降沿,根据需求选择。
D触发器的个数越多,边沿触发运算单元对应的运算范围越大。作为优选,所述的边沿触发运算单元包括至少两个D触发器。进一步优选,所述的边沿触发运算单元包括2~200个D触发器,即n的取值优选为2~200。
所述的充电单元包括单向导电元件,所述单向导电元件的阳极电压高于阴极电压时导电,阴极电压高于阳极电压时截止。所述单向导电元件的阳极与电源线连接,阴极通过一储能元件接地,所述的充电单元通过单向导电元件的阴极为边沿触发运算单元和初始化单元提供供电电平。单向导电元件可以是单个器件,也可以是多个器件构成的具有单向导电特性的电路。
所述LED彩灯组包括n个LED,相对于所述LED驱动器的n个输出端,所述LED彩灯组具有连接方式是A(n,n)排列数中的一种连接方式。连接时,n个LED的阳极共同连接在所述LED模组的电源端,n个不同颜色的LED的阴极分别连接在所述LED驱动器的n个输出端。
所述LED彩灯组中的n个LED的阴极连接在对应LED驱动器的n个输出引脚,电源线边沿信号触发的LED驱动器中边沿触发运算单元的运算结果的取值范围为0~(2n-1),通过加载电源线边沿信号控制每个LED彩灯组实现2n种模式变化,进一步,通过控制每个边沿信号后高电平时间的长短获得边沿信号间隔时间对应速度的模式变化。
进一步,在运算结果范围0~(2n-1)中选择若干个值K0、K1、...、Ku,u为大于0的整数,并设置对应的维持高电平时间D0、D1、...、Du,运算结果对应的颜色模式集合为{L0、L1、...、Lu},重复在人眼不能分辨的短时间内快速加载若干个边沿信号使得LED驱动器运算结果为K0维持高电平时间D0、LED驱动器运算结果为K1维持高电平时间D1,其余各个运算结果的维 持时间依次类推,LED驱动器运算结果为Ku维持高电平时间Du,通过上述方式实现彩灯组对应LED驱动器运算结果为K0、K1、...、Ku对应的颜色模式跳变,进一步,通过设置边沿信号后高电平时间D0、D1、...、Du长短获得边沿信号间隔时间对应速度的颜色模式变化。
进一步,颜色模式变化从L0→L1→..→Lu的LED彩灯组、颜色模式变化从L1→L2→...→Lu→L0的彩灯组、颜色模式变化从L2→L3→...→Lu→L0→L1的LED彩灯组、...、颜色模式变化从Lu→L0→L1→...→Lu-1的LED彩灯组在视觉效果上获得流水效果,进一步,通过设置边沿信号后维持高电平时间D0、D1、...、Du长短获得边沿信号间隔时间对应速度的流水效果。
进一步优选,所述的LED驱动器还包括LED驱动电路,所述的LED驱动电路的输入端与边沿触发运算单元的输出端连接,输出端与相应的LED连接以驱动相应的LED。
本发明实现了由所述的电源线供电并为所述LED驱动器传输时钟信号,所述时钟信号就是本发明所述的电源线输入的边沿信号,也是本发明所述的电源线边沿信号,本发明免去了所述LED驱动器中时钟电路存在的必要性,简化了电路设计。
与现有技术相比,本发明的LED彩灯装置通过控制可控开关的闭合和断开,控制电源线通断,进而输出边沿信号并加载在电源线上,将各个LED彩灯组及相应的LED驱动器直接与该加载有边沿信号的电源线连接,可以完成对LED彩灯的驱动,实现不同的驱动效果,电路结构简单,且成本低廉,通过MCU编程可以实现极其丰富的装饰效果。
附图说明
图1为本实施例的基于电源线边沿信号控制的彩灯装置;
图2为本实施例的LED模组中LED连接方式示意图,其中(a)、(b)、(c)分别代表不同的连接方式;
图3为本实施例的LED驱动器的结构框图;
图4为本实施例的边沿触发运算单元的电路原理图;
图5为本实施例的充电单元的电路原理图;
图6为本实施例的初始化单元的电路原理图;
图7为本实施例的电源线边沿信号触发的算术运算装置的时序图。
具体实施方式
下面将结合附图和具体实施例对本发明进一步详细描述。
如图1和如图2所示,本实施例的基于电源线边沿信号控制的彩灯装置,包括:
边沿信号发生器,用于生成边沿信号并将生成的边沿信号加载在电源线上输出;
本实施例的边沿信号发生器包括可控开关和与可控开关的控制端连接的控制电路,可控开关包括P沟道场效应管CJ2301,其源极作为输入端接直流电源(+5V电源),漏极为输出端与电源线连接,栅极作为控制终端,与控制电路的输出端连接,可控开关的输出端还连接有一下拉电路。本实施例中下拉电路为下拉电阻(阻值为1MΩ),下拉电阻一端连接可控开关的输出端,另一端接地,在可控开关断开时,可以迅速将边沿信号的电平拉低。
控制电路基于MCU(本实施例中为STC15F104E型单片机)实现,通过单片机输出的控制信号控制可控开关的闭合和断开(实际上为导通和截止)。
当可控开关导通时,电源线上加载的边沿信号为高电平,当可控开关断开时,电源线上加载的边沿信号为低电平。
若干个LED模组,每个LED模组包括一个LED彩灯组和用于根据电源线输出的边沿信号驱动LED彩灯组的LED驱动器。
本实施例中每个LED彩灯组包括3不同颜色的LED,分别为红光、绿光和兰光。本实施例的LED彩灯装置中具有9个LED模组分为MODULE0、MODULE1、MODULE2、MODULE3、MODULE4、MODULE5、MODULE6、MODULE7和MODULE8。各个LED模组中LED的连接方式如图2所示,其中如(a)所示,LED模组MODULE0、MODULE3和MODULE6的LED驱动器的三个输出端由低位到高位分别连接红光LED(即图中R)、绿光LED(即图中G)、和兰光LED(即图中B);如(b)所示,LED模组MODULE1、MODULE4和MODULE7中的LED驱动器的三个输出端由低位到高位分别连接兰光LED、红光LED和绿光LED;如(c)所示,LED模组MODULE2、 MODULE5和MODULE8的LED驱动器的三个输出端由低位到高位分别连接绿光LED、兰光LED和红光LED。
如图3所示,本实施例的LED驱动器包括:
边沿触发运算单元,由电源线边沿信号触发进行运算,并输出运算结果;
充电单元,用于根据电源线输入的边沿信号为边沿触发运算单元提供供电电平,当边沿信号为高电平时充电,当边沿信号为低电平时放电;
初始化单元,用于根据所述的供电电平对边沿触发运算单元进行初始化;
以及LED驱动电路,用于根据边沿触发运算单元输出的运算结果输出相应的驱动信号以驱动对应的LED彩灯组。本实施例LED驱动电路是3个NMOS管,各个NMOS管栅极对应连接在边沿触发运算单元的输出端,各个NMOS管的源极接LED驱动器的地,各个NMOS管的漏极连接在LED驱动器的输出端。图4为本实施例的边沿触发运算单元,包括3个并联的D触发器和一个3位算术逻辑单元,以各个D触发器的输出端输出运算结果。
本实施例中的D触发器为带低电平复位的时钟上升沿触发D触发器,分别为第一D触发器F1、第二D触发器F2和第三D触发器F3,对应的正向输出端分别为Q1、Q2和Q3,对应的运算结果从低到高依次为Q1、Q2、Q3。各个D触发器的触发端分别与算术逻辑单元相应位的输出端连接,即D1连C1、D2连C2、D3连C3。
各个D触发器的复位端(包括RD1、RD2和RD3)与初始化单元的输出端连接,通过初始化单元对D触发器进行初始置数。
时钟信号输入端(包括CK1、CK2和CK3)与电源线连接,由电源线输入的边沿信号触发进行算术运算。
本实施例中边沿触发运算单元为三位加法器,该边沿触发运算单元的A组输入端由低到高依次为A1、A2和A3,B组输入端由低到高依次为B1、B2和B3,输出端由低到高依次为C1、C2和C3。算术逻辑单元的A组输入端分别与相应位的D触发器的输出端连接(即Q1接A1、Q2接A2、Q3接A3)。B组输入端外接模式控制常量。模式控制常量可以根据用户需求进行置数。
图5为本实施例的充电单元的具体电路,包括二极管D,二极管D的阳极与电源线连接,阴极通过一储能元件C接地(本实施例中充电电容为源漏 短接的MOS管等效电容,等效电容的大小为0.2μF)。整个充电单元通过二极管D的阴极为边沿触发运算单元和初始化单元提供供电电平。
图6为初始化单元的电路原理图,包括四个MOS管,分别为p沟道MOS管T1、p沟道MOS管T2、n沟道MOS管T3和n沟道MOS管T4、第一反相器V1、第二反相器V2。具体连接关系如下:
MOS管T1的源极和漏极均连接至充电单元中二极管D1的阴极,栅极与MOS管T3的漏极连接,MOS管T3的栅极与MOS管T1的源极连接,MOS管T3源极接地。MOS管T2的栅极和源极分别与MOS管T1的栅极和源极连接,漏极串联一限流电阻R后(本实施例中限流电阻的大小为500Ω),与MOS管T4的栅极连接,且MOS管T4的漏极和源极分别与MOS管T3的源极和地连接。
MOS管T4的栅极连接第一反相器V1输入端,第一反相器V1的输出端连接第二反相器V2输入端,第二反相器V2的输出作为初始化单元的输出端,向边沿触发运算单元输出复位信号。
本实施例的电源线边沿信号触发的算术运算装置的工作原理如下:
当该运算装置未上电时,充电单元提供的供电电平为低电平,此时初始化单元和边沿触发运算单元供电不足,整个运算装置不能运算。
当运算装置上电时,且在边沿信号为高电平时,充电单元中的储能元件C被充电。在高电平持续时间足够长的情况下,供电电平由低电平翻转为高电平,初始化单元和边沿触发运算单元被正常供电。
此时,初始化单元中的MOS管T3导通,使MOS管T2导通,因此,充电单元可以通过限流电阻R对用作电容的MOS管T4充电。在对MOS管T4充电过程中,MOS管T4栅极的电压逐渐增大,当充电到达使得第二反相器V2输出的复位信号由低电平翻转至高电平后完成初始化。
第二反相器V2的输出端与边沿触发运算单元中的各个D触发器的复位端连接,当第二反相器V2输出低电平时,各个D触发器复位,即边沿触发运算单元清零。
图7为本实施例中电源线输入的边沿信号、初始化单元以及三位加法器B组输入端的模式控制常量为二进制001时运算结果的时序示意图,其中运算结果采用三个D触发器的正向输出端的输出信号表示。在电源上电后,在 T时间三个D触发器复位为逻辑0,即运算结果清零。在边沿信号的上升沿E1处,运算结果为二进制001;在电源线上升沿E2,运算结果为二进制010;在电源线上升沿E3,运算结果为二进制011;在电源线上升沿E4,运算结果为二进制100;在电源线上升沿E5,运算结果为二进制101;在电源线上升沿E6,运算结果为二进制110;在电源线上升沿E7,运算结果为二进制111;在电源线上升沿E8,运算装置溢出,运算结果为二进制000,电源线边沿信号触发的LED驱动器中边沿触发运算单元的运算结果的取值范围为0~(23-1)。
在电源上电后,在T时间三个D触发器复位为逻辑0,即边沿触发运算单元输出为零,所有LED模组中的各个LED都为暗。LED的点亮情况如下:
在边沿信号的上升沿E1处,运算结果为二进制001,LED模组MODULE0、MODULE3和MODULE6中红光LED亮,LED模组MODULE1和MODULE4、MODULE7中兰光LED亮,LED模组MODULE2、MODULE5和MODULE8中绿光LED亮;
在电源线上升沿E2,运算结果为二进制010,LED模组MODULE0、MODULE3和MODULE6中绿光LED亮,LED模组MODULE1、MODULE4中MODULE7中红光LED亮,LED模组MODULE2、MODULE5和MODULE8中兰光LED亮;
在电源线上升沿E3,运算结果为二进制011,LED模组MODULE0、MODULE3和MODULE6中红光LED和绿光LED亮,LED模组MODULE1、MODULE4和MODULE7中红光LED和兰光LED亮,LED模组MODULE2、MODULE5和MODULE8中兰色LED和绿光LED亮;
在电源线上升沿E4,运算结果为二进制100,LED模组MODULE0、MODULE3和MODULE6中兰光LED亮,LED模组MODULE1、MODULE4和MODULE7中绿光LED亮,LED模组MODULE2、MODULE5和MODULE8中红光LED亮;
在电源线上升沿E5,运算结果为二进制101,LED模组MODULE0、MODULE3和MODULE6中红光LED和兰光LED亮,LED模组MODULE1、MODULE4和MODULE7中绿光LED和兰光LED亮,LED模组MODULE2、 MODULE5和MODULE8中红光LED和绿光LED亮;
在电源线上升沿E6,运算结果为二进制110,LED模组MODULE0、MODULE3和MODULE6中兰光LED和绿光LED亮,LED模组MODULE1、MODULE4和MODULE7中绿光LED、红光LED亮,LED模组MODULE2、MODULE5和MODULE8中红光LED和兰光LED亮;
在电源线上升沿E7,运算结果为二进制111,所有LED模组中红光LED、绿光LED、兰光LED都亮;
在电源线上升沿E8,运算装置溢出,运算结果为二进制000,所有LED模组的红光LED、绿光LED、兰光LED都暗。
本实施例的LED彩灯装置在实现彩灯控制时,通过边沿信号发生器中的控制电路,生成边沿信号并加载至电源线上,以点亮LED组中相应的颜色的LED,实现不同的彩灯效果。
通过控制加载在电源线上的边沿信号控制每个彩灯组实现红、绿、兰、红绿、红兰、绿兰、红绿兰、全暗,也就是7种彩色、全暗共计8种颜色模式。通过控制图7中各个上升沿后的高电平维持时间为1秒,就可获得间隔1秒的7彩色跳变。改变图7中各个上升沿后的高电平维持时间,就可以获得相应速度的七彩色跳变。
例如:在运算结果范围0~7中选择1、2、4,并设置对应的高电平维持时间都为1秒,本实施例中运算结果对应的颜色模式集合为{红、绿、兰}。在边沿触发运算单元输出为零,模组MODULE0的三个LED都为暗的状态下,如图7所示加载低电平时间为100ns的上升沿E1,LED驱动器运算结果为1维持高电平时间1秒;加载低电平时间为100ns的上升沿E2,LED驱动器运算结果为2维持高电平时间1秒;加载低电平时间为100ns的上升沿E3,LED驱动器运算结果为3,维持高电平时间100ns,加载低电平时间为100ns的上升沿E4,LED驱动器运算结果为4维持高电平时间1秒钟。通过上述方式,因为人眼对短时间无法分辨(即人眼的视觉暂留效应),本实施例彩灯组MODULE0得到红色、绿色、兰色三种颜色间隔时间1秒的三色跳变。进一步,通过设置边沿信号后高电平时间长短获得边沿信号间隔时间对应速度的三色跳变。
通过上述方式实现LED驱动器运算结果依次从1→2→4的跳变,LED彩 灯组MODULE0、MODULE3、MODULE6颜色模式变化从红→绿→兰,彩灯组MODULE1、MODULE4、MODULE7颜色模式变化从兰→红→绿,LED彩灯组MODULE2、MODULE5、MODULE8颜色模式变化从绿→兰→红,整个灯串在视觉效果上获得红、兰、绿三色的流水效果。进一步,通过设置边沿信号后高电平时间长短获得边沿信号间隔时间对应速度的流水效果。为保证运算过程中,初始化单元和边沿触发运算单元能够正常供电,边沿信号中低电平的持续时长必须小于充电单元中储能元件C由高电平放电至低电平的放电时长。
此外,由于二极管的单向导通作用,放电时充电电容不会对电源线进行反向放电。
本实施例中未作特殊说明,高电平对应的电压幅值为3.0~5V,低电平小于1.0V。
本实施例的LED驱动器仅利用一根电源线输入边沿信号,通过对边沿信号进行运算,使控制驱动单元驱动完成LED的七彩色发光、七彩色组合跳变、流水效果,不需要使用多于一根的信号线传递控制信号。
以上所述的具体实施方式对本发明的技术方案和有益效果进行了详细说明,应理解的是以上所述仅为本发明的最优选实施例,并不用于限制本发明,凡在本发明的原则范围内所做的任何修改、补充和等同替换等,均应包含在本发明的保护范围之内,如:在电源线与边沿触发运算单元的D触发器时钟信号输入端之间增加滤波电路、延迟电路或取反电路,算术逻辑单元为隐含B组输入端的加法电路或减法电路等。

Claims (18)

  1. 一种基于电源线边沿信号控制的彩灯装置,包括:
    边沿信号发生器,用于生成边沿信号并将所述的边沿信号加载在电源线上输出;
    若干LED模组,每个LED模组包括一个LED彩灯组和用于根据电源线输出的边沿信号驱动该LED彩灯组的LED驱动器。
  2. 如权利要求1所述的基于电源线边沿信号控制的彩灯装置,其特征在于,所述的边沿信号发生器包括可控开关和与可控开关的控制端连接的控制电路,所述可控开关的输入端接直流电源,输出端接所述的电源线。
  3. 如权利要求2所述的基于电源线边沿信号控制的彩灯装置,其特征在于,所述可控开关的输出端还连接有下拉电路。
  4. 如权利要求1~3中任意一项所述的基于电源线边沿信号控制的彩灯装置,其特征在于,所述LED驱动器包括:
    边沿触发运算单元,由来自所述电源线的边沿信号触发进行运算,并输出运算结果;
    充电单元,用于根据电源线输入的边沿信号为边沿触发运算单元提供供电电平,当所述的边沿信号为高电平时充电,当边沿信号为低电平时放电;
    初始化单元,用于根据所述的供电电平对边沿触发运算单元进行初始化。
  5. 如权利要求4所述的基于电源线边沿信号控制的彩灯装置,其特征在于,所述边沿触发运算单元,由电源线边沿信号触发进行算术逻辑运算,并输出运算结果。
  6. 如权利要求5所述的基于电源线边沿信号控制的彩灯装置,其特征在于,所述的边沿触发运算单元包括n个触发器和一个k位算术逻辑单元,以触发器的输出端输出运算结果。
  7. 如权利要求6所述的基于电源线边沿信号控制的彩灯装置,其特征在于,所述的触发器为D触发器。
  8. 如权利要求7所述的基于电源线边沿信号控制的彩灯装置,其特征在于,所述的边沿触发运算单元包括n个并联的D触发器和一个k位算术逻辑 单元,所述的n和所述的k为相等值,以D触发器的输出端输出运算结果,其中:
    各个D触发器的触发端分别与算术逻辑单元相应位的输出端连接;
    各个D触发器的复位端与初始化单元连接,时钟信号输入端与电源线连接;
    算术逻辑单元的A组输入端分别与相应位的D触发器的输出端连接,B组输入端外接模式控制常量。
  9. 如权利要求4所述的基于电源线边沿信号控制的彩灯装置,其特征在于,所述边沿触发运算单元为边沿计数单元,用于对电源线输入的边沿信号的边沿进行计数,并输出计数结果。
  10. 如权利要求9所述的基于电源线边沿信号控制的彩灯装置,其特征在于,所述的边沿计数单元包括若干个触发器,以触发器的输出端输出所述的计数结果。
  11. 如权利要求10所述的基于电源线边沿信号控制的彩灯装置,其特征在于,所述的触发器为D触发器。
  12. 如权利要求11所述的基于电源线边沿信号控制的彩灯装置,其特征在于,所述的边沿计数单元包括若干个串联的D触发器,以D触发器的输出端输出计数结果,其中:
    第一个D触发器的时钟信号输入端与所述的电源线连接,相邻两个D触发器中,后一个D触发器的时钟信号输入端与前一个D触发器的反向输出端连接;
    各个D触发器的复位端与所述的初始化单元连接,反向输出端与触发端连接;
    各个D触发器的复位端或置位端与初始化单元连接,时钟信号输入端与电源线连接。
  13. 如权利要求4所述的基于电源线边沿信号控制的彩灯装置,其特征在于,所述边沿触发运算单元为边沿触发移位单元,由电源线边沿信号触发进行移位,并输出移位结果。
  14. 如权利要求13所述的基于电源线边沿信号控制的彩灯装置,其特征在于,所述的边沿触发移位单元,包括至少两个触发器,以触发器的输出端 输出移位结果。
  15. 如权利要求14所述的基于电源线边沿信号控制的彩灯装置,其特征在于,
    所述的边沿触发移位单元,包括至少两个串联的D触发器,以D触发器的输出端输出移位结果,其中:
    第一个D触发器的触发端与最后一个D触发器的输出端连接,相邻两个D触发器中,后一个D触发器的触发端与前一个D触发器的输出端连接;
    各个D触发器的复位端或置位端与初始化单元连接,时钟信号输入端与电源线连接。
  16. 如权利要求4所述的基于电源线边沿信号控制的彩灯装置,其特征在于,所述的充电单元包括单向导电元件,所述单向导电元件的阳极与电源线连接,阴极通过一储能元件接地,所述的充电单元通过单向导电元件的阴极为边沿触发运算单元和初始化单元提供供电电平。
  17. 如权利要求16所述的基于电源线边沿信号控制的彩灯装置,其特征在于,所述LED彩灯组包括n个LED,相对于所述LED驱动器的n个输出端,所述LED彩灯组具有连接方式是A(n,n)排列数中的一种连接方式。
  18. 如权利要求17所述的基于电源线边沿信号控制的彩灯装置,其特征在于,所述的LED驱动器还包括LED驱动电路,所述的LED驱动电路的输入端与边沿触发运算单元的输出端连接,输出端与相应的LED连接以驱动相应的LED。
PCT/CN2015/094957 2014-12-15 2015-11-18 基于电源线边沿信号控制的彩灯装置 WO2016095648A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP15869157.6A EP3236714A4 (en) 2014-12-15 2015-11-18 Coloured lamp apparatus based on edge signal control over power line
US15/613,158 US10129959B2 (en) 2014-12-15 2017-06-03 Light apparatus based on power supply line edge signals

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410775449.5 2014-12-15
CN201410775449.5A CN104507218B (zh) 2014-12-15 2014-12-15 基于电源线边沿信号控制的彩灯装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/613,158 Continuation US10129959B2 (en) 2014-12-15 2017-06-03 Light apparatus based on power supply line edge signals

Publications (1)

Publication Number Publication Date
WO2016095648A1 true WO2016095648A1 (zh) 2016-06-23

Family

ID=52948912

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/094957 WO2016095648A1 (zh) 2014-12-15 2015-11-18 基于电源线边沿信号控制的彩灯装置

Country Status (5)

Country Link
US (1) US10129959B2 (zh)
EP (1) EP3236714A4 (zh)
CN (1) CN104507218B (zh)
TW (1) TWI581661B (zh)
WO (1) WO2016095648A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI705217B (zh) * 2020-03-30 2020-09-21 安沛科技股份有限公司 一種多組發光二極體燈串的控制電路及控制方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104507218B (zh) * 2014-12-15 2017-03-15 罗小华 基于电源线边沿信号控制的彩灯装置
CN105101574A (zh) * 2015-09-06 2015-11-25 广德利德光电有限公司 一种供电与信号相结合的两线制led驱动控制集成电路
CN105722270B (zh) * 2016-02-02 2017-08-22 罗小华 基于电源线边沿信号控制的串并联混合彩灯装置
CN107404783B (zh) * 2016-05-20 2018-12-11 杭州昀芯光电科技有限公司 基于电源线边沿信号控制的自组网彩灯装置及彩灯系统
CN108873759B (zh) * 2017-05-10 2021-05-28 腾讯科技(深圳)有限公司 一种电路、电路保护方法及电子设备
CN107567145A (zh) * 2017-09-26 2018-01-09 宗仁科技(平潭)有限公司 Led闪灯控制电路、芯片及led灯具
CN110324943A (zh) 2019-08-14 2019-10-11 赵红春 发光二极管灯串控制系统
CN110730536B (zh) * 2019-11-01 2021-11-19 杭州昀芯光电科技有限公司 一种电源线边沿信号控制的彩灯装置
TWI710730B (zh) * 2020-02-26 2020-11-21 美商科斯莫燈飾公司 具多種發光模式的燈串的發光控制器及控制方法、燈串組件
US11737185B2 (en) 2020-08-19 2023-08-22 Jiangsu Caihuixin Electronic Technology Co., Ltd. LED control system using modulated signal
CN112822816A (zh) 2021-02-10 2021-05-18 赵红春 发光二极管灯串驱动控制系统
CN114364096A (zh) * 2021-12-29 2022-04-15 杭州昀芯光电科技有限公司 双向发光的电源线脉冲信号触发光源、灯串及其控制装置
CN114666956B (zh) * 2022-05-17 2022-11-29 深圳市飞腾云科技有限公司 一种蓝牙灯带驱动方法及装置、存储介质以及电子设备

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2134144A1 (en) * 2008-06-12 2009-12-16 Pyroswift Holding Co., Limited Switching LED driver circuit
WO2013168042A1 (en) * 2012-05-08 2013-11-14 Koninklijke Philips N.V. Led lighting system
CN104135789A (zh) * 2014-06-10 2014-11-05 矽力杰半导体技术(杭州)有限公司 一种原边控制的led驱动方法及驱动电路
CN104363680A (zh) * 2014-11-11 2015-02-18 罗小华 电源线边沿信号触发的算术运算装置及led驱动器
CN204180343U (zh) * 2014-10-10 2015-02-25 罗小华 边沿信号计数装置及led驱动器
CN204217177U (zh) * 2014-11-11 2015-03-18 罗小华 电源线边沿信号触发的算术运算装置及led驱动器
CN104507218A (zh) * 2014-12-15 2015-04-08 罗小华 基于电源线边沿信号控制的彩灯装置
CN204305420U (zh) * 2014-12-15 2015-04-29 罗小华 基于电源线边沿信号控制的彩灯装置
CN104780686A (zh) * 2015-04-20 2015-07-15 罗小华 电源线边沿信号触发的移位装置及led驱动器
CN204616152U (zh) * 2015-04-20 2015-09-02 罗小华 电源线边沿信号触发的移位装置及led驱动器

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3704361A (en) * 1971-04-30 1972-11-28 North Electric Co Binary synchronous up/down counter
US5008595A (en) * 1985-12-18 1991-04-16 Laser Link, Inc. Ornamental light display apparatus
US7258463B2 (en) * 2003-05-19 2007-08-21 Sloanled, Inc. Multiple LED control apparatus and method
JP4289206B2 (ja) * 2004-04-26 2009-07-01 ソニー株式会社 カウンタ回路
DE102004026468A1 (de) * 2004-05-29 2005-12-22 Daimlerchrysler Ag Datenübertragung auf Stromversorgungsleitungen
CN100445634C (zh) * 2006-07-24 2008-12-24 北方工业大学 颜色可随机变化的256色彩灯
ES2365553T3 (es) * 2007-12-03 2011-10-06 Sirio Panel S.P.A. Configuración de circuito para generar una señal modulada en anchura de pulsos, para accionar cargas eléctricas.
CN201259141Y (zh) * 2008-03-14 2009-06-17 张广涵 一种led动彩装饰照明灯
TWI459858B (zh) * 2008-06-24 2014-11-01 Eldolab Holding Bv 照明系統及發光二極體組件之控制單元
US8779695B2 (en) * 2009-06-30 2014-07-15 Eldolab Holding B.V. Method of configuring an LED driver, LED driver, LED assembly and method of controlling an LED assembly
CN201928481U (zh) * 2010-11-08 2011-08-10 国琏电子(上海)有限公司 发光二极管驱动系统
US20120269520A1 (en) * 2011-04-19 2012-10-25 Hong Steve M Lighting apparatuses and led modules for both illumation and optical communication
US20140192545A1 (en) * 2013-01-09 2014-07-10 Calvin Cheuen Kam Law Aerodynamic Spoiler For Pickup Truck With LED Lights
WO2016054970A1 (zh) * 2014-10-10 2016-04-14 罗小华 电源线边沿信号触发的运算装置及led驱动器

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2134144A1 (en) * 2008-06-12 2009-12-16 Pyroswift Holding Co., Limited Switching LED driver circuit
WO2013168042A1 (en) * 2012-05-08 2013-11-14 Koninklijke Philips N.V. Led lighting system
CN104135789A (zh) * 2014-06-10 2014-11-05 矽力杰半导体技术(杭州)有限公司 一种原边控制的led驱动方法及驱动电路
CN204180343U (zh) * 2014-10-10 2015-02-25 罗小华 边沿信号计数装置及led驱动器
CN104363680A (zh) * 2014-11-11 2015-02-18 罗小华 电源线边沿信号触发的算术运算装置及led驱动器
CN204217177U (zh) * 2014-11-11 2015-03-18 罗小华 电源线边沿信号触发的算术运算装置及led驱动器
CN104507218A (zh) * 2014-12-15 2015-04-08 罗小华 基于电源线边沿信号控制的彩灯装置
CN204305420U (zh) * 2014-12-15 2015-04-29 罗小华 基于电源线边沿信号控制的彩灯装置
CN104780686A (zh) * 2015-04-20 2015-07-15 罗小华 电源线边沿信号触发的移位装置及led驱动器
CN204616152U (zh) * 2015-04-20 2015-09-02 罗小华 电源线边沿信号触发的移位装置及led驱动器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI705217B (zh) * 2020-03-30 2020-09-21 安沛科技股份有限公司 一種多組發光二極體燈串的控制電路及控制方法

Also Published As

Publication number Publication date
TW201622485A (zh) 2016-06-16
US20170273163A1 (en) 2017-09-21
CN104507218B (zh) 2017-03-15
EP3236714A1 (en) 2017-10-25
EP3236714A4 (en) 2017-11-08
US10129959B2 (en) 2018-11-13
TWI581661B (zh) 2017-05-01
CN104507218A (zh) 2015-04-08

Similar Documents

Publication Publication Date Title
TWI581661B (zh) 基於電源線邊沿信號控制的彩燈裝置
CN105722270B (zh) 基于电源线边沿信号控制的串并联混合彩灯装置
CN201042097Y (zh) 单线级联多级灰度全彩飘动变化的发光二极管电路
CN203748068U (zh) 一种led灯智能调光电路
CN102917518B (zh) 实现led灯条电流倍增的方法及其对应的驱动电路
TWI571068B (zh) 電源線邊沿信號觸發的運算裝置及led驅動器
CN105657891B (zh) 一种led驱动电源电路
CN201054839Y (zh) 一种led灯组级联驱动和控制电路
CN204305420U (zh) 基于电源线边沿信号控制的彩灯装置
CN112087839B (zh) 一种带电平时长计数的电源线边沿信号触发的运算装置
CN107404783A (zh) 基于电源线边沿信号控制的自组网彩灯装置及彩灯系统
US20160249430A1 (en) LED Color Bulb - Color Is Changeable by Flipping Power On/Off Switch
CN110730536B (zh) 一种电源线边沿信号控制的彩灯装置
CN213094526U (zh) Led渐亮开启控制装置及灯具
CN211019343U (zh) 三线正反向的led灯串控制线路及6路led灯串
CN210807726U (zh) 一种双向式led圣诞灯串的控制电路
CN102196640B (zh) Led灯及灯串的控制电路
CN201044520Y (zh) 二线二路灯串控制器
CN203632904U (zh) Led装饰灯
CN219834423U (zh) 带可控闪泡的led彩灯
CN115988697A (zh) 带可控闪泡的led彩灯
CN205232509U (zh) 九段led闪灯
CN202563871U (zh) 感光led显示屏的控制系统
CN202077237U (zh) 一种led灯及灯串的控制电路
CN211744802U (zh) 一种全桥式led驱动线路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15869157

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015869157

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE