WO2016095462A1 - 一种深矿井煤层开采底板突水危险性评价Ts-q法 - Google Patents

一种深矿井煤层开采底板突水危险性评价Ts-q法 Download PDF

Info

Publication number
WO2016095462A1
WO2016095462A1 PCT/CN2015/081602 CN2015081602W WO2016095462A1 WO 2016095462 A1 WO2016095462 A1 WO 2016095462A1 CN 2015081602 W CN2015081602 W CN 2015081602W WO 2016095462 A1 WO2016095462 A1 WO 2016095462A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
test point
water inrush
risk
aquifer
Prior art date
Application number
PCT/CN2015/081602
Other languages
English (en)
French (fr)
Inventor
李文平
乔伟
李小琴
孙如华
赵成喜
Original Assignee
中国矿业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国矿业大学 filed Critical 中国矿业大学
Publication of WO2016095462A1 publication Critical patent/WO2016095462A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V9/00Prospecting or detecting by methods not provided for in groups G01V1/00 - G01V8/00

Definitions

  • the invention belongs to the category of coal mine water hazard and relates to a method for evaluating the water inrush risk of the bottom karst aquifer in deep coal seam mining.
  • the critical value is 0.06 ⁇ 0.10MPa / m.
  • the mining practice has verified that under the general water pressure (less than 3 MPa), the water inrush coefficient is used to evaluate the safety of mining, which is basically in line with reality; this is a huge theory of coal mine hydrogeologists and related professional technicians in the prevention and control of coal mine water damage. And technical contributions.
  • the water pressure of the ash is gradually increased.
  • the floor rock layer is unloaded under high confining pressure to generate the floor failure zone, plus the height of the ash guide belt, divided by the water pressure by the relative separation.
  • the water inrush coefficient obtained by the thickness of the water layer is far greater than the upper limit specified in the specification.
  • the depth of the lower coal can reach 1200m, and the ash is also in the core of the syncline structure.
  • the water pressure of the ash water is 7.3 ⁇ 13.0MPa, which is the super-high pressure water of the bottom plate, and the water inrush coefficient is 0.144. ⁇ 0.256MPa/m, the minimum value also exceeds the upper limit of the standard safe mining water inrush coefficient.
  • the south-high pressure water of the bottom plate is the water inrush coefficient 0.144. ⁇ 0.256MPa/m
  • the minimum value also exceeds the upper limit of the standard safe mining water inrush coefficient.
  • the south limestone is located in the deep part, under high confining pressure conditions, the crack is not developed, and there is no strong turbulent flow zone, and the water-rich water is poor.
  • the water inflow is 0.01 to 0.10 L/(s ⁇ m), and the aquifer connectivity is not strong.
  • the present invention provides a T s -q method for evaluating the risk of water inrush from the floor of a deep coal seam.
  • the index of water-rich aquifer - unit water inflow (q value) is introduced as a supplement to the water inrush coefficient method.
  • the present invention conducts in-depth research on the relationship between water inrush risk and water inrush coefficient and water-rich aquifer water-rich layer, and obtains some regular understandings;
  • the T s -q method for evaluating the risk of water inrush from the floor this method makes up for the deficiency of the water inrush risk by the traditional water inrush coefficient method, and does not consider the water-rich aquifer (water source) water-rich size (drilling unit water inflow q)
  • the method specifically includes the following steps:
  • the water inrush coefficient value T s is obtained , and then the combined water inrush coefficient value T s and the drilling unit water influx value q are used to classify and evaluate the water inrush risk of the test point, specifically:
  • test point is relatively safe
  • test point When 2 ⁇ q ⁇ 5:T s ⁇ 0.01, the test point is relatively safe; when 0.01 ⁇ T s ⁇ 0.06, the test point is dangerous; when T s >0.06, the test point is high risk;
  • test point When q>5:T s ⁇ 0.01, the test point is relatively safe; when 0.01 ⁇ T s ⁇ 0.04, the test point is dangerous; when T s >0.04, the test point is high risk;
  • the unit of T s is MPa/m
  • the unit of q is L/(s ⁇ m).
  • a water inrush risk assessment is performed on a working face
  • at least three test points are taken within the scope of the working face and/or outside to conduct a classification evaluation of the risk of water inrush, and the evaluation of the test point of the highest risk level is taken. The result was used as the result of the water inrush risk assessment of the working face.
  • the specific method is as follows: first draw the contour map of the water inrush coefficient value T s of each test point and the contour map of the water inflow amount value q of the drilling unit, and then The two contour maps are superimposed, and the superimposed map determines the water inrush risk assessment result of the mining area according to the T s -q method (ie, step (2)).
  • the T s -q method for evaluating the water inrush risk of deep coal seam mining in the deep mine coal seam makes up for the deficiency of the water inrush risk by the traditional water inrush coefficient method, and does not consider the shortage of the water-rich aquifer.
  • the bottleneck of "high pressure-weak water-rich" hydrogeological conditions cannot be mined due to over-limit of water inrush coefficient; and the method is simple and practical, which is convenient for the general application of production units.
  • Figure 1 is a characteristic diagram of the T s -q of the water inrush from the floor of the Feicheng mining area
  • Figure 2 is a characteristic diagram of T s -q of large, medium and small water inrush points in the floor of Jiaozuo mining area;
  • Figure 3 is a characteristic diagram of the T s -q of the water inrush from the floor of the Zibo mining area
  • Figure 4 is a T s -q characteristic map of the large, medium and small water inrush points in the three mining areas of Feicheng, Jiaozuo and Zibo;
  • Figure 4(a) is a T s -q characteristic diagram for the abscissa (0-20) and the ordinate (0-2.5)
  • Figure 4(b) is a T s -q characteristic diagram for the abscissa (0-20) and the ordinate (0-0.2)
  • Figure 4(c) is a T s -q characteristic diagram for the abscissa (0-2) and the ordinate (0-0.1)
  • Figure 4(d) is a T s -q characteristic diagram for the abscissa (1-5) and the ordinate (1-0.1)
  • Figure 4(e) is a T s -q characteristic diagram for the abscissa (0-0.1) and the ordinate (0-0.1)
  • FIG. 5 is a schematic diagram of the T s -q method of the present invention.
  • Figure 6 is a schematic view of the implementation of the present invention.
  • the invention collects 216 water inrush point data of Feicheng mining area, Jiaozuo mining area and Zibo mining area, including water inrush point, thickness of opposite water layer and q value; the specific situation is as follows:
  • the medium water inrush points in the Feicheng mining area are all located in the aquifer drilling unit q>2L/(s ⁇ m), and when the water inrush coefficient T s ⁇ 0.015MPa/m, the medium water inrush point is also rare. As shown in Figure 1.
  • T s water inrush coefficient
  • the small water inrush point is less; when q ⁇ 0.1L/(s ⁇ m), the water inrush The point is less, and when q ⁇ 0.06L/(s ⁇ m), there is no water inrush point; when T s ⁇ 0.04MPa/m, and q>2L/(s ⁇ m), the medium water inrush point increases.
  • T s ⁇ 0.01 MPa/m there are few water inrush points. As shown in Figure 4.
  • a vertical coordinate system is established, the ordinate is the water inrush coefficient value T s , and the abscissa is the drilling unit water inflow value q; first, a polygonal line is set in the figure, and the region between the polygonal line and the coordinate axis is formed. The water point water inrush is ⁇ 0m 3 /h, and considering a certain safety factor, the line 1 is finally obtained.
  • the area between the line 1 and the coordinate axis is the relative safety area for the evaluation of the water inrush safety of the floor; the range of the medium water point gathering It can be roughly circled by a fold line, and a certain safety factor is considered as the fold line 2; the distance between the fold line 1 and the fold line 2 is used as a danger zone, that is, a moderate water inrush easily occurring area; the area other than the fold line 2 is regarded as a high danger zone. That is, areas of large water inrush and extra large water inrush are prone to occur.
  • a T s -q method for the risk assessment of water inrush from the mining floor of deep coal seams as shown in Fig. 5 is established. The specific data are as follows:
  • test point is relatively safe
  • test point When 2 ⁇ q ⁇ 5:T s ⁇ 0.01, the test point is relatively safe; when 0.01 ⁇ T s ⁇ 0.06, the test point is dangerous; when T s >0.06, the test point is high risk;
  • test point When q>5:T s ⁇ 0.01, the test point is relatively safe; when 0.01 ⁇ T s ⁇ 0.04, the test point is dangerous; when T s >0.04, the test point is high risk;
  • the unit of T s is MPa/m
  • the unit of q is L/(s ⁇ m).
  • the water inrush coefficient value T s is obtained , and then the integrated water inrush coefficient value T s and the drilling unit water influx value q are referred to FIG. 5 for the classification evaluation of the water inrush risk of the test point.
  • the corresponding point can be obtained on the schematic coordinate of the T s -q method, according to the position of this point. It can judge the risk of water inrush from mining or excavation.

Abstract

一种深矿井煤层开采底板突水危险性评价T s-q法,首先在地面(1)的测试点钻水文地质钻孔(4),通过水文地质钻孔(4)获得煤层(2)底界面距离含水层(3)顶界面的厚度值M、含水层(3)的水位值以及含水层(3)的钻孔单位涌水量值q,根据含水层(3)的水位值计算水压力值P;然后根据水压力值P和厚度值M求取突水系数值T s,然后综合突水系数值T s和钻孔单位涌水量值q对测试点进行突水危险性的分类评价。该方法弥补了传统突水系数法评价突水危险性未考虑充水含水层富水性大小的不足,突破了深部"高承压—弱富水"水文地质条件因突水系数超限而不能开采的瓶颈;且方法简单实用,便于生产单位普遍推广应用。

Description

一种深矿井煤层开采底板突水危险性评价Ts-q法 技术领域
本发明属于煤矿水害范畴,涉及一种针对深部煤层开采时的底板岩溶含水层突水危险性评价的方法。
背景技术
我国煤矿床水文地质条件复杂,特别是岩溶水经常突入矿坑危害生产安全,华北型煤田下组煤(太原组煤)开采,普遍受到煤系地层基底奥灰承压含水层的威胁。现场实用最多的为突水系数法。焦作、峰峰、淄博、肥城、淮北等矿区进行下组煤开采已有40余年的历史。早期开采时,一般深度较小,奥灰对开采工作面底板隔水层的水压一般都小于3MPa(大部分为1~2MPa);长期的开采实践和科学研究,编制了《煤矿防治水规定》,明确用突水系数Ts(底板充水含水层水压除隔水层厚度)来分析评价底板突水危害程度,其临界值为0.06~0.10MPa/m。开采实践验证,在一般水压下(小于3MPa),用突水系数来评价开采的安全性,基本符合实际;这是中国煤矿水文地质学家及相关专业技术人员对煤矿开采水害防治的巨大理论和技术贡献。随着开采深度的逐渐增大,奥灰的水压逐渐增高;深部开采中,底板岩层在高围压下卸荷产生底板破坏带,加之奥灰导升带高度,由水压除以相对隔水层厚度得到的突水系数远远大于规范规程中所规定的上限值。但是在某些井田,下组煤埋深可达1200m,奥灰亦处于向斜构造的核部,奥灰水水压达7.3~13.0MPa,为底板超高承压水,突水系数达0.144~0.256MPa/m,最小值亦超过规范安全开采突水系数上限,由于奥灰岩层位于深部,在高围压条件下,裂隙不发育,且没有强迳流带,富水性差,钻孔单位涌水量为0.01~0.10L/(s·m),含水层连通性不强。
发明内容
发明目的:为了克服现有技术中突水系数法评价开采危险性已经不能完全适用于深部开采的不足,本发明提供一种深矿井煤层开采底板突水危险性评价Ts-q法,在现有突水系数方法的基础上,引入含水层富水性指标——单位涌水量(q值)这一指标,作为突水系数法的补充。
技术方案:为实现上述目的,本发明采用的技术方案为:
本发明在大量突水实例统计分析的基础上,对突水危险性与突水系数、充水含水层富水性之间的关系进行深入研究,得到了一些规律性的认识;提出了矿井煤层开采底板突水危险性评价Ts-q法,该方法弥补了传统突水系数法评价突水危险性未考虑充水含水层(水源)富水性大小(钻孔单位涌水量q)的不足,突破了深部“高承压—弱富水”水文地质条件因突水系数超限而不能开采的瓶颈;且方法简单实用,便于生产单位普遍推广应用。该方法具体包括如下步骤:
(1)在地面的测试点钻水文地质钻孔,通过水文地质钻孔获得煤层底界面距离含水层顶界面的厚度值M、含水层的水位值以及含水层的钻孔单位涌水量值q,根据含水层的水位值计算水压力值P;
(2)根据水压力值P和厚度值M求取突水系数值Ts,然后综合突水系数值Ts和钻孔单位涌水量值q对测试点进行突水危险性的分类评价,具体为:
a.当0<q≤0.06时,测试点相对安全;
b.当0.06<q≤1:Ts≤0.04时,测试点相对安全;Ts>0.04时,测试点危险;
c.当1<q≤2:Ts≤0.04时,测试点相对安全;0.04<Ts≤0.06时,测试点危险;Ts>0.06时,测试点高危;
d.当2<q≤5:Ts≤0.01时,测试点相对安全;0.01<Ts≤0.06时,测试点危险;Ts>0.06时,测试点高危;
e.当q>5:Ts≤0.01时,测试点相对安全;0.01<Ts≤0.04时,测试点危险;Ts>0.04时,测试点高危;
其中,Ts的单位为MPa/m,q的单位为L/(s·m)。
具体的,对于某一个工作面进行突水危险性评价时,在工作面的范围内和/或外至少取3个测试点进行突水危险性的分类评价,取最高危险等级的测试点的评价结果作为工作面的突水危险性评价结果。
具体的,对某一个矿区进行突水危险性评价时,具体方法为:首先绘制各个测试点的突水系数值Ts等值线图和钻孔单位涌水量值q的等值线图,然后将两个等值线图进行叠加,将叠加后的图根据Ts-q法(即步骤(2))确定矿区的突水危险性评价结果。
有益效果:本发明提供的深矿井煤层开采底板突水危险性评价Ts-q法,弥补了传统突水系数法评价突水危险性未考虑充水含水层富水性大小的不足,突破了深部“高承压—弱富水”水文地质条件因突水系数超限而不能开采的瓶颈;且方法简单实用,便于生产单位普遍推广应用。
附图说明
图1为肥城矿区底板突水中、小突水点Ts-q特征图;
图2为焦作矿区底板突水大、中、小突水点Ts-q特征图;
图3为淄博矿区底板突水中、小突水点Ts-q特征图;
图4为肥城、焦作、淄博3个矿区大、中、小突水点Ts-q特征图;
图4(a)为横坐标(0-20)和纵坐标(0-2.5)时Ts-q特征图
图4(b)为横坐标(0-20)和纵坐标(0-0.2)时Ts-q特征图
图4(c)为横坐标(0-2)和纵坐标(0-0.1)时Ts-q特征图
图4(d)为横坐标(1-5)和纵坐标(1-0.1)时Ts-q特征图
图4(e)为横坐标(0-0.1)和纵坐标(0-0.1)时Ts-q特征图
图5为本发明Ts-q法示意图;
图6为本发明实施示意图。
具体实施方式
下面结合附图对本发明作更进一步的说明。
本发明收集了肥城矿区、焦作矿区和淄博矿区的216个突水点资料,包括突水点水压,相对隔水层厚度和q值;具体情况如下:
1、肥城矿区中等突水点全部位于含水层钻孔单位涌水量q>2L/(s·m)时,而且当突水系数Ts<0.015MPa/m时,中等突水点亦很少。如图1所示。
2、焦作矿区小突水点绝大部分是在q<2L/(s·m)的情况下发生,而当q>2L/(s·m)大突水点数量占大突水点实例总数的100%,中等突水点数量占中等突水点实例总数的95%;当Ts<0.01MPa/m时,没有突水点;小突水点横坐标q值大都分布在小于2L/(s·m)的范围内,并且所有的突水点大都分布在突水系数小于0.1MPa/m的范围内,小突水点和中等突水点的横坐标分界线大致为q=2L/(s·m)的直线,并且当突水系数Ts值小于0.01MPa/m时,大中小突水点分布较少。如图2所示。
3、淄博矿区中小突水点的横坐标分界线大致为直线q=2L/(s·m),而且突水点大都位于突水系数Ts<0.2MPa/m的范围内,小突水点主要集中在q<2L/(s·m)的范围内,并且在突水系数Ts<0.04MPa/m的范围内,小突水点少有分布;在突水系数Ts<0.02MPa/m的范围内,中等突水点没有分布。如图3所示。
4、三个矿区的小突水点主要集中在q<2L/(s·m)的范围内,突水点大都集中于Ts=0.00~0.25MPa/m的范围内;从突水水量来看,横坐标越靠近0点,突水水量越小;当突水系数Ts<0.04MPa/m时,小突水点较少;当q<0.1L/(s·m)时,突水点较少,而当q<0.06L/(s·m)时,无突水点;当Ts<0.04MPa/m,而q>2L/(s·m)时,中等突水点增多,但当Ts<0.01MPa/m时,突水点很少。如图4所示。
基于上述数据,建立一个在直角坐标系中,纵坐标为突水系数值Ts,横坐标为钻孔单位涌水量值q;首先在图中设定一条折线,折线与坐标轴之间区域的突水点突水量<0m3/h,并考虑一定的安全系数,最终得到折线1,折线1与坐标轴之间的区域作为底板突水安全性评价的相对安全区域;中等突水点聚集的范围可以用一条折线大致圈出,并考虑一定的安全系数,作为折线2;折线1与折线2之间的距离作为危险区,即中等突水易发生区域;折线2以外的区域作为高危险区,即大突水及特大突水易发生区域。最终建立如图5所示深矿井煤层开采底板突水危险性评价Ts-q法示意图,具体数据如下:
a.当0<q≤0.06时,测试点相对安全;
b.当0.06<q≤1:Ts≤0.04时,测试点相对安全;Ts>0.04时,测试点危险;
c.当1<q≤2:Ts≤0.04时,测试点相对安全;0.04<Ts≤0.06时,测试点危险;Ts>0.06时,测试点高危;
d.当2<q≤5:Ts≤0.01时,测试点相对安全;0.01<Ts≤0.06时,测试点危险;Ts>0.06时,测试点高危;
e.当q>5:Ts≤0.01时,测试点相对安全;0.01<Ts≤0.04时,测试点危险;Ts>0.04时,测试点高危;
其中,Ts的单位为MPa/m,q的单位为L/(s·m)。
基于上述分析,我们提供的深矿井煤层开采底板突水危险性评价Ts-q法,具体包括如下步骤:
(1)在地面1的测试点钻水文地质钻孔4,通过水文地质钻孔4获得煤层2底界面距离含水层3顶界面的厚度值M、含水层3的水位值以及含水层3的钻孔单位涌水量值q,根据含水层3的水位值计算水压力值P;
(2)根据水压力值P和厚度值M求取突水系数值Ts,然后综合突水系数值Ts和钻孔单位涌水量值q参照图5对测试点进行突水危险性的分类评价。
在实际应用时,首先算取开采或开掘地块的突水系数,并根据底板含水层的富水性指标q,即可在Ts-q法示意图坐标上得到对应的一点,根据此点的位置,可以判断开采或开掘地块的突水危险性。
以上所述仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (3)

  1. 一种深矿井煤层开采底板突水危险性评价Ts-q法,其特征在于:包括如下步骤:
    (1)在地面(1)的测试点钻水文地质钻孔(4),通过水文地质钻孔(4)获得煤层(2)底界面距离含水层(3)顶界面的厚度值M、含水层(3)的水位值以及含水层(3)的钻孔单位涌水量值q,根据含水层(3)的水位值计算水压力值P;
    (2)根据水压力值P和厚度值M求取突水系数值Ts,然后综合突水系数值Ts和钻孔单位涌水量值q对测试点进行突水危险性的分类评价,具体为:
    a.当0<q≤0.06时,测试点相对安全;
    b.当0.06<q≤1:Ts≤0.04时,测试点相对安全;Ts>0.04时,测试点危险;
    c.当1<q≤2:Ts≤0.04时,测试点相对安全;0.04<Ts≤0.06时,测试点危险;Ts>0.06时,测试点高危;
    d.当2<q≤5:Ts≤0.01时,测试点相对安全;0.01<Ts≤0.06时,测试点危险;Ts>0.06时,测试点高危;
    e.当q>5:Ts≤0.01时,测试点相对安全;0.01<Ts≤0.04时,测试点危险;Ts>0.04时,测试点高危;
    其中,Ts的单位为MPa/m,q的单位为L/(s·m)。
  2. 根据权利要求1所述的深矿井煤层开采底板突水危险性评价Ts-q法,其特征在于:对于某一个工作面进行突水危险性评价时,在工作面的范围内和/或外至少取3个测试点进行突水危险性的分类评价,取最高危险等级的测试点的评价结果作为工作面的突水危险性评价结果。
  3. 根据权利要求1所述的深矿井煤层开采底板突水危险性评价Ts-q法,其特征在于:对某一个矿区进行突水危险性评价时,具体方法为:首先绘制各个测试点的突水系数值Ts等值线图和钻孔单位涌水量值q的等值线图,然后将两个等值线图进行叠加,将叠加后的图根据步骤(2)确定矿区的突水危险性评价结果。
PCT/CN2015/081602 2014-12-15 2015-06-17 一种深矿井煤层开采底板突水危险性评价Ts-q法 WO2016095462A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410773039.7 2014-12-15
CN201410773039.7A CN104502995A (zh) 2014-12-15 2014-12-15 一种深矿井煤层开采底板突水危险性评价Ts-q法

Publications (1)

Publication Number Publication Date
WO2016095462A1 true WO2016095462A1 (zh) 2016-06-23

Family

ID=52944406

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/081602 WO2016095462A1 (zh) 2014-12-15 2015-06-17 一种深矿井煤层开采底板突水危险性评价Ts-q法

Country Status (2)

Country Link
CN (1) CN104502995A (zh)
WO (1) WO2016095462A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107656468A (zh) * 2017-08-31 2018-02-02 深圳市盛路物联通讯技术有限公司 一种监控处理方法及相关设备
CN110567854A (zh) * 2019-09-02 2019-12-13 冀中能源峰峰集团有限公司 一种基于矿井闭井后相邻矿井水文地质模型的涌水量预计和计算方法
CN111239840A (zh) * 2020-02-25 2020-06-05 华北科技学院 一种基于高密度电法的底板突水预警方法
CN111797539A (zh) * 2020-07-15 2020-10-20 中煤能源研究院有限责任公司 一种井下调蓄系统冒裂带充水系数确定方法
CN113360592A (zh) * 2021-06-29 2021-09-07 中煤能源研究院有限责任公司 基于微震监测的n00工法煤层顶板突水危险性预警方法
CN113565490A (zh) * 2021-08-31 2021-10-29 中煤科工集团重庆研究院有限公司 一种水害微震预警方法
CN114741924A (zh) * 2022-04-12 2022-07-12 西南交通大学 承压含水层内深埋地下建筑导排水量的工程快速计算方法
CN115479540A (zh) * 2022-09-14 2022-12-16 西南交通大学 一种基于激光扫描的岩溶突水灾害量级评估方法和系统
CN115793090A (zh) * 2023-02-10 2023-03-14 肥城新查庄地质勘查有限公司 一种检验钻孔连通的示踪测试方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104502995A (zh) * 2014-12-15 2015-04-08 中国矿业大学 一种深矿井煤层开采底板突水危险性评价Ts-q法
CN105069689B (zh) * 2015-08-21 2017-03-29 山东科技大学 基于灰色关联与fdahp相结合的煤层底板突水危险性评价方法
CN106703883B (zh) * 2016-12-29 2018-03-13 山东科技大学 一种个性化确定采煤工作面底板突水危险等级的方法
CN107288638B (zh) * 2017-07-31 2019-11-12 中国神华能源股份有限公司 采掘工作面水害评估方法、介质和系统
CN108804600A (zh) * 2018-05-29 2018-11-13 山东省地质矿产勘查开发局第三水文地质工程地质大队(山东省鲁南地质工程勘察院) 一种采煤沉陷区基础数据信息化分析展示方法
CN109917463A (zh) * 2019-04-04 2019-06-21 中国矿业大学(北京) 基于钻孔信息库的注浆工作面底板突水危险性评价体系
CN113255964A (zh) * 2021-04-25 2021-08-13 中国矿业大学(北京) 基于双系数的煤层底板突水预测方法、装置及设备
CN114412567B (zh) * 2021-12-08 2023-03-14 中国矿业大学 一种底板灰岩承压水上原位保水采煤预警方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1572556A (en) * 1976-04-07 1980-07-30 Banyaszati Kutato Intezet Process for protecting underground cavities against water inrush
CN103184871A (zh) * 2013-03-15 2013-07-03 陕西煤业化工技术研究院有限责任公司 一种保护重要水体的煤柱留设开采方法
CN203271727U (zh) * 2013-06-08 2013-11-06 李儒峰 基于光纤传感技术的煤矿井下水文监测系统
CN104502995A (zh) * 2014-12-15 2015-04-08 中国矿业大学 一种深矿井煤层开采底板突水危险性评价Ts-q法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6892815B2 (en) * 2001-03-28 2005-05-17 Larry G. Stolarczyk Coal bed methane borehole pipe liner perforation system
CN100560944C (zh) * 2007-12-27 2009-11-18 淮北矿业(集团)有限责任公司 采煤工作面顶板离层水体防治方法
CN103995947B (zh) * 2013-04-08 2015-06-24 中国矿业大学(北京) 改进的煤层底板突水脆弱性评价方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1572556A (en) * 1976-04-07 1980-07-30 Banyaszati Kutato Intezet Process for protecting underground cavities against water inrush
CN103184871A (zh) * 2013-03-15 2013-07-03 陕西煤业化工技术研究院有限责任公司 一种保护重要水体的煤柱留设开采方法
CN203271727U (zh) * 2013-06-08 2013-11-06 李儒峰 基于光纤传感技术的煤矿井下水文监测系统
CN104502995A (zh) * 2014-12-15 2015-04-08 中国矿业大学 一种深矿井煤层开采底板突水危险性评价Ts-q法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHEN, XIANGLING ET AL.: "Evaluation of the Floor Water Inrush Risk during Mining of Lower Group of Coal Seams in Yanzhou Mining Area", JOURNAL OF SHANDONG UNIVERSITY OF SCIENCE AND TECHNOLOGY ( NATURAL SCIENCE, vol. 27, no. 2, 30 April 2008 (2008-04-30) *
ZHANG, YEZHI ET AL.: "Estimate the fatalness of water bursting in seam floor in the water blocking thickness method and water bursting coefficient method", SHANDONG COAL SCIENCE AND TECHNOLOGY, 2015TH YEAR, 15 October 2011 (2011-10-15) *
ZHAO, ZHENZHONG ET AL.: "Grouting reinforce technology for soft floor of soft roof, coal and floor seam in Zhengzhou Mining Area", COAL SCIENCE AND TECHNOLOGY, vol. 35, no. 5, 31 May 2007 (2007-05-31) *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107656468B (zh) * 2017-08-31 2020-05-19 深圳市盛路物联通讯技术有限公司 基于物联网的河流边境线监控的方法及服务器
CN107656468A (zh) * 2017-08-31 2018-02-02 深圳市盛路物联通讯技术有限公司 一种监控处理方法及相关设备
CN110567854A (zh) * 2019-09-02 2019-12-13 冀中能源峰峰集团有限公司 一种基于矿井闭井后相邻矿井水文地质模型的涌水量预计和计算方法
CN111239840A (zh) * 2020-02-25 2020-06-05 华北科技学院 一种基于高密度电法的底板突水预警方法
CN111797539B (zh) * 2020-07-15 2023-07-14 中煤能源研究院有限责任公司 一种井下调蓄系统冒裂带充水系数确定方法
CN111797539A (zh) * 2020-07-15 2020-10-20 中煤能源研究院有限责任公司 一种井下调蓄系统冒裂带充水系数确定方法
CN113360592A (zh) * 2021-06-29 2021-09-07 中煤能源研究院有限责任公司 基于微震监测的n00工法煤层顶板突水危险性预警方法
CN113360592B (zh) * 2021-06-29 2024-04-02 中煤能源研究院有限责任公司 基于微震监测的n00工法煤层顶板突水危险性预警方法
CN113565490A (zh) * 2021-08-31 2021-10-29 中煤科工集团重庆研究院有限公司 一种水害微震预警方法
CN113565490B (zh) * 2021-08-31 2023-08-08 中煤科工集团重庆研究院有限公司 一种水害微震预警方法
CN114741924A (zh) * 2022-04-12 2022-07-12 西南交通大学 承压含水层内深埋地下建筑导排水量的工程快速计算方法
CN115479540A (zh) * 2022-09-14 2022-12-16 西南交通大学 一种基于激光扫描的岩溶突水灾害量级评估方法和系统
CN115793090A (zh) * 2023-02-10 2023-03-14 肥城新查庄地质勘查有限公司 一种检验钻孔连通的示踪测试方法

Also Published As

Publication number Publication date
CN104502995A (zh) 2015-04-08

Similar Documents

Publication Publication Date Title
WO2016095462A1 (zh) 一种深矿井煤层开采底板突水危险性评价Ts-q法
CN104653161B (zh) 煤矿井下脉冲水力割缝‑压裂一体化增透抽采装置及方法
RU2671502C2 (ru) Индексы структурного различия верхних зон заполнения ордовикского известняка и способ их определения
AU2015358166B2 (en) Water-preserving mining method for close-distance coal seam group
CN109767136A (zh) 煤层顶板含水层涌突水危险性评价与预测四双工作法
CN106528707A (zh) 一种煤层顶板砂岩含水层富水性评价方法
CN109117586B (zh) 一种顺层岩质边坡三维地质模型建立及稳定性评价方法
WO2016090882A1 (zh) 一种黄土沟壑径流下采动水害类型划分方法
CN104405372A (zh) 一种基于高位钻孔流量的测试采场覆岩竖三带高度方法
CN104863562A (zh) 一种碎软低渗煤层水平井分段压裂工艺
CN109446602B (zh) 一种地面垂直钻孔抽采特厚煤层瓦斯的数值试验方法
CN104594870A (zh) 一种压裂增产方法
CN105134286A (zh) L型井采空区瓦斯抽采方法
CN103485773B (zh) 一种多分支水平井分支参数的确定方法
CN108180002B (zh) 一种煤矿井下煤层水力压-割耦合增透方法
CN103184871A (zh) 一种保护重要水体的煤柱留设开采方法
CN103225499A (zh) 一种油田注水井工况分析系统及其方法
CN105019935A (zh) 一种井上井下联合卸压消突煤层快速掘巷法
CN103982137A (zh) 一种煤矿井下水力压裂钻孔方位角设计方法
CN104453983B (zh) 一种急倾斜煤层穿层钻孔上压下泄增透与抽采方法
CN109958434A (zh) 钻孔定压力非稳定流钻孔水文地质试验方法
Dewu et al. Water-reducing mining technology for fully-mechanized top-coal caving mining in thick coal seams under ultra-thick sandstone aquifer
CN106940364B (zh) 煤矿采空区架空输电线路标准深厚比的计算方法及装置
CN108533223A (zh) 一种井下采空区残留煤层气抽采利用系统
CN209277931U (zh) 一种煤矿井下本煤层瓦斯抽采钻孔一体化装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15868974

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15868974

Country of ref document: EP

Kind code of ref document: A1