WO2016095425A1 - 显示装置以及显示装置的制备方法 - Google Patents

显示装置以及显示装置的制备方法 Download PDF

Info

Publication number
WO2016095425A1
WO2016095425A1 PCT/CN2015/079332 CN2015079332W WO2016095425A1 WO 2016095425 A1 WO2016095425 A1 WO 2016095425A1 CN 2015079332 W CN2015079332 W CN 2015079332W WO 2016095425 A1 WO2016095425 A1 WO 2016095425A1
Authority
WO
WIPO (PCT)
Prior art keywords
display
groove
substrate
sub
display device
Prior art date
Application number
PCT/CN2015/079332
Other languages
English (en)
French (fr)
Inventor
李方杰
王振伟
张莹
朱红
于洪俊
Original Assignee
京东方科技集团股份有限公司
北京京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/892,776 priority Critical patent/US20160353091A1/en
Publication of WO2016095425A1 publication Critical patent/WO2016095425A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/31Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using parallax barriers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/34Stereoscopes providing a stereoscopic pair of separated images corresponding to parallactically displaced views of the same object, e.g. 3D slide viewers
    • G02B30/36Stereoscopes providing a stereoscopic pair of separated images corresponding to parallactically displaced views of the same object, e.g. 3D slide viewers using refractive optical elements, e.g. prisms, in the optical path between the images and the observer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/04Prisms
    • G02B5/045Prism arrays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/324Colour aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/349Multi-view displays for displaying three or more geometrical viewpoints without viewer tracking
    • H04N13/354Multi-view displays for displaying three or more geometrical viewpoints without viewer tracking for displaying sequentially
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/32Holograms used as optical elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2213/00Details of stereoscopic systems
    • H04N2213/001Constructional or mechanical details

Definitions

  • the present invention belongs to the field of display technologies, and in particular, to a display device and a method for preparing the display device.
  • 3D display technology has become a development trend in the field of display technology.
  • the 3D display technology is generally implemented by the binocular parallax principle, that is, two parallax images (left parallax image and right parallax image, respectively) are displayed on a two-dimensional display screen, and then the viewer's left eye is only used by a certain technique. You can see the left parallax image on the display, and the right eye can only see the right parallax image on the display.
  • 3D display technologies mainly include polarized light 3D display technology, shutter 3D display technology and color separation 3D display technology. These 3D display technologies all have certain disadvantages. Among them, the polarized light 3D display technology generally adopts the method of dividing the space, which causes loss of resolution, reduces the effect of 3D display, affects the viewing angle, and is prone to crosstalk (ie, ghosting). Phenomenon); Shutter 3D display technology generally adopts the method of splitting time, which is easy to cause picture flicker and crosstalk; color separation 3D display technology utilizes the complementary color principle and filters out most of the colors, making the picture color severely distorted and the brightness is seriously degraded. Therefore, the effect of the 3D display is greatly reduced.
  • the human eye needs to wear the matching glasses when viewing the screen, which brings a burden to the eyes and reduces the viewing comfort. Therefore, the 3D display technology without glasses is required, that is, the naked-eye 3D display technology has emerged as the times require, and has attracted much attention.
  • One of the technologies for implementing naked-eye 3D display is a light barrier type naked-eye 3D display technology using a grating.
  • the defect of the naked-eye 3D display by the light barrier type technology of the grating is that the grating has a diffractive effect on the light, and the grating cannot Accurately setting the light in a certain direction will cause the light to diverge in the picture, causing the left and right eye images to interfere with each other, resulting in blurring of the 3D image seen by the human eye.
  • the 3D realized by the light barrier technology of the grating The image has only one viewpoint, which can only satisfy one person to watch at a certain position, and the position of the human eye is slightly deviated, so that the 3D picture cannot be viewed. Since the light barrier type naked-eye 3D display technology using a grating has inconvenience that it cannot be viewed by many people at the same time, it is not commercially available and popularized.
  • the screen display device has become a technical problem to be solved at present.
  • the technical problem to be solved by the present invention is to provide a display device and a method for preparing the display device according to the above-mentioned deficiencies in the prior art, and the display device and the display device prepared by the preparation method can realize multi-view and clear The naked eye 3D display; at the same time, it has the advantages of simple structure, light weight and thinness.
  • a technical solution adopted to solve the technical problem of the present invention is: a display device comprising a display substrate having a plurality of sub-pixels and a light splitting unit disposed on a light exiting side of the display substrate, the light splitting unit comprising a substrate, the lining A plurality of grooves are formed on the bottom, and the sides of each of the grooves are flat, and the plurality of grooves are the same as the number of the plurality of sub-pixels and the positions are in one-to-one correspondence.
  • the substrate is made of a transparent material
  • the groove is formed on a side surface of the substrate facing away from the display substrate, and an opening direction of the groove faces away from the display substrate.
  • the groove is a positive N pyramid shape having a bottom surface of the groove, and the bottom surface of the positive N pyramid has the same shape as the sub-pixel corresponding to the groove, and the positive N pyramid
  • the orthographic projection of the apex of the body-shaped groove on the display substrate is located at a center point of the sub-pixel corresponding to the groove, where: 3 ⁇ N ⁇ 8, and N is a positive integer.
  • each of the sub-pixels has a positive N-gon shape
  • the sub-pixels having different display colors are periodically cyclically arranged, and the plurality of sub-pixels having different display colors constitute one pixel, and the shape of the pixels formed is a rectangle.
  • the shape of the sub-pixel is square
  • the groove is in the shape of a regular quadrangular pyramid
  • the apex of the groove of the shape of a regular quadrangle is located on the center line of the regular square pyramid.
  • the thickness of the substrate is greater than the height of the groove, the thickness of the substrate being 0.7-0.9 times the side length of the sub-pixel of a square, the groove of the regular quadrangular pyramid shape
  • the side of the sub-pixel having a height of square is 0.6-0.8 times longer.
  • a holographic dynamic display antireflection film is disposed on a side of each of the positive N-pyramid shaped grooves, and the holographic dynamic display antireflection film is made of a non-memory ceramic.
  • the holographic dynamic display antireflection film is made of lead zirconate titanate piezoelectric ceramic.
  • the display substrate is a liquid crystal display panel or an organic electroluminescent diode Display panel.
  • a method for preparing a display device comprising the steps of:
  • the light splitting unit comprises a substrate, the substrate is provided with a plurality of grooves, and the sides of each groove are flat;
  • the groove in the beam splitting unit is in the shape of a positive N pyramid with the opening of the groove as a bottom surface; the shape of the sub-pixel in the display substrate is a positive N-gon, wherein: 3 ⁇ N ⁇ 8, and N is a positive integer.
  • the substrate is made of a transparent material, and the groove is opened on a side surface of the substrate facing away from the display substrate by a forging process.
  • the light splitting unit is integrated with the display substrate by a bonding process such that an opening direction of the groove faces away from the display substrate, and an apex of the groove is on the display substrate
  • the orthographic projection is located at the center point of the sub-pixel corresponding to the groove.
  • the method further comprises: forming a holographic dynamic display antireflection film on the side surface of the groove by a coating method.
  • the holographic dynamic display antireflection film is made of a non-memory ceramic.
  • the invention has the beneficial effects that the display device refracts the light emitted from the sub-pixels in the display substrate by adding a light splitting unit on the light exiting side of the display substrate and utilizing the side surface of the micro-n-pyramid-shaped groove in the light splitting unit. In each direction, a multi-view naked-eye 3D display can be realized; the display device also has the advantages of simple structure, easy realization of lightening and thinning, and convenient carrying;
  • the above display device can be efficiently and conveniently prepared by the preparation method of the display device.
  • Embodiment 1 is a side view showing the structure of a display device in Embodiment 1 of the present invention.
  • Figure 2 is a plan view of the light splitting unit shown in Figure 1;
  • Figure 3 is a perspective view showing a partial structure of the display substrate and the light splitting unit of Figure 1;
  • FIG. 4 is a schematic diagram of an optical path of a display device according to Embodiment 1 of the present invention.
  • the embodiment provides a display device capable of enabling a user to view a clear 3D picture without wearing glasses and enabling the user to view the 3D picture from multiple viewpoints.
  • the display device includes a display substrate 1 having a plurality of sub-pixels 11, and a spectroscopic unit 2 disposed on a light-emitting side of the display substrate 1.
  • the light splitting unit 2 includes a substrate 21 having a plurality of grooves 22 defined therein, each of the grooves 22 having a plurality of planar sides, the grooves 22 having the same number and positions of the sub-pixels 11 in one-to-one correspondence.
  • the groove 22 can disperse light emitted from the corresponding sub-pixel 11 and transmitted through the substrate 21 to be incident on a plurality of sides of the groove 22, from different sub-pixels included in one pixel to respective concaves
  • the light on the same side of the groove 22 is refracted and condensed on the side of the spectroscopic unit 2 facing away from the display substrate 1 into a separate image of the pixel, and a plurality of separated images which are respectively condensed by the respective side surfaces are superimposed to form a 3D image in the human eye.
  • the same side refers to the same side, with each groove having four sides as an example. Assuming that the four sides are facing east, west, south, and north, respectively, the different grooves are oriented. The sides of the east are the same side, and so on.
  • the substrate 21 may be a transparent substrate, and the recess 22 is disposed on a side surface of the substrate 21 facing away from the display substrate 1, and the opening direction of the recess 22 faces away from the display substrate 1.
  • the groove 22 is in the shape of a positive N pyramid with the opening of the groove as a bottom surface, and the opening position of the groove 22 of each positive N-pyramid shape corresponds to the position of a corresponding sub-pixel 11 and the shape of the opening
  • the apex of each positive N-pyramid shaped groove 22 is on the display base
  • the orthographic projection on the board 1 is located at the center point of the sub-pixel 11 corresponding to the groove 22, where: 3 ⁇ N ⁇ 8, and N is a positive integer.
  • the spectroscopic unit 2 in which the spectroscopic, positive N-pyramid-shaped recess 22 is provided in one-to-one correspondence with the sub-pixel 11 is formed by a transparent thin glass plate or a plastic plate (relative to the glass plate, the plastic plate) Can do it thinner).
  • Each sub-pixel 11 corresponds to a miniature positive N-pyramid shaped recess 22.
  • miniature because it has a minute structure corresponding to the size of the sub-pixel 11, and is usually in the order of ⁇ m (generally, the size of the groove N of the N-pyramid shape of a small-sized display device such as a mobile phone is only a dozen.
  • the size of the positive N-pyramid-shaped recess 22 of a micron-sized display device such as a television is several hundred micrometers.
  • Each of the sub-pixels 11 corresponds to a micro-n-pyramid-shaped recess 22, since the positive-N pyramid-shaped recess 22 has a tip of a positive N-pyramid (ie, a recess 22 of a non-N-pyramid shape is not to be formed)
  • the tip is flattened to form a positive N-pyramid body), and it is ensured that all of the effective light emitted from each of the sub-pixels 11 can be incident on each side of the groove N of the N-pyramid shape, thereby ensuring full utilization. All of the effective light emitted by the sub-pixel 11 can minimize the loss of light and ensure the brightness of the display device.
  • the N sides in the groove N of the positive N pyramid shape have the same shape and optical properties.
  • the number of sides of the micro-n-N pyramid shape groove 22 in this embodiment may take a plurality of values, for example, 3 ⁇ N ⁇ 8. Within this range of values, the separated images are clearer and are less prone to ghosting.
  • the sub-pixel 11 is generally formed in a rectangular shape on a rectangular display substrate 1. Therefore, the shape of the sub-pixel 11 is set to a square in this embodiment, so that the process is not only mature and reliable. Moreover, the utilization ratio of the display substrate 1 is also improved.
  • the shape of the groove 22 is set to a regular quadrangular pyramid shape, in other words, N is preferably 4.
  • N is preferably 4.
  • the sub-pixel 11 is set to other shapes (such as a triangle, a pentagon, etc.)
  • a holographic dynamic display antireflection film is disposed on the side of each of the positive N-pyramid shaped grooves 22.
  • the holographic dynamic display antireflection film can be made of a non-memory ceramic.
  • the holographic dynamic display antireflection film may be made of lead zirconate titanate piezoelectric ceramic (PZT for short) and formed on the side of the groove 22 of the positive N pyramid shape by coating.
  • anti-memory ceramic anti-reflection films can also be used instead of other anti-memory ceramic anti-reflection films.
  • ordinary anti-reflection films can be used (only the brightness enhancement effect is slightly lower than the holographic dynamic display increase).
  • the permeable membrane is not limited as long as it can ensure the use of the effective light emitted from the sub-pixel 11 to a large extent.
  • each sub-pixel 11 has a positive N-shape; the sub-pixels 11 having different display colors are periodically cyclically arranged, and three or four sub-pixels 11 having different display colors constitute one pixel, and the pixels are formed.
  • the shape is a rectangle.
  • the adjacent three sub-pixels 11 respectively have different display colors (usually three primary colors of red (R), green (G), and blue (B)), and the three sub-pixels 11 having different display colors constitute one Pixels to achieve full color display.
  • one pixel may also include four adjacent sub-pixels 11 and have different display colors (for example, red (R), green (G), blue (B), and white (B), etc.).
  • the shape of the sub-pixel 11 is square, and accordingly, as shown in FIG. 2, the groove 22 has a regular quadrangular pyramid shape, and the apex of the groove 45 of the regular quadrangular pyramid shape is located in the regular square pyramid.
  • the four sides of the groove 45 of the square pyramid shape function as a separate image. That is, the shape of the opening of the groove 22 having a regular quadrangular pyramid shape is a square, and each side shape is an isosceles triangle.
  • the shape of the sub-pixel 11 is a rectangle, and in the display device according to the present embodiment, the cross-section of the sub-pixel 11 can be based on the sub-pixel arrangement of the existing display substrate 1. The shape is changed from a rectangle to a square, and then a micro-square pyramid-shaped recess 22 is formed in a region corresponding to each sub-pixel 11 in the spectroscopic unit 2.
  • the apex of the groove 45 of the regular quadrangular pyramid shape is closer to the display substrate 1 with respect to the opening (i.e., the opening of the groove 22 of the positive N-pyramid shape is away from the display substrate 1, and the groove of the positive N-pyramid shape
  • the apex of 22 is close to the display substrate 1), and light emitted from the sub-pixel 11 in the display substrate 1 is transmitted through the solid portion of the substrate 21 and then incident on the groove 22 of the regular quadrangular pyramid shape.
  • the respective sides are refracted by the respective sides of the groove 45 of the regular quadrangular pyramid shape, and finally are ejected from the opening of the groove 22 of the regular quadrangular pyramid shape.
  • the plurality of grooves corresponding to the plurality of sub-pixels included in one pixel converge the emitted refracted light into the same number of separated images as the side of the groove 45 of the regular quadrangular pyramid shape (four separate images are formed here),
  • the separated images are superimposed to form a 3D picture that can be viewed at a plurality of viewpoints.
  • the groove 22 has the shape of a positive N pyramid, and the thickness of the substrate 21 should be greater than the height of the groove 22.
  • the thickness of the substrate 21 is 0.7 of the side length of the square sub-pixel 11.
  • the height of the groove 22 of the square pyramid shape is -0.9 times 0.6-0.8 times the length of the side of the square sub-pixel 11.
  • the opening size of the micro-square pyramid-shaped recess 22 may be the same as the size of the sub-pixel 11, and it is further preferable that the thickness of the substrate 21 is 0.8 times the side length of the square sub-pixel 11, while the micro-square pyramid shape is concave.
  • the height of the groove 22 is equal to 0.7 times the side length of the square sub-pixel 11.
  • the groove N of the N-pyramid shape in the substrate 21 is formed by a forging process.
  • a glass plate is selected as the substrate 21, and a micro-square pyramid-shaped groove 22 corresponding to the sub-pixel 11 is forged on the glass plate by a precision processing instrument.
  • the thickness of the glass plate is not thinner than the side length of the square sub-pixel 11. 0.7 times.
  • the light splitting unit 2 is integrally formed with the display substrate 1 by a bonding process.
  • the light splitting unit 2 and the display substrate 1 can be directly bonded together by a bonding process for touch screen bonding in the prior art.
  • the display substrate 1 may be a liquid crystal display panel (LCD) or an organic light-emitting diode display panel (OLED).
  • LCD liquid crystal display panel
  • OLED organic light-emitting diode display panel
  • a naked-eye 3D display device is formed by directly bonding the light splitting unit 2 to the light-emitting side of the display substrate 1.
  • the present invention does not need to change the production process of the existing display substrate 1, but only needs to modify the shape of the sub-pixel 11 so that it can be directly produced by the existing production process.
  • the production cost of the display substrate 1 itself is not additionally increased, and thus the overall cost of the formed display device is compared with the prior art. There is no significant increase in display devices.
  • the light splitting effect of the groove of the regular quadrangular pyramid shape on the light ray is that light refracted from the same side of the plurality of square pyramid-shaped grooves 22 converges to form corresponding pixels.
  • a separate image is then superimposed into a 3D picture in the human eye in a separate image in which the separated image and the light refracted from the other three sides are converged. That is, it is assumed that there are two grooves 45 of a regular quadrangular pyramid shape, one of which has four sides A1, B1, C1, and D1, and the other sides of the other groove are A2, B2, C2, and D2, respectively.
  • the same side of the different grooves are named after the same English letters, then the light refracted from A1 and A2 converges into a separate image, and the light refracted from B1 and B2 converges into a second separated image, from C1 and The light refracted by C2 converges into a third separated image, and the light refracted from D1 and D2 converges into a fourth separated image, and then the four separated images are incident on the human eye from different directions and angles, and are superimposed into a 3D picture.
  • each micro-square pyramid-shaped recess 22 in FIG. 4 may be defined as A side, B side, C side, and D side, respectively (FIG. 4 Not specifically shown, can be arbitrarily defined).
  • a pixel includes three sub-pixels, which are respectively an R sub-pixel, a G sub-pixel, and a B sub-pixel, and each sub-pixel corresponds to a groove 45 of a regular quadrangular pyramid shape, and the three sub-pixels can be respectively corresponding.
  • the four sides of the three regular quadrangular pyramid shaped grooves 22 are understood to be the RA side, the RB side, the RC side, the RD side, respectively.
  • the optical path of any light in the optical path diagram includes three straight lines, and the direction of the arrow is its propagation direction.
  • the first straight line is a solid line, which is emitted from the sub-pixels in the display substrate 1 and passes through the transparent glass of the substrate 21. Partially transmitted to the side of the groove 22 of the regular quadrangular pyramid shape;
  • the second straight line is a broken line which is refracted from the side of the groove 45 of the regular quadrangular pyramid shape, on the side of the groove 22 of the shape of the square pyramid Propagation;
  • the third straight line is a solid line that emerges from the opening of the groove 22 in the shape of a square pyramid.
  • the R sub-pixel, the G sub-pixel, and the B sub-pixel are sequentially adjacent, and three positive quadrilateral-shaped grooves respectively corresponding to the three sub-pixels are also adjacent to each other, assuming each of the above.
  • the A side of the groove is disposed opposite to the C side, and the B side and the D side are also disposed opposite each other.
  • light emitted from the sub-pixel 11 in the display substrate 1 is directed to light incident on the A side of the groove 22 of the regular quadrangular pyramid shape corresponding to the sub-pixel 11.
  • the image can be recorded as A'; the light entering the B, C, and D sides is also the same
  • a 3D image is formed in the human eye.
  • the light emitted from the sub-pixel 11 of the display substrate 1 can reach the human eye at a plurality of viewpoints, so that the 3D picture displayed by the display substrate 1 can be seen in various directions, so that the display device has multiple viewing angles while A larger viewing angle can also be guaranteed.
  • the RA side, the RB side, the RC side, and the RD side all follow the above-described imaging rule, thereby forming a full-color 3D picture.
  • the display process of the display device in this embodiment is: after the display device is turned on (lighting of the liquid crystal display panel or illumination of the organic electroluminescent diode), light emitted from each sub-pixel 11 on the display substrate 1 can be incident on and The sub-pixels 11 correspond to respective sides of the micro-n-N pyramid-shaped recesses 22, and can be refracted to the respective directions by the respective sides.
  • the human eye views the display image before displaying the substrate 1, most of the light in the respective directions emitted from the corresponding sub-pixels refracted by the same side surface of each of the micro-n-pyramid-shaped grooves 22 can enter the human eye.
  • the screen displayed on the display substrate 1 is formed.
  • the other N-1 sides can also form a display screen at the human eye, and the display screens formed by the N sides at the human eye can be added to the human eye.
  • the display device can have many viewing angles, and can be used by many people to view 3D pictures (including animated videos) with naked eyes at the same time.
  • the display device of this embodiment by adding a light splitting unit to the light exiting side of the display substrate, the light emitted from the corresponding sub-pixel in the display substrate is refracted by the side surface of the micro-n-pyramid-shaped groove in the light splitting unit.
  • the naked-eye 3D display of multi-viewpoint is realized, which conforms to people's normal viewing habits; at the same time, the brightness of the displayed picture is ensured by adding an anti-reflection film on the side of the micro-n-N pyramid shape groove.
  • the display device has the advantages of simple structure, easy realization of lightness and thinness, and is easy to carry, and can be applied to mobile display devices such as mobile phones, computers, and car displays.
  • the embodiment provides a method for preparing a display device, and the method for preparing the display device is suitable for preparing the display device provided in Embodiment 1.
  • a method for preparing a display device comprising the steps of:
  • Step S1) forming a display substrate, the display substrate having a plurality of sub-pixels.
  • each sub-pixel is a positive N-gon, where: 3 ⁇ N ⁇ 8, and N is a positive integer; sub-pixels having different display colors are periodically cyclically arranged, three or four different displays The sub-pixels of the color constitute one pixel, and the pixels formed are rectangular in shape.
  • the display substrate may be a liquid crystal display panel (LCD) or an organic light-emitting diode display panel (OLED).
  • LCD liquid crystal display panel
  • OLED organic light-emitting diode display panel
  • the substrate is made of a transparent material
  • the number of the grooves is the same as the number of sub-pixels
  • the groove is a positive N-pyramid shape
  • the opening shape of the groove of the positive N-pyramid shape is the same as the shape of the sub-pixel, concave
  • the grooves are formed on one side surface of the substrate by a forging process.
  • the forming unit is formed by the forging process, which can effectively ensure the matching precision of the groove in the beam splitting unit and the sub-pixel in the display substrate, and can ensure a high groove yield.
  • the holographic dynamic display antireflection film is made of a non-memory ceramic, for example, a lead zirconate titanate piezoelectric ceramic.
  • the sub-pixel has a square shape and the groove has a regular quadrangular pyramid shape, and the apex of the positive quadrangular pyramid-shaped groove is located on the center line of the regular square pyramid.
  • step S1 the order in which the display substrate is formed in step S1) and the step of forming the spectroscopic unit in step S2) is not limited, and the production can be flexibly arranged according to equipment conditions or process conditions in the actual preparation process.
  • Step S3) integrating the display substrate and the light splitting unit such that the light splitting unit is located on the light exiting side of the display substrate, and the position of the groove is in one-to-one correspondence with the position of the sub-pixel.
  • the light splitting unit is integrated with the display substrate by a bonding process.
  • the light splitting unit and the display substrate can be directly attached to the touch screen in the prior art. together.
  • the opening direction of the groove faces away from the display substrate, and the orthographic projection of the apex of the groove on the display substrate is located at a center point of the sub-pixel corresponding to the groove.
  • the display device of the first embodiment can be prepared efficiently and conveniently.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种显示装置以及一种显示装置的制备方法。该显示装置包括具有多个亚像素(11)的显示基板(1),以及设置在所述显示基板(1)的出光侧的分光单元(2),所述分光单元(2)包括衬底(21),所述衬底(21)上开设有多个凹槽(22),每个凹槽(22)的侧面均为平面,所述多个凹槽(22)与所述多个亚像素(11)的数量相同且位置一一对应。该显示装置可以实现多视点的裸眼3D显示;同时,还具有结构简单,易于实现轻小化以及薄型化的优点。

Description

显示装置以及显示装置的制备方法 技术领域
本发明属于显示技术领域,具体涉及一种显示装置以及一种显示装置的制备方法。
背景技术
目前,3D显示技术已成为显示技术领域的发展趋势。3D显示技术一般采用双目视差原理来实现,即,将两幅视差图像(分别为左视差图像和右视差图像)显示在二维显示屏上,然后利用一定的技术使观看者的左眼只能看到显示屏上的左视差图像,右眼只能看到显示屏上的右视差图像。
现有的3D显示技术主要包括偏振光3D显示技术、快门3D显示技术和分色3D显示技术。这些3D显示技术均存在一定不足,其中,偏振光3D显示技术一般采用分割空间的方法,因而会造成分辨率损失,降低了3D显示的效果,视角也受到影响,且易产生串扰(即重影现象);快门3D显示技术一般采用分割时间的方法,容易引起画面闪烁和产生串扰;分色3D显示技术利用互补色原理并滤掉了大部分颜色,使得画面颜色严重失真,亮度也严重下降,因而大大降低了3D显示的效果。
采用上述3D显示技术形成的显示装置,人眼在观看画面时均需配戴与之相适配的眼镜,给眼睛带来负担且降低了观看舒适感。因此,不需配戴眼镜的3D显示技术,即裸眼3D显示技术应运而生,并备受关注。其中一种实现裸眼3D显示的技术是利用光栅的光屏障式裸眼3D显示技术,这种利用光栅的光屏障式技术实现裸眼3D显示的缺陷在于:光栅对光线有衍射作用,并且光栅也不能将光线准确设定在一定的方向上,会导致画面存在光线发散现象,使左、右眼图像互相干扰,导致人眼看到的3D图像模糊;同时,这种利用光栅的光屏障式技术实现的3D图像只有一个视点,只能满足一个人在某一个特定的位置观看,人眼位置稍微偏离,就不能观看到3D画面。由于利用光栅的光屏障式裸眼3D显示技术存在不能供多人同时观看的不便,因此未在商业上获得应用和推广。
因此,设计一种不需配戴眼镜即可观看的且具有多视点的清晰的3D 画面显示装置成为目前亟待解决的技术问题。
发明内容
本发明所要解决的技术问题是针对现有技术中存在的上述不足,提供一种显示装置以及一种显示装置的制备方法,该显示装置以及由该制备方法制备的显示装置可以实现多视点、清晰的裸眼3D显示;同时,还具有结构简单、轻小化以及薄型化的优点。
解决本发明技术问题所采用的技术方案是:一种显示装置包括具有多个亚像素的显示基板以及设置在所述显示基板的出光侧的分光单元,所述分光单元包括衬底,所述衬底上开设有多个凹槽,每个凹槽的侧面均为平面,所述多个凹槽与所述多个亚像素的数量相同且位置一一对应。
优选的是,所述衬底采用透明材料制成,所述凹槽开设于所述衬底背离所述显示基板的一侧表面上,且所述凹槽的开口方向背离所述显示基板。
优选的是,所述凹槽为以凹槽的开口为底面的正N棱锥体形状,正N棱锥体的所述底面的形状与该凹槽对应的所述亚像素的形状相同,正N棱锥体形状的凹槽的顶点在所述显示基板上的正投影位于与该凹槽对应的亚像素的中心点,其中:3≤N≤8,且N为正整数。
优选的是,每一所述亚像素的形状为正N边形;
具有不同显示颜色的所述亚像素周期性循环排列,多个具有不同显示颜色的所述亚像素构成一个像素,且构成的所述像素的形状为长方形。
优选的是,所述亚像素的形状为正方形,所述凹槽为正四棱锥体形状,且正四棱锥体形状的凹槽的顶点位于该正四棱锥体的中心线上。
优选的是,所述衬底的厚度大于所述凹槽的高度,所述衬底的厚度为正方形的所述亚像素的边长的0.7-0.9倍,正四棱锥体形状的所述凹槽的高度为正方形的所述亚像素的边长的0.6-0.8倍。
优选的是,每一正N棱锥体形状的所述凹槽的侧面上均设置有全息动态显示增透膜,所述全息动态显示增透膜由非记忆性陶瓷制成。
优选的是,所述全息动态显示增透膜由锆钛酸铅系压电陶瓷制成。
优选的是,所述显示基板为液晶显示面板或有机电致发光二极管显 示面板。
一种显示装置的制备方法,包括步骤:
形成显示基板,所述显示基板具有多个亚像素;
形成分光单元,所述分光单元包括衬底,所述衬底上开设有多个凹槽,每个凹槽的侧面均为平面;
将所述显示基板和所述分光单元形成一体,以使得所述分光单元位于所述显示基板的出光侧,并使得所述多个凹槽与所述多个亚像素的数量相同且位置一一对应。
优选的是,所述分光单元中的所述凹槽为以凹槽的开口为底面的正N棱锥体形状;所述显示基板中的所述亚像素的形状为正N边形,其中:3≤N≤8,且N为正整数。
优选的是,所述衬底采用透明材料制成,通过锻造工艺将所述凹槽开设于所述衬底背离所述显示基板的一侧表面上。
优选的是,通过贴合工艺将所述分光单元与所述显示基板形成一体,以使得所述凹槽的开口方向背离所述显示基板,且所述凹槽的顶点在所述显示基板上的正投影位于与该凹槽对应的亚像素的中心点。
优选的是,在将所述显示基板和所述分光单元形成一体之前,还进一步包括:通过镀膜方式在所述凹槽的侧面上形成全息动态显示增透膜。
优选的是,所述全息动态显示增透膜由非记忆性陶瓷制成。
本发明的有益效果是:该显示装置通过在显示基板的出光侧增加分光单元,利用分光单元中的微型正N棱锥体形状的凹槽的侧面,将从显示基板中的亚像素射出的光线折射到各个方向,从而可以实现多视点的裸眼3D显示;所述显示装置同时还具有结构简单,易于实现轻小化以及薄型化,以便于携带的优点;
相应的,采用显示装置的制备方法能高效、方便地制备出上述显示装置。
附图说明
图1为示出本发明实施例1中显示装置的结构的侧视图;
图2为图1所示分光单元的俯视图;
图3为图1中显示基板与分光单元的局部结构透视图;
图4为本发明实施例1中显示装置的光路示意图;
附图标记中:
1-显示基板;11-亚像素;
2-分光单元;21-衬底;22-凹槽。
具体实施方式
为使本领域技术人员更好地理解本发明的技术方案,下面结合附图和具体实施方式对本发明显示装置以及显示装置的制备方法作进一步详细描述。
实施例1:
本实施例提供一种显示装置,该显示装置能够使用户不需配戴眼镜即可观看到清晰的3D画面,且使用户能够从多视点观看所述3D画面。
如图1至图3所示,该显示装置包括具有多个亚像素11的显示基板1(Panel),以及设置在显示基板1的出光侧的分光单元2。分光单元2包括衬底21,衬底21上开设有多个凹槽22,每个凹槽22可以具有多个平面侧面,凹槽22与亚像素11的数量相同且位置一一对应。凹槽22能将从对应亚像素11发出并经过衬底21的透射而入射至其上的光分散至该凹槽22的多个侧面,从一个像素所包含的不同亚像素入射至各自对应凹槽22的同一侧面的光经过折射后在分光单元2背离显示基板1的一侧汇聚成该像素的一个分离图像,分别由各个侧面折射后汇聚成的多个分离图像在人眼中叠加形成3D画面。在以上描述中,同一侧面指的是朝向相同的侧面,以每个凹槽均具有四个侧面为例,假设这四个侧面分别朝向东、西、南、北,则不同凹槽的都朝向东的侧面为同一侧面,以此类推。
其中,衬底21可采用透明的衬底,凹槽22设于衬底21背离显示基板1的一侧表面上,且凹槽22的开口方向背离显示基板1。具体的,凹槽22为以凹槽的开口为底面的正N棱锥体形状,每一正N棱锥体形状的凹槽22的开口位置均与一个对应亚像素11的位置相对应、且开口形状与该对应亚像素11的形状相同,每一正N棱锥体形状的凹槽22的顶点在显示基 板1上的正投影位于与该凹槽22对应的亚像素11的中心点,其中:3≤N≤8,且N为正整数。
简单地讲,开设有与亚像素11一一对应的、分光用的、正N棱锥体形状的凹槽22的分光单元2采用透明的薄玻璃板或塑料板构成(相对于玻璃板,塑料板能做得更薄)。每个亚像素11都对应一个微型的正N棱锥体形状的凹槽22。这里,称其“微型”是由于其具有与亚像素11的尺寸对应的微小结构,通常为μm级(通常,手机等小尺寸显示装置的正N棱锥体形状的凹槽22的尺寸只有十几个微米,电视等大尺寸显示装置的正N棱锥体形状的凹槽22的尺寸则有几百个微米)。每一亚像素11均对应一个微型正N棱锥体形状的凹槽22,由于正N棱锥体形状的凹槽22具有正N棱锥体的尖端(即,不将正N棱锥体形状的凹槽22的尖端削平而使其形成正N棱锥台体),可以保证从每一个亚像素11射出的所有有效光线都能入射到正N棱锥体形状的凹槽22的各个侧面上,从而保证充分利用从亚像素11射出的所有的有效光线,因而能在最大程度上减少光线的损失,保证显示装置的亮度。
这里应该理解的是,正N棱锥体形状的凹槽22中的N个侧面具有相同的形状和光学性质。理论上,本实施例中微型正N棱锥体形状的凹槽22的侧面数量可以取多个值,例如为:3≤N≤8。在该取值范围内,分离图像较为清晰,不容易产生重影。但考虑目前实际的显示器件的生产工艺中,亚像素11在一个矩形的显示基板1上通常做成矩形形状,因此本实施例中将亚像素11的形状设置为正方形,这样设置不仅工艺成熟可靠,而且还提高了显示基板1的利用率。相应地,凹槽22的形状设置为正四棱锥体形状,换言之,N优选取4。当将亚像素11设置为其它形状(比如三角形、五边形等)时,通常需连带考虑与亚像素11对应的区域内的各层布线排布,以使显示基板1达到较好的利用率。由于形成3D画面至少需要两个方向的分离图像叠加,因此,从亮度方面考虑,N越小,形成的3D画面越清晰、3D画面的亮度也越高;N越大,形成的3D画面的亮度就越低。
本实施例的显示装置中,为了获得更好的画面亮度(至少保证正常显示的亮度)和给画面显示提供依附介质(其作用类似于投影仪的投影 布),在每一正N棱锥体形状的凹槽22的侧面上均设置有全息动态显示增透膜。优选的,全息动态显示增透膜可由非记忆性陶瓷制成。例如,全息动态显示增透膜可由锆钛酸铅系压电陶瓷(简称PZT)制成,并通过镀膜方式形成在正N棱锥体形状的凹槽22的侧面上。通过在每个微型正N棱锥体形状的凹槽22的侧面都镀上一层全息动态显示增透膜,一方面能保证画面亮度,另一方面作为图像显示介质,保证分离图像的有效形成。
这里应该理解的是,也可以采用其它性能较好的增透膜来代替这种非记忆性陶瓷的增透膜,例如可以采用普通增透膜(其只是增亮效果稍逊于全息动态显示增透膜),只要能保证较大限度地利用从亚像素11射出的有效光即可,这里不做限定。
其中,每一亚像素11的形状为正N边形;具有不同显示颜色的亚像素11周期性循环排列,三个或四个具有不同显示颜色的亚像素11构成一个像素,且构成的像素的形状为长方形。例如:相邻的三个亚像素11分别具有不同的显示颜色(通常为红(R)、绿(G)、蓝(B)三基色),该三个具有不同显示颜色的亚像素11构成一个像素,以实现全彩颜色显示。当然,一个像素也可以包括相邻的四个亚像素11,且分别具有不同显示颜色(例如为红(R)、绿(G)、蓝(B)和白(B)等)。
作为一种示例,优选亚像素11的形状为正方形,则相应地,如图2所示,凹槽22为正四棱锥体形状,且正四棱锥体形状的凹槽22的顶点位于该正四棱锥体的中心线上,正四棱锥体形状的凹槽22的4个侧面起到分离图像的作用。即,具有正四棱锥体形状的凹槽22的开口形状为正方形、各个侧面形状均为等腰三角形。现有技术的显示基板1中,亚像素11的形状为长方形,而在根据本实施例的显示装置中,可以在现有的显示基板1的亚像素排列的基础上,将亚像素11的截面形状由长方形变更成为正方形,然后在分光单元2中与每一亚像素11对应的区域内开设微型正四棱锥体形状的凹槽22即可。
图2中,正四棱锥体形状的凹槽22的顶点相对于开口更靠近显示基板1(即,正N棱锥体形状的凹槽22的开口远离显示基板1,而正N棱锥体形状的凹槽22的顶点则靠近显示基板1),从显示基板1中的亚像素11射出的光经衬底21的实体部分透射后入射至正四棱锥体形状的凹槽22 的各个侧面,并经正四棱锥体形状的凹槽22的各个侧面折射,最终从正四棱锥体形状的凹槽22的开口射出。与一个像素所包含的多个亚像素对应的多个凹槽将出射的折射光汇聚成与正四棱锥体形状的凹槽22的侧面具有相同数量的分离图像(这里形成了四个分离图像),将分离图像叠加形成能够在多个视点观看的3D画面。
为了形成较佳的分离图像,保证凹槽22具有正N棱锥体的形状,衬底21的厚度应大于该凹槽22的高度,优选衬底21的厚度为正方形亚像素11的边长的0.7-0.9倍,正四棱锥体形状的凹槽22的高为正方形亚像素11的边长的0.6-0.8倍。这种微型正四棱锥体形状的凹槽22的开口尺寸可与亚像素11的尺寸相同,进一步优选衬底21的厚度为正方形亚像素11的边长的0.8倍,同时微型正四棱锥体形状的凹槽22的高等于正方形亚像素11边长的0.7倍。
在本实施例的显示装置中,衬底21中的正N棱锥体形状的凹槽22通过锻造工艺形成。选用玻璃板作为衬底21,在玻璃板上采用精密加工仪器锻造出与亚像素11对应的微型正四棱锥体形状的凹槽22,玻璃板的厚度最薄不能低于正方形亚像素11的边长的0.7倍。
在分别形成显示基板1和分光单元2之后,分光单元2通过贴合工艺与显示基板1形成一体。例如,可以直接采用现有技术中用于触控屏(Touch Screen)贴合的贴合工艺将分光单元2与显示基板1贴合在一起。
其中,显示基板1可以为液晶显示面板(Liquid Crystal Display:简称LCD)或有机电致发光二极管显示面板(Organic Light-Emitting Diode,简称OLED)。在上述显示基板1的出光侧上直接贴合分光单元2就形成裸眼3D显示装置。本发明不需要改变现有的显示基板1的生产工艺,而仅需将亚像素11的形状做适应性修改,因而能够采用现有的生产工艺直接进行生产。而且,除了增加制备分光单元2的成本和将分光单元2与显示基板1贴合的成本,显示基板1本身的生产成本并不会额外增加,因此形成的显示装置的整体成本与现有技术的显示装置相比不会有较大增加。
本实施例中,正四棱锥体形状的凹槽22对光线的分光作用在于,从多个正四棱锥体形状的凹槽22的相同侧面折射出的光汇聚形成对应像素 的一个分离图像,然后该分离图像与从其它三个侧面折射出的光各自汇聚成的分离图像在人眼中叠加成3D画面。即:假设有两个正四棱锥体形状的凹槽22,其中一个凹槽的四个侧面分别为A1、B1、C1、D1,另一个凹槽的四个侧面分别为A2、B2、C2、D2,且不同凹槽的同一侧面均以相同的英文字母命名,则从A1和A2折射出的光汇聚成一个分离图像,从B1和B2折射出的光汇聚成第二个分离图像,从C1和C2折射出的光汇聚成第三个分离图像,从D1和D2折射出的光汇聚成第四个分离图像,然后这四个分离图像从不同方向和角度入射到人眼,叠加成3D画面。
为了能更好地阐述该显示装置的光路图,可以将图4中每个微型正四棱锥体形状的凹槽22的四个侧面分别定义为A侧面、B侧面、C侧面和D侧面(图4中未具体示出,可任意定义)。假设一个像素包括三个亚像素,分别为R亚像素、G亚像素和B亚像素,且每个亚像素各自对应一个正四棱锥体形状的凹槽22,可以将这三个亚像素分别对应的三个正四棱锥体形状的凹槽22的四个侧面分别理解为RA侧面、RB侧面、RC侧面、RD侧面……。光路图中的任一光线的光路包括三段直线,箭头方向为其传播方向,具体的:第一段直线是实线,其从显示基板1中的亚像素射出并经过衬底21的透明玻璃部分透射后入射至正四棱锥体形状的凹槽22的侧面;第二段直线是虚线,其从正四棱锥体形状的凹槽22的侧面折射出,在正四棱锥体形状的凹槽22的侧面上传播;第三段直线是实线,其从正四棱锥体形状的凹槽22的开口射出。
如图4所示,R亚像素、G亚像素和B亚像素依次相邻,则分别与这三个亚像素对应的三个正四棱锥体形状的凹槽也依次相邻,假设每个所述凹槽的A侧面与C侧面相对设置,且B侧面与D侧面也相对设置。从正视角观察,在该显示装置的光路图中:从显示基板1中的亚像素11射出的光线,针对入射至所述亚像素11对应的正四棱锥体形状的凹槽22的A侧面的光中,大部分光经过所述A侧面折射,最终由所述A侧面所在正四棱锥体形状的凹槽22开口射出,从而到达各个视点的人眼。由此,从各个亚像素11射出的进入相应正四棱锥体形状的凹槽22的A侧面的光线经过上述传播之后都可以到达各个视点,在各个视点汇聚成A侧面传来的分离图像,该分离图像可记为A’;而进入B、C、D侧面的光线也是经过同样 的传播,在各个视点形成B、C、D侧面分别传来的分离图像B’、C’、D’;然后四个不同侧面传来的分离图像分别在各个视点进行空间叠加,从而到达各个视点处的人眼,即在人眼中形成3D图像。以此类推,从显示基板1的亚像素11射出的光可以到达多个视点处的人眼,因此可以在各个方向看到显示基板1显示的3D画面,使得所述显示装置具有多视角,同时还可以保证较大的视角。在一个像素内的R亚像素、G亚像素和B亚像素中,RA侧面、RB侧面、RC侧面、RD侧面……均遵循上述的成像规律,从而形成全彩的3D画面。
这里应该理解的是,图4中仅示出了形成两组分离图像的光路,为了便于示意,将图4中①视点和②视点稍有错开,其实际上处于同一位置点。同时,本发明中,“透射”指的是在光线在同一介质中的传播,“折射”和“反射”均发生在两种不同介质的交界处。
本实施例中显示装置的显示过程为:显示装置点灯后(液晶显示面板的点灯或有机电致发光二极管的发光),从显示基板1上的每个亚像素11射出的光都可以入射至与该亚像素11对应的微型正N棱锥体形状的凹槽22的各个侧面,并且可以被所述各个侧面折射到各个方向。人眼在显示基板1前观看显示图像时,被每个微型正N棱锥体形状的凹槽22的同一侧面折射的从对应的亚像素射出的各个方向的光中大部分光能够进入人眼从而形成显示基板1所显示的画面,同样地,其它N-1个侧面也都能够在人眼处形成显示画面,而N个侧面在人眼处所形成的显示画面叠加起来就可以给人眼一种立体感,即可裸眼看到3D画面。由于每个侧面都可以将从对应的亚像素射出的光折射到各个方向,所以该显示装置可以具有很多视角,可以供很多人同时裸眼观看到3D画面(包括动画视频)。
本实施例中的显示装置,通过在显示基板的出光侧增加分光单元,利用分光单元中的微型正N棱锥体形状的凹槽的侧面,将从显示基板中对应的亚像素射出的光线折射到各个方向,从而实现多视点的裸眼3D显示,符合人们的正常观看习惯;同时,通过在微型正N棱锥体形状的凹槽的侧面上增加增透膜,保证了显示的画面亮度。另外,所述显示装置还具有结构简单,易于实现轻小化以及薄型化的优点,便于携带,尤其是能应用于手机、电脑、车载显示器等移动显示设备上。
实施例2:
本实施例提供一种显示装置的制备方法,该显示装置的制备方法适用于制备实施例1提供的显示装置。
一种显示装置的制备方法,包括步骤:
步骤S1):形成显示基板,显示基板具有多个亚像素。
在该步骤中,每一亚像素的形状为正N边形,其中:3≤N≤8,且N为正整数;具有不同显示颜色的亚像素周期性循环排列,三个或四个不同显示颜色的亚像素构成一个像素,且构成的像素的形状为长方形。
其中,显示基板可以为液晶显示面板(Liquid Crystal Display:简称LCD)或有机电致发光二极管显示面板(Organic Light-Emitting Diode,简称OLED)。对于显示基板的制备,可采用现有技术中相应类型的基板的制备方法来形成,这里不再详述。
步骤S2):形成分光单元,分光单元包括衬底,衬底上开设有多个凹槽,每个凹槽的侧面均为平面。
在该步骤中,衬底采用透明材料制成,凹槽与亚像素的数量相同,凹槽为正N棱锥体形状,正N棱锥体形状的凹槽的开口形状与亚像素的形状相同,凹槽通过锻造工艺形成于衬底的一侧表面上。采用锻造工艺形成分光单元,能有效保证分光单元中凹槽与显示基板中亚像素的配合精度,且能保证较高的凹槽良率。
为了获得更好的画面亮度(至少保证正常显示的亮度)和给画面显示提供依附介质(其作用类似于投影仪的投影布),在该步骤中还进一步包括:通过镀膜方式在凹槽的平面侧面上形成全息动态显示增透膜。优选的是,全息动态显示增透膜由非记忆性陶瓷制成,例如采用锆钛酸铅系压电陶瓷制成。
进一步优选的是,亚像素的形状为正方形,凹槽为正四棱锥体形状,正四棱锥体形状的凹槽的顶点位于该正四棱锥体的中心线上。
这里应该理解的是,对步骤S1)中形成显示基板和步骤S2)形成分光单元的顺序不做限定,在实际制备过程中可根据设备条件或工艺条件灵活安排生产。
步骤S3):将显示基板和分光单元形成一体,以使得分光单元位于显示基板的出光侧,并使得凹槽的位置与亚像素的位置一一对应。
在该步骤中,分光单元通过贴合工艺与显示基板形成一体,例如,可以直接采用现有技术中用于触控屏(Touch Screen)贴合的贴合工艺将分光单元与显示基板贴合在一起。其中:凹槽的开口方向背离显示基板,且凹槽的顶点在显示基板上的正投影位于与该凹槽对应的亚像素的中心点。
采用本实施例显示装置的制备方法能高效、方便地制备出实施例1中的显示装置。
可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。

Claims (15)

  1. 一种显示装置,包括具有多个亚像素的显示基板,其中,所述显示装置还包括设置在所述显示基板的出光侧的分光单元,所述分光单元包括衬底,所述衬底上开设有多个凹槽,每个凹槽的侧面均为平面,所述多个凹槽与所述多个亚像素的数量相同且位置一一对应。
  2. 根据权利要求1所述的显示装置,其中,所述衬底采用透明材料制成,所述凹槽开设于所述衬底背离所述显示基板的一侧表面上,且所述凹槽的开口方向背离所述显示基板。
  3. 根据权利要求2所述的显示装置,其中,所述凹槽为以凹槽的开口为底面的正N棱锥体形状,正N棱锥体的所述底面的形状与该凹槽对应的所述亚像素的形状相同,正N棱锥体形状的所述凹槽的顶点在所述显示基板上的正投影位于与该凹槽对应的亚像素的中心点,其中:3≤N≤8,且N为正整数。
  4. 根据权利要求3所述的显示装置,其中,每一所述亚像素的形状为正N边形;
    具有不同显示颜色的所述亚像素周期性循环排列,多个具有不同显示颜色的所述亚像素构成一个像素,且构成的所述像素的形状为长方形。
  5. 根据权利要求3所述的显示装置,其特征在于,所述亚像素的形状为正方形,所述凹槽为正四棱锥体形状,且正四棱锥体形状的所述凹槽的顶点位于该正四棱锥体的中心线上。
  6. 根据权利要求5所述的显示装置,其特征在于,所述衬底的厚度大于所述凹槽的高度,所述衬底的厚度为正方形的所述亚像素的边长的0.7-0.9倍,正四棱锥体形状的所述凹槽的高度为正方形的所述亚像素的边长的0.6-0.8倍。
  7. 根据权利要求3所述的显示装置,其特征在于,每一正N棱锥体形状的所述凹槽的侧面上均设置有全息动态显示增透膜,所述全息动态显示增透膜由非记忆性陶瓷制成。
  8. 根据权利要求7所述的显示装置,其特征在于,所述全息动态显示增透膜由锆钛酸铅系压电陶瓷制成。
  9. 根据权利要求1所述的显示装置,其特征在于,所述显示基板为液晶显示面板或有机电致发光二极管显示面板。
  10. 一种显示装置的制备方法,其特征在于,包括步骤:
    形成显示基板,所述显示基板具有多个亚像素;
    形成分光单元,所述分光单元包括衬底,所述衬底上开设有多个凹槽,每个凹槽的侧面均为平面;
    将所述显示基板和所述分光单元形成一体,以使得所述分光单元位于所述显示基板的出光侧,并使得所述多个凹槽与所述多个亚像素的数量相同且位置一一对应。
  11. 根据权利要求10所述的显示装置的制备方法,其中,所述分光单元中的所述凹槽为以凹槽的开口为底面的正N棱锥体形状;所述显示基板中的所述亚像素的形状为正N边形,其中:3≤N≤8,且N为正整数。
  12. 根据权利要求10所述的显示装置的制备方法,其中,所述衬底采用透明材料制成,通过锻造工艺将所述凹槽开设于所述衬底背离所述显示基板的一侧表面上。
  13. 根据权利要求10所述的显示装置的制备方法,其中,通过贴合工艺将所述分光单元与所述显示基板形成一体,以使得所述凹槽的开口方向背离所述显示基板,且所述凹槽的顶点在所述显示基板上的正投影位于 与该凹槽对应的亚像素的中心点。
  14. 根据权利要求10所述的显示装置的制备方法,其特征在于,在将所述显示基板和所述分光单元形成一体之前,还进一步包括:通过镀膜方式在所述凹槽的侧面上形成全息动态显示增透膜。
  15. 根据权利要求14所述的显示装置的制备方法,其特征在于,所述全息动态显示增透膜由非记忆性陶瓷制成。
PCT/CN2015/079332 2014-12-15 2015-05-20 显示装置以及显示装置的制备方法 WO2016095425A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/892,776 US20160353091A1 (en) 2014-12-15 2015-05-20 Display device and preparation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410779253.3 2014-12-15
CN201410779253.3A CN104460015B (zh) 2014-12-15 2014-12-15 显示装置以及显示装置的制备方法

Publications (1)

Publication Number Publication Date
WO2016095425A1 true WO2016095425A1 (zh) 2016-06-23

Family

ID=52906324

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/079332 WO2016095425A1 (zh) 2014-12-15 2015-05-20 显示装置以及显示装置的制备方法

Country Status (3)

Country Link
US (1) US20160353091A1 (zh)
CN (1) CN104460015B (zh)
WO (1) WO2016095425A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104460015B (zh) * 2014-12-15 2017-04-05 京东方科技集团股份有限公司 显示装置以及显示装置的制备方法
US10193018B2 (en) * 2016-12-29 2019-01-29 Intel Corporation Compact low power head-mounted display with light emitting diodes that exhibit a desired beam angle

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060176245A1 (en) * 2005-02-04 2006-08-10 Hitachi Displays, Ltd. Autostereoscopic display
CN101995668A (zh) * 2009-08-25 2011-03-30 索尼公司 立体图像显示装置和制造立体图像显示装置的方法
CN102768406A (zh) * 2012-05-28 2012-11-07 中国科学院苏州纳米技术与纳米仿生研究所 一种空间分割式裸眼立体显示器
CN102830537A (zh) * 2012-08-31 2012-12-19 北京京东方光电科技有限公司 一种彩膜基板及其制造方法、显示装置
WO2013064971A2 (en) * 2011-11-02 2013-05-10 Koninklijke Philips Electronics N.V. A multi-view lighting device, an assembly and a luminaire
CN104460015A (zh) * 2014-12-15 2015-03-25 京东方科技集团股份有限公司 显示装置以及显示装置的制备方法
CN204241772U (zh) * 2014-12-15 2015-04-01 京东方科技集团股份有限公司 一种显示装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4394773A (en) * 1980-07-21 1983-07-19 Siemens Corporation Fingerprint sensor
US6582103B1 (en) * 1996-12-12 2003-06-24 Teledyne Lighting And Display Products, Inc. Lighting apparatus
US7768707B2 (en) * 2006-02-06 2010-08-03 Seiko Epson Corporation Converging substrate, electro-optic device, substrate for electro-optic device, projector, and electronic apparatus
EP2051003A4 (en) * 2006-06-16 2013-07-31 Fujifilm Corp Light guide plate. LIGHT PANEL ARRANGEMENT AND LIGHT LIGHTING DEVICE AND THEREOF USING LIQUID CRYSTAL DISPLAY DEVICE
KR101243790B1 (ko) * 2006-06-26 2013-03-18 엘지디스플레이 주식회사 입체 영상표시장치
JP5559656B2 (ja) * 2010-10-14 2014-07-23 大日本スクリーン製造株式会社 熱処理装置および熱処理方法
CN102169235A (zh) * 2011-02-23 2011-08-31 友达光电股份有限公司 一种立体显示装置
TWI551930B (zh) * 2012-05-11 2016-10-01 群康科技(深圳)有限公司 具錯位畫素之液晶顯示器
JP5320488B1 (ja) * 2012-05-29 2013-10-23 株式会社東芝 3次元映像表示装置および3次元映像表示方法
CN103986926B (zh) * 2014-05-26 2015-11-11 四川大学 一种无串扰的集成成像3d显示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060176245A1 (en) * 2005-02-04 2006-08-10 Hitachi Displays, Ltd. Autostereoscopic display
CN101995668A (zh) * 2009-08-25 2011-03-30 索尼公司 立体图像显示装置和制造立体图像显示装置的方法
WO2013064971A2 (en) * 2011-11-02 2013-05-10 Koninklijke Philips Electronics N.V. A multi-view lighting device, an assembly and a luminaire
CN102768406A (zh) * 2012-05-28 2012-11-07 中国科学院苏州纳米技术与纳米仿生研究所 一种空间分割式裸眼立体显示器
CN102830537A (zh) * 2012-08-31 2012-12-19 北京京东方光电科技有限公司 一种彩膜基板及其制造方法、显示装置
CN104460015A (zh) * 2014-12-15 2015-03-25 京东方科技集团股份有限公司 显示装置以及显示装置的制备方法
CN204241772U (zh) * 2014-12-15 2015-04-01 京东方科技集团股份有限公司 一种显示装置

Also Published As

Publication number Publication date
CN104460015B (zh) 2017-04-05
CN104460015A (zh) 2015-03-25
US20160353091A1 (en) 2016-12-01

Similar Documents

Publication Publication Date Title
CN106019605B (zh) 近眼显示装置和方法
TWI417630B (zh) 用以顯示多重視角影像之顯示裝置
TWI614533B (zh) 立體顯示裝置
JP7553669B2 (ja) 表示パネル、表示装置及び表示方法
WO2022237077A1 (zh) 近眼显示装置
CN102868900B (zh) 一种宽视角和无串扰的集成成像3d显示装置
JP6852896B2 (ja) 3d表示パネル、それを含む3d表示機器、及びその製造方法
CN202126538U (zh) 一种柱面光栅高清lcd自由立体显示器
CN102279484B (zh) 立体图像显示装置及其制造方法
WO2019072071A1 (zh) 显示面板和显示装置
WO2009057030A1 (en) Autostereoscopic display device
JP2012034363A (ja) 映像ディスプレイ装置及びその製造方法
CN103513311B (zh) 一种立体光栅和裸眼3d显示装置
WO2019085006A1 (zh) 微透镜阵列薄膜及显示模组
CN112987295B (zh) 近眼显示装置和虚拟/增强现实设备
TW201326908A (zh) 裸眼式立體顯示器
TWI399570B (zh) 立體顯示器以及立體顯示系統
TW201140530A (en) 2D and 3D switchable display device
WO2016095425A1 (zh) 显示装置以及显示装置的制备方法
US20100066654A1 (en) Three-dimensional display device
CN108181720B (zh) 显示装置
TW201819988A (zh) 頭戴式顯示裝置
US11137619B2 (en) Display device for virtual reality, viewing device for virtual reality and head-mounted display apparatus
WO2020181939A1 (zh) 显示装置及其显示方法
CN208092355U (zh) 一种柱镜光栅裸眼3d显示器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14892776

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15868937

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 28/11/2017)

122 Ep: pct application non-entry in european phase

Ref document number: 15868937

Country of ref document: EP

Kind code of ref document: A1