WO2016095366A1 - 流量控制方法及装置 - Google Patents

流量控制方法及装置 Download PDF

Info

Publication number
WO2016095366A1
WO2016095366A1 PCT/CN2015/075914 CN2015075914W WO2016095366A1 WO 2016095366 A1 WO2016095366 A1 WO 2016095366A1 CN 2015075914 W CN2015075914 W CN 2015075914W WO 2016095366 A1 WO2016095366 A1 WO 2016095366A1
Authority
WO
WIPO (PCT)
Prior art keywords
senb
data
menb
data packet
sent
Prior art date
Application number
PCT/CN2015/075914
Other languages
English (en)
French (fr)
Inventor
方建民
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2016095366A1 publication Critical patent/WO2016095366A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/10Flow control between communication endpoints
    • H04W28/14Flow control between communication endpoints using intermediate storage

Definitions

  • the present invention relates to the field of communications, and in particular to a flow control method and apparatus.
  • the Long Term Evolution (LTE) network may include an Evolved Universal Terrestrial Radio Access Network (E-UTRAN) and its corresponding core network (Core Network, referred to as CN). ).
  • the E-UTRAN may include an evolved Node B (abbreviated as eNB).
  • the CN may include: a Mobile Management Entity (MME) and a Serving Gateway (S-GW).
  • MME Mobile Management Entity
  • S-GW Serving Gateway
  • the eNB and the CN can be connected through the S1 interface, and the eNBs can be connected through the X2 interface.
  • One eNB can manage one or more cells (Cells).
  • Dual Connectivity A dual-connected terminal can be connected to two base stations at the same time.
  • One of the base stations is called a master base station (MeNB), and the other base station is called a secondary base station (Secondary eNB, SeNB for short).
  • MeNB master base station
  • SeNB secondary base station
  • the MeNB is responsible for the control of dual connectivity.
  • FIG. 1 is a schematic diagram of a Split bearer downlink according to the related art. As shown in FIG. 1, when a split bearer is used, the downlink data flows from the S-GW to the MeNB, branches at the MeNB, flows directly to the UE, and the other flows to the UE via the SeNB.
  • the second mode is the master/secondary cell group bearer (MCG/SCG bearer).
  • MCG/SCG bearer 2 is a schematic diagram of a MCG/SCG bearer downlink according to the related art. As shown in FIG. 2, when the MCG/SCG bearer is used, the downlink data is sent two data from the S-GW, one of which flows to the UE via the MeNB, and the other flows to the UE via the SeNB.
  • a traffic control mechanism needs to be adopted between the MeNB and the SeNB to prevent the SeNB from receiving the data too fast to the SeNB, and the SeNB cannot receive the data in time, or the MeNB sends the data to the SeNB. Affects data transmission efficiency on the SeNB side.
  • the embodiment of the invention provides a flow control method and device to solve at least the problem of flow control between the MeNB and the SeNB when the double connection cannot be implemented in the related art.
  • a flow control method is provided.
  • the flow control method includes: the MeNB sends a data packet and a data packet sequence number to the SeNB; the MeNB receives the information set of the SeNB response data packet and the data packet sequence feedback, wherein the information set includes at least one of the following information: the SeNB The data packet sequence number received by the MeNB; the data packet sequence number that the SeNB has sent to the UE; the buffer size available to the SeNB; and the data size that the SeNB has buffered that has not been sent to the UE.
  • the method further includes: calculating, by the MeNB, the total amount of data sent to the SeNB before the next feedback information set of the SeNB.
  • the MeNB calculates the total amount of data sent to the SeNB before the SeNB next feedback information set includes: the MeNB determines the buffer size available to the SeNB according to the information set; the MeNB acquires the data size that the UE has transmitted but has not yet reached the SeNB; the MeNB adopts the SeNB.
  • the available buffer size performs a subtraction operation with the data size that it has sent but has not yet reached the SeNB, and the total amount of data is obtained.
  • nS is the data packet sequence number received by the SeNB from the MeNB
  • nU is the data packet sequence number that the SeNB has sent to the UE
  • a is the data size of the SeNB buffer that has not been sent to the UE
  • psize is the MeNB sends the data to the SeNB.
  • the average size of the packet is the average size of the packet.
  • b, nS, nU, and a are all fed back to the MeNB by the SeNB, and the nM is determined by the MeNB itself, and the psize is preset or calculated by the MeNB according to the average size of each data packet previously sent to the SeNB.
  • a flow control device is provided.
  • the flow control device includes: a sending module, configured to send a data packet and a data packet sequence number to the secondary base station SeNB; and a receiving module configured to receive the information set of the SeNB response data packet and the data packet sequence number feedback, wherein the information
  • the set includes at least one of the following: a data packet sequence number received by the SeNB from the primary base station MeNB; a data packet sequence number that the SeNB has sent to the user equipment UE; a buffer size available to the SeNB; and a data size that the SeNB has buffered that has not been sent to the UE.
  • the apparatus further includes: a calculating module, configured to calculate a total amount of data sent to the SeNB before the next feedback information set of the SeNB.
  • a calculating module configured to calculate a total amount of data sent to the SeNB before the next feedback information set of the SeNB.
  • the calculation module comprises: a determining unit, configured to determine a buffer size available to the SeNB according to the information set; and an obtaining unit configured to acquire a data size that has been sent but not yet reached the SeNB; and a calculating unit configured to adopt a buffer size available to the SeNB
  • the subtraction operation is performed with the data size that has been transmitted by itself but has not yet arrived at the SeNB, and the total amount of data is obtained.
  • b is the size of the buffer available to the SeNB.
  • b, nS, nU, and a are all fed back to the MeNB by the SeNB, and the nM is determined by the MeNB itself, and the psize is preset or calculated by the MeNB according to the average size of each data packet previously sent to the SeNB.
  • the MeNB sends the data packet and the data packet sequence number to the SeNB, and the MeNB receives the information set of the SeNB response data packet and the data packet sequence feedback, where the information set includes at least one of the following information: the SeNB receives the information from the MeNB.
  • the data packet sequence number; the data packet sequence number that the SeNB has sent to the UE; the size of the buffer that is available to the SeNB; and the data size that has been sent to the UE by the SeNB which solves the problem that the traffic control between the MeNB and the SeNB cannot be implemented in the related art.
  • the problem further optimizes the data transmission efficiency on the SeNB side at the time of dual connectivity, and effectively avoids data loss that may occur on the SeNB side.
  • FIG. 1 is a schematic diagram of a downlink bearer according to the related art
  • FIG. 2 is a schematic diagram of a downlink of an MCG/SCG bearer according to the related art
  • FIG. 3 is a flow chart of a flow control method according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a Split bearer downlink data flow control according to a preferred embodiment of the present invention.
  • FIG. 5 is a flowchart of a downlink bearer downlink data flow control according to a preferred embodiment of the present invention.
  • FIG. 6 is a flowchart of a downlink bearer downlink data flow control according to a preferred embodiment 2 of the present invention.
  • FIG. 7 is a block diagram showing the structure of a flow control device according to an embodiment of the present invention.
  • Figure 8 is a block diagram showing the structure of a flow control device in accordance with a preferred embodiment of the present invention.
  • FIG. 3 is a flow chart of a flow control method in accordance with an embodiment of the present invention. As shown in FIG. 3, the method may include the following processing steps:
  • Step S302 The MeNB sends a data packet and a data packet sequence number to the SeNB.
  • Step S304 The MeNB receives the information set of the SeNB response data packet and the data packet sequence feedback, wherein the information set may include at least one of the following information:
  • the MeNB may further include the following operations:
  • Step S1 The MeNB calculates the total amount of data sent to the SeNB before the next feedback information set of the SeNB.
  • the MeNB calculates, before the next feedback information set of the SeNB, the total amount of data sent to the SeNB may include the following steps:
  • Step S11 The MeNB determines, according to the information set, a cache size available to the SeNB.
  • Step S12 The MeNB acquires a data size that has been sent by itself but has not yet arrived at the SeNB;
  • Step S13 The MeNB performs a subtraction operation using the buffer size available to the SeNB and the data size that has been sent but has not yet arrived at the SeNB, and obtains the total amount of data.
  • the data size that has been sent but has not yet arrived at the SeNB may be calculated using one of the following formulas:
  • nM is the data packet sequence number that the MeNB has sent to the SeNB
  • nS is the data packet sequence number received by the SeNB from the MeNB
  • nU is the data packet sequence number that the SeNB has sent to the UE
  • a is the data size that has been sent by the SeNB and has not been sent to the UE.
  • Psize is the average size of the data packets sent by the MeNB to the SeNB.
  • the total amount of data can be calculated using one of the following formulas:
  • x is the total amount of data and b is the buffer size available to the SeNB.
  • the foregoing b, nS, nU, and a are all fed back to the MeNB by the SeNB, and the nM is determined by the MeNB itself, and the psize is preset or the size of each data packet sent by the MeNB according to the previous SeNB. Calculate the average value.
  • FIG. 4 is a schematic diagram of Split Bearer downlink data flow control in accordance with a preferred embodiment of the present invention.
  • FIG. 5 is a flowchart of Split Bearer downlink data flow control according to a preferred embodiment of the present invention. As shown in FIG. 4 and FIG. 5, the Split bearer downlink data flow control process may include the following steps:
  • Step S502 The MeNB sends the data packet and the data packet sequence number to the SeNB.
  • Step S504 The SeNB feeds back to the MeNB the data packet sequence number (set to nS) that the SeNB has received and the buffer size (set to b) available to the SeNB.
  • Step S508 Before the feedback of the next SeNB arrives, the sum of the sizes of all the data packets sent by the MeNB to the SeNB should be x.
  • FIG. 4 is a schematic diagram of Split Bearer downlink data flow control in accordance with a preferred embodiment of the present invention.
  • 6 is a flow chart of Split Bearer downlink data flow control according to a preferred embodiment 2 of the present invention. As shown in FIG. 4 and FIG. 6, the Split bearer downlink data flow control process may include the following steps:
  • Step S602 The MeNB sends a data packet and a data packet sequence number to the SeNB.
  • Step S604 The SeNB feeds back to the MeNB the data packet sequence number (set to nU) that the SeNB has sent to the UE, the buffer size available to the SeNB (set to b), and the data size of the SeNB buffer that has not been sent to the UE (set to a).
  • x b - (nM - nU - a) * psize, where b, a, and nU are fed back to the MeNB by the SeNB, and nM and psize are known by the MeNB in advance by itself.
  • Step S608 Before the feedback of the next SeNB arrives, the sum of the sizes of all the data packets sent by the MeNB to the SeNB should be x.
  • FIG. 7 is a block diagram showing the structure of a flow control device according to an embodiment of the present invention.
  • the flow control apparatus may include: a sending module 10 configured to send a data packet and a data packet sequence number to the secondary base station SeNB; and a receiving module 20 configured to receive the SeNB response data packet and the information set of the data packet sequence feedback , wherein the collection of information includes at least one of the following information:
  • the device shown in FIG. 7 solves the problem of the flow control between the MeNB and the SeNB when the double connection cannot be implemented in the related art, thereby optimizing the data transmission efficiency on the SeNB side in the dual connection, and effectively avoiding the SeNB side. Possible data loss.
  • the foregoing apparatus may further include: a calculating module 30, configured to calculate a total amount of data sent to the SeNB before the next feedback information set of the SeNB.
  • a calculating module 30 configured to calculate a total amount of data sent to the SeNB before the next feedback information set of the SeNB.
  • the calculating module 30 may include: a determining unit (not shown in the figure), configured to determine a buffer size available to the SeNB according to the information set; and an acquiring unit (not shown) configured to acquire the self-sent but not yet arrived The data size of the SeNB; the calculation unit (not shown) is configured to perform a subtraction operation using the buffer size available to the SeNB and the data size that has been sent but not yet reached the SeNB, and obtain the total amount of data.
  • the obtaining unit is configured to calculate the data size that has been sent but has not yet reached the SeNB by using one of the following formulas:
  • nM is the data packet sequence number that the MeNB has sent to the SeNB
  • nS is the data packet sequence number received by the SeNB from the MeNB
  • nU is the data packet sequence number that the SeNB has sent to the UE
  • a is the data size that has been sent by the SeNB and has not been sent to the UE.
  • Psize is the average size of the data packets sent by the MeNB to the SeNB.
  • the computing unit is arranged to calculate the total amount of data using one of the following formulas:
  • x is the total amount of data and b is the buffer size available to the SeNB.
  • the foregoing b, nS, nU, and a are all fed back to the MeNB by the SeNB, and the nM is determined by the MeNB itself, and the psize is preset or the size of each data packet sent by the MeNB according to the previous SeNB. Calculate the average value.
  • the above embodiments achieve the following technical effects (it is required that the effects are achievable by some preferred embodiments): the technical solution provided by the embodiment of the present invention is implemented.
  • the traffic control between the MeNB and the SeNB during dual connectivity optimizes the data transmission efficiency on the SeNB side in the dual connectivity and effectively avoids data loss that may occur on the SeNB side.
  • modules or steps of the present invention described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated as a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.
  • the flow control method and apparatus provided by the embodiments of the present invention have the following beneficial effects: the traffic between the MeNB and the SeNB can be controlled during dual connectivity, and the data transmission on the SeNB side during dual connectivity is optimized. Efficiency, and data loss that may occur on the SeNB side is effectively avoided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种流量控制方法及装置,在上述方法中,MeNB向SeNB发送数据包以及数据包序号;MeNB接收SeNB响应数据包以及数据包序号反馈的信息集合,其中,信息集合包括以下信息至少之一:SeNB从MeNB接收到的数据包序号;SeNB已经发送至UE的数据包序号;SeNB可用的缓存大小;SeNB缓存的尚未发送至UE的数据大小。根据本发明提供的技术方案,优化了双连接时SeNB侧的数据传输效率,并且有效地避免了SeNB侧可能发生的数据丢失。

Description

流量控制方法及装置 技术领域
本发明涉及通信领域,具体而言,涉及一种流量控制方法及装置。
背景技术
长期演进(Long Term Evolution,简称为LTE)网络可以包括:演进的通用陆地无线接入网(Evolved Universal Terrestrial Radio Access Network,简称为E-UTRAN)及其对应的核心网(Core Network,简称为CN)。E-UTRAN可以包括:演进基站(evolved Node B,简称为eNB)。CN可以包括:移动管理实体(Mobile Management Entity,简称为MME)和服务网关(Serving Gateway,简称为S-GW)。eNB与CN之间可以通过S1接口进行连接,eNB之间可以通过X2接口进行连接。一个eNB可以管理一个或多个小区(Cell)。
由于频谱资源的匮乏以及移动用户的大流量业务的激增,采用高频点(例如:3.5GHz)进行热点覆盖的需求日益明显。高频点的信号衰减比较厉害,小区的覆盖范围比较小,采用低功率小小区(Small Cell)的基站成为新的应用场景。为了增强SmallCell部署网络的移动性能以及增加用户吞吐量,引入了一种新的增强方案称作双连接(Dual Connectivity,简称为DC)。双连接下终端可以同时与两个基站保持连接,其中一个基站称为主基站(Master eNB,简称为MeNB),另一个基站称为次基站(Secondary eNB,简称为SeNB)。双连接下MeNB负责双连接的控制。数据流存在以下两种实现方式:
方式一、分叉承载(Split bearer)方式;图1是根据相关技术的Split bearer下行示意图。如图1所示,在采用Split bearer时,下行数据由S-GW流向MeNB,在MeNB分叉,一股直接流向UE,而另一股经SeNB流向UE。
方式二、主/次小区组承载(Master/Secondary Cell Group bearer,简称为MCG/SCG bearer)方式。图2是根据相关技术的MCG/SCG bearer下行示意图。如图2所示,在采用MCG/SCG bearer时,下行数据从S-GW发出两股数据,一股经MeNB流向UE,而另一股经SeNB流向UE。
在采用Split bearer时,MeNB与SeNB之间需要采用一种流量控制机制,以避免MeNB向SeNB发送数据过快所引起的SeNB侧无法及时接收从而导致数据丢失,或MeNB向SeNB发送数据过慢从而影响SeNB侧的数据传输效率。
综上所述,相关技术中无法实现双连接时MeNB与SeNB之间的流量控制。
发明内容
本发明实施例提供了一种流量控制方法及装置,以至少解决相关技术中无法实现双连接时MeNB与SeNB之间的流量控制的问题。
根据本发明实施例的一个方面,提供了一种流量控制方法。
根据本发明实施例的流量控制方法包括:MeNB向SeNB发送数据包以及数据包序号;MeNB接收SeNB响应数据包以及数据包序号反馈的信息集合,其中,信息集合包括以下信息至少之一:SeNB从MeNB接收到的数据包序号;SeNB已经发送至UE的数据包序号;SeNB可用的缓存大小;SeNB缓存的尚未发送至UE的数据大小。
优选地,在MeNB接收SeNB响应数据包以及数据包序号反馈的信息集合之后,还包括:MeNB计算在SeNB下一次反馈信息集合之前,向SeNB发送的数据总量。
优选地,MeNB计算在SeNB下一次反馈信息集合之前,向SeNB发送的数据总量包括:MeNB根据信息集合确定SeNB可用的缓存大小;MeNB获取自身已经发送但尚未到达SeNB的数据大小;MeNB采用SeNB可用的缓存大小与自身已经发送但尚未到达SeNB的数据大小执行减法运算,求取数据总量。
优选地,采用以下公式之一计算自身已经发送但尚未到达SeNB的数据大小:c=(nM–nS)*psize;c=(nM–nU–a)*psize;其中,nM为MeNB已经向SeNB发送的数据包序号,nS为SeNB从MeNB接收到的数据包序号,nU为SeNB已经发送至UE的数据包序号,a为SeNB缓存的尚未发送至UE的数据大小,psize为MeNB向SeNB发送的数据包的平均大小。
优选地,采用以下公式之一计算数据总量:x=b–(nM–nS)*psize;x=b–(nM–nU–a)*psize;其中,x为数据总量,b为SeNB可用的缓存大小。
优选地,b、nS、nU、a均由SeNB反馈至MeNB,nM由MeNB自身确定,psize为预先设定或由MeNB根据之前向SeNB发送的各数据包的大小计算平均值得到。
根据本发明实施例的另一方面,提供了一种流量控制装置。
根据本发明实施例的流量控制装置包括:发送模块,设置为向次基站SeNB发送数据包以及数据包序号;接收模块,设置为接收SeNB响应数据包以及数据包序号反馈的信息集合,其中,信息集合包括以下信息至少之一:SeNB从主基站MeNB接收到的数据包序号;SeNB已经发送至用户设备UE的数据包序号;SeNB可用的缓存大小;SeNB缓存的尚未发送至UE的数据大小。
优选地,上述装置还包括:计算模块,设置为计算在SeNB下一次反馈信息集合之前,向SeNB发送的数据总量。
优选地,计算模块包括:确定单元,设置为根据信息集合确定SeNB可用的缓存大小;获取单元,设置为获取自身已经发送但尚未到达SeNB的数据大小;计算单元,设置为采用SeNB可用的缓存大小与自身已经发送但尚未到达SeNB的数据大小执行减法运算,求取数据总量。
优选地,获取单元,设置为采用以下公式之一计算自身已经发送但尚未到达SeNB的数据大小:c=(nM–nS)*psize;c=(nM–nU–a)*psize;其中,nM为MeNB已经向SeNB发送的数据包序号,nS为SeNB从MeNB接收到的数据包序号,nU为SeNB已经发送至UE的数据包序号,a为SeNB缓存的尚未发送至UE的数据大小,psize为MeNB向SeNB发送的数据包的平均大小。
优选地,计算单元,设置为采用以下公式之一计算数据总量:x=b–(nM–nS)*psize;x=b–(nM–nU–a)*psize;其中,x为数据总量,b为SeNB可用的缓存大小。
优选地,b、nS、nU、a均由SeNB反馈至MeNB,nM由MeNB自身确定,psize为预先设定或由MeNB根据之前向SeNB发送的各数据包的大小计算平均值得到。
通过本发明实施例,采用MeNB向SeNB发送数据包以及数据包序号;MeNB接收SeNB响应数据包以及数据包序号反馈的信息集合,其中,信息集合包括以下信息至少之一:SeNB从MeNB接收到的数据包序号;SeNB已经发送至UE的数据包序号;SeNB可用的缓存大小;SeNB缓存的尚未发送至UE的数据大小,解决了相关技术中无法实现双连接时MeNB与SeNB之间的流量控制的问题,进而优化了双连接时SeNB侧的数据传输效率,并且有效地避免了SeNB侧可能发生的数据丢失。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是根据相关技术的Split bearer下行示意图;
图2是根据相关技术的MCG/SCG bearer下行示意图;
图3是根据本发明实施例的流量控制方法的流程图;
图4是根据本发明优选实施例的Split bearer下行数据流量控制的示意图;
图5是根据本发明优选实施例一的Split bearer下行数据流量控制的流程图;
图6是根据本发明优选实施例二的Split bearer下行数据流量控制的流程图;
图7是根据本发明实施例的流量控制装置的结构框图;
图8是根据本发明优选实施例的流量控制装置的结构框图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
图3是根据本发明实施例的流量控制方法的流程图。如图3所示,该方法可以包括以下处理步骤:
步骤S302:MeNB向SeNB发送数据包以及数据包序号;
步骤S304:MeNB接收SeNB响应数据包以及数据包序号反馈的信息集合,其中,信息集合可以包括以下信息至少之一:
(1)SeNB从MeNB接收到的数据包序号;
(2)SeNB已经发送至UE的数据包序号;
(3)SeNB可用的缓存大小;
(4)SeNB缓存的尚未发送至UE的数据大小。
相关技术中无法实现双连接时MeNB与SeNB之间的流量控制。采用如图3所示的方法,在MeNB向SeNB发送数据包以及数据包序号之后,接收SeNB反馈的信息集合,然后根据该信息集合进行流量控制。由此解决了相关技术中无法实现双连接时MeNB与SeNB之间的流量控制的问题,进而优化了双连接时SeNB侧的数据传输效率,并且有效地避免了SeNB侧可能发生的数据丢失。
优选地,在步骤S304,MeNB接收SeNB响应数据包以及数据包序号反馈的信息集合之后,还可以包括以下操作:
步骤S1:MeNB计算在SeNB下一次反馈信息集合之前,向SeNB发送的数据总量。
优选地,在步骤S1中MeNB计算在SeNB下一次反馈信息集合之前,向SeNB发送的数据总量可以包括以下步骤:
步骤S11:MeNB根据信息集合确定SeNB可用的缓存大小;
步骤S12:MeNB获取自身已经发送但尚未到达SeNB的数据大小;
步骤S13:MeNB采用SeNB可用的缓存大小与自身已经发送但尚未到达SeNB的数据大小执行减法运算,求取数据总量。
优选地,可以采用以下公式之一计算自身已经发送但尚未到达SeNB的数据大小:
(1)c=(nM–nS)*psize;
(2)c=(nM–nU–a)*psize;
其中,nM为MeNB已经向SeNB发送的数据包序号,nS为SeNB从MeNB接收到的数据包序号,nU为SeNB已经发送至UE的数据包序号,a为SeNB缓存的尚未发送至UE的数据大小,psize为MeNB向SeNB发送的数据包的平均大小。
优选地,可以采用以下公式之一计算数据总量:
(1)x=b–(nM–nS)*psize;
(2)x=b–(nM–nU–a)*psize;
其中,x为数据总量,b为SeNB可用的缓存大小。
在优选实施过程中,上述b、nS、nU、a均由SeNB反馈至MeNB,nM由MeNB自身确定,psize为预先设定或由所述MeNB根据之前向所述SeNB发送的各数据包的大小计算平均值得到。
下面将结合图4至图6中所示的优选实施例对上述优选实施过程作进一步地描述。
图4是根据本发明优选实施例的Split bearer下行数据流量控制的示意图。图5是根据本发明优选实施例一的Split bearer下行数据流量控制的流程图。如图4和图5所示,Split bearer下行数据流量控制流程可以包括以下步骤:
步骤S502:MeNB向SeNB发送数据包以及数据包序号。
步骤S504:SeNB向MeNB反馈SeNB已接收到的数据包序号(设为nS)以及SeNB可用的缓存大小(设为b)。
步骤S506:MeNB计算可发送的数据大小(设为x),假设MeNB已发送但尚未到达SeNB的数据大小为c,则x=b–c。若MeNB已经向SeNB发送的数据包序号为nM,则c=(nM–nS)*psize,其中,psize为数据包的平均大小,其可以采用预先设定的方式或由所述MeNB根据之前向所述SeNB发送的各数据包的大小计算平均值得到。因此,x=b–(nM–nS)*psize,其中,b和nS由SeNB反馈至MeNB,而nM和psize是MeNB可以通过自身预先获知的。
步骤S508:在下一个SeNB的反馈到达前,MeNB向SeNB发送的全部数据包的大小之和应当为x。
图4是根据本发明优选实施例的Split bearer下行数据流量控制的示意图。图6是根据本发明优选实施例二的Split bearer下行数据流量控制的流程图。如图4和图6所示,Split bearer下行数据流量控制流程可以包括以下步骤:
步骤S602:MeNB向SeNB发送数据包以及数据包序号。
步骤S604:SeNB向MeNB反馈SeNB已经发送至UE的数据包序号(设为nU)、SeNB可用的缓存大小(设为b)以及SeNB缓存的尚未发送至UE的数据大小(设为a)。
步骤S606:MeNB计算可发送的数据大小(设为x),假设MeNB已发送但尚未到达SeNB的数据大小为c,则x=b–c。若MeNB已经向SeNB发送的数据包序号为nM,则c=(nM–nU–a)*psize,其中,psize为数据包的平均大小,其可以采用预先设定的方式或由所述MeNB根据之前向所述SeNB发送的各数据包的大小计算平均值得到。因此、x=b–(nM–nU–a)*psize,其中,b、a和nU由SeNB反馈至MeNB,而nM和psize是MeNB可以通过自身预先获知的。
步骤S608:在下一个SeNB的反馈到达前,MeNB向SeNB发送的全部数据包的大小之和应当为x。
图7是根据本发明实施例的流量控制装置的结构框图。如图7所示,该流量控制装置可以包括:发送模块10,设置为向次基站SeNB发送数据包以及数据包序号;接收模块20,设置为接收SeNB响应数据包以及数据包序号反馈的信息集合,其中,信息集合包括以下信息至少之一:
(1)SeNB从MeNB接收到的数据包序号;
(2)SeNB已经发送至UE的数据包序号;
(3)SeNB可用的缓存大小;
(4)SeNB缓存的尚未发送至UE的数据大小。
采用如图7所示的装置,解决了相关技术中无法实现双连接时MeNB与SeNB之间的流量控制的问题,进而优化了双连接时SeNB侧的数据传输效率,并且有效地避免了SeNB侧可能发生的数据丢失。
优选地,如图8所示,上述装置还可以包括:计算模块30,设置为计算在SeNB下一次反馈信息集合之前,向SeNB发送的数据总量。
优选地,计算模块30可以包括:确定单元(图中未示出),设置为根据信息集合确定SeNB可用的缓存大小;获取单元(图中未示出),设置为获取自身已经发送但尚未到达SeNB的数据大小;计算单元(图中未示出),设置为采用SeNB可用的缓存大小与自身已经发送但尚未到达SeNB的数据大小执行减法运算,求取数据总量。
优选地,获取单元,设置为采用以下公式之一计算自身已经发送但尚未到达SeNB的数据大小:
(1)c=(nM–nS)*psize;
(2)c=(nM–nU–a)*psize;
其中,nM为MeNB已经向SeNB发送的数据包序号,nS为SeNB从MeNB接收到的数据包序号,nU为SeNB已经发送至UE的数据包序号,a为SeNB缓存的尚未发送至UE的数据大小,psize为MeNB向SeNB发送的数据包的平均大小。
优选地,计算单元,设置为采用以下公式之一计算数据总量:
(1)x=b–(nM–nS)*psize;
(2)x=b–(nM–nU–a)*psize;
其中,x为数据总量,b为SeNB可用的缓存大小。
在优选实施过程中,上述b、nS、nU、a均由SeNB反馈至MeNB,nM由MeNB自身确定,psize为预先设定或由所述MeNB根据之前向所述SeNB发送的各数据包的大小计算平均值得到。
从以上的描述中,可以看出,上述实施例实现了如下技术效果(需要说明的是这些效果是某些优选实施例可以达到的效果):采用本发明实施例所提供的技术方案,实现了双连接时MeNB与SeNB之间的流量控制,优化了双连接时SeNB侧的数据传输效率,并且有效地避免了SeNB侧可能发生的数据丢失。
显然,本领域的技术人员应该明白,上述的本发明的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
工业实用性
如上所述,本发明实施例提供的一种流量控制方法及装置具有以下有益效果:能够实现在双连接时对MeNB与SeNB之间的流量进行控制,进而优化了双连接时SeNB侧的数据传输效率,并且有效地避免了SeNB侧可能发生的数据丢失。

Claims (12)

  1. 一种流量控制方法,包括:
    主基站MeNB向次基站SeNB发送数据包以及数据包序号;
    所述MeNB接收所述SeNB响应所述数据包以及所述数据包序号反馈的信息集合,其中,所述信息集合包括以下信息至少之一:
    所述SeNB从所述MeNB接收到的数据包序号;
    所述SeNB已经发送至用户设备UE的数据包序号;
    所述SeNB可用的缓存大小;
    所述SeNB缓存的尚未发送至所述UE的数据大小。
  2. 根据权利要求1所述的方法,其中,在所述MeNB接收所述SeNB响应所述数据包以及所述数据包序号反馈的所述信息集合之后,还包括:
    所述MeNB计算在所述SeNB下一次反馈所述信息集合之前,向所述SeNB发送的数据总量。
  3. 根据权利要求2所述的方法,其中,所述MeNB计算在所述SeNB下一次反馈所述信息集合之前,向所述SeNB发送的所述数据总量包括:
    所述MeNB根据所述信息集合确定所述SeNB可用的缓存大小;
    所述MeNB获取自身已经发送但尚未到达所述SeNB的数据大小;
    所述MeNB采用所述SeNB可用的缓存大小与所述自身已经发送但尚未到达所述SeNB的数据大小执行减法运算,求取所述数据总量。
  4. 根据权利要求3所述的方法,其中,采用以下公式之一计算所述自身已经发送但尚未到达所述SeNB的数据大小:
    c=(nM–nS)*psize;
    c=(nM–nU–a)*psize;
    其中,nM为所述MeNB已经向所述SeNB发送的数据包序号,nS为所述SeNB从所述MeNB接收到的数据包序号,nU为所述SeNB已经发送至所述UE的数据包序号,a为所述SeNB缓存的尚未发送至所述UE的数据大小,psize为所述MeNB向所述SeNB发送的数据包的平均大小。
  5. 根据权利要求4所述的方法,其中,采用以下公式之一计算所述数据总量:
    x=b–(nM–nS)*psize;
    x=b–(nM–nU–a)*psize;
    其中,x为所述数据总量,b为所述SeNB可用的缓存大小。
  6. 根据权利要求4或5所述的方法,其中,b、nS、nU、a均由所述SeNB反馈至所述MeNB,nM由所述MeNB自身确定,psize为预先设定或由所述MeNB根据之前向所述SeNB发送的各数据包的大小计算平均值得到。
  7. 一种流量控制装置,包括:
    发送模块,设置为向次基站SeNB发送数据包以及数据包序号;
    接收模块,设置为接收所述SeNB响应所述数据包以及所述数据包序号反馈的信息集合,其中,所述信息集合包括以下信息至少之一:
    所述SeNB从主基站MeNB接收到的数据包序号;
    所述SeNB已经发送至用户设备UE的数据包序号;
    所述SeNB可用的缓存大小;
    所述SeNB缓存的尚未发送至所述UE的数据大小。
  8. 根据权利要求7所述的装置,其中,所述装置还包括:
    计算模块,设置为计算在所述SeNB下一次反馈所述信息集合之前,向所述SeNB发送的数据总量。
  9. 根据权利要求8所述的装置,其中,所述计算模块包括:
    确定单元,设置为根据所述信息集合确定所述SeNB可用的缓存大小;
    获取单元,设置为获取自身已经发送但尚未到达所述SeNB的数据大小;
    计算单元,设置为采用所述SeNB可用的缓存大小与所述自身已经发送但尚未到达所述SeNB的数据大小执行减法运算,求取所述数据总量。
  10. 根据权利要求9所述的装置,其中,所述获取单元,设置为采用以下公式之一计算所述自身已经发送但尚未到达所述SeNB的数据大小:
    c=(nM–nS)*psize;
    c=(nM–nU–a)*psize;
    其中,nM为所述MeNB已经向所述SeNB发送的数据包序号,nS为所述SeNB从所述MeNB接收到的数据包序号,nU为所述SeNB已经发送至所述UE的数据包序号,a为所述SeNB缓存的尚未发送至所述UE的数据大小,psize为所述MeNB向所述SeNB发送的数据包的平均大小。
  11. 根据权利要求10所述的装置,其中,所述计算单元,设置为采用以下公式之一计算所述数据总量:
    x=b–(nM–nS)*psize;
    x=b–(nM–nU–a)*psize;
    其中,x为所述数据总量,b为所述SeNB可用的缓存大小。
  12. 根据权利要求10或11所述的装置,其中,b、nS、nU、a均由所述SeNB反馈至所述MeNB,nM由所述MeNB自身确定,psize为预先设定或由所述MeNB根据之前向所述SeNB发送的各数据包的大小计算平均值得到。
PCT/CN2015/075914 2014-12-19 2015-04-03 流量控制方法及装置 WO2016095366A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410802355.2 2014-12-19
CN201410802355.2A CN105792286A (zh) 2014-12-19 2014-12-19 流量控制方法及装置

Publications (1)

Publication Number Publication Date
WO2016095366A1 true WO2016095366A1 (zh) 2016-06-23

Family

ID=56125738

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/075914 WO2016095366A1 (zh) 2014-12-19 2015-04-03 流量控制方法及装置

Country Status (2)

Country Link
CN (1) CN105792286A (zh)
WO (1) WO2016095366A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106716337A (zh) * 2016-07-01 2017-05-24 深圳市大疆创新科技有限公司 一种数据交互方法、数据记录仪和无人设备
WO2018029571A1 (en) * 2016-08-12 2018-02-15 Nokia Technologies Oy Dual connectivity enhancement for content caching interworking

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020048355A1 (zh) * 2018-09-04 2020-03-12 Oppo广东移动通信有限公司 用户界面ui显示控制方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1981492A (zh) * 2004-05-12 2007-06-13 诺基亚公司 用于多媒体流中速率适配的缓冲器水平信令
CN103152192A (zh) * 2011-12-07 2013-06-12 中国移动通信集团浙江有限公司 数据传输方法及网管系统
WO2013104413A1 (en) * 2012-01-10 2013-07-18 Nokia Siemens Networks Oy Providing a radio bearer on a plurality of component carriers
CN103888222A (zh) * 2014-03-21 2014-06-25 电信科学技术研究院 一种数据包处理方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1981492A (zh) * 2004-05-12 2007-06-13 诺基亚公司 用于多媒体流中速率适配的缓冲器水平信令
CN103152192A (zh) * 2011-12-07 2013-06-12 中国移动通信集团浙江有限公司 数据传输方法及网管系统
WO2013104413A1 (en) * 2012-01-10 2013-07-18 Nokia Siemens Networks Oy Providing a radio bearer on a plurality of component carriers
CN103888222A (zh) * 2014-03-21 2014-06-25 电信科学技术研究院 一种数据包处理方法及装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106716337A (zh) * 2016-07-01 2017-05-24 深圳市大疆创新科技有限公司 一种数据交互方法、数据记录仪和无人设备
WO2018000425A1 (zh) * 2016-07-01 2018-01-04 深圳市大疆创新科技有限公司 一种数据交互方法、数据记录仪和无人设备
CN106716337B (zh) * 2016-07-01 2020-01-17 深圳市大疆创新科技有限公司 一种数据交互方法、数据记录仪和无人设备
WO2018029571A1 (en) * 2016-08-12 2018-02-15 Nokia Technologies Oy Dual connectivity enhancement for content caching interworking

Also Published As

Publication number Publication date
CN105792286A (zh) 2016-07-20

Similar Documents

Publication Publication Date Title
KR101913488B1 (ko) 통신 시스템
EP3592035A1 (en) Mobile network switching method and communication device
KR101677476B1 (ko) 서비스 제공 시스템 및 방법, 및 모바일 에지 애플리케이션 서버 및 지원 노드
US10595239B2 (en) Data transmission method and device
US9894558B2 (en) Lower and upper bounds for flow-control data requests between network nodes
EP3425938B1 (en) Charging methods and devices
EP2672752A1 (en) Wireless bearing building method, access point equipment, user equipment and system
WO2020067346A1 (en) Radio access network and methods for expedited network access
EP2387269B1 (en) Method, device and system for multi-carrier cell handover
EP2749074B1 (en) A gateway device for handling ue context and a method thereof
EP3557939A1 (en) Dual connection method and access network equipment
US9877235B2 (en) Method and system for setup or modification of data flows, primary node, secondary node, UE and computer program product
CN109151918A (zh) 切换控制方法及装置
CN103202092A (zh) 在电信系统中通过接口共享信息的方法和网络节点
EP2836047A1 (en) Method and system for initiating data transmission, a primary node, secundary node, UE and computer program product
CN106941700A (zh) 一种数据传输方法及装置和基站及ue
EP3986015A1 (en) Method and device for establishing aggregated connection, and storage medium
US20160173358A1 (en) Systems, apparatuses, and methods for managing user equipment mobility information
CN104640165A (zh) 一种数据传输方法、设备和系统
US10212750B2 (en) Method and device for establishing a dual connectivity between a user equipment and a MeNB and a SeNB, by providing the user equipment history information
KR20190026960A (ko) 기지국, 무선 통신 시스템 및 통신 방법
WO2016095366A1 (zh) 流量控制方法及装置
US20140044065A1 (en) Method and apparatus of bearer grouping for data transmission in a broadband wireless network
CN108616907A (zh) 一种用于lte用户的移动性管理的方法、设备与系统
WO2015117325A1 (zh) 双连接拆建方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15868883

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15868883

Country of ref document: EP

Kind code of ref document: A1