WO2016094999A1 - Processo de controle de um motor de combustão e unidade de controle de motor - Google Patents

Processo de controle de um motor de combustão e unidade de controle de motor Download PDF

Info

Publication number
WO2016094999A1
WO2016094999A1 PCT/BR2015/050250 BR2015050250W WO2016094999A1 WO 2016094999 A1 WO2016094999 A1 WO 2016094999A1 BR 2015050250 W BR2015050250 W BR 2015050250W WO 2016094999 A1 WO2016094999 A1 WO 2016094999A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
natural gas
controlling
tank
gas
Prior art date
Application number
PCT/BR2015/050250
Other languages
English (en)
French (fr)
Inventor
Frederico Paulo TISCHER
Original Assignee
Robert Bosch Limitada
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Limitada filed Critical Robert Bosch Limitada
Publication of WO2016094999A1 publication Critical patent/WO2016094999A1/pt

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/08Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed simultaneously using pluralities of fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/08Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed simultaneously using pluralities of fuels
    • F02D19/10Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed simultaneously using pluralities of fuels peculiar to compression-ignition engines in which the main fuel is gaseous

Definitions

  • the present invention relates to the technological field of control of internal combustion engines whose at least one fuel is compressed natural gas.
  • the invention aims at optimal engine control even in the event of a change in the quality of the gas used as fuel.
  • Natural gas powered engines generate good performance and low exhaust emissions when the air-fuel mixture has good ignition, optimum combustion rate, high knock resistance, and sufficient energy content.
  • the composition of natural gas is not constant. It may vary depending in particular on the areas of origin of the gas. The gas composition of a particular source area may also vary over time.
  • WO 2010/139572 describes a method and a device for feeding a diesel engine with diesel and gas.
  • WO 201 1/002353 describes a control method for a bi-fuel engine fitted with a specific sensor for measuring fuel quality.
  • the purpose of the present invention is to improve known methods and devices.
  • the invention relates to a process for controlling a combustion engine fitted with an exhaust temperature sensor and whose at least one fuel is compressed natural gas contained in a tank fitted with a Pressure Sensor.
  • the process includes the following steps:
  • Another object of the invention is an engine control unit for carrying out the process as defined above, and which includes a prediction module adapted to determine the expected theoretical temperature of the exhaust temperature sensor.
  • the invention allows optimum engine control with any quality of natural gas.
  • the typical case occurs when the vehicle is supplied with natural gas of different quality.
  • the invention makes it possible to detect this different quality of gas and to make a correlation with a given supply.
  • the classification of natural gas according to its quality provides reliable information for adapting engine control to that particular gas.
  • Variations in calorific value and detonation resistance can be detected for different supplies.
  • the overhaul applied by the engine control as a function of the natural gas quality class ensures optimum performance as well as engine protection against detonation.
  • the invention allows the identification of changes in the properties of natural gas without resorting to specific and complex sensors, using instead the information already available in the usual motor control systems, ie the information measured by a temperature sensor, whose function and durability are well known.
  • the engine control process and the engine control unit may further include one of the following optional characteristics, or a combination of these characteristics.
  • the detection of the filling event of said tank is performed by the following steps: memorizing the pressure in the tank when the engine is stopped; and detect a pressure increase in the tank as soon as the engine starts again.
  • the expected theoretical temperature for the exhaust temperature sensor is determined by means of a computational calculation operation.
  • the computational computation operation includes the use of a computational model of the engine.
  • the computational computation operation includes the use of a motor control map.
  • the step of determining a quality class for natural gas is relative to a discontinuous classification.
  • the step of determining a quality class for natural gas is relative to a continuous classification.
  • the step of applying a motor control overhaul includes a correction of motor control parameters.
  • the step of applying an engine control overhaul includes applying an engine control map linked to the natural gas quality class.
  • the process includes an additional step of detecting the amount of inert gas in natural gas based on information from the lambda sensor.
  • the process is applied to a bi-fuel engine powered by diesel oil and compressed natural gas.
  • the engine control unit includes an electronic gas control module controlling compressed natural gas injectors, and an electronic diesel control module controlling diesel oil injectors, which can communicate with one another.
  • Bi-fuel diesel and natural gas powered engines require, to ensure full function when working on diesel only, to maintain the typical compression ratio of diesel engines.
  • these engines become more sensitive to the presence of heavier hydrocarbons (butane and propane, for example) in the composition of the natural gas used.
  • the presence of heavy hydrocarbons reduces the self-ignition temperature of natural gas thus increasing the tendency of phenomena such as detonation and pre-ignition which are harmful to internal combustion engines.
  • the invention is especially advantageous when applied to a bi-fuel diesel and natural gas powered engine since such an engine is more sensitive to natural gas quality variation.
  • Figure 1 is a schematic representation of a combustion engine adapted for the implementation of the invention
  • Figure 2 is a flow chart illustrating the steps of an engine control process according to the invention.
  • the present preferred embodiment relates to a dual-fuel diesel-compressed natural gas engine.
  • the operation of this type of engine is based on the use of a pilot diesel injection as a replacement for the spark of Otto cycle engines.
  • Natural gas is introduced into the engine together with air through the intake duct.
  • the dual-fuel diesel engine - compressed natural gas engine includes a piston 1 mounted on a cylinder 2, and a combustion chamber 3.
  • An intake line 4 and an exhaust line 5 are connected to the combustion chamber 3 by means of valves 6.
  • valves 6 In this schematic view, only one engine cylinder has been shown.
  • This engine is powered by a diesel oil circuit 7 which includes a tank 8, a fuel pump 9, a common gallery 10, and diesel oil injectors 1 1.
  • the engine is also powered by a compressed natural gas circuit 18 including a tank 12, a pressure regulator and safety valve 13, and a gas injector 14 adapted to introduce a set amount of gas into the duct. 4.
  • a compressed natural gas circuit 18 including a tank 12, a pressure regulator and safety valve 13, and a gas injector 14 adapted to introduce a set amount of gas into the duct. 4.
  • the tank 12 consists of a set of three tanks connected therebetween.
  • a motor control unit 15 is connected to the different motor sensors and actuators and performs motor control according to integrated motor control programs.
  • the engine control unit 15 is connected to a number of usual sensors including a lambda sensor 19, an exhaust gas temperature sensor 20 and a gas pressure sensor 21.
  • Engine control unit 15 includes an electronic gas control module 16 controlling gas injector 14 and an electronic diesel control module 17 controlling diesel oil injectors 1 1.
  • the electronic gas control module 16 and the electronic diesel control module 17 can communicate with each other so that the engine can run in coordination with a mixture of diesel and gas.
  • Engine control unit 15 is adapted to detect a gas tank fill event.
  • the pressure inside the gas tank 12 is measured by the sensor 21 and is stored.
  • the gas tank fill event is identified when the engine control unit 15 detects a pressure increase in the gas tank after a vehicle stop.
  • the engine control unit 15 compares the temperature captured by the exhaust gas temperature sensor 20 with the expected theoretical temperature for that sensor.
  • the temperature captured by the exhaust gas temperature sensor 20 is the actual temperature that can be measured in the exhaust duct 4 in the sensor area 20.
  • the expected theoretical temperature for the exhaust gas temperature sensor 20 is a temperature prediction that is obtained using a computational calculation operation.
  • This computational computation operation can use, for example, a computational model of the motor.
  • a usual engine control unit 15 has several mathematical models for the combustion engine. Assuming that the engine input variables are known, it is possible to use computer modeling to make a prediction of the expected temperature in the exhaust duct 5 in the vicinity of sensor 20. Input variables are given by the different sensors of the and for example, the amount of fuel injected, the quality of the air-fuel mixture, the cooling, engine speed and torque, inlet duct pressure and temperature, etc.
  • the computational computation operation may also utilize a motor control map, of two dimensions or more.
  • Comparison allows to determine the deviation between the temperature captured by sensor 20 and the expected theoretical temperature for that sensor. This deviation is determined shortly after gas supply and is therefore correlated with the change in gas quality.
  • the change in gas quality is due to the fact that its calorific power varies as a function of its composition.
  • One of the causes of natural gas quality change is the variable presence of heavy hydrocarbons, such as butane, propane or ethane, along with methane. Combustion of heavy hydrocarbons results in a faster release of heat. As a result, for the same amount of energy, the combustion of heavy hydrocarbons transfers more heat to the engine cooling system and less heat to the exhaust gases reflecting lower exhaust temperatures.
  • heavy hydrocarbons such as butane, propane or ethane
  • inert gases such as carbon dioxide or nitrogen
  • methane Another cause of change in natural gas quality is the variable presence of inert gases, such as carbon dioxide or nitrogen, along with methane. Inert gases do not participate in combustion. Therefore, an increase in inert gas content leads to a decrease in the amount of natural gas heat and lower exhaust temperatures.
  • the engine control unit 15 determines a quality class for the natural gas.
  • This classification may be continuous or discontinuous. If continuous, a numeral index is assigned to the rated gas, that numeral index coming from an analog scale. If the classification is discontinuous, a category is assigned to the classified gas, that category coming from a finite set of categories.
  • the process leading to the classification of natural gas is illustrated in figure 2.
  • the engine is schematic at the bottom of the figure: the combustion chamber 3 is between an inlet stream 22 (the intake gases) and a stream outlet 23 (the exhaust).
  • available motor state data is used in the computational operation. In this example, all motor sensor information is entered as initial data in a motor computational model.
  • step S2 the data are processed in the computational model to obtain in step S3 the expected theoretical temperature for the exhaust gas temperature sensor 20.
  • step S4 the temperature captured by the exhaust temperature sensor 20 is compared to the expected theoretical temperature for that sensor.
  • step S5 the specific natural gas that is feeding the engine is classified.
  • Engine control unit 15 uses this natural gas rating to apply an engine control overhaul, ie engine control unit 15 will use a different calibration depending on the composition of natural gas.
  • the default setting of the motor control unit 15 is adapted to a natural gas reference composition.
  • the engine control unit programming also changes in this example to remain optimal.
  • engine control unit 15 applies an engine control overhaul which may be a correction of engine control parameters, for example, the application of a correction coefficient that modifies the amount of fuel injected or the standard of injection, this coefficient depending on the gas classification.
  • Engine control overhaul may also be the application of an engine control map linked to the natural gas quality class.
  • the default injection map can be exchanged for an injection map linked to the natural gas rating.
  • the engine control unit 15 has, in this example, several injection maps and will select With the help of gas classification, you can use one of these maps as the map most suited to the specific natural gas that is feeding the engine.
  • the injection map of this example is a three-dimensional graph that determines how much fuel to inject as a function of engine speed and torque demand.
  • the process can be completed by using the lambda sensor 19 for detecting the amount of inert gas present in natural gas based on the oxygen concentration in the air-fuel mixture. Natural gas density and stoichiometry variations can be identified by measuring the oxygen concentration in the exhaust gas after the vehicle has been refueled.
  • the lambda sensor 19 can thus be used to confirm or fine tune the natural gas rating, providing further information to the engine control unit 15 to interpret the deviation between the temperature captured by the exhaust temperature sensor 20 and the expected theoretical temperature. for this sensor.

Abstract

A presente invenção refere-se a um processo de controle de um motor de combustão munido de um sensor de temperatura de gases de escape (20) e cujo ao menos um combustível é gás natural comprimido contido em um tanque (12) munido de um sensor de pressão (21). Logo depois de detectar um evento de abastecimento do dito tanque (12), o processo inclui as seguintes etapas: - comparar a temperatura captada pelo sensor de temperatura de gases de escape (20) com a temperatura teórica esperada para esse sensor; - determinar uma classe de qualidade para o gás natural em função do resultado da comparação; - aplicar uma revisão ao controle do motor em função da dita classe de qualidade determinada para o gás natural. A presente invenção também se refere a uma unidade de controle de motor.

Description

Relatório Descritivo da Patente de Invenção para "PROCESSO DE CONTROLE DE UM MOTOR DE COMBUSTÃO E UNIDADE DE CONTROLE DE MOTOR".
[001 ] A presente invenção refere-se ao ramo tecnológico do controle dos motores de combustão interna cujo ao menos um dos combustíveis é gás natural comprimido. A invenção visa um ótimo controle do motor mesmo em caso de mudança da qualidade do gás que é utilizado como combustível.
[002] Os motores alimentados com gás natural geram um bom rendimento e baixas emissões de escape quando a mistura ar-combustível apre- senta uma boa ignição, uma taxa de combustão ideal, uma alta resistência à detonação, e um conteúdo de energia suficiente.
[003] Ao utilizar o gás natural como combustível, as seguintes propriedades são importantes em relação ao rendimento do motor: densidade, índice de Wobbe, estequiometria, resistência à detonação.
[004] Estas propriedades do gás estão ligadas à composição química do gás. Portanto, variações na composição do gás implicam em variações nas propriedades dele e têm um efeito sobre o rendimento, a resistência à detonação e as emissões de escape dos veículos a gás natural, especialmente se o controle do motor é otimizado para o máximo rendimento e efici- ência com um gás de composição fixa e se não está equipado com meios para ajustar o controle do motor a gases de diferentes composições.
[005] A composição do gás natural não é constante. Ela pode apresentar variações em função, em particular, das áreas de origem do gás. A composição do gás de uma determinada área de origem também pode variar ao longo do tempo.
Descrição do estado da técnica
[006] O documento WO 2010/139572 descreve um método e um dispositivo para alimentar um motor diesel com óleo diesel e com gás.
[007] O documento WO 201 1/002353 descreve um método de contro- le para um motor bicombustível munido de um sensor específico para medir a qualidade do combustível.
Breve descrição da invenção [008] O propósito da presente invenção é de melhorar os processos e os dispositivos conhecidos.
[009] Com esse efeito, a invenção está relacionada com um processo de controle de um motor de combustão munido de um sensor de temperatu- ra de gases de escape e cujo ao menos um combustível é gás natural comprimido contido em um tanque munido de um sensor de pressão. Logo depois de detectar um evento de abastecimento do dito tanque, o processo inclui as seguintes etapas:
[0010] - comparar a temperatura captada pelo sensor de temperatura de gases de escape com a temperatura teórica esperada para esse sensor;
[001 1 ] - determinar uma classe de qualidade para o gás natural em função do resultado da comparação;
[0012] - aplicar uma revisão pelo controle do motor em função da dita classe de qualidade determinada para o gás natural.
[0013] Outro objeto da invenção é uma unidade de controle de motor para a execução do processo como definido acima, e que inclui um módulo de previsão adaptado para determinar a temperatura teórica esperada para o sensor de temperatura de gases de escape.
[0014] A invenção permite um ótimo controle do motor com qualquer qualidade de gás natural. O caso típico ocorre quando o veículo é abastecido com gás natural de qualidade diferente. A invenção permite detectar essa qualidade diferente do gás e realizar uma correlação com um determinado abastecimento feito.
[0015] A classificação do gás natural em função de sua qualidade pro- porciona uma informação confiável para adaptar o controle do motor a esse gás particular.
[0016] As variações no poder calorífico e na resistência à detonação podem ser detectadas para diferentes abastecimentos. A revisão aplicada pelo controle do motor em função da classe de qualidade do gás natural ga- rante um rendimento ótimo e também uma proteção do motor contra a detonação. [0017] A invenção permite a identificação de alterações nas propriedades do gás natural sem recorrer a sensores específicos e complexos, usando ao invés a informação já disponível nos sistemas usuais de controle de motores, ou seja, a informação medida por um sensor de temperatura, cuja função e durabilidade são bem conhecidas.
[0018] O processo de controle de um motor e a unidade de controle de motor podem ademais incluir uma das características opcionais seguintes, ou um conjunto dessas características combinadas.
[0019] A detecção do evento de abastecimento do dito tanque é reali- zada com o sensor de pressão do tanque.
[0020] A detecção do evento de abastecimento do dito tanque é realizada por meio das seguintes etapas: memorizar a pressão no tanque quando o motor está parado; e detectar um aumento de pressão no tanque logo que o motor arranque de novo.
[0021 ] A temperatura teórica esperada para o sensor de temperatura de gases de escape é determinada por meio de uma operação de cálculo computacional.
[0022] A operação de cálculo computacional inclui a utilização de um modelo computacional do motor.
[0023] A operação de cálculo computacional inclui a utilização de um mapa de controle de motor.
[0024] A etapa de determinar uma classe de qualidade para o gás natural é relativa a uma classificação descontínua.
[0025] A etapa de determinar uma classe de qualidade para o gás natu- ral é relativa a uma classificação contínua.
[0026] A etapa de aplicar uma revisão pelo controle do motor inclui uma correção dos parâmetros de controle de motor.
[0027] A etapa de aplicar uma revisão pelo controle do motor inclui a aplicação de um mapa de controle do motor ligado à classe de qualidade do gás natural. [0028] O processo inclui uma etapa adicional de detecção da quantidade de gás inerte no gás natural com base nas informações provindas do sensor lambda.
[0029] O processo é aplicado a um motor bicombustível alimentado por óleo diesel e gás natural comprimido.
[0030] A unidade de controle de motor inclui um módulo eletrônico de controle de gás controlando injetores de gás natural comprimido, e um módulo eletrônico de controle de diesel controlando injetores de óleo diesel, que podem comunicar um com o outro.
[0031 ] Motores bicombustível alimentados com óleo diesel e gás natural exigem, para garantir a plena função quando trabalham somente com diesel, manter, a taxa de compressão típica de motores diesel. Com isto, estes ditos motores tornam-se mais sensíveis à presença de hidrocarbonetos mais pesados (butano e propano, por exemplo) na composição do gás natural utilizado. A presença de hidrocarbonetos pesados reduz a temperatura de autoignição do gás natural aumentando assim a tendência de fenómenos como detonação e pré-ignição os quais são nocivos aos motores de combustão interna. Desta forma, a invenção é especialmente vantajosa quando aplicada a um motor bicombustível alimentado com óleo diesel e gás natural já que esse tipo de motor é mais sensível à variação de qualidade do gás natural.
Descrição resumida das figuras
[0032] A invenção é explicada abaixo pela descrição de um modo preferido de realização, dado como exemplo, em referência às figuras, nas quais:
[0033] - a figura 1 é uma representação esquemática de um motor de combustão adaptado para a implementação da invenção;
[0034] - a figura 2 é um fluxograma ilustrando as etapas de um processo de controle de motor de acordo com a invenção.
Descrição detalhada das figuras
[0035] O presente exemplo de realização preferido é relacionado a um motor bicombustível óleo diesel - gás natural comprimido. [0036] O funcionamento desse tipo de motor é baseado no uso de uma injeção piloto de óleo diesel como um substituto para a centelha dos motores de ciclo Otto. O gás natural é introduzido no motor em conjunto com o ar através do conduto de admissão.
[0037] No ciclo de admissão, o gás natural misturado com o ar flui para dentro do cilindro através das válvulas de admissão. No ciclo de compressão, a mistura resultante é comprimida e uma injeção piloto de óleo diesel é realizada. O aumento de temperatura e pressão permite a autoignição do óleo diesel. No ciclo de combustão, a combustão do óleo diesel inflama o gás natural.
[0038] Este tipo de motor bicombustível óleo diesel - gás natural comprimido é conhecido e, portanto, o seu funcionamento não necessita ser descrito aqui de modo detalhado.
[0039] Em relação à figura 1 , o motor bicombustível de óleo diesel - gás natural comprimido inclui um pistão 1 montado em um cilindro 2, e uma câmara de combustão 3. Um conduto de admissão 4 e um conduto de escape 5 estão ligados à câmara de combustão 3 por meio de válvulas 6. Nesta vista esquemática, só foi representado um cilindro do motor.
[0040] Este motor é alimentado por um circuito de óleo diesel 7 que in- clui um tanque 8, uma bomba de combustível 9, uma galeria comum 10, e injetores de óleo diesel 1 1 .
[0041 ] O motor é também alimentado por um circuito de gás natural comprimido 18 que inclui um tanque 12, um regulador de pressão e válvula de segurança 13, e um injetor de gás 14 adaptado para introduzir uma quan- tidade definida de gás no conduto de admissão 4. O tanque 12 é neste exemplo constituído por um conjunto de três tanques ligados entre eles.
[0042] Uma unidade de controle de motor 15 está ligada aos diferentes sensores e atuadores do motor e efetua o comando do motor em função de programas de controle de motor integrados. A unidade de controle de motor 15 está ligada a diversos sensores usuais, incluindo um sensor lambda 19, um sensor de temperatura de gases de escape 20 e um sensor de pressão de gás 21. [0043] A unidade de controle de motor 15 inclui um módulo eletrônico de controle de gás 16, controlando o injetor de gás 14, e um módulo eletrônico de controle de diesel 17, controlando os injetores de óleo diesel 1 1 . 0 módulo eletrônico de controle de gás 16 e o módulo eletrônico de controle de diesel 17 podem comunicar um com o outro de modo que o motor possa funcionar de maneira coordenada com uma mistura de óleo diesel e de gás.
[0044] A unidade de controle de motor 15 é adaptada para detectar um evento de abastecimento do tanque de gás.
[0045] A pressão dentro do tanque de gás 12 é medida pelo sensor 21 e é memorizada. O evento de abastecimento do tanque de gás é identificado quando a unidade de controle de motor 15 detecta um aumento da pressão no tanque de gás depois de uma imobilização do veículo.
[0046] Logo depois do evento de abastecimento ser detectado, a unidade de controle de motor 15 compara a temperatura captada pelo sensor de temperatura de gás de escape 20 com a temperatura teórica esperada para esse sensor.
[0047] A temperatura captada pelo sensor de temperatura de gás de escape 20 é a temperatura real que se pode medir no conduto de escape 4, na área do sensor 20.
[0048] A temperatura teórica esperada para o sensor de temperatura de gás de escape 20 é uma previsão de temperatura que é obtida usando uma operação de cálculo computacional.
[0049] Essa operação de cálculo computacional pode utilizar, por exemplo, um modelo computacional do motor. Uma unidade de controle de motor 15 usual dispõe de vários modelos matemáticos para o motor de combustão. Considerando-se que as variáveis de entrada do motor são conhecidas, é possível usar a modelagem computacional para fazer uma predição da temperatura esperada no conduto de gases de escape 5, na vizinhança do sensor 20. As variáveis de entrada são dadas pelos diferentes sensores do motor e são, por exemplo e entre outros, a quantidade de combustível injetado, a qualidade da mistura ar-combustível, a temperatura do líquido de arrefecimento, a rotação e o torque do motor, a pressão e a temperatura no conduto de admissão, etc.
[0050] A operação de cálculo computacional pode também utilizar um mapa de controle de motor, com duas dimensões ou mais.
[0051 ] A comparação permite determinar o desvio entre a temperatura captada pelo sensor 20 e a temperatura teórica esperada para esse sensor. Esse desvio é determinado logo depois do abastecimento em gás e é, portanto, correlacionável com a mudança de qualidade de gás.
[0052] A mudança de qualidade de gás é devido ao fato que o seu po- der calorífico varia em função de sua composição.
[0053] Uma das causas de mudança de qualidade do gás natural é a presença variável de hidrocarbonetos pesados, tais como butano, propano ou etano, junto com o metano. A combustão dos hidrocarbonetos pesados gera uma liberação mais rápida da sua quantidade de calor. Como conse- quência, para uma mesma quantidade de energia, a combustão dos hidrocarbonetos pesados transfere mais calor para o sistema de arrefecimento do motor e menos calor para os gases de escape refletindo em menores temperaturas de gases de escape.
[0054] Outra causa de mudança de qualidade do gás natural é a pre- sença variável de gases inertes, tais como dióxido de carbono ou nitrogénio, junto com o metano. Os gases inertes não participam da combustão. Portanto, um aumento do teor de gases inertes gera uma diminuição da quantidade de calor do gás natural e menores temperaturas de gases de escape.
[0055] Considerando este desvio entre a temperatura captada pelo sensor 20 e a temperatura teórica esperada para esse sensor, e considerando a relação entre o desvio e a composição do gás natural, a unidade de controle de motor 15 determina uma classe de qualidade para o gás natural. Essa classificação pode ser contínua ou descontínua. Se for contínua, um índice numeral é atribuído ao gás classificado, esse índice numeral provindo de uma escala analógica. Se a classificação for descontínua, uma categoria é atribuída ao gás classificado, essa categoria provinda de um conjunto finito de categorias. [0056] O processo que leva à classificação do gás natural é ilustrado na figura 2. O motor é esquematizado na parte de baixo da figura: a câmara de combustão 3 está entre um fluxo de entrada 22 (os gases de admissão) e um fluxo de saída 23 (os gases de escape). Na primeira etapa S1 , os dados disponíveis sobre o estado do motor são usados na operação de cálculo computacional. Neste exemplo, todas as informações dos sensores do motor são entradas como dados iniciais em um modelo computacional do motor.
[0057] Na etapa S2, os dados são processados no modelo computacional para a obtenção, na etapa S3, da temperatura teórica esperada para o sensor de temperatura de gases de escape 20.
[0058] Na etapa S4, a temperatura captada pelo sensor de temperatura de gases de escape 20 é comparada com a temperatura teórica esperada para esse sensor.
[0059] Na etapa S5, o gás natural específico que está alimentando o motor é classificado.
[0060] A unidade de controle de motor 15 usa essa classificação do gás natural para aplicar uma revisão pelo controle do motor, ou seja, a unidade de controle de motor 15 vai usar uma calibração diferente em função da composição do gás natural. A programação padrão da unidade de controle motor 15 é adaptada para uma composição de referência do gás natural. Quando a composição do gás natural muda, a programação da unidade de controle do motor também muda, neste exemplo, para permanecer ótima. Para esse fim, a unidade de controle de motor 15 aplica uma revisão ao controle do motor que pode ser uma correção dos parâmetros de controle de motor, por exemplo, a aplicação de um coeficiente de correção que modifica a quantidade de combustível injetado ou o padrão de injeção, esse coeficiente dependendo da classificação do gás.
[0061 ] A revisão feita pelo controle do motor pode ser também a aplicação de um mapa de controle motor ligado à classe de qualidade do gás natu- ral. Por exemplo, o mapa de injeção padrão pode ser trocado por um mapa de injeção ligado à classificação do gás natural. A unidade de controle de motor 15 dispõe, nesse exemplo, de vários mapas de injeção e vai selecio- nar, com a ajuda da classificação do gás, um desses mapas como o mapa mais adaptado para o gás natural específico que está alimentando o motor.
[0062] O mapa de injeção deste exemplo é um gráfico tridimensional que determina uma quantidade de combustível a ser injetada em função da rotação do motor e da demanda de torque.
[0063] Opcionalmente, o processo pode ser completado com o uso do sensor lambda 19 para a detecção da quantidade de gás inerte presente no gás natural, com base na concentração de oxigénio na mistura ar- combustível. As variações de densidade e de estequiometria do gás natural podem ser identificadas através da medição da concentração de oxigénio nos gases de escape após o abastecimento do veículo. O sensor lambda 19 pode ser assim utilizado para confirmar ou afinar a classificação do gás natural, dando mais informações à unidade de controle de motor 15 para interpretar o desvio entre a temperatura captada pelo sensor de temperatura de gases de escape 20 e a temperatura teórica esperada para esse sensor.
[0064] Tendo sido descrito um exemplo de concretização preferido, deve ser entendido que o escopo da presente invenção abrange outras possíveis variações, sendo limitado tão somente pelo teor das reivindicações apensas, aí incluídos os possíveis equivalentes.

Claims

REIVINDICAÇÕES
1 . Processo de controle de um motor de combustão munido de um sensor de temperatura de gases de escape (20) e cujo ao menos um combustível é gás natural comprimido contido em um tanque (12) munido de um sensor de pressão (21 ), caracterizado pelo fato de que, logo depois de detectar um evento de abastecimento do dito tanque (12), o processo inclui as seguintes etapas:
- comparar a temperatura captada pelo sensor de temperatura de gases de escape (20) com a temperatura teórica esperada para esse sensor;
- determinar uma classe de qualidade para o gás natural em função do resultado da comparação;
- aplicar uma revisão pelo controle do motor (15) em função da dita classe de qualidade determinada para o gás natural.
2. Processo de controle de um motor de acordo com a reivindicação 1 , ca- racterizado pelo fato de que a detecção do evento de abastecimento do dito tanque (12) é realizada com o sensor de pressão (21 ) do tanque (12).
3. Processo de controle de um motor de acordo com a reivindicação 2, caracterizado pelo fato de que a detecção do evento de abastecimento do dito tanque (12) é realizada por meio das seguintes etapas: memorizar a pressão no tanque (12) quando o motor está parado; e detectar um aumento de pressão no tanque (12) logo que o motor arranque de novo.
4. Processo de controle de um motor de acordo com qualquer uma das reivindicações 1 a 3, caracterizado pelo fato de que a temperatura teórica esperada para o sensor de temperatura de gases de escape (20) é determina- da por meio de uma operação de cálculo computacional.
5. Processo de controle de um motor de acordo com a reivindicação 4, caracterizado pelo fato de que a operação de cálculo computacional inclui a utilização de um modelo computacional do motor.
6. Processo de controle de um motor de acordo com a reivindicação 4 ou 5, caracterizado pelo fato de que a operação de cálculo computacional inclui a utilização de um mapa de controle de motor.
7. Processo de controle de um motor de acordo com qualquer uma das reivindicações 1 a 6, caracterizado pelo fato de que a etapa de determinar uma classe de qualidade para o gás natural é relativa a uma classificação descontínua.
8. Processo de controle de um motor de acordo com qualquer uma das reivindicações 1 a 6, caracterizado pelo fato de que a etapa de determinar uma classe de qualidade para o gás natural é relativa a uma classificação contínua.
9. Processo de controle de um motor de acordo com qualquer uma das rei- vindicações 1 a 8, caracterizado pelo fato de que a etapa de aplicar uma revisão pelo controle do motor (15) inclui uma correção dos parâmetros de controle de motor.
10. Processo de controle de um motor de acordo com qualquer uma das reivindicações 1 a 9, caracterizado pelo fato de que a etapa de aplicar uma re- visão pelo controle do motor (15) inclui a aplicação de um mapa de controle do motor ligado à classe de qualidade do gás natural.
1 1 . Processo de controle de um motor de acordo com qualquer uma das reivindicações 1 a 10, caracterizado pelo fato de que inclui uma etapa adicional de detecção da quantidade de gás inerte no gás natural com base nas in- formações provindas do sensor lambda (19).
12. Processo de controle de um motor de acordo com qualquer uma das reivindicações 1 a 1 1 , caracterizado pelo fato de que é aplicado a um motor bicombustível alimentado por óleo diesel e gás natural comprimido.
13. Unidade de controle de motor para a execução do processo como defini- do em qualquer uma das reivindicações 1 a 12, caracterizada pelo fato de que inclui um módulo de previsão adaptado para determinar a temperatura teórica esperada para o sensor de temperatura de gases de escape (20).
14. Unidade de controle de motor de acordo com a reivindicação 13, caracterizada pelo fato de que inclui um módulo eletrônico de controle de gás (16), controlando injetores de gás natural comprimido (14), e um módulo eletrônico de controle de diesel (17), controlando injetores de óleo diesel (1 1 ), que podem se comunicar um com o outro.
PCT/BR2015/050250 2014-12-17 2015-12-14 Processo de controle de um motor de combustão e unidade de controle de motor WO2016094999A1 (pt)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BRBR1020140316299 2014-12-17
BR102014031629A BR102014031629A2 (pt) 2014-12-17 2014-12-17 processo de controle de um motor de combustão e unidade de controle de motor

Publications (1)

Publication Number Publication Date
WO2016094999A1 true WO2016094999A1 (pt) 2016-06-23

Family

ID=56125486

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2015/050250 WO2016094999A1 (pt) 2014-12-17 2015-12-14 Processo de controle de um motor de combustão e unidade de controle de motor

Country Status (2)

Country Link
BR (1) BR102014031629A2 (pt)
WO (1) WO2016094999A1 (pt)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5370097A (en) * 1993-03-22 1994-12-06 Davis Family Trust Combined diesel and natural gas engine fuel control system and method of using such
US7509209B2 (en) * 2002-09-24 2009-03-24 Engine Control Technology, Llc Methods and apparatus for operation of multiple fuel engines
WO2011066587A2 (en) * 2009-11-30 2011-06-03 Dhybrid, Inc. Natural gas and diesel fuel blending system
BRPI1003164A2 (pt) * 2009-08-07 2012-12-25 Bosch Gmbh Robert processo e dispositivo para a determinaÇço da composiÇço de uma mistura de combustÍvel para a operaÇço de uma mÁquina de combustço interna
WO2014020231A1 (en) * 2012-07-31 2014-02-06 Wärtsilä Finland Oy Method of and a control system for controlling the operation of an internal combustion piston engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5370097A (en) * 1993-03-22 1994-12-06 Davis Family Trust Combined diesel and natural gas engine fuel control system and method of using such
US7509209B2 (en) * 2002-09-24 2009-03-24 Engine Control Technology, Llc Methods and apparatus for operation of multiple fuel engines
BRPI1003164A2 (pt) * 2009-08-07 2012-12-25 Bosch Gmbh Robert processo e dispositivo para a determinaÇço da composiÇço de uma mistura de combustÍvel para a operaÇço de uma mÁquina de combustço interna
WO2011066587A2 (en) * 2009-11-30 2011-06-03 Dhybrid, Inc. Natural gas and diesel fuel blending system
WO2014020231A1 (en) * 2012-07-31 2014-02-06 Wärtsilä Finland Oy Method of and a control system for controlling the operation of an internal combustion piston engine

Also Published As

Publication number Publication date
BR102014031629A2 (pt) 2016-07-26

Similar Documents

Publication Publication Date Title
CN102906398B (zh) 用于改进瞬态发动机运行的方法
US8639431B2 (en) Fuel identification based on crankshaft acceleration
US10927773B2 (en) Device for operating an engine
EP2933464A1 (en) Natural gas quality sensor and method for using the same
US10385788B2 (en) Operating a gaseous fuel injector
CA2633634A1 (en) Virtual fuel quality sensor
RU2577690C2 (ru) Способ для двигателя, способ для топливной системы и система транспортного средства
CN107489551B (zh) 内燃机的控制装置
BRPI0701642B1 (pt) método para reconhecer o tipo de combustível em um motor a diesel
JP2010043531A (ja) 内燃機関の燃料噴射制御装置
CN112049734A (zh) 控制发动机中的引燃燃料喷射
RU2666498C2 (ru) Способ указания ухудшения работы топливной системы транспортного средства (варианты)
RU2607099C2 (ru) Система двигателя и способ управления работой двигателя (варианты)
JP2019183801A (ja) 内燃機関及び内燃機関の制御方法
CN109281749B (zh) 用于控制富化预燃室化学计量比的系统和方法
WO2016094999A1 (pt) Processo de controle de um motor de combustão e unidade de controle de motor
Singh et al. An Evaluation of Knock Determination Techniques for Diesel-Natural Gas Dual Fuel Engines
WO2011000043A1 (en) Fuel injector gain compensation for sub-sonic flow
US9494102B2 (en) Method for operating a fuel injection system of an internal combustion engine
JP5593794B2 (ja) 内燃機関の制御装置
WO2016095000A1 (pt) Processo de controle de um motor de combustao e unidade de controle de motor
US7124017B2 (en) Method of operating an internal combustion engine
WO2023090279A1 (ja) エンジンの制御装置及び車両
WO2022264795A1 (ja) メタン価の推定装置、ガスエンジンの制御装置およびメタン価の推定方法
WO2021009908A1 (ja) 内燃機関の制御装置および制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15868744

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15868744

Country of ref document: EP

Kind code of ref document: A1