WO2016094991A1 - Method for producing pegylated silica nanoparticles as carriers of hydrophobic pharmaceutical drugs, thus obtained nanoparticles and uses thereof - Google Patents

Method for producing pegylated silica nanoparticles as carriers of hydrophobic pharmaceutical drugs, thus obtained nanoparticles and uses thereof Download PDF

Info

Publication number
WO2016094991A1
WO2016094991A1 PCT/BR2015/000202 BR2015000202W WO2016094991A1 WO 2016094991 A1 WO2016094991 A1 WO 2016094991A1 BR 2015000202 W BR2015000202 W BR 2015000202W WO 2016094991 A1 WO2016094991 A1 WO 2016094991A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanoparticles
hydrophobic
minutes
process according
peg
Prior art date
Application number
PCT/BR2015/000202
Other languages
French (fr)
Portuguese (pt)
Inventor
Oswaldo Luiz Alves
Leandro Carneiro FONSECA
Amauri Jardim DE PAULA
Diego Stefani Teodoro Martinez
Original Assignee
Universidade Estadual De Campinas - Unicamp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from BR102014031688-4A external-priority patent/BR102014031688B1/en
Priority claimed from BR132015030941A external-priority patent/BR132015030941F1/en
Application filed by Universidade Estadual De Campinas - Unicamp filed Critical Universidade Estadual De Campinas - Unicamp
Publication of WO2016094991A1 publication Critical patent/WO2016094991A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/12Ketones
    • A61K31/121Ketones acyclic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • A61K31/4738Quinolines; Isoquinolines ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/4745Quinolines; Isoquinolines ortho- or peri-condensed with heterocyclic ring systems condensed with ring systems having nitrogen as a ring hetero atom, e.g. phenantrolines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/06Preparatory processes

Definitions

  • the present invention falls within the field of nanotechnology comprising the scientific platforms of material chemistry and solid state chemistry with emphasis on the interaction of nanostructures with biosystems, also known as nanobiotechnology.
  • the present invention relates to a process for obtaining pegylated silica nanoparticles carrying hydrophobic drugs, the silica nanoparticles obtained or not by said process and their use in anti-tumor and anti-inflammatory treatments.
  • Cancer is a disease caused by exacerbated cell growth, invading tissues and organs. This disease is derived from external or environmental factors and in approximately 90% of cases external factors are the main causes of the disease. If discovered early, the disease can be remedied by several treatments, among them are chemotherapy, radiation, hormones, among others. In fact, chemotherapy is the most common type of treatment and involves the use of antitumor drugs.
  • Cancer drugs have several side effects when applied to the body, as a result of the low selectivity of the drug that reaches healthy body cells and, consequently, causes high toxicity. In addition, there is a short circulation time in the blood and high 15 000202
  • violacein a violet-colored pigment produced by the bacterium Chromobacterium violaceum found in the Amazon. Studies conducted by researcher Nelson Duran and collaborators, from the State University of Campinas, showed the characteristics of this drug and its high anti-tumor, antiulcerogenic, antiviral, antibacterial and anti-leishmania ability. It is an extremely important drug in many medical applications, which underscores the need to produce molded nanoparticles for drugs with such characteristics.
  • NK911 polymeric micellar nanocarrier
  • the outer surface of this carrier was subjected to polyethylene glycol functionalization to avoid its uptake by the immune system and favors colloidal stability in hydrophilic solvents.
  • Said technology described in the journal resembles the present invention in that it comprises nanoparticles capable of carrying drugs within them and comprises polyethylene glycol (PEG) on the outer surface.
  • PEG polyethylene glycol
  • the present invention differs from the technology described in the article in that it comprises nanostructure functionalized silica, simultaneously with PEG on the outer surface and with hydrophobic organic functions on the inner surface, providing effective drug transport while maintaining it in a stable manner.
  • silica nanoparticles proposed in the present invention have a rigid surface that allows the surface to functionalize internally with drug-interacting hydrophobic organic groups. Additionally, they are distinct nanoparticles in relation to the nanostructure and chemical composition.
  • nanoparticles consisting of acetylated dendritic polymers whose outer surfaces were functionalized with folic acid binders aimed at obtaining nanoparticles capable of specifically targeting tumor cells.
  • Said cell types show strong expression of membrane receptors for folic acid.
  • the insertion of this chemical species on the nanoparticle surface guarantees its specificity to the target cells.
  • the technology described in the article resembles the present invention in that it comprises antitumor drug carrier nanoparticles, however, they do not have PEG on the outer surface, which is important for the biocompatibility of the nanoparticle in the organism, and it does not understand the inner surface. hydrophobic to keep the drug entrapped during intravenous transport.
  • the present invention comprises PEG-functionalized silica nanoparticles on the outer surface, providing biocompatibility in the body, and keeping the drug trapped within the hydrophobic interior until the target cell is reached. Additionally, they treat different nanoparticles in relation to the nanostructure and chemical composition.
  • WO2009038659 relates to organically modified silica nanoparticles with covalently linked photosensitizers applied for photodynamic drug release.
  • the technology described in WO2009038659 resembles the present invention in that it comprises aromatic groups on the inner surface of the nanoparticle.
  • said organic groups are inserted in the middle of a complex molecular structure characterized by photosensitizers, that is, they are part of an organic entity whose function is solely and exclusively linked to the imaging properties of the nanoparticle in tumors.
  • the document does not mention the drug-encapsulating property of the nanoparticle - it has no antitumor potential - and it does not have polyethylene glycol (PEG) groups on its outer surface - biocompatibility problems and short blood circulation time.
  • the present invention comprises hydrophobic groups on the inner surface capable of retaining the drug in the pores during transport in the blood fluid to the reach of the cancer cell when it is released.
  • the nanoparticle comprises PEG groups on the outer surface, which are important for nanoparticle biocompatibility, high colloidal stability essential for locomotion of the nanostructure in the blood (hydrophilic fluid) and long time of blood circulation.
  • US20100255103 relates to silica nanoparticles for biomedical applications.
  • Technology resembles the present invention in that it comprises a silica nanoparticles whose outer surface is coated with PEG and by encapsulating hydrophobic drugs comprising camptothecin.
  • the nanoparticles claimed in the patent have the following technical problems (solved by the present invention): the interior of the patent nanoparticles comprises magnetic cores such as iron oxide and gold; These are inorganic entities occupying a significant internal volume, impairing the ability to incorporate drug; furthermore, the patent does not claim pore volume, of fundamental importance for said drug encapsulation capacity.
  • the nanoparticles proposed in the present invention comprise porous interior hydrophobic groups for retention of the biological active during the intravenous pathway to the target cell range.
  • US20130274226 relates to silica nanoparticles with conjugated agents.
  • the technology comprises silica nanoparticles whose outer surface is coated with PEG functions and by encapsulating hydrophobic drugs in their . inside.
  • the present invention differs from the technology disclosed in US20130274226 in that it comprises nanoparticles whose inner surface comprises hydrophobic groups capable of retaining the drug during intravenous locomotion, an important feature in order to avoid possible losses of the biological active to the blood fluid during the carriage to the target cell.
  • the technology also has the following problems:
  • the technology uses drug-conjugated silane reagents to form covalent bonding of the drug within the nanoparticle.
  • the present invention maintains the drug retained within the hydrophobic interior during carriage as a function of interactions with hydrophobic groups.
  • the present invention has the versatility of encapsulating a range of drugs with hydrophobic chemical characteristics, since only one batch is required to produce silica nanoparticles. Once nanoparticles are obtained, any type of hydrophobic antitumor drug can be incorporated in the shipyard without the need to produce other batches, saving raw material, energy and production time.
  • the proposed nanoparticles simultaneously comprise hydrophilic outer surface due to the presence of polyethylene glycol and hydrophobic inner surface related to the presence of hydrophobic functional groups. Additionally, nanoparticles have as a differential the versatility to incorporate hydrophobic drugs.
  • the proposed process has the differential that it does not use toxic solvents in its stages, encompassing two strategies of functionalization of the outer surface of nanoparticles, as well as understanding mild and specific conditions to produce nanoparticles with the mentioned characteristics.
  • the present invention relates to a process for obtaining pegylated silica nanoparticles carrying hydrophobic drugs, the silica nanoparticles obtained or not by said process and their use in anti-tumor and anti-inflammatory treatments.
  • the process of obtaining drug-bearing pegylated silica nanoparticles comprises the following steps: dissolution of surfactant in ammonia catalyst and alcohol reaction solvent, stirring of the solution, addition of inorganic silicon precursor in hydrophobic silane, addition of solution obtained in the previous step in the solution obtained in the first step, agitation of the obtained solution, addition of inorganic silicon precursor, centrifugation, supernatant disposal and redispersion in ethanol, functionalization of the external surface of the silica nanoparticles, preparation of an ethanolic solution of HCl, addition of nanoparticles to the solution prepared in the previous step, application ultrasound, centrifugation, supernatant disposal and redispersion in ethanol, suspension of nanoparticles obtained in aqueous solution, addition of hydrophobic drug, mixing of the components comprised in the previous step, separation of nanoparticles, obtaining pegylated nanoparticles carrying hydrophobic drugs.
  • Nanoparticles obtained or not by said process comprise polyethylene glycol (PEG) -functioning outer surface, hydrophobic-functionalized porous inner surface, and encapsulated hydrophobic drug.
  • PEG polyethylene glycol
  • the invention also describes the use of the carrier of hydrophobic drugs pegylated nanoparticles in ⁇ antitumor and anti-inflammatory treatments.
  • Figure 1 Molecular structure of PTES (a), TEOS (b) and CTAB (c).
  • Figure 2 Arrangement of phenyl groups in the spaces between CTAB molecules.
  • Figure 3 Representative image of the starting nanoparticle.
  • Figure 4 Representative image of externally functionalized nanoparticle.
  • Figure 6 Representation of nanoparticle production and its functionalization.
  • Figure 7 Summary of the production of the starting nanoparticles.
  • Figure 8 General representation of the functionalization reaction of the starting nanoparticle with PEGio silane.
  • Figure 9 General representation of the functionalization reaction of GPS silane starting nanoparticle and coupling of PEG40 to terminal epoxy function.
  • Figure 10 Summary process of surfactant extraction.
  • Figure 11 Functionalizations performed and their location in the molecular vehicle.
  • Figure 12 Infrared Vibrational Spectra (FTIR) for starting nanoparticles before and after CTAB removal.
  • FIG. 13 Thermogravimetric (TG) curves and their respective differential thermal analysis (DTA) curves of the starting nanoparticles.
  • Figure 14 NPH30-SiOH N2 adsorption-desorption isotherms and NPH30-CTAB-SiOH.
  • Figure 15 Micrograph (TEM) of internally functionalized silica nanoparticles with phenyl groups after CTAB extraction.
  • FIG. 16 Infrared Vibrational Spectra (FTIR) for NPH30-SiO-1 OPEG10.
  • Figure 17 NPH30-SiO-10PEG10 TG and DTA curves.
  • Figure 19 NPH30-SiO-10PEG10 carbon NMR spectrum.
  • Figure 20 NPH30-SiO-10PEG10 silicon NMR spectrum.
  • Figure 21 Infrared Vibrational Spectrum (FTIR) for NPH30-SiO-25PEG10.
  • Figure 22 TG and DTA curves of NPH30-SiO-25PEG10.
  • Figure 23 NPH30-SiO-25PEG10 N2 adsorption-desorption isotherms.
  • Figure 24 NPH30-SiO-25PEG10 carbon NMR spectrum.
  • Figure 26 Infrared Vibrational Spectrum (FTIR) for NPH30-SiO-50PEG10.
  • Figure 30 NPH30-SiO-50PEG10 silicon NMR spectrum.
  • Figure 31 Micrograph (TEM) of silica nanoparticles functionalized internally with phenyl groups and externally with polyethylene glycol.
  • Figure 32 Infrared Vibrational Spectra (FTIR) for NPH30-SIO-10GPS-PEG40.Error! Reference source not found.
  • Figure 33 TG and DTA curves of NPH30-SiO-10GPS-PEG40.
  • Figure 35 13 C NMR spectra of NPH30-SiO-10GPS-PEG40.
  • Figure 36 NPH30-SiO-10GPS silicon NMR spectrum.
  • Figure 37 Colloidal stability graph of nanoparticles at 250 g / mL in PBS.
  • Figure 38 Dose response curves of nanoparticles incubated in red blood cells.
  • Figure 39 Study of nanoparticle aggregation in PBS for one hour.
  • Figure 40 Displays the curcumin calibration curve in ethanol as well as the information for each spectrum acquired at each of the five known concentrations.
  • Figure 41 Graphs the concentration of curcumin in the pegylated silica nanoparticles after each separation by centrifugation and decantation.
  • Figure 42 shows the image of suspensions of silica nanoparticles NPH30-SiOH, NPH30-1 OPEGsoo, NPH30-50PEG 5 and oo-NPH30 l ⁇ PEG5ooo in the presence of curcumin and said drug added to water in the absence of molecular vehicles ( H2O) after 24 hours of decantation and prior to removal of the supernatant.
  • H2O molecular vehicles
  • the present invention comprises the process of obtaining drug-bearing pegylated silica nanoparticles, the steps of which comprise:
  • surfactant dissolution between 0.65 and 0.75 g, preferably 0.75 g, in ammonia catalyst in a concentration between 0.03 and 0.07 mol / L, preferably 0.05 mol / L, and solvent of alcoholic reaction in volumes between 2.5 and 3.8 mL, preferably 3.2 mL;
  • inorganic silicon precursor between 1 and 3 mL, preferably 1.5 mL, in hydrophobic silane;
  • step (c) adding dropwise the solution obtained in step (c) to the solution obtained in step (a);
  • inorganic silicon precursor after 90 minutes of reaction, in volumetric amounts between 100 and 150 ⁇ l, preferably 124 L; f) Centrifugation for 40 to 80 minutes, preferably 60 minutes, between 10,000 and 20,000 rpm, preferably 15,000; discarding the supernatant and redispersing in ethanol;
  • step gl.3 Stirring the solution from step gl.2 between 10 and 20 hours, preferably 13 hours;
  • step gl.4 Centrifugation of the solution comprised in step gl.3 between 40 and 80 minutes, preferably 60 minutes, between 10,000 and 20,000 rpm, preferably 15,000; discarding the supernatant and redispersing in ethanol; repeated at least twice; or
  • g2.1 dispersion of starting nanoparticles in masses between 50 and 500 mg, preferably 300 mg, in ethanol solvent in volumes between 40 and 80 mL, preferably 62 mL and stirring of the solution between 20 and 60 minutes, preferably 30 minutes at room temperature. between 60 and 90 ° C, preferably 85 ° C;
  • g2. Centrifuging the solution between 40 and 80 minutes, preferably 60 minutes, between 10,000 and 20,000 rpm, preferably 15,000 and discarding the supernatant and redispersing in ethanol; repeated at least twice; g2.5) Dispersion of intermediate nanoparticles obtained in step g2. in masses between 50 and 500 mg, preferably 150 mg, in ethanol solvent in volumes between 10 and 30 mL, preferably 20 mL and stirring of the solution between 15 and 45 minutes, preferably 30 minutes at a temperature of 95 ° C;
  • PEG-COOH PEG-terminal carboxylic acid
  • step g2.8 Addition of the PEG-COOH solution from step g2.7 to the solution obtained in step g2.6 for coupling reaction between reactive functional groups of intermediate nanoparticle with reactive functional groups. and PEG-COOH carboxylic acid;
  • step g2.9 Stirring the solution obtained in step g2.8 between 10 and 20 hours, preferably 12 hours at a preferred temperature of 95 ° C; g2.10) Centrifuging the solution obtained in step g2.9 between 40 and 80 minutes, preferably 60 minutes, between 10,000 and 20,000 rpm, preferably 15,000, discarding the supernatant and redispersing in ethanol; repeated at least twice.
  • step (i) Centrifuging the solution obtained in step (i) between 40 and 80 minutes, preferably 60 minutes, between 10,000 and 20,000 rpm, preferably 15,000; discarding the supernatant and redispersing in ethanol; repeated at least twice; and storage until encapsulation of the hydrophobic drug;
  • Suspension of nanoparticles obtained in step (j) in aqueous solution (component 1) is in the range of 5 to 15 mg, preferably 10 mg, and in concentrations up to 1 mg / mL; and adding 0.5 to 2 mg, preferably 1 mg, of hydrophobic drug (component 2); 1) Mixing the components comprised in step (k) by means of ultrasonic homogenization at times between 30 and 60 minutes;
  • the surfactant preferably comprises hexadecyltrimethylammonium bromide
  • the inorganic silicon precursor comprises silicon alkoxides and organosilanes, preferably tetraethylorthosilicate;
  • the hydrophobic silane is used in amounts between 10 and 40 Si-mol%, preferably 30% 'Si-mol;
  • hydrophobic group comprised in hydrophobic silane comprises hydrophobic groups selected from aromatic groups and derivatives; and hydrocarbon groups and derivatives;
  • aromatic groups and derivatives are selected from the group of phenyl, acetophenyl, and pyrene functions;
  • hydrocarbon and derivative groups are selected from the group of octyl and octadecyl functions;
  • - PEG comprised in silane-PEG comprises at least 350 Da; - intermediate silane with reactive functional groups is used in amounts between 2 and 50 mol% Si;
  • reactive functional groups comprised in intermediate silane comprise epoxy functions
  • the strong base used preferably comprises potassium hydroxide
  • the PEG-COOH used comprises at least 350 Da
  • hydrophobic drug is used in amounts from 1 to 20% by mass;
  • - hydrophobic drug used is selected from the group of drugs comprising curcumin ; camptothecin, doxorubicin, violacein, tamoxifen, beta-lapacone and the like, preferably camptothecin.
  • the separation means described in the process comprise centrifugation or decantation.
  • Centrifugation is performed at rotational forces between 1500 and 2000 rpm, preferably for 2 minutes.
  • the decantation is carried out in time of at least 24 hours.
  • sequence of steps k, l, m and n may be performed by the following sequence of steps:
  • step (k) Centrifugation of nanoparticles from step (k) under the same conditions established in step (j) and obtaining pegylated nanoparticles carrying hydrophobic drugs.
  • the pegylated hydrophobic drug carrier nanoparticles of the present invention comprise the following characteristics: outer surface functionalized with polyethylene glycol (PEG); porous inner surface functionalized with hydrophobic groups;
  • pegylated nanoparticles carrying hydrophobic drugs comprise the following characteristics:
  • hydrophobic groups selected from aromatic groups and derivatives; and hydrocarbon groups and derivatives;
  • hydrophobic drug selected from the group of drugs comprising curcumin, camptothecin, doxorubicin, violacein, tamoxifen, beta-lapacone and the like, preferably curcumin and camptothecin;
  • the present invention further comprises the use of pegylated hydrophobic drug carrier nanoparticles in anti-tumor and anti-inflammatory treatments.
  • the process of producing the pegylated hydrophobic drug carrier nanoparticles is initiated with the surfactant, the silane to be internally disposed in the nanoparticle, the inorganic silicon precursor that will form the inorganic wall, and the catalyst.
  • an additional amount of inorganic silicon precursors are implemented by controlling time so that excessive (excess reaction time) or precarious (reaction time) polymerization is avoided as they promote the formation of silicon walls. silica very thick and significantly thin respectively. Therefore, adequate nucleation time control is required.
  • the external surface can be functionalized with the silane of interest, followed by the removal of the surfactant.
  • reaction parameters reaction time and temperature
  • the production process of the hydrophobic drug-bearing pegylated nanoparticles is initiated by the co-condensation process involving the inorganic silicon precursor (TEOS), comprising the inorganic source of silica, hydrophobic silane comprising hydrophobic groups selected from the aromatic and derivative groups (phenyl, acetophenyl and pyrene) and hydrocarbon and derivative groups (octyl and octadecyl) which are located on the inner surface of the silica, the surfactant preferably comprising hexadecyltrimethylammonium bromide (CTAB), the function of which is to form spherical micelles, whereby aqueous ammonium hydroxide as catalyst and ethanol as reaction solvent as a template.
  • CTAB hexadecyltrimethylammonium bromide
  • TEOS and hydrophobic silane mutually hydrolyze and initiate their polymerization around the micelles, so that they are muted. that "silica. negatively charged electrostatically interacts with. . the positively charged micellar surface and hydrophobic groups arrange themselves within the small spaces between the hydrophobic tails of the surfactants. This situation can best be seen in Figure 2.
  • the outer surface is also subjected to a novel process of functionalization (after functionalization), whose goal is to insert bodily functions which confer new 'properties nanoparticles , as observed in Figure A ..
  • functionalization a novel process of functionalization
  • the group ' R indicated in. nanoparticle represents any organic function to be grafted to the outer surface through a previously condensed silane.
  • the main strategy is to produce antagonistic nanoparticles, i.e. covering hydrophobic interior and hydrophilic outer surface due to the applications in which they are expected.
  • the major silanes involved in external surface functionalizations are compounds whose R groups encompass strategic organic functions, such as glycidoxypropyltrimethoxy silane (GPS silane), as well as fundamental functions for the acquisition of important new chemical properties, including 2. -
  • the surfactant is removed by extraction with ethanolic HCl solution and sonication as discussed above.
  • Developed nanoparticles have potential application as carriers of antitumor hydrophobic drugs and, as such, must have the ability to trap a drug within them for later delivery to the cancer cell and colloidal stability in the blood to ensure biological target range.
  • the importance of the presence of internal hydrophobic groups is noteworthy due to their hydrophobic character similar to the antitumor drugs that also have this characteristic, resulting in a strong interaction between Van der Waals and both, favoring their effective insertion. and storage within the nanostructure.
  • PEG hydrophilic
  • polyethylene glycol also contributes to "softening" the protein / nanoparticle interaction, especially those involved in the recognition and withdrawal of supposedly foreign agents in the blood, as occurs in the immune system.
  • FTIR Fourier transform infrared
  • the analysis was performed with a 90 ° single pulse excitation of 5.0 ⁇ in channel 1 ( 29 Si) followed by signal acquisition under a continuous uncoupling pulse in channel 2 ( 1 H), initiated simultaneously with channel 1 pulse. , until the signal relaxation in that channel .
  • 13 C NMR spectra were obtained with the cross-polarization and magic angle spinning (CPMAS) method of the neighboring IH nuclei (20480 scans), acquisition time 0.0499 s, pulse interval 3.0 s and frequencies 75.475 MHz on channel 1 ( 13 C) and 300, 131 MHz on channel 2 (3 ⁇ 4)
  • the analysis is performed with a 90 ° pulse excitation of 2.7 ⁇ on channel 2 ( 1 H), followed by a pulse 4000 ⁇ on channel 1 ( 13 C), followed by signal acquisition Along with channel 1 ( 13 C) pulse, another pulse for channel 2 ( X H) decoupling is produced, which extends to relaxation signal on channel 1.
  • thermogravimetric analyzes were performed on a TA Instruments 500 thermal analyzer, TGA module 2050. Analyzes used approximately 5.0 mg of dry samples placed in a platinum crucible. The heating rate was maintained at 10.0 ° C / min and the air flow at 100 mL / min. The morphology of the nanostructures was analyzed by transmission electron microscopy in bright field mode (TEM, Zeiss Libra 120, operating at 80KV). Dynamic light scattering (DLS) to evaluate particle sizes and zeta potential (PZ) were obtained with the Malvern ZetaSizer-Nano instrument.
  • TEM transmission electron microscopy in bright field mode
  • DLS Dynamic light scattering
  • PZ zeta potential
  • DLS results were obtained using deionized water as dispersant (1.0 mg / mL).
  • BET Brunauer-Emmett-Teller
  • P / Po single-point adsorption amount
  • step A The CTAB-containing nanoparticles and phenyl groups produced in step A were subjected to the functionalization process with short-chain PEG silane, constituting step B described in this topic.
  • 300 mg of the starting nanoparticle is dispersed in 40 mL of absolute ethanol for 60 minutes and then homogenized for a further 15 minutes at 60 ° C.
  • PEGio silane is added based on the number of moles of silicon, ie, considering 300 mg of initial NP, the amount of functionalized organosilane corresponds to 10%, 25% or 50% mol-Si relative to number of moles of total silicon present in said nanoparticle mass.
  • Each reaction was performed under constant stirring at 60 ° C for one hour, and an additional 12 hours of functionalization at room temperature.
  • the products were centrifuged and dispersed in ethanol. Removal of the organic mold was performed according to the procedure described below.
  • GPS silane is the intermediate chemical species for obtaining long-chain PEG-containing nanoparticles. It is important to mention that in this reaction a long-chain PEG silane was not used due to the absence of this product for purchase on the market until mid-May 2013.
  • Production of the surface glycoxy-oxide nanoparticles was performed using 300 mg nanoparticles. synthesized in step A dispersed in 62 mL of absolute ethanol for 30 minutes in the sonicator.
  • GPS silane (10 mol% silicon) is added to the flask containing the nanoparticles already suspended in the solvent, followed by stirring of the system for 12 hours at 85 ° C under nitrogen atmosphere. The products were centrifuged at 15000 rpm for one hour and dispersed in ethanol.
  • Figure 9 indicates the production of the silica nanoparticle holding PEG10 in a summarized manner.
  • the synthetic procedure of said molecular vehicle comprises two main steps characterized, first, by the functionalization of GPS silane, followed by the coupling reaction of PEG40 in the epoxy function (significantly reactive) of the mentioned organosilane.
  • the organic mold is still present, requiring a standard processol for all situations that favor the removal of the surfactant that once directed the shape acquired by the nanocarriers.
  • the standard stoichiometric ratio was 5 mg of products: 1 mL of HCl / Ethanol solution.
  • Figure 10 generally represents the removal process of the starting nanoparticle soft template equally applied to the other nanoparticles obtained in the present invention. Evaluation of colloidal stability of nanoparticles
  • the nanoparticles were subjected to the colloidal stability test in order to evaluate the influence of polyethylene glycol on these dispersion aspects.
  • the colloids were dispersed in PBS (1x) at a concentration of 250 pg / mL and centrifuged at rotations of 0, 94, 2348, 9391 and 18407 rcf - the preparation of PBS is described below.
  • the 1 mL volume of each supernatant was subjected to analysis by UV-Vis absorption electron spectroscopy and the absorbance at 263 nm wavelength measured.
  • the nanoparticles produced were subjected to hemolytic assays.
  • PBS (2x) Two tablets of saline phosphate buffer were diluted in 200 mL of deionized water (2 mM phosphate, 0.54 mM KCl and 27.4 mM NaCl);
  • PBS (1x) 100 mL of the above solution was diluted in 100 mL of deionized water (1 mM phosphate, 0.27 mM KCl and 13.7 mM NaCl).
  • the volume of 10 mL of blood was centrifuged at 14,000 rpm at 4 ° C for 10 minutes. The supernatant was discarded and 20 mL of PBS (2x) was added to the pellet which was subsequently resuspended. After this process, two new washes were performed following the current procedure, obtaining 20 mL of a red blood cell solution in PBS (2x). Of this total, 2.5 mL were diluted in 12.5 mL of PBS (2x) to obtain the red cell stock solution.
  • Nanoparticle pretreatment for hemolytic assays comprises a procedure in which all are centrifuged at 15,000 rpm at 4 ° C for 30 min and dispersed in deionized water. This process is repeated twice more to obtain final colloidal dispersions in deionized water at concentrations of 1 mg / mL.
  • Performing hemolytic assays requires a prior assessment of the aggregation behavior of each nanoparticle in PBS for one hour.
  • 25 pL of each molecular carrier was added, respectively, to a mixture of 25 pL PBS (2x) and 950 pL PBS (1x).
  • the dynamic light scattering technique intermittently evaluated the particle size variation and polydispersity index within one hour, similar to the standard red cell incubation time. Colloidal behavior was evaluated at 0, 5, 15, 30, 45 and 60 minutes.
  • each nanoparticle was added in eppendorf containing a mixture of 25 ⁇ l PBS (2x) and 850 ⁇ l PBS (1x). The nanoparticles were kept in the respective vials for one hour. After this step, 100 pL of red blood cell stock solution was added while maintaining one hour of incubation.
  • N nanoparticle
  • xGPS x% of theoretically functionalized glycidoxy groups
  • NPH30-CTAB-SiOH starting nanoparticle containing 30% theoretically functionalized phenyl groups on the inner surface, further containing the surfactant;
  • NPH30-SiOH starting nanoparticle containing 30% of theoretically functionalized phenyl groups on the inner surface with surfactant already removed
  • NPH30-C AB-SiO-xPEG10 nanoparticles containing 30% of theoretically functionalized phenyl groups in the presence of CTAB and x% of theoretically functionalized PEGio groups
  • NPH30-SiO-xPEGio nanoparticles containing 30% of theoretically functionalized phenyl groups in the absence of CTAB and x% of theoretically functionalized PEGio groups;
  • NPH30-CTAB-SiO-xGPS nanoparticle containing 30% of theoretically functionalized phenyl groups in the presence of CTAB and x% of theoretically functionalized glycidoxy groups;
  • NPH30-SiO-xGPS nanoparticle containing 30% of theoretically functionalized phenyl groups in the absence of CTAB and x% of theoretically functionalized glycidoxy groups
  • NPH30-CTAB-SiO-xGPS-PEG / io nanoparticle containing 30% of theoretically functionalized phenyl groups in the presence of CTAB and x% of theoretically functionalized PEG40-coupled glycidoxy groups
  • NPH30-SiO-xGPS-PEG40 nanoparticle containing 30% of theoretically functionalized phenyl groups in the absence of CTAB and x% of theoretically functionalized PEG40-coupled glycidoxy groups.
  • SiO (representing the "shell" of the nanoparticle), such as PH30-CTAB-, PH30-, refer to the chemical entities present within the nanoparticle whereas names written after the SiO nomenclature, such as xPEGio, xGPS and xGPS-PEG-jo, come from the chemical species present on the outer surface.
  • Figure 11 shows the "shell" of internally functionalized silica with phenyl groups and externally with glycidoxy (GPS), open-ring glycidoxy (Open GPS), PEG40-coupled glycidoxy (GPS-PEG-jo) and PEGio functions.
  • GPS glycidoxy
  • Open GPS open-ring glycidoxy
  • PEGio functions The numbers and terms written in blue and red, respectively, will be the basis for the interpretation of the carbon and silicon NMR spectra presented in the invention.
  • the functionalizations shown in the figure below are not necessarily present in the same nanoparticle, showing only the types of surface modifications possible on the inner surfaces and those occurring only on the outer surface.
  • GPS silane and PEGio silane are not concomitantly present on the same nanoparticle because they encompass different molecular vehicle development contexts.
  • FIG. 12 shows the infrared spectra of the starting nanoparticles before and after removal of the organic mold.
  • the main silica bands are observed at 1072 cm -1 (asymmetric Si-O-Si stretch), 800 cm -1 (symmetrical Si-O-Si stretch) and 962 cm -1 (Si-OH stretch), 464 cm - 1 (Si-O-Si angular deformation). Confirmation of mold extraction can be obtained by observing the absence of typical CTAB bands in the NPH30-SiOH spectrum.
  • the soft template bands can be observed at: 2926 cm -1 (asymmetric CH stretch in CTAB carbon chain CH2 groups), 2854 cm -1 (symmetrical CH stretch) and 1232 cm -1 (CN stretch). that the visualization of the latter band is made difficult by the overlap with the bands from the asymmetrical stretches of the SiC (Si-O-Si) tetrahedral units by approximately 1200 cm -1 and 1130 cm “ 1 .- Analyzing both spectra, it is noticeable the absence of these bands after the removal of the soft template, characterizing a significant parameter for the follow-up of the organic mold extraction reactions presented in the next topics.
  • FIG. 13 shows the thermogravimetric (TG) curves and their respective differential thermal analysis (DTA) curves for the starting nanoparticles before and after removal of the organic mold.
  • the NPH30-SiOH DTA curve exhibits a major event at 577 ° C, suggesting the thermal decomposition of the phenyl groups and a minor one occurring at 308 ° C from residual CTAB release. Disregarding the discrete event, which in this case is not significant in relation to the total percentage of the sample, there is only the decomposition of functionalized aromatic species beginning and ending at 324 ° C and 716 ° C, respectively.
  • Figure 14 presents the results of NPH30-SiOH nitrogen adsorption-desorption analysis as well as NPH3G-CTAB-SiOH.
  • isotherm of this last nanoparticle its profile did not show a significantly defined pattern, resembling only the type IV isotherm according to the IUPAC classification for porous materials.
  • Type IV isotherms are related to mesoporous materials.
  • This phenomenon is possibly linked to the presence of CTAB which, together with the range of possibly interconnected pores, makes gas release difficult, making adsorption a slightly irreversible process, which is expected considering the complexity of said hybrid system.
  • the pore distribution of the starting molecular carrier holding the amphiphilic macromolecule exhibits a wide variety of pores, comprising a material of complex porous nature due mainly to the high content of internally functionalized phenyl groups in the nanoparticle.
  • Such an effect generates increased internal volume due to the arrangement of the aromatic rings between the surfactant tails. Consequently, in the nucleation stage during the nanoparticle production, the inorganic lattice deposited around the CTAB engenders pores of varying sizes, characterizing the desired uneven surface.
  • the pore distribution graph whose calculations are based on the Barret, Joyner and Halenda model (BJH method), the predominance of pores between 4 nm and 10 nm is observed.
  • Mesoporous materials have pore sizes ranging from 2 to 50 nm), which classifies said material as mesoporous.
  • the pore distribution graph according to the BJH method indicates greater pore predominance in a size range between 2 nm and 10 nm, reflecting CTAB extraction.
  • the removal of said organic mold can be confirmed by analyzing the surface area variation calculated by the method proposed by Brunauer, Emmet-Teller (BET method) before and after this process.
  • BET method Brunauer, Emmet-Teller
  • the surface area ranged from 548 m 2 / g to 898 m2 / g, respectively.
  • the total pore volume of both nanoparticles was 0.96 mL / g and 2.2 mL / g, respectively.
  • Figure 15 shows the micrograph of the NPH30-SiOH in which disordered porous arrangements can be observed featuring an irregular topography.
  • the presence of .30% mol-Si of phenyl groups within the nanoparticles provides an increase in the internal cavity, generating this characteristic on the outer surface not yet coated with PEG.
  • the nanoparticles show apparent colloidal stability, a feature that will be discussed quantitatively below with the starting and functionalized nanoparticles.
  • polyethylene glycol According to Figure 10 it is possible to estimate the average colloidal diameter around 65 nm.
  • the infrared vibrational spectra of the NPH30-SiOPLOG shown in Figure 16 show the characteristic bands of silica and aromatic rings in all situations. Also shown in the Figure is the spectrum of PEGio silane used in functionalization. The main polymer bands can be observed at 1080 cm -1 (asymmetric COC stretch, similar to Si-O-Si in silica), 1040 cm -1 (symmetrical COC stretch, observed as a shoulder), 2867 cm -1 (stretch CH in ethylene glycol groups C3 ⁇ 4) and 1460 cm -1 (angular deformation CH in ethylene glycol CH2 groups).
  • NPH30-CTAB-SiOH on the spectrum denoted as P ⁇ C-SiOH
  • organosilane product ' is generated NPH30-CTAB-SiO-10EEGio.
  • PC-lOPEGio the visualization of the polymer bands is difficult due to the overlap with the silica bands (at 1100 cm “ 1 and 962 cm -1 ) and the CTAB (at 2854 cm -1 ).
  • NPH30-SiO-10PEGio DTA curve shows a less evident temperature difference near 300 ° C compared to NPH30-CTAB-SiO-lOPEGio, since the final nanoparticle does not contain CTAB whose degradation already occurs at that temperature, contributing to the decrease in peak intensity observed.
  • the nitrogen adsorption-desorption analyzes shown in Figure 18 indicated a nanoparticle profile similar to the starting nanoparticles, allowing to state that after functionalization the structures did not change pore profile as desired.
  • the isotherm of Nitrogen resembles a type IV isotherm according to the IUPAC classification, ie nanocarriers are mesoporous in nature.
  • the surface area of the starting nanoparticle is 898 m 2 / g. After functionalization, said value undergoes slight increase to 943 m 2 / g, indicating little 'differences.
  • the starting nanocarriers For the total pore volume determined by the BJH method, the starting nanocarriers have 2.2 cmVg as the NPH30-SiO-10PEG 10 holds 1.48 cm 3 / g. This difference is possibly linked to the presence of PEGio silane, possibly characterizing steric effects against nitrogen gas adsorption in the nanoparticle.
  • Q 4 Silicon core bonded with 4 substituents OSi, Si (O-Si) 4, located mainly within the "shell" of the silica;
  • Q 3 refers to the silicon core bonded to 3 O-Si substituents and an OH, HO-Si (O-Si) 3 group present on the inner and outer surfaces of the molecular carrier, as well as within the silica layer - used for confirmation of condensation of silanes;
  • Q 2 although less, it is the silicon atom bonded to 2 O-Si groups and 2 OH, (HO) 2Si (O-Si) 2 groups, arranged spatially in the same way as Q 3 nuclei;
  • T 3 These are silicon cores bonded to 3 O-Si substituents and a carbon substituent contained in the group R, R-Si (O-Si) 3, present on the inner surface, inside or on the shell.
  • molecular carrier T 2 : silicon nuclei attached to 2 O-Si substituents, one OH group and one carbon substituent contained in one group, R-Si (0-Si) 20H, present on the inner surface, inside or on the surface.
  • "shell" molecular vehicle silicon nuclei attached to 2 O-Si substituents, one OH group and one carbon substituent contained in one group, R-Si (0-Si) 20H, present on the inner surface, inside or on the surface.
  • R refers to the phenyl, glycidoxy or PEG10 groups present in the nanoparticles.
  • Figure 25 shows NMR spectra of the NPH30-SiO-1OPEGio sample, before and after functionalization, containing the major silicon sites and their corresponding area in percent.
  • the chemical displacements of the silicon peaks have specific values and do not change after functionalization, since the chemical entity that represents them does not undergo structural changes. In fact, what is observed are variations in peak area before and after grafting. Silicon NMR peaks at -110 ppm, -100 ppm and -90 ppm are clear for Q 4 , Q 3 and Q 2 sites , respectively, -80 ppm and -70 ppm from T 3 and T 2 sites at this time. order.
  • the OH groups from the Q 3 and Q 2 sites undergo nucleophilic substitution with ossilanes, generating new T 3 and T 2 sites .
  • NPH30-SiO-25PEG10 The nanoparticle containing internal phenyl (30% mol-Si) groups as well as externally functionalized 25% mol-Si PEG10 groups was called NPH30-SiO-25PEG10. Their respective structural characterizations showed satisfactory results according to the pre-established expectations for the construction of the said molecular vehicle.
  • PC-SiOH subtitles, PC-P and 25PEGio 25PEGio refer respectively to NPH30-SiOH, NHPH30 CTAB--SiO-SiO-25PEGio and NPH30 25PEGi-0.
  • Figure 26 shows the infrared spectrum of NPH30-SiO-25PEGio- In all situations shown in the figure the major silica bands are noticeable. This result evidences the presence of this main chemical entity that constitutes the fundamental structural unit of the nanoparticle. In the case of phenyl groups, their presence is also easily confirmed before and after functionalization and in the presence and absence of organic mold. Keeping the focus on polyethylene glycol, it is worth noting again the difficulty associated with observing the polymer bands overlapped by the silica bands.
  • event is 274 ° C referring to the decomposition of CTAB together with the polymeric entity cited.
  • the event mentioned shifts to 224 ° C, due to the thermal decomposition only of polyethylene glycol, which occurs in a smaller temperature range compared to the event involving the simultaneous presence.
  • PEG and CTAB This set of results is important to indicate the presence of the three organic species in NPH30-SiO-25PEGio, mainly by observing the displacement of decomposition events in the presence or absence of certain compounds.
  • thermogravimetric curves also presented in Figure 17 complement the above information regarding the chemical entities present in the molecular vehicle. Comparing the curve of NPH30-CTAB-SiOH with NPH30-CTAB-SiO-25PEG10, a new decomposition plateau is observed due to the PEG present. Comparing the curves of NPH30-SiOH and NPH30-SiO-25PEGio, both exempt from CTAB, it is evident that the thermal decomposition of polyethylene glycol between 217 ° C and 377 ° C is the only possible organic entity in this range. temperature, as CTAB is absent and, as already mentioned, the phenyl group decomposes from 324 ° C. In fact, it becomes complicated to estimate quantitatively the individual percentage of each chemical species commented, once in the temperature range between 324 ° C and 381 ° C CTAB, PEG and phenyl mass loss events occur simultaneously.
  • FIG. 18 shows the predominance of pores between 2 and 10 nm in both nanocarriers, classifying NPH30-SiO-25PEGio as a mesoporous material. Pore volumes indicated phenomenologically interesting values, that is, after functionalization the total pore volume ranges from 2.2 cm 3 / g to 1.74 cmVg. This result infers the possible spherical impedance of the pores by the superficially functionalized silanes, preventing the entry of gases inside the nanoparticle.
  • Figure 29 shows the 13 C NMR spectrum of the nanoparticle in which nuclei from the phenyl groups at 130.4 ppm (nucleus 1), 129 ppm (nucleus 2), 126.8 ppm (nucleus 3) are readily identified. ) and 134.1 ppm (core 4). It should be noted that said nuclear species are present before and after functionalization as expected. Regarding the identification of polyethylene glycol in the molecular carrier, one should identify the nucleus 7 peak of the polymer at 70.5 ppm in the NPH30-SiO-25PEGio spectrum.
  • NPH30-SiO-50PEGio The nanoparticle containing internal phenyl (30% mol-Si) groups as well as externally functionalized 50% mol-Si PEGió groups was named NPH30-SiO-50PEGio ⁇
  • Their respective structural characterizations showed satisfactory results according to pre-established expectations for the construction of said molecular vehicle.
  • Subtitles PC-SiOH, PC-50PEG10 and P-50PEG10 refer to NPH30-SiOH, NHPH30-CTAB-SiO-50PEG10 and NPH30-SiO-50PEG10. Initiating such studies by infrared vibrational spectroscopy whose spectrum is observed in Figure 21, the main silica bands were observed in all the synthetic steps presented.
  • Figure 22 shows the TG and DTA curves of NPH30-SiO-50PEG10.
  • Differential thermal analysis records an exothermic event at 267 ° C for NPH30-CTAB-SiO-50PEGio, indicating the thermal decomposition of surfactant and polyethylene glycol. After removal of the organic mold, the event is shifted to 221.7 ° C, associated only with the presence of the polymeric species in the absence of the soft template in this situation. From these considerations, observing the thermogravimetric curve of the NPH30-CTAB-SiOH allows visualization of CTAB mass loss starting at 135 ° C and ending at 381 ° C (22.2% mass).
  • the functionalization rates of the phenyl and PEG groups are consistent with the expected values.
  • the 28.7% mol Siphenyl graft is considerably close to the theoretical result, which is not the case with the polymeric entity whose 1.06% functionalization value, which is different from the theoretical value (50%), linked to possible effects. between the carbonic chains of the polymer which, in this system, interfere with the low reaction yield.
  • said functionalization content was sufficient to generate new chemical properties to the nanoparticle, such as improved colloidal stability and influence on hemolysis, topics discussed below.
  • the NPH30-SiO-50PEGio was subjected to nitrogen adsorption-desorption analysis whose isotherm is shown in Figure 23.
  • its nitrogen isotherm profile resembles that of the so-called nitrogen isotherm profile.
  • type IV with slight hysteresis of type H3 according to the IUPAC classification in the context of porous materials.
  • the observed pattern reflects a mesoporous material of complex porosity indicating a marked level of surface irregularities as the production of nahoparticles holding irregular surfaces.
  • the formation of a slight hysteresis at P / Po 0.40, typical of type IV isotherms for mesoporous materials, is notorious.
  • Nuclear Magnetic Resonance techniques are essential tools in the structural elucidation of organic and inorganic compounds. In this sense, it becomes necessary to complement the information obtained through infrared and thermal analysis techniques, as analyzed above. From the 13 C NMR of NPH30-SiO-50PEG10 Figure 24 shows the main peaks of the aromatic ring nuclei denominated 1 to 4 in chemical shifts of 130 ppm, 128.9 ppm, 127.4 ppm and 134.0 ppmError! Indicator not defined., Respectively, present at all stages as expected.
  • the nanoparticle functionalized with the GPS group showed barely noticeable changes in the profile of its spectrum. An enlargement of the bands close to 1250 cm -1 and 1070 cm -1 , typical of the. asymmetric stretches in the epoxy ring and asymmetric COC stretches, respectively. The changes are clearer compared to the spectrum of the NPH30-SiO-10PEGio, in which the bandwidth underwent slightly pronounced variations. After PEG coupling in the three-membered ring, an increase in bandwidth is observed in the region of 1100-1070 cm -1, where we observed the asymmetric COC stretching of polyethylene glycol. Although there is evidence of the functionalization of the glycidoxy group and the coupling of PEG in the molecular vehicle, it is necessary to use techniques such as thermal analysis and nuclear magnetic resonance to reach more robust conclusions.
  • Figure 33 shows the TG and DTA curves of NPH30-SiO-10GPS-PEG40 showing the complexity of events due to the presence of an intermediate component, the glycidoxy group, whose function is to condense on the external surface of the silica and act as a support for inserting polyethylene glycol in this region.
  • the starting nanoparticle TG and DTA curves present the release events of surfactants and phenyl groups in this order of occurrence, as shown in discussed in item 3.1.
  • the NPH30-CTAB-SIO-1 OGPS DTA peaks show a significant event at 300 ° C related to simultaneous release of CTAB and GPS.
  • the surface areas of NPH30-SiOH and NPH30-SiO-10GPS-PEG 4 o calculated by the BET method are 898 m 2 / g and 760 m 2 / g, respectively.
  • the total pore volume values calculated by the BJH method are respectively 2,2 cm 3 / g and 1,5 cm 3 / g.
  • the spatial predominance of cavities between 2 nm and 10 nm can be corroborated to the conclusion of the molecular vehicle complexity in the context of surface chemistry.
  • Figure 35 shows the carbon NMR of NPH30-SiO-10GPS-PEG40, as well as the intermediate and starting nanoparticles.
  • NPH30-SiOH spectrum the 4 peaks already mentioned are from the aromatic rings as the only organic entity present before functionalization. By condensing the glycidoxy group, changes in the spectrum become evident.
  • Figure 36 are shown the silicon NMR spectra on NPH30-SiOH and NPH30-SiO-10GPS. It should be noted that the silica structure before and after PEG40 coupling does not cover variations of areas between existing silicon sites, since the chemical reaction occurs between the polymer carboxylic acid and the epoxy group of the GPS function, ie is: silanol groups are not involved, eliminating the need for characterization of NPH30-SiO-IOGPS-PEG40 by 29 Si NMR, which would have the same profile as NPH30-SiO-10GPS. Analyzing the figure, silicon sites are typical in their respective chemical displacements, as commented earlier.
  • Table 1 shows the particle sizes and zeta potential of each molecular vehicle encompassed by the present invention.
  • Acceptable polydispersity indices (IPD) for a satisfactorily monodisperse system should be less than 0.4, which occurred in all situations. presented. It is observed that surface modification does not significantly alter the average size of colloids (as previously mentioned). Surface loads showed interesting differences from the point of view of surface modification. Knowing that the surface of NPH30-SiOH, as well as any silica nanostructures in basic medium has negative charges, it is expected that after PEG (neutral) functionalization there will be a tendency to surface neutrality even though such parameters are unreliable. to predict this surface phenomenon, since in this process there is a Gaussian distribution of loads and sizes.
  • the set of structural characterizations confirmed the achievement of all nanoparticles as well as the functionalizations on the internal (phenyl) and external (PEG) surfaces.
  • the materials showed large surface areas, important in the study of interaction of nanostructures with biosystems.
  • the instability of NPH30-SiOH is observed throughout the centrifuge's rotational range, since the percentage of this nanoparticle in the supernatant over the entire studied range was close to 0.
  • the Short-chair PEG functionalization content ranges from 10% mol-Si to 50% mol-Si.
  • An increased colloidal stability at 94 rcf is observed, ie, the NPH30-SiO-50PEGio has a higher percentage of nanoparticles suspended in relation to the others, confirming the direct relationship between the functionalization rate of PEGio silane and the stable colloidal characteristic.
  • NPH30-SiO-IOGPS-PEG40 becomes more stable compared to NPH30-SiO-10PEGio and more unstable compared to the others.
  • This result indicates that in the 10% functionalization content the nanoparticle holding longer chain PEG exhibits greater colloidal stability. From the rotation of 2348 rcf all nanoparticles exhibited unstable behavior as expected, since the centrifugal force acting in this situation is sufficient to generate coalescence. The influence of nanoparticle aggregation state as a function of time in hemolysis
  • the average size of nanoparticles in deionized water is approximately 100 nm according to the data commented on in the characterization topics. However, when added in PBS buffer the nanoparticles aggregate so that the average particle size reaches the order of 1000 nm (see graph below). This behavior is related to the strong electrostatic interactions between the negatively charged nanoparticles and the electrolytes present in the PBS buffer. In the time interval covered in this study, there was an increase in the average size of colloids as a function of time in all situations, reinforcing the gradual interaction between the colloidal system and the buffer solution in which it is dispersed. Note that the polydispersity index remained close to 1 in virtually all steps, reflecting significantly polydispersed systems.
  • the 10% mol-Si-containing PEGio silane nanoparticle has a larger surface area compared to the starting colloid and, according to 13 C NMR, the results also show that the amount of functionalized polyethylene glycol is significantly lower compared to those with 25% and 50% mol-Si, that is, the NPH30-SiOH and NPH30-SiO-10PEGio have significant structural similarities, differing only by the tiny presence of PEGio for the latter.
  • this molecular carrier has the second smallest surface area in relation to the nanoparticles of the summed to the high PEG content grafted to its surface.
  • the smaller surface area as well as the aggregating effect are factors that directly contribute to the minimization of hemolysis in the context of mesoporous silica nanoparticles.
  • the graph reflects such assumptions by observing the optimal performance of the NPH30-SiO-50PEGio with only 1.6% and 1.18% hemolysis at times 1 minute and 60 minutes, respectively.
  • the epoxy ring of said functions can be opened to form a diol group which, like silanol functions, would interact with red blood cells in a similar manner causing toxicity and thus acquiring substantially the same behavior as NPH30-SiOH.
  • this molecular vehicle exhibited behavior that directs the results to the reduction of hemolysis, indirectly indicating the presence of PEG40 in its structure. If this polymer is present then it should necessarily be covalently attached to the nanoparticle and therefore the peak in its 13 C NMR spectrum is from carbon 18.
  • the ethanol curcumin calibration curve was developed at five known concentrations (1, 5, 10, 30 and 50 ⁇ g / mL). For each concentration, the area under the curcumin absorption curve in the region between 200 and 550 nm was estimated for graph acquisition relating the area as a function of concentration. Finally, to determine the concentration of encapsulated curcumin in each of the pegylated silica nanoparticles in the above mentioned situations, 1 ml of the respective supernatant was subjected to UV-Vis spectroscopy so that area value under the curve similarly estimated As described in the paragraph above, it was compared to the calibration curve and concentration-related, thus acquiring the drug mass value per unit volume of suspension.
  • the equation of the line is described as:
  • Curcumin concentration (x) [area under the curve (y) - 22.9] / 14.3
  • Figure 41 shows the graph of curcumin concentration in the pegylated silica nanoparticles after each separation by centrifugation and decantation.
  • the influence of PEG on curcumin encapsulation efficiency is noticeable, since all pegylated nanoparticles comprise a higher concentration of encapsulated drug over non-functionalized nanoparticle (NPH30-SiOH).
  • NPH30-SiOH non-functionalized nanoparticle
  • curcumin when added to the described silica nanoparticle suspensions, curcumin is not only encapsulated in nanocarriers, but also possibly interacting with the outer surface of molecular vehicles. That is, the drug referred to as encapsulated in any context described above may also be interacting superficially through specific interactions to be confirmed in further work and in greater detail.
  • Figure 42 shows the image of the suspensions NPH30 SiOH-silica nanoparticles NPH30-10PEG 5 oo o NPH30-10PEG NPH30-50PEG 50 'in 5ooo. presence of curcumin and said drug added in water in the absence of molecular vehicles (H2O) after 24 hours of decantation and prior to removal of the supernatant.
  • H2O molecular vehicles
  • the hydrophobic characteristic of the drug is evident in the clear supernatant in the H2O bottle characterizing the problem of the insolubility of hydrophobic drugs in the blood (hydrophilic) whereas in the presence of silica nanoparticles their yellow colored supernatants show the stability of the suspended drug upon application of the drugs. molecular vehicles.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Nanotechnology (AREA)
  • Optics & Photonics (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

The present invention relates to a method for producing PEGylated silica nanoparticles as carriers of hydrophobic pharmaceutical drugs, to the silica nanoparticles obtained by this or other methods, and to the use thereof for the treatment of cancer. The nanoparticles effectively retain the pharmaceutical drug inside them, preventing the premature release of the drug in the external medium during intraveinous transport, reducing the collateral effects associated with chemotherapy and the dose concentration required for an antitumoral treatment.

Description

PROCESSO DE OBTENÇÃO DE NANOPARTICULAS DE SÍLICA PEGUILADAS CARREADORAS DE FÁRMACOS HIDROFÓBICOS, NANOPARTICULAS ASSIM  PROCEDURE FOR OBTAINING PEGUILATED SILICAN NANOPARTICULES CARRYING HYDROPHOPIC PHARMACEUTICALS, SO NANOPARTICULES
OBTIDAS E SEUS USOS OBTAINED AND ITS USES
CAMPO DA INVENÇÃO FIELD OF INVENTION
[01] A presente invenção se insere no campo da nanotecnologia compreendendo as plataformas cientificas da química de materiais e química do estado sólido com ênfase para a interação de nanoestruturas com biossistemas, também conhecida como nanobiotecnologia .  [01] The present invention falls within the field of nanotechnology comprising the scientific platforms of material chemistry and solid state chemistry with emphasis on the interaction of nanostructures with biosystems, also known as nanobiotechnology.
- [02] Mais especificamente, a presente invenção refere-se a um processo de obtenção de nanopartículas de sílica peguiladas carreadoras de fármacos hidrofóbicos, as nanopartículas de sílicas obtidas ou não pelo dito processo e seu uso em tratamentos antitumorais e anti-inflamatórios .  [02] More specifically, the present invention relates to a process for obtaining pegylated silica nanoparticles carrying hydrophobic drugs, the silica nanoparticles obtained or not by said process and their use in anti-tumor and anti-inflammatory treatments.
FUNDAMENTOS DA INVENÇÃO BACKGROUND OF THE INVENTION
[03] O câncer é uma doença causada pelo crescimento exacerbado de células, invadindo tecidos e órgãos. Essa doença é derivada de fatores externos ou ambientais sendo que em aproximadamente 90% dos casos os fatores externos são as principais causas da doença. Se descoberta cedo, a doença pode ser remediada por diversos tratamentos, entre eles merecem destaque a quimioterapia, radiações, hormônios, entre outros. De fato, a quimioterapia é o tipo de tratamento mais comum e envolve a utilização de fármacos antitumorais .  [03] Cancer is a disease caused by exacerbated cell growth, invading tissues and organs. This disease is derived from external or environmental factors and in approximately 90% of cases external factors are the main causes of the disease. If discovered early, the disease can be remedied by several treatments, among them are chemotherapy, radiation, hormones, among others. In fact, chemotherapy is the most common type of treatment and involves the use of antitumor drugs.
[04] Os fármacos no combate ao câncer possuem diversos efeitos colaterais, quando aplicadas no organismo, resultado da baixa seletividade do fármaco que atinge células sadias do corpo e, consequentemente, acarretando alta toxidade. Somado a isso, tem- se o baixo tempo de circulação no sangue sendo necessárias altas 15 000202 [04] Cancer drugs have several side effects when applied to the body, as a result of the low selectivity of the drug that reaches healthy body cells and, consequently, causes high toxicity. In addition, there is a short circulation time in the blood and high 15 000202
2  2
doses a . serem aplicadas, acarretando ainda mais os referidos efeitos negativos . doses a. applied, further causing such negative effects.
[05] Na literatura, existem diversos tipos de fármacos anticâncer, dentre elas pode-se destacar a Camptotecina, Cisplatina e 5-fluorouracil como agentes utilizados no combate ao câncer de pulmão. Merecem destaque, também, as substâncias orgânicas . como Anamicina, Doxorubicina e Lurtotecan, aplicados ao tratamento de células tumorais dos rins (carcinoma) e estômago. O fármaco Docetaxel possui função de combate ao câncer de mama metastático, adenocarcinomas de esôfago, entre outros, juntamente com Doxorubicina e Paclitaxel.  [05] In the literature, there are several types of anticancer drugs, among them Camptothecin, Cisplatin and 5-fluorouracil as agents used to fight lung cancer. Also worth mentioning are organic substances. such as Anamycin, Doxorubicin and Lurtotecan, applied to the treatment of kidney (carcinoma) and stomach tumor cells. Docetaxel has the function of fighting metastatic breast cancer, esophageal adenocarcinomas, among others, along with Doxorubicin and Paclitaxel.
[06] Um fármaco que vem apresentando bons efeitos é a violaceína, um pigmento de coloração violeta produzido pela bactéria Chromobacterium violaceum, encontrada no Amazonas. Em estudos realizados pelo pesquisador Nelson Duran e colaboradores, da Universidade Estadual de Campinas, foram evidenciadas as características desse fármaco e sua alta capacidade antitumoral, antiulcerogênica, antiviral, antibacteriana e anti-leishmania . Trata-se de um fármaco extremamente importante em diversas aplicações médicas, o que ressalta a necessidade em produzir nanoparticula moldadas para fármacos com tais características.  [06] One drug that has been showing good effects is violacein, a violet-colored pigment produced by the bacterium Chromobacterium violaceum found in the Amazon. Studies conducted by researcher Nelson Duran and collaborators, from the State University of Campinas, showed the characteristics of this drug and its high anti-tumor, antiulcerogenic, antiviral, antibacterial and anti-leishmania ability. It is an extremely important drug in many medical applications, which underscores the need to produce molded nanoparticles for drugs with such characteristics.
[07] Devido às características hidrofóbicas de certos fármacos antitumorais como a Camptotecina e Violaceína, sua solubilização no plasma sanguíneo (hidrofílico) torna-se impossível, prejudicando sua atividade biológica. Levando-se em conta esses fatores, é válido salientar a importância da produção de nanopartículas possuindo superfície interna hidrofóbica, ideal para a interiorização do fármaco, bem como seu posterior transporte às células alvo em virtude da presença de funções orgânicas hidrofílicas na superfície externa das nanopartículas, proporcionando solubilidade e locomoção. 0 fármaco será compatível com o meio interno da nanopartícula que, por sua vez, deterá estabilidade no sangue. Portanto, a nanopartícula torna-se adequada para o processo de transporte e liberação do fármaco nos alvos biológicos. [07] Due to the hydrophobic characteristics of certain antitumor drugs such as Camptothecin and Violacein, their solubilization in (hydrophilic) blood plasma becomes impossible, impairing their biological activity. Given these factors, it is worth stressing the importance of producing nanoparticles with hydrophobic inner surface, ideal for drug internalization, as well as their subsequent transport to target cells due to the presence of hydrophilic organic functions on the outer surface of nanoparticles. , providing solubility and locomotion. The drug will be compatible with the internal medium of the nanoparticle which, in turn, will hold stability in the blood. Therefore, the nanoparticle becomes suitable for the process of transport and release of the drug in biological targets.
[08] No estado da técnica, diversas nanopartícuias são reportadas, e houve um grande aumento do número de tecnologias envolvendo a produção nanopartículas aplicadas no contexto de liberação controlada de fármacos.  [08] In the prior art, several nanoparticles are reported, and there has been a large increase in the number of technologies involving nanoparticle production applied in the context of controlled drug release.
[09] Em 2001, Nakanishi e colaboradores desenvolveram um nanocarreador micelar polimérico chamado NK911, onde o fármaco antitumoral doxorubicina foi inserido. A superfície externa deste carreador foi submetida à funcionalização com polietileno glicol no intuito de evitar sua captação pelo sistema imunológico e favorece estabilidade coloidal em solventes hidrofílicos . A referida tecnologia descrita no periódico assemelha-se à presente invenção pelo fato de compreender nanopartículas capazes de carrear fármacos em seu interior e compreender polietileno glicol (PEG) na superfície externa. No entanto, a presente invenção diferencia-se da tecnologia descrita no artigo pelo fato de compreender nanoestrutura de sílica funcionalizada, simultaneamente, com PEG na superfície externa e com funções orgânicas hidrofóbicas na superfície interna, proporcionando transporte eficaz do fármaco, mantendo-o de maneira eficaz no interior da nanopartícula em virtude das fortes interações entre os grupos hidrofóbicos e a droga propriamente dita. A tecnologia descrita não detém os referidos grupos internos, proporcionando a saída do fármaco durante o transporte. Além disso, carreadores micelares não apresentam uma superfície rígida, a qual proporciona maior integridade física à nanopartícula de sílica. Vantajosamente, as nanoparticulas de sílica propostas na presente invenção detêm uma superfície rígida que permite funcionalizar internamente a superfície com grupos orgânicos hidrofóbicos que interagem com fármaco. Adicionalmente, tratam-se de nanoparticulas distintas em relação à nanoestrutura e composição química. [09] In 2001, Nakanishi and colleagues developed a polymeric micellar nanocarrier called NK911, where the doxorubicin antitumor drug was inserted. The outer surface of this carrier was subjected to polyethylene glycol functionalization to avoid its uptake by the immune system and favors colloidal stability in hydrophilic solvents. Said technology described in the journal resembles the present invention in that it comprises nanoparticles capable of carrying drugs within them and comprises polyethylene glycol (PEG) on the outer surface. However, the present invention differs from the technology described in the article in that it comprises nanostructure functionalized silica, simultaneously with PEG on the outer surface and with hydrophobic organic functions on the inner surface, providing effective drug transport while maintaining it in a stable manner. effective within the nanoparticle due to the strong interactions between hydrophobic groups and the drug itself. The described technology does not hold said inner groups, providing drug exit during transport. In addition, micellar carriers do not have a rigid surface which gives the silica nanoparticle greater physical integrity. Advantageously, the silica nanoparticles proposed in the present invention have a rigid surface that allows the surface to functionalize internally with drug-interacting hydrophobic organic groups. Additionally, they are distinct nanoparticles in relation to the nanostructure and chemical composition.
[010] Em 2005, Latallo e colaboradores desenvolveram nanoparticulas constituídas de polímeros dendríticos acetilados cujas superfícies externas foram funcionalizadas com ligantes de ácido fólico cujo objetivo é obter nanoparticulas capazes de atingir especificamente células tumorais . Os referidos tipos de células apresentam forte expressão de receptores de membrana para o ácido fólico. Dessa forma, a inserção dessa espécie química na superfície das nanoparticulas garante sua especificidade às células alvo. A tecnologia descrita no artigo assemelha-se à presente invenção pelo fato de compreender nanoparticulas carreadoras de fármacos antitumorais , no entanto, não possuem PEG na superfície externa, o qual é importante para a biocompatibilidade da nanopartícula no organismo, além de não compreender a superfície interna hidrofóbica de modo a manter o fármaco retido durante o transporte intravenoso. Dessa maneira, ainda que detenha especificidade no ataque às células cancerígenas, a tecnologia descrita no artigo apresenta problemas quanto à possível liberação prematura do fármaco no organismo, anteriormente ao alcance à célula alvo de modo que a eficiência no tratamento seja prejudicada. Vantajosamente, a presente invenção compreende nanoparticulas de sílica com PEG funcionalizado na superfície externa, proporcionando biocompatibilidade no organismo, além de manter o fármaco retido em seu interior hidrofóbico até o alcance da célula alvo. Adicionalmente, tratam- se de nanopartículas distintas em relação à nanoestrutura e composição química. [010] In 2005, Latallo and colleagues developed nanoparticles consisting of acetylated dendritic polymers whose outer surfaces were functionalized with folic acid binders aimed at obtaining nanoparticles capable of specifically targeting tumor cells. Said cell types show strong expression of membrane receptors for folic acid. Thus, the insertion of this chemical species on the nanoparticle surface guarantees its specificity to the target cells. The technology described in the article resembles the present invention in that it comprises antitumor drug carrier nanoparticles, however, they do not have PEG on the outer surface, which is important for the biocompatibility of the nanoparticle in the organism, and it does not understand the inner surface. hydrophobic to keep the drug entrapped during intravenous transport. Thus, although it has specificity in the attack on cancer cells, the technology described in the article presents problems regarding the possible premature release of the drug in the organism, previously reaching the target cell so that the treatment efficiency is impaired. Advantageously, the present invention comprises PEG-functionalized silica nanoparticles on the outer surface, providing biocompatibility in the body, and keeping the drug trapped within the hydrophobic interior until the target cell is reached. Additionally, they treat different nanoparticles in relation to the nanostructure and chemical composition.
[011] O documento de patente WO2009038659 refere-se a nanopartículas de sílica modificadas organicamente com fotosensibilizadores ligados covalentemente aplicadas para liberação de drogas fotodinâmicas . A tecnologia descrita em WO2009038659 assemelha-se à presente invenção pelo fato de compreender, na superfície interna da nanopartícula, grupos aromáticos. No entanto, os referidos grupos orgânicos encontram- se inseridos no meio de uma estrutura molecular complexa caracterizada por compreender fotossensibilizadores, isto é, são parte de uma entidade orgânica cuja função está atrelada única e exclusivamente às propriedades de imageamento da nanopartícula em tumores. Além disso, o documento não menciona a propriedade de encapsulamento de fármacos pela nanopartícula - não detém potencial antitumoral - e não possui na superfície externa grupos polietileno glicol (PEG) - problemas de biocompatibilidade e curto tempo de circulação sanguínea. Diferentemente das nanopartículas reivindicadas em WO2009038659, a presente invenção compreende na superfície interna grupos hidrofóbicos capazes de reter o fármaco nos poros durante o transporte no fluido sanguíneo até o alcance da célula cancerígena, quando é liberado. Além disso, a nanopartícula compreende na superfície externa grupos PEG, importantes para a biocompatibilidade da nanopartícula, elevada estabilidade coloidal fundamental para a locomoção da nanoestrutura no sangue (fluido hidrofílico) e tempo elevado de circulação sanguínea.  WO2009038659 relates to organically modified silica nanoparticles with covalently linked photosensitizers applied for photodynamic drug release. The technology described in WO2009038659 resembles the present invention in that it comprises aromatic groups on the inner surface of the nanoparticle. However, said organic groups are inserted in the middle of a complex molecular structure characterized by photosensitizers, that is, they are part of an organic entity whose function is solely and exclusively linked to the imaging properties of the nanoparticle in tumors. In addition, the document does not mention the drug-encapsulating property of the nanoparticle - it has no antitumor potential - and it does not have polyethylene glycol (PEG) groups on its outer surface - biocompatibility problems and short blood circulation time. Unlike the nanoparticles claimed in WO2009038659, the present invention comprises hydrophobic groups on the inner surface capable of retaining the drug in the pores during transport in the blood fluid to the reach of the cancer cell when it is released. In addition, the nanoparticle comprises PEG groups on the outer surface, which are important for nanoparticle biocompatibility, high colloidal stability essential for locomotion of the nanostructure in the blood (hydrophilic fluid) and long time of blood circulation.
[012] O documento de patente US20100255103 refere-se a nanopartículas de sílica para aplicações biomédicas. A tecnologia assemelha-se à presente invenção pelo fato de compreender uma nanopartícuia de sílica cuja superfície externa é revestida com PEG e pelo fato de encapsular drogas hidrofóbicas compreendendo a camptotecina. As nanopartículas reivindicadas na patente possuem os seguintes problemas técnicos (resolvidos pela presente invenção) : o interior das nanopartículas da patente compreende núcleos magnéticos como óxido de ferro e ouro; tratam-se de entidades inorgânicas ocupando 'significativo volume interno, prejudicando a capacidade de incorporação de fármaco; além disso, a patente não reivindica o volume dé poros, de fundamental importância para a referida capacidade de encapsulamento de fármacos. Na presente invenção tem-se resultados de caracterização físico-química comprovando o volume de poros das nanopartículas peguiladas, ideal para a incorporação das moléculas biológicas ativas, caracterizando uma das estratégias de proteção no presente pedido de patente; o interior das nanopartículas reivindicadas na patente americana é isento de grupos hidrofóbicos capazes de reter o fármaco durante a locomoção intravenosa. Aplicando-se as referidas nanoestruturas no sangue existe probabilidade de saída da droga do interior dos poros para o fluido, acarretando a dispersão do fármaco no sangue, o que é indesejável. Nesse contexto, as nanopartículas propostas na presente invenção compreendem grupos hidrofóbicos no interior poroso para retenção do ativo biológico durante o percurso intravenoso até o alcance da célula alvo. US20100255103 relates to silica nanoparticles for biomedical applications. Technology resembles the present invention in that it comprises a silica nanoparticles whose outer surface is coated with PEG and by encapsulating hydrophobic drugs comprising camptothecin. The nanoparticles claimed in the patent have the following technical problems (solved by the present invention): the interior of the patent nanoparticles comprises magnetic cores such as iron oxide and gold; These are inorganic entities occupying a significant internal volume, impairing the ability to incorporate drug; furthermore, the patent does not claim pore volume, of fundamental importance for said drug encapsulation capacity. In the present invention there are results of physicochemical characterization proving the pore volume of the pegylated nanoparticles, ideal for the incorporation of active biological molecules, characterizing one of the protection strategies in the present patent application; The interior of the nanoparticles claimed in the US patent is free of hydrophobic groups capable of retaining the drug during intravenous locomotion. Applying said nanostructures in the blood there is a likelihood that the drug will exit the interior of the pores into the fluid, causing the drug to disperse in the blood, which is undesirable. In this context, the nanoparticles proposed in the present invention comprise porous interior hydrophobic groups for retention of the biological active during the intravenous pathway to the target cell range.
[013] O documento de patente US20130274226 refere-se a nanopartículas de sílica com agentes conjugados. A tecnologia compreende nanopartículas de sílica cuja superfície externa é recoberta com funções PEG e pelo fato de encapsular drogas hidrofóbicas em seu. interior. A presente invenção difere-se da tecnologia revelada em US20130274226 pelo fato de compreender nanoparticulas cuja superfície interna compreende grupos hidrofóbicos capazes de reter o fármaco durante a locomoção intravenosa, característica importante no sentido de evitar possíveis perdas do ativo biológico para o fluido sanguíneo durante o carréamento até a célula alvo. A tecnologia apresenta, ainda, os seguintes problemas: a tecnologia utiliza reagentes silanos conjugados a fármacos para formação de ligação covalente da droga no interior da nanopartícula . Nesse contexto, há dificuldades de liberação do fármaco durante o transporte intravenoso, uma vez que a liberação do fármaco depende da degradação da ligação química covalente do radical silano-fármaco . Diferentemente, a presente invenção mantém o fármaco retido no interior hidrofóbico durante o carréamento em função das interações com os grupos hidrofóbicos. Além disso, a incorporação covalente da droga na nanopartícula impede a incorporação de outras drogas hidrofóbicas em uma mesma batelada de nanopartículas, demandando outro processo de produção de nanopartículas contendo outro tipo específico de ativo biológico hidrofóbico ligado como outro silano-fármaco - note que para cada batelada apenas um tipo de fármaco é passível de ser incorporado, pois encontra-se na forma de silano (silano-fármaco) , demandando sua adição no processo conjuntamente com os demais precursores da nanopartícula para garantir a condensação em seu interior, impossibilitando-o de ser adicionado posteriormente em uiria situação na qual tem-se uma batelada de nanopartículas de sílica ainda isenta de drogas incorporadas. Vantajosamente, a presente invenção detém versatilidade de encapsulamento de uma gama de fármacos de características químicas hidrofóbicas, uma vez que é necessário apenas uma batelada para produção de nanopartículas de sílica. Uma vez obtidas as nanopartículas, qualquer tipo fármaco antitumoral hidrofóbico pode ser incorporado no nahocarreador sem a necessidade de produção de outras bateladas, economizandó-se matéria-prima, energia e tempo de produção. US20130274226 relates to silica nanoparticles with conjugated agents. The technology comprises silica nanoparticles whose outer surface is coated with PEG functions and by encapsulating hydrophobic drugs in their . inside. The present invention differs from the technology disclosed in US20130274226 in that it comprises nanoparticles whose inner surface comprises hydrophobic groups capable of retaining the drug during intravenous locomotion, an important feature in order to avoid possible losses of the biological active to the blood fluid during the carriage to the target cell. The technology also has the following problems: The technology uses drug-conjugated silane reagents to form covalent bonding of the drug within the nanoparticle. In this context, there are difficulties in drug release during intravenous transport, since drug release depends on the degradation of the covalent chemical bond of the silane-drug radical. In contrast, the present invention maintains the drug retained within the hydrophobic interior during carriage as a function of interactions with hydrophobic groups. In addition, covalent incorporation of the drug into the nanoparticle prevents the incorporation of other hydrophobic drugs into a single batch of nanoparticles, requiring another nanoparticle production process containing another specific type of hydrophobic biological asset bound as another silane drug - note that for each Batch only one type of drug can be incorporated, as it is in the form of silane (silane-drug), requiring its addition in the process together with the other precursors of nanoparticle to ensure condensation inside, making it impossible to be added later in a situation in which a batch of still drug-free silica nanoparticles is incorporated. Advantageously, the present invention has the versatility of encapsulating a range of drugs with hydrophobic chemical characteristics, since only one batch is required to produce silica nanoparticles. Once nanoparticles are obtained, any type of hydrophobic antitumor drug can be incorporated in the shipyard without the need to produce other batches, saving raw material, energy and production time.
[014] Assim, as nanopartículas propostas compreendem, simultaneamente, superfície externa hidrofílica em virtude da presença do polietileno glicol e superfície interna hidrofóbica relacionada à presença de grupos funcionais hidrofóbicos. Adicionalmente, as nanopartículas apresentam como diferencial a versatilidade em incorporar drogas hidrofóbicas.  Thus, the proposed nanoparticles simultaneously comprise hydrophilic outer surface due to the presence of polyethylene glycol and hydrophobic inner surface related to the presence of hydrophobic functional groups. Additionally, nanoparticles have as a differential the versatility to incorporate hydrophobic drugs.
[015] Ainda, o processo proposto possui como diferencial o fato de não utilizar solventes tóxicos em suas etapas, abranger duas estratégias de funcionalização da superfície externa das nanopartículas, além de compreender condições amenas e específicas para produzir nanopartículas com as características mencionadas.  [015] Moreover, the proposed process has the differential that it does not use toxic solvents in its stages, encompassing two strategies of functionalization of the outer surface of nanoparticles, as well as understanding mild and specific conditions to produce nanoparticles with the mentioned characteristics.
BREVE DESCRIÇÃO DA INVENÇÃO BRIEF DESCRIPTION OF THE INVENTION
[016] A presente invenção refere-se a um processo de obtenção de nanopartículas de sílica peguiladas carreadoras de fármacos hidrofóbicos, as nanopartículas de sílicas obtidas ou não pelo dito processo e seu uso em tratamentos antitumorais e anti- inflamatórios .  [016] The present invention relates to a process for obtaining pegylated silica nanoparticles carrying hydrophobic drugs, the silica nanoparticles obtained or not by said process and their use in anti-tumor and anti-inflammatory treatments.
[017] O processo de obtenção de nanopartículas de sílica peguiladas carreadoras de fármacos compreende as seguintes etapas: dissolução de surfactante em catalisador de amónia e solvente de reação alcoólico, agitação da solução, adição de precursor inorgânico de silício em silano hidrofóbico, adição da solução obtida na etapa anterior na solução obtida na primeira etapa, agitação da solução obtida, adição de precursor inorgânico de silício, centrifugação, descarte do sobrenadante e redispersão em etanol, funcionalização da superfície externa das nanopartículas de sílica, preparação de uma solução etanólica de HC1, adição das nanopartículas na solução preparada na etapa anterior, aplicação de ultrassom, centrifugação, descarte do sobrenadante e redispersão em etanol, suspensão das nanopartículas obtidas em solução aquosa, adição de fármaco hidrofóbico, mistura dos componentes compreendidos na etapa anterior, separação das nanopartículas, obtendo-se nanopartículas peguiladas carreadoras de fármacos hidrofóbicos. The process of obtaining drug-bearing pegylated silica nanoparticles comprises the following steps: dissolution of surfactant in ammonia catalyst and alcohol reaction solvent, stirring of the solution, addition of inorganic silicon precursor in hydrophobic silane, addition of solution obtained in the previous step in the solution obtained in the first step, agitation of the obtained solution, addition of inorganic silicon precursor, centrifugation, supernatant disposal and redispersion in ethanol, functionalization of the external surface of the silica nanoparticles, preparation of an ethanolic solution of HCl, addition of nanoparticles to the solution prepared in the previous step, application ultrasound, centrifugation, supernatant disposal and redispersion in ethanol, suspension of nanoparticles obtained in aqueous solution, addition of hydrophobic drug, mixing of the components comprised in the previous step, separation of nanoparticles, obtaining pegylated nanoparticles carrying hydrophobic drugs.
[018] As nanopartículas obtidas ou não pelo dito processo compreendem superfície externa funcionalizada com polietileno glicol (PEG) , superfície interna porosa e funcionalizada com grupos hidrofóbicos, e fármaco hidrofóbico encapsulado.  Nanoparticles obtained or not by said process comprise polyethylene glycol (PEG) -functioning outer surface, hydrophobic-functionalized porous inner surface, and encapsulated hydrophobic drug.
[019] Por fim, a presente invenção descreve, ainda, o uso das nanopartículas peguiladas carreadoras de fármacos hidrofóbicos em tratamentos antitumorais e anti-inflamatórios . [019] Finally, the invention also describes the use of the carrier of hydrophobic drugs pegylated nanoparticles in antitumor and anti-inflammatory treatments.
BREVE DESCRIÇÃO DAS FIGURAS BRIEF DESCRIPTION OF THE FIGURES
[020] Figura 1: Estrutura molecular do PTES (a), do TEOS (b) e CTAB (c) .  [020] Figure 1: Molecular structure of PTES (a), TEOS (b) and CTAB (c).
[021] Figura 2: Arranjo dos grupos fenil nos espaços entre as moléculas de CTAB.  [021] Figure 2: Arrangement of phenyl groups in the spaces between CTAB molecules.
[022] Figura 3: Imagem representativa da nanopartícula de partida.  [022] Figure 3: Representative image of the starting nanoparticle.
[023] Figura 4: Imagem representativa da nanopartícula funcionalizada externamente.  [023] Figure 4: Representative image of externally functionalized nanoparticle.
[024] Figura 5: Estrutura molecular dos silanos utilizados.  [024] Figure 5: Molecular structure of the silanes used.
[025] Figura 6: Representação da produção de nanopartículas e sua funcionalizaçãõ .  [025] Figure 6: Representation of nanoparticle production and its functionalization.
[026] Figura 7: Resumo da produção das nanopartículas de partida.  [026] Figure 7: Summary of the production of the starting nanoparticles.
[027] Figura 8: Representação geral da reação de funcionalizaçãõ da nanopartícula de partida com silano PEGio. [028] Figura 9: Representação geral da reação de funcionalização dâ nanoparticula de partida com silano GPS e acoplamento do PEG40 na função epóxi terminal. [027] Figure 8: General representation of the functionalization reaction of the starting nanoparticle with PEGio silane. [028] Figure 9: General representation of the functionalization reaction of GPS silane starting nanoparticle and coupling of PEG40 to terminal epoxy function.
[029] Figura 10: Processo resumido de extração do surfactante.  [029] Figure 10: Summary process of surfactant extraction.
[030] Figura 11: Funcionalizações realizadas e sua localização no veiculo molecular.  [030] Figure 11: Functionalizations performed and their location in the molecular vehicle.
[031] Figura 12: Espectros Vibracionais no infravermelho (FTIR) referentes às nanoparticulas de partida antes e após a remoção do CTAB .  [031] Figure 12: Infrared Vibrational Spectra (FTIR) for starting nanoparticles before and after CTAB removal.
[032] Figura 13: Curvas termogravimétricas (TG) e suas respectivas curvas de análise térmica diferencial (DTA) das nanoparticulas de partida.  [032] Figure 13: Thermogravimetric (TG) curves and their respective differential thermal analysis (DTA) curves of the starting nanoparticles.
[033] Figura 14: Isotermas de adsorçâo-dessorção de N2 da NPH30- SiOH e NPH30-CTAB-SÍOH.  [033] Figure 14: NPH30-SiOH N2 adsorption-desorption isotherms and NPH30-CTAB-SiOH.
[034] Figura 15: Micrografia (TEM) das nanoparticulas de sílica funcionalizadas internamente com grupos fenil após extração do CTAB.  [034] Figure 15: Micrograph (TEM) of internally functionalized silica nanoparticles with phenyl groups after CTAB extraction.
[035] Figura 16: Espectros Vibracionais no in ravermelho (FTIR) referentes à NPH30-SÍO-1 OPEGio .  [035] Figure 16: Infrared Vibrational Spectra (FTIR) for NPH30-SiO-1 OPEG10.
[036] Figura 17: Curvas TG e DTA da NPH30-SÍO-10PEG10.  Figure 17: NPH30-SiO-10PEG10 TG and DTA curves.
[037] Figura 18: Isotermas de adsorçâo-dessorção de N2 da NPH30- SÍO-10PEG10.  [037] Figure 18: NPH30-SiO-10PEG10 N2 adsorption-desorption isotherms.
[038] Figura 19: Espectro de RMN de carbono da NPH30-SÍO-10PEG10.  Figure 19: NPH30-SiO-10PEG10 carbon NMR spectrum.
[039] Figura 20: Espectro de RMN de silício da NPH30-SÍO-10PEG10.  Figure 20: NPH30-SiO-10PEG10 silicon NMR spectrum.
[040] Figura 21: Espectros Vibracionais no infravermelho (FTIR) referentes à NPH30-SÍO-25PEG10.  [040] Figure 21: Infrared Vibrational Spectrum (FTIR) for NPH30-SiO-25PEG10.
[041] Figura 22: Curvas TG e DTA da NPH30-SÍO-25PEG10. Figura 23: Isotermas de adsorçâo-dessorção de N2 da NPH30-SÍO-25PEG10.  Figure 22: TG and DTA curves of NPH30-SiO-25PEG10. Figure 23: NPH30-SiO-25PEG10 N2 adsorption-desorption isotherms.
[042] Figura 24: Espectro de RMN de carbono da NPH30-SÍO-25PEG10.  Figure 24: NPH30-SiO-25PEG10 carbon NMR spectrum.
[043] Figura 25: Espectro de RMN de silício da NPH30-SÍO-25PEG10. 2 Figure 25: NPH30-SiO-25PEG10 silicon NMR spectrum. 2
11  11
[044] Figura 26: Espectros Vibracionais no infravermelho (FTIR} referentes à NPH30-SÍO-50PEG10. [044] Figure 26: Infrared Vibrational Spectrum (FTIR) for NPH30-SiO-50PEG10.
[045] Figura 27: Curvas TG e DTA da NPH30-SÍO-50PEG10.  Figure 27: TG and DTA curves of NPH30-SiO-50PEG10.
[046] Figura 28: Isotermas de adsorção-dessorção de N2 na NPH30- SÍO-50PEG10.  [046] Figure 28: N2 adsorption-desorption isotherms in NPH30-SiO-50PEG10.
[047] Figura 29: Espectro de RMN de carbono da NPH30-SÍO-50PEG10.  [047] Figure 29: NPH30-SiO-50PEG10 carbon NMR spectrum.
[048] Figura 30: Espectro de RMN de silício da NPH30-SÍO-50PEG10.  [048] Figure 30: NPH30-SiO-50PEG10 silicon NMR spectrum.
[049] Figura 31: Micrografia (TEM) das nanopartículas de sílica funcionali zadas internamente com grupos fenil e externamente com polietileno glicol.  [049] Figure 31: Micrograph (TEM) of silica nanoparticles functionalized internally with phenyl groups and externally with polyethylene glycol.
[050] Figura 32: Espectros Vibracionais no infravermelho (FTIR) referentes à NPH30-SÍO-10GPS-PEG40.Erro! Fonte de referência não encontrada. Figura 33: Curvas TG e DTA da NPH30-SÍO-10GPS-PEG40.  [050] Figure 32: Infrared Vibrational Spectra (FTIR) for NPH30-SIO-10GPS-PEG40.Error! Reference source not found. Figure 33: TG and DTA curves of NPH30-SiO-10GPS-PEG40.
[051] Figura 34: Isotermas de adsorção-dessorção de N2 na NPH30- SiO-10GPS-PEG40.  [051] Figure 34: N2 adsorption-desorption isotherms in NPH30-SiO-10GPS-PEG40.
[052] Figura 35: Espectros de RMN 13C da NPH30-SÍO-10GPS-PEG40.  Figure 35: 13 C NMR spectra of NPH30-SiO-10GPS-PEG40.
[053] Figura 36: Espectro de RMN de silício da NPH30-SÍO-10GPS .  Figure 36: NPH30-SiO-10GPS silicon NMR spectrum.
[054] Figura 37: Gráfico de estabilidade coloidal das nanopartículas a 250 g/mL em PBS .  [054] Figure 37: Colloidal stability graph of nanoparticles at 250 g / mL in PBS.
[055] Figura 38: Curvas dose-resposta das nanopartículas em incubadas em células vermelhas do sangue.  [055] Figure 38: Dose response curves of nanoparticles incubated in red blood cells.
[056] Figura 39: Estudo da agregação das nanopartículas em PBS durante uma hora.  [056] Figure 39: Study of nanoparticle aggregation in PBS for one hour.
[057] Figura 40: exibe a curva de calibração da curcumina em etanol bem como a informação de cada espectro adquirido em cada uma das cinco concentrações conhecidas.  [057] Figure 40: Displays the curcumin calibration curve in ethanol as well as the information for each spectrum acquired at each of the five known concentrations.
[058] Figura 41: mostra o gráfico da concentração de curcumina nas nanopartículas de sílica peguiladas após cada uma das separações por centrifugação e decantação. [059] Figura 42: mostra a imagem das suspensões das nanoparticulas de sílica NPH30-SÍOH, NPH30-1 OPEGsoo, NPH30-50PEG5oo e NPH30-lÕPEG5ooo na presença de curcumina e o referido fármaco adicionado em água na ausência dos veículos moleculares (H2O) após 24 horas de decantação e anteriormente à retirada do sobrenadante. [058] Figure 41: Graphs the concentration of curcumin in the pegylated silica nanoparticles after each separation by centrifugation and decantation. [059] Figure 42: shows the image of suspensions of silica nanoparticles NPH30-SiOH, NPH30-1 OPEGsoo, NPH30-50PEG 5 and oo-NPH30 lÕPEG5ooo in the presence of curcumin and said drug added to water in the absence of molecular vehicles ( H2O) after 24 hours of decantation and prior to removal of the supernatant.
DESCRIÇÃO DETALHADA DA INVENÇÃO DETAILED DESCRIPTION OF THE INVENTION
[060] A presente invenção compreende o processo de obtenção de nanoparticulas de sílica peguiladas carreadoras de fármacos, cujas etapas abrangidas compreendem:  [060] The present invention comprises the process of obtaining drug-bearing pegylated silica nanoparticles, the steps of which comprise:
a) dissolução de surfactante entre 0,65 e 0,75 g, preferencialmente 0,75 g, em catalisador de amónia em concentração entre 0,03 e 0,07 mol/L, preferencialmente 0,05 mol/L, e solvente de reação alcoólico em volumes entre 2,5 e 3,8 mL, preferencialmente 3,2 mL; a) surfactant dissolution between 0.65 and 0.75 g, preferably 0.75 g, in ammonia catalyst in a concentration between 0.03 and 0.07 mol / L, preferably 0.05 mol / L, and solvent of alcoholic reaction in volumes between 2.5 and 3.8 mL, preferably 3.2 mL;
b) agitação da solução obtida na etapa anterior em temperatura entre 40 e 80 °C, preferencialmente 60 °C; b) stirring the solution obtained in the previous step at a temperature between 40 and 80 ° C, preferably 60 ° C;
c) adição de precursor inorgânico de silício entre 1 e 3 mL, preferencialmente 1,5 mL, em silano hidrofóbico; c) adding inorganic silicon precursor between 1 and 3 mL, preferably 1.5 mL, in hydrophobic silane;
d) adição gota a gota da solução obtida na etapa (c) na solução obtida na etapa (a) ; d) adding dropwise the solution obtained in step (c) to the solution obtained in step (a);
e) agitação da solução obtida na etapa anterior durante 120 minutos em temperaturas entre 40 e 80 °C, preferencialmente 60 °C; e) stirring the solution obtained in the previous step for 120 minutes at temperatures between 40 and 80 ° C, preferably 60 ° C;
el) adição de precursor inorgânico de silício, após 60 minutos de reação, em guantidades volumétricas entre 100 e 150 i , preferencialmente 124 μL; el) addition of inorganic silicon precursor after 60 minutes of reaction at volumetric quantities between 100 and 150 i, preferably 124 μL;
e2) adição de precursor inorgânico de silício, após 90 minutos de reação, em quantidades volumétricas entre 100 e 150 \iL, preferencialmente 124 L; f) Centrifugação por entre 40 e 80 minutos, preferencialmente 60 minutos, entre 10.000 e 20.000 rpm, preferencilamente 15.000; descarte do sobrenadante e redispersão em etanol; e2) adding inorganic silicon precursor, after 90 minutes of reaction, in volumetric amounts between 100 and 150 µl, preferably 124 L; f) Centrifugation for 40 to 80 minutes, preferably 60 minutes, between 10,000 and 20,000 rpm, preferably 15,000; discarding the supernatant and redispersing in ethanol;
g) Funcionalização da superfície externa das nanoparticulas de sílica de partida de duas maneiras distintas (1 ou 2) : g) Functionalization of the external surface of the starting silica nanoparticles in two different ways (1 or 2):
gl.l) dispersão de nanoparticulas de partida em massas entre 50 egl.l) dispersion of starting nanoparticles in masses between 50 and
500 mg, preferencialmente 300 mg, em solvente etanol em volumes entre 20 e 60 mL, preferencialmente 40 mL; agitação da solução entre 40 e 90 minutos, preferencialmente 75 minutos em temperatura entre 40 e 80 °C, preferencialmente 60 °C; 500 mg, preferably 300 mg, in ethanol solvent in volumes between 20 and 60 mL, preferably 40 mL; stirring the solution between 40 and 90 minutes, preferably 75 minutes at a temperature between 40 and 80 ° C, preferably 60 ° C;
gl.2) Adição de silano-PEG na solução da etapa gl.l; gl.2) Addition of silane-PEG to the solution of step gl.l;
gl.3) Agitação da solução da etapa gl.2 entre 10 e 20 horas, preferencialmente 13 horas; gl.3) Stirring the solution from step gl.2 between 10 and 20 hours, preferably 13 hours;
gl.4) Centrifugação da solução compreendida na etapa gl.3 entre 40 e 80 minutos, preferencialmente 60 minutos, entre 10.000 e 20.000 rpm, preferencialmente 15.000; descarte do sobrenadante e redispersão em etanol; repetida pelo menos duas vezes; ou gl.4) Centrifugation of the solution comprised in step gl.3 between 40 and 80 minutes, preferably 60 minutes, between 10,000 and 20,000 rpm, preferably 15,000; discarding the supernatant and redispersing in ethanol; repeated at least twice; or
g2.1) dispersão de nanoparticulas de partida em massas entre 50 e 500 mg, preferencialmente 300 mg, em solvente etanol em volumes entre 40 e 80 mL, preferencialmente 62 mL e agitação da solução entre 20 e 60 minutos, preferencialmente 30 minutos em temperatura entre 60 e 90 °C, preferencialmente 85 °C; g2.1) dispersion of starting nanoparticles in masses between 50 and 500 mg, preferably 300 mg, in ethanol solvent in volumes between 40 and 80 mL, preferably 62 mL and stirring of the solution between 20 and 60 minutes, preferably 30 minutes at room temperature. between 60 and 90 ° C, preferably 85 ° C;
g2.2) Adição de um silano intermediário com grupos funcionais reativos na solução obtida; g2.2) Addition of an intermediate silane with reactive functional groups to the obtained solution;
g2.3) Agitação da solução entre 10 e 20 horas, preferencialmente 12 horas em atmosfera de gás inerte; g2.3) Stirring the solution between 10 and 20 hours, preferably 12 hours in an inert gas atmosphere;
g2. ) Centrifugação da solução entre 40 e 80 minutos, preferencialmente 60 minutos, entre 10.000 e 20.000 rpm, preferencialmente 15.000 e descarte do sobrenadante e redispersão em etanol; repetida pelo menos duas vezes; g2.5) Dispersão das nanopartículas intermediárias obtidas na etapa g2. em massas entre 50 e 500 mg, preferencialmente 150 mg, em solvente etanol em volumes entre 10 e 30 mL, preferencialmente 20 mL e agitação da solução entre 15 e 45 minutos, preferencialmente 30 minutos em temperatura de 95 °C; g2. ) Centrifuging the solution between 40 and 80 minutes, preferably 60 minutes, between 10,000 and 20,000 rpm, preferably 15,000 and discarding the supernatant and redispersing in ethanol; repeated at least twice; g2.5) Dispersion of intermediate nanoparticles obtained in step g2. in masses between 50 and 500 mg, preferably 150 mg, in ethanol solvent in volumes between 10 and 30 mL, preferably 20 mL and stirring of the solution between 15 and 45 minutes, preferably 30 minutes at a temperature of 95 ° C;
g2.6) - Adição de uma base forte na solução obtida; g2.6) - Addition of a strong base to the obtained solution;
g2.7) Dissolução de PEG-COOH (PEG com- ácido carboxílico terminal) compreendendo massa entre 5 e 70 mg, preferencialmente 15,1 mg em solvente etanol em volumes entre 500 e 1500 μΙ_, preferencialmente 750 pL; g2.7) Dissolution of PEG-COOH (PEG-terminal carboxylic acid) comprising mass between 5 and 70 mg, preferably 15.1 mg in ethanol solvent in volumes between 500 and 1500 μΙ, preferably 750 pL;
g2.8) Adição da solução de PEG-COOH da etapa g2.7 na solução obtida na etapa g2.6 para reação de acoplamento entre os grupos funcionais reativos da nânopartícula intermediária com grupos funcionais reativos. e o ácido carboxílico do PEG-COOH; g2.8) Addition of the PEG-COOH solution from step g2.7 to the solution obtained in step g2.6 for coupling reaction between reactive functional groups of intermediate nanoparticle with reactive functional groups. and PEG-COOH carboxylic acid;
g2.9) Agitação da solução obtida na etapa g2.8 entre 10 e 20 horas, preferencialmente ,12 horas em temperatura preferencial de 95 °C; g2.10) Centrifugação da solução obtida na etapa g2.9 entre 40 e 80 minutos, preferencialmente 60 minutos, entre 10.000 e 20.000 rpm, preferencialmente 15.000, descarte do sobrenadante e redispersão em etanol; repetida por pelo menos duas vezes. g2.9) Stirring the solution obtained in step g2.8 between 10 and 20 hours, preferably 12 hours at a preferred temperature of 95 ° C; g2.10) Centrifuging the solution obtained in step g2.9 between 40 and 80 minutes, preferably 60 minutes, between 10,000 and 20,000 rpm, preferably 15,000, discarding the supernatant and redispersing in ethanol; repeated at least twice.
h) Preparação de uma solução etanolólica de HC1 em proporção volumétrica preferencial de 1:9 HCl:etanol; h) Preparation of an ethanololic solution of HCl in a volume ratio of preferably 1: 9 HCl: ethanol;
i) Adição das nanopartículas compreendidas nas etapas gl .5 ou g2.12 ria solução preparada na etapa h; aplicação de ultrassom em tempos entre 10 e 30 minutos, preferencialmente 15 minutos; (i) Addition of nanoparticles comprised in steps gl. 5 or g2.12 in the solution prepared in step h; ultrasound application at times between 10 and 30 minutes, preferably 15 minutes;
j) Centrifugação da solução obtida na etapa (i) entre 40 e 80 minutos, preferencialmente 60 minutos,, entre 10.000 e 20.000 rpm, preferencialmente 15.000; descarte do sobrenadante e redispersão em etanol; repetida pelo menos duas vezes; e estocagem até encapsulamento do fármaco hidrofóbico; k) Suspensão das nanopartícuias obtidas na etapa (j) em solução aquosa (componente 1) ém massas entre 5 e 15 mg, preferencialmente 10 mg, e em concentrações dê até 1 mg/mL; e adição de 0,5 a 2 mg, preferencialmente 1 mg, de fármaco hidrofóbico (componente 2) ; 1) Mistura dos componentes compreendidos na etapa (k) por meios de homogeneização ultra-sônica em tempos entre 30 e 60 minutos; j) Centrifuging the solution obtained in step (i) between 40 and 80 minutes, preferably 60 minutes, between 10,000 and 20,000 rpm, preferably 15,000; discarding the supernatant and redispersing in ethanol; repeated at least twice; and storage until encapsulation of the hydrophobic drug; (k) Suspension of nanoparticles obtained in step (j) in aqueous solution (component 1) is in the range of 5 to 15 mg, preferably 10 mg, and in concentrations up to 1 mg / mL; and adding 0.5 to 2 mg, preferably 1 mg, of hydrophobic drug (component 2); 1) Mixing the components comprised in step (k) by means of ultrasonic homogenization at times between 30 and 60 minutes;
m) Separação das nanopartículas de sílica carreadoras de fármacos hidrofóbicos compreendendo o dito fármaco encapsulado (produto) do fármaco hidrofóbico não encapsulado (componente 1) , por meios de separação; , m) separating the silica nanoparticles carrying hydrophobic drugs comprising said encapsulated drug (product) from unencapsulated hydrophobic drug (component 1) by separation means; ,
n) Obtenção das nanopartículas de sílica carreadoras de fármacos hidrofóbicos compreendendo o dito fármaco encapsulado. n) Obtaining silica nanoparticles carrying hydrophobic drugs comprising said encapsulated drug.
[061] 0 processo ora descrito compreende as seguintes características:  [061] The process described herein comprises the following characteristics:
o surfactante compreende preferencialmente o brometo de hexadeciltrimetilamônio;  the surfactant preferably comprises hexadecyltrimethylammonium bromide;
- o precursor inorgânico de silício compreende alcóxidos de silício e organosilanos, preferencialmente o tetraetilortossilicato;  - the inorganic silicon precursor comprises silicon alkoxides and organosilanes, preferably tetraethylorthosilicate;
- o silano hidrofóbico é utilizado em quantidades entre 10 e 40% mol-Si, preferencialmente 30%' mol-Si; - the hydrophobic silane is used in amounts between 10 and 40 Si-mol%, preferably 30% 'Si-mol;
- o grupo hidrofóbico compreendido no silano hidrofóbico compreende grupos hidrofóbicos selecionados dentre grupos aromáticos e derivados; e grupos à base de hidrocarboneto e derivados;  - the hydrophobic group comprised in hydrophobic silane comprises hydrophobic groups selected from aromatic groups and derivatives; and hydrocarbon groups and derivatives;
- os grupos aromáticos e derivados são selecionados dentre o grupo das funções fenil, acetofenil, e pireno;  - aromatic groups and derivatives are selected from the group of phenyl, acetophenyl, and pyrene functions;
- os grupos à base de hidrocarbonetos e derivados são selecionados dentre o grupo das funções octil e octadecil;  - hydrocarbon and derivative groups are selected from the group of octyl and octadecyl functions;
- o silano-PEG é utilizado em quantidades entre 2 e 50% mol-Si; - PEG silane is used in amounts between 2 and 50 mol% Si;
- o PEG compreendido no silano-PEG compreende pelo menos 350 Da; - o silano intermediário com grupos funcionais reativos é utilizado em quantidades entre 2 e 50% mol-Si; - PEG comprised in silane-PEG comprises at least 350 Da; - intermediate silane with reactive functional groups is used in amounts between 2 and 50 mol% Si;
os grupos funcionais reativos compreendidos no silano intermediário compreendem funções epóxi;  reactive functional groups comprised in intermediate silane comprise epoxy functions;
- a base forte utilizada compreende preferencialmente o hidróxido de potássio;  - the strong base used preferably comprises potassium hydroxide;
- o PEG-COOH utilizado compreende pelo menos 350 Da;  - the PEG-COOH used comprises at least 350 Da;
- o fármaco hidrofobico é utilizado em quantidades entre 1 a 20% em massa;  - the hydrophobic drug is used in amounts from 1 to 20% by mass;
- fármaco hidrofobico utilizado é selecionado do grupo de fármacos compreendendo a curcumina, ; camptotecina, doxorrubicina, violaceina, tamoxifeno, beta-lapacona e análogos, preferencialmente camptotecina . - hydrophobic drug used is selected from the group of drugs comprising curcumin ; camptothecin, doxorubicin, violacein, tamoxifen, beta-lapacone and the like, preferably camptothecin.
[062] Os meios de separação descritos no processo compreendem a centrifugação ou a decantação.  The separation means described in the process comprise centrifugation or decantation.
[063] A centrifugação é realizada em forças de rotação entre 1500 e 2000 rpm, preferencialmente durante 2 minutos.  Centrifugation is performed at rotational forces between 1500 and 2000 rpm, preferably for 2 minutes.
[064] À decantação é realizada em tempo de pelo menos 24horas.  [064] The decantation is carried out in time of at least 24 hours.
[065] Alternativamente, a sequência de etapas k,l, m e n, podem ser realizadas pelas seguinte sequência de etapas:  Alternatively, the sequence of steps k, l, m and n may be performed by the following sequence of steps:
k' ) Suspensão das nanopartícuias obtidas em solução aquosa, adição de fármaco hidrofobico e manter em repouso por 4 horas;  k ') Suspension of nanoparticles obtained in aqueous solution, addition of hydrophobic drug and keep for 4 hours;
1' ) Centrifugação das nanoparticulas da etapa (k) nas mesmas condições estabelecidas na etapa (j) e obtenção de nanoparticulas peguiladas carreadoras de fármacos hidrofóbicos.  1 ') Centrifugation of nanoparticles from step (k) under the same conditions established in step (j) and obtaining pegylated nanoparticles carrying hydrophobic drugs.
[066] As nanoparticulas peguiladas carreadoras de fármacos hidrofóbicos da presente invenção compreendem as seguintes características : -superfície externa funcionalizada com polietileno glicol (PEG) ; -superfície interna porosa e funcionalizada com grupos hidrofóbicos; The pegylated hydrophobic drug carrier nanoparticles of the present invention comprise the following characteristics: outer surface functionalized with polyethylene glycol (PEG); porous inner surface functionalized with hydrophobic groups;
- fármaco hidrofóbico encapsulado;  - encapsulated hydrophobic drug;
- curcumina encapsulada.  - encapsulated curcumin.
[067] Mais especificamente, as nanopartículas peguiladas carreadoras de fármacos hidrofóbicos, compreendem as seguintes características :  More specifically, pegylated nanoparticles carrying hydrophobic drugs comprise the following characteristics:
- PEG de pelo menos 350 Da;  - PEG of at least 350 Da;
- PEG funcionalizado em quantidades entre 2 e 50% mol-Si;  - PEG functionalized in amounts between 2 and 50 mol-Si;
- grupos hidrofóbicos funcionalizados em quantidades entre 10 e 40% mol-Si, preferencialmente 30% mol-Si;  - functionalized hydrophobic groups in amounts between 10 and 40 mol% Si, preferably 30 mol% Si;
- grupos hidrofóbicos selecionados dentre grupos aromáticos e derivados; e grupos à base de hidrocarboneto e derivados;  - hydrophobic groups selected from aromatic groups and derivatives; and hydrocarbon groups and derivatives;
- grupos aromáticos e derivados selecionados dentre os grupos das funções fenil, acetofenil, e pireno;  - aromatic groups and derivatives selected from the groups of phenyl, acetophenyl, and pyrene functions;
- grupos à base de hidrocarbonetos e derivados selecionados dentre o grupo das funções octil e octadecil;  - hydrocarbon-based groups and derivatives selected from the group of octyl and octadecyl functions;
- fármaco hidrofóbico em quantidades entre 1 a 20% em massa;  - hydrophobic drug in amounts of 1 to 20% by mass;
fármaco hidrofóbico selecionado do grupo de fármacos compreendendo a curcumina, camptotecina, doxorrubicina, violaceína, tamoxifeno, beta-lapacona e análogos, preferencialmente curcumina e camptotecina;  hydrophobic drug selected from the group of drugs comprising curcumin, camptothecin, doxorubicin, violacein, tamoxifen, beta-lapacone and the like, preferably curcumin and camptothecin;
- diâmetro de partícula entre 40 e 100 nm;  - particle diameter between 40 and 100 nm;
- potencial zeta entre -5,3 e -35 mV;  - zeta potential between -5.3 and -35 mV;
- área superficial entre 760 e 943 m2/g; - surface area between 760 and 943 m 2 / g;
- volume de poros entre 1,0 a 1,8 cm3/g; pore volume between 1.0 and 1.8 cm 3 / g;
-causar efeitos hemolíticos máximos entre 2 e 14% e gerar 50% de hemólise em concentrações entre 35 e 75 microgramas/mL . [068] A presente invenção compreende, ainda, o uso das nanoparticulas peguiladas carreadoras de fármacos hidrofóbicos em tratamentos antitumorais e anti-inflamatórios . -cause maximum hemolytic effects between 2 and 14% and generate 50% hemolysis at concentrations between 35 and 75 micrograms / mL. [068] The present invention further comprises the use of pegylated hydrophobic drug carrier nanoparticles in anti-tumor and anti-inflammatory treatments.
[069] 0 processo de produção das nanoparticulas peguiladas carreadoras de fármaco hidrofóbico é iniciado com o surfactante, o silano a ser disposto internamente na nanoparticula, o precursor inorgânico de silício que formará a parede inorgânica, e o catalisador. Após esse processo, é implementada uma quantidade adicional dos precursores inorgânicos de silício controlando-se o tempo, de modo que a polimerização excessiva (excesso no tempo reacional) ou precária (escassez de tempo de reação) sejam evitados pois promovem a formação de paredes de sílica muito espessas e significativamente finas, respectivamente. Portanto, faz-se necessário um adequado controle de tempo de nucleação. Após a formação do compartimento interno devidamente separado do meio externo pela parede de sílica já nucleada segundo os parâmetros reacionais (tempo e temperatura de reação) , a funcionalização da superfície externa pode ser efetuada com o silano de interesse, seguida da remoção do surfactante. Na literatura já são descritos métodos de funcionalização hierárquica de acordo com as descrições desse parágrafo.  [069] The process of producing the pegylated hydrophobic drug carrier nanoparticles is initiated with the surfactant, the silane to be internally disposed in the nanoparticle, the inorganic silicon precursor that will form the inorganic wall, and the catalyst. After this process, an additional amount of inorganic silicon precursors are implemented by controlling time so that excessive (excess reaction time) or precarious (reaction time) polymerization is avoided as they promote the formation of silicon walls. silica very thick and significantly thin respectively. Therefore, adequate nucleation time control is required. After the internal compartment is properly separated from the external environment by the already nucleated silica wall according to the reaction parameters (reaction time and temperature), the external surface can be functionalized with the silane of interest, followed by the removal of the surfactant. Methods of hierarchical functionalization are described in the literature according to the descriptions of this paragraph.
[070] De maneira detalhada e sequencial, o processo de produção das nanoparticulas peguiladas carreadoras de fármacos hidrofóbicos é iniciado através do processo de co-condensação envolvendo o precursor inorgânico de silício, preferencialmente o tetraetiiortossilicato (TEOS), compreendendo a fonte inorgânica de sílica, o silano hidrofóbico compreendendo grupos hidrofóbicos selecionados dentre os grupos aromáticos e derivados (fenil, acetofenil e pireno) e grupos à base de hidrocarboneto e derivados (octil e octadecil) que se localiza na superfície interna da sílica, o surfactante compreendendo preferencialmente o brometo de hèxadeciltrimétilamônio (CTAB) , cuja função é formar micelas esféricas .atuando como molde, o hidróxido de amónio aquoso como catalisador _ e o etanol como solvente reacional. A Figura 1 apresenta a estrutura molecular dos componentes mencionados. [070] In a detailed and sequential manner, the production process of the hydrophobic drug-bearing pegylated nanoparticles is initiated by the co-condensation process involving the inorganic silicon precursor (TEOS), comprising the inorganic source of silica, hydrophobic silane comprising hydrophobic groups selected from the aromatic and derivative groups (phenyl, acetophenyl and pyrene) and hydrocarbon and derivative groups (octyl and octadecyl) which are located on the inner surface of the silica, the surfactant preferably comprising hexadecyltrimethylammonium bromide (CTAB), the function of which is to form spherical micelles, whereby aqueous ammonium hydroxide as catalyst and ethanol as reaction solvent as a template. Figure 1 shows the molecular structure of the mentioned components.
[071] No processo, o TEOS e o silano hidrofóbico sofrem hidrolise mutuamente e iniciam sua polimerização ao redor das micelas, de môdo . que ' a sílica . cárregada negativamente interage eletrostaticamente côm . . a superfície micelar carregada positivamente e os grupos hidrofóbicos se arranjam no interior dos pequenos espaços entre as caudas hidrofóbicas dos surfactantes. Éssa situação pode ser melhor observada na Figura 2. [071] In the process, TEOS and hydrophobic silane mutually hydrolyze and initiate their polymerization around the micelles, so that they are muted. that "silica. negatively charged electrostatically interacts with. . the positively charged micellar surface and hydrophobic groups arrange themselves within the small spaces between the hydrophobic tails of the surfactants. This situation can best be seen in Figure 2.
[072] Após essa étapa, uma determinada quantidade de TEOS é adicionada novamente de modo á aumentar a espessura da camada inorgânica de sílica, separando efetivamente o interior hidrofóbico do meio externo hidrofílico. Dessa forma, obtém-se a nanoparticula de partida, conforme indicada na Figura 3.  After this step, a certain amount of TEOS is added again to increase the thickness of the inorganic silica layer, effectively separating the hydrophobic interior from the hydrophilic external medium. Thus, the starting nanoparticle is obtained, as indicated in Figure 3.
: [073] Após a formação da nanoparticula contendo o grupo fenil no interior da esfera de sílica, a superfície externa é também submetida a um novo processo de funcionalização (pós funcionalização) , cujó objetivo é inserir funções orgânicas que conferem novas ' propriedades às nanopartículas, conforme observado na Figura A.. Na imagem, o grupo' R indicado na. nanoparticula representa qualquer função orgânica a ser enxertada na superfície externa através de um silano previamente condensado. : [073] After the formation of nanoparticle containing phenyl group inside the silica sphere, the outer surface is also subjected to a novel process of functionalization (after functionalization), whose goal is to insert bodily functions which confer new 'properties nanoparticles , as observed in Figure A .. In the image, the group ' R indicated in. nanoparticle represents any organic function to be grafted to the outer surface through a previously condensed silane.
[074] Conforme apresentado na estrutura da nanoparticula na figura i 4 a principal estratégia é produzir nanopartículas antagónicas, isto é, abrangendo interior hidrofóbico e superfície externa hidrofilica devido às aplicações nas quais são esperadas. [075] Na presente invenção, os principais silanos envolvidos nas funcionalizações superficiais externas são compostos cujos grupos R abrangem funções orgânicas estratégicas, tais como o glicidoxipropiltrimetoxi silano (silano GPS) , bem como funções fundamentais para aquisição de novas propriedades químicas importantes, compreendendo o 2-As shown in the nanoparticle structure in Figure 14 the main strategy is to produce antagonistic nanoparticles, i.e. covering hydrophobic interior and hydrophilic outer surface due to the applications in which they are expected. [075] In the present invention, the major silanes involved in external surface functionalizations are compounds whose R groups encompass strategic organic functions, such as glycidoxypropyltrimethoxy silane (GPS silane), as well as fundamental functions for the acquisition of important new chemical properties, including 2. -
[metoxi (polietilenoxi) propil] trimetoxisilano (silano PEGio) , sem no entanto, se limitar aos referidos silanos. As estruturas químicas de ambas as espécies químicas podem ser visualizadas na FigUra 5. 0 silano GPS é utilizado com silano intermediário. [methoxy (polyethylenoxy) propyl] trimethoxysilane (PEG10 silane), but is not limited to said silanes. The chemical structures of both chemical species can be seen in Fig. 5. GPS silane is used with intermediate silane.
[076] Após a funcionalização externa das nanopartícuias o surfactante é removido por extração com solução etanólica de HC1 e sonicação conforme já discutido.  [076] Following external functionalization of the nanoparticles, the surfactant is removed by extraction with ethanolic HCl solution and sonication as discussed above.
[077] De maneira geral e simplificada, o processo de produção das nanopartículas peguiladas carreadoras de fármacos hidrofóbicos pode ser visualizado na Figura 6. Note que inicialmente tem-se a co-condensação do TEOS e do silano hidrofóbico ao redor do molde orgânico, o processo de nucleação com adições extra de TEOS e a funcionalização externa com um silano de interesse.  [077] In general and simplified, the process of producing the pegylated hydrophobic drug carrier nanoparticles can be seen in Figure 6. Note that initially there is the co-condensation of TEOS and hydrophobic silane around the organic mold. nucleation process with extra additions of TEOS and external functionalization with a silane of interest.
[078] As nanopartículas desenvolvidas apresentam potencial aplicação como carreadores de fármacos hidrofóbicos antitumorais e, como tal, devem deter capacidade de aprisionar um fármaco em seu interior para posterior entrega à célula cancerígena e estabilidade coloidal no sangue para garantia de alcance ao alvo biológico. Nesse contexto, é notória a importância da presença dos grupos hidrofóbicos internos em virtude do seu caráter hidrofóbico semelhante aos fármacos antitumorais que também apresentam essa característica, acarretando em forte interação de Van der Waals entre ambas as espécies químicas e, consequentemente, favorecendo sua efetiva inserção e armazenamento no interior da nanoestrutura. O PEG (hidrofilico) , externamente, contribuirá para a estabilidade coloidal para transporte em via intravenosa, visto que o sangue detém características hidrofílicas . Além disso, o polietileno glicol contribui também para "amenizar" a interação proteína/nanopartícula, principalmente aquelas envolvidas no reconhecimento e retirada de agentes supostamente estranhos no sangue, tal como ocorre no sistema imunológico. [078] Developed nanoparticles have potential application as carriers of antitumor hydrophobic drugs and, as such, must have the ability to trap a drug within them for later delivery to the cancer cell and colloidal stability in the blood to ensure biological target range. In this context, the importance of the presence of internal hydrophobic groups is noteworthy due to their hydrophobic character similar to the antitumor drugs that also have this characteristic, resulting in a strong interaction between Van der Waals and both, favoring their effective insertion. and storage within the nanostructure. PEG (hydrophilic) externally will contribute to colloidal stability for intravenous transport as blood has hydrophilic characteristics. In addition, polyethylene glycol also contributes to "softening" the protein / nanoparticle interaction, especially those involved in the recognition and withdrawal of supposedly foreign agents in the blood, as occurs in the immune system.
EXEMPLOS DE CONCRETIZAÇÃO CONCRETIZATION EXAMPLES
[079] O menor grau de pureza dos reagentes citados no escopo da invenção foi o grau analítico (P.A) . No caso dos organosilanos, feniltrimetoxisilano - (PTES) Sigma Aldrich, 2- The lowest purity of the reagents cited within the scope of the invention was the analytical grade (P.A). In the case of organosilanes, phenyltrimethoxysilane - (PTES) Sigma Aldrich, 2-
[metoxi (polietilenoxi)propil] trimetoxisilano {silano PEG de cadeia curta) Gelest e o 3-glícidoxipropiltrimetoxisilano (GPTMS) Sigma Aldrich, a pureza é igual ou maior do que 98%. Tratando-se do PEG-COOH, é verificada também, pureza de 98%. [methoxy (polyethylenoxy) propyl] trimethoxysilane (short chain PEG silane) Gelest and 3-glycidoxypropyltrimethoxysilane (GPTMS) Sigma Aldrich, purity is equal to or greater than 98%. For PEG-COOH, 98% purity is also verified.
[080] Os espectros no infravermelho com transformada de Fourier (FTIR) foram obtidos em um espectrômetro ABB Bomem B-series, modelo FTLA2000-102, através do método de transmitância na faixa de 4000-200 cm-1, com uma precisão de 4 cm-1 e 32 acumulações. As amostras foram diluídas e compactadas em pastilhas de brometo de potássio (KBr, grau de pureza analítico) . Os espectros de ressonância magnética nuclear (R N) de 29Si foram feitos em um equipamento Bruker Avance 300 Hz, com método HPDEC ("high-power decoupling", 29Si -→ 1H) , com 1024 scans, tempo de aquisição de 0, 0299 s, intervalo entre os pulsos de 60,0 s e frequências de 59, 624 MHz no canal 1 (29Si) e 300, 130 MHz no canal 2 (¾) . A análise foi feita com excitação por pulso único de 90° de 5,0 με no canal 1 (29Si) seguido pela aquisição do sinal sob um pulso contínuo de desacoplamento no canal 2 (1H) , iniciado simultaneamente ao pulso do canal 1, até a relaxação do sinal nesse canal . Os espectros de RMN de 13C foram obtidos com o método CPMAS ( cross polarization and magic angle spinning", dos núcleos IH vizinhos) com 20480 scans, tempo de aquisição de 0,0499 s, intervalo entre os pulsos de 3,0 s e frequências de 75,475 MHz no canal 1 (13C) e 300, 131 MHz no canal 2 (¾) . A análise é feita com excitação por pulso de 90° de 2,7 με no canal 2 (1H) , seguido de um pulso de 4000 μ≤ no canal 1 (13C) , seguido da aquisição do sinal. Juntamente com o pulso do canal 1 (13C) , se produz outro pulso para desacoplamento rio canal 2 (XH) , que se prolonga até a relaxação dò sinal nõ canal 1. A velocidade de rotação dò porta-amostra foi de 10 KHz para ambas as análises (silício e carbono), feitas sob ângulo mágico (54,74°). As análises termogravimétricas (TGA) foram feitas em um analisador térmico TA Instruments 500, módulo TGA 2050. As análises usaram aproximadamente 5,0 mg de amostras secas colocadas em um cadinho de platina. A taxa de aquecimento foi mantida em 10,0°C/min e o fluxo de- ar em 100 mL/min. A morfologia das nanoestruturas foram analisadas por microscopia eletrônica de transmissão em modo de campo claro (TEM, Zeiss Libra 120, operando a 80KV) . O espalhamento de luz dinâmico (DLS) para avaliar os tamanhos das partículas e o potencial zeta (PZ) foram obtidos com o instrumento Malvern ZetaSizer-Nano. Os resultados de DLS foram obtidos usando água deionizada como dispersante (1,0 mg/mL) . As medidas de adsorção de nitrogénio foram feitas na temperatura do nitrogénio líquido em um analisador ASAP 2020 Micromeritics . As amostras foram tratadas a 120°C por 12 horas antes da análise. A área de superfície foi calculada a partir do ramo de adsorção da isoterma usando o método Brunauer-Emmett-Teller (BET) . O diâmetro e volume dos poros foram calculados a partir do ramo de adsorção da isoterma usando o método Barrett- Joyner-Halenda (BJH) e a partir da quantidade de adsorção em um ponto único (P/Po = -0,94), respectivamente. As avaliações de estabilidade das suspensões de nanoparticulas são feitas através de análise de absorção de luz na faixa do ultravioleta-visivel com um espectrofotômetro Shimadzu modelo UV-1650 PC. [080] Fourier transform infrared (FTIR) spectra were obtained on an ABB Bomem B-series model FTLA2000-102 spectrometer using the transmittance method in the range 4000-200 cm -1 with an accuracy of 4 cm -1 and 32 accumulations. Samples were diluted and compacted into potassium bromide pellets (KBr, analytical purity). The 29 Si nuclear magnetic resonance (RN) spectra were made on a Bruker Avance 300 Hz HPDEC ( 29 Si - → 1 H) method with 1024 scans, acquisition time 0 , 0299 s, pulse interval of 60.0 s and frequencies of 59, 624 MHz on channel 1 ( 29 Si) and 300, 130 MHz on channel 2 (¾). The analysis was performed with a 90 ° single pulse excitation of 5.0 με in channel 1 ( 29 Si) followed by signal acquisition under a continuous uncoupling pulse in channel 2 ( 1 H), initiated simultaneously with channel 1 pulse. , until the signal relaxation in that channel . 13 C NMR spectra were obtained with the cross-polarization and magic angle spinning (CPMAS) method of the neighboring IH nuclei (20480 scans), acquisition time 0.0499 s, pulse interval 3.0 s and frequencies 75.475 MHz on channel 1 ( 13 C) and 300, 131 MHz on channel 2 (¾) The analysis is performed with a 90 ° pulse excitation of 2.7 με on channel 2 ( 1 H), followed by a pulse 4000 μ≤ on channel 1 ( 13 C), followed by signal acquisition Along with channel 1 ( 13 C) pulse, another pulse for channel 2 ( X H) decoupling is produced, which extends to relaxation signal on channel 1. the sample holder rotation speed was 10 kHz for both analysis (SiC), made under the magic angle (54.74 °). the thermogravimetric analyzes (TGA) were performed on a TA Instruments 500 thermal analyzer, TGA module 2050. Analyzes used approximately 5.0 mg of dry samples placed in a platinum crucible. The heating rate was maintained at 10.0 ° C / min and the air flow at 100 mL / min. The morphology of the nanostructures was analyzed by transmission electron microscopy in bright field mode (TEM, Zeiss Libra 120, operating at 80KV). Dynamic light scattering (DLS) to evaluate particle sizes and zeta potential (PZ) were obtained with the Malvern ZetaSizer-Nano instrument. DLS results were obtained using deionized water as dispersant (1.0 mg / mL). Nitrogen adsorption measurements were made at liquid nitrogen temperature on an ASAP 2020 Micromeritics analyzer. Samples were treated at 120 ° C for 12 hours prior to analysis. Surface area was calculated from the isotherm adsorption branch using the Brunauer-Emmett-Teller (BET) method. Pore diameter and volume were calculated from the isotherm adsorption branch using the Barrett-Joyner-Halenda (BJH) method and from the single-point adsorption amount (P / Po = -0.94), respectively. The stability evaluations of nanoparticle suspensions are made by light absorption analysis in the ultraviolet-visible range with a Shimadzu model UV-1650 PC spectrophotometer.
Produção dás nanoparticulas de partida (etapa A)  Production of starting nanoparticles (step A)
[081] A produção das nanoparticulas com grupos fenil internos foi realizada em uma reação do tipo sol gel. Nesse processo houve a dissolução de 0,75 g de CTAB em 20 mL de solução de amónia 0,05 mol/L, seguido de adição de 3,2 mL de etanol nesse meio reacional . A referida solução foi agitada a 60 graus Celsius. Paralelamente, foi preparada uma mistura de 1,49 mL de TEOS e 130 L de PTES que foi, logo em seguida, vertida no sistema contendo o molde orgânico, o co-solvente etanol que favorece a solubilização dos reagentes, é o catalisador (NH3) . A solução foi submetida à agitação durante 120 min, (a contar do tempo t = 0) com duas adições de 124 pL de TEOS em t = 60 min e t = 90 min. Após essa etapa, as nanoparticulas contendo CTAB e grupos fenil foram centrifugadas e redispersas em etanol. Aproximadamente 1 mL da suspensão foi inserida em eppendorf submetida à evaporação em estufa a 60 °C durante 24 horas. O material isolado foi caracterizado por TGA-DTA e IV. [081] The production of nanoparticles with internal phenyl groups was performed in a sol gel type reaction. In this process, 0.75 g of CTAB was dissolved in 20 mL of 0.05 mol / L ammonia solution, followed by the addition of 3.2 mL of ethanol in this reaction medium. Said solution was stirred at 60 degrees Celsius. At the same time, a mixture of 1.49 mL of TEOS and 130 L of PTES was prepared and then poured into the system containing the organic mold. The ethanol co-solvent which favors the solubilization of the reagents is the catalyst (NH 3 ). The solution was stirred for 120 min (from time t = 0) with two additions of 124 µl TEOS at t = 60 min and t = 90 min. After this step, CTAB-containing nanoparticles and phenyl groups were centrifuged and redispersed in ethanol. Approximately 1 mL of the suspension was placed in eppendorf which was evaporated in an oven at 60 ° C for 24 hours. The isolated material was characterized by TGA-DTA and IV.
[082] No intuito de avaliar a quantidade de CTAB nas nanoparticulas produzidas na etapa A e obter parâmetros para cálculos futuros, foi realizada a remoção do referido molde orgânico, obtendo-se apenas a nanoparticula com grupos fenil no seu interior, cuja caracterização foi realizada utilizando as mesmas técnicas de caracterização já descritas. As nanoparticulas sem o molde foram submetidas à análise de potencial Zeta (PZ) , cujo objetivo foi a determinação da carga superficial. As medidas de potencial Zeta são importantes para a confirmação da funcionalização com o PEG, visto que esse processo diminui as cargas negativas da superfície da nanopartícula de sílica. Portanto, essa caracterização foi realizada antes e após a funcionalização. A Figura 7 resume o processo sintético da nanopartícula de partida, constituída de um nanocarreador de sílica contendo grupos fenil internos, CTAB (representado por círculos amarelos) e superfície externa livre para modificação superficial . [082] In order to evaluate the amount of CTAB in nanoparticles produced in step A and to obtain parameters for future calculations, the organic mold was removed, obtaining only the nanoparticle with phenyl groups inside, whose characterization was performed. using the same characterization techniques already described. The nanoparticles without the mold were subjected to Zeta potential analysis (PZ), whose objective was to determine the surface charge. Zeta potential measurements are important for confirming functionalization with PEG, as this process decreases the negative charges on the surface of the silica nanoparticle. Therefore, this characterization was performed before and after functionalization. Figure 7 summarizes the synthetic process of the starting nanoparticle, consisting of a silica nanocarrier containing internal phenyl groups, CTAB (represented by yellow circles) and free outer surface for surface modification.
Funcionalização das nanoparticulas produzidas na etapa A com silano PEGio (cadeia curta)  Functionalization of nanoparticles produced in step A with PEGio silane (short chain)
[083] As nanoparticulas contendo CTAB e grupos fenil produzidas na etapa A foram submetidas ao processo de funcionalização com o silano PEG de cadeia curta, constituindo-se a etapa B descrita nesse tópico. Nesse processo, 300 mg da nanopartícula inicial são dispersos em 40 mL de etanol absoluto por 60 minutos e em seguida homogeneizados por mais 15 minutos a 60°C. A seguir é adicionado o silano PEGio baseando-se no número de mol de silício, isto é, considerando-se 300 mg de NP inicial, a quantidade de organosilano funcionalizado corresponde a 10%, 25% ou 50% mol-Si em relação ao número de mol de silício total presente na referida massa de nanopartícula. Cada reação foi realizada sob agitação constante a 60°C durante uma hora, e mais 12 horas de funcionalização à temperatura ambiente. Os produtos foram submetidos à centrifugação e dispersão em etanol. A remoção do molde orgânico foi realizada segundo processo descrito adiante.  [083] The CTAB-containing nanoparticles and phenyl groups produced in step A were subjected to the functionalization process with short-chain PEG silane, constituting step B described in this topic. In this process, 300 mg of the starting nanoparticle is dispersed in 40 mL of absolute ethanol for 60 minutes and then homogenized for a further 15 minutes at 60 ° C. Then PEGio silane is added based on the number of moles of silicon, ie, considering 300 mg of initial NP, the amount of functionalized organosilane corresponds to 10%, 25% or 50% mol-Si relative to number of moles of total silicon present in said nanoparticle mass. Each reaction was performed under constant stirring at 60 ° C for one hour, and an additional 12 hours of functionalization at room temperature. The products were centrifuged and dispersed in ethanol. Removal of the organic mold was performed according to the procedure described below.
[084] As amostras foram submetidas às análises por FTIR, TG-DTA, área superficial, RMN, PZ e MET. Vale salientar que a determinação da quantidade de silício dos nanoacarreadores obtidos na etapa A foi realizada através da termogravimetria. Portanto, a partir da massa resultante, calcula-se a quantidade relativa de matéria referente à sílica e, portanto, ao silício. A Figura 8 resume o processo de modificação superficial externa das nanopartxculas de partida com silano PEGio. A figura facilita a compreensão do conceito de número de mol de Si funcionalizado . É notório que os valores de 10, 25 e 50% mol de Si representam um percentual relativo ao . número total de átomos de silício presentes na "casca" da sílica presentes antes da modificação superficial. [084] Samples were subjected to FTIR, TG-DTA, surface area, NMR, PZ and MET analyzes. It is noteworthy that the determination of the amount of silicon of the nanochargers obtained in step A was performed by thermogravimetry. Therefore, from the resulting mass, the relative amount of matter for silica and hence silicon is calculated. Figure 8 summarizes the process of external surface modification of the starting nanoparticles with PEGio silane. The figure facilitates understanding of the functionalized Si mol number concept. It is notorious that the values of 10, 25 and 50 mol% Si represent a percentage relative to. total number of silicon atoms present in the silica "shell" present prior to surface modification.
Funciortalização das nanopartículas produzidas na etapa A com PEG de cadeia longa Functionalization of nanoparticles produced in step A with long chain PEG
[085] O silano GPS é a espécie química intermediária para a obtenção das nanopartículas contendo PEG de cadeia longa. É importante mencionar que nessa reação não foi utilizado um silano PEG de cadeia longa em virtude da ausência desse produto para compra no mercado até meados de maio de 2013. A produção das nanopartículas com grupos glicidoxi superficiais foi realizada utilízarido^-se as 300 mg nanopartículas sintetizadas na etapa A dispersas em 62 mL de etanol absoluto durante 30 minutos no sonicador. A seguir, é adicionado silano GPS (10% de mol de silício) no balão contendo os as nanopartículas já suspensas no solvente, seguido de agitação do sistema durante 12 horas a 85 °C em atmosfera de nitrogénio. Os produtos foram submetidos à centrifugação a 15000 rpm durante uma hora e dispersados em etanol.  [085] GPS silane is the intermediate chemical species for obtaining long-chain PEG-containing nanoparticles. It is important to mention that in this reaction a long-chain PEG silane was not used due to the absence of this product for purchase on the market until mid-May 2013. Production of the surface glycoxy-oxide nanoparticles was performed using 300 mg nanoparticles. synthesized in step A dispersed in 62 mL of absolute ethanol for 30 minutes in the sonicator. Next, GPS silane (10 mol% silicon) is added to the flask containing the nanoparticles already suspended in the solvent, followed by stirring of the system for 12 hours at 85 ° C under nitrogen atmosphere. The products were centrifuged at 15000 rpm for one hour and dispersed in ethanol.
[086] O acoplamento do PEG-COOH na nanopartícula contendo grupos glicidoxi (NP-GPS) foi realizado- seguíndo-se a razão molar de PEG: glicidoxi = 1:3. Para isto uma massa de 150 mg de NP-GPS foi previamente dispersada em 20 mL de etanol através do sonicador durante 30 minutos. Paralelamente, foram dissolvidos 15,1 mg de PEG-COOH em 875 μΐ. de etanol. Num balão de fundo redondo contendo as nanopartículas modificadas superficialmente com grupos glicidoxi, foi adicionado hidróxido de potássio na razão molar KOH: glicidoxi = 1,6:1. O referido polímero previamente solubilizado em etanol absoluto foi adicionado ao sistema que, a 95°C foi submetido à reação de acoplamento durante 12 horas sob agitação constante. Os produtos foram submetidos à centrifugação a 15000 rpm e dispersos em etanol. A remoção do molde orgânico foi realizada segundo processo descrito adiante. Coupling of PEG-COOH in the glycidoxy group-containing nanoparticle (NP-GPS) was performed followed by the molar ratio of PEG: glycidoxy = 1: 3. For this a 150 mg mass of NP-GPS was previously dispersed in 20 mL of ethanol through the sonicator for 30 minutes. In parallel, 15.1 mg of PEG-COOH was dissolved in 875 μ. of ethanol. In a round bottom flask containing the surface modified nanoparticles with glycidoxy groups, potassium hydroxide was added at the molar ratio KOH: glycidoxy = 1.6: 1. Said polymer previously Solubilized in absolute ethanol was added to the system which at 95 ° C was subjected to the coupling reaction for 12 hours under constant stirring. The products were centrifuged at 15000 rpm and dispersed in ethanol. Removal of the organic mold was performed according to the procedure described below.
[087] As amostras foram submetidas às análises por FTIR, TG-DTA, área superficial, RMN e PZ.  [087] Samples were subjected to FTIR, TG-DTA, surface area, NMR and PZ analysis.
[088] A Figura 9 indica a produção da nanoparticula de sílica detendo PEGio de maneira resumida. Note que o procedimento sintético do referido veículo molecular compreende duas etapas principais caracterizadas, primeiramente, pela funcionalização do silano GPS, seguida da reação de acoplamento do PEG40 na função epóxi (significativamente reativa) do organosilano citado.  Figure 9 indicates the production of the silica nanoparticle holding PEG10 in a summarized manner. Note that the synthetic procedure of said molecular vehicle comprises two main steps characterized, first, by the functionalization of GPS silane, followed by the coupling reaction of PEG40 in the epoxy function (significantly reactive) of the mentioned organosilane.
Extração do "Soft Template" (CTAB) Soft Template Extraction (CTAB)
[089] Conforme observado nos tópicos anteriores, após completa obtenção das nanopartículas o molde orgânico ainda está presente, sendo necessário um processol padrão para todas as situações que favorecem a remoção do surfactante que outrora direcionou a forma adquirida pelos nanocarreadores . Nesse contexto, os produtos isolados contendo o molde orgânico foram transferidos para um frasco contendo uma solução etanólica de HC1 na proporção volumétrica de HC1: Etanol = 1:9 e submetidos ao ultrassom durante 10 minutos para remoção do molde. A proporção estequiométrica padrão foi 5 mg de produtos: 1 mL de solução HCl/Etanol.  [089] As noted in previous topics, after complete obtaining of the nanoparticles the organic mold is still present, requiring a standard processol for all situations that favor the removal of the surfactant that once directed the shape acquired by the nanocarriers. In this context, the isolated products containing the organic mold were transferred to a flask containing an ethanolic HCl solution at a volumetric ratio of HCl: Ethanol = 1: 9 and ultrasounded for 10 minutes to remove the mold. The standard stoichiometric ratio was 5 mg of products: 1 mL of HCl / Ethanol solution.
[090] A Figura 10 representa, genericamente, o processo de remoção do soft template da nanoparticula de partida igualmente aplicada para as demais nanopartículas obtidas na presente invenção. Avaliação da estabilidade coloidal das nanoparticulas [090] Figure 10 generally represents the removal process of the starting nanoparticle soft template equally applied to the other nanoparticles obtained in the present invention. Evaluation of colloidal stability of nanoparticles
[091] As nanoparticulas foram submetidas ao teste de estabilidade coloidal no intuito de avaliar-se a influência do polietileno glicol nos referidos aspectos de dispersão. Nesse contexto, os colóides foram dispersos em PBS (lx) na concentração de 250 pg/mL e centrifugados em rotações de 0, 94, 2348, 9391 e 18407 rcf - a preparação do PBS encontra-se descrita adiante. O volume de 1 mL de cada sobrenadante foi submetido à análise via espectroscopia eletrônica de absorção no UV-Vis e medida a absorbância no comprimento de onda de 263 nm.  [091] The nanoparticles were subjected to the colloidal stability test in order to evaluate the influence of polyethylene glycol on these dispersion aspects. In this context, the colloids were dispersed in PBS (1x) at a concentration of 250 pg / mL and centrifuged at rotations of 0, 94, 2348, 9391 and 18407 rcf - the preparation of PBS is described below. The 1 mL volume of each supernatant was subjected to analysis by UV-Vis absorption electron spectroscopy and the absorbance at 263 nm wavelength measured.
Ensaios Heraoliticos Heraolitic Assays
[092] As nanoparticulas produzidas foram submetidas aos ensaios hemoliticos.  The nanoparticles produced were subjected to hemolytic assays.
[093] Para a realização dos ensaios hemoliticos utilizou-se sangue do Tipo B concedido pelo Hemocentro da Universidade Estadual de Campinas ao Laboratório de Química do Estado Sólido do Instituto de Química. Concomitantemente duas soluções de PBS foram preparadas de acordo com o procedimento descrito a seguir:  [093] Hemolytic tests were performed using Type B blood from the Hemocenter of the State University of Campinas to the Solid State Chemistry Laboratory of the Institute of Chemistry. Concomitantly two PBS solutions were prepared according to the following procedure:
a) PBS (2x) : dois tabletes de tampão fosfato salino foram diluídos em 200 mL de água deionizada (2 mM de fosfato, 0,54 mM de KC1 e 27,4 mM de NaCl) ;  a) PBS (2x): Two tablets of saline phosphate buffer were diluted in 200 mL of deionized water (2 mM phosphate, 0.54 mM KCl and 27.4 mM NaCl);
b) PBS (lx) : 100 mL da solução acima foram diluídos em 100 mL de água deionizada (1 mM de fosfato, 0,27 mM de KC1 e 13,7 mM de NaCl) .  b) PBS (1x): 100 mL of the above solution was diluted in 100 mL of deionized water (1 mM phosphate, 0.27 mM KCl and 13.7 mM NaCl).
[094] O volume de 10 mL de sangue foi submetido à centrifugação a 14.000 rpm a 4°C por 10 minutos. Descartou-se o sobrenadante e adicionou~se 20 mL de PBS (2x) ao pellet que, foi resuspendido subsequentemente. Após a esse processo, realizou-se duas novas lavagens seguindo-se o procedimento vigente, obtendo-se 20 mL de uma solução de hemácias em PBS (2x) . Desse total, 2,5 mL foram diluídos em 12,5 mL de PBS (2x) obtendo-se a solução estoque de hemácias . The volume of 10 mL of blood was centrifuged at 14,000 rpm at 4 ° C for 10 minutes. The supernatant was discarded and 20 mL of PBS (2x) was added to the pellet which was subsequently resuspended. After this process, two new washes were performed following the current procedure, obtaining 20 mL of a red blood cell solution in PBS (2x). Of this total, 2.5 mL were diluted in 12.5 mL of PBS (2x) to obtain the red cell stock solution.
[095] 0 pré-tratamento das nanopartículas (inicialmente em etanol) para os ensaios hemolíticos compreendem um procedimento no qual todas são centrifugadas a 15.000 rpm a 4°C durante 30 min e dispersas em água deionizada. Esse processo é repetido mais duas vezes obtendo-se dispersões coloidais finais em água deionizada nas concentrações de 1 mg/mL.  Nanoparticle pretreatment (initially in ethanol) for hemolytic assays comprises a procedure in which all are centrifuged at 15,000 rpm at 4 ° C for 30 min and dispersed in deionized water. This process is repeated twice more to obtain final colloidal dispersions in deionized water at concentrations of 1 mg / mL.
A influência do estado de agregação das nanopartículas em função do tempo na hemólise  The influence of nanoparticle aggregation state as a function of time in hemolysis
[096] A realização dos ensaios hemolíticos demanda uma prévia avaliação do comportamento de agregação de cada nanopartícula em PBS durante uma hora. Dessa maneira, 25 pL de cada veículo molecular foi adicionado, respectivamente, a uma mistura de 25 pL de PBS (2x) e 950 pL de PBS (lx) . Mediante a técnica de espalhamento de luz dinâmico foi avaliada intermitentemente a variação de tamanho de partícula e índice de polidispersividade no período de uma hora, similarmente ao tempo padrão de incubação com hemácias. O comportamento coloidal foi avaliado nos tempos de 0, 5, 15, 30, 45 e 60 minutos.  [096] Performing hemolytic assays requires a prior assessment of the aggregation behavior of each nanoparticle in PBS for one hour. Thus, 25 pL of each molecular carrier was added, respectively, to a mixture of 25 pL PBS (2x) and 950 pL PBS (1x). The dynamic light scattering technique intermittently evaluated the particle size variation and polydispersity index within one hour, similar to the standard red cell incubation time. Colloidal behavior was evaluated at 0, 5, 15, 30, 45 and 60 minutes.
[097] Avaliados os aspectos físico-químicos acima, 25 pL de cada nanopartícula foi adicionado em eppendorf contendo uma mistura de 25 pL de PBS (2x) e 850 pL de PBS (lx) . As nanopartículas foram mantidas nos respectivos frascos durante uma hora. Após essa etapa foi adicionado 100 pL de solução estoque de hemácias mantendo-se uma hora de incubação.  Evaluated the above physicochemical aspects, 25 µl of each nanoparticle was added in eppendorf containing a mixture of 25 µl PBS (2x) and 850 µl PBS (1x). The nanoparticles were kept in the respective vials for one hour. After this step, 100 pL of red blood cell stock solution was added while maintaining one hour of incubation.
[098] O experimento acima foi novamente realizado mantendo-se todas as condições experimentais com exceção ao tempo de interação entre as nanopartículas e a mistura de PBS (anteriormente à adição da solução estoque de hemácias), que nesse caso foi de um minuto. [099] Após o período de interação entre as nanopartículas e as hemácias os sistemas são centrifugados a 14.000 rpm a 4°C por 10 minutos e 100 i do sobrenadante é submetido à análise de espectroscopia eletrônica de absorção UV-Vis no comprimento de onda de 540 nm. Os valores de absorbância são referência para os cálculos percentuais da taxa hemolítica. [098] The above experiment was again performed maintaining all experimental conditions except for the interaction time between the nanoparticles and the PBS mixture (prior to the addition of the red cell stock solution), which in this case was one minute. After the interaction period between nanoparticles and red blood cells the systems are centrifuged at 14,000 rpm at 4 ° C for 10 minutes and 100 æl of the supernatant is subjected to UV-Vis absorption wavelength electron spectroscopy analysis. 540 nm. The absorbance values are reference for the percentage calculations of the hemolytic rate.
[0100] Tratando-se do aspecto estatístico na interpretação confiável e precisa dos resultados todos os experimentos foram realizados em triplicata.  [0100] As for the statistical aspect in the reliable and accurate interpretation of the results, all experiments were performed in triplicate.
Resultados e Discussão Results and discussion
[0101] Nos tópicos que se seguem foram estabelecidas determinadas designações para cada tipo de nanopartícula, tal como explicado abaixo:  In the following topics certain designations have been established for each type of nanoparticle as explained below:
a) N: nanopartícula; a) N: nanoparticle;
b) PH30: 30% de grupos fenil teoricamente funcionalizados; b) PH30: 30% of theoretically functionalized phenyl groups;
c) SiOH: grupos silanóis na superfície externa livres para funcionalização; c) SiOH: free surface silanol groups for functionalization;
d) xPEGio: x% de grupos PEG de cadeia curta (n = 10) teoricamente funcionalizados; d) xPEG10: x% of theoretically functionalized short chain PEG groups (n = 10);
e) xGPS : x% de grupos glicidoxi teoricamente funcionalizados; f) XGPS-PEG40: x% de grupos glicidoxi acoplados com PEG de cadeia grande (n = 40) teoricamente funcionalizados; e) xGPS: x% of theoretically functionalized glycidoxy groups; f) XGPS-PEG40: x% of theoretically functionalized large chain PEG-coupled glycidoxy groups (n = 40);
g) NPH30-CTAB-SÍOH : nanopartícula de partida contendo 30% de grupos fenil teoricamente funcionalizados na superfície interna, contendo ainda o surfactante; g) NPH30-CTAB-SiOH: starting nanoparticle containing 30% theoretically functionalized phenyl groups on the inner surface, further containing the surfactant;
h) NPH30-SÍOH: nanopartícula de partida contendo 30% de grupos fenil teoricamente funcionalizados na superfície interna com surfactante já removido; i) NPH30-C AB-SiO-xPEGio : nanopartícuia contendo 30% de grupos fenil teoricamente funcionalizados na presença de CTAB e x% de grupos PEGio teoricamente funcionalizados; h) NPH30-SiOH: starting nanoparticle containing 30% of theoretically functionalized phenyl groups on the inner surface with surfactant already removed; (i) NPH30-C AB-SiO-xPEG10: nanoparticles containing 30% of theoretically functionalized phenyl groups in the presence of CTAB and x% of theoretically functionalized PEGio groups;
j) NPH30-SiO-xPEGio : nanopartícuia contendo 30% de grupos fenil teoricamente funcionalizados na ausência de CTAB e x% de grupos PEGio teoricamente funcionalizados; j) NPH30-SiO-xPEGio: nanoparticles containing 30% of theoretically functionalized phenyl groups in the absence of CTAB and x% of theoretically functionalized PEGio groups;
k) NPH30-CTAB-SiO-xGPS : nanopartícula contendo 30% de grupos fenil teoricamente funcionalizados na presença de CTAB e x% de grupos glicidoxi teoricamente funcionalizados; k) NPH30-CTAB-SiO-xGPS: nanoparticle containing 30% of theoretically functionalized phenyl groups in the presence of CTAB and x% of theoretically functionalized glycidoxy groups;
1) NPH30-SiO-xGPS : nanopartícula contendo 30% de grupos fenil teoricamente funcionalizados na ausência de CTAB e x% de grupos glicidoxi teoricamente funcionalizados;  1) NPH30-SiO-xGPS: nanoparticle containing 30% of theoretically functionalized phenyl groups in the absence of CTAB and x% of theoretically functionalized glycidoxy groups;
m) NPH30-CTAB-SiO-xGPS-PEG/io: nanopartícula contendo 30% de grupos fenil teoricamente funcionalizados na presença de CTAB e x% de grupos glicidoxi acoplados com PEG40 teoricamente funcionalizados; n) NPH30-SiO-xGPS- PEG4o : nanopartícula contendo 30% de grupos fenil teoricamente funcionalizados na ausência de CTAB e x% de grupos glicidoxi acoplados com PEG40 teoricamente funcionalizados. m) NPH30-CTAB-SiO-xGPS-PEG / io: nanoparticle containing 30% of theoretically functionalized phenyl groups in the presence of CTAB and x% of theoretically functionalized PEG40-coupled glycidoxy groups; n) NPH30-SiO-xGPS-PEG40: nanoparticle containing 30% of theoretically functionalized phenyl groups in the absence of CTAB and x% of theoretically functionalized PEG40-coupled glycidoxy groups.
[0102] Toda designação anterior ao termo SiO (representando a "casca" da nanopartícula) , tal como o PH30-CTAB-, PH30-, são referentes às entidades químicas presentes no interior da nanopartícula enquanto que os nomes escritos após a nomenclatura SiO, tal como xPEGio, xGPS e xGPS-PEG-jo, são provenientes das espécies químicas presentes na superfície externa.  All designations prior to the term SiO (representing the "shell" of the nanoparticle), such as PH30-CTAB-, PH30-, refer to the chemical entities present within the nanoparticle whereas names written after the SiO nomenclature, such as xPEGio, xGPS and xGPS-PEG-jo, come from the chemical species present on the outer surface.
[0103] A seguir é apresentado uma figura de todas as funcionalizações realizadas nesta invenção. A Figura 11 mostra a "casca" da sílica funcionalizada internamente com grupos fenil e externamente com funções glicidoxi (GPS) , glicidoxi com anel aberto (GPS Aberto) , glicidoxi acoplado com PEG40 (GPS-PEG-jo) e PEGio. As numerações e termos escritos em azul e vermelho, respectivamente, serão a base para a interpretação dos espectros de RMN de carbono e silício apresentados na invenção. Note que as funcionalizações apresentadas na figura abaixo não necessariamente estão presentes na mesma nanopartícula, mostrando apenas os tipos de modificação superficiais possíveis nas superfícies interna e aquelas ocorrendo apenas na superfície externa. Como exemplo observe que, embora presentes na mesma superfície, o silano GPS e o silano PEGio não estão presentes concomitantemente na mesma nanopartícula por abranger distintos contextos de desenvolvimento de veículo molecular. The following is a picture of all the embodiments performed in this invention. Figure 11 shows the "shell" of internally functionalized silica with phenyl groups and externally with glycidoxy (GPS), open-ring glycidoxy (Open GPS), PEG40-coupled glycidoxy (GPS-PEG-jo) and PEGio functions. The numbers and terms written in blue and red, respectively, will be the basis for the interpretation of the carbon and silicon NMR spectra presented in the invention. Note that the functionalizations shown in the figure below are not necessarily present in the same nanoparticle, showing only the types of surface modifications possible on the inner surfaces and those occurring only on the outer surface. As an example, note that, although present on the same surface, GPS silane and PEGio silane are not concomitantly present on the same nanoparticle because they encompass different molecular vehicle development contexts.
Nanoparticulas de partida Starting nanoparticles
[0104] Nesse tópico são abordados os resultados relacionados às nanoparticulas contendo grupos fenil funcionalizados na superfície interna e na ausência de qualquer modificação superficial externa. Tais materiais constituem os principais produtos de partida para qualquer etapa, merecendo uma abordagem exclusiva. A Figura 12 exibe os espectros por infravermelho das nanoparticulas de partida anteriormente e após a remoção do molde orgânico. As principais bandas da sílica são observadas em 1072 cm-1 (estiramento assimétrico Si-O-Si) , 800 cm-1 (estiramento simétrico Si-O-Si) e 962 cm-1 (estiramento Si-OH) , 464 cm-1 (deformação angular Si-O- Si) . A confirmação da extração do molde pode ser obtida através da observação de ausência das bandas típicas do CTAB no espectro da NPH30-SÍOH. As bandas do soft template podem ser observadas em: 2926 cm-1 (estiramento C-H assimétrico nos grupos CH2 da cadeia carbónica do CTAB), 2854 cm"1 (estiramento C-H simétrico) e 1232 cm-1 (estiramento C-N) . É válido salientar que a visualização desta última banda é dificultada pela sobreposição com as bandas provenientes dos estiramentos assimétricos das unidades tetraédricas SÍC (Si-O-Si) em aproximadamente 1200 cm-1 e 1130 cm" ,1.- Analisando-se ambos os espectros, é notória a ausência das referidas bandas após a remoção do soft template, caracterizando um parâmetro significativo para o acompanhamento das reações de extração do molde orgânico apresentada nos próximos tópicos. Nota- se ainda, bandas em 1596 cm-1, 1431 cm-1 (ambas oriundas do estiramento no anel aromático) , 739 cm-1 e 698 cm-1 provenientes da defromaçâo angular no anel aromático funcionalizado internamente na nanoparticula . As discussões acima serão importantes para as análises das caracterizações das nanoparticulas modificadas superficialmente, visto que a presença das bandas da sílica e dos anéis aromáticos deverá será notada em todas as situações. A ausência e presença das bandas do CTAB serão essenciais para o acompanhamento de sua extração nas etapas posteriores do processo. [0104] This topic addresses the results related to nanoparticles containing functionalized phenyl groups on the inner surface and in the absence of any outer surface modification. Such materials are the main starting products for any step and deserve a unique approach. Figure 12 shows the infrared spectra of the starting nanoparticles before and after removal of the organic mold. The main silica bands are observed at 1072 cm -1 (asymmetric Si-O-Si stretch), 800 cm -1 (symmetrical Si-O-Si stretch) and 962 cm -1 (Si-OH stretch), 464 cm - 1 (Si-O-Si angular deformation). Confirmation of mold extraction can be obtained by observing the absence of typical CTAB bands in the NPH30-SiOH spectrum. The soft template bands can be observed at: 2926 cm -1 (asymmetric CH stretch in CTAB carbon chain CH2 groups), 2854 cm -1 (symmetrical CH stretch) and 1232 cm -1 (CN stretch). that the visualization of the latter band is made difficult by the overlap with the bands from the asymmetrical stretches of the SiC (Si-O-Si) tetrahedral units by approximately 1200 cm -1 and 1130 cm " 1 .- Analyzing both spectra, it is noticeable the absence of these bands after the removal of the soft template, characterizing a significant parameter for the follow-up of the organic mold extraction reactions presented in the next topics. Bands at 1596 cm -1 , 1431 cm -1 (both derived from the aromatic ring stretching), 739 cm -1 and 698 cm -1 from the angular deformation of the aromatic ring functionalized internally in the nanoparticle. The above discussions will be important for the characterization analysis of surface modified nanoparticles, as the presence of silica bands and aromatic rings should be noted in all situations. The absence and presence of CTAB bands will be essential for monitoring their extraction in the later stages of the process.
[0105] Na Figura 13 estão registradas as curvas termogravimétricas (TG) e suas respectivas curvas de análise térmica diferencial (DTA) referentes às nanoparticulas de partida antes e após a remoção do molde orgânico. A curva DTA da NPH30- SiOH exibe um evento principal em 577 °C, sugerindo a decomposição térmica dos grupos fenil e outro, pouco significativo, ocorrendo em 308°C, proveniente da liberação de CTAB residual. Desprezando- se o evento discreto que, nesse caso não é significativo frente à porcentagem total da amostra, tem-se apenas a decomposição das espécies aromáticas funcionalizadas com início e término em 324°C e 716°C, respectivamente. Levando-se em consideração que a amostra final é constituída apenas de sílica (SÍO2) e, no gráfico a massa final é de 73%, sabe-se que a porcentagem de fenil é pouco menor do que 27% em massa. Tratando-se da NPH30-CTAB-SÍOH na qual o CTAB está presente, o DTA registra dois eventos significativos referentes à decomposição do molde' orgânico ocorrendo em 308 °C e perda de massa dos grupos fenil em 577 °C. Na curva TG deste último veículo molecular a decomposição do CTAB possui inicio e término em 135°C e 381°C, respectivamente. Deve ser notado que, o início da decomposição dos grupos fenil (aproximadamente 324 °C) ocorre paralelamente ao final da liberação do surfactante, impossibilitando calcular precisamente a porcentagem de ambos os componentes na amostra. Contudo, é possível confirmar a extração da macromolécula comentada cotejando-se estes dados com aqueles do espectro vibracional. [0105] Figure 13 shows the thermogravimetric (TG) curves and their respective differential thermal analysis (DTA) curves for the starting nanoparticles before and after removal of the organic mold. The NPH30-SiOH DTA curve exhibits a major event at 577 ° C, suggesting the thermal decomposition of the phenyl groups and a minor one occurring at 308 ° C from residual CTAB release. Disregarding the discrete event, which in this case is not significant in relation to the total percentage of the sample, there is only the decomposition of functionalized aromatic species beginning and ending at 324 ° C and 716 ° C, respectively. Considering that the final sample consists only of silica (SiO2) and, in the graph, the final mass is 73%, it is known that the percentage of phenyl is slightly less than 27% by mass. In the case of CTAB-SiOH-NPH30 in which CTAB is present, the two DTA recorded significant events relating to the decomposition of the mold "organic occurring at 308 ° C and weight loss of the phenyl groups at 577 ° C. In the TG curve of the latter molecular vehicle CTAB decomposition begins and ends at 135 ° C and 381 ° C, respectively. It should be noted that the onset of phenyl group decomposition (approximately 324 ° C) occurs parallel to the end of surfactant release, making it impossible to calculate precisely the percentage of both components in the sample. However, it is possible to confirm the extraction of the commented macromolecule by comparing these data with those of the vibrational spectrum.
[0106] A Figura 14 apresenta os resultados da análise de adsorção- dessorção de nitrogénio da NPH30-SÍOH, bem como da NPH3G-CTAB- SiOH. Tratando-se da isoterma dessa última nanopartícula, seu perfil não mostrou um padrão significativamente definido, assemelhando-se apenas relativamente com a isoterma do tipo IV de acordo com a classificação da IUPAC para os materiais porosos. Isotermas do tipo IV estão relacionadas a materiais mesoporosos. Uma análise mais detalhada permite concluir que a curva de dessorção não coincide com a de adsorção à medida que P/Po tende a 0, isto é, o ciclo da histerese observada não é encerrado no intervalo analisado. Tal fenómeno está possivelmente atrelado à presença do CTAB que, juntamente à gama de poros possivelmente interconectados, dificulta a liberação do gás tornando a adsorção um processo ligeiramente irreversível, o que é esperado considerando-se a complexidade do referido sistema híbrido. A distribuição de poros do veículo molecular de partida detendo a macromolécula anfifílicã exibe ampla variedade de poros, compreendendo um material de natureza porosa complexa em virtude, principalmente, do elevado teor de grupos fenil funcionalizados internamente na nanopartícula. Tal efeito gera aumento do volume interno devido à disposição dos anéis aromáticos entre as caudas do surfactante. Consequentemente, na etapa de nucleação durante a produção da nanopartícula, a rede inorgânica depositada ao redor do CTAB engendra poros de tamanhos variados, caracterizando a superfície irregular desejada. De acordo com o gráfico de distribuição de poros, cujos cálculos são baseados no modelo de Barret, Joyner e Halenda (método BJH) , observa-se a predominância de poros entre 4 nm é 10 nm materiais mesoporosos detém tamanho de poros variando entre 2 e 50 nm) , o que classifica o referido material como mesoporoso. Analisando-se o perfil da isoterma de nitrogénio da nanopartícula após extração do CTAB, é nítida a variação do perfil que, nesse caso está diretamente relacionado à isoterma do tipo IV. Nesse contexto, observa-se uma ligeira histerese semelhante àquela classificada como do tipo H3 de acordo com a IUPAC. Tal resultado indica uma estrutura mesoporosa complexa de acordo com o próprio perfil da isoterma em virtude da presença dos grupos fenil, que auxiliam na formação da estrutura porosa complexa. O gráfico de distribuição de poros segundo o método BJH indica maior predominância de poros em uma faixa de tamanhos entre 2 nm e 10 nm, refletindo a extração do CTAB. A remoção do referido molde orgânico pode ser confirmada analisando-se a variação de área superficial calculada pelo método proposto por Brunauer, Emmet-Teller (método BET) antes e após esse processo. Para a NPH30- CTAB-SiOH e NPH30-SÍOH a área de superfície variou de 548 m2/g para 898 m2/g, respectivamente. Complementando essa informação, o volume total de poros de ambas as nanopartículas foi de 0, 96 mL/g e 2,2 mL/g, respectivamente. [0106] Figure 14 presents the results of NPH30-SiOH nitrogen adsorption-desorption analysis as well as NPH3G-CTAB-SiOH. For the isotherm of this last nanoparticle, its profile did not show a significantly defined pattern, resembling only the type IV isotherm according to the IUPAC classification for porous materials. Type IV isotherms are related to mesoporous materials. A more detailed analysis concludes that the desorption curve does not coincide with the adsorption curve as P / Po tends to 0, that is, the observed hysteresis cycle is not closed within the analyzed range. This phenomenon is possibly linked to the presence of CTAB which, together with the range of possibly interconnected pores, makes gas release difficult, making adsorption a slightly irreversible process, which is expected considering the complexity of said hybrid system. The pore distribution of the starting molecular carrier holding the amphiphilic macromolecule exhibits a wide variety of pores, comprising a material of complex porous nature due mainly to the high content of internally functionalized phenyl groups in the nanoparticle. Such an effect generates increased internal volume due to the arrangement of the aromatic rings between the surfactant tails. Consequently, in the nucleation stage during the nanoparticle production, the inorganic lattice deposited around the CTAB engenders pores of varying sizes, characterizing the desired uneven surface. According to the pore distribution graph, whose calculations are based on the Barret, Joyner and Halenda model (BJH method), the predominance of pores between 4 nm and 10 nm is observed. Mesoporous materials have pore sizes ranging from 2 to 50 nm), which classifies said material as mesoporous. Analyzing the nanoparticle nitrogen isotherm profile after CTAB extraction, it is clear that the profile variation is directly related to the type IV isotherm. In this context, there is a slight hysteresis similar to that classified as type H3 according to IUPAC. This result indicates a complex mesoporous structure according to the isotherm profile itself due to the presence of the phenyl groups, which help in the formation of the complex porous structure. The pore distribution graph according to the BJH method indicates greater pore predominance in a size range between 2 nm and 10 nm, reflecting CTAB extraction. The removal of said organic mold can be confirmed by analyzing the surface area variation calculated by the method proposed by Brunauer, Emmet-Teller (BET method) before and after this process. For NPH30-CTAB-SiOH and NPH30-SiOH the surface area ranged from 548 m 2 / g to 898 m2 / g, respectively. Complementing this information, the total pore volume of both nanoparticles was 0.96 mL / g and 2.2 mL / g, respectively.
[0107] Esse conjunto de resultados confirma a extração do CTAB, uma vez que houve aumento do volume total de poros e área superficial após a extração do surfactante. Os resultados corroboram, também, para a obtenção de uma nanopartícula detendo mesoestrutura detendo complexidade porosa refletida na diversificação de tamanhos e,- possivelmente, pela possibilidade de ampla interconexão entre as cavidades . [0107] This result set confirms CTAB extraction since there was an increase in total pore volume and surface area after surfactant extraction. The results also corroborate to obtain a nanoparticle with mesostructure with porous complexity reflected in the size diversification and, possibly, the possibility of wide interconnection between the cavities.
[0108] A Figura 15 mostra a micrografia da NPH30-SÍOH na qual é possível observar arranjos porosos desordenados caracterizando uma topografia irregular. A presença de .30%-mol Si de grupos fenil no interior das nanôpartículas proporciona aumento da cavidade interna, gerando a referida característica na superfície externa ainda não recoberta com PEG. Na secagem da amostra para a realização da microscopia eletrônica é impossível evitar agregação dos colóides, como verificado na Figura 10. Em solução, no entanto, as nanôpartículas apresentam estabilidade coloidal aparente, característica que será abordada quantitativamente adiante com as nanôpartículas de partida e funcionalizados com polietileno glicol. De acordo com a Figura 10 é possível estimar o diâmetro coloidal médio em torno de 65 nm.  Figure 15 shows the micrograph of the NPH30-SiOH in which disordered porous arrangements can be observed featuring an irregular topography. The presence of .30% mol-Si of phenyl groups within the nanoparticles provides an increase in the internal cavity, generating this characteristic on the outer surface not yet coated with PEG. When drying the sample for electron microscopy, it is impossible to avoid colloid aggregation, as shown in Figure 10. In solution, however, the nanoparticles show apparent colloidal stability, a feature that will be discussed quantitatively below with the starting and functionalized nanoparticles. polyethylene glycol. According to Figure 10 it is possible to estimate the average colloidal diameter around 65 nm.
Nanôpartículas modificadas superficialmente com polietileno glicol de cadeia curta NPH30-SiO-10PEGio  NPH30-SiO-10PEGio Surface-Modified Short-Chain Polyethylene Glycol Nanoparticles
[0109]. Os espectros vibracionais no infravermelho da NPH30-SÍO- lOPEGio apresentados na Figura 16 mostram as bandas características da sílica e dos anéis aromáticos em todas as situações. Na Figura é também mostrado o espectro do silano PEGio utilizado na funcionalização . Podem ser observadas as principais bandas do polímero em 1080 cm-1 (estiramento assimétrico C-O-C, semelhante ao Si-O-Si na sílica) , 1040 cm-1 (estiramento simétrico C-O-C, observado como um ombro) , 2867 cm-1 (estiramento C-H nos grupos C¾ do etilenoglicol) e 1460 cm-1 (deformação angular C-H nos grupos CH2 do etilenoglicol) . Após a funcionalização da NPH30-CTAB-SÍOH (denotado no espectro como P^C-SiOH) com o referido organosilano o produto' gerado é a NPH30-CTAB-SiO-10EEGio . (P-C-lOPEGio) . Neste último espectro a visualização das bandas do polímero é dificultada em virtude da sobreposição com as bandas da sílica (em 1100 cm"1 e 962 cm-1) e do CTAB (em 2854 cm-1) . Mesmo após a remoção do molde, cuja ausência de suas bandas típicas é perceptível no espectro da nanopartícula final NPH30-SiO-10PEGio (P-lOPEGio) , a visualização das bandas do PÉG apresenta-se prejudicada uma vez que são sobrepostas com as bandas da sílica, demandando o uso de outras técnicas de caracterização para a confirmação da funcionalização. [0109]. The infrared vibrational spectra of the NPH30-SiOPLOG shown in Figure 16 show the characteristic bands of silica and aromatic rings in all situations. Also shown in the Figure is the spectrum of PEGio silane used in functionalization. The main polymer bands can be observed at 1080 cm -1 (asymmetric COC stretch, similar to Si-O-Si in silica), 1040 cm -1 (symmetrical COC stretch, observed as a shoulder), 2867 cm -1 (stretch CH in ethylene glycol groups C¾) and 1460 cm -1 (angular deformation CH in ethylene glycol CH2 groups). After functionalization NPH30-CTAB-SiOH (on the spectrum denoted as P ^ C-SiOH) with said organosilane product 'is generated NPH30-CTAB-SiO-10EEGio. (PC-lOPEGio). In this last spectrum the visualization of the polymer bands is difficult due to the overlap with the silica bands (at 1100 cm " 1 and 962 cm -1 ) and the CTAB (at 2854 cm -1 ). Even after the removal of the mold, whose absence of its typical bands is noticeable in the spectrum of the final nanoparticle NPH30-SiO-10PEGio (P-lOPEGio), the visualization of the PEG bands is impaired as they overlap with the silica bands, requiring the use of other characterization techniques to confirm the functionalization.
[0110] Através da análise térmica (Figura 17) foi possível confirmar a presença do polímero na nanopartícula, muito embora a confirmação da condensação do silano PEG na superfície do colóide ainda não possa ser confirmada apenas com o uso dessa técnica. As curvas DTA exibem um evento mais significativo ocorrendo em 292 °C para a amostra NPH30-CTAB-SiO-10PEGio (P-C-SiO-10PEGio) em relação à nanopartícula de partida, evidenciando a presença da macromolécula externa. Nessa temperatura é observada uma etapa adicional de perda de massa nas curvas TG da P-C-SiO-10PEGio . Após a remoção do molde, observa-se o início da decomposição do polietileno glicol em 216 °C, terminando em 375 °C nas curvas TG da NPH30-SiO-10PEGio . Conforme observado, a liberação dos grupos aromáticos em 324 °C ocorre paralelamente à eliminação do polímero; a curva do DTA da NPH30-SiO-10PEGio mostra uma diferença de temperatura menos evidenciada próximo à 300 °C comparado com a NPH30-CTAB~SiO-lOPEGio, visto que a nanopartícula final não contém CTAB cuja degradação já ocorre nessa temperatura, contribuindo para a diminuição da intensidade do pico observado.  [0110] Through thermal analysis (Figure 17) it was possible to confirm the presence of the polymer in the nanoparticle, although the confirmation of the condensation of PEG silane on the colloid surface cannot yet be confirmed using this technique alone. DTA curves exhibit a more significant event occurring at 292 ° C for the NPH30-CTAB-SiO-10PEGio (P-C-SiO-10PEGio) sample relative to the starting nanoparticle, showing the presence of the outer macromolecule. At this temperature an additional mass loss step is observed on the P-C-SiO-10PEG10 TG curves. After removal of the mold, the decomposition of polyethylene glycol is observed at 216 ° C, ending at 375 ° C on the NPH30-SiO-10PEG10 TG curves. As noted, the release of aromatic groups at 324 ° C occurs in parallel with the elimination of the polymer; NPH30-SiO-10PEGio DTA curve shows a less evident temperature difference near 300 ° C compared to NPH30-CTAB-SiO-lOPEGio, since the final nanoparticle does not contain CTAB whose degradation already occurs at that temperature, contributing to the decrease in peak intensity observed.
[0111] As análises de adsorçâo-dessorção de nitrogénio apresentadas na Figura 18 indicaram um perfil de nanopartícula semelhante às nanopartículas de partida, permitindo afirmar que após a funcionalização as estruturas não sofreram alterações no perfil de poros, conforme desejado. Especificamente, a isoterma de nitrogénio assemelha-se a uma isoterma do tipo IV, segundo a classificação da IUPAC, isto é, os nanocarreadores apresentam natureza mesoporosa. The nitrogen adsorption-desorption analyzes shown in Figure 18 indicated a nanoparticle profile similar to the starting nanoparticles, allowing to state that after functionalization the structures did not change pore profile as desired. Specifically, the isotherm of Nitrogen resembles a type IV isotherm according to the IUPAC classification, ie nanocarriers are mesoporous in nature.
[0112] De acordo com a distribuição de tamanho de poros no sistema em questão, constata-se a predominância de poros detendo diâmetros entre 2 e 10 nm, similarmente ao resultado para as nanoparticulas de partida.  According to the pore size distribution in the system in question, there is a predominance of pores having diameters between 2 and 10 nm, similar to the result for the starting nanoparticles.
[0113] De acordo com o método BET, a área superficial da nanoparticula de partida é de 898 m2/g. Após a funcionalização, o referido valor sofre ligeiro aumento para 943 m2/g, indicando poucas' diferenças. Tratando-se do volume total de poros determinado pelo método BJH, os nanocarreadores de partida possuem 2,2 cmVg à medida que a NPH30-SiO-10PEG10 detém 1,48 cm3/g. Tal diferença está atrelada possivelmente à presença do silano PEGio, caracterizando possivelmente efeitos estéricos frente à adsorção do gás nitrogénio na nanoparticula. According to the BET method, the surface area of the starting nanoparticle is 898 m 2 / g. After functionalization, said value undergoes slight increase to 943 m 2 / g, indicating little 'differences. For the total pore volume determined by the BJH method, the starting nanocarriers have 2.2 cmVg as the NPH30-SiO-10PEG 10 holds 1.48 cm 3 / g. This difference is possibly linked to the presence of PEGio silane, possibly characterizing steric effects against nitrogen gas adsorption in the nanoparticle.
[0114] Na Figura 24 são apresentados os espectros de RMN 13C e 29Si da NPH30-SiO-10PEGio . Utilizando-se a Figura 11 como referência para a localização de cada núcleo deve-se desprezar os grupos GPS, GPS aberto e GPS-PEG40 pois não estão presentes na atual nanoparticula . In Figure 24 the 13 C and 29 Si NMR spectra of NPH30-SiO-10PEG10 are shown. Using Figure 11 as a reference for the location of each nucleus one should disregard the GPS, open GPS and GPS-PEG40 groups because they are not present in the current nanoparticle.
[0115] Analisando-se inicialmente o espectro de RMN apresentado na Figura 14, tem-se o veiculo molecular antes e após a modificação superficial. Anteriormente ao enxerto, os únicos núcleos de carbono presentes são oriundos do grupo fenil representado pelos núcleos 1 (130,5 ppm) , 2 (129,7 ppm) , 3 (128,4 ppm) e 4 (133,8 ppm) observados em ambas as situações. Picos em aproximadamente 30 ppm e 17 ppm podem ser atribuídos aos núcleos de carbono do CTAB residual e, portanto, podem ser desprezados. A presença do polietileno glicol em 10 unidades monoméricas é confirmada no espectro da NPH30-SiO-10PEGio cujos núcleos 7, 8 e 9 aparecem em 72 ppm, 60,8 ppm e 60,8 ppm, respectivamente, após a funcionàlizáção . No entanto, a área dos picos dos principais átomos de carbono do PEG é baixa, indicando que a funcionàlizáção de 10%- mol de Si ainda não é satisfatória, sendo necessário o estudo da modificação superficial com 25%-mol Si e 50%-mol Si. Initially analyzing the NMR spectrum shown in Figure 14, one has the molecular carrier before and after surface modification. Prior to grafting, the only carbon nuclei present come from the phenyl group represented by nuclei 1 (130.5 ppm), 2 (129.7 ppm), 3 (128.4 ppm) and 4 (133.8 ppm) observed. in both situations. Peaks at approximately 30 ppm and 17 ppm can be attributed to the residual CTAB carbon nuclei and therefore can be neglected. The presence of polyethylene glycol in 10 monomer units is confirmed in the NPH30-SiO-10PEG10 spectrum whose nuclei 7, 8 and 9 appear at 72 ppm, 60.8 ppm and 60.8 ppm, respectively, after operation. However, the peak area of the main carbon atoms of PEG is low, indicating that the functionalization of 10% mol Si is not yet satisfactory, and it is necessary to study the surface modification with 25% mol Si and 50% molar. mol Si.
[0116] Embora a presença do referido polímero seja evidente ainda que em pouca quantidade, a confirmação de condensação do silano pode ser concluída através da análise do espectro de RMN de silício.  Although the presence of said polymer is evident even in small quantities, confirmation of silane condensation can be completed by analyzing the silicon NMR spectrum.
[0117] No estudo de RMN de silício faz-se necessário a compreensão dos termos utilizados para cada tipo de núcleo de acordo com seu acoplamento com os núcleos vizinhos - a Figura 11 auxilia nessa compreensão. As designações e seu respectivo significado são apresentados a seguir:  [0117] In the study of silicon NMR, it is necessary to understand the terms used for each type of nucleus according to its coupling with neighboring nuclei - Figure 11 helps in this understanding. The designations and their meanings are as follows:
Q4 : trata-se do núcleo de silício ligado a 4 substituintes OSi, Si (O-Si) 4, localizado principalmente no interior da "casca" da sílica; Q 4 : Silicon core bonded with 4 substituents OSi, Si (O-Si) 4, located mainly within the "shell" of the silica;
Q3: refere-se ao núcleo de silício ligado a 3 substituintes O-Si e um grupo OH, HO-Si (O-Si) 3, presente nas superfícies interna e externa do veículo molecular, bem como no interior da camada de sílica - utilizado para confirmação da condensação de silanos; Q2: embora em menor quantidade, trata-se do átomo de silício ligados a 2 grupos O-Si e 2 grupos OH, (HO) 2Si (O-Si) 2, dispostos espacialmente da mesma maneira que os núcleos Q3; Q 3 : refers to the silicon core bonded to 3 O-Si substituents and an OH, HO-Si (O-Si) 3 group present on the inner and outer surfaces of the molecular carrier, as well as within the silica layer - used for confirmation of condensation of silanes; Q 2 : although less, it is the silicon atom bonded to 2 O-Si groups and 2 OH, (HO) 2Si (O-Si) 2 groups, arranged spatially in the same way as Q 3 nuclei;
T3 : trata-se de núcleos de silício ligado a 3 substituintes O-Si e um substituinte carbono contido em m grupo R, R-Si (O-Si) 3, presentes na superfície interna, no interior ou superficialmente à "casca" veiculo molecular; T2: trata-se de núcleos de silício ligado a 2 substituintes O-Si, um grupo OH e um substituinte carbono contido em um grupo , R- Si(0-Si)20H, presentes na superfície interna, no interior ou superficialmente à "casca" veículo molecular. T 3 : These are silicon cores bonded to 3 O-Si substituents and a carbon substituent contained in the group R, R-Si (O-Si) 3, present on the inner surface, inside or on the shell. molecular carrier; T 2 : silicon nuclei attached to 2 O-Si substituents, one OH group and one carbon substituent contained in one group, R-Si (0-Si) 20H, present on the inner surface, inside or on the surface. "shell" molecular vehicle.
[0118] É importante notar que, a denominação R é referente aos grupos fenil, glicidoxi ou PEGio presentes nas nanopartículas .  It is important to note that the designation R refers to the phenyl, glycidoxy or PEG10 groups present in the nanoparticles.
[0119] Na Figura 25 são mostrados os espectros de RMN da amostra NPH30-SiO-lOPEGio, anteriormente e após a funcionalização, contendo os principais sítios de silício e sua área correspondente em porcentagem. Os deslocamentos químicos dos picos do silício possuem valores específicos e não sofrem alteração após a funcionalização, visto que a entidade química que os representa não sofre mudanças estruturais. De fato, o que se observa são variações na área dos picos antes e depois do enxerto. São claros no RMN de silício picos em -110 ppm, -100 ppm e -90 ppm referentes aos sítios Q4, Q3 e Q2, respectivamente, -80 ppm e -70 ppm oriundos dos sítios T3 e T2, nessa ordem. [0119] Figure 25 shows NMR spectra of the NPH30-SiO-1OPEGio sample, before and after functionalization, containing the major silicon sites and their corresponding area in percent. The chemical displacements of the silicon peaks have specific values and do not change after functionalization, since the chemical entity that represents them does not undergo structural changes. In fact, what is observed are variations in peak area before and after grafting. Silicon NMR peaks at -110 ppm, -100 ppm and -90 ppm are clear for Q 4 , Q 3 and Q 2 sites , respectively, -80 ppm and -70 ppm from T 3 and T 2 sites at this time. order.
[0120] Na modificação superficial, os grupos OH oriundos dos sítios Q3 e Q2 sofrem substituição nucleofílica com os- silanos, gerando novos sítios T3 e T2. Nesse contexto, a relação de área (Q4+Q+Q2) / (T3+T2) deve diminuir após a funcionalização, visto que a soma de T3 +T2 aumenta. Analisando-se o gráfico, tem-se (Q"+Q +Q2) / (T3+T2)SÍOH = 3,61 e (Q4+Q +Q2) / (T3+T2) PEGIO = 3,39, indicando o resultado esperado. Portanto, a condensação dos grupos funcionais PEGio pode assim ser confirmada. In surface modification, the OH groups from the Q 3 and Q 2 sites undergo nucleophilic substitution with ossilanes, generating new T 3 and T 2 sites . In this context, the area ratio (Q 4 + Q + Q 2 ) / (T 3 + T 2 ) should decrease after functionalization, as the sum of T 3 + T 2 increases. Analyzing the graph gives (Q "+ Q + Q 2 ) / (T 3 + T 2 ) SiOH = 3.61 and (Q 4 + Q + Q 2 ) / (T 3 + T 2 ) PEGIO = 3.39, indicating the expected result, so the condensation of the PEGio functional groups can thus be confirmed.
[0121] No entanto, conforme comentado acima, é necessário aumentar a quantidade de silano PEGio na modificação superficial com o intuito de melhorar seu grau de condensação na superfície externa que, até o momento foi observada como insatisfatória, em virtude do pequeno aumento dos principais picos do carbono do polietileno glicol no RMN de carbono. However, as noted above, it is necessary to increase the amount of PEGio silane in surface modification in order to improve its degree of condensation on the external surface which has so far been found unsatisfactory in due to the small increase in the main carbon peaks of polyethylene glycol in carbon NMR.
NPH30~SiO-25PEGio  NPH30 ~ SiO-25PEGio
[0122] A nanoparticula contendo grupos fenil (30% mol-si) internos bem como grupos PEGio 25% mol-Si funcionalizados externamente foi denominada NPH30-SiO-25PEGio . Suas respectivas caracterizações estruturais mostraram resultados satisfatórios de acordo com as expectativas pré-estabelecidas para a construção do referido veiculo molecular. As legendas P-C-SiOH, P-C-25PEGio e P- 25PEGio referem-se, respectivamente, à NPH30-SÍOH, NHPH30-CTAB- SiO-25PEGio e NPH30-SiO-25PEGi0. The nanoparticle containing internal phenyl (30% mol-Si) groups as well as externally functionalized 25% mol-Si PEG10 groups was called NPH30-SiO-25PEG10. Their respective structural characterizations showed satisfactory results according to the pre-established expectations for the construction of the said molecular vehicle. PC-SiOH subtitles, PC-P and 25PEGio 25PEGio refer respectively to NPH30-SiOH, NHPH30 CTAB--SiO-SiO-25PEGio and NPH30 25PEGi-0.
[0123] A Figura 26 mostra o espectro por infravermelho da NPH30- SiO-25PEGio- Em todas as situações mostradas na figura são notórias as principais bandas da sílica. Esse resultado evidencia a presença dessa principal entidade química que constitui a unidade estrutural fundamental da nanoparticula. Tratando-se dos grupos fenil, é também facilmente confirmada sua presença anterior e posteriormente à funcionalização e na presença e ausência do molde orgânico. Mantendo-se o foco para o polietileno glicol, é válido novamente ressaltar a dificuldade atrelada à observação das bandas do polímero sobrepostas pelas bandas da sílica. No espectro da NPH30-SiO-25PEGio observa-se um pequeno alargamento da banda próxima a 1040 cm-1 em relação ao espectro da NPH30-SÍOH, supostamente evidenciando a presença do PEG na nanoparticula. Conforme já mencionado anteriormente, nessa região ocorrem as bandas provenientes dos estiramentos simétricos C-O-C da entidade polimérica. sobrepostas pelas bandas da sílica oriundas do estiramento Si-O-Si assimétrico. Sabendo-se dessas dificuldades, faz-se necessário analisar os resultados obtidos concomitantemente com outras técnicas de caracterização. [0124] Os dados de análises térmicas mostradas na Figura 27, são importantes para elucidação das ' distintas espécies químicas presentes no sistema nanoestruturado . De acordo com as curvas DTA, notasse um evento típico ocorrendo em 577 °C igualmente presente em todas as etapas atrelado à decomposição térmica dos grupos fenil. No que se refere à nanopartícula de sílica funcionalizada com 25% mol-Si de silano PEG na presença do molde orgânico, nota- se um. evento ém 274 °C referente à decomposição do CTAB juntamente com a entidade polimérica citada. Após a remoção do soft template, obtendo-se a nanopartícula final, o evento citado desloca-se para 224 °C, devido à decomposição térmica unicamente do polietileno glicol, que ocorre em um intervalo de temperatura menor comparado com o evento envolvendo a presença simultânea do PEG e CTAB. Esse conjunto de resultados é importante para indicar a presença das três espécies orgânicas na NPH30-SiO-25PEGio, principalmente através da observação do deslocamento de eventos de decomposição na presença ou ausência de determinados compostos. [0123] Figure 26 shows the infrared spectrum of NPH30-SiO-25PEGio- In all situations shown in the figure the major silica bands are noticeable. This result evidences the presence of this main chemical entity that constitutes the fundamental structural unit of the nanoparticle. In the case of phenyl groups, their presence is also easily confirmed before and after functionalization and in the presence and absence of organic mold. Keeping the focus on polyethylene glycol, it is worth noting again the difficulty associated with observing the polymer bands overlapped by the silica bands. In the spectrum of NPH30-SiO-25PEGio, a small band widening close to 1040 cm -1 is observed in relation to the spectrum of NPH30-SiOH, supposedly evidencing the presence of PEG in the nanoparticle. As previously mentioned, in this region there are bands from the symmetrical COC stretches of the polymeric entity. overlapped by the silica bands from the asymmetrical Si-O-Si stretch. Knowing these difficulties, it is necessary to analyze the results obtained concurrently with other characterization techniques. [0124] The thermal analysis data shown in Figure 27, are important for elucidation of 'distinct chemical species present in the nanostructured system. According to the DTA curves, note are a typical event occurring at 577 ° C also present in all steps linked to the thermal decomposition of the phenyl groups. Regarding the 25% mol-Si functionalized silica nanoparticle PEG silane in the presence of the organic mold, one is noted. event is 274 ° C referring to the decomposition of CTAB together with the polymeric entity cited. After removal of the soft template, obtaining the final nanoparticle, the event mentioned shifts to 224 ° C, due to the thermal decomposition only of polyethylene glycol, which occurs in a smaller temperature range compared to the event involving the simultaneous presence. PEG and CTAB. This set of results is important to indicate the presence of the three organic species in NPH30-SiO-25PEGio, mainly by observing the displacement of decomposition events in the presence or absence of certain compounds.
[0125] As curvas termogravimétricas também apresentadas na Figura 17 complementam as informações acima a respeito das entidades químicas presentes no veículo molecular. Comparando-se a curva da NPH30-CTAB-SÍOH com a NPH30-CTAB-SiO-25PEGio, observa-se a presença de um novo platô de decomposição em virtude do PEG presente. Comparando-se as curvas da NPH30-SÍOH e NPH30-SiO-25PEGio, ambas isentas de CTAB, torna-se evidente a decomposição térmica do polietileno glicol entre 217 °C e 377 °C, como sendo a única entidade orgânica possível nesse intervalo de temperatura, visto que o CTAB está ausente e, conforme já comentado, o grupo fenil decompõe-se a partir de 324 °C. De fato, torna-se complicado estimar quantitativamente o percentual individual de cada espécie química comentada, uma vez no intervalo de temperatura entre 324 °C e 381 °C os eventos de perda de massa do CTAB, PEG e fenil ocorrem simultaneamente. The thermogravimetric curves also presented in Figure 17 complement the above information regarding the chemical entities present in the molecular vehicle. Comparing the curve of NPH30-CTAB-SiOH with NPH30-CTAB-SiO-25PEG10, a new decomposition plateau is observed due to the PEG present. Comparing the curves of NPH30-SiOH and NPH30-SiO-25PEGio, both exempt from CTAB, it is evident that the thermal decomposition of polyethylene glycol between 217 ° C and 377 ° C is the only possible organic entity in this range. temperature, as CTAB is absent and, as already mentioned, the phenyl group decomposes from 324 ° C. In fact, it becomes complicated to estimate quantitatively the individual percentage of each chemical species commented, once in the temperature range between 324 ° C and 381 ° C CTAB, PEG and phenyl mass loss events occur simultaneously.
[0126] A seguir são apresentadas, na Figura 28, as isotermas de adsorção nitrogénio e a distribuição de poros da NPH30-SiO-25PEGio . No gráfico do volume de poros em função da pressão relativa é evidente a manutenção do perfil das nanoparticulas funcionalizadas em relação às de partida, uma vez que se tem o mesmo perfil de isoterma do tipo IV com ligeira histerese do tipo H3. Tal resultado reflete a natureza mesoporosa e complexa dos poros dispostos espacialmente de maneira aleatória, isto é, sem ordenamento definido. Além disso, pode-se afirmar que a funcionalização não modificou os nanocarreadores nos referidos aspectos, o que é significativamente importante do ponto de vista estrutural. Analisando-se as áreas superficiais das nanoparticulas antes e depois da funcionalização estimadas através do método BET, verifica-se o aumento de 898 m2/g para 988 m2/g antes e após a modificação superficial, respectivamente. Following are shown in Figure 28 the nitrogen adsorption isotherms and pore distribution of NPH30-SiO-25PEG10. The graph of pore volume as a function of relative pressure shows the maintenance of the functionalized nanoparticle profile in relation to the starting one, since it has the same type IV isotherm profile with slight type H3 hysteresis. This result reflects the mesoporous and complex nature of randomly arranged pores, that is, without definite ordering. Moreover, it can be stated that the functionalization did not modify the nanocarriers in these aspects, which is significantly important from a structural point of view. Analyzing the surface areas of the nanoparticles before and after functionalization estimated by the BET method, the increase from 898 m 2 / g to 988 m 2 / g before and after surface modification, respectively, is observed.
[0127] Tratando-se da distribuição de poros, as nanoparticulas funcionalizadas detém perfil similar aos às nanoparticulas de partida similarmente ao que ocorre nas isotermas de nitrogénio. Observa-se na Figura 18 a predominância de poros entre 2 e 10 nm em ambos os nanocarreadores, classificando a NPH30-SiO~25PEGio como um material mesopõroso. Os volumes de poros indicaram valores interessantes sob o ponto de vista fenomenológico, isto é, após a funcionalização o volume total de poros varia de 2,2 cm3/g para 1,74 cmVg. Tal resultado infere a possível impedimento esférico dos poros pelos silanos funcionalizados superficialmente, impedindo a entrada dos gases no interior da nanopartícula. In terms of pore distribution, functionalized nanoparticles have a similar profile to the starting nanoparticles similar to what occurs in nitrogen isotherms. Figure 18 shows the predominance of pores between 2 and 10 nm in both nanocarriers, classifying NPH30-SiO-25PEGio as a mesoporous material. Pore volumes indicated phenomenologically interesting values, that is, after functionalization the total pore volume ranges from 2.2 cm 3 / g to 1.74 cmVg. This result infers the possible spherical impedance of the pores by the superficially functionalized silanes, preventing the entry of gases inside the nanoparticle.
[0128] A seguir são apresentados os espectros de RMN de carbono e silício da NPH30-SiO-25PEGio. Conforme já mencionado anteriormente, baseando-se na Figura 11 para a compreensão deve- se desconsiderar as espécies GPS e GPS-PECio, visto que não estão envolvidas no contexto dessa nanopartícula. The following are the carbon and silicon NMR spectra of NPH30-SiO-25PEG10. As already mentioned previously, based on Figure 11 for understanding, GPS and GPS-PECio species should be disregarded, since they are not involved in the context of this nanoparticle.
[0129] A Figura 29 mostra o espectro de RMN 13C da nanopartícula no qual são facilmente identificados os núcleos oriundos dos grupos fenil em 130,4 ppm (núcleo 1), 129 ppm (núcleo 2), 126,8 ppm (núcleo 3) e 134,1 ppm (núcleo 4) . Deve ser notado que as referidas espécies nucleares são presentes antes e após a funcionalização, conforme esperado. No que se refere à identificação do polietileno glicol no veículo molecular, deve-se identificar o pico referente ao núcleo 7 do polímero em 70,5 ppm no espectro da NPH30-SÍO- 25PEGio- É notória sua ausência no espetro da nanopartícula de partida, inferindo-se que após a modificação superficial o PEG encontra-se presente no sistema em virtude do surgimento do pico em 70,5 ppm no veículo molecular modificado. No entanto, as informações contidas no RMN 13C não confirmam a funcionalização do silano PEG10, apenas indicam sua presença. Para a complementação dessa informação faz-se necessário analisar o espectro de RMN 29Si da NPH30-SiO-25PEGio apresentado na Figura 20. Figure 29 shows the 13 C NMR spectrum of the nanoparticle in which nuclei from the phenyl groups at 130.4 ppm (nucleus 1), 129 ppm (nucleus 2), 126.8 ppm (nucleus 3) are readily identified. ) and 134.1 ppm (core 4). It should be noted that said nuclear species are present before and after functionalization as expected. Regarding the identification of polyethylene glycol in the molecular carrier, one should identify the nucleus 7 peak of the polymer at 70.5 ppm in the NPH30-SiO-25PEGio spectrum. Its absence in the starting nanoparticle spectrum is noticeable; It is inferred that after surface modification PEG is present in the system due to the appearance of the peak at 70.5 ppm in the modified molecular vehicle. However, the information contained in 13 C NMR does not confirm the functionalization of PEG10 silane, but only indicates its presence. To complement this information it is necessary to analyze the 29Si NMR spectrum of the NPH30-SiO-25PEGio shown in Figure 20.
[0130] De acordo com o espectro de RMN de silício da NPH30-SÍO- 25PEGio, observa-se claramente a diminuição dà soma das áreas Q e aumento das áreas T após a modificação superficial. Tal resultado indica que o número de sítios de Q3 e Q2 atrelados às estruturas (S1O2) 3-Si-OH e (SÍO2) 2-Si- (OH) 2, respectivamente, diminui, o que é esperado uma vez que na funcionalização os grupos silanóis reagem covalentemente com o silano PEG proporcionando o aumento das espécies (Si02)4-Si na estrutura. Analogamente, o espectro indica que o número de sítios T3 e T2 vinculados às estruturas (Si02)3~Si- R e (S1O2) 2-Si- (OH) (R) aumenta, visto que na condensação do organosilano tem-se a formação de três ou duas pontes siloxanos Si-0-Si e a presença da ligação covalente entre um núcleo de silício e carbono, intrinsecamente atrelados ao silano. De maneira compleméntar, observou-se uma diminuição de 3,61 para 3,21 na relação (Q +Q3+Q2) / (T3+T2) , confirmando quantitativamente a observação acima. Por conseguinte, pode-se confirmar a funcionalização do silano PEGio no referido veículo molecular. NPH30-SiO-50PÈGio According to the silicon NMR spectrum of NPH30-SiO-25PEG10, the decrease of the sum of Q areas and increase of T areas after surface modification is clearly observed. This result indicates that the number of Q 3 and Q 2 sites linked to the (S1O2) 3-Si-OH and (SiO2) 2-Si- (OH) 2 structures, respectively, decreases, which is expected since in Functionalization the silanols groups react covalently with the PEG silane providing the increase of species (Si02) 4-Si in the structure. Similarly, the spectrum indicates that the number of T 3 and T 2 sites linked to the (Si02) 3 -Si R and (S1O2) 2-Si- (OH) (R) structures increases, since in the organosilane condensation has if the formation of three or two siloxane bridges Si-O-Si and the presence of covalent bond between a silicon and carbon core intrinsically linked to silane. Complementarily, there was a decrease from 3.61 to 3.21 in the (Q + Q 3 + Q 2 ) / (T 3 + T 2 ) ratio, confirming the above observation quantitatively. Accordingly, the functionalization of PEG10 silane in said molecular carrier can be confirmed. NPH30-SiO-50Pegio
[0131] A nanopartícula contendo grupos fenil (30% mol-Si) internos bem como grupos PEGió 50% mol-Si funcionalizados externamente foi denominada NPH30-SiO-50PEGio■ Suas respectivas caracterizações estruturais mostraram resultados satisfatórios de acordo com as expectativas pré-estabelecidas para a construção do referido veículo molecular. As legendas P-C-SiOH, P-C-50PEGio e P- 50PEGio referem-se à NPH30-SÍOH, NHPH30-CTAB-SiO-50PEGio e NPH30- SiO-50PEGio. Iniciando-se tais estudos pela espectroscopia vibracional no infravermelho cujo espectro é observado na Figura 21, foram observadas as principais bandas da sílica em todas as etapas sintéticas apresentadas. Nesse contexto, têm-se bandas em 1082 cm-1 (estiramento Si-O-Si assimétrico) , 800 cm-1 (estiramento Si-O-Si simétrico) , 962 cm"1 (estiramento Si-OH) e 462 cm-1 (deformação angular Si-O-Si) confirmando a presença da matriz inorgânica. O controle de extração do CTAB pode ser monitorado notando-se suas respectivas bandas em 2924 cm-1 (estiramento C-H assimétrico) e 2852 cm"1 (estiramento C-H simétrico) oriundas da cadeia carbónica do referido surfactante, bem como aquelas presentes em 1483 cm-1 (estiramento C-H assimétrico do grupo CH3 do grupo H3C-N+) e 1232 cm-1 (estiramento C-N) Erro! Indicador não definido, em todas as situações apresentadas na Figura 21, exceto para a P~ 5OPEG10 na qual estão ausentes e, portanto, indicando a remoção do molde orgânico. Tratando-se dos grupos fenil, suas respectivas bandas são confirmadas em 1596 cm-1 (estiramento C=C) , 740 cm-1 (deformação angular C-H) e 698 cm-1 (deformação angular C=C) . [0131] The nanoparticle containing internal phenyl (30% mol-Si) groups as well as externally functionalized 50% mol-Si PEGió groups was named NPH30-SiO-50PEGio ■ Their respective structural characterizations showed satisfactory results according to pre-established expectations for the construction of said molecular vehicle. Subtitles PC-SiOH, PC-50PEG10 and P-50PEG10 refer to NPH30-SiOH, NHPH30-CTAB-SiO-50PEG10 and NPH30-SiO-50PEG10. Initiating such studies by infrared vibrational spectroscopy whose spectrum is observed in Figure 21, the main silica bands were observed in all the synthetic steps presented. In this context, there are bands at 1082 cm -1 (asymmetric Si-O-Si stretch), 800 cm -1 (symmetrical Si-O-Si stretch), 962 cm -1 (Si-OH stretch) and 462 cm - 1 (Si-O-Si angular deformation) confirming the presence of the inorganic matrix CTAB extraction control can be monitored by noting their respective bands at 2924 cm -1 (asymmetric CH stretch) and 2852 cm " 1 (CH stretch from the carbon chain of said surfactant, as well as those present at 1483 cm -1 (asymmetric CH stretch of the H3C-N + group CH3) and 1232 cm -1 (CN stretch) Error! Indicator not defined in all situations shown in Figure 21, except for P ~ 5OPEG10 where they are absent and therefore indicating removal of organic mold. In the case of phenyl groups, their respective Bands are confirmed at 1596 cm -1 (C = C stretch), 740 cm -1 (CH angular deformation) and 698 cm -1 (C = C angular deformation).
[0132] A confirmação do polietileno glicol através da espectroscopia por infravermelho na nanoparticula é dificultada principalmente devido à sobreposição de suas principais bandas com aquelas provenientes da sílica. De acordo com a Figura 21, após a funcionalização observa-se um pequeno alargamento da banda presente em 1100 cm-1, indicando parcialmente a presença de uma das principais bandas do PEG em 1080 cm-1 associada ao estiramento assimétrico C-O-C. A referida entidade polimérica foi analisada por análise térmica e RMN visando sua confirmação na nanoparticula. [0132] Confirmation of polyethylene glycol by infrared spectroscopy on the nanoparticle is difficult mainly due to the overlap of its main bands with those from silica. According to Figure 21, after functionalization there is a slight widening of the band present at 1100 cm -1 , partially indicating the presence of one of the main PEG bands at 1080 cm -1 associated with the asymmetric COC stretch. This polymeric entity was analyzed by thermal analysis and NMR aiming at its confirmation in the nanoparticle.
[0133] A Figura 22 mostra as curvas TG e DTA da NPH30-SiO~50PEGio . A análise térmica diferencial registra um evento exotérmico em 267°C para a NPH30-CTAB-SiO-50PEGio, indicando a decomposição térmica do surfactante e do polietileno glicol. Após a remoção do molde orgânico, o evento é deslocado para 221,7 °C, associado unicamente à presença da espécie polimérica na ausência do soft template, nessa situação. Partindo-se de tais considerações, a observação da curva termogravimétrica da NPH30-CTAB-SÍOH permite visualizar a perda de massa do CTAB iniciando-se em 135°C e finalizando-se em 381°C (22,2% de massa). Durante esse processo é notório o início da decomposição do PEG ocorrendo no intervalo de temperatura entre 216°C e 378°C (observado na curva da NPH30-SÍO- 50PEGio) . A estimativa do teor de funcionalização do silano PEG na nanoparticula pode ser obtida comparando-se as curvas da NPH30- SiOH e NPH30-SiO-50PEGio na temperatura de 900 °C, na qual todos os componentes orgânicos estão ausentes. Nessa situação a massa final para cada uma delas é de 73% e 67%, respectivamente, isto é, a diferença de 6% de massa entre ambas está vinculada à massa de polietileno glicol. Através de cálculos estequiométricos foi possível confirmar a funcionalização no teor de 1,17. IO-7 mol de Si-PEG/mg dê nanoparticula ou 1,06% mol-Si. Na região entre 324°C e 716°C ocorre a liberação do grupo fenil cuja quantidade de massa é 22,7% ou 2, 95. IO-6 mol de Si-fenil/mg de nanoparticula, correspondente a 28,7% mol-Si. Note que a quantidade teórica de funcionalização dos referidos grupos aromáticos é 30% mol-Si, corroborando com os resultados experimentais. Figure 22 shows the TG and DTA curves of NPH30-SiO-50PEG10. Differential thermal analysis records an exothermic event at 267 ° C for NPH30-CTAB-SiO-50PEGio, indicating the thermal decomposition of surfactant and polyethylene glycol. After removal of the organic mold, the event is shifted to 221.7 ° C, associated only with the presence of the polymeric species in the absence of the soft template in this situation. From these considerations, observing the thermogravimetric curve of the NPH30-CTAB-SiOH allows visualization of CTAB mass loss starting at 135 ° C and ending at 381 ° C (22.2% mass). During this process the onset of PEG decomposition occurring within the temperature range of 216 ° C to 378 ° C (observed on the curve of NPH30-SiO-50PEG10) is noticeable. Estimation of the functionalization content of PEG silane in the nanoparticle can be obtained by comparing the curves of NPH30-SiOH and NPH30-SiO-50PEGio at a temperature of 900 ° C, in which all organic components are absent. In this situation the final mass for each of them is 73% and 67%, respectively, ie the 6% difference between them is linked to the polyethylene glycol mass. Through stoichiometric calculations it was can confirm the functionalization at the content of 1.17. 10 -7 mol Si-PEG / mg give nanoparticle or 1.06 mol% Si. In the region between 324 ° C and 716 ° C occurs the release of the phenyl group whose mass amount is 22.7% or 2.95. 10 -6 mol Si-phenyl / mg nanoparticle, corresponding to 28.7 mol% Yes. Note that the theoretical amount of functionalization of said aromatic groups is 30 mol-Si, corroborating the experimental results.
[0134] As taxas de funcionalização dos grupos fenil e PEG são coerentes com os valores esperados. O enxerto de 28,7% mol de Si- fenil é consideravelmente próximo ao resultado teórico, o que não ocorre com a entidade polimérica cujo valor de 1,06% de funcionalização, discrepante do valor teórico (50%) , vinculado a possíveis efeitos estéricos entre as cadeias carbónicas do polímero que, nesse sistema, interferem para o baixo rendimento na reação. Por outro lado, o referido teor de funcionalização foi suficiente para gerar novas propriedades químicas à nanoparticula, tal como a melhoria na estabilidade coloidal e influência na hemólise, tópicos discutidos mais adiante.  The functionalization rates of the phenyl and PEG groups are consistent with the expected values. The 28.7% mol Siphenyl graft is considerably close to the theoretical result, which is not the case with the polymeric entity whose 1.06% functionalization value, which is different from the theoretical value (50%), linked to possible effects. between the carbonic chains of the polymer which, in this system, interfere with the low reaction yield. On the other hand, said functionalization content was sufficient to generate new chemical properties to the nanoparticle, such as improved colloidal stability and influence on hemolysis, topics discussed below.
[0135] A NPH30-SiO-50PEGio foi submetida à análise de adsorção- dessorção de nitrogénio cuja isoterma está representada na Figura 23. Analisando-se o padrão, tem-se que seu perfil de isoterma de nitrogénio assemelha-se àquele denominado como do tipo IV com ligeira histerese do tipo H3, conforme a classificação da IUPAC no contexto dos materiais porosos. O padrão observado reflete um material mesoporoso de porosidade complexa indicando acentuado nível de irregularidades superficiais conforme a produção de nahopartículas detendo superfícies irregulares. É notória a formação de uma ligeira histerese em P/Po = 0,40, típica de isotermas do tipo IV referentes aos materiais mesoporos . Comparando-se o carreador de partida com a nanoparticula final funcionalizada externamente, observa-se diminuição de área superficial (método BET) de 898 m2/g para 771 m2/g, respectivamente. Tal resultado sugere o possível impedimento estérico . nos poros pelos silanos condensados externamente e, portanto, impedindo ligeiramente a adsorção dos gases de nitrogénio de maneira integral. Tal fenómeno é mais evidente ao comparamos o volume total de poros de ambas as nanopartícuias cujos valores calculados foram 2,2 mL/g e 1,3 mL/g para a NPH30-SÍOH e NPH30-SiO-50PEGio, respectivamente. Sabendo-se que as análises térmicas e os espectros de infravermelho confirmaram a extração do CTAB, o resultado esperado seria área superficial e volume de poros relativamente semelhantes entre ambas as nanopartículas, o que não ocorre. Felizmente, tal resultado complementa a confirmação de funcionalização externa. De acordo com o gráfico de distribuição de poros, também na Figura 23, observa-se a predominância de poros entre 2 nm e 10 nm para a NPH30-SiO-50PEGio caracterizando-a como material mesoporoso. The NPH30-SiO-50PEGio was subjected to nitrogen adsorption-desorption analysis whose isotherm is shown in Figure 23. By analyzing the pattern, its nitrogen isotherm profile resembles that of the so-called nitrogen isotherm profile. type IV with slight hysteresis of type H3, according to the IUPAC classification in the context of porous materials. The observed pattern reflects a mesoporous material of complex porosity indicating a marked level of surface irregularities as the production of nahoparticles holding irregular surfaces. The formation of a slight hysteresis at P / Po = 0.40, typical of type IV isotherms for mesoporous materials, is notorious. Comparing the starting carrier with the final nanoparticle functionalized externally, a decrease in surface area (BET method) is observed from 898 m 2 / g to 771 m 2 / g, respectively. Such result suggests the possible steric hindrance. pores by externally condensed silanes and thus slightly preventing the adsorption of nitrogen gases in their entirety. This phenomenon is most evident when comparing the total pore volume of both nanoparticles whose calculated values were 2.2 mL / g and 1.3 mL / g for NPH30-SiOH and NPH30-SiO-50PEGio, respectively. Since thermal analysis and infrared spectra confirmed CTAB extraction, the expected result would be relatively similar surface area and pore volume between both nanoparticles, which is not the case. Fortunately, such a result complements the confirmation of external functionalization. According to the pore distribution graph, also in Figure 23, there is a predominance of pores between 2 nm and 10 nm for NPH30-SiO-50PEGio characterizing it as a mesoporous material.
[0136] As técnicas^ de Ressonância Magnética Nuclear apresentam- se como ferramentas essenciais na elucidação estrutural dos compostos orgânicos e inorgânicos. Nesse sentido, a mesma torna- se necessária para complementação das informações obtidas através das técnicas de infravermelho e análise térmica, conforme analisado acima. Partindo-se do RMN 13C da NPH30-SiO-50PEGio Figura 24, notam-se os principais picos dos núcleos oriundos do anel aromático denominados de 1 a 4 em deslocamentos químicos de 130 ppm, 128,9 ppm, 127,4 ppm e 134,0 ppmErro! Indicador não definido., respectivamente, presentes em todas as etapas conforme esperado. A presença do PEG após a funcionalização pode ser confirmada observando-se seus principais picos em 28,0 ppm (carbono 6), 29,8 ppm (carbono 5), 59,8 ppm (carbonos 8 e 9) e 70,4 ppm (carbono 7). Este último está relacionado ao principal núcleo de carbono em virtude de sua característica mais evidente e seu valor de deslocamento químico significativamente distinto de qualquer outro núcleo no espectro, facilitando sua visualização e interpretação. Nuclear Magnetic Resonance techniques are essential tools in the structural elucidation of organic and inorganic compounds. In this sense, it becomes necessary to complement the information obtained through infrared and thermal analysis techniques, as analyzed above. From the 13 C NMR of NPH30-SiO-50PEG10 Figure 24 shows the main peaks of the aromatic ring nuclei denominated 1 to 4 in chemical shifts of 130 ppm, 128.9 ppm, 127.4 ppm and 134.0 ppmError! Indicator not defined., Respectively, present at all stages as expected. The presence of PEG after functionalization can be confirmed by observing its main peaks at 28.0 ppm (carbon 6), 29.8 ppm (carbon 5), 59.8 ppm (carbons 8 and 9) and 70.4 ppm. (carbon 7). The latter is related to the main carbon nucleus by virtue of its more evident characteristic and its chemical displacement value significantly different from any other nucleus in the spectrum, facilitating its visualization and interpretation.
[0137] O espectro de RMN 13C permite concluir a presença do polietileno glicol no veículo molecular. No entanto, a confirmação da condensação dos silanos contendo grupo fenil e PEG demandam a técnica de 29Si RMN. A Figura 30 mostra os resultados da referida técnica no contexto da NPH30-SÍOH e NPH30-SíO-50PEGio (antes e após a modificação superficial externa) . Em ambos os casos são observados os principais sítios do silício em -109 ppm (Q4) , -100 ppm (Q3), -92 ppm (Q2) , -77 ppm (T3) e -68 ppm (T2 ) Erro! Indicador não definido. . Tratando-se da NPH30-SÍOH, a condensação dos silanos contendo grupo fenil na superfície interna da nanoparticula pode ser confirmada visualizando-se os picos T3 e T2, relacionados às espécies de silício {Si-O) 3-Si-R e (Si-O) 2-Si (OH) -R, respectivamente, atribuídas exclusivamente ao único grupo funcional na referida situação. A soma das áreas T3 e T2, de 21,7%, correlaciona-se com a porcentagem de mol de silício do silano contendo grupo fenil, diferindo-se em 7% daquele valor encontrado através do TG. No entanto, a precisão da técnica de RMN torna seu resultado muito próximo da realidade. The 13 C NMR spectrum allows the conclusion of the polyethylene glycol in the molecular carrier. However, confirmation of the condensation of phenyl group and PEG containing silanes requires the 29 Si NMR technique. Figure 30 shows the results of said technique in the context of NPH30-SiOH and NPH30-SiO-50PEG10 (before and after external surface modification). In both cases the major silicon sites are observed at -109 ppm (Q4), -100 ppm (Q3), -92 ppm (Q2), -77 ppm (T3) and -68 ppm (T2) Error! Indicator not set. . In the case of NPH30-SiOH, the condensation of phenyl group-containing silanes on the inner surface of the nanoparticle can be confirmed by visualizing peaks T3 and T2, related to the silicon species (Si-O) 3-Si-R and (Si -O) 2-Si (OH) -R, respectively, attributed exclusively to the only functional group in that situation. The sum of areas T3 and T2, 21.7%, correlates with the percentage of mol of silane containing phenyl group, differing by 7% from that value found by TG. However, the accuracy of the NMR technique makes its result very close to reality.
[0138] Após a funcionalização, torna-se evidente a diminuição das áreas Q3 e Q2 somadas bem como o ligeiro aumento das áreas T3 e T2, confirmando a condensação do silano PEG na superfície externa. Analisando-se o comportamento dos sítios antes e depois da a f ncionalização, tem-se que a relação (Q4+Q3+Q2) / (T3+T2) OH = 3,61 sofre ligeira diminuição dada por (Q4+Q3+Q2) / (T3+T2) SOPEGIO = 3,39. A estimativa do número de mol de silício de silano PEG condensado não é eficiente via RMN, uma vez que o teor de funcionalização calculado através da termogravimetria (1,06%) enquadra-se no erro experimental da técnica de ressonância (1%) . After functionalization, the decrease of the summed Q3 and Q2 areas as well as the slight increase of the T3 and T2 areas, confirming the condensation of PEG silane on the outer surface, becomes evident. Analyzing the behavior of the sites before and after the functionalization, we have that the ratio (Q 4 + Q 3 + Q 2 ) / (T 3 + T 2 ) Si OH = 3.61 decreases slightly given by ( Q 4 + Q 3 + Q 2 ) / (T 3 + T 2 ) SOPEGIO = 3.39. Estimation of the mol number of condensed PEG silane silicon is not efficient via NMR since the functionalization content calculated by thermogravimetry (1.06%) fits the experimental error of the resonance technique (1%).
[0139] A microscopia eletrônica de transmissão da NPH30-SÍO- 50PEGio cuja imagem pode ser observada na Figura 31 exibe a morfologia obtida após a funcionalização com polietileno glicol. Conforme esperado, observam-se coloides uniformemente esféricos e porosos cujo diâmetro médio é de aproximadamente 63 nm, similar ao valor encontrado para as nanoparticulas anteriormente à modificação superficial. Tal resultado indica que a presença do polímero enxertado na superfície não interfere em suas dimensões espaciais possivelmente devido ao curto tamanho da cadeia polimérica e à baixa taxa de funcionalização (1%) , mantendo dessa maneira os aspectos estruturais originais da nanopartícula de partida. Esse resultado é interessante sob o ponto de vista da interação de nanoestruturas com biossistemas em conjunto com a interface de estabilidade coloidal, isto é, após o processo de modificação superficial é importante manter-se a integridade estrutural do objeto nanotecnológico . Transmission electron microscopy of the NPH30-SiO-50PEG10 whose image can be seen in Figure 31 shows the morphology obtained after functionalization with polyethylene glycol. As expected, uniformly spherical and porous colloids with an average diameter of approximately 63 nm are observed, similar to the value found for nanoparticles prior to surface modification. This result indicates that the presence of the polymer grafted on the surface does not interfere in their spatial dimensions possibly due to the shorter length of the polymer chain functionalization and low rate (1%), thus maintaining the unique structural aspects of starting nanoparticle. This result is interesting from the point of view of the interaction of nanostructures with biosystems together with the colloidal stability interface, that is, after the surface modification process it is important to maintain the structural integrity of the nanotechnological object.
Nanoparticulas modificadas superficialmente com polietileno glicol de cadeia longa  Surface-Modified Long Chain Polyethylene Glycol Nanoparticles
[0140] Nesse tópico serão discutidos os resultados obtidos na obtenção da nanopartícula modificada superficialmente com polietileno glicol de cadeia longa. Iniciando-se as caracterizações estruturais tem-se inicialmente o espectro vibracional no infravermelho da NPH30~SiO-10GPS-PEG40 exibido na Figura 32. Observa-se que, em todas as etapas o CTAB foi extraído, característica evidente ao observar-se a ausência de suas bandas típicas conforme comentado nos tópicos anteriores. Os espectros mostram que as bandas provenientes da sílica e dos grupos fenil estão presentes em todas as situações de acordo com o esperado. No nanocarreador contendo polietileno glicol de cadeia longa atenção deve ser focada inicialmente ao grupo glicidoxi. Seu espectro apresentado no topo da figura registra as seguintes bandas que, a principio deveriam ser notadas após sua funcionalização externa: 2943 cm-1 (estiramento assimétrico C-H dos grupos CH2) , 2839 cm"1 (estiramento simétrico C-H dos grupos CH2) , 1076 cm-1 (estiramento assimétrico C-O-C) , 815 cm-1 (estiramento simétrico C-O-C) , 1253 cm~l (estiramentos assimétricos no anel epóxi) e 910 cm-1 (estiramentos simétricos no anel epóxi) . [0140] In this topic we will discuss the results obtained in obtaining the surface-modified nanoparticle with long chain polyethylene glycol. Initiating the structural characterizations, we initially have the infrared vibrational spectrum of the NPH30 ~ SiO-10GPS-PEG40 shown in Figure 32. It is observed that in all the steps the CTAB was extracted, a characteristic evident when observing the absence of your typical bands as commented in the previous topics. The spectra show that bands from silica and phenyl groups are present in all situations as expected. At the nanocarrier containing long chain polyethylene glycol should be focused initially on the glycidoxy group. Their spectrum shown at the top of the figure records the following bands that, at first, should be noted after their external functionalization: 2943 cm -1 (asymmetric CH CH2 stretch), 2839 cm- 1 (CH2 CH symmetrical stretch), 1076 cm -1 (asymmetric COC stretch), 815 cm-1 (symmetrical COC stretch), 1253 cm-1 (asymmetrical stretches on the epoxy ring) and 910 cm-1 (symmetrical stretches on the epoxy ring).
[0141] A nanoparticula funcionalizada com o grupo GPS mostrou mudanças pouco perceptíveis no perfil de seu espetro. Nota-se um alargamento das bandas próximas a 1250 cm-1 e 1070 cm-1, típicas dos . estiramentos assimétricos no anel epóxi e estiramentos assimétricos C-O-C, respectivamente. As mudanças são mais claras comparadas com o espectro da NPH30-SiO-10PEGio, no qual a largura das bandas sofreu variações pouco pronunciadas. Após o acoplamento do PEG no anel de três membros nota-se aumento da largura da banda na região de 1100-1070 cm-1 onde observamos o estiramento assimétrico C-O-C do polietileno glicol. Embora haja evidências da funcionalização do grupo glicidoxi e do acoplamento do PEG no veículo molecular, faz-se necessário a utilização de técnicas como análise térmica e ressonância magnética nuclear para alcançar conclusões mais robustas. [0141] The nanoparticle functionalized with the GPS group showed barely noticeable changes in the profile of its spectrum. An enlargement of the bands close to 1250 cm -1 and 1070 cm -1 , typical of the. asymmetric stretches in the epoxy ring and asymmetric COC stretches, respectively. The changes are clearer compared to the spectrum of the NPH30-SiO-10PEGio, in which the bandwidth underwent slightly pronounced variations. After PEG coupling in the three-membered ring, an increase in bandwidth is observed in the region of 1100-1070 cm -1, where we observed the asymmetric COC stretching of polyethylene glycol. Although there is evidence of the functionalization of the glycidoxy group and the coupling of PEG in the molecular vehicle, it is necessary to use techniques such as thermal analysis and nuclear magnetic resonance to reach more robust conclusions.
[0142] A Figura 33 mostra as curvas TG e DTA da NPH30-SÍO-10GPS- PEG40 evidenciando a complexidade de eventos em virtude da presença de um componente intermediário, o grupo glicidoxi, cuja função é condensar-se na superfície externa da sílica e atuar como suporte para inserir o polietileno glicol nessa região. As curvas TG e DTA das nanopartículas de partida apresentam os eventos de liberação dos surfactantes e grupos fenil nessa ordem de ocorrência, conforme discutido no item 3.1. Os picos do DTA da NPH30-CTAB-SÍO-1 OGPS mostram um evento significativo em 300 °C, referente à liberação simultânea do CTAB e GPS. Nas respectivas curvas TG o inicio e fim da decomposição da função glicidoxi são observados em 281 °C e 329 °C, respectivamente. Após o acoplamento do PEG no sistema, é observada mudança no perfil da curva TG do veiculo molecular, indicando o inicio de decomposição do polímero em 216°C e término em 460 °C. Removendo-se o molde orgânico, observa-se a curva TG da NPH30-SÍO-10GPS-PEG40 cujo perfil é quase semelhante à NPH30-CTAB- SÍO-IOGPS-PEG40 e a diferença de massa entre ambos após 900°C é de apenas 1%, referindo-se apenas ao surfactante. Pode-se afirmar então que, no processo de funcionalização do grupo glicidoxi, acoplamento do PEG e remoção do molde orgânico, - compreendendo 3 etapas em solução -, moléculas de CTAB escaparam aleatoriamente dos poros da nanopartícula de modo que na etapa de extraçâo a quantidade de molde a ser eliminado, via tratamento com solução etanólica de HC1, já era pequena, gerando um perfil semelhante entre ambas as curvas comentadas. No DTA o referido fenómeno é evidente, visto que a relação de altura entre os picos presentes em 300°C e 577°C, e 256°C e 577°C, provenientes dos nanoacarreadores antes e após a eliminação, respectivamente, é a mesma . Figure 33 shows the TG and DTA curves of NPH30-SiO-10GPS-PEG40 showing the complexity of events due to the presence of an intermediate component, the glycidoxy group, whose function is to condense on the external surface of the silica and act as a support for inserting polyethylene glycol in this region. The starting nanoparticle TG and DTA curves present the release events of surfactants and phenyl groups in this order of occurrence, as shown in discussed in item 3.1. The NPH30-CTAB-SIO-1 OGPS DTA peaks show a significant event at 300 ° C related to simultaneous release of CTAB and GPS. In the respective TG curves the beginning and end of the glycidoxy function decomposition are observed at 281 ° C and 329 ° C, respectively. After coupling PEG into the system, a change in the molecular vehicle TG curve profile is observed, indicating the beginning of polymer decomposition at 216 ° C and termination at 460 ° C. Removing the organic mold shows the NPH30-SiO-10GPS-PEG40 TG curve whose profile is almost similar to the NPH30-CTAB-Siio-IOGPS-PEG40 and the mass difference between both after 900 ° C is only 1%, referring only to surfactant. It can then be said that in the process of glycidoxy group functionalization, PEG coupling and removal of the organic mold - comprising 3 solution steps - CTAB molecules randomly escaped from the nanoparticle pores so that in the extraction step the amount In order to be eliminated by treatment with ethanolic HCl solution, it was already small, generating a similar profile between both commented curves. In the DTA, this phenomenon is evident, since the height ratio between the peaks present at 300 ° C and 577 ° C, and 256 ° C and 577 ° C from the nano-carriers before and after elimination, respectively, is the same. .
[0143] Levando-se em consideração as alterações nos padrões de comportamento das curvas ao acompanhar-se a produção em cada etapa, torna-se possível confirmar a presença do PEG de cadeia longa no veículo molecular, fato que ainda não era precisamente evidente apenas com o uso da técnica de espectroscopia infravermelho. No entanto, não é possível concluir ainda a ocorrência de ligação covalente entre o grupo glicidoxi e PEG, sendo necessária a avaliação através do RMN. [0144] A NPH30-SiO-10GPS-PEG4o foi submetida à análise de adsorção-dessorção de nitrogénio e seus resultados encontram-se na Figura 34. É notória uma significativa semelhança entre o perfil da isoterma da referida nanoparticula com a NPH30-SÍOH, ambas referentes ao tipo IV com ligeira histerese do tipo H3 segundo a classificação da IUPAC. Tal resultado propõe uma estrutura mesoporosa complexa mantida antes e após a funcionalização . Taking into account the changes in the behavioral patterns of the curves as production is followed at each step, it is possible to confirm the presence of long chain PEG in the molecular vehicle, a fact that was not yet precisely evident. using the infrared spectroscopy technique. However, it is not yet possible to conclude the occurrence of covalent bonding between the glycidoxy group and PEG, and the evaluation by NMR is necessary. [0144] The NPH30 10GPS-PEG-SiO 4 was subjected to the adsorption-desorption of nitrogen and its analysis results are shown in Figure 34. It is evident a significant similarity between the profile of the isotherm of said nanoparticle with NPH30- SiOH, both referring to type IV with mild hysteresis of type H3 according to the IUPAC classification. This result proposes a complex mesoporous structure maintained before and after functionalization.
[0145] As áreas superficiais da NPH30-SÍOH e NPH30-SiO-10GPS-PEG4o calculadas pelo método BET são 898 m2/g e 760 m2/g, respectivamente. Os valores de volume total de poros calculados pelo método BJH são, respectivamente, 2,2 cm3/g e 1,5 cm3/g. Estes últimos resultados sugerem a possível oclusão dos poros em virtude da funcionalização com o silano GPS seguida do acoplamento do PEG, contribuindo para a diminuição do volume total de poros - vale salientar que poros ocluídos impedem fisicamente a adsorção do nitrogénio nas cavidades mais internas da nanoparticula contribuindo para a sorção de menores quantidades de gás e, consequentemente, menor volume vinculado. A diminuição da área superficial em função da pós-rhodificação reflete a mesma conclusão em relação ao resultado do volume total de poros. The surface areas of NPH30-SiOH and NPH30-SiO-10GPS-PEG 4 o calculated by the BET method are 898 m 2 / g and 760 m 2 / g, respectively. The total pore volume values calculated by the BJH method are respectively 2,2 cm 3 / g and 1,5 cm 3 / g. These latest results suggest the possible pore occlusion due to GPS silane functionalization followed by PEG coupling, contributing to the reduction of the total pore volume - it is worth noting that occluded pores physically prevent nitrogen adsorption in the innermost cavities of the nanoparticle contributing to the sorption of smaller quantities of gas and, consequently, lower bound volume. The decrease in surface area as a function of post-rhodification reflects the same conclusion regarding the total pore volume result.
[0146] Anâlisando-se o gráfico de distribuição de poros da nanoparticula, observa-se a predominância espacial de cavidades entre 2 nm e 10 nm corroborando para a conclusão da complexidade do veículo molecular no contexto da química de superfície.  By analyzing the pore distribution graph of the nanoparticle, the spatial predominance of cavities between 2 nm and 10 nm can be corroborated to the conclusion of the molecular vehicle complexity in the context of surface chemistry.
[0147] A Figura 35 apresenta o RMN de carbono da NPH30-SÍO-10GPS- PEG40, bem como as nanopartículas intermediária e de partida. No espectro da NPH30-SÍOH os 4 picos já comentados são provenientes dos anéis aromáticos como sendo a única entidade orgânica presente antes da funcionalização . Condensando-se o grupo glicidoxi, alterações no espectro tornam-se evidentes. Analisando-se a NPH30- SiO-lOGPS, tem-se os 4 picos do grupo fenil já estudados; três núcleos referentes ao carbono 11 (8,2 ppm), 12 (22,7 ppm) e 13 (71,9 ppm) provenientes do grupo propil da função glicidoxi; dois núcleos referentes ao carbono 16 do grupo epoxi (44,7 ppm) e ao carbono 14 adjacente ao referido anel de três membros (70,8 ppm) . Teoricamente o pico do carbono 15, presente no grupo epóxi, deveria aparecer em 51,4 ppm, o que não é facilmente observável. Tal informação gera discussões no que diz respeito à possibilidade de abertura do anel anteriormente ao acoplamento do PEG, o que é confirmado observando-se no mesmo espectro o pico do carbono 16' . Na abertura do anel, forma-se um diol (observe o grupo GPS Aberto na Figura 11) que altera os deslocamentos químicos dos carbonos 15 e 16, agora denominados 15' e 16' para diferenciá-los e identificá- los no espectro. Sabendo-se que o pico do carbono 16 em 44,7 ppm é pouco evidente, aquele referente ao núcleo 15 praticamente não aparece, em 63,7 ppm e 70,7 ppm, têm-se picos referentes aos átomos 16' e 15', respectivamente, e os dois últimos citados não deveriam estar presentes em tal espectro. Pode-se, portanto, concluir que a NPH30-SÍO-10GPS possui em . sua estrutura poucos grupos glicidoxi fechados e razoáveis quantidades dessa função apresentando o anel de 3 membros aberto, impossibilitando-o de acoplar ao PEG40. No espectro da NPH30-SÍO-10GPS-PEG40 ocorre a diminuição do pico do carbono 16 que, nesse espectro, passa a ser designado pelo número 17 em virtude da sua mudança de deslocamento químico para 71,2 ppm. Nessa região, sua identificação é dificultada em virtude da sobreposição com o pico do átomo 14. Entretanto, é evidente o aumento da intensidade do pico presente em 60,1 ppm, provenientes dos núcleos de carbono da cadeia do polietileno glicol, confirmando sua presença. 0 acoplamento do PEG engendrado após a reação química superficial entre o anel epóxi e o ácido carboxílíco do polímero pode ser confirmado, salvo melhor juízo, pela presença de um pico 226 . ppm (núcleo 18) referente ao carbono éster gerado após a referida transformação química. Figure 35 shows the carbon NMR of NPH30-SiO-10GPS-PEG40, as well as the intermediate and starting nanoparticles. In the NPH30-SiOH spectrum the 4 peaks already mentioned are from the aromatic rings as the only organic entity present before functionalization. By condensing the glycidoxy group, changes in the spectrum become evident. Analyzing the NPH30- SiO-lOGPS, we have the 4 peaks of the phenyl group already studied; three carbon-related nuclei 11 (8.2 ppm), 12 (22.7 ppm) and 13 (71.9 ppm) from the propyl group of the glycidoxy function; two nuclei referring to carbon 16 of the epoxy group (44.7 ppm) and carbon 14 adjacent to said three-membered ring (70.8 ppm). Theoretically, the carbon 15 peak present in the epoxy group should appear at 51.4 ppm, which is not easily observed. Such information generates discussions regarding the possibility of opening the ring prior to the PEG coupling, which is confirmed by observing in the same spectrum the 16 'carbon peak. At the opening of the ring, a diol is formed (see Open GPS group in Figure 11) which alters the chemical offsets of carbons 15 and 16, now called 15 'and 16' to differentiate and identify them in the spectrum. Knowing that the peak of carbon 16 at 44.7 ppm is not very evident, the one regarding nucleus 15 hardly appears, at 63.7 ppm and 70.7 ppm, there are peaks referring to atoms 16 'and 15' respectively, and the last two cited should not be present in such a spectrum. It can therefore be concluded that the NPH30-SIO-10GPS has in. its structure few closed glycidoxy groups and reasonable amounts of this function presenting the open 3-membered ring, making it unable to couple to PEG40. In the spectrum of NPH30-SiO-10GPS-PEG40 there is a reduction in carbon peak 16, which in this spectrum is renumbered 17 due to its chemical shift to 71.2 ppm. In this region, its identification is difficult due to the overlap with the peak of atom 14. However, it is evident the increase of the peak intensity present in 60.1 ppm, coming from the carbon nuclei of the polyethylene glycol chain, confirming its presence. Coupling of PEG engendered after surface chemical reaction between epoxy ring and polymer carboxylic acid can be confirmed, except for the best of judgment, by the presence of a peak 226. ppm (core 18) refers to the carbon ester generated after said chemical transformation.
[0148] Na Figura 36 estão apresentados os espectros de RMN de silício na NPH30-SÍOH e NPH30-SÍO-10GPS . Deve ser destacado que a estrutura da sílica antes e após o acoplamento do PEG40 não abrange variações, de áreas entre os sítios de silício vigentes, uma vez que a reação química ocorre entre o ácido carboxílico do polímero e o grupo epóxi da função GPS, isto é: os grupos silanóis não são envolvidos, dispensando a necessidade de caracterização da NPH30- SÍO-IOGPS-PEG40 por RMN 29Si, que apresentaria o mesmo perfil da NPH30-SÍO-10GPS . Analisando-se a figura, são típicos os sítios do silício em seus respectivos deslocamentos químicos, conforme comentando anteriormente. Analisando-se as relações ∑Qn/∑Tn, tem- se (Q4+Q3+Q2) / (T3+T2) SiOH = 3,61 e (Q4+Q3+Q2) / (T3+T2 ) PEG40 = 3,26, indicando diminuição da relação e, portanto, aumento das áreas referentes aos sítios do silano condensado. In Figure 36 are shown the silicon NMR spectra on NPH30-SiOH and NPH30-SiO-10GPS. It should be noted that the silica structure before and after PEG40 coupling does not cover variations of areas between existing silicon sites, since the chemical reaction occurs between the polymer carboxylic acid and the epoxy group of the GPS function, ie is: silanol groups are not involved, eliminating the need for characterization of NPH30-SiO-IOGPS-PEG40 by 29 Si NMR, which would have the same profile as NPH30-SiO-10GPS. Analyzing the figure, silicon sites are typical in their respective chemical displacements, as commented earlier. Analyzing the relationship ΣQ n / n ΣT, it has been (Q2 + Q3 + Q4) / (T2 + T3) and SiOH = 3.61 (Q2 + Q3 + Q4) / (T2 + T3) = PEG40 3,26, indicating a decrease in the ratio and, therefore, an increase in the areas referring to the condensed silane sites.
[0149] A Tabela 1 exibe os tamanhos de partícula e potencial zeta de cada veículo molecular abrangido na presente invenção. Os índices de polidispersividade (IPD) aceitáveis para um sistema satisfatoriamente monodisperso devem abranger valores menores do que 0,4, ô que ocorreu em todas as situações . apresentadas . Observa- se quê a modificação superficial não altera significativamente o tamanho médio dos colóides (conforme comentado anteriormente) . As cargas superficiais apresentaram diferenças interessantes do ponto de vista de modificação superficial. Sabendo-se que a superfície da NPH30-SÍOH, assim como qualquer nanoestruturua de sílica em meio básico apresenta cargas negativas, espera-se que após a funcionalização com PEG (neutro) haja uma tendência à neutralidade na superfície muito embora tais parâmetros não sejam confiáveis para prever o referido fenómeno de superfície, visto que nesse processo tem-se uma distribuição gaussiana de cargas e tamanhos. Após a funcionalização da NPH30-SÍOH com PEGio em quantidades equivalente a 10%, 25% e 50% mol-Si sua carga superficial baixou de -20,5 ± 5,80 mV para -13,5 ± 5,6 mV, -5,4 + 5, 6 mV e -8,81 ± 5,41 mV, respectivamente, um indicativo qualitativo, porém, essencial para complementaridade das caracterizações estruturais. Tratando-se da modificação superficial com PEG40, a carga inicial sofreu diminuição para para -5,98 ± 4,66 mV. Table 1 shows the particle sizes and zeta potential of each molecular vehicle encompassed by the present invention. Acceptable polydispersity indices (IPD) for a satisfactorily monodisperse system should be less than 0.4, which occurred in all situations. presented. It is observed that surface modification does not significantly alter the average size of colloids (as previously mentioned). Surface loads showed interesting differences from the point of view of surface modification. Knowing that the surface of NPH30-SiOH, as well as any silica nanostructures in basic medium has negative charges, it is expected that after PEG (neutral) functionalization there will be a tendency to surface neutrality even though such parameters are unreliable. to predict this surface phenomenon, since in this process there is a Gaussian distribution of loads and sizes. After the functionalization of NPH30-SiOH with PEG10 in amounts equivalent to 10%, 25% and 50% mol-Si its surface load decreased from -20.5 ± 5.80 mV to -13.5 ± 5.6 mV, - 5.4 + 5.6 mV and -8.81 ± 5.41 mV, respectively, a qualitative indicator, but essential for the complementarity of structural characterizations. For surface modification with PEG40, the initial load decreased to -5.98 ± 4.66 mV.
Tabela 1: Tamanho de partícula e potencial zeta das nanopartículas Table 1: Particle Size and Zeta Potential of Nanoparticles
Carga Superficial  Surface Load
Nãnõpartícula Dimensão (nm) (mV)  Non-particle Size (nm) (mV)
Tamanho Potencial Desvio  Potential Size Deviation
Médio IPD Zeta Padrão  Medium IPD Zeta Standard
NPH30-SÍOH 104, 6 0,136 -20, 5 5, 8  NPH30-SiOH 104.6 0.116 -20.5 5.5
NPH30-SiO-10PEGio 116, 1 0,240 -13,5 5, 6 NPH30-SiO-10PEG10 116, 1 0.240 -13.5 5, 6
NPH30-SiO-25PEGio 109,3 0,104 -5,4 7,3 NPH30-SiO-25PEG10 109.3 0.104 -5.4 7.3
NPH30-SiO-50PEGio 126, 6 0,240 -8,8 5,4 NPH30-SiO-50PEG10 126.6 0.240 -8.8 5.4
NPH30-SiO-1OGPS- NPH30-SiO-1OGPS-
PEG40 146, 5 0,263 -6, 0 4,7 PEG40 146.5 0.263 -6.0 4.7
Estudos de Estabilidade Coloidal Colloidal Stability Studies
[0150] O conjunto de caracterizações estruturais confirmou a obtenção de todas as nanopartículas bem como as funcionalizações nas superfícies internas (fenil) e externas (PEG) . Nesse contexto, foi possível comprovar, também, a produção de nanopartículas detendo uma complexidade porosa na qual a significativa variedade de tamanhos foi obtida, refletindo a textura irregular desejada. Os materiais mostraram amplas áreas superficiais, importante no estudo de interação de nanoestruturas com biossistemas . [0150] The set of structural characterizations confirmed the achievement of all nanoparticles as well as the functionalizations on the internal (phenyl) and external (PEG) surfaces. In this context, it was also possible to prove the production of nanoparticles having a porous complexity in which the significant variety size was obtained, reflecting the desired uneven texture. The materials showed large surface areas, important in the study of interaction of nanostructures with biosystems.
[0151] Embora elucidadas, as nanoparticulas necessitam ser submetidas ao estudo de estabilidade coloidal no intuito de avaliar a influência do PEG na aquisição dessa nova propriedade fisico- quimica interessante do ponto de vista biológico. O gráfico apresentado- na Figura 37 mostra o aspecto da estabilidade coloidal (em PBS na concentração de 250 pg/mL) de cada nanoparticula sintetizada na presente invenção. Na ausência de rotação tomou-se como parâmetro a presença de 100% de cada nanoparticula no sobrenadante .  Although elucidated, nanoparticles need to be subjected to the study of colloidal stability in order to evaluate the influence of PEG on the acquisition of this new biologically interesting physicochemical property. The graph shown in Figure 37 shows the appearance of colloidal stability (in PBS at 250 pg / ml concentration) of each nanoparticle synthesized in the present invention. In the absence of rotation, the presence of 100% of each nanoparticle in the supernatant was taken as a parameter.
[0152] De acordo com o gráfico, observa-se a instabilidade da NPH30-SÍOH em toda a faixa de rotações da centrífuga, uma vez que a porcentagem dessa nanoparticula no sobrenadante em todo o intervalo estudado foi próxima a 0. Á medida que o teor de funcionalização com PEG de cadeira curta varia de 10% mol-Si para 50% mol-Si observa-se aumento da estabilidade coloidal na rotação de 94 rcf, isto é, a NPH30-SiO-50PEGio detém maior porcentagem de nanoparticulas suspensas em relação às demais, confirmando a relação direta entre a taxa de funcionalização do silano PEGio e a característica estável do coloide. Nessa situação a NPH30-SÍO- IOGPS-PEG40 torna-se mais estável comparada com a NPH30-SiO-10PEGio e mais instável em relação às demais. Tal resultado indica que no teor de 10% de funcionalização a nanoparticula detendo PEG de cadeia mais longa apresenta maior estabilidade coloidal. A partir da rotação de 2348 rcf todas as nanoparticulas exibiram comportamentos instáveis conforme esperado, uma vez que a força centrífuga atuante nessa situação é suficiente para gerar a coalescência. A influência do estado de agregação das nanoparticulas em função do tempo na hemólise [0152] According to the graph, the instability of NPH30-SiOH is observed throughout the centrifuge's rotational range, since the percentage of this nanoparticle in the supernatant over the entire studied range was close to 0. As the Short-chair PEG functionalization content ranges from 10% mol-Si to 50% mol-Si. An increased colloidal stability at 94 rcf is observed, ie, the NPH30-SiO-50PEGio has a higher percentage of nanoparticles suspended in relation to the others, confirming the direct relationship between the functionalization rate of PEGio silane and the stable colloidal characteristic. In this situation NPH30-SiO-IOGPS-PEG40 becomes more stable compared to NPH30-SiO-10PEGio and more unstable compared to the others. This result indicates that in the 10% functionalization content the nanoparticle holding longer chain PEG exhibits greater colloidal stability. From the rotation of 2348 rcf all nanoparticles exhibited unstable behavior as expected, since the centrifugal force acting in this situation is sufficient to generate coalescence. The influence of nanoparticle aggregation state as a function of time in hemolysis
[0153] 0 universo de nanoparticulas demanda a avaliação do seu comportamento coloidal em diferentes meios de dispersão desde aquele no qual o coloide é sintetizado (etanol, água deionizada, entre outros) até o fluido biológico onde será aplicado, como o PBS . Nesse contexto, avaliou-se o comportamento das nanoparticulas na referida solução salina com o objetivo de correlacionar a possibilidade de fenómenos de agregação supostamente associados a diferentes efeitos hemoliticos igualmente possíveis.  [0153] The universe of nanoparticles demands the evaluation of its colloidal behavior in different dispersion media from the one in which the colloid is synthesized (ethanol, deionized water, among others) to the biological fluid where it will be applied, such as PBS. In this context, the behavior of nanoparticles in this saline solution was evaluated in order to correlate the possibility of aggregation phenomena supposedly associated with different equally possible hemolytic effects.
[0154] Anteriormente à aplicação das nanoparticulas no processo de interação com hemácias realizou-se um estudo do efeito de agregação em PBS durante o mesmo período de incubação com hemácias. 0 gráfico resultante é apresentado na Figura 38.  Prior to the application of nanoparticles in the process of red blood cell interaction, a study of the effect of aggregation on PBS was carried out during the same incubation period with red blood cells. The resulting graph is shown in Figure 38.
[0155] O tamanho médio das nanoparticulas em água deionizada é aproximadamente 100 nm de acordo com os dados comentados nos tópicos de caracterização. No entanto, quando adicionados em tampão PBS as nanoparticulas se agregam de modo que o tamanho médio de partícula atinge a ordem de grandeza de 1000 nm (observe o gráfico abaixo) . O referido comportamento é relacionado às fortes interações eletrostáticas entre as nanoparticulas negativamente carregadas e os eletrólitos presentes no tampão PBS. No intervalo temporal abrangido nesse estudo observou-se aumento do tamanho médio dos coloides em função do tempo em todas as situações, reforçando a gradativa interação entre o sistema coloidal e a solução tampão na qual está dispersa. Note que o índice de polidispersividade manteve-se próximo de 1 em praticamente todas as etapas, refletindo sistemas significativamente polidispersos .  The average size of nanoparticles in deionized water is approximately 100 nm according to the data commented on in the characterization topics. However, when added in PBS buffer the nanoparticles aggregate so that the average particle size reaches the order of 1000 nm (see graph below). This behavior is related to the strong electrostatic interactions between the negatively charged nanoparticles and the electrolytes present in the PBS buffer. In the time interval covered in this study, there was an increase in the average size of colloids as a function of time in all situations, reinforcing the gradual interaction between the colloidal system and the buffer solution in which it is dispersed. Note that the polydispersity index remained close to 1 in virtually all steps, reflecting significantly polydispersed systems.
[0156] Confirmando-se a gradativa tendência na agregação de nanoparticulas em PBS durante uma hora, faz-se necessário estudar a influência desse fenómeno na hemólise e, portanto, os resultados foram agrupados em dois tempos distintos para efeitos comparativos conforme explicado no procedimento experimental (nanoparticulas dispersas em PBS durante 1 minuto e 60 minutos anteriormente à adição dá solução estoque de hemácias) . Confirming the gradual trend in the aggregation of nanoparticles in PBS for one hour, it is necessary to study the influence of this phenomenon on hemolysis and therefore the results were grouped at two distinct times for comparative effects as explained in the experimental procedure (nanoparticles dispersed in PBS for 1 minute and 60 minutes prior to addition gives red cell stock solution).
[0157] Avaliando-se os resultados apresentados na Figura 39, tem- se que nanoparticulas em contato com o PBS durante um minuto geram maiores teores de hemólise em relação àquelas mantidas durante uma hora. Conhecendo-se a característica de agregação das nanoparticulas em função do tempo, torna-se trivial compreender que o aumento do tamanho das nanoparticulas minimiza a lise das células vermelhas do sangue no que se refere aos sistemas coloidais estudados. No fenómeno de agregação a área superficial total intrínseca de cada carreador diminui, isto é, o número de grupos silanóis diretamente acessíveis às hemácias decai e, consequentemente, as interações específicas nanopartícula-célula menos pronunciadas refletem menor efeito hemolítico pelas nanoparticulas substancialmente agregadas.  Evaluating the results shown in Figure 39, it is found that nanoparticles in contact with PBS for one minute generate higher hemolysis contents than those maintained for one hour. Knowing the aggregation characteristic of nanoparticles as a function of time, it is trivial to understand that increasing the size of nanoparticles minimizes the lysis of red blood cells with respect to the colloidal systems studied. In the aggregation phenomenon the total intrinsic surface area of each carrier decreases, that is, the number of silanol groups directly accessible to the red blood cells decays and, consequently, the less pronounced nanoparticle-cell specific interactions reflect less hemolytic effect by the substantially aggregated nanoparticles.
[0158] Analisando-se individualmente o grupo de nanoparticulas detendo polietileno glicol de cadeira curta, observa-se influência direta do aumento da taxa de funcionalização do silano PEGio com a minimização da hemólise, conforme observado em todas as situações anteriores e de acordo com os dados existentes na literatura mencionando a supressão da hemólise em função da presença do referido polímero. Diferentemente dos experimentos envolvendo a influência de uma área superficial em comum para todas as nanoparticulas nos aspectos hemolíticos, o único veículo molecular a apresentar hemólise em teor maior do que a nanopartícula de partida (isenta de funcionalização externa) foi a NPH30-SÍO- lOPEGio. As demais nanoparticulas apresentam efeitos hemolíticos pronunciados em taxas menores em relação à NPH30-SÍOH, conforme esperado. A nanoparticula detendo silano PEGio em taxa 10% mol-Si possui maior área superficial em relação ao coloide de partida e, conforme o RMN 13C os resultados mostram ainda que a quantidade de polietileno glicol funcionalizado é significativamente baixa comparada com aquelas detendo 25% e 50% mol-Si, isto é, a NPH30- SiOH e NPH30-SiO-10PEGio possuem significativas semelhanças estruturais, diferindo-se apenas pela ínfima presença de PEGio para aquela última. Certamente o fenómeno aqui presente é similar àquele discutido no tópico anterior, baseado na maior adsorção de proteínas do sangue pela NPH30-SÍOH em relação à NPH30-Si010PEGio, conferindo a esta última maior efeito hemolítico em virtude da maior presença de grupos SiO- desprotegidos- Em relação às demais nanopartículas pertencentes ao grupo do PEG de cadeia curta a diminuição do efeito hemolítico pode estar associada à diminuição das cargas negativas em virtude do polímero funcionalizado bem como sua cadeia polimérica possivelmente blindando os grupos silanóis remanescentes. Atenção especial à NPH30-SiO-50PEGio deve ser destacada: o referido veículo molecular detém a segunda menor área de superfície em relação às nanopartículas do somado ao elevado teor de PEG enxertado em sua superfície. Conforme comentado a presença do polímero, a menor área superficial bem como o efeito de agregação são fatores que contribuem diretamente para a minimização da hemólise no contexto das nanopartículas de sílica mesoporosa. 0 gráfico reflete tais premissas observando-se o ótimo desempenho da NPH30-SÍO-50PEGio com apenas 1,6% e 1,18% de hemólise nos tempos 1 minuto e 60 minutos, respectivamente. Analyzing individually the group of nanoparticles holding polyethylene glycol of short chair, it is observed direct influence of the increased functionalization rate of PEGio silane with the minimization of hemolysis, as observed in all previous situations and according to the literature data mentioning the suppression of hemolysis as a function of the presence of said polymer. Unlike experiments involving the influence of a common surface area for all nanoparticles on hemolytic aspects, the only molecular vehicle to have hemolysis higher than the starting nanoparticle (free of external functionalization) was NPH30-SYLOOPEGIO. The other nanoparticles have hemolytic effects. lower rates than NPH30-SiOH as expected. The 10% mol-Si-containing PEGio silane nanoparticle has a larger surface area compared to the starting colloid and, according to 13 C NMR, the results also show that the amount of functionalized polyethylene glycol is significantly lower compared to those with 25% and 50% mol-Si, that is, the NPH30-SiOH and NPH30-SiO-10PEGio have significant structural similarities, differing only by the tiny presence of PEGio for the latter. Certainly the phenomenon present here is similar to that discussed in the previous topic, based on the higher adsorption of blood proteins by NPH30-SiOH compared to NPH30-Si010PEGio, giving the latter a greater hemolytic effect due to the greater presence of unprotected SiO- Compared to other nanoparticles belonging to the short-chain PEG group, the decrease in hemolytic effect may be associated with the decrease in negative charges due to the functionalized polymer as well as its polymeric chain possibly shielding the remaining silanol groups. Special attention to NPH30-SiO-50PEGio should be highlighted: this molecular carrier has the second smallest surface area in relation to the nanoparticles of the summed to the high PEG content grafted to its surface. As noted for the presence of the polymer, the smaller surface area as well as the aggregating effect are factors that directly contribute to the minimization of hemolysis in the context of mesoporous silica nanoparticles. The graph reflects such assumptions by observing the optimal performance of the NPH30-SiO-50PEGio with only 1.6% and 1.18% hemolysis at times 1 minute and 60 minutes, respectively.
[0159] Observando-se finalmente a NPH30-SiO-10GPS-PEG0, seu efeito de agregação manteve-se ligeiramente constante em função do tempo, visto que as taxas de hemólise nos tempos de 1 minuto e 1 hora foram relativamente semelhantes e iguais a 4,9% e 4,6%, respectivamente. Embora não sejam notórias discrepâncias significativas entre os resultados, a funcionalização dessa última nanopàrticula mostrou resultados eficientes no sentido de provar influência direta do polietileno glicol de cadeia longa na hemólise. Nessa etapa do estudo o veiculo molecular citado mostrou eficiência comparável à NPH30-SiO-25PEGio, exceto pelo fato de que para este último a agregação em função do tempo reflete significativa diferença no efeito hemolítico. Finally, at NPH30-SiO-10GPS-PEG 0 , its aggregation effect remained slightly constant as a function of time, as hemolysis rates at 1 minute and 1 were relatively similar and equal to 4.9% and 4.6% respectively. Although significant discrepancies between the results are not noticeable, the functionalization of this last nanoparticle showed efficient results to prove direct influence of long chain polyethylene glycol on hemolysis. At this stage of the study the molecular vehicle mentioned showed efficiency comparable to NPH30-SiO-25PEGio, except that for the latter the aggregation as a function of time reflects significant difference in hemolytic effect.
[0160] Resgatando-se os resultados de caracterização da NPH30- SÍO-IOGPS- PEG40 via RMN 13C, havia uma questão a ser esclarecida a respeito da visualização de um pico supostamente oriundo do carbono 18 (carbono éster entre a ligação do grupo glicidoxi e a função carboxílica do HOOC-PEG40 ) · Supondo-se a inexistência dessa ligação, a interação do polímero com a nanopàrticula via interações eletrostáticas seria inviável, visto que o mesmo não detém sítios carregados para viabilizá-las. Dessa maneira, após a centrifugação da nanopàrticula, o PEG40 significativamente hidrofílico e presente no sobrenadante seria automaticamente descartado e o produto final seria constituído da nanopàrticula funcionalizada apenas com grupos glicidoxi. Conforme discutido anteriormente, o anel epóxi das referidas funções pode ser aberto formando um grupo diol que, assim como as funções silanóis, interagiria com as hemácias de maneira semelhante acarretando toxicidade e, portanto, adquirindo praticamente o mesmo comportamento da NPH30-SÍOH. Em todas as situações observadas até o momento o referido veículo molecular exibiu comportamento que direciona os resultados para a diminuição de hemólise, indicando indiretamente a presença do PEG40 em sua estrutura. Se este polímero está presente então necessariamente deveria estar ligado covalentemente à nanopàrticula e, portanto, o pico apresentado em seu espectro de RMN 13C é proveniente do carbono 18. Rescuing the characterization results of NPH30-SIO-IOGPS-PEG40 via 13 C-NMR, there was a question to be clarified regarding the visualization of a supposedly carbon-18 peak (carbon ester between the glycidoxy group bonding). and the carboxylic function of HOOC-PEG40) Assuming no such binding, the interaction of the polymer with the nanoparticle via electrostatic interactions would be unfeasible, as it does not have charged sites to make them viable. Thus, after centrifugation of the nanoparticle, the significantly hydrophilic PEG40 present in the supernatant would be automatically discarded and the final product would consist of the nanoparticle functionalized only with glycidoxy groups. As discussed earlier, the epoxy ring of said functions can be opened to form a diol group which, like silanol functions, would interact with red blood cells in a similar manner causing toxicity and thus acquiring substantially the same behavior as NPH30-SiOH. In all situations observed so far, this molecular vehicle exhibited behavior that directs the results to the reduction of hemolysis, indirectly indicating the presence of PEG40 in its structure. If this polymer is present then it should necessarily be covalently attached to the nanoparticle and therefore the peak in its 13 C NMR spectrum is from carbon 18.
[0161] Os exemplos a seguir referem-se ao Certificado de Adição, depositado sob o número BR 13 2015 030941 3, em 10 de dezembro de 2015, o qual reflete a melhoria alcançada do referido processo, mediante aperfeiçoamento das etapas de encapsulamento de fármaco hidrofóbico, às nanoparticulas de sílica peguiladas carreadoras de fármacos hidrofóbicos compreendendo o referido fármaco encapsulado, e seu uso em tratamentos antitumorais e anti- inflamatórios .  [0161] The following examples refer to the Certificate of Addition, filed under the number BR 13 2015 030941 3, on December 10, 2015, which reflects the improvement of this process by improving the drug encapsulation steps. hydrophobic to pegylated silica nanoparticles carrying hydrophobic drugs comprising said encapsulated drug, and their use in anti-tumor and anti-inflammatory treatments.
[0162] Em cada uma das suspensões de nanoparticulas de sílica NPH30-SÍOH, NPH30-10PEG500 (ou NPH30-SiO-10PEGio) , NPH30-50PEG5oo (ou NPH30-SiO-50PEGio) e NPH30-10PEG2ooo (ou NPH30-SiO-10PEG40) a 1 mg/mL (10 mg), foi adicionada 1 mg de curcumina. As misturas nanopartícula+curcumina foram submetidas à homogeneização ultra- sônica por 30 minutos. Após essa etapa os sistemas foram separados de duas maneiras: [0162] In each of the suspensions of silica nanoparticles NPH30-SiOH, NPH30-10PEG500 (or NPH30-SiO-10PEGio), oo NPH30-50PEG 5 (or NPH30-SiO-50PEGio) and 2 ooo NPH30-10PEG (or NPH30 -SiO-10PEG4 0) 1 mg / ml (10 mg) was added 1 mg of curcumin. The nanoparticle + curcumin mixtures were subjected to ultrasonic homogenization for 30 minutes. After this step the systems were separated in two ways:
1) Centrifugação das nanoparticulas em rotações de 0, 500, 1000 e 1500 rpm e coleta dos respectivos sobrenadantes para análise da concentração da curcumina através de espectroscopia UV-Vis;  1) Centrifugation of nanoparticles at 0, 500, 1000 and 1500 rpm and collection of the respective supernatants for analysis of curcumin concentration by UV-Vis spectroscopy;
2) Decantação das nanoparticulas durante período de 24 horas e coleta dos respectivos sobrenadantes para análise da concentração da curcumina através de espectroscopia UV-Vis.  2) Decantation of nanoparticles for 24 hours and collection of respective supernatants for analysis of curcumin concentration by UV-Vis spectroscopy.
[0163] Para o cálculo da concentração do fármaco em cada uma das situações foi elaborada a curva de calibração da curcumina em etanol em cinco concentrações conhecidas (1, 5, 10, 30 e 50 μg/mL) . Para cada concentração foi estimada a área sob a curva de absorção da curcumina na região entre 200 e 550 nm para aquisição do gráfico relacionando a área em função da concentração. [0164] Finalmente, para a determinação da concentração de curcumina encapsulada em cada uma das nanopartícuias de sílica peguiladas nas situações mencionadas acima, 1 mL do respectivo sobrenadante foi submetido à espectroscopia UV-Vis de modo que valor de área sob a curva, estimado semelhantemente à descrição no parágrafo acima, foi comparado com a curva de calibração e relacionado com a concentração, adquirindo-se, portanto, o valor de massa de fármaco por unidade de volume de suspensão. To calculate the drug concentration in each of the situations, the ethanol curcumin calibration curve was developed at five known concentrations (1, 5, 10, 30 and 50 μg / mL). For each concentration, the area under the curcumin absorption curve in the region between 200 and 550 nm was estimated for graph acquisition relating the area as a function of concentration. Finally, to determine the concentration of encapsulated curcumin in each of the pegylated silica nanoparticles in the above mentioned situations, 1 ml of the respective supernatant was subjected to UV-Vis spectroscopy so that area value under the curve similarly estimated As described in the paragraph above, it was compared to the calibration curve and concentration-related, thus acquiring the drug mass value per unit volume of suspension.
[0165] A Figura 40 exibe a curva de calibração da curcumina em etanol bem como a informação de cada espectro adquirido em cada uma das cinco concentrações conhecidas. De acordo com os resultados, a reta traçada nos cinco pontos é adequada para a estimação do cálculo de concentração de curcumina na faixa de concentração entre 1 e 50 μg/mL, uma vez que o valor de R2 = 0,99. A equação da reta é descrita como: Figure 40 shows the curcumin calibration curve in ethanol as well as the information for each spectrum acquired at each of the five known concentrations. According to the results, the line drawn at the five points is adequate to estimate the concentration calculation of curcumin in the concentration range between 1 and 50 μg / mL, since the value of R 2 = 0.99. The equation of the line is described as:
Concentração de curcumina (x) = [área sob a curva (y) - 22,9]/14,3  Curcumin concentration (x) = [area under the curve (y) - 22.9] / 14.3
[0166] A Figura 41 mostra o gráfico da concentração de curcumina nas nanopartículas de sílica peguiladas após cada uma das separações por centrifugação e decantação. Em todas as situações é notória a influência do PEG na eficiência de encapsulação de curcumina, uma vez que todas as nanopartículas peguiladas compreendem maior concentração do fármaco encapsulado em relação à nanopartícula não funcionalizada (NPH30-SÍOH) . Em todas situações é evidente que o aumento da quantidade de PEG na superfície externa aumenta a quantidade de curcumina encapsulada devido ao caráter hidrofílico da cadeia polímérica, atrelada ao aumento de solubilidade das nanopartículas de sílica peguiladas em água. Adicionalmente, é observado que em rotações acima de 1000 rpm e sob a condição de decantação, o aumento da cadeia polímérica (comparação entre a NPH30-10PEG5oo e NPH30-10PEG20oo) acarreta ligeira diminuição da quantidade de curcumina encapsulada possivelmente devido a efeitos estéricos predominantes na NPH30- I O PEG2000 em relação à NPH30-10PEGsoo · No entanto, a funcionalização com PEG2000 mostrou maior eficiência de encapsulação do fármaco comparado com a nanoparticula não funcionalizada (NPH30-SÍOH) , confirmando a importância do polietilenoglicol para maior eficiência do fármaco no interior da nanoparticula. Figure 41 shows the graph of curcumin concentration in the pegylated silica nanoparticles after each separation by centrifugation and decantation. In all situations, the influence of PEG on curcumin encapsulation efficiency is noticeable, since all pegylated nanoparticles comprise a higher concentration of encapsulated drug over non-functionalized nanoparticle (NPH30-SiOH). In all situations it is evident that increasing the amount of PEG on the outer surface increases the amount of encapsulated curcumin due to the hydrophilic character of the polymeric chain, coupled with the increased solubility of the pegylated silica nanoparticles in water. Additionally, it is observed that at speeds above 1000 rpm and under the condition of decantation, the increase of the polymer chain (comparison between NPH30-10PEG 5 oo and NPH30-10PEG 20 oo) causes slight decrease in the amount of encapsulated curcumin possibly due to predominant steric effects on NPH30-10 PEG2000 over NPH30-10PEGsoo · However, functionalization with PEG2000 showed higher encapsulation efficiency of the drug compared to non-functionalized nanoparticle (NPH30-SiOH) confirming the importance of polyethylene glycol for greater drug efficiency within the nanoparticle.
[0167] Para comparação do melhor método de separação das nanopartículas de sílica peguiladas compreendendo curcumina em seu interior e curcumina não encapsulada, foi estimada a concentração do fármaco presente em água (na ausência das nanopartículas de sílica) em todas as condições de centrifugação e na situação de decantação. Observando-se a Figura 41, é nítida a presença de curcumina em água em todas as forças de rotações estudadas (0 a 1500 rpm) . No entanto, a concentração de fármaco livre em água diminui com o aumento da força de rotação, tendendo a zero na situação de 1500 rpm na qual a concentração de curcumina é de apenas 1,6 μg/mL. Tal resultado indica que no sobrenadante das nanopartículas centrifugadas a 1500 rpm tem-se presentes nanopartículas de sílica compreendendo curcumina encapsulada e o referido fármaco possivelmente livre em pequena quantidade no ambiente aquoso.  For comparison of the best method for separating pegylated silica nanoparticles comprising curcumin and unencapsulated curcumin, the concentration of the drug present in water (in the absence of silica nanoparticles) was estimated at all centrifugation conditions and at decantation situation. Looking at Figure 41, the presence of curcumin in water at all the rotational forces studied (0 to 1500 rpm) is clear. However, the concentration of free drug in water decreases with increasing rotational force, tending to zero in the 1500 rpm situation where the concentration of curcumin is only 1.6 μg / mL. Such result indicates that in the supernatant of nanoparticles centrifuged at 1500 rpm there are silica nanoparticles comprising encapsulated curcumin and said drug possibly free in small amount in the aqueous environment.
[0168] Para otimização do método de separação foi realizado um processo de decantação das nanopartículas em um período de 24 horas. Nessa situação a quantidade de curcumina em água (na ausência das nanopartículas) é zero, tal como sugerido no gráfico da Figura 2. Portanto, no sobrenadante das nanopartículas de sílica decantadas durante 24horas tem-se possivelmente apenas os referidos nanocarreadores abrangendo o fármaco encapsulado, caracterizando a decantação como o melhor método de separação estudado. To optimize the separation method a decantation process of the nanoparticles was carried out over a period of 24 hours. In this situation the amount of curcumin in water (in the absence of nanoparticles) is zero, as suggested in the graph in Figure 2. Therefore, in the supernatant of silica nanoparticles decanted for 24 hours there is possibly only said nanocarriers covering the encapsulated drug. characterizing decantation as the best separation method studied.
[0169] Uma observação importante a ser ressaltada refere-se ao fato de que, ao ser adicionada às suspensões de nanoparticulas de sílica descritas, a curcumina encontra-se não apenas encapsulada nos nanocarreàdores, mas também possivelmente interagindo com a superfície externa dos veículos moleculares, isto é, o fármaco dito como encapsulado em todo contexto descrito acima pode, também, estar interagindo superficialmente através de interações específicas a serem confirmadas em trabalhos posteriores e em maior nível de detalhamento .  An important point to note is that, when added to the described silica nanoparticle suspensions, curcumin is not only encapsulated in nanocarriers, but also possibly interacting with the outer surface of molecular vehicles. that is, the drug referred to as encapsulated in any context described above may also be interacting superficially through specific interactions to be confirmed in further work and in greater detail.
[0170] A Figura 42 mostra a imagem das suspensões das nanoparticulas de sílica NPH30-SÍOH, NPH30-10PEG5oo, NPH30-50PEG50o e NPH30-10PEG'5OOO na. presença de curcumina e o referido fármaco adicionado em água na ausência dos veículos moleculares (H2O) após 24 horas de decantação e anteriormente à retirada do sobrenadante. A característica hidrofóbica do fármaco é evidente no sobrenadante transparente no frasco H2O caracterizando a problemática da insolubilidade dos fármacos hidrofóbicos no sangue (hidrofílico) enquanto que na presença das nanoparticulas de sílica os respectivos sobrenadantes de coloração amarela evidenciam a estabilidade do fármaco em suspensão mediante aplicação dos veículos moleculares. [0170] Figure 42 shows the image of the suspensions NPH30 SiOH-silica nanoparticles NPH30-10PEG 5 oo o NPH30-10PEG NPH30-50PEG 50 'in 5ooo. presence of curcumin and said drug added in water in the absence of molecular vehicles (H2O) after 24 hours of decantation and prior to removal of the supernatant. The hydrophobic characteristic of the drug is evident in the clear supernatant in the H2O bottle characterizing the problem of the insolubility of hydrophobic drugs in the blood (hydrophilic) whereas in the presence of silica nanoparticles their yellow colored supernatants show the stability of the suspended drug upon application of the drugs. molecular vehicles.
[0171] Finalmente, a presença do PEG na superfície externa dos coloides foi de fundamental importância para a melhor eficiência de encapsulação e/ou interação com a curcumina e caracteriza tais sistemas como potenciais candidatos à aplicação antitumoral, uma vez que o polietilenoglicol (hidrofílico) confere maiores tempos de circulação das nanoparticulas na corrente sanguínea, propriedade crucial para o alcance eficaz às células alvo.  Finally, the presence of PEG on the outer surface of the colloids was of fundamental importance for the best encapsulation efficiency and / or interaction with curcumin and characterizes such systems as potential candidates for antitumor application, since (hydrophilic) polyethylene glycol confers longer circulation times of nanoparticles in the bloodstream, a crucial property for reaching target cells effectively.

Claims

REIVINDICAÇÕES
1. Processo de obtenção de nanopartícuias de sílica peguiladas carreadoras de fármacos hidrofóbicos caracterizado por compreender as seguintes etapas:  Process for obtaining pegylated silica nanoparticles carrying hydrophobic drugs characterized by the following steps:
a) dissolução de surfactante entre 0,65 e 0,75 g, em catalisador de amónia em concentração entre 0,03 e 0,07 mol/L, e solvente de reação alcoólico em volumes entre 2,5 e 3,8 mL; b) agitação da solução obtida na etapa (a) em temperatura entre 40 e 80 °C; (a) dissolving surfactant between 0,65 and 0,75 g in ammonia catalyst at a concentration between 0,03 and 0,07 mol / L and an alcoholic reaction solvent in volumes between 2,5 and 3,8 mL; b) stirring the solution obtained in step (a) at a temperature between 40 and 80 ° C;
c) adição de precursor inorgânico de silício entre 1 e 3 mL em silano hidrofóbico; c) adding inorganic silicon precursor between 1 and 3 mL in hydrophobic silane;
d) adição gota a gota da solução obtida na etapa (c) na solução obtida na etapa (a) ; d) adding dropwise the solution obtained in step (c) to the solution obtained in step (a);
e) agitação da solução obtida na etapa (d) durante 120 minutos em temperaturas entre 40 e 80 °C; e) stirring the solution obtained in step (d) for 120 minutes at temperatures between 40 and 80 ° C;
el) adição de precursor inorgânico de silício, após 60 minutos de reação, em guantidades volumétricas entre 100 e 150 xL; e2) adição de precursor inorgânico de silício após 90 minutos de reação, em quantidades volumétricas entre 100 e 150 i ; f) Centrifugação por entre 40 e 80 minutos, entre 10.000 e 20.000 rpm; descarte do sobrenadante e redispersão em etanol; g) Funcionalização da superfície externa das nanopartículas de sílica; el) addition of inorganic silicon precursor after 60 minutes of reaction at volumetric quantities between 100 and 150 xL; e2) addition of inorganic silicon precursor after 90 minutes of reaction, in volumetric quantities between 100 and 150 i; f) Centrifugation for 40 to 80 minutes, between 10,000 and 20,000 rpm; discarding the supernatant and redispersing in ethanol; g) Functionalization of the external surface of silica nanoparticles;
h) Preparação de uma solução etanólica de HC1 em proporção volumétrica preferencial de 1:9 HC1: etanol; í) Adição das nanoparticulas compreendidas nas etapas gl .5 ou g2.12 na solução preparada na etapa h; aplicação de ultrassom em tempos entre 10 e 30 minutos, preferencialmente 15 minutos; j) Centrifugação da solução obtida na etapa (i) entre 40 e 80 minutos, preferencialmente 60 minutos, entre 10.000 e 20.000 rpm, preferencialmente 15.000; descarte do sobrenadante e redispersão em etanol; repetida pelo menos duas vezes; e estocagem até encapsulamento do fármaco hidrofóbico. h) Preparation of an ethanolic HCl solution in a preferred volume ratio of 1: 9 HCl: ethanol; (i) Addition of nanoparticles comprised in steps gl. 5 or g2.12 in the solution prepared in step h; ultrasound application at times between 10 and 30 minutes, preferably 15 minutes; j) Centrifuging the solution obtained in step (i) between 40 and 80 minutes, preferably 60 minutes, between 10,000 and 20,000 rpm, preferably 15,000; discarding the supernatant and redispersing in ethanol; repeated at least twice; and storage until encapsulation of the hydrophobic drug.
k) Suspensão das nanoparticulas obtidas na etapa (j) em solução aquosa (componente 1) em massas entre 5 e 15 mg, preferencialmente 10 mg, e em concentrações de até 1 mg/mL; e adição de 0,5 a 2 mg, preferencialmente 1 mg, de fármaco hidrofóbico {componente 2) ; k) Suspension of nanoparticles obtained in step (j) in aqueous solution (component 1) in masses between 5 and 15 mg, preferably 10 mg, and in concentrations of up to 1 mg / mL; and adding 0.5 to 2 mg, preferably 1 mg, of hydrophobic drug (component 2);
1) Mistura dos componentes compreendidos na etapa <k) por meios de homogeneização ultra-sônica em tempos entre 30 e 60 minutos ;  1) Mixing the components comprised in step <k) by means of ultrasonic homogenization at times between 30 and 60 minutes;
m) Separação das nanoparticulas de sílica carreadoras de fármacos hidrofóbicos compreendendo o dito fármaco encapsulado (produto) do fármaco hidrofóbico não encapsulado (componente 1) , por meios de separação; m) separating the silica nanoparticles carrying hydrophobic drugs comprising said encapsulated drug (product) from unencapsulated hydrophobic drug (component 1) by separation means;
n) Obtenção das nanoparticulas de sílica carreadoras de fármacos hidrofóbicos compreendendo o dito fármaco encapsulado. n) Obtaining silica nanoparticles carrying hydrophobic drugs comprising said encapsulated drug.
2. Processo, de acordo com a reivindicação 1, caracterizado pela dissolução de surfactante ser preferencialmente em 0,75 g, a concentração do catalisador de amónia ser preferencialmente 0,05 mol/L, e o volume de solvente de reação alcoólico ser preferencialmente 3,2 mL; Process according to Claim 1, characterized in that the surfactant dissolution is preferably 0.75 g, the ammonia catalyst concentration is preferably 0.05 mol / l, and the volume of alcoholic reaction solvent is preferably 3. 2 mL;
3. Processo, de acordo com a reivindicação 1, caracterizado pela agitação da solução na etapa (b) ser em temperatura preferencial de 60 °C. Process according to Claim 1, characterized in that the stirring of the solution in step (b) is at a preferential temperature of 60 ° C.
4. Processo, de acordo com a reivindicação 1, caracte izado pela adição de precursor inorgânico de silício ser de preferencialmente 1,5 mL em silano hidrofobico.  Process according to Claim 1, characterized in that the addition of inorganic silicon precursor is preferably 1.5 ml in hydrophobic silane.
5. Processo, de acordo com a reivindicação 1, caracterizado pela agitação na etapa (e) ser em temperatura preferencial de 60 °C.  Process according to Claim 1, characterized in that the stirring in step (e) is preferably 60 ° C.
6. Processo, de acordo com a reivindicação 1, caracterizado pela adição de precursor inorgânico, após 60 minutos e 90 minutos de reação, ser em quantidade volumétrica preferencial de 124 \iL.  Process according to Claim 1, characterized in that the addition of inorganic precursor, after 60 minutes and 90 minutes of reaction, is in a preferred volume of 124 µl.
7. Processo, de acordo com a reivindicação 1, caracterizado pela centrifugação da etapa (f) ser preferencialmente por 60 minutos a 15.000 rpm.  Process according to Claim 1, characterized in that the centrifugation of step (f) is preferably for 60 minutes at 15,000 rpm.
8. Processo, de acordo com a reivindicação 1, caracterizado pela etapa (g) poder compreender as seguintes etapas:  Process according to Claim 1, characterized in that step (g) may comprise the following steps:
gl.l) dispersão de nanopartículas de partida em massas entregl.l) dispersion of starting nanoparticles in masses between
50 e 500 mg, preferencialmente 300 mg, em solvente etanol em volumes entre 20 e 60 mL, preferencialmente 40 mL; agitação da solução entre 40 e 90 minutos, preferencialmente 75 minutos em temperatura entre 40 e 80 °Cr preferencialmente 60 °C; 50 and 500 mg, preferably 300 mg, in ethanol solvent in volumes between 20 and 60 mL, preferably 40 mL; stirring the solution between 40 and 90 minutes, preferably 75 minutes under temperature between 40 and 80 ° C preferably 60 ° C r;
gl.2) Adição de silano-PEG na solução da etapa gl.l; gl.2) Addition of silane-PEG to the solution of step gl.l;
gl.3) Agitação da solução da etapa gl.2 entre 10 e 20 horas, preferencialmente 13 horas; gl.3) Stirring the solution from step gl.2 between 10 and 20 hours, preferably 13 hours;
gl.4) Centrifugação da solução compreendida na etapa gl.3 entre 40 e 80 minutos, preferencialmente 60 minutos, entre 10.000 e gl.4) Centrifugation of the solution comprised in step gl.3 between 40 and 80 minutes, preferably 60 minutes, between 10,000 and
20.000 rpm, preferencialmente 15.000; descarte do sobrenadante e rédispersão em etanol; repetida pelo menos duas vezes. 20,000 rpm, preferably 15,000; discarding supernatant and re-dispersing in ethanol; repeated at least twice.
9. Processo, de acordo com as reivindicações 1 e 8, caracterizado pela etapa (g) poder compreender, alternativamente, as seguintes etapas: Process according to Claims 1 and 8, characterized in that the step (g) may alternatively comprise the following steps:
g2.1) dispersão de■ nanopartícuias de partida em massas entre 50 e 500 mg, preferencialmente 300 mg, em solvente etanol em volumes entre 40 e 80 mL, preferencialmente 62 mL e agitação da solução entre 20 e 60 minutos, preferencialmente 30 minutos em temperatura entre 60 é 90 °C, preferencialmente 85 °C; g2.1) dispersion of ■ starting nanoparticles in masses between 50 and 500 mg, preferably 300 mg, in ethanol solvent in volumes between 40 and 80 mL, preferably 62 mL and stirring of the solution between 20 and 60 minutes, preferably 30 minutes in temperature between 60 ° C is 90 ° C, preferably 85 ° C;
g2.2) Adição de um silano intermediário com grupos funcionais reativos na solução obtida; g2.2) Addition of an intermediate silane with reactive functional groups to the obtained solution;
g2.3) Agitação da solução entre 10 e 20 horas, preferencialmente 12 horas em atmosfera de gás inerte; g2.3) Stirring the solution between 10 and 20 hours, preferably 12 hours in an inert gas atmosphere;
g2.4) Centrifugação da solução entre 40 e 80 minutos, preferencialmente 60 minutos, entre 10.000 e 20.000 rpm, preferencialmente 15.000 e descarte do sobrenadante e rédispersão em etanol; repetida pelo menos duas vezes; g2.4) Centrifuging the solution between 40 and 80 minutes, preferably 60 minutes, between 10,000 and 20,000 rpm, preferably 15,000 and discarding the supernatant and re-dispersing in ethanol; repeated at least twice;
g2.5) Dispersão das nanopartícuias intermediárias obtidas na etapa g2. em massas entre 50 e 500 mg, preferencialmente 150 mg, em solvente etanol em volumes entre 10 e 30 mL, preferencialmente 20 mL e agitação da solução entre 15 e 45 minutos, preferencialmente 30 minutos em temperatura de 95 °C, preferencialmente; g2.5) Dispersion of intermediate nanoparticles obtained in step g2. in masses between 50 and 500 mg, preferably 150 mg, in ethanol solvent in volumes between 10 and 30 mL, preferably 20 mL and stirring of the solution between 15 and 45 minutes, preferably 30 minutes at a temperature of 95 ° C, preferably;
g2.6) Adição de uma base forte na solução obtida; g2.6) Addition of a strong base to the obtained solution;
g2.7) Dissolução de PEG-COOH (PEG com ácido carboxílico terminal) compreendendo massa entre 5 e 70 mg, preferencialmente 15,1 mg em solvente etanol em volumes entre 500 e 1500 μΐι, preferencialmente 750 yiL; g2.7) Dissolution of PEG-COOH (PEG with terminal carboxylic acid) comprising mass between 5 and 70 mg, preferably 15.1 mg in ethanol solvent in volumes between 500 and 1500 μΐι, preferably 750 æL;
g2.8) Adição da solução de PEG-COOH da etapa g2.7 na solução obtida na etapa g2.6 para reação de acoplamento entre os grupos funcionais reativos da nanoparticula intermediária com grupos funcionais reativos e o ácido carboxilico do PEG-COOH; g2.8) Addition of the PEG-COOH solution from step g2.7 to the solution obtained in step g2.6 for coupling reaction between reactive functional groups of the intermediate nanoparticle with reactive functional groups and the carboxylic acid of PEG-COOH;
g2.9) Agitação da solução obtida na etapa g2.8 entre 10 e 20 horas, preferencialmente 12 horas em temperatura preferencial de 95 °C; g2.9) Stirring the solution obtained in step g2.8 between 10 and 20 hours, preferably 12 hours at a preferred temperature of 95 ° C;
g2.10) Centrifugação da solução obtida na etapa g2.9 entre 40 e 80 minutos, preferencialmente 60 minutos, entre 10.000 e 20.000 rpm, preferencialmente 15.000, descarte do sobrenadante e. rédispersão em etanol; repetida por pelo menos duas vezes.g2.10) Centrifuging the solution obtained in step g2.9 between 40 and 80 minutes, preferably 60 minutes, between 10,000 and 20,000 rpm, preferably 15,000, discarding the supernatant e.g. re-dispersion in ethanol; repeated at least twice.
10. Processo, de acordo com a reivindicação 1, caracterizado pelo fato de os meios de separação da etapa (m) compreenderem a centrifugação ou a decantação. Process according to Claim 1, characterized in that the separation means of step (m) comprise centrifugation or decantation.
11. Processo, de acordo com a reivindicação 10, caracterizado pelo fato de a centrifugação ser realizada em forças de rotação entre 1500 e 2000 rpm, preferencialmente durante 2 minutos. Process according to Claim 10, characterized in that the centrifugation is carried out at rotational forces between 1500 and 2000 rpm, preferably for 2 minutes.
12. Processo, de acordo com a reivindicação 10, caracterizado pelo fato de a decantação ser realizada em pelo menos 24horas.Process according to Claim 10, characterized in that the decantation takes place at least 24 hours.
13. Processo, de acordo com a reivindicação 1, caracterizado pelo surfactante compreender preferencialmente o brometo de hexadeciltrimetilamônio . Process according to Claim 1, characterized in that the surfactant preferably comprises hexadecyltrimethylammonium bromide.
14. Processo, de acordo com a reivindicação 1, caracterizado pelo precursor inorgânico de silício compreender alcóxidos de silício e organosilanos, preferencialmente o tetraetilortossilicato . Process according to Claim 1, characterized in that the inorganic silicon precursor comprises silicon alkoxides and organosilanes, preferably tetraethylorthosilicate.
15. Processo, de acordo com a reivindicação 1, caracterizado pêlo silanp hidrofóbico ser utilizado em quantidades entre 10 e 40% mol-Si, preferencialmente 30% mol-Si. Process according to Claim 1, characterized in that the hydrophobic silanp hair is used in amounts of 10 to 40 mol% Si, preferably 30 mol% Si.
16. Processo, de acordo com a reivindicação 1, caracterizado pelo grupo hidrofóbico compreendido no silano hidrofóbico compreender grupos hidrofóbicos ' selecionados dentre grupos aromáticos e derivados; e grupos à base de hidrocarboneto e derivados. 16. Process according to claim 1, wherein the hydrophobic group comprised in the hydrophobic silane comprises hydrophobic groups' selected from aromatic groups and derivatives; and hydrocarbon groups and derivatives.
17. Processo, de acordo com a reivindicação 1, caracterizado pelos grupos aromáticos e derivados serem selecionados dentre o grupo das funções fenil/ acetofenil, e pireno. Process according to Claim 1, characterized in that the aromatic groups and derivatives are selected from the group of phenyl / acetophenyl and pyrene functions.
18. Processo, de acordo com a reivindicação .1 , caracterizado pelos grupos à base de hidrocarbonetos e derivados serem selecionados dentre o grupo das funções octil e octadecil. Process according to Claim 1, characterized in that the hydrocarbon-based groups and derivatives are selected from the group of octyl and octadecyl functions.
19. : Processo, de acordo com a reivindicação 1, caracterizado pelo silano-PEG ser utilizado em quantidades entre 2 e 50% mol- Si. 19: Process according to claim 1, characterized in PEG-silane is used in amounts from 2 to 50 mol-% Si.
20. Processo, de acordo com a reivindicação 1, caracterizado pelo PEG compreendido . no silano-PEG compreender pelo menos 350 Da. Process according to claim 1, characterized in that the PEG is comprised. in silane-PEG comprise at least 350 Da.
21. Processo, de acordo com a reivindicação 1, caracterizado pelo silano intermediário com grupos funcionais reativos ser utilizadó em quantidades entre 2 e 50% mol-Si.  Process according to Claim 1, characterized in that the intermediate silane with reactive functional groups is used in amounts between 2 and 50 mol% Si.
22. Processo, de acordo com a reivindicação 1, caracterizado pelos grupos funcionais reativos compreendidos no silano intermediário compreenderem funções epóxi . Process according to Claim 1, characterized in that the reactive functional groups comprised in the intermediate silane comprise epoxy functions.
23. Processo, de acordo com a reivindicação 1, caracterizado pela base forte utilizada compreender preferencialmente o hidróxido de potássio. Process according to Claim 1, characterized in that the strong base used preferably comprises potassium hydroxide.
24. Processo, de acordo com a reivindicação 1, caracterizado pelo PEG-COOH utilizado compreender pelo menos 350 Da.  Process according to Claim 1, characterized in that the PEG-COOH used comprises at least 350 Da.
25. Processo, de acordo com a reivindicação 1, caracterizado pelo fármaco hidrofóbico ser utilizado em quantidades entre 1 a 20% em massa.  Process according to Claim 1, characterized in that the hydrophobic drug is used in amounts of 1 to 20% by mass.
26. Processo, de acordo com a reivindicação 1, caracterizado pelo fármaco hidrofóbico utilizado ser selecionado do grupo defármacos compreendendo a curcumina, camptotecina, doxorrubicina, violaceina, tamoxifeno, beta-lapacona e análogos, preferencialmente curcumina ou camptotecina.  Process according to Claim 1, characterized in that the hydrophobic drug used is selected from the group of drugs comprising curcumin, camptothecin, doxorubicin, violacein, tamoxifen, beta-lapacone and the like, preferably curcumin or camptothecin.
27. Nanoparticulas peguiladas carreadoras de fármacos hidrofóbicos caracterizadas por serem obtidas pelo processo descrito nas reivindicações de 1 a 26 e compreenderem superfície externa funcionalizada com polietileno glicol (PEG) , superfície interna porosa e funcionalizada com grupos hidrofóbicos, e fármaco hidrofóbico encapsulado.  Pegylated hydrophobic drug carrier nanoparticles characterized by being obtained by the process described in claims 1 to 26 and comprising polyethylene glycol (PEG) -functioning outer surface, hydrophobic-grouped porous inner surface, and encapsulated hydrophobic drug.
28. Nanoparticulas peguiladas carreadoras de fármacos hidrofóbicos caracterizadas por compreenderem superfície externa f ncionalizada com polietileno glicol (PEG) , superfície interna porosa e funcionalizada com grupos hidrofóbicos, e fármaco hidrofóbico encapsulado.  28. Pegylated nanoparticles carrying hydrophobic drugs comprising polyethylene glycol (PEG) -functional outer surface, hydrophobic-functionalized porous inner surface, and encapsulated hydrophobic drug.
29. Nanoparticulas peguiladas carreadoras de fármacos hidrofóbicos, de acordo com a reivindicação 28, caracterizadas por o fármaco hidrofóbico utilizado ser selecionado do grupo de fármacos compreendendo a curcumina, camptotecina, doxorrubicina, violaceína, tamoxifeno, beta-lapacona e análogos, preferencialmente curcumina ou camptotecina . Pegylated hydrophobic drug carrier nanoparticles according to claim 28, characterized in that the hydrophobic drug used is selected from the group of drugs comprising curcumin, camptothecin, doxorubicin, violacein, tamoxifen, beta-lapacone and the like, preferably curcumin or camptothecin.
30. Nanopartículas peguiladas carreadoras de fármacos hidrofóbicos caracterizadas por compreenderem superfície externa funcionalizada com polietileno glicol (PEG) , superfície interna porosa e funcionalizada com grupos hidrofóbicos, e curcumina encapsulada.  30. Pegylated nanoparticles carrying hydrophobic drugs comprising polyethylene glycol (PEG) functionalized outer surface, porous inner surface functionalized with hydrophobic groups, and encapsulated curcumin.
31. Nanopartículas, de acordo com qualquer uma das reivindicações 28 a 30, caracterizadas pelo PEG compreender pelo menos 350 Da e ser funcionalizado em quantidades entre 2 e 50% mol-Si.  Nanoparticles according to any one of claims 28 to 30, characterized in that the PEG comprises at least 350 Da and is functionalized in amounts between 2 and 50 mol-Si.
32. Nanopartículas, de acordo com qualquer uma das reivindicações 28 a 30, caracterizadas pelos grupos hidrofóbicos serem funcionalizados em quantidades entre 10 e 40% mol-Si, preferencialmente 30% mol-Si.  Nanoparticles according to any one of claims 28 to 30, characterized in that the hydrophobic groups are functionalized in amounts between 10 and 40 mol% Si, preferably 30 mol% Si.
33. Nanopartículas, de acordo, com a reivindicação 32, caracterizadas pelos grupos hidrofóbicos serem selecionados dentre grupos aromáticos e derivados; e grupos à base de hidrocarboneto e derivados .  Nanoparticles according to Claim 32, characterized in that the hydrophobic groups are selected from aromatic groups and derivatives; and hydrocarbon groups and derivatives.
34. Nanopartículas, de acordo com a reivindicação 33, caracterizadas pelos grupos aromáticos e derivados serem selecionados dentre os grupos das funções fenil, acetofenil, e pireno .  Nanoparticles according to claim 33, characterized in that the aromatic groups and derivatives are selected from the groups of the phenyl, acetophenyl, and pyrene functions.
35. Nanopartículas, de acordo com a reivindicação 33, caracterizadas pelos grupos à base de hidrocarbonetos e derivados serem selecionados dentre o grupo das funções octil e octadecil. Nanoparticles according to claim 33, characterized in that the hydrocarbon-based groups and derivatives are selected from the group of octyl and octadecyl functions.
36. Nanopartículas, ' de acordo com qualquer. uma das reivindicações . 28 a 30, caracterizadas por compreenderem fármaco hidrofóbico em quantidades entre 1 a 20% em massa.36. Nanoparticles, "according to. one of the claims. 28 to 30, characterized in that they comprise hydrophobic drug in amounts from 1 to 20% by mass.
37. Nanopartículas, de acordo com qualquer uma das reivindicações 28 a 30, caracterizadas por compreender o diâmetro entre 40 e 100 nm. Nanoparticles according to any one of claims 28 to 30, characterized in that they comprise a diameter between 40 and 100 nm.
38. Nanopartículas, de acordo com qualquer uma das reivindicações 28 a 30, caracterizadas por compreender, potencial zeta entre -5,3 e -35 mV.  Nanoparticles according to any one of claims 28 to 30, characterized in that it comprises a zeta potential of between -5.3 and -35 mV.
39. Nanopartículas, de acordo com qualquer uma das reivindicações 28 a 30, caracterizadas por compreender área superficial entre 760 e 943 m2/g. Nanoparticles according to any one of claims 28 to 30, characterized in that it comprises a surface area of between 760 and 943 m 2 / g.
40. Nanopartículas, de acordo com qualquer uma das reivindicações 28 a 30, caracterizadas por compreender volume de poros entre 1,0 a 1,8 cm3/g. Nanoparticles according to any one of claims 28 to 30, characterized in that it comprises pore volume between 1.0 and 1.8 cm 3 / g.
41. Nanopartículas, de acordo com qualquer uma das reivindicações 28 a 30, caractérizadas por causar efeitos hemolíticos máximos entre 2 e 14%:.  Nanoparticles according to any one of claims 28 to 30, characterized in that they cause maximum hemolytic effects of between 2 and 14%.
38. Uso das nanopartículas peguiladas carreadoras de fármacos hidrofóbicos, .: conforme descrito na reivindicação 27,, caracterizadas pelo fato de serèm aplicadas em tratamentos antitumorais e anti-inflamatórios .  Use of pegylated hydrophobic drug carrier nanoparticles, as described in claim 27, characterized in that they are applied in anti-tumor and anti-inflammatory treatments.
38. Uso das nanopartículas peguiladas carreadoras de fármacos hidrofóbicos, conforme descrito nas reivindicações 28 a 41, caracterizadas pelo fato de serem aplicadas em tratamentos antitumorais e anti-inflamatórios .  Use of pegylated hydrophobic drug carrier nanoparticles as described in claims 28 to 41, characterized in that they are applied in anti-tumor and anti-inflammatory treatments.
PCT/BR2015/000202 2014-12-16 2015-12-16 Method for producing pegylated silica nanoparticles as carriers of hydrophobic pharmaceutical drugs, thus obtained nanoparticles and uses thereof WO2016094991A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
BRBR1020140316884 2014-12-16
BR102014031688-4A BR102014031688B1 (en) 2014-12-16 2014-12-16 Process of obtaining pegylated silica nanoparticles carrying hydrophobic drugs, nanoparticles thus obtained and their uses
BR132015030941A BR132015030941F1 (en) 2015-12-10 2015-12-10 Process for obtaining pegylated silica nanoparticles carrying hydrophobic drugs, nanoparticles thus obtained and their uses
BRBR1320150309413 2015-12-10

Publications (1)

Publication Number Publication Date
WO2016094991A1 true WO2016094991A1 (en) 2016-06-23

Family

ID=56125480

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2015/000202 WO2016094991A1 (en) 2014-12-16 2015-12-16 Method for producing pegylated silica nanoparticles as carriers of hydrophobic pharmaceutical drugs, thus obtained nanoparticles and uses thereof

Country Status (1)

Country Link
WO (1) WO2016094991A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018144954A1 (en) * 2017-02-03 2018-08-09 City Of Hope Silica nanoparticle with an insoluble drug

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009038659A2 (en) * 2007-09-14 2009-03-26 Health Research, Inc. Organically modified silica nanoparticles with covalently incorporated photosensitizers for drug delivery in photodynamic therapy
US20100255103A1 (en) * 2007-12-06 2010-10-07 The Regents Of The University Of California Mesoporous Silica Nanoparticles for Biomedical Applications
US20130274226A1 (en) * 2010-11-30 2013-10-17 The Board Of Trustees Of The University Of Illinois Silica nanoparticle agent conjugates

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009038659A2 (en) * 2007-09-14 2009-03-26 Health Research, Inc. Organically modified silica nanoparticles with covalently incorporated photosensitizers for drug delivery in photodynamic therapy
US20100255103A1 (en) * 2007-12-06 2010-10-07 The Regents Of The University Of California Mesoporous Silica Nanoparticles for Biomedical Applications
US20130274226A1 (en) * 2010-11-30 2013-10-17 The Board Of Trustees Of The University Of Illinois Silica nanoparticle agent conjugates

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
FONSECA, L.C ET AL.: "Modfca^ao Superficial de Veiculos Moleculares a Base de Nanoparticulas de Silica Mesoporosa. 16 de julho de 2014. 101 folhas.", DSSERTA^AO DE MESTRADO - UNICAMP. CAMPINAS, SP, 16 July 2014 (2014-07-16) *
HUIXIA WU ET AL.: "A Hollow-Core, Magnetic, and Mesoporous Double- Shell Nanostructure: In Situ Decomposition/Reduction Synthesis, Bioimaging, and Drug-Delivery Properties", ADV. FUNCT. MATER., vol. 21, 2011, pages 1850 - 1862, XP001563708, DOI: doi:10.1002/adfm.201002337 *
JIE LU ET AL.: "Mesoporous Silica Nanoparticles as a Delivery System for Hydrophobic Anticancer Drugs", SMALL, vol. 3, no. 8, 2007, pages 1341 - 1346, XP055011703, DOI: doi:10.1002/smll.200700005 *
LEILA MA'MANI ET AL.: "Curcumin-loaded guanidine functionalized PEGylated 13 ad mesoporous silica nanoparticles KIT- 6: Practical strategy for the breast cancer therapy", EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY, vol. 83, 2014, pages 646 - 654 *
RAJESH K. GANGWAR ET AL.: "Curcumin Conjugated Silica Nanoparticles for Improving Bioavailability and Its Anticancer Applications", J. AGRIC. FOOD CHEM., vol. 61, 2013, pages 9632 - 9637 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018144954A1 (en) * 2017-02-03 2018-08-09 City Of Hope Silica nanoparticle with an insoluble drug
US11191745B2 (en) 2017-02-03 2021-12-07 City Of Hope Silica nanoparticle with an insoluble drug

Similar Documents

Publication Publication Date Title
Du et al. Mesoporous silica nanoparticles with organo-bridged silsesquioxane framework as innovative platforms for bioimaging and therapeutic agent delivery
Wu et al. Functionalized MoS2 nanosheet-capped periodic mesoporous organosilicas as a multifunctional platform for synergistic targeted chemo-photothermal therapy
Singh et al. Nanosilica: Recent progress in synthesis, functionalization, biocompatibility, and biomedical applications
Yildirim et al. Impact of mesoporous silica nanoparticle surface functionality on hemolytic activity, thrombogenicity and non-specific protein adsorption
Zhao et al. PEGylated mesoporous silica as a redox-responsive drug delivery system for loading thiol-containing drugs
Poostforooshan et al. Aerosol-assisted synthesis of tailor-made hollow mesoporous silica microspheres for controlled release of antibacterial and anticancer agents
Liu et al. Formation and characterization of natural polysaccharide hollow nanocapsules via template layer-by-layer self-assembly
JP2013040202A (en) Layered nanoparticle
Gou et al. Carboxyl-functionalized mesoporous silica nanoparticles for the controlled delivery of poorly water-soluble non-steroidal anti-inflammatory drugs
Chiu et al. Versatile synthesis of thiol-and amine-bifunctionalized silica nanoparticles based on the ouzo effect
Kazemzadeh et al. Structure-property relationship for different mesoporous silica nanoparticles and its drug delivery applications: A review
KR101994775B1 (en) Porous silica nanocomposite drug delivery system and method for reparing the same
Wang et al. Redox and pH dual-responsive mesoporous silica nanoparticles for site-specific drug delivery
Nechikkattu et al. Zwitterionic functionalised mesoporous silica nanoparticles for alendronate release
Rafati et al. Kinetic study, structural analysis and computational investigation of novel xerogel based on drug-PEG/SiO2 for controlled release of enrofloxacin
Song et al. Multifunctional dual-mesoporous silica nanoparticles loaded with a protein and dual antitumor drugs as a targeted delivery system
Li et al. Morphology evolution and spatially selective functionalization of hierarchically porous silica nanospheres for improved multidrug delivery
WO2016037249A1 (en) Process for producing a hybrid system, hybrid system and use thereof
Narayan et al. Mesoporous silica nanoparticles capped with chitosan-glucuronic acid conjugate for pH-responsive targeted delivery of 5-fluorouracil
WO2018112575A1 (en) Process for producing a nanocomposite containing graphene oxide and silica nanoparticles, nanocomposites thereby produced and uses thereof
Yang et al. Multifunctional mesoporous silica nanoparticles with different morphological characteristics for in vitro cancer treatment
Capeletti et al. Silica nanoparticle applications in the biomedical field
Ab Wab et al. Properties of amorphous silica nanoparticles colloid drug delivery system synthesized using the micelle formation method
WO2016094991A1 (en) Method for producing pegylated silica nanoparticles as carriers of hydrophobic pharmaceutical drugs, thus obtained nanoparticles and uses thereof
Lotfalian et al. Hierarchically structured protein-based hollow-nanospheres for drug delivery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15868736

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15868736

Country of ref document: EP

Kind code of ref document: A1